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ABSTRACT 

 

The gram-positive bacterium Streptococcus mutans is the primary causative agent in the 

formation of dental caries in humans.    To persist in the oral cavity, S. mutans must be able to 

tolerate rapid and substantial environmental fluctuations and exposure to various toxic 

chemicals. However, the mechanisms underlying the ability of this cariogenic pathogen to 

survive and proliferate under harsh environmental conditions remain largely unknown.   In the 

current study we wanted to understand the mechanisms by which S. mutans withstand 

exposure to various quaternary ammonium compounds (QAC) such as methyl viologen (MV) 

that also generates superoxide radicals in the cell.  To elucidate the genes that are essential for 

MV tolerance, sensitive mutants of S. mutans were generated via ISS1 mutagenesis.  Screening 

of approximately 3,500 mutants revealed fifteen MV sensitive mutants.  Among them, five and 

four independent insertions had occurred in SMU.905 and SMU.906, respectively.  These two 

genes are organized in an operon and encode a putative ABC-transporter complex.   Linkage 

PCR analysis supports the operon organization of these two genes and also indicates that the 

transcription start site maps further upstream of SMU.905.   To confirm our results, SMU.905 

was deleted using an antibiotic resistance marker; the SMU.905 deletion mutant was just as 

sensitive to MV as the ISS1 insertion mutants.  Furthermore, SMU.905 and SMU.906 mutants 

were sensitive to other viologen compounds such as benzyl- and ethyl- viologen.   Sensitivity to 

various drugs including a wide range of QACs was tested.  It appears that a functional SMU.905 

is also required for full resistance towards acriflavin, ethidium bromide, and safranin; all are well 

known QAC. These results indicate that SMU.905/SMU.906 probably constitute a heterodimeric 

multidrug efflux pump of the ABC family.  BLAST-P analysis suggests that this ABC-type efflux 

pump is widely present in streptococci, enterococci, and clostridia including some important 

human pathogens.  
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1.1.  Oral microbial community  

Dental plaque is a complex biofilm, which contains diverse bacterial species that are adhered to 

tooth or other oral tissue surfaces and are embedded in a matrix composed of extracellular DNA 

or polysaccharides (133, 134).  The oral cavity is a dynamic environment that undergoes rapid 

and substantial changes in pH, nutrient availability, oxygen tension, osmotic stress, and 

temperature fluctuations (17, 113, 114).  The amount of toxic substances that often come from 

oral care products is also in constant flux in the oral cavity.  Despite these harsh environments, 

over 600 microbial species have been estimated to colonize the oral cavity as complex 

populations in biofilms (156).  About 20% of the oral microorganisms are streptococcal species 

that are associated with oral health as well as various diseases (99).  

 

Oral bacteria often exhibit distinct tissue-specific tropisms and many of these organisms have 

been found to colonize different surfaces of the oral cavity, such as the tooth enamel, tongue, 

and other bacterial lawn (126).  Studies focused on examining which species preferentially 

colonize a particular biological surface in the oral cavity have shown that hard tissue surfaces, 

such as the teeth, are preferentially colonized by Actinomyces species.  On the other hand, 

Prevotella melaninogenica and Veillonella parvula colonize soft tissue surfaces in higher 

proportions (126).  Furthermore, streptococcal species, such as S.mitis, S. oralis, and S. 

salivarius predominantly colonize the soft tissues and are also found in higher proportion in the 

saliva compared to other organisms (154).  However, gram-negative bacteria such as 

Capnocytophaga gingivalis and V. parvula primarily colonize the tongue, which is also a soft 

tissue (126).   Since particular species tend to dominate in specific regions of the oral cavity, it 

suggests that organisms express different cell-surface associated proteins such as adhesins 

that determine the environmental niche or tissue tropism (126).  
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The dental plaque initiates with so-called “pioneer” organisms, or early colonizers, which adhere 

to host salivary components on the tooth enamel (100, 205).   Among the early colonizers, 

about 60-80% are streptococcal species belonging to the viridians group, including S. mitis, S. 

oralis and S. sanguinis, and these streptococci form relatively simple biofilm communities (98, 

101, 205). Following early colonization, the biofilm microflora becomes more complex as a 

result of co-aggregation between different bacterial species (98).  Adhesins on one species may 

be capable of recognizing a cell-surface receptor on another organism, thereby allowing 

diversification of the biofilm community (101).  These cell-cell interactions have been extensively 

studied and various adhesins that promote co-aggregation have been identified.  For example, 

the SsaB protein of S. sanguinis mediates co-aggregation with Actinomyces naeslundii and 

Streptococcus gordonii (101). Furthermore, co-aggregation of A. naeslundii with various 

streptococcal species, including S. gordonii, S. oralis, S. mitis and S. sanguinis, is thought to be 

mediated by type-II fimbriae on A. naeslundii and receptor polysaccharides on the streptococcal 

species (150, 205).  Fusobacteria, on the other hand, are able to co-aggregate with both the 

early colonizers as well as later colonizers, such as Actinobacillus and Treponema species, 

thereby serving as a connector between early and late colonizers (98, 100).  These cell-cell 

interactions lead to the formation of more diverse biofilm involving hundreds of microbial 

species. As the biofilm matures, more complex interactions begin to occur involving cooperation 

and competition among various plaque microflora. 

 

A typical characteristic of the community lifestyle of dental plaque is recycling of metabolic 

byproducts among various bacterial species.   The metabolic byproducts of one organism can 

be potentially used as a source of nutrition by another organism and complex metabolic 

networks are generated within the biofilm community (105).  For example, lactic acid produced 

by Streptococcus mutans can be utilized as an energy source by Veillonella species and 

Streptococcus oligofermentans (28, 105).   Furthermore, a symbiotic interaction between S. 
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oralis and A. naeslundii was observed, when nutrient-limited saliva was provided as the sole 

energy source in a mixed-species biofilm (153).  However, when cultivated independently 

neither of these two could survive. It was only when these two species were grown together that 

they were able to flourish in the biofilm.  A surprising finding is that during anaerobic growth S. 

mutans requires para-aminobenzoic acid, and S. sanguinis is able to provide this important 

vitamin to S. mutans during co-cultivation (28).  Although not directly shown for oral 

streptococci, exogenous quinones produce by host or by bacteria can also promote growth of 

nearby bacteria. For example, Streptococcus agalactiae that colonizes intestine and urogenital 

tract is thought to capture menaquinone from other bacteria.  This acquisition helps the 

organism to shift from anaerobic metabolism to respiration, and this metabolic shift is crucial for 

colonization and virulence (78, 202).   Bacterial metabolism in dental plaque also results in the 

establishment of pH, oxygen, nutrient and other physical and chemical conditions that ultimately 

regulate microbial growth in the biofilm.  The heterogeneous environment within the oral biofilm 

allows typically incompatible organisms to co-exist (134) and facilitates the creation of complex 

nutritional networks among diverse oral organisms. 

 

Microorganisms in the dental plaque also compete with each other for survival and colonization.  

They have developed multiple strategies to gain competitive advantages within the biofilm 

community.  Many streptococci produce bacteriocins, which are small peptides with 

antimicrobial activity against closely related species (6, 148).  For example, S. mutans produces 

multiple bacteriocins, called mutacins, which provides S. mutans a competitive advantage over 

other species in the dental palque allowing for enhanced colonization (105, 148). In addition to 

inhibition of microbial growth, bacteriocins can also act as signaling molecules for cell-to-cell 

communication. Salivaricin A, a bacteriocin produced by S. salivarius, can act as interspecies 

signaling molecules to regulate gene expression of Streptococcus pyogenes (195).   Another 

interesting observation is that the production of mutacins by S. mutans in multispecies biofilm 
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can be inhibited by other oral streptococci such as S. gordonii, S. sanguinis, S. mitis and S. 

oralis (196).   Bacteria also secrete various toxic compounds to inhibit growth of other species 

(78).  For example, S. sanguinis and S. oligofermentans both generate hydrogen peroxide that 

inhibits growth of S. mutans (103, 192).   Thus complex interactions that represent both co-

operation and competition among diverse bacteria are found within the dental plaque biofilm.   

 

1.2. Diseases caused by S. mutans  

S.  mutans has been strongly implicated as the principal etiological agent in human dental caries 

In addition to dental caries, S. mutans is also an important agent of infective endocarditis (IE). 

More than 20% of cases of viridians streptococcus-induced endocarditis are caused by S. 

mutans. The development and progression of these diseases are discussed below. 

 

1.2. a. Dental caries  

Dental caries are a dynamic process that involves degradation of the tooth enamel, dentin, and 

cementum by bacteria present in the dental plaque.   The demineralization of the tooth enamel 

is due to the production of lactic acids during carbohydrate metabolism of acidogenic bacteria 

(71, 72).  Since S. mutans is frequently associated with human dental caries, as evident from 

several studies that found higher levels of S. mutans at carious lesions, this organism is 

attributed as the principal etiological agent (71, 72, 117, 203).   Three different hypotheses have 

been proposed for the development of dental caries: the specific plaque hypothesis, the non-

specific plaque hypothesis, and the ecological plaque hypothesis (10, 26, 35, 83).  The specific 

plaque hypothesis, which was first proposed by Clarke in 1924 (35), suggests that only a few 

species of bacteria, such as S. mutans, are involved in caries development.  However, this 

hypothesis remains controversial since there are few reports that indicate many non-mutans 

bacteria are also capable of producing carius lesions (26, 96, 175).  The non-specific plaque 

hypothesis, which was first presented by Miller in the late 1800s, proposes that all bacteria in 



  6 

the mouth had the potential to be cariogenic (10).  Recent evidence also indicates S. mutans 

are not the only organism that is able to promote caries formation (96). Thus, this particular 

hypothesis is an attractive and highly accepted alternative explanation for dental caries 

formation.  The ecological plaque hypothesis proposes that plaque-mediated diseases, like 

dental caries, are due to imbalances in the resident oral microflora.  Imbalances may arise from 

environmental conditions (such as increased acidity) that lead to enrichment for oral pathogens 

(132). This model suggests that any acidogenic organisms in the mouth can cause caries 

provided that the local environmental conditions support the overall process of caries formation.  

In fact the plaque pH is in constant flux, with pH falling due to acid production by acidogenic 

bacteria following intake of dietary carbohydrate, and then rising due to alkali production by 

other plaque bacteria (26, 96, 190).  

 

The involvement of S. mutans in the initiation and progression of dental caries is due to the 

organism’s ability to metabolize a diverse range of carbohydrates such as fructose, glucose, 

galactose, and sucrose (3, 4, 140).  Fermentation of these carbohydrates via the glycolytic 

pathway results in the production of lactic acid from pyruvate (71). Lactic acids produced by S. 

mutans and other acidogenic plaque bacteria generate acidification of the local environment 

below the critical pH 5.5; this pH is needed for remineralisation of tooth enamel (72, 118, 140).  

Prolonged exposure to lactic acids causes continuous demineralisation of the tooth enamel and 

ultimately leads to dental caries formation (11).   

 

1.2.b. Infective Endocarditis (IE)  

IE is a life-threatening bacterial infection of the endocardium, a smooth layer of tissue that 

covers the inside the heart to protect the heart muscles (16, 141).  While virtually any bacterial 

organism can cause bacterial endocarditis, the vast majority of infections are caused by gram-

positive cocci (141).  The viridans group of streptococci and S. mutans are the most common 
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cause of endocarditis involving native heart valves in patients with congenital heart disease 

(16).  Oral streptococci can often cause systemic infections including bacteremia following 

various dental procedures, including oral surgery, allowing these organisms to gain access and 

adhere to damaged heart valves, causing IE (143, 145).  It is estimated that about 20% of IE 

cases attributed to viridans streptococci are in fact caused by S. mutans (11, 194).  A serotype-

specific putative adhesin, derived from rhamnose-glucose polysaccharide (RGP), has been 

identified in S. mutans that is thought to be required for attachment to human monocytes, 

fibroblasts, and platelets ((31, 54).  Furthermore, the S. mutans adhesin, Antigen I/II, may play a 

role in IE since this adhesin binds to the extracellular matrix components such as type 1 

collagen, fibrinogen, fibronectin, and laminin (15).  Although the exact role of S. mutans in the 

pathogenesis of IE is not well understood, the availability of complete genome sequence may 

suggest various surface adhesins in the pathogenesis. 

 

1.3.  Important virulence traits of S. mutans 

Unlike other infectious diseases caused by various streptococcal species (pneumonia, strep-

throat) in which traditional virulence factors (toxins, hemolysins, or proteases) play important 

roles in the damage to the host tissues, the pathogenesis of dental caries is solely associated 

with the life-style of bacterium and its metabolic characteristics.  The virulence properties of S. 

mutans can be classified in the following core attributes: its adhesion to the tooth surface, 

abilities to form biofilm, to produce large quantities of organic acids (acidogenecity), to tolerate 

low pH environment (aciduricity), and production of bacteriocins (mutacins) to suppress the 

growth of competing organisms.  How these core attributes are involved in the S. mutans 

pathogenesis are described below. 
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1.3.a.  Adhesins 

Adhesion of oral streptococci to tooth surface is the primary step of the colonization. Salivary 

proteins and glycoproteins are adsorbed by the oral surfaces, such as enamel, dentin, epithelial 

cells, and even other bacteria (99). Interaction with these salivary constituents facilitates 

adhesion to the enamel surfaces.  Bacterial interaction with salivary components also promotes 

removal of the organisms by aggregation or direct killing, or allows the organism to escape 

recognition by the host’s immune system by masking antigenic sites (51, 53). The major salivary 

component is an agglutinin, ~ 500-kDa oligomeric protein complex composed of the 

glycoprotein gp340, secretory antibodies (IgA), and an 80-kDa protein; this salivary agglutinin 

forms a pellicle on the tooth surface (86, 119).  Antigen I/II (AgI/II), a major S. mutans adhesin 

binds to the gp340 to initiate the attachment (119).   

 

AgI/II, also known as SpaP and P1 in S. mutans, represents a family of polypeptides expressed 

by many oral streptococci that demonstrate diverse binding specificities and affinities (24, 88, 

89, 150).  However, the AgI/II family of proteins exhibits highly conserved domain structures that 

are required for attachment (24, 150).  AgI/II is a cell-surface anchored polypeptide whose C-

terminal region contains an LPXTG motif that serves as a target for sortase mediated covalent 

attachment to the cell wall (86).  The N-terminal alanine-rich and the C-terminal proline-rich 

regions are believed to be responsible for interaction with salivary components (150).  AgI/II has 

also been implicated in co-aggregation between different bacterial species in the oral cavity. S. 

gordonii SspB, an AgI/II family protein, was able to mediate co-aggregation with A. naeslundii 

and SspA (also an AgI/II protein) along with SspB were shown to be involved in binding to the 

periodontal pathogen Porphyromonas gingivalis (47, 107, 150). Furthermore, the presence of 

salivary agglutinin was shown to enhance co-aggregation of S. mutans with S. sanguis and 

Actinomyces viscosus (106).  Because AgI/II is a cell-surface associated protein (150) and 

because it can elicit immune response (125), it is an important vaccine candidate to control 
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dental plaque formation by S. mutans (86).  In fact, active immunization of primates and rodents 

with AgI/II resulted in protection from dental caries (86, 181) and application of synthetic AgI/II 

prevented in vivo recolonization on human teeth by S. mutans (94).  Although the development 

of an AgI/II based anti-caries vaccine seems promising, it is important to note that the peptide 

components should only confer protection and should not cross-interact with the non-pathogenic 

oral bacteria so that undesirable changes in the oral ecology are avoided (68).  

 

Another cell-surface associated adhesin, WapA, also known as antigen A or antigen III, is 

shown to play an important structural role on the cell surface, which ultimately affects cell–cell 

aggregation (210).   However, this adhesin is not very well studied and its function in S. mutans 

pathogenesis is not very clear.  Nevertheless, this protein, which is a 29-kd polypeptide, was 

used as a vaccine candidate in animal studies for immunization against dental caries (173).   

Interestingly, it has been found that antibodies against WapA do not interfere with cell-cell 

aggregation (52), or with adherence to saliva-coated hydroxyapatite (53).  Thus, the exact role 

of WapA as an adhesin remains controversial.   

 

1.3.b. Biofilm formation 

Dental plaque biofilms are comprised of aggregates of surface-adherent bacteria embedded in 

an extracellular polysaccharide matrix (134). It is believed that the biofilm mode of growth is the 

natural state adopted by many bacterial species including pathogens (87, 155). Biofilms are 

typically comprised of diverse bacterial species that are spatially and functionally organized (75, 

155), as it is the case in dental plaque (134).  Biofilm lifestyle offers several benefits to bacteria 

such as defense against shear forces, stresses and antimicrobial agents, colonization of a 

favorable habitat, and a community lifestyle that promotes genetic transfer and sharing of 

metabolites (77, 78, 84, 87).   Biofilm development can be divided into five major stages.  The 

first stage is the initial attachment to a suitable biotic or abiotic surface. In case of S. mutans, 
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this step is governed by adhesins as described in the previous section.  The second stage is 

irreversible attachment as mediated by the production of extracellular polysaccharide such as 

glucans.  The other stages are early development, maturation of biofilm architecture, and 

dispersal. Biofilm maturation is associated with the production of a complex architecture, 

including microcolonies, channels and pores (70, 187).  Biofilm dispersal is believed to occur by 

shedding of daughter cells from actively growing cells, shearing of aggregates due to flow 

effects or detachment in response to nutrient depletion in the environment.  This would allow 

bacteria to search for new nutrient-rich environments to inhabit (70, 187).   

 

In case of biofilm formation by S. mutans, the initial attachment is mediated by interaction 

between AgI/II adhesin and gp340 salivary protein on the tooth pellicle. However, the second 

step, which is very crucial, is mediated by glucosyltransferase enzymes (Gtfs), which produce 

both water-soluble and insoluble polysaccharides, glucans, from sucrose (11, 12).  These 

enzymes cleave disaccharide sucrose into glucose and fructose moeities.  Glucose is then 

added to a growing glucan polymer that is also synthesized by Gtfs (11, 12).  S. mutans 

produces three Gtfs: GtfB, GtfC and GtfD.  The first two enzymes are cell-associated and are 

responsible for synthesis of water-insoluble glucans, which predominantly contain α-1,3-

glycosidic bonds. On the other hand, GtfD is produced extracellularly and synthesizes water-

soluble glucans that predominantly contain α-1,6-glycosidic bond (11, 12).  Water-insoluble 

glucans are major constituents of the plaque biofilm matrix and have been shown to facilitate 

not only adherence of S. mutans to the biofilm, but also to promote cell-cell interactions among 

oral streptococci (105, 150).  

 

S. mutans also produces four glucan-binding proteins (GBPs): GbpA, GbpB, GbpC and GbpD 

(11, 12). GBPs are required for the interaction with the extracellular polysaccharides in the 

biofilm.  Among these GBPs, GbpA, GbpB, and GbpD are both secreted and cell-associated, 
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while GbpC is only found covalently anchored to the cell wall via sortase (177). Various studies 

have been performed in order to examine the contribution of each of these GBPs to biofilm 

development. GbpA has been shown to be important for biofilm architecture in sucrose-

dependent biofilms (11, 12).  GbpB has been shown to be immunologically distinct from the 

other GBPs produced by S. mutans and is believed to be essential for viability with a potential 

role in cell wall biogenesis (61, 137, 138).  Evidence suggests that GbpC is more important for 

early stages of biofilm formation and is involved in glucan-dependent aggregation of bacteria via 

binding to the water-soluble glucans produced by GtfD (137).  Lastly, the loss of GbpD has been 

shown to result in extremely fragile biofilms, suggesting that this GBP is important for providing 

biofilm scaffolding and promoting cohesiveness between glucan and bacteria in the biofilm (11, 

12, 124).  Based on these studies, it is apparent that each of the GBPs produced by S. mutans 

contributes to the overall biofilm architecture and is therefore important for biofilm formation and 

maturation. 

Besides GTFs and GBPs, early stages of biofilm formation by S. mutans involves differential 

expression of at least 33 proteins, including those involved in carbohydrate metabolism, amino 

acid biosynthesis, protein folding, and cell division (200).  Biofilm formation is also associated 

with differential expression of various genes compared to planktonic growth.  Genes that are 

differentially expressed in biofilm population include several regulatory proteins, competence 

genes, the heat shock protein, genes involved in carbohydrate metabolism, and genes involved 

in cell division (178, 179, 200, 204).  The involvement of a number of systems in the control and 

regulation of biofilm development in S. mutans highlights the complexity of the processes and 

the importance of this property in virulence.  As development of a stable biofilm is important for 

the initiation of dental caries by S. mutans, studies examining the genetic involvement in biofilm 

formation are essential for understanding the process and allow for identification of potential 

targets to control cariogenesis.   
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1.3.c. Acidogenicity  

S. mutans contains genes necessary for a complete glycolytic pathway and can produce 

acetate, formate, lactate, and ethanol by fermentation (3, 180).  The precise distribution of 

fermentation products depends on the growth conditions; lactate is the major end product when 

glucose is abundant (41).  Strains deficient in lactate dehydrogenase (LDH), the enzyme that 

converts pyruvate to lactate, display reduced cariogenicity (59, 90).  The frequency with which 

S. mutans produces acid when tested at a pH in the range from 5.0 – 7.0 exceeds that of other 

oral streptococci in most instances (46).  However, the relative acidogenicity of S. mutans can 

vary from one isolate to another, and there are no strict correlations between acidogencity and 

caries formation (97).  Nevertheless, the acidogenicity by S. mutans leads to ecological changes 

in the plaque flora that includes an increase in the proportion of S. mutans and other acidogenic 

and acid-tolerant streptococci.  This cariogenic flora further reduces plaque pH to lower levels 

compared to a healthy plaque flora upon the ingestion of fermentable carbohydrate, and the 

recovery to a neutral pH will be prolonged (66, 186).  Sustained plaque pH values <5.5 leads to 

the demineralization of enamel and the development of dental caries (118). 

 

1.3.d. Acid tolerance 

As mentioned above, the plaque environment is continuously experiencing changes in pH from 

above pH 7.0 to as low as pH 3.0 due to ingestion of dietary carbohydrates (113, 186). The 

extreme acidic environments pose a considerable stress on organisms living within the dental 

plaque.  S. mutans along with several other oral streptococci posses several acid adaptive 

strategies, some of which are distributed among all the species and some that are unique to S. 

mutans (113). It has been shown that prior exposure of S. mutans to a sub-lethal pH of 5.5 

results in enhanced survival at the extremely low pH of 3.0-3.5 (74, 189, 201). This adaptive 

response, termed as acid tolerance response (ATR), involves changes in the physiology, 

including alteration in gene and protein expression, increased glycolytic activity, and increased 
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proton-extrusion via the F1/F0-ATPases, which lead to enhanced survival (11, 113, 201). 

Glycolytic enzymes in S. mutans are maximally active around pH 6.5 for cells growing in acidic 

conditions, while for other oral bacteria maximum glycolysis is obtained around pH 7.5 (73).  

However, S. mutans can maintain a relatively alkaline intracellular pH and allows glycolysis to 

occur even when the extracellular pH values are as low as 4.0; thereby, providing a competitive 

advantage for S. mutans over other less acid-tolerant oral bacteria (73, 74).  Growth of S. 

mutans below pH5.5 is also accompanied by a decrease in glucose transport by the 

phosphoenolpyruvate (PEP) phosphotransferase system (PTS), a major glucose transport 

system (40, 73). Enhancement in the rate of glycolysis at low pH results in increased lactic acid 

production and further acidification of the environment, which allows S. mutans to out-compete 

other oral bacteria that are unable to tolerate high acidic conditions.  

 

One of the main mechanisms involved in the ATR of S. mutans is the maintenance of 

intracellular pH (ΔpH). This process employs proton extrusion by end-product efflux and 

membrane-associated F1/F0-ATPases. These systems are responsible for maintaining 

transmembrane pH gradients with a more neutral intracellular pH and more acidic extracellular 

pH (40, 74).  Protons in the extracellular environment are able to diffuse freely through the cell 

membrane and acidify the cytoplasm; these protons are constantly extruded by the F1/F0-

ATPase. The activity of the F1/F0-ATPases is increased under acidic conditions (74) to facilitate 

enhanced export of protons at low pH.  The pH optimum of F1/F0-ATPases for less acid tolerant 

bacteria is approximately pH 7.0 (73, 188). On the other hand, S. mutans exhibits pH optimum 

closer to pH 6.0 (188).  The ability of F1/F0-ATPases to function at low pH partially explains why 

aciduric bacteria are able to survive under high acidic condition. 

 

Decreased permeability to extracellular protons as a result of changes in cell membrane 

composition also contributes to ATP. S. mutans cell membrane predominantly composed of 
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short-chained saturated fatty acids when grown at pH 7.0.  However, when grown at pH 5.0, a 

shift occurs in the fatty acid composition of the membrane with long-chain mono-unsaturated 

fatty acids become more abundant (60, 168).  This shift in membrane composition is not only 

responsible for reducing the permeability of S. mutans to protons, but also indirectly contributes 

to the increased activity of the membrane-bound F1/F0-ATPases.  Furthermore, these mono-

unsaturated fatty acids also contribute to increased glycolytic activity, possibly as a result of 

altered function of membrane-bound proteins. 

 

The ATR of S. mutans has been shown to enhance expression of approximately 200 proteins in 

S. mutans (74, 115). These acid-enhanced proteins include enzymes involved in metabolism, 

including glycolysis and branched-chain amino acid biosynthesis, the various subunits of F1F0-

ATPases, general stress proteins such as heat shock proteins, and chaperone proteins (74, 

115, 189).  Biofilm derived cells are more acid resistant than planktonic cells (116) and this is 

believed to be due to cell density-dependent regulation of the ATR via the quorum-sensing 

system in S. mutans (39, 116).   The ATR is important for survival of S. mutans under acid 

stress. The extent of this response in S. mutans sets it apart from other less acid-tolerant oral 

bacteria. It provides S. mutans with a competitive advantage, allowing it to dominate over other 

oral bacteria under the acidic conditions experienced in dental plaque and thus contributes to 

caries development. 

 

1.3.e. Production of mutacins 

The bacteriocins produced by S. mutans are termed mutacins, which are mainly bactericidal for 

bacteria of the same or closely related species as well as for other Gram-positive 

microorganisms, and are likely to confer an ecological advantage in diverse bacterial 

communities in the dental biofilm (9).  Mutacins can be divided into two groups: (i) the 

lanthionine-containing (lantibiotic) mutacins (32, 76, 142, 163-165) and (ii) the unmodified 
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mutacins (8, 166).   While most bacteriocin activities characterized to date consist of a single 

active polypeptide, several two-component lantibiotic and nonlantibiotic bacteriocins have also 

been described, and these are dependent upon the collaborative activity of two polypeptides to 

exert their full antimicrobial activity (37, 62, 69). 

 

The relationship between caries activity and the higher synthesis of some virulence factors by 

different genotypes of S. mutans has been demonstrated previously (139, 147).  Mutacin 

production by S. mutans may facilitate the transmission of the species between mother and 

child and increase the ratio of this species in the dental biofilm, contributing to increased risk of 

caries (67).  However, some studies found no association between the inhibitory spectrum of 

mutacins and infecting levels of mutans streptococci or caries incidence, suggesting that 

mutacin production may not be relevant in the ability of S. mutans to colonize the host and 

induce disease (5, 120).  Kamiya et al. (92) demonstrated distinct mutacin production profiles 

among S. mutans strains isolated from caries-active and caries-free individuals, which can be 

related to different colonization profiles described in these individuals.  Mutacins could play an 

important biological role in the regulation and composition of dental biofilm due to their 

synergistic or antagonistic activity, suggesting that wide spectrum mutacins may be more 

important in the colonization and stabilization of this cariogenic species, mainly in the stable 

niche of highly complex microbial activity (92). 

 

1.4. Genomic organization and diversity among S. mutans clinical isolates 

The genomic heterogeneity within a bacterial species governs its lifestyle and niche adaptation.  

Although organisms belonging to the same genus or species have a common gene set, the core 

genome of individual organisms may differ in strain-specific gene content that reflects the 

physiology and virulence properties of an organism.  Not all genetic differences among various 

strains are important for niche adaptation of the pathogen, however some strain-specific genes 
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are thought to be important for its survival in a chosen niche.  The strain-specific gene variation 

can arise from horizontal gene transfer including indels (108, 109, 184), genetic loss (36), gene 

duplication (63), and gene modification (56).  Horizontal gene transfer provides acquisition of 

readily available novel pool of genes and a predominant force for exploiting a new niche.   

 

Based on the composition of cell surface RGP, S. mutans has been grouped into four 

serotypes; c, e, f, and k.   Complete genome sequences for two S. mutans strains (UA159 and 

NN2025) belonging to serotype c are currently available (3, 136).  Both the genomes are 

composed of a single circular chromosome of ~2.0 Mb in length with an average G+C content of 

about 36%, a typical pathogens belonging to low G+C gram-positive.  Table 1 shows a basic 

comparative analysis of both the genomes.  Analysis of S. mutans genome indicates several 

unique features that support the lifestyle of this organism in the dental plaque.   For example, 

since carbohydrate metabolism is a key survival strategy for this organism, genome data 

suggest that S. mutans is capable of metabolizing a wider variety of carbohydrates than other 

gram-positive bacteria.   Since S. mutans is a lactic acid producing bacterium, enzymes 

responsible for pyruvate metabolism are found in this organism including a newly identified 

acetoin dehydrogenase (136).  However, the genome data suggest that S. mutans lacks genes 

for a complete tricarboxylic acid (TCA) cycle pathway.  It has been suggested that the primary 

role of the existing TCA enzymes for the synthesis of amino acid precursors (38). 

 

Surprisingly, more than 15% of S. mutans genome encodes for transporter proteins (3, 136); 

among them the most abundant are various ATPases. Besides P-type and F-type ATPases, 

ABC transporters are present in very high proportion.  It has been reported that 10% of the total 

ORFs encoded by this organism are ABC transporter related genes.  About one-third of all ABC 

transporters are categorized as importers, and the rest are exporters suggesting that this 

pathogen is capable of actively exporting excess metabolic byproducts and toxic molecules (3).  
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Another surprising finding is that unlike other streptococci S. mutans genome does not contain 

any temperate prophages.  But, the genome contains multiple transposon like sequences and 

insertion (IS) elements, and the IS3 family is the predominant one.  Seven complete IS3 

elements and 15 fragmented IS3 elements are found in UA159.  Furthermore, one conjugative 

transposon TnSmu1, and a distinct 40kb genomic island TnSmu2 are present in UA159.  The 

TnSmu2 contains about 29 ORFs predicted to synthesize bacitracin and germicidine.  

Surprisingly, some of the ORFs encoded within the island are very long including one that is ~ 

8kb.  This genomic island is also highly variable among clinical isolates (198).  In addition to 

TnSmu1 and TnSmu2, S. mutans contains about 12 more isolated genomic islands of unknown 

origin (3, 136).  Both the strains contain clustered regularly interspaced short palindrome repeat 

(CRISPR) regions; some of the repeat sequences present in CRISPR matches bacterial phage 

genomes.  It seems that S. mutans, which is a naturally transformable organism, evades phage 

infection by Cas protein/CRISPR mediated destruction.  

 

Comparison of the two S. mutans genomes suggests that a highly conserved large core-

genome.   This is somewhat surprising since both Streptococcus pyogenes (GAS) and 

Streptococcus agalactiae (GBS) have a shorter core-genome and larger pan-genome (total 

known genome content).  However, multilocus sequence typing (MLST) studies suggest that the 

natural habitat contains a diverse population of S. mutans strains (48, 144).  For example, 

Nakano et. al. (144) showed  that 92 sequence types were identified among 102 clinical 

isolates.  Furthermore, MLST analysis also suggests that serotype c is the dominant serotype 

(about 80%) among S. mutans clinical isolates (144).  Serotype c appears to be the ancestral 

phenotype and that serotype e and f strains have evolved by acquiring strain-specific genes.   

Even though the differences in cell-surface associated antigens suggest an evolutionary trend, 

differences in cariogenic potential have not been observed among various serotypes.  

Therefore, the link between serotype and cariogenecity remains unclear. 
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Table 1. Comparative basic features of S. mutans UA159 and NN2025  
 
 
---------------------------------------------------------------------------------------------------------------------------- 
FEATURES               STRAINS 
           
              UA159*     NN2025* 
--------------------------------------------------------------------------------------------------------------------------- 

Serotype               c           c 

Length of sequence                 2,030,921   2,013,587 

G+C content           36.83%      36.85%  

Open Reading frames 
  Percentage of coding      85.82%    85.18%  
  Protein coding region       1960      1895  
  Average gene length (bp)       889       903  

RNA 
  Ribosomal RNA           5          5 
  Transfer RNA           65        65 

Transposon or Insertion sequence (IS) 
  Full length             7           6  
  Partial             15         13 
 
 
--------------------------------------------------------------------------------------------------------------------------- 
*The GenBank accession numbers for the genomic sequences of S. mutans are NC004350 

(UA159) and NC013928 (NN2025). 

Adapted from Maruyama et. al. (2009). 

 



  19 

1.5. Multidrug Resistance in Bacteria 

S. mutans, like other bacteria, has incredible ability to develop resistance against toxic 

compounds and to adapt rapidly to a changing environment (113, 114).  A wide range of 

mechanisms to resist the action of toxic chemicals is present in bacteria (121, 149, 162).  These 

systems can be specific for a drug or closely related compounds such as inactivation of β-

lactam ring of antibiotics by β-lactamase enzymes (43). The other mechanism of resistance is 

by the modification of drug target to reduce the target’s affinity for the drug (183).  For many 

pathogens, the frontline defense is to reduce the permeability of the cell envelope.  The 

cytoplasmic membrane acts as a barrier to prevent toxic chemical influx into the cell.  Gram-

negative bacteria also contain an outer membrane that is less permeable to various toxic 

compounds.  However, gram-positive bacteria, such as streptococci, lack an outer membrane, 

but are surrounded by thick peptidoglycan cell wall that offers very little resistance to diffusion of 

toxic chemicals.  Probably the most important mechanism of drug resistance is the active efflux 

of chemicals from the cell (121, 162).  These active extrusion mechanisms involve integral 

membrane proteins that utilize metabolic energy to expel drugs across the membrane against 

the concentration gradient (121).  These effluxes can be specific for a given drug or group-

specific effluxes or may have a wide range of structurally and chemically unrelated compounds.  

The latter efflux system, which is known as multidrug efflux or MDR transporter, is very 

important for the emergence of antibiotic resistance among pathogens.  MDR transporters are 

also important for bacteria to survive under a complex environment and produce a biofilm  (112, 

121, 149). 

 

Based on the bioenergetic criteria, MDR transporters can be classified into two major groups, 

ATP-dependent transporters and protein motive force (PMF) dependent transporter. ATP-

dependent transporters are the primary active transporters that belong to ATP binding cassette 

(ABC) superfamily and utilize the free energy of ATP hydrolysis to extrude the chemicals from 
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the cells against the concentration gradient. The basic structure of ABC transporters consists of 

four domains: two integral membrane domains and two ATPase subunits. The ATPase subunits 

of ABC transporters include a characteristic ABC signature motif (42). Bacterial ABC 

transporters involved in uptake also require an additional solute binding domain, which provides 

specificity and maintains the direction of transport into the cell (42).  PMF-dependent 

transporters are secondary transporters that utilizes PMF or sodium motive force for drug 

expulsion.  Secondary MDR transporters can be further classified into several categories on the 

basis of their predicted secondary structure and amino acid sequence. The major facilitator 

superfamily (MFS) (130), the small MDR family (SMR) (157), the resistance-nodulation-cell 

division (RND) family (174), and the multidrug and toxic compound extrusion (MATE) family 

(174) are the most recognized as well as well characterized PMF-dependent MDR transporters. 

 

 

1.6.  Scope of the study 

S. mutans persists in the oral cavity and maintains a biofilm lifestyle in the dental plaque which 

contains over 600 different microorganisms.   The oral cavity is a very dynamic environment that 

often undergoes rapid changes in pH, nutrient availability, and oxygen tension.  The 

mechanisms by which S. mutans cope with these dynamic changes are relatively well studied 

(26, 113).  However, the oral cavity is also exposed to a number of compounds that are toxic to 

microorganisms including S. mutans.  Oral healthcare products, tobacco products, and other 

nutritonal supplements are a significant source of toxic compounds.  Furthermore, degradation 

byproducts of dental composite resins are also a significant source of toxic chemicals.  Bacteria 

in the dental plaque community also generate various toxic compounds, such as methyl 

mercaptan, dimethyl sulfide that can interfere the growth of other bacteria (85).  The acidic 

environment in the dental plaque not only demineralizes the tooth enamel, but also intensifies 

the toxicity of various chemical including metal ions.   Furthermore, during the growth in the 
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biofilm, cells also maintain a balance of metabolism that involves production and detoxification 

of toxic byproducts such that the levels accumulated are well within the capacity of the cell to 

adapt.  Two such examples are the production of methyl glyoxal, a byproduct of glycolysis; and 

peroxides, a byproduct of redox reaction (49, 50, 57, 65).   

How S. mutans tolerates exposure to various toxic substances during its growth in the oral 

cavity is poorly understood.  The goal of the project was to understand the mechanism of 

tolerance to quaternary ammonium compounds (QAC), which are often used in many 

healthcare products and in antiseptic solutions.  The representative QAC that we chose is 

methyl viologen (MV), also known as paraquat, because this molecule can also generate 

superoxide stresses in the cell.   Our study provides the first evidence of an ABC transporter 

complex that acts as a major multidrug efflux system in S. mutans. 
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2.1. Bacterial Strains and Growth Conditions 

 

Escherichia coli strains DH5α[(F- φ80lacZΔM15 Δ (lacZYA-argF) U169 deoR recA1 endA1 

hsdR17 (rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 λ-)] (NEB) and Top10 [F- mcrA ∆(mrr-

hsdRMS-mcrBC) φ80lacZ∆M15 ∆lacX74 recA1 araD139 ∆(ara- leu)7697 galU galK rpsL (StrR) 

endA1 nupG (Invitrogen) were used for cloning.  E. coli TG1Rep+ [(supE hsd-5 thi Δ(lac-proAB) 

F'(traD6 proAB+ lacIq lacZΔM15) (repA from pWVO1)] was use for propagation of pGhost9::ISS1 

at 37°C.  These strains were grown in Luria-Bertani medium, and when necessary, ampicillin 

(100 µg ml–1), kanamycin (100 µg ml–1), and spectinomycin (100 µg ml-1) were included.  S. 

mutans UA159 is a standard laboratory strain, which belongs to Bratthall serotype c, was 

originally isolated by Page Caufield (University of Alabama, Birmingham), and its whole genome 

has been sequenced recently (3).  Twelve other S. mutans strains, including several clinical 

isolates, were also used for genomic analysis.  S. mutans strains were routinely grown in Todd-

Hewitt medium (BBL, Becton Dickinson) supplemented with 0.2% yeast extract (THY).  When 

necessary, kanamycin (300 µg ml–1), erythromycin (10 µg ml–1), and spectinomycin (300 µg ml–1) 

were included. 

 

 
2.2. Transposition Assay and Screening 

Insertional mutagenesis was performed with the plasmid pGh9:ISS1, according to the method of 

Maguin et al. (18, 128, 191) (Fig. 1).  Briefly, S. mutans was transformed with pGh9:ISS1 and 

transformants were selected on THY agar containing Em, and incubated at 30°C.  An overnight-

grown liquid culture was made from a single transformed colony. Cultures were diluted 100-fold 

in the same medium, grown for 2 hrs at 30°C, and then shifted to growth at 37°C for 2.5 hrs to 

select for transposition events. Cultures were then plated on THY-Em plates to obtain individual 

mutants, which were then inoculated in 96-well plates containing THY broth supplemented with 
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Em, and grown overnight. Using a 48-pin replicator (Sigma), the cultures were then spotted on 

THY agar plates with or without methyl viologen (MV, 5mM), and the plates were incubated at 

37°C in a CO2 incubator containing 5% CO2.  Colonies that grew on THY plates but failed to 

grow on THY+MV plates, were identified, cultured overnight in THY- Em at 37°C, and 

processed for analysis (Fig. 2).  The transposition frequency was between 10-2 to 10-3 EmR cells 

per total cells plated.   
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Figure 1:  Schematic diagram of the mechanism of integration of ISS1 in the genomic 
DNA. ISS1 replicative transposition is expected to generate mono-copy transposition, i.e., 

integration of the plasmid vector between duplicated ISS1 sequences. Transposition may also 

give rise to a clone containing tandem multi-copies of the transposed structure.  Symbols: 

dotted lines, chromosomal DNA; arrows, ISS1; solid line, vector DNA (pGhost9), red box, 

erythromycin resistance marker.  The delivery plasmid also contains unique restriction sites 

HindIII (H) and EcoRI (RI) that flank the ISS1. These sites were used for mapping the insertion. 

Examples of sequences (8-bp) at the junction that are duplicated due to replicative integration 

are shown. 
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2.3. Identification of ISS1 Integration Site 
 
Integration of ISS1 on S. mutans chromosome was first verified by Southern hybridization. 

Selected MV sensitive mutant clones were grown in THY+Em at 37°C overnight and 

chromosomal DNAs were isolated using a Gram-positive genomic DNA isolation kit (EpiBio) 

following manufacturers protocol.  Ten micrograms of chromosomal DNA was digested with 

HindIII enzyme (an unique site in pGhost9::ISS1) and electrophoresed in an 8% TAE-agarose 

gel.  DNA was transferred to Zeta-Probe Nylon membrane (BioRad) following the manufacturers 

protocol.  A ISS1 specific probe (about 900-bp) was amplified by PCR using ISS1-For and ISS1-

Rev primer set and pGhost9:: ISS1 as template.  The PCR fragment was radiolabeled with [ -

32P]-dATP (3,000 Ci/mmol) (MP Biomedicals) by random priming with a DECAprimeII kit 

(Ambion), according to the recommendations of the supplier and used as a probe.  

Unincorporated radionucleotides were removed from the reaction mixture by BioSpin 30 spin 

column (BioRad).  Southern hybridization was carried out using ULTRAhyb hybridization 

solution (Ambion) at a high stringency (42°C) condition following standard protocol (Maniatis).  

After overnight hybridization, filters were washed with SSC (1× SSC is 0.15 M NaCl plus 

0.015 M sodium citrate)-0.1% SDS at 42°C.  The membrane was exposed to a phosphorimager 

plate and developed by Strom instrument (GE Healthcare). 

The location of the inserted ISS1 element was identified by inverse PCR.  Chromosomal DNA, 

isolated from the selected mutants, was digested by HindIII or EcoRI enzymes followed by heat 

inactivation at 65°C.  About 2µg digested DNA was self-ligated by T4 DNA ligase.   These 

ligated samples were subjected to inverse PCR by using primers ISS1Rout1 and ISS1Fout1 

(For all the primers, please refer to Table 1.  The PCR products were purified from agarose gel 

and were sequenced with primer ISS1-Rout2.  The flanking sequences obtained from 

sequencing analysis were mapped on the genome of S. mutans UA159 by BLAST search.   
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For some mutants, a cloning method was also used. Total genomic DNA of the pGhost9:ISS1 

mutants was digested with EcoRI or HindIII, ligated, and transformed into E. coli TG1Rep+ 

strain.  Erythromycin-resistant E. coli clones harboring pGh9:ISS1 plasmid with genomic 

streptococcal DNA located adjacent to the insertion site of the plasmid were selected on LB 

plates supplemented with erythromycin (150 mg/l). Nucleotide sequencing of the inserted 

genomic DNA was performed with primers ISS1Rout1 or ISS1 Fout1. 
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Figure 2: General strategy to isolate viologen sensitive mutants.  The transposon library 

was first selected for the macrolide resistance marker of the transposon delivery plasmid 

(pGhost9:: ISS1).   Individual overnight cultures were prepared in 96-well plates in the presence 

of the antibiotic (Em).  The cultures were then replica patched on two plates: one containing 

5mM viologen (THY+MV) and the other containing no viologen (THY).  The colonies that failed 

to grow on THY+MV plates, but grew successfully on THY plates are the candidate clones that 

were analyzed further. 
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Table 3: List of S. mutans strains created in this study 
 
 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐        
Name    Genotype or relevant description* 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
UA159    Wild type parental strain, serotype c 
IBS‐A25   SMU.905 locus deleted by pIB‐A19, KmR 

IBS‐A26   SMU.905 locus deleted by pIB‐A20, SpR 
IBS‐A27   ISS1 insertion in SMU.905 at position 860907 (4D3); EmR  
IBS‐A28   ISS1 insertion in SMU.905 at position 861009 (4H4); EmR 
IBS‐A29   ISS1 insertion in SMU.283 at position 269349 (5A12); EmR 
IBS‐A30   ISS1 insertion site could not be mapped (6D12); EmR 
IBS‐A31   ISS1 insertion in SMU.902 at position 858818 (14E4); EmR 
IBS‐A32   ISS1 insertion in SMU.906 at position 861579 (15B1); EmR 
IBS‐A33   ISS1 insertion site could not be mapped (17D12); EmR 
IBS‐A34   ISS1 insertion in SMU.905 at position 859850 (22A9); EmR 
IBS‐A35   ISS1 insertion in SMU.905 at position 859515 (23F4); EmR 
IBS‐A36   ISS1 insertion in SMU.906 at position 861026 (26G4); EmR 
IBS‐A37   ISS1 insertion in SMU.906 at position 862480 (27A12); EmR 
IBS‐A38   ISS1 insertion in SMU.906 at position 862730 (28B1); EmR 
IBS‐A39   ISS1 insertion in ciaH at position 1070008 (32D2); EmR 
IBS‐A40   ISS1 insertion in SMU.905 at position 859465 (32D7); EmR 
IBS‐A41   ISS1 insertion in ciaH at position 1070008 (34G7); EmR 
IBS‐A42   Plasmid (pGhost9) cured derivative of IBS‐A34 (SMU.905); Ems 
IBS‐A43   Plasmid (pGhost9) cured derivative of IBS‐A32 (SMU.906); Ems 
IBS‐A44   Plasmid (pGhost9) cured derivative of IBS‐A31 (SMU.902); Ems 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
* Original ISS1 mutant identifiers are indicated in strains IBS‐A27 to IBS‐A41 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2.4. Curing of pGhost9::ISS1 from the Selected Mutants 

ISS1 is a replicative transpon. Therefore, upon integration the insertion sequence is duplicated 

and flanks the pGhost9 plasmid.  The plasmid vector sequence was excised from the selected 

mutants by growing the bacteria in THY broth without antibiotics at 30°C, which permits the 

plasmid replication (128).   Broth cultures were diluted, and plated on selective and nonselective  

THY media at the nonpermissive temperature (37°C) to determine the colony counts.  Excision 

of the vector sequence from the bacterial chromosome was indicated by the loss of the 

erythromycin resistance marker and stabilized mutant strains (Ems colonies) were isolated by 

replica plating at 37°C.  Ems colonies were confirmed for loss of the plasmid sequence by PCR 

with primers homologous to the flanking regions (Fig. 4). 

 
 
2.5. Construction of SMU.905 Deletion Mutant 
 
To delete the SMU.905 locus, an1.7-kb fragment spanning the entire SMU.905 region was 

PCR-amplified from UA159 genomic DNA, using the primers 905CF and 905R.  This fragment 

was cloned into the pGemT-Easy vector (Promega, WI) to create pIBA21.  A 0.87-kb 

spectinomycin-resistance gene (aad9) was amplified from pUCSpec (81) using primers Spec-P-

For and Spec-Rev (33) .  Plasmid pIBA21 was restricted with XcmI and blunted by treatment 

with T4-polymerase.  The PCR amplified add9 was then cloned into this blunted plasmid to 

generate pIBA20.  The orientation of the aad9 insert in pIBA20 was verified by PCR, and found 

to be the same direction as the SMU.905 locus.  Plasmid pIBA20 was then linearized by NotI, 

and used for transformation of UA159.   Spectinomycin-resistant transformants were selected, 

and the deletion of the SMU.905 locus was verified by PCR.  A successful representative 

transformant was selected and named IBSA26.  Similarly, SMU.905 was also deleted using a 

kanamycin resistant marker amplified from pUC4ΩKm plasmid (158).  This KmR resistant 

mutant strain was named IBSA25. 
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Figure 3: Southern blot analysis of the mutants.  Southern blot analysis of the HindIII 

digested DNA of fifteen independent pGhost9:ISS1 integrants with the labeled ISS1 probe.  

Schematic representation of the structure of expected transposition products is shown in the 

lower panels. In mono copy transposition, the pGhost9 is integrated between duplicated ISS1.  

In tandem transposition, multiple copies of the pGhost9 are integrated at the transposition site. 

Samples are: lane 1, UA159; lanes 2 to 16, IBSA27 to IBSA41, respectively. Arrows DNA 

fragments, which should hybridize with the ISS1 probe after HindIII digestion. Wavy lines, solid 

lines and black rectangles represent chromosomal DNA, plasmid vector and ISS1, respectively. 
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2.6. Isolation of RNA from Bacterial Cultures 
 
Total RNA was isolated from bacterial cultures according to the protocol described below.   S. 

mutans UA159 and its derivatives were grown in THY medium with appropriate antibiotics to 

mid-exponential phase (70 Klett units), and the cultures were harvested by centrifugation.   The 

cell pellets were then suspended in 10 ml of RNAprotect bacterial reagent (Qiagen) and 

incubated at room temperature for 10 min. Total RNA was extracted using an RNeasy minikit 

(Qiagen) according to the manufacturer's instructions, with a modified bacterial-lysis step.   

Briefly, cells were broken by the addition of an equal volume of 0·10 mm glass beads (MP 

Biomedicals) and vortexing the suspensions for 45 sec. at speed 6 in a bead beater (Thermo 

Electron).   The supernatants were loaded onto RNeasy mini columns and purified using the 

manufacturer's protocol. The purified RNA samples were further treated with Turbo DNase 

(Ambion) according to the manufacturer's instructions to remove residual DNA contamination. 

The quality and integrity of the purified RNA samples were ascertained on a 1.2% agarose gel 

electrophoresis.  Total RNA was quantitated in a UV spectrophotometer (Shimadzu) according to 

the optical density at 260 nm (OD260) (1 OD260 unit = 40 µg/ml). 

 
2.7. Semiquantitative RT-PCR (sQRT-PCR) 
 
Total RNA (DNA free) was used to prepare cDNA, using Superscript II reverse transcriptase 

(Invitrogen). Briefly, RNA samples (500 ng) were mixed with random decamer primer (100 ng) 

and deoxynucleotide triphosphates (dNTP) (0.5 mM), and the cocktail was heated at 65°C for 5 

min, followed by quick chilling on ice. First-strand buffer (SuperScript-II reverse transcriptase; 

Invitrogen), 10 mM dithiothreitol (DTT), and RNase inhibitor (40 U; Roche) were added to the 

cocktail and incubated at room temperature for 2 min, and the reverse transcriptase was added 

to the reaction mixture. The reaction mixture was further incubated at room temperature for 10 

min, followed by incubation at 42°C for 50 min to synthesize cDNA. The reaction mixture was 

heat inactivated at 70°C for 15 min. To degrade the DNA-RNA hybrid, RNase H (2 U; Invitrogen) 
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was added to the reaction mixture and incubated at 37°C for 45 min. Finally, the cDNA was 

purified using a PCR purification kit (Qiagen), and the cDNA concentration was determined 

using a UV spectrophotometer (Shimadzu). Five to 20 ng of cDNA was used to carry out the 

second-step PCR, using ReadyMix Taq PCR mix with MgCl2 (Sigma). Twenty to 22 PCR cycles 

were carried out to amplify the cDNA products of interest. The amplified PCR products were 

then electrophoresed on a 2% agarose gel.  As an internal control, the gyrA gene was used to 

ensure that equal amounts of cDNA were used in each reverse transcription (RT)-PCR. 
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Figure 4:  Strategies used to identify ISS1 insertion sites.  Two different strategies were 

employed, inverse PCR and cloning, to map the insertion sites. Genomic DNAs isolated from 

the putative clones were digested with restriction enzymes (e.g. HindIII (H)) that have a unique 

site within the plasmid.  Restricted DNAs were ligated and used for either inverse PCR (using 

primer sets shown by blue arrows) or used for E. coli transformation with selection for 

erythromycin (EmR).  PCR products or plasmids from E. coli clones were sequenced to identify 

the site of ISS1 integration. 
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Table 4:  Sequence adjacent to ISS1 insertion site. 
 
 
---------------------------------------------------------------------------------------------------------------------     
 
Mutant name  (identifier) Sequence (5’→3’)  Position on the genome$ 
 
--------------------------------------------------------------------------------------------------------------------- 
IBS-A27 (4D3)       TACTGGAT             860907 
IBS-A28 (4H4)               GTTTAACG            861009 
IBS-A29 (5A12)            AAAATTCT            269349 
IBS-A31 (14E4)             CGCTCAAG             858818 
IBS-A32 (15B1)             CCGCTGAC             861579 
IBS-A34 (22A9)             CTTGACAA               859850 
IBS-A35 (23F4)             GCATAGGC            859515 
IBS-A36 (26G4)            TGAAAACC             861076 
IBS-A37 (27A12)          AATAATAT              862486 
IBS-A38 (28B1)            CCCCTGTT             862730 
IBS-A39 (32D2)            GATAATAT             1070008 
IBS-A40 (32D7)            TTGGTTTA             859465   
IBS-A41 (34G7)*           ATTTACCT             1070497   
        GAAGGATC            1088450 
---------------------------------------------------------------------------------------------------------------------   
$ Origin is set as position 1 
* This mutant contains two ISS1 insertions 
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2.8. Linkage RT-PCR Analysis 

RT-PCR was used to determine the transcriptional organization of the SMU.905-SMU.906 

locus, following a protocol described by Chong et al (34).  Five microgram of DNA-free RNA 

was used for the synthesis of cDNA using SuperScript II reverse transcriptase (Invitrogen), 

according to manufacturer’s protocol.  PCR was then performed on RNA (as negative control), 

cDNA, and chromosomal DNA (as positive control), using the primer pairs as described in Table 

2 and depicted in Fig.7, to determine which of the genes in the SMU.905-SMU906 locus were 

co-transcribed. 

 

2.9. Sensitivity to Various Reactive Oxygen Species (ROS) Generating Reagents   

To evaluate the sensitivity of the S. mutans mutants to various ROS producing chemicals, 

cultures were exposed to reagents either through disk diffusion assays or growth on THY agar 

plates containing the chemical of interest.  For disk diffusion assays, cultures were grown 

overnight in THY broth (with or without antibiotics as required), and then overlaid on THY agar 

plates, followed by placement of filter paper disks (6 mm in diameter) containing various 

chemicals onto the inoculated agar.  After overnight incubation at 37ºC, under microaerophilic 

conditions, the diameters of the zones of bacterial growth inhibition were measured.  For growth 

on THY agar plates containing stress-inducing chemicals, cultures were grown to exponential 

phase in THY broth with appropriate antibiotics, at 37ºC.  Cultures were pelleted via 

centrifugation, washed twice with 0.85% NaCl, and resuspended in 0.85% NaCl.  The cultures 

were adjusted to an optical density (A600) of 5.0, serially diluted ten-fold, and 7.5 µl of each 

dilution was spotted onto THY agar containing the oxidative-stress inducing chemicals.  The 

plates were incubated overnight at 37ºC, under microaerophilic conditions, and bacterial growth 

was evaluated as previously described (20).  The following chemicals were used as indicated.  

Methyl viologen (paraquat, Sigma) was added to THY agar medium to a final concentration of 

5mM or 10 mM, while 10 µl from a 1 M stock was added to each disk for the disk diffusion 
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assay.  Ethyl-viologen (1.5M; Sigma), benzyl-viologen (50mg/ml; Sigma), and diquat dibromide 

(100- or 500mg/ml; Sigma) were added to each disk. Menadione (1.0%; Sigma), pyrogallol 

(400mg/ml; Sigma) and plumbagin (100mM; Sigma) were used for generating superoxide 

radicals.  Hydrogen peroxide (Sigma) was used for THY plate growth assays (2mM or 4mM) 

and disk diffusion assays (1.5% w/v). Cumene hydroperoxide (Sigma) and t-butyl-

hydroxyperoxide (t-BOOH, Sigma) were used in disk diffusion assays; 10 µl of 10% cumene 

hydroperoxide or 70% t-BOOH was added to each disk.   

 

2.10. Antibiotic Susceptibility Assay 

Disc diffusion assays were performed to evaluate the antibiotic susceptibility of S.mutans 

UA159 and its derivatives as described previously (17).  Briefly, antibiotic discs (6mm in 

diameter; Becton and Dickinson Laboratories) were placed on THY agar plates that were 

overlaid with 10 ml of THY soft agar, containing 200µl of S. mutans strain of choice.  The plates 

were incubated overnight at 37°C under microaerophilic condition and the zones of inhibition 

were measured.  The antibiotics used for this study were listed in Table S1 

 

2.11. Acid Stress Tolerance 

To analyze the growth of S. mutans cultures at low pH, the initial pH of the THY agar medium 

was adjusted, prior to sterilization, to pH 5.5 or pH 7.0, with HCl.  50 mM citrate-phosphate 

buffer of desired pH was added to media after sterilization.  Different dilutions of S. mutans 

cultures, prepared as described above, were spotted onto the plates and incubated at 37°C 

under anaerobic conditions.  
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Figure 5:  Schematic diagram of generating plasmid cured ISS1 mutant strains.  Since 

pGhost9 is a thermosensitive plasmid, it can be cured from the strain by stimulating the 

replication at permissive temperature (30°C).  The plasmid-cured strain can be isolated by 

replica patching and verified by PCR amplification with appropriate primers. 
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2.12. Sensitivity to Osmotic Stress   

Overnight cultures were diluted 20-fold in fresh THY media containing sorbitol (final 

concentration: 4% or 5%), NaCl (final concentration: 0.5M), or ethanol (final concentration: 4% 

or 5%), and grown at 37ºC.  Growth was monitored using a Klett-Summerson colorimeter with a 

red filter, as previously described (18).  

  

2.13. Sensitivity to Other Chemical Reagents 

Sensitivity of the S. mutans mutant strains to various chemicals was evaluated primarily by 

using the disk diffusion method.  THY agar plates inoculated with the wild-type or the mutant 

cultures were overlaid with disks containing various toxic, QAC, or other stress inducing 

chemicals.  The chemicals (all procured from Sigma) tested were: benzidine (4mM), 

benzalkonium chloride (10mg/ml), tetraethylammonium bromide (10mg/ml), chlorhexidine 

gluconate (20%), crystal violet (1.5%), diamide (1.0M), 2‘-2’dipyridyl (50mM), 4’-4’ dipyridyl 

(1M), ethidium bromide (1.5%), ethylenediaminetetraacetic acid (EDTA, 0.5M), 

hexadecyltrimethyammonium bromide (CTAB, 0.5%), hexadecylpyridinium chloride (1%), 

hydrazine (0.5M), 1, 4’ napthaquinone (0.1%), malachite green (1.5%), mitomycin C (12.5 

µg/ml), 1,10’–phenanthroline (200mM), potassium telurite (1.0%), puromycin (6.0 µg/ml), 

pyronin B (5mg/ml), safranin (1.5%), streptonigrin (5mg/ml).  A complete list of chemicals used 

in this study is shown in Table S1. 

 
 
 
2.14. SOD Activity Assay 
 
For visualization of SOD activity on non-denaturing polyacrylamide gels, S. mutans cells were 

cultured to stationary phase in THY medium and harvested by centrifugation at 7500 g for 10 

min at 4°C.  Cells were washed once in 500µl sample buffer (20 mM Tris-Cl, pH 7.4, 50 mM 

NaCl, 5 mM MgCl2, and 1 mM EDTA) and resuspended in the same buffer with addition of 5µl 
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Protease Inhibitor Cocktail set III (Calbiochem).  Cells were then broken by the addition of an 

equal volume of 0·10 mm glass beads (MP Biomedicals) and vortexing the suspensions for 45 

sec. at speed 6 in a bead beater (Thermo Electron).   Cell debris was pelleted by centrifugation 

at 12000 g for 2 min, and the cell-free supernatant was retained.  Protein concentrations were 

determined by a modified Bradford assay (Bio-Rad), using bovine immunoglobulin as standard.  

Cell extracts were mixed with equal amounts of 1x sample buffer (62.5 mM Tris.Cl, pH 6.8, 10% 

glycerol, 0.01% bromophenol blue) and 25 µg of each sample was loaded on a non-denaturing 

polyacrylamide gel (44) PAGE conditions were a 4.5% stacking gel (pH 8.3) and a 10% 

separating gel (pH 8.9) with the buffer system of Davis (44), except that the pH of the upper 

buffer was raised to 8.9 with 10 M NaOH.   Gels were electrophoresed at 120V for 120 min and 

then stained with Coomassie brilliant blue, or SOD activity was detected as described by 

Beauchamp & Fridovich (13).  Briefly, gels were incubated at ambient temperature in 2 mM 

nitroblue tetrazolium (Fisher BioReagent) solution made with 50 mM KPO4 (pH 7.8).   This 

solution was replaced with riboflavin buffer (36 mM KPO4 [pH 7.8] containing 28 mM 

tetramethylethylenediamine (TEMED, Acros Organics) and 28µM riboflavin (Acros Organics) for 

15 min.  Gels were then transferred into distilled water and exposed to UV light from a 15 W 

lamp in a foil-lined box for 15 min.  Gel images were digitized using a digital camera and 

intensities of bands were quantified with Kodak digital science 1D image analysis software. 

 
 
2.15. Biofilm Formation Assay  
 
UA159 and its derivatives were grown overnight in THY medium at 37°C anaerobically. The 

culture was diluted 1:10 into fresh THY medium and incubated further for 6 h. The culture was 

then diluted 1:1,000 with either THY medium containing 1% sucrose.  A 0.8-ml volume of this 

cell suspension was added to each well of a four-well glass chamber slide (Lab-Tek; Nalgen 

Nunc International) for biofilm formation on glass.  For biofilm formation on a polystyrene 

surface, U-bottom 96-well microtiter plates (Corning Inc.) were used.   Biofilms were stained by 
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0.01% solution of crystal violet, malachite green, or safranin and photographed as described 

before (19).  

 

2.16. Phenotypic Microarray Analysis 

PM analysis was performed using Biolog’s PM service facility.  A total of twenty 96-well PM 

plates constituting eight metabolic panels (PM1 to PM8) and 12 sensitivity panels (PM9 to 

PM20) were used in this study. To assess the altered phenotypes of the SMU.905 mutant 

(IBSA26), the growth was compared to its parent S. mutans UA159 strain. The basic growth 

media and the conditions for PM analysis were published previously (20, 22, 209). The 

inoculating cell densities used in this study were 1:13 dilution of 81% transmittance for both 

metabolic and sensitivity panels. PM analysis was conducted in duplicate after incubation of the 

strains at 37°C for 72 hours. An average height difference threshold of 50 for metabolic panels 

and a difference threshold of 60 for sensitivity panels were used to consider the difference 

between the two growths significant. The data were further confirmed by Student’s t test. The 

growth kinetics for UA159 was displayed as a red tracing, while IBSA26 was displayed as a 

green tracing.  Standard PM testing protocols are described in http://www.biolog.com; the 

conditions are similar to those used here.  
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CHAPTER 3 
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3.1. Isolation of S. mutans UA159 methyl viologen sensitive mutants 

Red-ox cycling QAC agents such as methyl viologen (MV), ethyl-viologen (EV) are powerful 

propagators of superoxide radicals inside the cell.   The toxicity of red-ox cycling agents may 

result not only from the toxic effect of ROS but also from the depletion of cellular levels of 

NADPH.  The aim of this study was to understand how S. mutans cope with the toxicity and 

potential damage from QAC compounds that also generate reactive oxygen species.  To identify 

genes that are potentially involved in MV tolerance, we used ISS1 transposition mutagenesis 

since ISS1 appears to integrate randomly into the genome of Gram-positive bacteria, including 

various streptococci (18, 182, 191).  Furthermore, ISS1 rarely inserts more than once into the 

genome of the same cell (18, 182, 191).  We used plasmid pGhost9::ISS1, whose replication is 

temperature sensitive (127, 128), to introduce the insertion element into wild-type strain UA159. 

An Emr transformant containing pGhost9::ISS1 was isolated and grown overnight at 30°C, and 

Emr colonies containing the ISS1 element were then isolated after incubation at 37°C. The 

insertion frequency, which was calculated by dividing the number of Emr colonies by the total 

number of colonies at 37°C, was found to be below 0.5%, consistent from one independent 

experiment to the next.  This frequency was similar to the frequencies reported for other 

streptococci (18, 182, 191).  Figure 1 shows the mechanism by which ISS1 integrates in the 

genome and the genomic structure that is generated after the integration of the insertion 

element. 

 

A schematic diagram for the screening protocol used to identify the MV sensitive mutants is 

depicted in Figure 2.  A collection of approximately 3,500 mutants were grown in 96-well plates 

and replica-patched onto THY, with or without MV.  We obtained 15 mutants that displayed an 

MV-sensitive growth phenotype.  We performed Southern hybridization assay to examine how 

ISS1 insertion had occurred in each of the 15 mutants. Genomic DNA was isolated from the 

mutant clones and UA159, which served as negative control.  Genomic DNA samples were 



  45 

restricted with HindIII enzyme, which has a unique site in pGhost::ISS1 plasmid.  Restricted 

DNA samples were separated by agarose gel electrophoresis and blotted to a nylon membrane 

and probed with only ISS1 fragment, as described in the Materials and Methods.   The result of 

the Southern analysis is shown in Figure 3.  We obtained 13 mutants into which ISS1 was 

inserted at a single location on the chromosome and two mutants in which ISS1 was integrated 

at more than one location (possibly at two sites; Fig. 3, lanes 4 and 16).  Among the 13 mutants 

that contained insertion at a single location, four contained multiple ISS1 insertion sequence at 

the same location (Fig. 3, lanes 3, 5, 10, and 15) and the rest contained a single copy ISS1 

insertion.    

 

3.2. Mapping ISS1 Insertion Sites on the Chromosome of MV Sensitive Mutants 

For a majority of the clones, the site of the ISS1 insertion was identified by inverse PCR method 

as described in Chapter 2. For two of the clones, a direct cloning method was also employed.  A 

schematic diagram for inverse PCR and cloning methods is shown in Fig. 4. Out of the 15 MV-

sensitive mutants, the location of the insertion sites could be determined unambiguously for 13 

mutants.  Five independent insertions occurred in SMU.905, which encodes a putative ABC-

transporter complex (IBSA27, IBSA28, IBSA34, IBSA35, and IBSA40). Four independent 

insertions had occurred in SMU.906, which is just downstream of SMU.905 and encodes a 

putative ABC-transporter (IBSA32).  For the remaining four mutants, insertions were mapped to 

SMU.1128 (encoding the histidine kinase ciaH; two insertions), SMU.902 (encoding a putative 

ABC-transporter), and SMU.283 (encoding a small hypothetical protein). One mutant, IBSA41, 

had two insertions, one in ciaH and one in SMU.1149 that encodes a putative transporter for 

bacteriocin.  Because CiaH was already known to be involved in superoxide stress tolerance in 

streptococci and other bacteria (167), we did not consider this protein for further 

characterization.  We also excluded the small hypothetical protein encoded by SMU.283 since it 

shows similarity with bacteriocin like peptide.  Our repeated attempt to identify the ISS1 
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insertion sites in two of the mutants (IBSA30 and IBSA33) by inverse PCR and cloning did not 

generate any fruitful sequence.  Since we obtained multiple insertions in SMU.905 and 

SMU.906 loci, and one insertion in nearby SMU.902 locus, we elected to focus our studies on 

these loci.  

 

3.3. Characterization of the SMU.905 and SMU.906 Loci 

SMU.905 encodes a polypeptide of 579 residues with high homology to an ABC-transporter 

protein; the ISS1 insertion occurred at five locations in this gene at codon positions 58 (IBSA40), 

75 (IBSA35), 187 (IBSA34), 539 (IBSA27), and 573 (IBA28) (see Fig. 6).  SMU.906, which lies 

just 11-bp downstream of SMU.905, appears to be organized as an operon with SMU.905.  

SMU.906 encodes a polypeptide of 591 residues, also with high homology to an ABC-

transporter protein.  The ISS1 insertion occurred in SMU.906 at positions 13 (IBSA36), 181 

(IBSA32), 483 (IBSA37), and 564 (IBSA40) (see Fig. 6).   SMU.902 (623 residues) in which a 

single ISS1 insertion occurred at codon position 619 is found upstream of SMU.905 (Fig. 6), 

while SMU.909, which encodes a malate permease, is found downstream of SMU.906.   

SMU.905 and SMU.906 genes are separated by 11 base pairs.  An intergenic region of 456-bp 

is present between the SMU.902 and SMU.905 loci. In silico analysis by BPROM software 

(www.softberry.com) indicates that this region contains a weak promoter like sequence [-10 

Box: TATATT; at position 362], indicating that SMU.905-SMU.906 may be transcribed 

separately from SMU.902.  However, analysis of the same 456-bp intergenic region by 

FindTerm software (www.softberry.com) failed to find any strong rho-independent terminator.   

Thus to determine whether SMU.905 and SMU.906 are transcriptionally linked to SMU.902, a 

linkage PCR analysis was performed using RNA isolated from exponentially grown cultures of 

UA159. As shown in Fig. 7, it appears that both SMU.905 and SMU.906 are transcriptionally 

linked to SMU.902, whereas SMU.906 is not linked to the downstream gene SMU.909.   A 

penta-cistronic operon encodes SMU.902 and it appears that SMU.902 is the terminal gene in 
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that operon.  About 3.2-kb upstream of SMU.902 lies another intergenic region of 213-bp that 

also contains a strong promoter like structure  (-10 Box: TGCTATAAT) 37-bp upstream of the 

first ATG codon.  Thus, SMU.902 as well as SMU.905 and SMU.906 may be transcribed from 

this promoter.  Our linkage analysis also indicated that the downstream gene SMU.909 is not 

transcriptionally linked to SMU.906.  The intergenic region (114-bp) between SMU.906 and 

SMU.909 contains a strong promoter like sequence with a perfect -10 box (TATAAT); SMU.909 

is probably transcribed from this promoter sequence independently from the upstream genes.   

 

3.4. SMU.905 is Involved in Viologen Tolerance 

To confirm that the observed phenotype of the SMU.905 ISS1 insertion mutation did not result 

from additional spontaneous mutations elsewhere in the genome, a deletion mutation of 

SMU.905 was constructed in strain UA159 by a gene-replacement system using a non-polar 

antibiotic marker  (aad) as described previously (19).  We first examined the growth of the 

mutant, IBS A26, in THY broth, which is a rich growth medium.  No obvious growth defects were 

observed in IBSA26, relative to the wild-type UA159 (data not shown).  This indicates that 

SMU.905/SMU.906 loci do not influence overall growth of S. mutans cell.  IBSA26 was then 

tested for its ability to withstand exposure to MV.   As shown in Fig. 8, IBSA26 displayed the 

same degree of sensitivity to MV exposure as the original ISS1 insertion mutant, IBSA34, and 

its derivative IBSA42, which is cured of the ISS1 delivery plasmid (EmS mutant).    



  48 



  49 

 

 

 

Figure 6: Organization of the SMU.905/SMU.906 loci in S. mutans. The predicted topology 

and the conserved motifs in SMU.905 and SMU.906 are shown.  The conserved motifs of the 

ABC transporter superfamily are indicated for both proteins.  The ABC membrane superfamily 

domain contains six and five predicted α-helices for SMU.905 and SMU.906, respectively. The 

upstream gene, YpjG, corresponds to SMU.902 in the NCBI database. Boxes above the 

diagram show the site of ISS1 insertions and their relative positions.  The designation within 

each box indicates the name of the mutant. 
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3.5. SMU.905 - SMU.906 Loci are Widely Present in S. mutans Strains  

A recent microarray based hybridization analysis suggests that as much as 20% of the UA159 

genes are absent in several S. mutans clinical isolates (198).  Furthermore, comparative 

genome-based analyses of clinical isolates employing PAGE and Southern hybridization 

suggest that genomic insertions, deletions, and inversions of genomic occur very frequently 

among the clinical isolates (79, 197, 207).  We used PCR analysis to determine whether 

SMU.905 and SMU.906 loci are present in various S. mutans strains.  Based on analysis of the 

UA159 genome sequence, we designed two internal primers for each of the following genes 

SMU.902, SMU.905, and SMU.906 are used for PCR amplification, using chromosomal DNA 

isolated from 15 different S. mutans clinical isolates as a template. Of the 15 strains chosen for 

the analysis, 11 belong to serotype c, including three commonly used lab strains (UA159, NG-8, 

and GS-5), and the remainder taken from serotype e (V100) and serotype f (OMZ175).  We 

found that these three genes were present in all 15 S. mutans strains (data not shown).  We 

also tested whether the intergenic region between SMU.902 and SMU.905 loci is conserved 

among the isolates and found that the length of the intergenic region is also well conserved 

among various isolates (data not shown). 

 

3.6. SMU.905/SMU.906 is not Involved in Biofilm Formation 

In bacteria, many ABC-transporter proteins can positively or negatively influence biofilm 

formation or maturation.  For example, in Listeria monocytogenes, an ABC transporter protein 

(encoded by Lmof2675_1771) negatively affects biofilm formation (211).  In other gram-positive 

bacteria, ABC-transporter proteins are required for successful biofilm development.  For 

example, in Bacillus subtilis ABC transporter EcsB is involved in biofilm maturation (25) and 

Streptococcus gordonii, ABC transporter BfrEF is required for biofilm formation (208).   To test 

whether SMU.905/SMU.906 is involved in biofilm formation in S. mutans, we used IBS A26 

strain and examined its ability to form sucrose dependent biofilms on polystyrene and glass 
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surfaces using various biological stains.   As shown in Fig. 9, we found that the biomass of the 

biofilm formed by IBSA26 on various abiotic surfaces was similar to that of the wild-type parent 

UA159 strain.  Therefore, we conclude that SMU.905/SMU.906 is not involved in S. mutans 

biofilm formation.   

 

3.7. SMU.905/SMU.906 is not Involved in Superoxide or Oxidative Stress Tolerance 

Methyl viologen (MV) generates superoxide that is toxic to cells.  However, several other red-ox 

cycling reagents also generate superoxide but are chemically and structurally distinct from MV.  

For example, menadione, pryrogallol, and plumbagin are all potent superoxide generators 

however, unlike MV, these reagents are uncharged and do not contain a dipyridyl ring; rather 

they contain either benzene (pyrogallol) or napthalene (menadione and plumbagin) rings.   To 

test whether the SMU.905 mutant (IBSA26) is sensitive to these reagents, we used disc 

diffusion assays as described in Chapter 2.   We observed that IBSA26 did not have an 

increased sensitivity to menadione, pyrogallol, or plumbagin (Table-S1).  This suggests that 

SMU.905 is not involved in general superoxide stress tolerance, rather this ABC transporter is 

specific for MV mediated toxicity tolerance. 

 

To confirm our hypothesis that SMU.905 is not involved in general superoxide stress tolerance 

response, we also measured the superoxide dismutase (SOD) activity in IBSA26.  S. mutans, 

like other streptococci, encodes a single Mn-type superoxide dismutase (146).  SOD activity 

was measured in the crude cellular extract isolated from mid-exponentially grown cultures on a 

native polyacrylamide gel by negative staining using nitroblue tetrazolium method (13).   As 

shown in Fig. 10, only a single active band, in approximately equal intensities, was seen in the 

wild type (UA159), the SMU.905 mutant strains (IBSA26, IBSA25 and IBSA42.), and the 

SMU.906 ISS1 insertion strain (IBSA43).    Thus, SMU.905/SMU.906 is not involved in general 

superoxide stress response. 
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Figure 7:  Linage analysis of the SMU.905/SMU.906 loci.  (A) Genetic map of the 

SMU.905/SMU.906 loci in S. mutans UA159 with the relative positions of the primers used for 

the PCR analysis to determine potential linkage of the genes.  (B). Results of PCR analysis 

showing linkages of the various genes that are cotranscribed. RNA was used as template to 

produce cDNA. PCR was then performed on RNA (control), cDNA, and chromosomal DNA 

(gDNA), using the primer pairs depicted in panel A, to determine which of the genes are 

cotranscribed with SMU.905.  
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Figure 8: Verification of viologen-sensitive phenotype.  ISS1 transposon mutants that 

displayed an initial MV-sensitive phenotype were further verified by spotting of 10.0 µl from a 

10-fold dilution series, with a starting optical density (A600) of 2.0 made in 0.85% NaCl, onto THY 

agar plates containing 5 mM MV (THY+MV). As a control, cultures were also spotted on plain 

THY agar plates with no additions (THY). UA159 is the wild-type strain, while IBSA34 and its 

plasmid cured derivative IBSA42 are independent MV-sensitive mutants. IBSA43 is a plasmid-

cured derivative of IBSA32, another MV-sensitive mutant.  IBSA26 is a deletion mutant of 

SMU.905 locus. Experiments were repeated at least three times, and the relevant areas of the 

representative plates are shown. 
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Figure 9: Biofilm formation by UA159 and IBSA26.  Cultures were grown in THY medium 

with 1% sucrose at 37°C for 2 days under microaerophilic conditions.  Cells attached to abiotic 

surfaces were washed and stained with crystal violet (violet), malachite green (green) or 

safranin (red). Left panel, biofilm on a glass surface (GS; four-chambered glass slide); or, right 

panel, polystyrene surface (PS; microtiter plate). 
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Figure 10:  SMU.905 or SMU.906 does not affect SOD activity in S. mutans.  Wild type 

(UA159), SMU.905 (IBSA25, IBSA26, and IBSA42), and SMU.906 (IBSA43) mutant cultures 

were harvested at the stationary growth phase. Total protein (25µg) was applied to a 10% 

native polyacrylamide gel and electrophoresed.  Bands representing SOD activity was 

visualized by negative staining using nitroblue tetrazolium method as described in Chapter 2. 
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We also examined the role of SMU.905 in oxidative stress response.  Towards this end, we 

used hydrogen peroxide to generate intracellular oxidative stress.  We also included cumene 

hydroperoxide and t-butyl hydroperoxide, which are often used to mimic lipid hydroperoxide 

stress (7).  The S. mutans SMU.905 deletion mutant IBSA26 was assayed for sensitivity to 

these peroxides in a disk diffusion assay.  The zones of growth inhibition of IBSA26 by these 

peroxides were similar to the wild type UA159 strain (Table S1).  Thus, SMU.905/SMU.906 

does not appear to participate in oxidative stress tolerance response. 

 

3.8. SMU.905/SMU.906 is only Required for Tolerance to Dipyridyl Ring Containing 

Superoxide Inducing Reagents.  

The SMU.905 mutant, IBSA26, while sensitive to MV, did not display an increased sensitivity to 

the structurally distinct superoxide generators.   MV is hydrophilic doubly charged (dication) 

quaternary ammonium compound (QAC) with a 4,4’-dipyridyl ring structure.  Because 

SMU.905/SMU.906 show high structural similarity with the multidrug efflux pumps, we wanted to 

examine whether this ABC transporter is also involved in tolerance to other structurally similar 

compounds.  To this end, we tested two additional viologens, ethyl viologen (EV) and benzyl 

viologen (BV) in disk diffusion assays. We tested the original ISS1 insertion mutants (IBS A34 

and IBSA37) as well as the SMU.905 deletion mutant IBSA26.  As shown in Figure 11 (and 

listed in Table 4), IBSA26 showed enhanced sensitivity to both EV and BV with a zone of 

inhibition of 24±2 mm and 27±2 mm, respectively. As expected, we observed no obvious growth 

inhibition in UA159 with EV and BV (Fig. 11).  On the other hand, the original ISS1 mutants of 

SMU.905 also displayed similar zone of inhibition as the SMU.905 deletion mutant (data not 

shown).   We also tested a plasmid cured ISS1 mutant of SMU.906 (IBS43) for its sensitivity to 

EV, BV, and MV.  This strain also showed increased sensitivity to these compounds compared 

to the wild type strain (Table 4).  However, the zones of growth inhibition were about 70-80% of 

the IBSA26 strain. 



  57 

 

We then tested the sensitivity of IBSA26 to diquat (DQ) because it represents the 2,2’-dipyridine 

derivative that is structurally related to viologen, which is 4,4’-dipyridines.  However, unlike the 

viologens, the effect of DQ on the growth inhibition of IBSA26 was not so obvious when fresh 

overnight cultures were used.  Although the diameter of the zone of inhibition for both the wild 

type and the mutant was similar  (~17mm) with DQ (100mg/ml), the wild type produced a cloudy 

zone of halo with residual bacterial growth present within the inhibited zone while the mutant 

produced a clear zone of halo.  However, when the overlay cultures were 48hrs or older, the 

zone of inhibition was significantly larger for IBSA26 as compared to UA159, and both the 

strains produced a clear zone of halo (Table 5).  

 

The viologens and DQ are structurally very similar, charged molecules, and generate 

superoxide radicals.  We wanted to examine whether SMU.905 is also involved in the tolerance 

to compounds that contain similar dipyridyl structures but do not generate superoxide radicals.  

Therefore, we tested the sensitivity of the SMU.905 deletion mutant to 4,4’-dipyridyl (4DP), 

benzidine (BZD), and 1,10’-phenanthroline (PHEN) in disk diffusion assay.  We observed no 

zone of inhibition with 4DP and BZD for both the wild type and the SMU.905 mutant strains 

while the halo sizes for both the strains were similar when PHEN was used (~22mm, Table S1).  

Therefore, taken together our results suggest that SMU.905/SMU.906 is specifically involved in 

the tolerance of viologen and related charged compounds that generate superoxide radicals. 
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Figure 11:  Disk diffusion assay to measure the susceptibility of S. mutans to viologen 

compounds.  Lawns of wild type (UA159) and SMU.905 mutant (IBSA26) strains were 

prepared by overlaying THY agar plates with 10 ml of soft THY agar containing 0.5ml overnight 

cultures. Ten microliters of ethyl viologen (EV, 1.5M) or benzyl viologen (BV, 50mg/ml) was 

spotted on the filter paper disk (6mm) and placed on the plates.  The plates were then incubated 

under microaerophilic conditions at 37°C for 16 h. The inhibitory-zone diameters for both 

cultures were measured and compared. 
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Table 6:  Sensitivity to Diquate (DQ). 
 
 
 
---------------------------------------------------------------------------------------------------------------------     
 
  DQ conc.                   UA159$                IBSA26$  
 
                   20hr                48hr                 20hr                  48hr 
--------------------------------------------------------------------------------------------------------------------- 
 
  
 50mg/ml           NH         12.0±1.0*        NH                   16.0±1.0*  
 
 100mg/ml       17.0±1.0@     16.0±1.0*       17.0±1.0         22.0±1.0*   
 
 500mg/ml       22.0±1.0@        33.0±2.0*       22.0±1.0     38.0±2.0*   
 
 
 
---------------------------------------------------------------------------------------------------------------------   
$ Either 20 hrs old or 48 hrs old cultures was used for the overlay 

NH=no distinct halo 
@ Diffused halo 

* Significant difference between the wild type and the mutant 

values are shown in mm 
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Figure 12: SMU.905 expression is not induced by MV treatment.  Semiquantitative RT-PCR 

was used to study SMU.905 expression. Total RNA was harvested from UA159 culture that was 

treated with or without MV and subjected to cDNA synthesis. Five nanograms of cDNA from 

each sample were used for semiquantitative RT-PCR. Two genes (SMU.902 and SMU.905) 

were subjected to semiquantitative RT-PCR. The gyrA gene was included to ensure that equal 

amounts of RNA were used for all reactions.  The data are representative of an RT-PCR 

analysis resulting from at least two independent RNA isolations. 
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Compounds that are expelled out from the cell by multidrug resistance family of ABC 

transporters can often induce the expression of the corresponding ABC transporter (121, 149, 

159).  We therefore examined whether prior exposure of S. mutans cells to sublethal 

concentration of MV can induce the transcription of SMU.905.  For this, we grew UA159 strain 

to mid-exponential phase and divided the culture into two aliquots.  One portion was treated with 

5mM MV for 30 min while the other portion was left untreated.  RNA was then extracted from 

these cultures and the amounts SMU.905 transcripts were measured by semi-quantitative RT-

PCR as described in Chapter 2 and normalized against gyrA transcript.  As shown in Fig. 12, 

prior exposure to MV did not induce SMU.905 transcription suggesting that expression of 

SMU.905 may not be inducible. 

 

3.9. SMU.905/SMU.906 is also Crucial for Tolerance to Some QACs 

QAC are a group of compounds in which a central nitrogen atom is joined to four organic 

radicals and one hydrophobic alkyl chain.  These compounds are widely used as broad-

spectrum bactericides in antiseptics and disinfectants and also used as surfactants and dyes.  

Since viologens belong to the QAC group, and since SMU.905 is required for viologen 

tolerance, we wanted to know whether SMU.905 is also necessary for resistance to other QAC 

compounds.  We tested the SMU.905 deletion mutant (IBSA26) in disk diffusion assays for 

sensitivity towards commonly used biological dyes (malachite green, crystal violet, pyronin B, 

and safranin), compounds commonly used in disinfectants or in mouthwash (acriflavin, 

benzalkonium chloride, cetrimonium bromide, cetylpyridinium chloride, and tetraethylammonium 

bromide), and ethidium bromide.  As shown in Fig.13 and Fig.14, the SMU.905 mutant revealed 

an enhanced sensitivity to ethidium bromide and safranin with zones of growth inhibition 

approximately 130% than those of the wild type UA159 strain. A similar result was also obtained 

with acriflavin (data not shown). However, there were no significant differences in the zones of 

growth inhibition between the wild type and the mutant for the other QACs (Table - S1). 
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Figure 13: Susceptibility of S. mutans to QAC by disk diffusion assay.   Plates with 

overlaid cultures were prepared as described before.  Ethidium bromide (10 mg/ml) or EDTA 

(0.5M) was spotted on paper disk and the plates were incubated overnight under 

microaerophilic conditions and photographed.   
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Figure 14:  Sensitivity to various biological dyes related to QAC.   Disk diffusion assay was 

conducted as previously described.  The samples are:  crystal violet (CV, 1.0%), malachite 

green (MG, 1.0%), and safranin (SF, 1.5%). 
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To confirm our result that the ABC transporter SMU.905/SMU.906 is indeed involved in the 

efflux of these the QACs, we tested the plasmid cured ISS1 insertion mutant of SMU.906 

(IBSA43, Table 3) for its sensitivity in disk diffusion assays.  To our surprise, IBSA43 did not 

show increased zones of growth inhibition to these drugs as the SMU.905 mutant strain (data 

not shown).  Thus, while the role of SMU.905 in the tolerance to these QACs is very certain, the 

role of SMU.906 in the efflux of QACs is not very clear.     

 

3.10. SMU.905/SMU.906 do not Participate in Antibacterial Tolerance or Toxic Chemicals 

Many multidrug efflux pumps confer resistance to a variety of structurally unrelated compounds 

(149, 159, 160, 162).  Qunolones are widely used broad-spectrum antibiotics with a one or two 

heterocylic ring containing nitrogen structure.  Since the overall quinolone structures have some 

similarity with the quat compounds and because many ABC transporters are known to be 

involved in both QAC and quinolone resistance (152), we examined the role of SMU.905 in the 

resistance to quinolone antibiotics such as ciprofloxacin, levofloxacin, and nalidixic acid.  We 

also included vancomycin, which contains complex heterocyclic rings; lincosamide drugs such 

as clindamycin and chloramphenicol; trimethoprim that contains a diamine-pyrimidine group; 

rifampicin that also contains a complex ring structure similar to quat compound; and bacitracin, 

a cyclic polypeptide.   We included bacitracin in our study because S. mutans, unlike other 

streptococci, are much more resistant to this drug (193) and ABC transporters are known to be 

involved in the bacitracin resistance (129).  All these antibiotics were used in disk diffusion 

assays with IBSA26 and UA159 strains.  As listed in Table S1, we did not find any significant 

differences in the growth inhibition zones between SMU.905 mutant and the wild type strains. 

 

We also tested sensitivity of IBSA26 to various toxic chemicals such as chlorhexamide, diamide, 

EDTA, hydrazine, mytomycin C, potassium tellurite, puromycin, and streptonigrin; all these 

reagents are structurally very different (Table S1).  However, we did not observe any significant 
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difference between the wild type and the mutant strains.  Thus, SMU.905/SMU.906 appears to 

have very restricted substrate specificity. 

 

3.11. Phenotypic Microarray Analysis of the SMU.905 Deletion Mutant (IBSA26) 

PM assay is a relatively new method that allows testing for a large number of phenotypes 

simultaneously for a given strain (21-23).  In this assay, bacterial growth in different media is 

measured with tetrazolium redox dye(22).  Respiration by bacteria during growth causes 

reduction of the dye and produces purple color that accumulates in the well over the incubation 

period.  Total loss of function will result in no growth and therefore no color formation.   Thus, 

colorimetric detection due to respiration can provide a reporter system for phenotypic testing.  

The growth kinetics of the SMU.905 mutant (IBSA26) under nutrient rich standard growth 

condition was very similar to the wild type strain (UA159) suggesting that there was no obvious 

growth defect in the SMU.905 mutant; therefore IBSA26 is a good candidate for PM analysis.  

PM assays were performed on IBSA26, compared with UA159, in a set of 20 96-well plates 

containing various nutrients or toxic compounds.   This allowed testing of nearly 1,900 cellular 

phenotypes in a sensitive, highly controlled, and reproducible format.   

 

PM analysis was first performed using metabolic panels (PM1-8).  There was no significant 

difference in the carbon utilization panels (PM1-2, Fig. 15).   The signals for the rest of the 

metabolic panels (PM3-8) were either very low or none.  These panels include nitrogen 

utilization panels (PM3, 6-7), phosphate and sulfate panel (PM4), and nutrient stimulation panel 

(PM5). The poor growth in these metabolic panels was not surprising since a previous study 

also demonstrated poor growth of a wild-type NG-8 strain, a different S. mutans strain than the 

one used in this study (20).  However, the result also indicated that the mutant (IBSA26) 

showed no growth defect or advantages in those PM plates.   One marginal positive difference 

was observed for gly-phe-phe (PM8, H8) for the mutant.   In the osmotic panel (PM9) there were 
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no signals detected in about half of the wells.  In the remaining wells, there were no significant 

differences between the wild type and the SMU.905 mutant, except one marginal negative 

difference in (PM9, B5).  PM analysis in the osmotic panel (PM10) also generated no significant 

differences.  Surprisingly, for the toxic chemical panels (PM11- PM20), despite reasonably good 

growth in most of the conditions, we observed no significant differences between the wild type 

and the mutant strains.  This suggests that SMU.905 has a very restricted substrate specificity 

that includes viologens and some QACs.   

 

3.12. Role of SMU.902 in Viologen Tolerance 

We obtained a single insertion (IBSA31) in SMU.902 locus that lies just upstream of the 

SMU.905 and SMU.906 loci.  SMU.902 encodes a polypeptide of 623 residues that shows high 

homology with an ABC transporter protein.  The insertion that we obtained in SMU.902 was 

mapped at position 619.  To gain a better insight into the function of SMU.902, we used IBSA31 

to generate a strain, IBSA44, which is devoid of the delivery plasmid pGhost9.  Both IBSA31 

and IBSA44 were tested for MV sensitivity.  As shown in Fig. 16, both strains showed increased 

sensitivity towards MV.  Furthermore, although both strains were highly sensitive to MV 

exposure, we observed that IBSA44 (plasmid cured, Table 3) strain was at least 10-fold less 

resistant to MV as compared to the original insertion mutant IBSA31 that contains the plasmid.    

We also tested IBSA44 for its sensitivity towards acriflavin and ethidium bromide in disk 

diffusion assay.  As expected, IBSA44 was more sensitive to both these reagents as compared 

to the wild type strain suggesting that this insertion in SMU.902 somehow disrupted the wild 

type function (data not shown). 
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Figure 15: PM analysis for sensitivity to various antibiotics and toxic compounds. A 

complete catalogue of the reagents used in the sensitivity panel (PM1–PM20) is listed at 

http://www.biolog.com. The wild type (UA159) and the SMU.905 mutant (IBSA26) were grown 

in a 96-well plate under different conditions. Growth kinetics were obtained with the OmniLog 

instrument, a video-based detection system that detects color development of tetrazolium dye 

due to bacterial respiration. Growth kinetics of wild-type and SMU.905 mutant are superimposed 

using OmniLog software. The PM kinetic results show consensus data comparing the mutant 

(IBSA26, green) and its wild-type parental strain (UA159, red). A growth advantage by the 

parent is indicated by red, while a growth advantage by the SMU.905 mutant is shown by green. 

When both strains have equal growth response or metabolisms in a well, the red and green 

kinetics overlap and produce a yellow color. Two independent growth kinetic experiments were 

performed.  A box around a well indicates a difference in response that was observed in both 

the experiments.  
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Figure 16: Verification of SMU.902 mutants to methyl viologen sensitivity.  Dilutions of 

fresh overnight cultures were spotted on THY agar plates with or without methyl viologen (5 

mM; MV). Plates were incubated at 37°C under microaerophilic conditions. Experiments were 

repeated no fewer than three times, and relevant areas of representative plates are shown. 

Strains are: wild type (UA159), SMU.905 mutant (IBSA26) and SMU902 mutants (IBSA31 and 

IBSA44).  Note the slight increase in resistance of IBSA44, a plasmid-cured derivative, 

compared with IBSA31. 
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In comparison to other pathogenic streptococci such as GAS, GBS, or S. pneumoniae, the 

lifestyle of S. mutans is quite different. The natural niche of this pathogen is human oral cavity, 

which is a very dynamic environment that undergoes rapid changes in temperature, pH, and 

osmotic and oxygen tension.  For successful colonization and maintaining a dominant presence 

in the oral cavity S. mutans has also developed multiple strategies.  These strategies also help 

this organism to grow under nutritional-limiting conditions and to protect from various 

environmental insults (113).  While most of the previous studies were focused on understanding 

the mechanisms of acid tolerance and oxidative-stress responses, our knowledge of the 

mechanisms of other stress tolerance response remains limited. To obtain further insight into 

this process, a collection of random insertion mutants of S. mutans UA159 was screened to 

select clones with high sensitivity to MV, a charged dipyridyl-ring containing QAC that also 

generates ROS. This approach allowed us to identify genes that may be responsible for defense 

against QAC, without prior knowledge of the genes' function(s).  In this study, we only screened 

approximately 3,500 such mutants; therefore, the screening process was not particularly 

exhaustive since S. mutans genome encodes about 1900 genes.  There were some other 

drawbacks associated with the approach used for MV sensitive mutant isolation.  An insertion in 

an essential gene would not have been identified in this study.  Furthermore, our screening 

process may overlook mutants with a weak phenotype.  Among the five loci that were identified 

in our analysis at least one gene, ciaH, was previously reported as an important player in the 

oxidative-stress response in streptococcus and other bacteria (2, 151, 167, 206, 212), signifying 

that the screening method used here is a viable approach.   However, we did not identify the 

sodA gene, which encodes the SOD activity, nor did we identify mreD, rodA, pbp2b, or other 

genes that were isolated by Thibessard et al. (191), who attempted to identify superoxide stress-

responsive loci in S. thermophilus. Our inability to identify these genes could be either due to the 

non-exhaustive nature of the screening process or due to the experimental condition used for 

the screening.  In our assay, instead of microaerophilic condition that contains no oxygen, we 
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used ambient air supplemented with 5% CO2 to intensify the action of viologen.  Four unique 

loci were identified by our search: three ABC transporter-encoding genes (SMU.902, SMU.905, 

and SMU.906), and a hypothetical protein (SMU.283).   In this study, we further characterized 

the SMU.905 and SMU.906 loci to understand the mechanism and substrate specificity for 

these ABC transporters.  

Sequence analysis and genome organization strongly suggest that SMU.905 and SMU.906 

encode a heterodimeric ABC-type exporter pump.  Our linkage analysis also demonstrated that 

these two genes are transcriptionally linked.  S. mutans genome analysis indicates that this 

organism encodes several ABC transporters, of which at least 42 are putative exporter pumps 

(3, 136).  Since we specifically obtained multiple insertions in SMU.905 and SMU.906 loci (five 

in SMU.905 and four in SMU.906), this ABC transporter appears to be the most important for 

viologen tolerance in S. mutans.  Analysis of the sequences by a transmembrane (TM) helices 

prediction program, TMHMM (www.cbs.dtu.dk/services/TMHMM), of both SMU.905 and 

SMU.906 revealed that these two proteins contain 6 (residues 1-294) or 5 (residues 1-382) TM 

helices, respectively.  Both SMU.905 and SMU.906 also contain putative nucleotide binding 

domains, Walker A and Walker B motifs, and ABC signature sequences (42, 82) (Figure 6).   

We also found that both SMU.905 and SMU.906 were necessary for viologen resistance 

supporting our notion that SMU.905 and SMU.906 is a heterodimeric ABC-type multidrug efflux 

pump. 

Several ABC-type multidrug efflux pumps have been characterized previously in gram-positive 

bacteria (111, 122, 123, 170, 185).  Among them, LmrCD in L. lactis has been experimentally 

demonstrated to be a heterodimeric ABC-type multidrug efflux pump and to contain structurally 

and functionally distinct nucleotide-binding domains (123).  These authors have shown that in 

LmrD, a canonical glutamate residue following the Walker B motif, which has been postulated to 

fulfill a critical catalytic role in the ATP hydrolysis is well conserved (29).  On the other hand, in 
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LmrC, this residue is replaced with a noncanonical aspartate residue.  In each pair of 

heterodimeric transporters thus far analyzed, one subunit contains a canonical glutamate 

residue and the other subunit contains a noncanonical aspartate residue instead of a glutamate 

residue.  This pattern is also found in SMU.905 (contains aspartate) and SMU.906 (contains 

glutamate) and may be a feature of heterodimeric ABC transporters (Fig. 6). 

The ABC transporter that we identified exports, in addition to viologen compounds, some other 

QACs such as acriflavin, ethidium bromide, and safranin.  Analysis of the structures of these 

compounds failed to identify any common structural moiety that could easily explain the 

substrate specificity (Table 5).   However, all the compounds are charged heterocyclic 

molecules.  Definitely charge plays a role in the substrate recognition since the ABC transporter 

complex did not recognize dipyridyl and benzidine, which are structurally very similar to viologen 

but uncharged.   Similarly, diquat, which is structurally very similar to phenanthroline but 

charged, was expelled from the cell by SMU.905, while phenanthroline was not recognized.  On 

the other hand charge alone is not sufficient to explain substrate specificity.  This is because we 

also tested several QACs ranging from compounds that contain simple structure such as 

tetraethylammonium bromide to compounds that contain heterocyclic rings such as malachite 

green and crystal violet.  None of these QACs were recognized by SMU.905.  Thus, in addition 

to charge, other physical characteristics such as hydrophobicity or amphiphilicity may be   

important. 

Although IBSA43 (SMU.906 mutant) displayed increased sensitivity to viologen compounds, 

surprisingly this mutant when tested for sensitivity towards acriflavine, ethidium bromide, and 

safranin did not show any significant difference compared with the wild type.   Thus, it appears 

that SMU.906 is not involved in the resistance of these compounds.  Although SMU.905 and 

SMU.906 are expected to interact with each other to form a functional heterodimeric ABC-

transporter, one could envision the possibility that these half transporters may interact with other 
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ABC transporters to assemble into different heterodimers that differ in their substrate specificity.  

Such a scenario was proposed for lactococcal transporters involving LmrCD and LmrA (121, 

123).   Another possibility is that SMU.905 and SMU.906 both can separately form homodimers 

and these homodimers have different substrate specificity.  For example, while SMU.905 

homodimer is involved in QAC resistance, SMU.906 homodimer does not take part in QAC 

resistance.   Future studies will address the question whether SMU.905 and SMU.906 can also 

form homodimers, and, if so, to what extent their substrate specificities differ from the 

SMU905/SMU.906 heterodimer.   

It is possible that SMU.905 or SMU.906 might form heterodimers with SMU.902, which also 

encodes an ABC-transporter protein.  SMU.902 lies just upstream of SMU.905 and SMU.906 

loci and is transcriptionally linked.  Interestingly, we also obtained an insertion in SMU.902, 

although the site of insertion was very close to the C-terminus end (at codon position 619).  The 

SMU.902 insertion mutant (IBSA44) also displayed increased sensitivity towards viologens as 

well as the QACs.  Since SMU.902 and SMU.905/SMU.906 were transcriptionally linked, and 

because the insertion was near the end of the SMU.902 gene, we speculated that the increased 

sensitivity of IBSA44 to viologens (and other QACs) was due to the polar effect of the insertion 

and not due to the loss of SMU.902 function.  Our speculation was further supported by the 

observation that the original insertion mutant, IBSA31, showed more sensitivity than the plasmid 

cured IBSA44 mutant, which is expected to exert less polar effect than the original mutant.   

However, our results cannot rule out the possibility of heterodimer formation involving SMU.902.  

Further studies are required to understand the biochemical nature of this ABC-transporter. 

 BLAST searches using protein sequences as query against the non-redundant database at 

NCBI show that homologues of SMU.905/SMU.906 are widely present in streptococci, 

enterococci, and clostridia (Fig. 17A/B).   In all cases, two ORFs were located in tandem, and 

many genes seemed to encode multidrug resistance ABC-type proteins.  The closest 



  74 

homologues (over 90% identity), SAG1338 and SAG1337, are found in GBS; and all the 

sequenced GBS strains encode these ABC transporter genes.  In contrast to other organisms in 

which SMU.905/SMU.906 homologues are found, the genomic locus for this ABC transporter is 

somewhat conserved in GBS.  Specifically, the upstream four genes are highly conserved 

including the SMU.902 homologue, SAG1340, which encodes an ABC transporter.  On the 

other hand, two genes immediately downstream of SAG1337 are homologues of SMU.911 and 

SMU.913.  However, homologues of SMU.909 that encodes a malate permease and SMU.910, 

which encodes a glucosyltransferase, are absent in GBS.  Although GBS is an important 

pathogen, so far no systematic study has been conducted in this organism to understand the 

role of various ABC transporters in antibiotic or other stress tolerances.  While the exact role of 

SAG1337/SAG1338 remains to be explored, a recent proteomic study demonstrated that 

SAG1337 might be involved in pathogenesis since this protein is found in greater abundance 

under highly invasive conditions (with oxygen) compared to poorly invasive conditions (without 

oxygen) (91). 

 Our BLAST search also identified two ABC transporter proteins from Enterococcus faecalis, 

EfrA (EF2920) and EfrB (EF2919), which showed over 80% identity with SMU.905 and 

SMU.906, respectively (111). From genome sequence information, it appears that E. faecalis 

encodes 23 putative multidrug ABC-type transporters. E. faecalis shows fairly high levels of 

resistance to many antimicrobial agents, presumably due to presence of several multidrug efflux 

pumps.   Davis et. al. (45) have created single-gene disruptions in each of these 23 putative 

ABC-transporters and evaluated susceptibilities of the mutants to a panel 28 structurally diverse 

antimicrobial agents.  Only four out of 23 ABC-transporters were found to be involved in the 

tolerance of at least one or more compounds with little overlap in the respective substrate 

spectra (45).  Surprisingly, the analysis did not reveal a role for EfrAB ABC-transporter in 

intrinsic antimicrobial resistance.  Lee et. al. (111)  have subsequently cloned and expressed 
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EfrAB in E. coli.  These authors found that expression of both efrAB genes confers resistance to 

many drugs including acriflavin, ethidium bromide, and safranin (111). Interestingly, neither efrA 

nor efrB was able to confer drug resistance when either one of these genes was expressed in E. 

coli, suggesting that EfrAB indeed form a heterodimer to function as a multidrug efflux pump.  

Unfortunately, methyl viologen or other quat compounds were not tested in this study, thus 

whether EfrAB is involved in viologen efflux remains to be seen.  

 Although our BLAST search identified SMU.905/SMU.906 homologues in many streptococci, 

we could not identify obvious homologous proteins in S. pneumoniae.  The highest similarity 

(over 55%) that we obtained was with SP2075/SP2073 (also known as PatA/PatB).  This ABC 

transporter was first described by Marrer et al. (131) as an efflux pump involved in multidrug 

resistance in a laboratory-selected ciprofloxaxin-resistance mutant. These authors also 

demonstrated that various antibiotics including quinolones induce expression of patA and patB 

genes (131).  The genome of S. pneumoniae encodes 14 putative ABC-type multidrug efflux 

systems and Robertson et al (171) carried out a systematic gene inactivation study to identify 

ABC transporters involved in intrinsic resistance to various antimicrobial agents.   Except for one 

(SP1435), these investigators could disrupt all putative ABC-transporters, and analyzed the 

resulting mutants for their drug resistance profiles (171).   Only the inactivation of the SP2073 or 

SP7075 genes gave rise to hypersusceptibility to ciprofloxacin and norfloxacin, as well as 

ethidium bromide and acriflavine.  Interestingly, the two mutants were also susceptible to the 

plant alkaloid berberine, a QAC with heterocyclic moiety.  In all cases, the observed 

susceptibility differences were identical for strains lacking either SP2073 or SP2075, and 

combining the two mutations were neither additive nor synergistic, which strongly suggests that 

these two proteins also act as heterodimer (171).  Unfortunately, viologen compounds were not 

evaluated in this study.  Interestingly, although SP2075 and SP2073 seem to be the homologue 

of SMU.905 and SMU.906, respectively, the former two genes do not appear to constitute an 
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operon, since the middle gene (SP2074, encoding a degenerate transposase) in the three-gene 

cluster is predicted to be transcribed in the opposite direction of SP2075 and SP2073.  Thus, 

the expression and regulation of SP2075 and SP2073 are different from their counterparts in 

other organisms. 

The ABC transporter complex (SMU.905/SMU.906) that we identified in this study also share 

high homology with four other putative ABC-type effluxes that are also organized in tandem in 

the genome.  These are SMU.522/SMU.523, SMU.922/SMU.923, SMU1078/SMU.1079, and 

SMU.1163/SMU.1164 (Table S2).  In each of these putative transporter pairs, one subunit 

contains the canonical glutamate residue and the other subunit contains a noncanonical 

aspartate residue in the Walker B box and thus expected to form heterodimers (3).  We 

speculate that these heterodimeric ABC transporters are also involved in the efflux of toxic 

substances including antimicrobials and QACs.  A thorough systematic analysis is necessary to 

determine the substrate specificity for these ABC transporters. 

ABC-type transporters are one of the most abundant proteins in S. mutans.   This bacterium 

encodes approximately 70 ABC transporters, which accounts for almost 10% of the total 

number of S. mutans ORFs (3, 136).   About one-third of all ABC transporters are categorized 

as importers, whereas the rest are exporters.  In contrast, although GBS encodes similar 

number of ABC transporters (about 70), the majority of them (over 65%) are importers (64).  

Similarly, GAS encodes about 50 ABC transporters and the ratio of importers to exporters is 

very similar to that of GBS (58).  The presence of numerous ABC-type transporters indicates 

that S. mutans is capable of actively exporting excess and harmful molecules from the cell.    
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Figure 17 A:  Multiple sequence alignment of SMU.905 and its closest homologs.  
The sequences shown are (GeneBank accession numbers in parenthesis): Enterococcus 

faecalis EfrA (AAO82608.1), Lactococcus lactis LmrC (ABF66006.1), Streptococcus agalactiae 

SAG1338 (AAN00209.1), and Streptococcus pneumoniae SP2075 (ABJ55477.1).  The 

alignment was performed using Clustal-W.  Degree of shading is indicative of sequence 

homology and was done using BoxShade.  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Figure 17 B:  Multiple sequence alignment of SMU.906 and its closest homologs.  
The sequences shown are: E. faecalis EfrB (AAO82607.1), L. lactis LmrD (CAL96931.1) 
S. agalactiae SAG1337 (AAN00208.1) and S. pneumoniae SP2073 (ABJ53826.1). 
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However, very little is known about the function of all these transporters.  Only three S. mutans 

ABC-type exporters have been studied so far (193, 199).  This organism is naturally bacitracin 

resistant and this property is often exploited in the isolation of this bacterium from the highly 

heterogeneous oral microflora.  Tsuda et al (193) have shown that an ABC transporter complex, 

consisting of MbrA (SMU.1006) and MbrB (SMU.1007), was involved in the resistance of 

bacitracin.  However, the substrate that is exported out by the ABC transporter has not been 

identified and the authors proposed that either the transporter exports an unknown molecule 

that inactivates bacitracin inside the cell or the transporter modulates the movement of 

bacitracin itself, or both.   The other two ABC transporter complexes transport small peptides:  

NlmT (SMU.286) and NlmE (SMU.287) export mutacins VI and V, whereas CslA (ComA, 

SMU.1898) and CslB (ComB, SMU.1899) are involved in the secretion of competent simulating 

peptide (CSP) that is necessary for competence development. 

Since violgens are charged compounds, like QACs, they cannot penetrate the cell membrane 

by simple diffusion; they require an active transport system to enter into the cell.  As an 

example, in Pseudomonous aeruginosa, CbcWV, an ABC transporter, is involved in the uptake 

of many QACs including choline (30).  Similarly, B. subtilis encodes an ABC transporter, OpuA, 

which is also involved in the QAC transport (95).   Although several ABC-type importers are 

present in S. mutans, the screening method that we used in this study was not designed to 

identify importers for viologens.    In addition to interfering with uptake (93) or enhancing efflux 

from the cell (161, 176), other poorly studied mechanisms also exist by which bacteria cope with 

viologen exposure (27, 169).  In B. subtilis, YqjL protein confers resistance to viologen (27).  

This protein, which has similarity to members of the α/β hydrolase family protein, may be 

involved in direct degradation of viologen; although such degradation could not be 

demonstrated in vitro with purified YgjL (27).   In E. coli, three cell division associated proteins 
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are shown to be involved in viologen tolerance.  The first two proteins, FtsE and FtsX, form an 

ABC-transporter complex, while the other protein, SulI, is membrane associated (169) 

Though we have identified SMU.905/SMU.906 as an ABC transporter involved in efflux of 

viologens and QACs, these chemicals may not be the actual ones that the organism encounters 

during its growth in natural habitat in the dental plaque.  Dental plaque is a polymicrobial 

community that harbors more than 500 species or phylotypes (1, 104, 156) and the cell density 

can reach as high as 1011CFU/ml (55).   The oral biofilm is continuously challenged by changes 

in the environmental conditions and as a response to such challenges, the bacterial community 

evolved with individual members with specific functions such as primary or secondary colonizers 

including ability to metabolize or tolerate toxic excreted products produced by other species 

(102).   About 20% of the oral bacteria are streptococci (134, 135) and these organisms with 

their specific spatial and temporal distribution determine the development of the biofilms.   When 

present in high numbers, the pioneer colonizers can antagonize S. mutans as suggested by 

clinical studies (14).  However, S. mutans can become dominant in oral biofilms, which leads to 

dental caries development.  This dominance depends on competition with other organisms and 

is influenced by various factors.   We speculate that the presence of numerous transporters 

such as SMU.905/SMU.906 allow S. muatns to withstand toxic compounds produced by the 

competing species or present in the plaque environment.    

Identification of SMU.905/SMU.906 as a major transporter for toxic substances has an important 

biotechnological application.  S. mutans strain lacking SMU.905/SMU.906 will be particularly 

suitable to screen for MDR transporters from other gram-positive bacteria since this organism is 

easy to transform.  Further strain modification by deleting other MDR transporters, as 

demonstrated in Sacchamomyces cereviseae (172), may lead to hypersusceptibility to a greater 

number of antimicrobial agents; however, this will first require the identification of other systems 

that contribute to drug resistance in S. mutans.   Moreover, a hypersusceptible S. mutans strain 



  81 

could serve as a sensitive indicator for the genome-wide screening of novel MDR determinants 

involved in resistance development against novel antimicrobials.  At present, drug-

hypersensitive E. coli strains are used as heterologous hosts for screening, expression, and 

characterization of bacterial MDR systems (80, 110). Because cell envelope contains an 

additional outer membrane, E. coli seems less suited for screening of MDR transporters of 

gram-positive organisms including many pathogens.  Finally, a hypersusceptible S. mutans 

strain would also be beneficial for development of cell-based screening systems for novel 

antimicrobials against gram-positive pathogens such as GAS, GBS, E. feacalis or S. 

pneumoniae. 
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Table S1:  Sensitivity of wild type and mutant S. mutans strains to various chemicals 
 
------------------------------------------------------------------------------------------------------------------------------- 
Compound (conc.)                       Zone of Inhibition (mm) 
                UA159     IBS A26 
-------------------------------------------------------------------------------------------------------------------------------
  
Viologen  
Benzyl viologen (50 mg/ml)         0.0      27.0±1.0   

Ethyl viologen (1.5 M)               0.0      24.0±1.0 

Methyl viologen (1.0 M)             0.0      20.0±2.0  

 
ROS  
Cumene hydroperoxide (10 %)      28.0±2.0     28.0±2.0 

Diquat dibromide (500 mg/ml)*      33±2.0     38.0±2.0 

Hydrogen peroxide (1.0 %)       22.0±2.0     21.5±0.5 

Menadione (0.5 %)          26.0±2.0     24.0±3.0 

1,4’-Napthaquinone(0.1 %)       19.0±1.0     20.0±2.0 

1,10’-phenanthroline (200 mM)      15.0±1.0     15.0±1.0 

Plumbagin (20 mM)          22.0±2.0     21.0±2.0 

Pyrogallol (200 mg/ml)         23±1.0     24±2.0   

tert-butyl hydroperoxide (70 %)         0.0         0.0 

 

QAC 
Acriflavin (100 mg/ml)         26.0±1.0     31.0±1.0 

Benzalkonium chloride  (10 mg/ml)     18.0±1.0     18.0±1.0 

Crystal violet (10 mg/ml)        12.0±1.0     12.0±1.0 

Ethidium bromide (10 mg/ml)       19.0±0.5     24.0±1.0 

Hexadecyltrimethylammonium bromide (0.5%) 10.0±0.5     10.0±0.5 

Hexadecylpyridinium chloride (1.0 %)    7.0±.05     7.0±0.5  

Malachite green (10 mg/ml)       26.0±1.0     26.0±1.0 

Pyronin B (5.0 mg/ml)         13.0±1.0     13.0±1.0 

Safranin O (15 mg/ml)         10.0±1.0     13.0±1.0  

Tetraethylammonium bromide (10 mg/ml)   0.0          0.0 

------------------------------------------------------------------------------------------------------------------------------- 
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Table: S1 contd… 
------------------------------------------------------------------------------------------------------------------------------- 
Compound (conc.)                      Zone of Inhibition (mm) 
                UA159     IBS A26 
-------------------------------------------------------------------------------------------------------------------------------
  
Stressors/Toxic substances 
Benzidine (4 mM)               0.0        0.0 

Chlorhexidine gluconate (20 %)      22.0±1.0     23.0±1.0 

Diamide (1.0 M)           18.0±1.0     19.0±1.0 

Dipyridyl (50 mM)              0.0        0.0 

EDTA (0.5 M)               11.0±0.5     11.0±0.5 

Mitomycin C1 (1.25 mg/ml)       32.0±2.0     32.0±0.5 

Potassium tellurite (1.0 %)        21.0±1.0     21.0±1.0 

Puromycin (5.0 mg/ml)         15.0±1.0     15.0±1.0 

Reserpine (30 mg/ml)         20.0±1.0     20.0±1.0  

Streptonigrin (5.0 mg/ml)        30.0±2.0     30.0±2.0  

 
Antimicrobials$ 
Amidinocillin (10 mcg) $            19.0±1.0     19.0±1.0 

Bacitracin (10 units) $         10.0±1.0     10.0±0.5   

Chlomphenicol (5 mcg) $        12.0±1.0     11.5±1.5 

Ciprofloxaxin (5 mcg) $         13.5±2.0     13.0±1.0 

Clindamycin (2 mcg) $         22.0±1.0     22.0±1.0 

Erythromycin (50 mg/ml)        31.0±1.0     31.0±1.0 

Kanamycin (100 mg/ml)        18.0±1.0     18.0±1.0 

Levofloxaxin (5 mcg) $         15.0±1.0     15.0±2.0 

Nalidixic acid (30 mcg) $               0.0        0.0  

Rifampin (5 mcg) $          28.0±2.0     27.0±1.0 

Trimethoprime (5 mcg) $        13.0±0.5     12.5±1.0  

Vancomycin (5 mcg) $         15.0±0.5     15.0±1.0 

-------------------------------------------------------------------------------------------------------------------------------
$ per disk 
* See text for details 
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Table S2: Putative ABC Transporters in Streptococcus mutans UA159 
 
--------------------------------------------------------------------------------------------------------------------- 
PROTEIN                 PUTATIVE SUBSTRATE  
ABC    Membrane  Binding protein 
-------------------------------------------------------------------------------------------------------------------- 
SMU.1006  SMU.1007**            Bacitracin 

     SMU.28*             Unknown 

     SMU.1293            Fe-S assembly/SufBCD system 

SMU.247   SMU.248             Fe-S assembly/SufBCD system 

     SMU.251             Fe-S assembly/SufBCD system 

SMU.1431                 Uup homolog/duplicated ATPase 

SMU.2159                 Uup homolog/duplicated ATPase 

SMU.803                  Uup homolog/duplicated ATPase 

SMU.902                  Uup homolog/duplicated ATPase 

SMU.1178  SMU.1179  SMU.1177       Amino acid 
     SMU.1216**  SMU.1217       Amino acid 
 
     SMU.1941 
     SMU.1942            Amino acid 

 SMU.461   SMU.460**  SMU.459        Amino acid 
     SMU.1347 
     SMU.1348*            Amino acid 
     SMU.863* 
     SMU.864*            Antimicrobial peptide 

 SMU.1148                 Bacitracin 

 SMU.1811                 Bacitracin 

 SMU.1035                 Bacitracin 

 SMU.1445  SMU.1446  SMU.1447       Branched-chain amino acid 

 SMU.1665  SMU.1667 
 SMU.1666  SMU.1668  SMU.1669       Branched-chain amino acid 

 SMU.1324 
 SMU.1325                 Cell division 

 SMU.1934         
SMU.1933                 Cobalt ion 

 SMU.2149  SMU.2148            Cobalt ion 
SMU.2150         

 SMU.1939  SMU.1938            D-methionine 
 
     SMU.1966            D-ribose 

 
------------------------------------------------------------------------------------------------------------------------------------------ 
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Table S2: cont. 
--------------------------------------------------------------------------------------------------------------------- 
PROTEIN                 PUTATIVE SUBSTRATE  
ABC    Membrane  Binding protein 
-------------------------------------------------------------------------------------------------------------------- 

      SMU.817**  SMU.815        Glutamate/arginine 

 SMU.1519  SMU.1521** 
     SMU.1522**  SMU.1520**       Glutamine 

 SMU.241c  SMU.242**            Glutamine 

 SMU.568   SMU.567**            Glutamine 

 SMU.805c  SMU.806             Glutamine 

 SMU.1095 
SMU.1096                 Glycine betaine/carnitine/choline 

 SMU.2116  SMU.2117  SMU.2118 
     SMU.2119            Glycine betaine/carnitine/choline 

 SMU.1063  SMU.1062            Glycine betaine/L-proline 

 SMU.936   SMU.934 
     SMU.935   SMU.933        Histidine/arginine/ornithine 

 SMU.997   SMU.995   SMU.998        Iron (III) 
     SMU.996      

 SMU.654                  Lantibiotic export 

      SMU.1121            Lipoprotein releasing 

 SMU.1167c  SMU.1166*            Lipoprotein releasing 

      SMU.1365? 
     SMU.1366*            Lipoprotein releasing 

      SMU.1412*            Lipoprotein releasing 

 SMU.1927  SMU.1928            Lipoprotein 

 SMU.1571  SMU.1569  SMU.1568 
     SMU.1570            Maltose/maltodextrin 

 SMU.182   SMU.183   SMU.184        Manganese ion 

 SMU.1695                 Molybdenum  

 SMU.1068  SMU.1067            Multidrug efflux 

      SMU.1163* 
     SMU.1164*            Multidrug efflux 

 SMU.1194  SMU.1195            Multidrug efflux 

 SMU.1551c  SMU.1550c*            Multidrug efflux 

 SMU.238c  SMU.237c            Multidrug efflux 

 SMU.370   SMU.371             Multidrug efflux 

 SMU.413   SMU.414             Multidrug efflux 

 ------------------------------------------------------------------------------------------------------------------------------------------  
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Table S2: cont. 
--------------------------------------------------------------------------------------------------------------------- 
PROTEIN                 PUTATIVE SUBSTRATE  
ABC    Membrane  Binding protein 
-------------------------------------------------------------------------------------------------------------------- 

      SMU.432*            Multidrug efflux 

      SMU.524* 
     SMU.525*            Multidrug efflux 

 SMU.731                  Multidrug efflux 
 
     SMU.1078c* 
     SMU.1079c*            Multidrug/protein/lipid 

      SMU.905* 
     SMU.906*            Multidrug/protein/lipid 

      SMU.922* 
     SMU.923*            Multidrug/protein/lipid 

 SMU.652c  SMU.653c  SMU.651c       Nitrate/sulfonate/taurine 

 SMU.258   SMU.256   SMU.255        Oligopeptide 
SMU.259   SMU.257      

 SMU.1134  SMU.1136  SMU.1138       Phosphate ion 
SMU.1135  SMU.1137      

 SMU.828   SMU.827             Polysaccharide 

      SMU.1093*            Polysaccharide/polyol phosphate 
     SMU.1094*      

 SMU.1120  SMU.1118            Ribose/galactose 
     SMU.1119      

 SMU.973   SMU.974   SMU.976        Spermidine/putrescine 
     SMU.975      

      SMU.1963c            Sugar 

 SMU.882   SMU.879   SMU.878        Sugar 
     SMU.880      

 SMU.1881                 Peptide secretion 

 SMU.1897  SMU.1898* 
     SMU.1899*            Peptide secretion 

 SMU.286                  Peptide secretion 
 
     SMU.1302            Zinc ion 

 SMU.1994  SMU.1993            Zinc ion/manganese ion 

------------------------------------------------------------------------------------------------------------------------------------------ 

*   contains both an ABC and a membrane domain as one polypeptide 

**  contains both a membrane domain and a binding protein domain as one polypeptide 

 Derived from www.membranetransport.org 


