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Abstract 

The focus of this project is the use of computational molecular design (CMD) in the 

design of novel crosslinked polymers. A design example was completed for a 

dimethacrylate as part of a comonomer used in dental restoration, with the goal to create 

a dental adhesive with a longer clinical lifetime than those already on the market.  

 

The CMD methodology begins with the calculation of molecular descriptors that describe 

the crosslinked polymer structure. Connectivity index are used as the primary set of 

descriptors, and have been used successfully in other CMD projects. Quantitative 

structure property relationships (QSPRs) were developed relating the structural 

descriptors to the experimentally collected property data. Models were chosen using 

Mallowsô Cp with correlation coefficient significance. Desirable target property values 

were chosen which lead to an improved clinical lifetime. Structural constraints were 

defined to increase stability and ease of synthesis. The Tabu Search optimization 

algorithm was used to design polymers with desirable properties. Finally, a prediction 

interval was calculated for each candidate to represent the possible error in the predicted 

properties.  

 

The described methodology provides a list of candidate monomers with predicted 

properties near the desired target values, which are selected such that the adhesives will 

show improved properties relative to the standard HEMA/BisGMA formulation. The 

methodology can be easily altered to allow for additional property calculations and 

structural constraints. This methodology can also be used for molecular design projects 

beyond crosslinked polymers.  
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Chapter 1.  

 

Introduction 

1.1  Motivation 

The motivation for this research begins with the choice between dental resin composites 

and dental amalgam. Fillings in the anterior teeth almost exclusively use resin 

composites, as well as most posterior depending on the market. Resin composites have 

many advantages over amalgam including improved aesthetics and lower environmental 

impact. Amalgam is still being used in posterior fillings because it is difficult to apply 

resin composites where it is harder to stay dry, and because amalgam has a significantly 

lower failure rate than resin composites. The failure rate of resin composites is more than 

50% greater than that of amalgam after 8 years (Collins, 1998) 

 

Current research seeks to develop dental resin composites with improved longevity and a 

lower failure rate (Spencer, 2010). Much of recent research employs a trial-and-error 

approach: small changes are made to an established molecule, the molecule is 

synthesized, and its properties are tested in hopes that it is superior to the established 

molecule (Park, 2007; Edgar, et al 1999). This is an expensive and time-consuming 

process. With this method one could try to improve a few properties, for example by 

understanding the effect of rotational freedom on glass transition temperature (Bicerano, 
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2002), but it can be difficult to predict how this change will affect other properties. This 

method may cause some properties to improve while other properties deteriorate.  

 

A more effective method of designing new materials is the use of computational 

molecular design. With a computational molecular design method, the values of many 

different properties are estimated, and the molecule is changed so that these property 

values are optimized simultaneously. Nearly any optimization method that can solve for a 

nonlinear objective function can be used, such as genetic algorithms (Konig, 1999), ant 

colony optimization (Korb, 2006), or Tabu search (Eslick, 2008). This solves the 

backwards design problem, which is to design a molecule with a set of desired properties. 

This is much more difficult than the forward design problem, which is predicting the 

properties of a known molecule (Gani, 1993). The solution of the reverse design problem 

was named one of the grand challenges in the computational needs in the chemical 

industry (Edgar, 1999).  

 

Little attention has been given to error analysis in computational molecular design 

(Roughton, 2011). When developing QSPRs, there is experimental error and error from 

the QSPR not fitting the data perfectly. This error propagates through the design process. 

When the properties of the designed molecules are calculated the actual value of the 

property is most likely within a range of values, known as a prediction interval 

(Wasserman, 2004). Previous research in CMD only reports a single value as their result, 

while a ranged value may be more appropriate. This work uses a ranged value for 

predicted properties.  
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1.2  Optimization Procedure 

The reverse design problem begins with the development of quantitative structure 

property relationships (QSPRs), which are statistically derived models that relate the 

moleculeôs structure to its properties. Property data is collected experimentally for the 

type of material being designed. Because polymer property data is often dependent on 

processing conditions (Eslick, 2009) property data published in the literature may not be 

consistent. In this work a set of consistent experiments was designed to collect important 

property data for a set of methacrylate polymers, such as glass transition temperature, 

viscosity, and storage modulus.  

 

The experimental property data is then correlated with molecular descriptors of the 

polymer. In the past, group contribution methods have been used extensively to predict 

the properties of polymers and other materials. A major problem with using group 

contribution methods for polymers is that they miss some information by not taking into 

account the internal structure of the repeat units. The use of topological indices has been 

shown to be very effective in describing polymers (Camarda, 1999). In this work, 

Randiĺ's molecular connectivity indices are employed as structural descriptors. These 

numerical values contain information about the bonds and oxidation state of each atom in 

the polymer repeat unit by examining the paths of the hydrogen suppressed molecular 

graph of the polymer (Randiĺ, 1975).  
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Once the molecular descriptors and property data are collected, QSPRs are then created. 

Experimental data is exported to statistical software which creates a list of potential 

QSPRs with the highest correlation coefficient for each size (number of variables), 

leaving the user to create criterion for choosing which QSPR is superior. This is not 

always straightforward, as adding more descriptors will always raise the correlation 

coefficient. Adding too many descriptors will lower the statistical significance of the 

coefficients, leading to more error, or uncertainty, when using the correlation to design a 

new molecule. This work aims to create a criterion for QSPR selection using correlation 

coefficient, statistical significance, Mallowsô Cp, and number of coefficients.  

 

Then the optimization problem is formulated using target properties to create the 

objective function, and structural constraints. An optimization method is used to find a 

molecule which minimizes the objective function, resulting in a molecule with properties 

close to the targets. In this project we use the Tabu Search algorithm because it has been 

shown to handle the polymer design optimization problem effectively, and it allows the 

use of non-linear objective functions and QSPRs.  

1.3  Research Goals 

The goal of this project is to develop a method of computer-aided molecular design for 

crosslinked polymers. The method includes the development of quantitative structure 

property relationships (QSPRs), the formulation of the design problem, and the use of the 

Tabu Search optimization method to design crosslinked polymers. Additional analysis of 

the error from the QSPRs were done in order to calculate a confidence interval for the 
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calculated properties of the designed molecules, something which is frequently 

overlooked in many other studies (Roughton, 2011). A design example was completed 

for crosslinked methacrylate dental polymers, but the procedure will work for many other 

types of molecules (Lin, 2004; McLeese, 2010).  

 

1.4  Thesis Overview 

Background information is provided to the reader in Chapter 2. Included is background 

on the experiments that were done to collect property data, on molecular descriptors, and 

on the methods behind QSPR development, the field of molecular design, and 

optimization.  

 

In the development of QSPRs, choosing the list of prospective molecular descriptors is an 

important step. The list of molecular descriptors studied, how they were calculated, and 

why they were chosen are given in Chapter 3.  

 

The QSPRs that were developed during this research are provided in Chapter 4. This 

section describes how each QSPR was chosen, how their validity was tested, and how the 

prediction interval was calculated.  

 

Once the QSPRs are developed, the optimization problem is then formulated. Details of 

how target properties and additional structural constraints were used to develop the 

objective function are given in Chapter 5. It will then explain how Tabu Search is used to 
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solve this optimization problem, and explains the advantages that Tabu Search has over 

other optimization methods for problems like this.  

 

Multiple examples were performed with different sets of target properties to test the 

validity of our Tabu Search algorithm. Explanations of these examples, as well as a list of 

candidate monomers, are given in Chapter 6.  

 

Conclusions and recommendations for future projects are provided in Chapter 7.  

 

In the appendices, a more thorough explanation of experimental procedures is given. In 

QSPR development, experimental consistency is important. If the reader wishes to add to 

the experimental data provided in this research, it would be advised that they follow the 

experimental procedures provided here for consistency. The appendices also provide a 

manual for the Polymer Designer program designed by Eslick (Eslick, 2008) which was 

used extensively in this project. This manual should be considered an addendum to Eslick 

(2008), as this manual only explains how Polymer Designer can be modified in order to 

solve other design problems involving polymers or other molecules.  
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Chapter 2.  

 

Background 

This Chapter provides background about the experiments performed to collect property 

data, the QSPRs that were created to predict these properties for the entire space of 

methacrylate monomers, and the computational molecular design framework which 

utilizes these QSPRs to design a monomer which minimizes the objective function.  

 

2.1  Experimental Background 

This section provides background to the experiments done for property data collection, as 

well as background in the synthesis of the composite resins which are being studied in 

this project. Experiments were performed to collect property data for percent solubility, 

percent water sorption, storage modulus, rubbery modulus, and viscosity. These 

properties were chosen as they can describe the behavior of the resin both before and 

after polymerization, and can be used to represent clinical lifetime of the resin. Data was 

collected experimentally, rather than through literature research, to improve consistency 

of results. For example, the value of the recorded glass transition temperature can be very 

different depending on how it is measured (Bicerano, 1996). This would make it 
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impossible for a QSPR, depending on only the structure of the molecule, to accurately 

predict the measured property.  

 

2.1.1 Sample Preparation 

Dental resin composites are composed of monomers or comonomers and a photoinitiator, 

such as camphorquinone (CQ). The most common monomers used in dental resin 

composites are 2,2-Bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]-Propane 

(BisGMA), ethoxylated bisphenol A glycol dimethacrylate (BisEMA), and urethane 

dimethacrylate (UDMA) (Sideridou, 2001). Other methacrylates, such as 2-hydroxyethyl 

methacrylate (HEMA) can be added to change certain properties of the final resin 

(Collins, 1998).  

 

The resins are polymerized through light curing. A common photoinitiator system is the 

use of CQ as a photosensitizer, and N,N-dimethylaminoethyl methacrylate (DMAEMA) 

as a reducing agent (Sideridou, 2001). The photoinitiator system used in this study is CQ 

as a photosensitizer, ethyl 4-N,N-dimethylaminobenzoate (EDMAB) as a reducing agent, 

and the hydrophilic iodonium salt 2,6-dichlorophenol-Indophenol (DPIHP). This system 

gives a larger degree of polymerization than the standard photoinitiator system when the 

resin is polymerized in the presence of water. (Fouassier, 1993; Ye, 2009).  

 

Dental resins are polymerized through the use of a curing light at the appropriate 

wavelength. The photosensitizer absorbs photons of a certain frequency range, exciting 
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the molecule to an activated triplet state. The most common photosensitizer, CQ, absorbs 

photons at 468 nanometers, or blue light (Lovell, 2001). Once in the triplet state, the 

photosensitizer reacts with the reducing agent to form an aminoalkyl free radical. An 

aminoalkyl free radical breaks the methyl-vinyl double bond group in the methacrylate to 

start the chain initiation for the chain growth polymerization. Because BisGMA and 

many of the other monomers used in the making of dental resins are dimethacrylates, 

crosslinking occurs (Cook, 1992). The purpose of the iodonium salt is to act as the 

reducing agent in the hydrophilic regions for resins cured in water, which the 

hydrophobic amino reducing agent cannot reach (Ye, 2009).  

 

Resin samples for experimental testing are prepared by curing the resin in a mold so that 

the polymer sample will be either a beam, rod, or a film, depending on what properties 

are being determined (Sideridou, 2008; Podgorski, 2010). In the experiments performed 

in this study the beam samples were cured in rectangular glass beams with dimensions of 

1mm x 1mm x 15mm. Samples for mechanical testing were formed as round glass beams 

with dimensions of 1mm x 15mm.  

 

2.1.2 Storage Modulus and Rubbery Modulus 

Storage modulus is a measurement of energy storage capability. The rubbery modulus is 

the storage modulus at temperatures higher than the glass transition temperature, when 

the resin is rubbery. A high storage modulus correlates to a high tensile strength (Bosze, 

2006), so a dental resin composite with large storage and rubbery modulus is desired.  
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Storage modulus is measured using dynamic mechanical analysis (DMA), a technique 

widely used to study the viscoelastic behavior of polymers (Brostow, 2010; Deshayes, 

2011; Ge, 2010). A sinusoidal stress is applied at a constant frequency, and the resulting 

strain is measured. For viscoelastic materials, there will be a phase difference between 

stress and strain. This gives the following equations for strain and stress: 

( )wee tsin0=  

( )dwss += tsin0  

where w is the frequency of the strain, t  is time, and d is the phase lag between stress 

and strain in radians . For purely elastic materials there is no phase difference, so delta is 

zero. For purely viscous materials, delta would be 90 degrees (Meyers, 1999). The 

property tan(ŭ) can be used as a measure of how viscous a material is, with a value of 

zero being purely elastic and a value of one being purely viscous (Ferry, 1980).  

 

The dynamic modulus is the ratio of stress to strain. The dynamic modulus can be divided 

into real and imaginary parts such that 

''' iEEE +=  

()d
e

s
cos'

0

0=E  

()d
e

s
sin''

0

0=E  

where E is the dynamic modulus, Eô is defined as the storage modulus, and Eôô is defined 

as the loss modulus. The storage modulus is a measurement of energy storage, as opposed 
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to the loss modulus which is a measurement of energy dissipation due to viscous forces 

(Menard, 1999). 

 

In this study, the storage modulus was measured at 37
o
C to simulate oral conditions, and 

the rubbery modulus was measured at 175
o
C, well above the glass transition temperature 

for the systems being studied. The strain frequency was 1 Hz for both the storage and 

rubbery modulus.  

2.1.3 Water Sorption and Solubility 

Water sorption is a measure of how much water the resin absorbs. The presence of water 

in the polymer network may lower mechanical properties by acting as a plasticizer, or by 

interfering with hydrogen bonding between monomers (Park, 2009). A resin with high 

solubility is of concern as the leaching of molecules to the surroundings can cause the 

composite to break down over time. Thus resin composites of low water sorption and 

solubility are desired. The American Dental Association requires that water sorption be 

less than or equal to 40 ɛg per cubic millimeter, and the solubility be less than or equal to 

7.5 ɛg per cubic millimeter (ADA, 2003).  

 

The ADA has a standardized test for determining water sorption and solubility. The 

initial mass of a disk-shaped resin sample is measured ( 1m ). The sample is soaked in 

water for seven days at 37
o
C to simulate oral conditions, and the saturated mass is 

measured ( 2m ). The sample is then dried in a desiccator at 37
o
C and the mass is recorded 

again ( 3m ). The solubility is calculated as 
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WSU = 
V

mm 31-  

and 

WSP = 
V

mm 32 -  

is water sorption (ADA, 2003; Dhanpal, 2009).  

 

Some studies instead weight the water sorption and solubility equations with initial mass 

instead of volume (Sideridou, 2004; Park, 2009). This study does the same, which is not 

an issue as the HEMA/BisGMA control sample passes the ADA standardized test, and 

finding a resin with superior properties to the control will result in a resin that will also 

pass the standardized test (Malacarne, 2006; Park, 2007).  

2.1.4 Glass Transition Temperature 

The glass transition temperature is the temperature where amorphous polymers transition 

between being hard and brittle to being soft and pliable. Above the glass transition 

temperature, thermal energy is high enough that long polymer chains can move around 

each other in random micro-Brownian motion, making the polymer appear rubbery. 

Below the glass transition temperature the polymer chains can only make short-range 

motions, making the resin appear hard (Fried, 2003). A dental adhesive resin near its 

glass transition temperature would be pliable and the dental restoration would not be 

secure. Dental adhesive resins with a glass transition temperature significantly higher 

than body temperature are desired.  
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The glass transition temperature of the resin can be measured using differential scanning 

calorimetry (DSC). A sample is placed in a temperature controlled chamber with a 

standard, and the temperature is slowly increased. The DSC measures the rate of energy 

needed to slowly raise the sampleôs temperature. From this data the heat capacity as a 

function of temperature can be calculated (Dean, 1995).  

 

 

Figure 2.1- Glass transition temperature 

 

During the glass phase transition the heat capacity increases as a second order transition; 

a continuous transition with no latent heat (USM, 2005). The glass transition temperature 

can be read from the DSC results as the median temperature where this heat capacity 

change is occurring (OôNeill, 1964). Experimental data can be found in the appendices. 

 

2.1.5 Viscosity 

The viscosity of the unreacted resin affects how well a composite can bond to the tooth 

surface. If the viscosity is too high, the composite does not bond to the tooth surface well, 

which leaves room for increased levels of bacteria to collect within the gap, causing 

Tg 

Temperature 

Cp 
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decay. During polymerization, some parts of the resin solidify before others. 

Polymerization shrinkage occurs, and the parts of the resin which are bonded to the 

surface will move away, leaving a gap. If the resin has a low viscosity, the still liquid 

resin can then flow into these gaps before polymerizing, decreasing the gap size 

(Spencer, 2010). Dental resin composites with viscosities that are lower than the standard 

are desired.  

 

Figure 2.2 - Velocity gradient for a cone and plate viscometer 

 

Viscosity is commonly measured using a cone and plate viscometer. A thin layer of resin 

is placed between a flat plate and a cone at a very shallow angle. As the cone rotates, the 

viscosity of the resin causes resistance to the rotation. The force that the viscometer 

applies to rotate the cone is converted to torque by dividing the force by the area of the 

plate (Barnes, 1993). For straight, parallel, uniform flow, the viscosity is proportional to 

torque using the equation 

y

u

A

F

µ

µ
=¹ mt  

where u is the rotational velocity, and y is the position is the axial direction. For a 

Newtonian fluid, the velocity gradient in the axial direction is constant, so it can be 

calculated by dividing the rotational velocity of the cone by the thickness of the resin 

layer. The purpose of using a cone and plate geometry rather than two flat plates is that 

y

u

µ

µ
fluid 
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using a cone keeps the velocity gradient roughly constant in the radial direction (Barnes, 

1993). In this study, the viscosity was measured at a range of shear rates to confirm that 

the resins are Newtonian fluids. Experimental data can be found in the appendices. 

 

2.2 Molecular Descriptors 

In order to design a model linking molecular structure to physical and chemical 

properties of interest, a numerical representation of a molecule's 2-D structure is required. 

Molecular descriptors provide a way to describe the structure of a molecule 

mathematically. Examples of simple molecular descriptors are molecular weight or 

number of rings. This section provides background for molecular descriptors and how 

they are calculated.  

 

The group contribution method is a technique used to predict properties of molecules. 

Group contribution uses the idea that number and type of functional groups in a molecule 

is proportional to many physical properties. Group contribution has been used in polymer 

design (Satyanarayana, 2008) and in the UNIFAC method to calculate activity 

coefficients for equilibrium (Fredenslund, 1975).  

 

The Joback method (Joback, 1987) uses group contribution to predict eleven properties of 

small organic molecules. The Joback method uses a very simple method of group 

assignment, making it useful for users with limited experience in chemistry. Figure 2.3 

gives an example of calculating the boiling point with the Joback method.  
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Figure 2.3 - Calculating the boiling point using the Joback method (Joback, 1987) 

 

Marrero and Gani (2001) expanded on the Joback method and other simple group-

contribution methods for property prediction. The Marrero/Gani group contribution 

considers three levels of molecular groups. In the first group the entire molecule is 

described similarly to the Joback method. Some properties of small organic molecules 

only need to be described using the first group. The second group is used to better 

describe polyfunctional compounds and differentiate between isomers. The third group is 

used to better describe polycyclic compounds (Marrero, 2002). The second and third 

groups do not need to describe the entire molecule, and can overlap. The Marrero/Gani 

group contribution method has shown to be more accurate than the other simpler group 

contribution methods (Marrero, 2001).  
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Figure 2.4 - The molecular graph for HEMA 

 

Many molecular descriptors are found by examining the molecular graph, where each 

vertex represents an atom and each edge represents a bond. When calculating descriptors 

for organic molecules, the hydrogen molecules are often excluded in the molecular graph, 

because the number of hydrogen atoms is implied through valency. This is called a 

hydrogen suppressed graph (Bicerano, 2002; Eslick, 2009). Molecular descriptors that are 

found using the molecular graph are called structural descriptors.  

 

A structural descriptor similar to the group contribution that has been used in molecular 

design is the Signature descriptor (Weis, 2010). The Signature descriptor describes the 

local neighborhood of a molecule starting from a root atom. The Signature extends 

outward from the root atom and records the atomic bonds present. The number of steps 

outward is equal to the predefined height, h. This is repeated for all the atoms and 

summed to give the molecular Signature,  
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where sh  is the Signature descriptor of height  h, c is an atom in the molecule, and the 

set V is all the atoms present in the molecule (Brown, 2006). A height-0 Signature would 

be a list of the atoms present in the molecule.  

 

 

Figure 2.5ï Bonds present in different heights of the Signature descriptor from a root carbon atom. 

Carbon-hydrogen bonds are not being represented.  

 

Figure 2.5 shows one step in finding the Signature descriptor for HEMA. The height-1 

atomic Signature for the root carbon atom would be [C]([C],=[O],O). This describes the 

identity of the root atom, the atoms which the root atom is bonded to, and the types of 

bonds. Computing this for the entire molecule gives a table of the atomic Signatures 

present with the number of times it occurs. For example, the height-1 atomic Signature 

[H](C) occurs seven times in HEMA. Similar to the group contribution method, the 

number of times an atomic Signature occurs can be correlated with the desired properties. 

The Signature descriptor has been used to design solvents (Weis, 2009), and polymers 

(Brown, 2006).  
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Another set of structural descriptors which have been used in polymer design are 

Randicôs connectivity indices (Randic, 1975). Connectivity index contain information 

about the amount of branching in the molecule and the oxidation states of the non-

hydrogen atoms by examining the paths of the molecular graph. Bicerano used zeroth-

order and first-order connectivity index to correlate a large number of physical properties 

for straight-chain polymers (Bicerano, 2002). Raman and Maranas were the first to use 

connectivity index for product design (Raman, 1998). Connectivity index have been used 

successfully in the design of alkenes (Nelson, 2001) ionic liquids (McLeese, 2010) and 

polymers (Camarda, 1999; Eslick, 2009). This research uses connectivity index as its 

primary set of descriptors.  

 

The simple and valence connectivity index are calculated from the simple atomic 

connectivity index and the atomic valency connectivity index. The simple atomic 

connectivity index, ŭ, is equal to the number of non-hydrogen atoms boned to a given 

basic group, which is also the vertex degree for the vertex in the hydrogen-suppressed 

molecular graph. The atomic valency connectivity index is found using 

1--
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v

H

v
v
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NZ
d  

where Z
v
 is the number of valence electrons around the atom, Z is the total number of 

electrons around the atom, and NH is the number of hydrogen atoms bonded to the atom 

(Bicerano, 2002). The nth order simple and valence molecular connectivity index are 

given by 
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where k is all of the paths of length n. In graph theory, a path is a sequence of vertices 

where the next vertex is always adjacent to the previous vertex. Two vertices are adjacent 

if there is a bond connecting them. The path length is equal to the number of edges in the 

path, so a zeroth-order connectivity index only examines the individual atoms and can be 

computed using the following equations (Bicerano, 2002). 
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Table 2.1- Simple and valence atomic connectivity index for basic groups used in this research 

Basic 

Group 
ŭd vd  

Basic 

Group 
dŭ vd  

C 4 4 C= 3 4 

CH 3 3 O= 1 6 

CH2 2 2 O 2 6 

CH3 1 1    
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Figure 2.6 - The molecular graph of HEMA with the simple atomic connectivity index for each vertex 

 

Figure 3 shows the molecular graph of HEMA with the simple atomic connectivity index 

for each vertex shown. The zeroth-order simple connectivity index would be equal to 
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after summing over each atom. The first-order simple connectivity index would be equal 
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after summing each 1-path, or edge. The connectivity index is an extrinsic property so it 

is a function of the molecular weight of the molecule. A scaled, or intrinsic, connectivity 

index, ɝ, can be found by dividing by the number of paths (Bicerano, 2002). Both 

intrinsic and extrinsic connectivity indices are used in this project.  

 

This project studies crosslinked polymers. The degree of crosslinking has a great effect 

on the polymer properties, and many descriptors do not account for crosslinking. 

Bicerano correlated the change of glass transition temperature to crosslink density in 

crosslinked polymers (Bicerano, 1996). Researchers have shown crosslinking affects the 
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polymersô properties (Matsui, 1999; Manu, 2009), but little research has been done in the 

property prediction for randomly crosslinked copolymers (Eslick, 2009).  

 

The Polymer Designer program used in this research uses a novel method to account for 

crosslinking (Eslick, 2008). The monomer concentration and degree of polymerization 

are predetermined, and a large random copolymer is randomly generated. The polymer is 

divided into an inner core and an outer buffer. Crosslinked polymer networks are 

generally treated as being infinite, but polymer graphs need to be finite. This means the 

chain has to be cut. The core and buffer technique separates the core from the chain cut 

by putting a buffer region of monomer groups in between. The descriptors are calculated 

based on the molecules in the core, with some buffer molecules being used depending on 

the type of descriptor being calculated. The size of the core and buffer region can be 

adjusted depending on the project. A larger core gives more consistent descriptor 

calculations, as there is randomness in the placement of monomers and crosslinks. A 

larger buffer region further reduces the effect of chain cuts. However, larger polymer 

graphs can be very computationally expensive, especially during CMD when thousands 

of candidate monomers might be generated (Eslick, 2008). 
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Figure 2.7 - The core and buffer region for a polymer graph. (Eslick, 2008) 

 

Many other molecular descriptors exist which can be used to describe polymers. 

Todeschini and Consonni provided a comprehensive list of molecular descriptors which 

could be useful for this work in this project (Todeschini, 2000). The list of molecular 

descriptors, and the methodology of how they are calculated within the CMD framework, 

is provided in Section 3.  

 

2.3 QSPR Development 

This section describes the techniques used to develop and analyze the QSPRs used in this 

project.  
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2.3.1 Model Creation 

This project uses multiple linear regression in the development of QSPRs (Draper, 1966). 

Non-linear QSPRs were correlated through manipulating the response and predictor 

variables such that linear regression could still be used. For example, the natural log of 

the response variable can be taken, or the response variable could be multiplied by a 

predictor variable before linear regression is done.  

 

2.3.2 Model Selection 

Choosing between models of different sizes (number of descriptors) is an issue in QSPR 

development. Model choice involves finding a balance between bias and variance. 

Choosing too few descriptors leads to high bias, or underfitting. Bias is the difference 

between the predicted value and observed value. Choosing too many descriptors leads to 

high variance, or overfitting. Variance is a measure of how sensitive the model is to the 

original data. A model with high variance won't be able to predict the properties of 

molecules that are outside of the original data (Bullinaria, 2010). There are numerous 

methods that try to find the proper balance. This section describes some of these methods.  
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Figure 2.8 - A model with no bias but high variance 

 

 

Figure 2.9 - A model with no variance and high bias 

 

The coefficient of determination, r
2
, can be viewed as a model selection technique. The 

coefficient of determination is defined as  
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where Y is the observed value, Yp is the predicted value, and Y is the average observed 

value (Draper, 1966). The problem with using r
2
 for model selection is that it only takes 

bias into account. Adding more descriptors will always increase r
2
, which leads to 

overfitting and high variance. However, the r
2
 value can be used to determine what the 

best model is of a specific size.  

 

A method for comparing models of different sizes is Mallowsô Cp (Mallows, 1973). 

Mallowsô Cp addresses the problem of overfitting by putting a price on adding more 

descriptors. For a model with P descriptors chosen from a pool of k descriptors, Cp is 

equal to 
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where Y is the true value of the property, Yp is the predicted value, and N is the number of 

data points (Wasserman, 2004). This equation could be thought of as 

Cp = Error + Complexity of Model.  

Models with values of Cp roughly equal to P are ideal, lowering variance while not 

dramatically increasing bias (Mallows, 1973).  

 

Another method for comparing models is k-fold cross-validation. Cross-validation is used 

to assess how well a model will be able to describe outside data points, or data that was 

not used to develop the model. The data is first randomly divided into k groups of 

roughly equal size. For each group k, the model is reevaluated leaving out the data points 
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in k. Then the new model is used to predict the data points in k, and the error is used to 

calculate the cross-validation coefficient Q
2
 (Wasserman, 2004). The value Q

2
 has an 

upper bound of r
2
. Values of Q

2
 close to r

2
 means the model has little variance, because 

changing the initial data set does not affect the overall error.  

 

The cross-validation coefficient is calculated using the predicted residual sum of squares 

(PRESS) equal to 

( )ää
= Í

-=
K

k ki

ipi YYPRESS
1

2

,  

where k is a test set, Y is the observed value, and Yp is the predicted value. The value of 

Q
2
 is then equal to 
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where Y  is the average observed value with the kth set omitted (Picard, 1984). Because 

the groups of k are randomly selected the k-fold cross-validation should be repeated 

numerous times to find an average. The following graph shows how the randomness in k-

group selection can increase error. If the data points circled were selected to be in the 

same group the value of PRESS would be very high. A widely used variant is the Leave-

one-out cross-validation, where k is equal to the number of data points (Picard, 1984). 

Leave-one-out is computationally expensive because of the number of different models 

that need to be created. However, leave-one-out does not need to be repeated because it 

eliminates the randomness of k-fold cross-validation.  
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Figure 2.10 - k-fold cross-validation should be repeated numerous times to find an average 

 

The significance value of each correlation coefficient can also be calculated. The p-value 

is the probability that one can obtain will get similar or better correlation results if there is 

no relationship between the predictor and response variable. Generally, if the p-value is 

less than 0.05 or 0.01 then the coefficient is significant (Wasserman, 2004). Models that 

pass the criteria for the correlation coefficient, Mallowsô Cp, and cross-validation may 

still have coefficients that are not statistically significant.  

 

2.3.3 Error Analysis 

A concept within statistical analysis which has not been used extensively in molecular 

design is the prediction interval (Roughton, 2011). The prediction interval is similar to a 

confidence interval, but for predicted values. The prediction interval depends on the error 

in the original model, and on how different the predictor variables for the new 

observation are compared to the original variables. If the candidate molecule is very 
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similar to the molecules used to develop the QSPR, the prediction interval will be 

smaller. The prediction interval is equal to 
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where t is the critical value of the t-distribution at the desired confidence level and 

degrees of freedom, 2Ĕs  is the mean square error, xp is an array of descriptors for the new 

observation used in the model, and X is the matrix of descriptors of previously observed 

data points (each row is a different observation, each column is a different descriptor)  

(ReliaSoft, 2008). 

 

After the molecular design algorithm finds a solution, the prediction interval can be 

calculated for each property. The results can be presented as a range in which the 

property lies in, instead of a single value.  

 

2.4 Molecular Design and Formulating the Design Problem 

This section provides an overview of molecular design, molecular design techniques, and 

the formulation of the design problem. Computational molecular design is the use of an 

optimization method to design a molecule or set of molecules which fit a set of desired 

properties (Gani, 1998). CMD can be used to greatly decrease the resources used in 

product design compared to the trial-and-error approach. Using CMD, a list of candidate 

molecules is created which should have the desired properties, making the experimental 

synthesis more efficient (Lin, 2005).  
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CMD requires the solution of both the forward and backward design problem. The 

forward design problem is the prediction of the moleculeôs properties based on its 

structure. The backwards design problem is finding a molecule which fits a set of desired 

properties (Edgar, 1999).  

 

The forward design problem is usually solved through the use of either group 

contribution-additivity models or through quantitative structure property relationships 

(QSPRs). Group contribution has been widely used in molecular design, and uses the 

properties of atoms or groups to predict the properties of the entire molecule (Gani, 1991; 

Marrero, 2001; Friedler, 1998; Constaninou, 1994; Karunanithi, 2005). A major problem 

with the use of group contribution to describe polymers is that it does not take into 

account the order of the monomer repeat units (Camarda, 1999). More recently, the use 

of QSPRs with topological index as structural descriptors has been used successfully to 

describe polymers and other molecules (Camarda, 1999; Raman, 1998; Visco, 2002). 

QSPRs are developed by regressing property data versus structural descriptors, such as 

the Wiener Index, Randiĺ's molecular connectivity index, or simple descriptors like 

molecular weight, to form an empirical model.  

 

Once the forward design problem has been solved, the backwards design problem needs 

to be formulated. The objective function defines the set of target properties, and has the 

non-linear general form 
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where predicted,iP  is the value of property i predicted by the QSPRs, target,iP  is the desired 

value of property i, and is  is a scaling factor used to adjust the importance of each 

property (Eslick, 2009). As the predicted properties approach the target values, the 

objective function approaches zero, so the objective function should be minimized. A 

disadvantage to this form of the objective function is that properties can not be minimized 

or maximized. However, this is not an issue as QSPRs should not be used to predict 

properties outside of the range of data used to formulate them (Eslick, 2008). The 

objective function can be written in other forms, perhaps in linear or convex forms to 

simplify the solution method. This is needed for some deterministic optimization 

techniques. This is not necessary in this project, as the Tabu Search algorithm can solve 

non-linear, non-convex problems.   

 

Beyond the objective function, the design problem also has constraints. One constraint 

that must always be present in molecular design is that the molecule has to be feasible; 

the valency of each atom is satisfied, and the molecular structure is connected. Other 

structural constraints can be present, such as the exclusion of unstable peroxide groups, 

or a minimum and maximum molecular weight. Candidate molecules need to be checked 

for feasibility before the objective function for that molecule is calculated. If a molecule 

is infeasible it should be rejected immediately. In this project, most of the constraints are 

implied in the search algorithm; candidate molecules are changed such that an infeasible 

solution can not be produced. This is described further in Section 5.2.  
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Constraints can also be accounted for by using the penalty method. The penalty method 

can be used to convert a constrained optimization problem into an unconstrained 

optimization problem, simplifying the solution while still giving the same solutions. This 

is done by adding a penalty term to the objective function (Viswanathan, 1990). When 

the constraint is not violated the penalty term is equal to zero, and when the constraint is 

violated the penalty term becomes an arbitrarily large value so that any infeasible 

solutions will not be picked as the best solution. In this project, the constraint of having 

no peroxide groups present was accounted for using the penalty method. A penalty term 

was added to the objective function, counting the number of peroxide groups present and 

adding a thousand to the objective function for each. Good objective functions in this 

project are less than one, so a molecule with a peroxide group present will never be 

presented as a candidate molecule. This technique is described further in Section 5.2.  

 

The design problem can be solved using either deterministic or stochastic search 

algorithms. A deterministic method aims to find a global minimum to the objective 

function, and does this by determining what the next candidate solution is by examining 

the current solution. It acts predictably, so that with the same initial solution the 

algorithm will always take the same route to the same final solution (Horst, 1996). A 

simple example of a deterministic method for this type of combinatorial optimization 

problem is Branch-and-Bound. Deterministic methods have been successfully used to 

solve molecular design problems previously (Sahinidis, 2004; Maranas, 1996). A 

stochastic method uses random elements in the algorithm, and aims to find good near-

optimal solutions, which will not necessarily be the global optimum. Deterministic 
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methods have many problems when solving large design problems. Finding a global 

optimum can be prohibitively computationally expensive (Lin, 2005). Also, the QSPRs 

have limited accuracy, so there is no guarantee that the global optimal solution will 

actually be superior to the near-optimal solutions that a stochastic method would provide. 

Multiple runs of a stochastic method will result in a list of different near-optimal 

solutions. This allows the use of other criteria, such as cost or ease of synthesis, to help 

rank the final candidate molecules.  

 

An example of a stochastic method that has been used in molecular design is the genetic 

algorithm. Genetic algorithms have been used to design linear polymers 

(Venkatasubramanian, 1994), model proteins (Konig, 1999), and are used extensively 

outside of molecular design (Jeon, 2010; Layric, 2005). Genetic algorithms mimic natural 

evolution by allowing the best known solutions to breed with each other, resulting in 

offspring solutions which should have solutions superior to the parent solutions. 

Candidate solutions need to be described in strings, called chromosomes. At each 

generation the most fit solutions are stochastically selected to breed, being combined and 

possibly introducing mutations, creating a new generation of solutions. The least fit 

solutions are abandoned, mimicking natural selection (Banzhaf, 1998; Goldberg, 1989). 

This is repeated until a satisfactory solution is found.  

 

Another stochastic method which has been used more recently for molecular design is the 

Tabu Search algorithm. Tabu Search has been used to design catalysts (Lin, 2005), 

crosslinked polymers (Eslick, 2009), has been used to solve the traveling salesman 
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problem (Knox, 1994), as well as many other applications. The Tabu Search algorithm 

relies on a memory of previously visited solutions to avoid revisiting areas of the solution 

space that have already been explored.  

 

Tabu Search starts with an initial solution. At each iteration, the algorithm can make a 

specified number of moves away from the current solution. These moves correspond to 

changing atoms or groups in the molecule. Solutions that can be reached within this 

specified number of moves make up the neighbors of the current solution. These moves 

are stochastically chosen, and a subset of neighbors are evaluated. After a possible 

solution is evaluated it is added to the Tabu list, and solutions on the Tabu list will not be 

revisited. The neighbor with the lowest objective function is chosen as the new current 

solution, and the next iteration begins. The inclusion of the Tabu list guarantees that 

previous solutions will not be revisited, which could occur if it is a local minima, saving 

calculation time. The Tabu list also encourages searching in more diverse areas (Eslick, 

2008). The algorithm is continued until a stop criteria is reached, possibly after a set 

number of non-improving iterations.  

 

The length of the Tabu list is limited to reduce computation and memory usage, and to 

allow solutions to be revisited if the search is proceeding in a different direction (de 

Werra, 1989). 

 

Many additions can be made to the basic Tabu Search algorithm. One is the use of long-

term memory to store a list of good previous solutions, highlighting areas of the solution 
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space that might have better solutions that have not been found. The algorithm can then 

revisit these areas. This is called intensification (Glover, 1990). Local intensification can 

be used by limiting the number of moves the algorithm makes when already at a good 

solution. This forces the algorithm to look more thoroughly around areas where a near-

optimal solution may exist. Diversification can be used by rerunning the algorithm at a 

different starting point, allowing the algorithm to explore parts of the solution space that 

have not been evaluated (Glover, 1990).  

 

There are many adjustable parameters in Tabu Search, such as the length of the Tabu list, 

the number of moves, and the size of the subset of neighbors being evaluated. The value 

of these parameters can make a substantial difference to the quality of solutions found, or 

the computation time needed to find the solutions. The optimal values of these parameters 

depend on the size and type of design problem being solved. For example, in this project 

using a larger possible step size of 8 improved the average objective function 

significantly compared to a smaller step size of 2.  

 

The rest of this thesis describes how this specific project was implemented. The 

following Chapter describes the molecular descriptors used and how they were 

calculated.  
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Chapter 3.  

 

Calculating Descriptors 

Methods used in calculating the molecular descriptors in Polymer Designer are described 

in this section. The main focus in this project was the use of connectivity index, which 

require a path finding algorithm. Connectivity index have been successfully used to 

create QSPRs for polymer systems before (Bicerano, 2002). Polymer Designer uses 

subgraph isomorphism to find chemical substructures within the monomer or polymer, 

which can be used in group contribution techniques (Eslick, 2009). Methods for 

calculating 100% crosslink density, number of rotational degrees of freedom, and 

molecular weight are also discussed in this Chapter.  

 

3.1 Group Contribution and Subgraph Isomorphism 

The subgraph isomorphism algorithm (Ullmann, 1976) is used to identify the molecular 

substructures for the group contribution method. It is also used in other descriptor 

calculations to find functional groups, such as number of vinyl groups for calculating 

crosslink density (Eslick, 2009).  
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A subgraph is a graph that is contained within a larger graph. Two graphs G and H are 

isomorphic if you can apply a bijection to the vertex sets  

() ()HVGVf :  

such that an edge connecting vertices u and v in G exists only if an edge connecting 

vertices f(u) and f(v) exists. More generally, if the only difference between two graphs are 

the names of the vertices and spatial placement, then they are isomorphic (West, 2001). 

Figure 3.1 shows two isomorphic graphs, to show that it is not immediately obvious when 

two graphs are isomorphic.  

 

 

Figure 3.1 - Different representations of a cube graph (Aspnes, 2010) 

 

The subgraph isomorphism algorithm is used to find how many subgraphs exist of a 

certain functional group or group contribution substructures within the monomer graph. 

Finding double-bonded oxygens in the molecular graph of HEMA is used as an example. 

These graphs are shown in Figure 3.2 and Figure 3.3.  
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Figure 3.2 ï HEMA Graph  

 

 

Figure 3.3 - Double-bonded oxygen subgraph. The atom labeled as '1' is a dummy atom 

 

The original implementation of the algorithm by Ullman (1976) was not made with 

molecular graphs in mind. Atoms and bond types had to be added so that the hydroxide 

or double-bonded carbon would not be found by the algorithm.  

 

In group contribution, first-order groups can not overlap. The algorithm was modified so 

that vertices can be labeled as already being within a subgraph so that atoms will not be 

included in more than one substructure. For second and third-order groups, this is not 

necessary as they can overlap (Marrero, 2001).  

 

3.1.1 Connectivity Indices and Path Finding 

The calculation of connectivity indices uses a path finding algorithm. For example, the 

third order connectivity index ( 3c ) needs a list of all paths of length three. The path 

finding algorithm used in this project is a breadth first search (West, 2001). The 
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algorithm builds a path tree starting from a root vertex. The algorithm records all vertices 

that are one edge from the root, or all the paths of length one. The algorithm continues by 

finding the vertices adjacent to each of these vertices, and so on. A vertex is not counted 

twice if a cycle exists. The following figure gives an example of a path tree where each 

number is the ID of the atom. The path finding algorithm is repeated for all atoms as the 

root vertex. This will find each path twice; backwards and forwards. This was fixed by 

only allowing paths where the ID number of the head vertex is larger than that of the tail 

vertex (Eslick, 2009).  

 

Figure 3.4 - Path tree from the breadth first search (Eslick, 2009) 

 

The simple (d) and valency ( vd ) atomic connectivity index need to be calculated. The 

atomic connectivity index were pre-calculated for each type of atom needed in this 

project. The algorithm looks at the atomôs hybridization and number of implied hydrogen 

atoms and assigns atomic connectivity index using an if -then-else statement. The 

connectivity indices are then calculated using the following equations (Bicerano, 2002).  
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The connectivity indices are size-dependent descriptors, or extrinsic. Some properties 

may correlate better with a size-independent, or intrinsic, descriptor, so a weighted 

connectivity index is calculated using the following equation 

N

n
n c
x =  

where N is the number of non-hydrogen atoms.  

 

The connectivity index can be calculated for either the single monomer or a 

representative piece of the polymer. Some of the paths will extend into the buffer region. 

When this occurs, only a fraction of the pathôs value should be added to the connectivity 

index. This is done using the equation 
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where ncore is the number of atoms in the path that are in the core region (Eslick, 2008).  

 

A mole average connectivity index can also be easily calculated. The connectivity index 

for HEMA and BisGMA are pre-calculated. The path finding algorithm only has to be 

used on the test monomer, instead of the entire crosslinked polymer. When Tabu Search 
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is being employed, possibly thousands of large polymer graphs have to be created. This 

can be very computationally expensive. Correlations using less computationally 

expensive descriptors should be chosen if they perform as well as those with the more 

expensive descriptors.  

 

3.1.2 100% Crosslink Density 

The 100% crosslink density is the maximum number or crosslinks per repeat unit if the 

monomers are randomly crosslinked. It is found using the following equation 

( )1,100 -=ä iv

i

i nxCD  

where nv is the number of vinyl groups of monomer i, and xi is the mole fraction of 

monomer i (Eslick, 2009). This is the crosslink density if every double bond in a vinyl 

group is broken and become part of the backbone. This is unlikely to occur physically, 

though processing conditions can be altered and candidate monomers can be chosen to 

increase degree of polymerization.  

 

The number of vinyl groups can be found using the subgraph isomorphism algorithm 

described previously. However, the number of vinyl groups is normally prespecified prior 

to the design phase. This limits the size of the design space, and therefore reduces 

computation time.  
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3.1.3 Molecular Weight 

The molecular weights for each atom are stored in a database. Since the molecular graphs 

stored are hydrogen suppressed, the number of hydrogen atoms needs to be calculated. 

This is done by examining the hybridization of each atom and its vertex degree to see if 

any hydrogen atoms are bonded to that atom. The atomic weights are then summed.  

 

3.1.4 Rotational Degrees of Freedom 

The number of rotational degrees of freedom, Nrot, is used in the correlation for the glass 

transition temperature. Bicerano (1996) found that the glass transition temperature for 

randomly crosslinked polymers correlated well with how flexible the monomer is. For the 

polymers used in this project, Nrot is equal to the number of single bonds not in a ring 

plus the number of vinyl groups. The subgraph isomorphism algorithm is used to count 

the number of single bonds. Bonds in a ring can be labeled as being aromatic so that they 

are not counted as single bonds by the algorithm.  

 

With the experimental data collected and the molecular descriptors calculated the QSPRs 

can be correlated. Chapter 4 summarizes the correlation results.  
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Chapter 4.  

 

Development of QSPRs 

This section provides a summary of the QSPRs that were developed for this project. Also 

described is how each model was chosen over other prospective models.  

 

4.1.1 Physical and Chemical Properties 

Properties of a set of methacrylate polymers were collected experimentally. A set of 

fifteen methacrylate test monomers were tested at a range of concentrations. The dental 

polymers were made from a mixture of the test monomer, the methacrylate HEMA, and 

the methacrylate BisGMA. HEMA and BisGMA are commonly used in dental polymers 

(Ye, 2009). The concentrations tested were 25, 35, 45, and 55 weight percent test 

monomer, each time with 45 weight percent HEMA and the balance BisGMA. Figures 

4.1 and 4.2 show the test monomers used in this project.  
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1,3-Butanediol dimethacrylate 

 

Ethylene glycol dimethacrylate 

 

1,4-Butanediol dimethacrylate 

 

1,3-Glycerol dimethacrylate 

 

Bisphenol A ethoxylated dimethacrylate 
 

Glyceryl trimethacrylate 

 

Diethyleneglycol dimethacrylate 

 

 

Triethylene glycol dimethacrylate 

 

 

Trimethylolpropane trimethacrylate 

 

 

Urethane dimethacrylate 

Figure 4.1 ï Test monomers. 
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1,6-hexanediol dimethacrylate 

 

 

Neopentyl glycol dimethacrylate 

 

 

Pentraerythritol dimethacrylate 

 

 

Pentaerythritol trimethacrylate 

 

 

Tetraethylene glycol dimethacrylate 
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Figure 4.2 ï Additional test monomers. 

Correlations were made for viscosity, storage modulus, rubbery modulus, percent water 

sorption, percent water solubility, and glass transition temperature. The storage modulus, 

rubbery modulus, and glass transition temperature would be heightened in an ideal dental 

polymer, while water sorption and solubility for the polymerized material would be 

lowered (Park, 2009; Fried, 2003; Bosze, 2006). The range in property data is limited, 

and extrapolating results outside the initial data set would result in large errors. Because 

of this, the target values for these properties were set to near the high or low end of the 

experimental values. Low viscosity resins are desired (Spencer, 2010), but choosing a 

viscosity value too low may make the resin difficult to handle or collect on the surface of 

the tooth. A median value of viscosity was chosen.  

 

4.1.2 Model Selection and Statistical Analysis 

The R statistics program (R, 2007) was used to create the correlations using multiple 

linear regression. The descriptor selection package, LEAPS, examines all combinations 

of descriptors up to a certain size using a branch-and-bound method (Lumley, 2004). 

LEAPS provides the best subset of descriptors provided for the prediction of the property, 

along with a value of Mallowsô Cp and r
2
 for each model.  

 

The choice of model size is first determined using Mallowsô Cp. The first model 

examined is the one with the smallest Mallowsô Cp. The purpose of minimizing Mallowsô 

Cp is to lower variance while not increasing bias too much. However, no single model 
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selection technique is perfect, and sometimes Mallowsô Cp is too sensitive towards 

increasing bias. If a much smaller model gives a good r
2
 value, then it may be best to 

ignore Mallowsô Cp and choose the smaller model. The statistical significance of each 

descriptor is then calculated. If any descriptor does not pass the 5% level of significance 

the model is rejected and the next best model is examined. 

 

Once the final model is chosen for each property the confidence interval is calculated for 

the observations used in making the model. This gives another view of how accurate each 

individual QSPR is.  

 

The descriptors used in these correlations are summarized in Table 4.1.  

 

Table 4.1 ï Molecular descriptors used in creating correlations. 

Molecular Descriptors 

n

avgc  Average nth-order simple connectivity index 

nv

avg

,c  Average nth-order valence connectivity index 

n

xc  Nth-order simple connectivity index of test monomer 

nv

x

,c  Nth-order valence connectivity index of test monomer 

n

avgx  Average weighted nth-order simple connectivity index 

nv

avg

,x  Average weighted nth-order valence connectivity index 

n

xx  Nth-order weighted simple connectivity index of test monomer 

nv

x

,x  Nth-order weighted valence connectivity index of test monomer 

CD100 Crosslink density of fully crosslinked polymer 

MWavg Mole average molecular weight of comonomer 
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MWx Molecular weight of test monomer 

Nrot Number of rotational degrees of freedom 

 

 

4.1.3 Viscosity 

The values of Mallowsô Cp and r
2 
for the viscosity correlations are given in Table 4.1. 

This is an example of Mallowsô Cp being sensitive to increasing bias. The fifteen 

descriptor model had low significance of some coefficients. The five descriptor model 

was chosen because of its high significance and adequate r
2
. 
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Table 4.2 ï Statistical results for viscosity prediction models. Red highlighted cells represent a model 

which was rejected. The green highlighted cells represent the selected model.  

Viscosity Model 

# Mallowsô Cp R
2
 

1 936 0.68 

2 654 0.78 

3 480 0.83 

4 297 0.89 

5 144 0.94 

6 105 0.96 

7 96.4 0.96 

8 72.8 0.97 

9 65.0 0.97 

10 57.0 0.97 

11 42.9 0.98 

12 39.5 0.98 

13 29.1 0.99 

14 19.9 0.99 

15 16.6 0.99 

16 17.7 0.99 

 

Multiple linear regression gives the following model.  
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( )( ) ( ) ( ) ( ) ( ) x

v

avg

v

avgavgx MW00354.0246.0217.0101.00935.0119. 1,0,21 ++-++-+= ccccm  

Figure 4.3 shows the predicted viscosity versus the experimental viscosity and includes 

the 95% confidence intervals. The 45 degree line does not represent the model, and is 

only shown to aid the reader. Data points on the 45 degree line represent data points 

where the experimental value is exactly equal to the predicted value. Ideally the 95% 

confidence values would overlap the 45 degree line for all points. The points that do not 

overlap could be due to additional experimental error or the models could not adequately 

describe that particular monomer.  

 

Viscosity - 5 Descriptors
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Figure 4.3 ï Confidence interval for viscosity 
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4.1.4 Percent Water Sorption 

The values of Mallowsô Cp and r
2 
for the water sorption correlations are given in Table 

4.2.  

Table 4.3 - Statistical results for water sorption prediction models. Red highlighted cells represent a 

model which was rejected. The green highlighted cells represent the selected model. 

Water Sorption Model 

# Mallowsô Cp r
2
 

1 1494.06 0.13 

2 1146.81 0.33 

3 882.98 0.48 

4 459.77 0.72 

5 348.82 0.78 

6 264.25 0.83 

7 233.13 0.85 

8 197.92 0.87 

9 162.58 0.89 

10 107.49 0.93 

11 60.45 0.95 

12 16.19 0.98 

13 12.9 0.98 

14 11.64 0.98 

15 12.03 0.99 
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The fourteen descriptor model had low significance for many of its descriptors. The ten 

descriptor model was selected because of its high significance and adequate r
2
.  

( ) ( ) ( ) ( ) ( ) 1,0,210 85.2382.8036.22441.7682.9421180 v

avg

v

avgavgavgavgSPW ccccc -+-+-+++=  

( ) ( ) ( ) ( ) ( ) 2,0,102, 15.263066.144748.2612554.1176666.159 v

avg

v

avgavgavg

v

avg xxxxc -++-+-++  

Figure 4.4 shows the predicted water sorption versus the experimental water sorption and 

includes the 95% confidence intervals. The 95% confidence intervals do not overlap the 

45 degree line for only a few of the data points.  

Percent Water Sorption - 10 Descriptors
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Figure 4.4 - 95% Confidence interval for percent water sorption 

 

4.1.5 Glass Transition Temperature 

The degree of crosslinking greatly affects the glass transition temperature. Crosslinking 

restricts the movement of polymer chains, raising the amount of thermal energy needed 

for Brownian motion to occur (Fried, 2003). Multiple linear regression of the glass 
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transition temperature data proved difficult, and research in the literature suggested a 

non-linear correlation would be necessary (Bicerano, 1996; Schneider, 1999; Bicerano, 

2002).  

 

Bicerano (1996) gives a correlation between crosslinked and uncrosslinked glass 

transition temperature for randomly crosslinked high polymers.  

() ()¤ö
ö
÷

õ
æ
æ
ç

å

Ö
+= g

rot

g T
Nn

nT
5

1  

In this correlation, n is the molecular weight in between crosslinks, which is the 

reciprocal of our definition of crosslink density. The number of rotational degrees of 

freedom, Nrot, can be defined for all types of polymers (Bicerano, 1996). However for our 

purposes, with these monomers, it is simply equal to the number of single bonds that are 

not in a cycle, plus the number of vinyl groups for crosslinking. Since the actual crosslink 

density is a function of processing conditions, the 100% crosslink density was used in 

this expression.   

()¤ö
ö
÷

õ
æ
æ
ç

å
+= g

rot

g T
N

CD
T 1005

1  

 

A nonlinear transformation of the glass transition temperature experimental data was 

performed to create a nonlinear model using multiple linear regression. The resulting 

correlation replaced the ()¤gT  term in the QSPR.  
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The values of Mallowsô Cp and r
2 
for the glass transition temperature are given in Table 

4.3. The ten descriptor model was chosen because it had the lowest Mallowsô Cp value, 

good significance for each parameter, and had an adequate r
2
.  
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Table 4.4 - Statistical results for glass transition temperature prediction models. The green 

highlighted cells represent the selected model. 

Glass Transition 

# Mallowsô Cp r
2
 

1 64.5 0.48 

2 35.8 0.64 

3 23.2 0.71 

4 13.6 0.77 

5 9.9 0.80 

6 8.4 0.82 

7 2.9 0.86 

8 2.1 0.87 

9 1.2 0.89 

10 -0.2 0.90 

11 0.7 0.91 

 

Multiple linear regression gave the following model.  

( )( ) ( )( ( ) ( ) 3,0,32100 6.322.219.262.386.389
5

1 v

x

v

xxx

rot

g
N

CD
T cccc -+++-+-ö

ö
÷

õ
æ
æ
ç

å
+=  

( ) ( ) ( ) ( ) ( ) ( ) )100

0,30 9.1901.23.6620.93.1156.245 CDMWMW avg

v

avgwtedavgavg -+-+-+-+-++ ccc

 

Figure 4.5 shows the predicted glass transition temperature versus the experimental glass 

transition temperature and includes the 95% confidence intervals.  
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Glass Transition - 8 Descriptors
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Figure 4.5 - 95% confidence interval for glass transition temperature 

 

4.1.6 Storage Modulus 

When examining models for the storage modulus the intercept tended to not pass the 5% 

significance level. A model without an intercept was found. The values of Mallowsô Cp 

and r
2 
for the storage modulus correlations are given in Table 4.4. The four descriptor 

model was chosen because it has the lowest Mallowsô Cp value and had high 

significance.  
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Table 4.5 - Statistical results for storage modulus prediction models. The green highlighted cells 

represent the selected model. 

Storage Modulus 

# Mallowsô Cp r
2
 

2 3.08 0.45 

3 0.96 0.63 

4 -0.11 0.70 

5 1.58 0.75 

 

Regression gave the following model.  

( ) ( ) ( ) ( ) rot

avg

v

xx N
MW

CD
E 17.29272.38885981.36705.490' 1000,2 ++-+= cc  

Figure 4.6 shows the predicted storage modulus versus the experimental storage modulus 

and includes the 95% confidence intervals. Less experimental data was collected for 

storage modulus than other properties.  
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Storage Modulus - 4 Descriptors
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Figure 4.6 - 95% confidence interval for storage modulus 

 

4.1.7 Rubbery Modulus 

The same as with the storage modulus, when examining models for the rubbery modulus 

the intercept tended to not pass the 5% significance level. A model without an intercept 

was found. The values of Mallowsô Cp and r
2 
for the rubbery modulus correlations are 

given in Table 4.5. The three descriptor model was chosen because it had the lowest 

Mallowsô Cp, good significance, and adequate r
2
. 

 

Table 4.6 - Statistical results for rubbery modulus prediction models. The green highlighted cells 

represent the selected model. 

Rubbery Modulus 

# Mallowsô Cp r
2
 

2 5.3 0.83 
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3 1.59 0.88 

4 2.89 0.91 

5 4.01 0.91 

 

Multiple linear regression gives the following correlation.  

( ) ( ) ( ) avgavgr MWCDE 624.475.6727.110 1

100 -++= c  

Figure 4.7 shows the predicted rubbery modulus versus the experimental rubbery 

modulus and includes the 95% confidence intervals. Less experimental data was collected 

for rubbery modulus than other properties. All of the confidence intervals overlap the 45 

degree line for this model, which is ideal.  

 

Rubbery Modulus - 3 Descriptors
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Figure 4.7 - 95% confidence interval for rubbery modulus 
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4.1.8 Solubility 

The values of Mallowsô Cp and r
2 
for the percent solubility correlations are given in 

Table 4.6. The seven descriptor model was chosen because it had the lowest Mallowsô 

Cp, passed the 5% significance level, and had an adequate r
2
.  

 

Table 4.7 - Statistical results for solubility prediction models. The green highlighted cells represent 

the selected model. 

Percent Solubility 

# Mallowsô Cp r
2
 

1 43.95 .094 

2 18.83 .541 

3 10.96 .704 

4 7.81 .789 

5 9.26 .798 

6 5.98 .885 

7 4.19 .947 

8 6.02 .950 

 

Multiple linear regression gives the following correlation.  

( )( ) ( ) ( ) ( ) ( ) x

v

avg

v

avgavgavgSU MWW 14.77294.020.4880.54307.24666.12 0,3,30 -+++-++= cccc

( ) ( ) ( ) ( ) 0,0, 94.641.1414.77294.0 v

xarox

v

avg NMW cc -+-+-++  
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Figure 4.8 shows the predicted solubility versus the experimental solubility and includes 

the 95% confidence intervals. All of the 95% confidence intervals overlap the 45 degree 

line, which is ideal.  

 

Solubility - 7 Descriptors
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Figure 4.8 - 95% confidence interval for percent solubility 

 

4.1.9 Summary 

Table 4.8 summarizes the correlation results. Most of the QSPRs have strong correlations 

greater than or approaching a correlation coefficient of 0.90. The correlation for storage 

modulus can be improved through collecting more experimental data. Also other types of 

descriptors can be considered beyond connectivity index. Few QSPRs have been 

correlated for crosslinked methacrylates, and were correlated with a smaller set of 

experimental data (Eslick, 2009).  
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With the experimental data correlated the backwards design problem can be solved.  

Section 5 describes how the molecular design problem was formulated and solved in this 

project.  
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Table 4.8 - Summary of QSPR results 

Property Number of Descriptors R
2
 

Glass Transition 

Temperature 
8 0.91 

Percent Water Sorption 10 0.93 

Percent Solubility 7 0.95 

Storage Modulus 4 0.70 

Rubbery Modulus 3 0.88 

Viscosity 5 0.94 
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Chapter 5.  

 

Molecular Design 

This section describes the design problem formulation and implementation of molecular 

design using the Tabu Search algorithm. Section 5.1 gives a description of how the 

problem would be solved using any type of CMD, while Section 5.2 gives details on how 

the problem was solved using Tabu Search.  

 

5.1.1 Problem Formulation 

This project seeks to design a methacrylate monomer for the use in dental resin 

composites. The goal is to find a monomer that will lead to resin composites that are 

more durable that those currently on the market. Target values for important physical 

properties were selected that would give an increased lifespan of the composite.  
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Table 5.1- Target property values 

Property Target Value 

Storage Modulus [MPa] 3500 

Rubbery Modulus [MPa] 40 

Water Sorption [%] 6 

Viscosity [Pa s] 0.1 

Glass Transition Temperature [C] 74 

 

Target values could only be chosen that are within the range of the experimental values 

used in the development of the QSPRs. Large values of storage and rubbery modulus 

were chosen because the value correlates with a high tensile strength (Bosze, 2006). 

Water sorption was minimized because the absorption of water can lower the mechanical 

properties of the monomer (Park, 2009). A median viscosity was chosen which was lower 

than the standard. Lower viscosity values allow the resin to bond more tightly to the tooth 

while the resin is curing (Spencer, 2010).  

 

The properties were measured experimentally at concentrations of 55, 45, 35, and 25 

weight percent test monomer, each time with 45 weight percent HEMA and the balance 

BisGMA. The CMD methodology was applied at each of these concentrations. It would 

be expected that one candidate monomer may perform well at one concentration but 

poorly at another. Future versions of the program could allow the evaluation of each 

candidate monomer at every concentration, but this added complexity could make the 
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optimization computationally expensive. Candidate monomers for each concentration are 

presented in Section 6.  

 

The candidate monomers are built as combinations of a set of different functional groups. 

Each monomer is represented as an oligomer molecular graph in the program. The 

functional groups were chosen by considering all groups in the monomers used to make 

the QSPRs. 

 

Figure 5.1 - Functional groups. Xx represent dummy atoms (Eslick, 2008). 

 

Each candidate monomer was forced to have two methacrylate groups. Peroxide groups 

were not allowed, to avoid unstable molecules. Further stability criterion can be added to 

future versions of the CMD method. Feasibility criteria also have to be met; valency must 

be satisfied, and the molecular structure must be connected.  
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The goal of this project is to design the molecular structure of a polymer with desired 

properties. The objective function has the form 

2

properties target,

predicted,target,

ä
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õ
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å -
=

i i

ii

i
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PP
sf  

where f is the objective function, Pi,target is the target value for property i, Pi,predicted is the 

predicted property, and si is a weighting factor. Weighting factors of 1 were used for each 

property because no data was available regarding the amount each property affected the 

lifespan of the dental polymer. The objective function is zero when the predicted 

properties match the target values. 

 

The Tabu Search algorithm is used to find a solution that minimizes the objective 

function. The following section describes how Tabu Search is implemented.  

 

5.1.2 Tabu Search 

Figure 5.2 describes the Tabu Search algorithm. All monomers considered during the 

optimization phase are created from predefined functional groups. The monomers are 

represented as an oligomer molecular graph. Each functional group is represented by a 

vertex, and bonds are represented as edges. Two types of initial solution were evaluated: 

in some cases, the structure of BisGMA was used to find similar solutions to that 

structure, while in other cases randomly generated polymer structures were used to 

explore different parts of the solution space.  
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During a Tabu Search solution, a set of valid moves are made during each iteration. The 

valid moves in this project are deletion of functional groups (then adding bonds 

connecting neighboring functional groups), addition of functional groups in the chain, or 

changing one functional group for another. These moves were chosen randomly. 

Feasibility criteria did not need to be included explicitly in the program, as they were 

implied in the set of legal moves. Each functional group is a segment of a polymer chain 

with a single bond on each end, so any valid move will not make the molecule infeasible. 

Methacrylate groups are not changed by the algorithm.  

 

At each iteration, a list of neighbors to the current solution is made. A neighbor is any 

molecule that is within a set number of moves from the current solution. The number of 

possible moves chosen was eight in order to overcome the valleys that contain local 

minima, and explore other parts of the solution space. The most efficient step size may be 

different for each problem. When the objective function value for the current solution is 

less than one, the number of moves is set to one. This is a type of local intensification, 

and is used to focus on areas of the solution space where a good solution may exist. The 

objective function of each neighbor is examined, and the best non-Tabu solution is 

chosen to be the next solution. The previous solution is then added to the Tabu list.  

 

The Tabu list is a list of previous solutions that neighbor molecules are compared to. If a 

neighbor molecule is too similar to any molecule on the Tabu list it is labeled as Tabu 

and will not be selected as a new solution. The usefulness of the Tabu list lies in the 

ability to avoid revisiting previous solutions, or to keep the algorithm from being stuck in 
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a local minima. If all neighbors are labeled as Tabu, then the best neighbor is chosen. If 

this occurs too frequently the Tabu criteria are too strict and are relaxed.  

 

Molecules were said to be too similar if all connectivity indices used in this project 

( c0 , c1 , c2 , c3 , vc0 , vc1 , vc2 , vc3 ) lie within 15% of the previous solution range. For 

example, if the range of observed values for c0  is 11.1-28.7, then if the values of c0  are 

within 2.6 of each other the molecules are too similar. Even if a molecule is labeled as 

Tabu, it will still be chosen if its objective function is better than the best solution found 

so far. This is a type of aspiration criteria.  

 

At each iteration, the objective function is calculated for each neighbor solution. The 

general form of the objective function is used, with the addition of a penalty function. 

The penalty function is used to avoid unstable solutions that contain peroxide groups. The 

number of peroxide groups is set as a descriptor variable, calculated using the subgraph 

isomorphism algorithm described in Section 3. A penalty function is added to the 

objective function so that 1000 is added to the objective for each peroxide group present. 

Good objective function values in this project are less than one, so no solution with a 

peroxide group will be presented as a candidate.  

 

The algorithm continues until a stop criterion is met. In this project, this limit is set to 400 

non-improving iterations. Numerous test runs of the algorithm showed that optimal 

solutions were rarely found after more than 400 non-improving iterations, and were 

frequently found before 200. Once the stop criterion is reached, the program reports the 
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best known solution. The following Chapter summarizes the results found from using this 

procedure.  
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Figure 5.2 - Tabu Search flowchart
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Chapter 6.  

 

Results 

This section summarizes the results found after completing the Tabu Search optimization 

procedure described previously. The target values are summarized in Table 5.1, which 

would yield a dental polymer with improved clinical lifetime to those currently on the 

market.  Included are the overall results for the algorithm, as well as the candidate 

monomers. The algorithm was run at concentrations of 25, 35, 45, and 55 weight percent 

of the test monomer, each time with 45 weight percent HEMA, and the balance BisGMA. 

There were two different starting points: BisGMA, and a randomly generated monomer. 

The search was terminated after 400 non-improving iterations and took less than a minute 

to complete for each run.  

 

6.1 Tabu Results 

The Tabu Search algorithm was applied multiple times at 25 weight percent test 

monomer for the improved dental polymer case study in order to judge the overall 

effectiveness of the algorithm. The objective function and number of iterations were 

recorded and an average objective function was found.  
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The Tabu Search algorithm uses a stochastic parameter to define its search direction. One 

run of the algorithm may be able to find a good solution very quickly, while the next run 

may only look at an area of the solution space with no good solution and not be able to 

escape that region. Introducing additional heuristics to the algorithm such as 

diversification, described in Chapter 2.4, to the algorithm decreases the chances that any 

single run will  give a poor result.  

 

The average objective function and number of iterations for this example are given in the 

following table. An average objective function of 0.056 shows that any single run of the 

algorithm would likely give a reasonable result. Some adjustable parameters, such as the 

stop criteria or the step sizes, were changed to try to improve these results. Increasing the 

number of non-improving iterations lowered the average objective function and its 

standard deviation, as expected. However, these changes only lowered the average 

objective function because more iterations were available to escape the parts of the 

solution space corresponding to molecules with properties far from the target values. This 

did not increase the frequency or quality of the very best results, which tended to be 

found very quickly. Increasing the number of non-improving iterations greatly increases 

the run time while not greatly improving the quality of the top tiered results. The number 

of non-improving iterations was limited to 400. This lends itself to the idea that the Tabu 

Search algorithm may work best when run in parallel, running fewer iterations but in 

many different parts of the solution space simultaneously. This is addressed further in 

Chapter 7.  
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Table 6.1 - Average Tabu Search results for dental polymer case study. The numbers in parenthesis 

are standard deviations. 

Average Tabu Search Results 

Objective Function 0.056 (0.03) 

Iterations 660 (220) 

 

6.2 Candidate Monomers 

This section describes the candidate monomers for a dental polymer with improved 

clinical lifetime found at each concentration: 25, 35, 45, and 55 weight percent candidate 

monomer, given in Figure 6.1 through Figure 6.10. Each polymer also contained 45 

weight percent HEMA, with the balance BisGMA. The objective functions and predicted 

property values are summarized in Table 6.2 through Table 6.9.  

 

Currently, ease of synthesis is not being considered in the formulation. Also, the only 

consideration for stability is the prohibition of peroxide groups. Further restrictions can 

be added in future versions of the program to help make stable, easily synthesizable 

monomers.  

 

Figure 6.1 - Candidate monomer 25.1. Concentration of 25 weight percent. 
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Figure 6.2 - Candidate monomer 25.2. Concentration of 25 weight percent. 

 

 

Figure 6.3 - Candidate monomer 25.3. Concentration of 25 weight percent. 

 

Table 6.2 - Objective functions for candidate monomers at 25 weight percent 

25 Weight Percent Candidate Monomers 

Name Objective 
Molecular 

Weight 

Number 

of 

Iterations 

Starting Point 

BisGMA 

Control 
1.07 513 - - 

25.1 0.012 599 860 BisGMA 

25.2 0.023 599 785 BisGMA 

25.3 0.023 585 617 
Random 

Monomer 

 

Table 6.3 - Predicted properties for candidate monomers at 25 weight percent 

25 Weight Percent Candidate Monomers 

Name 
Storage 

Modulus 

Rubbery 

Modulus 

Water 

Sorption 

Viscosity  

[Pa s] 

Glass Transition 

Temperature 
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[MPa] [MPa] [%] [C] 

Target 3500 40 6 0.1 74 

BisGMA 

Control 
3306 30.5 7.5 0.197 68.9 

25.1 3485 41.3 5.6 0.107 70.9 

25.2 3491 41.3 5.3 0.107 70.9 

25.3 3510 37.4 6.1 0.110 67.2 

 

 

 

Figure 6.4 - Candidate monomer 35.1. Concentration of 35 weight percent. 

 

 

Figure 6.5 ï Candidate monomer 35.2. Concentration of 35 weight percent. 

 

 

Figure 6.6 ï Candidate monomer 35.3. Concentration of 35 weight percent. 

 

Table 6.4 - Objective functions for candidate monomers at 35 weight percent 

35 Weight Percent Candidate Monomers 
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Name Objective 
Molecular 

Weight 

Number 

of 

Iterations 

Starting Point 

BisGMA 

Control 
1.07 513 - - 

35.1 0.045 569 402 BisGMA 

35.2 0.062 577 885 BisGMA 

35.3 0.039 596 1153 BisGMA 

 

 

Table 6.5 ï Predicted properties for candidate monomers at 35 weight percent 

35 Weight Percent Candidate Monomers 

Name 

Storage 

Modulus 

[MPa] 

Rubbery 

Modulus 

[MPa] 

Water 

Sorption 

[%] 

Viscosity  

[Pa s] 

Glass Transition 

Temperature 

[C] 

Target 3500 40 6 0.1 74 

BisGMA 

Control 
3306 30.5 7.5 0.197 68.9 

35.1 3297 33.4 6.0 0.090 78.1 

35.2 3407 37.4 4.8 0.096 82.2 

35.3 3410 38.6 5.5 0.097 86.8 

 

 

 

Figure 6.7 - Candidate monomer 45.1. Concentration of 45 weight percent. 
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Figure 6.8 - Candidate monomer 45.2. Concentration of 45 weight percent. 

 

 

Table 6.6 - Objective functions for candidate monomers at 45 weight percent 

45 Weight Percent Candidate Monomers 

Name Objective 
Molecular 

Weight 

Number 

of 

Iterations 

Starting Point 

BisGMA 

Control 
1.07 513 - - 

45.1 0.068 578 930 BisGMA 

45.2 0.074 565 681 BisGMA 

 

 

Table 6.7 ï Predicted properties for candidate monomers at 45 weight percent 

45 Weight Percent Candidate Monomers 

Name 

Storage 

Modulus 

[MPa] 

Rubbery 

Modulus 

[MPa] 

Water 

Sorption 

[%] 

Viscosity  

[Pa s] 

Glass Transition 

Temperature 

[C] 

Target 3500 40 6 0.1 74 

BisGMA 

Control 
3306 30.5 7.5 0.197 68.9 

45.1 3364 45.9 6.0 0.119 80.7 

45.2 3535 32.4 7.0 0.109 82.2 

 



 79 

 

Figure 6.9 - Candidate monomer 55.1. Concentration of 55 weight percent. 

 

 

 

Figure 6.10 - Candidate monomer 55.2. Concentration of 55 weight percent. 

 

Table 6.8 - Objective functions for candidate monomers at 55 weight percent 

55 Weight Percent Candidate Monomers 

Name Objective 
Molecular 

Weight 

Number 

of 

Iterations 

Starting Point 

BisGMA 

Control 
1.07 513 - - 

55.1 0.043 550 656 BisGMA 

55.2 0.028 552 980 BisGMA 

 

Table 6.9 ï Predicted properties for candidate monomers at 55 weight percent 

55 Weight Percent Candidate Monomers 

Name 

Storage 

Modulus 

[MPa] 

Rubbery 

Modulus 

[MPa] 

Water 

Sorption 

[%] 

Viscosity  

[Pa s] 

Glass Transition 

Temperature 

[C] 

Target 3500 40 6 0.1 74 

BisGMA 

Control 
3306 30.5 7.5 0.197 68.9 
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55.1 3534 34.2 5.2 0.100 68.6 

55.2 3445 35.3 5.9 0.093 67.5 

 

An interesting trend for the 25 weight percent monomers is that good solutions tended to 

have three aromatic ring groups, oftentimes bonded directly together. This may make the 

monomer hard to synthesize, or unstable in some cases. Restrictions can be added to the 

algorithm to only allow two or zero aromatic rings if it is decided that other 

configurations are undesirable or infeasible. It is also interesting that candidate monomers 

25.1 and 25.2 are very similar; they are actually made from the same functional groups. 

Monomers similar to 25.1 and 25.2 should be explored if these two monomers can not be 

synthesized.  

 

The candidate monomers at 35 weight percent are more similar to the other monomers 

used to make the correlations, especially candidate 35.1. Candidate 35.1 should be stable 

and synthesizable, as it is nearly symmetric.  

 

A literature search was made to find molecules similar to the candidate monomers. 

According to SciFinderôs molecule database none of the candidate molecules had been 

synthesized previously, but there were some molecules very similar to candidate 35.1. 

Candidate 35.1 has the molecular formula C33H44O8, while the similar monomers are 

C35H48O10. Both of these monomers were patented for use in soft contact lenses.  
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Figure 6.11 - Molecule similar to Candidate 35.1 (Hiroo, 1982) 

 

 

Figure 6.12 - Molecule similar to Candidate 35.1 (Kiyoshi, 1995) 

 

The property values for these molecules were calculated. The correlations gave 

unrealistic negative values for water sorption. This is because the water sorption 

correlation is sensitive to the size of the molecule, and these molecules are larger than 

any molecule previously considered. The other properties gave realistic values. The 

objective functions were calculated excluding water sorption, with weighting factors to 

correct for only using four properties instead of five.  

Table 6.10 - Predicted property values for monomer found by Hiroo, et al (1982) 

Predicted Property Values for Monomer found by Hiroo, et al 

Weight 

Percent 

Monomer 

Weighted 

Objective 

Function 

Storage 

Modulus 

[MPa] 

Rubbery 

Modulus 

[MPa] 

Viscosity 

[Pa s] 

Glass 

Transition 

Temperature 

[C] 

25 0.29 3324 42.6 0.140 93.4 

35 0.41 3364 52.7 0.138 95.8 

45 0.69 3405 62.5 0.136 98.5 

55 1.12 3448 72.1 0.133 101.4 
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Table 6.11 - Predicted property values for monomer found by Kiyoshi, et al (1995) 

Predicted Property Values for Monomer found by Kiyoshi, et al 

Weight 

Percent 

Monomer 

Weighted 

Objective 

Function 

Storage 

Modulus 

[MPa] 

Rubbery 

Modulus 

[MPa] 

Viscosity 

[Pa s] 

Glass 

Transition 

Temperature 

[C] 

25 0.28 3312 42.6 0.139 93.3 

35 0.40 3353 52.7 0.136 95.7 

45 0.67 3394 62.5 0.134 98.3 

55 1.10 3436 72.1 0.131 101.2 

 

At 25 weight percent, both of these monomers show slight improvement over the 

HEMA/BisGMA control group. Using the Tabu Search algorithm to design a monomer, 

and then finding similar molecules which already exist, could be a valid strategy if it 

turns out to be difficult to include stability and ease of synthesis in the algorithm.  

 

The results show that the algorithm can provide candidate monomers with good objective 

functions at any of the concentrations tested. The following section examines the error 

associated with these objective function and property values.  
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6.3 Prediction Intervals 

The 95% prediction interval was calculated for each property. The calculation of a 

prediction interval, or error calculation, has seldom been calculated in molecular design 

(Roughton, 2011). The prediction interval was defined in Section 2.3.3.  

 

The prediction interval is found using the following equation,  

( )( )ppkn xXXxtPI
12

)1(,2/ ''1Ĕ
-

+- +°= sa  

where t is the critical value of the t-distribution at the desired confidence level and 

degrees of freedom, 2Ĕs  is the mean square error, xp is an array of descriptors for the new 

observation used in the model, and X is the matrix of descriptors of previously observed 

data points. The prediction interval is a function of the bias of the original correlation, 

and how different the descriptors of the candidate molecule are to the descriptors used to 

make the correlation. For example, the correlation for viscosity includes molecular 

weight, and the range of molecular weight used to make the correlation is 198-540 g/mol. 

If the molecular weight of the candidate molecular is much larger than 540 g/mol, there 

will be more error. A large prediction interval may show that the correlation is unsuited 

to describe that molecule. Even if the descriptors match perfectly, there is still the error 

associated with the original correlation, which is equal to the t-value multiplied by the 

mean error, sĔ. This is reported as the minimal error. The following tables summarize the 

prediction intervals for each property and candidate monomer. Figure 6.13 gives a visual 

representation of the distribution of the calculated property within the prediction interval 

for one of the candidate monomers.   
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The prediction interval overlaps the target value in each case. This overlap shows that the 

global optimum of the design problem may actually perform worse than some local 

optima that the Tabu Search algorithm finds. The 68% prediction interval for rubbery 

modulus is reported. This was because of the large error in the correlation, which is due 

to having too few experimental data points, limiting the number of descriptors that could 

be used.  

 

The prediction intervals were sensitive to the molecular weight or size of the candidate 

monomers. Most of the monomers tested to build the correlations were smaller than the 

candidate monomers. Correlations could be updated to include more experimental data 

for monomers that are larger than BisGMA.  
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Table 6.12 - Prediction interval for glass transition temperature 

Glass Transition Temperature ï 95% Prediction Interval 

Name Predicted Value 
Confidence 

Interval 

Percent of 

Target Value 

Crosses Target 

Value? 

Minimal Error - 8.1 11 - 

25.1 70.9 19.1 26 Yes 

25.2 70.9 15.5 21 Yes 

25.3 67.2 9.6 13 Yes 

35.1 78.1 20.9 28 Yes 

35.2 82.2 44.6 60 Yes 

35.3 86.8 32.5 44 Yes 

45.1 80.7 51.7 70 Yes 

45.2 82.2 45.8 62 Yes 

55.1 68.6 58.7 79 Yes 

55.2 67.5 49.8 67 Yes 
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Table 6.13 - Prediction interval for viscosity 

Viscosity ï 95% Prediction Interval 

Name Predicted Value 
Confidence 

Interval 

Percent of 

Target Value 

Crosses Target 

Value? 

Minimal Error - 0.016 16 - 

25.1 0.107 0.045 45 Yes 

25.2 0.107 0.046 46 Yes 

25.3 0.110 0.018 18 Yes 

35.1 0.090 0.037 37 Yes 

35.2 0.096 0.017 17 Yes 

35.3 0.097 0.044 44 Yes 

45.1 0.119 0.020 20 Yes 

45.2 0.109 0.026 26 Yes 

55.1 0.100 0.022 22 Yes 

55.2 0.093 0.049 49 Yes 
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Table 6.14 - Prediction interval for percent water sorption 

Water Sorption ï 95% Prediction Interval 

Name Predicted Value Confidence 

Interval 

Percent of 

Target Value 

Crosses Target 

Value? 

Minimal Error - 1.0 17 - 

25.1 5.6 1.6 27 Yes 

25.2 5.3 1.6 27 Yes 

25.3 6.1 1.7 28 Yes 

35.1 6.0 1.5 25 Yes 

35.2 4.8 2.5 42 Yes 

35.3 5.5 1.6 27 Yes 

45.1 6.0 2.3 38 Yes 

45.2 7.0 2.0 33 Yes 

55.1 5.2 2.0 33 Yes 

55.2 5.9 1.4 23 Yes 
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Table 6.15 - Prediction interval for storage modulus 

Storage Modulus ï 95% Prediction Interval 

Name Predicted Value 
Confidence 

Interval 

Percent of 

Target Value 

Crosses Target 

Value? 

Minimal Error - 310 9 - 

25.1 3485 1337 38 Yes 

25.2 3491 1337 38 Yes 

25.3 3510 1390 40 Yes 

35.1 3297 1360 39 Yes 

35.2 3407 1398 40 Yes 

35.3 3410 1360 39 Yes 

45.1 3364 1370 39 Yes 

45.2 3535 1358 39 Yes 

55.1 3534 1379 39 Yes 

55.2 3445 1329 38 Yes 
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Table 6.16 - Prediction interval for rubbery modulus 

Rubbery Modulus ï 68% Prediction Interval 

Name Predicted Value 
Confidence 

Interval 

Percent of 

Target Value 

Crosses Target 

Value? 

Minimal Error - 13.7 34 - 

25.1 41.3 19.2 48 Yes 

25.2 41.3 19.2 48 Yes 

25.3 37.4 18.6 45 Yes 

35.1 33.4 19.1 46 Yes 

35.2 37.4 19.6 48 Yes 

35.3 38.6 20.2 49 Yes 

45.1 45.9 18.8 51 Yes 

45.2 32.4 18.7 42 Yes 

55.1 34.2 18.9 47 Yes 

55.2 35.3 18.7 49 Yes 
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Figure 6.13 - Normal distribution for percent water sorption for Candidate 25.1 

 

6.4 Summary 

These results show that this methodology can be used to design crosslinked polymers 

using the Tabu Search algorithm. The prediction intervals found were as small as 13% of 

the target value. This is an acceptable range when one considers that finding candidate 

monomers which are improved compared to the standard resin is more important than 

finding a resin with a specific property value. The algorithm can provide a long list of 

candidate monomers which can be examined by experimental chemists to be considered 

for synthesis. Polymer Designer has a flexible framework that can be changed to add 

more restrictions to create candidates that are more easily synthesizable.  
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The addition of stability criterion decreased the chances of finding an unusable solution. 

When the algorithm was run without any stability criteria, candidate solutions with 

peroxide groups often appear.  

 

More property data should be gathered to create more accurate correlations that will give 

predicted values with less error.  

 

The next Chapter gives overall conclusions and recommendations for this project.  
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Chapter 7.  

 

Conclusions and Recommendations 

The previous Chapter provided a list of candidate molecules with predicted property 

values superior to that of the standard HEMA/BisGMA composite. The results show that 

this methodology can be used to design molecules with specified target properties. It also 

shows that this methodology is capable of handling the complexity that comes from 

crosslinking. Further restrictions or more accurate correlations can easily be added to 

create more suitable molecules. This methodology can be used by other projects to design 

different types of molecules.  

 

Currently the Polymer Designer program is being edited to be used in other projects. It 

provides a flexible framework that can be changed to work with different molecules and 

types of functional groups.  

 

A set of criteria for choosing the overall best QSPR models was created, but can be 

improved. The goal of any model selection technique is to give a correlation with low 

error. In this project we found that the prediction interval is dependent on the correlation 

error, the number of descriptors, and even the type of descriptors used. A more 

computationally extensive method could be employed in which the prediction interval for 
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a subset of molecules found, the correlation and with the smallest prediction interval is 

chosen. It may even be best to complete CMD with many different correlations to choose 

the best models.  

 

Prediction intervals have rarely been considered in molecular design projects (Roughton, 

2011). This method of error analysis can be used in a number of different ways to 

improve the project. The value of the prediction interval can be calculated as part of the 

Tabu Search algorithm. The objective function can be changed to take the prediction 

interval into account, favoring candidates both with favorable properties and smaller 

prediction intervals. A possible form of the objective function would be 
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where PŹ is the lower bound of the prediction interval, Pŷ is the upper bound for the 

prediction interval, and ai is a weighting factor for the prediction interval values. A 

further restriction can be made to only allow candidates where the prediction interval 

overlaps the target property value.  

 

The target property values and weighting functions should be examined carefully. The 

general effect that these properties have on the longevity was found, but a better 

understanding could give more exact values. The optimal property value could lie outside 

of the range of the experimental data. If that is the case, more molecules should be tested 

and new correlations should be created.  
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The primary descriptors used in this project were connectivity indices. There are 

thousands of structural descriptors that can be used in CMD. Signature descriptors (Weis, 

2010) and Kier shape indices (Kier, 1987) have been used to design polymers. The 

algorithms already being used by Polymer Designer allow the calculation of many of 

these descriptors within the Tabu Search algorithm. Additional structural descriptors 

should be studied. A partially theoretical model could be built by studying chemically 

how different functional groups affect certain properties. This would give guidelines to 

which types of structural descriptors would more likely be able to model these properties.  

 

Besides the experimental properties, other factors could possibly be related to structural 

descriptors. During the experimental testing phase, many monomers could not be 

included in this study because they would not dissolve into HEMA at the concentrations 

being tested. If solubility in HEMA could be predicted, this would save disnificant 

experimental effort and resources which would have been spent synthesizing a candidate 

monomer that is not feasible.  

 

Additional stability criterion can be applied to the algorithm. Fink and Reymond (2007) 

applied a filter of rejected functional groups when creating a database of feasible stable 

organic molecules. Many of these functional groups can not be made with the chain 

groups used in this project. Only a part of Fink and Reymondôs filter would need to be 

added to the Tabu Search algorithm. Restrictions can be added using the penalty method 

and the subgraph isomorphism algorithm described in Chapter 3.1. In addition, criterion 

for ease of synthesis could be added in a similar manner.  
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A literature search to find molecules similar to the candidate molecules was performed, 

described in Section 6.2. The property values at the tested resin concentrations were 

predicted for these similar molecules. This method could find an existing molecule 

suitable for use as part of a dental polymer which has never been considered before. The 

CMD results would  provide a way of narrowing the search, as searching through all 

available monomers would be infeasible.  

 

Overall the project shows that the Tabu Search algorithm is robust enough for the design 

of crosslinked polymers. The procedure outlined provided a list of candidate monomers 

that could show improvement to the standard dental composite resin on the market today. 

The examination of the correlation error through the prediction interval shows the error 

that is likely present in many other molecular design projects, suggesting that future 

projects should include error propagation during the design phase.  
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