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Abstract
The focus of this projeces the use of computational molecular design (CMD) in the
design of novel crosslinked polymers. A design examplecoaspletedor a
dimethacrylate as part of a comonomer used iadegstorationwith the goal to create

a dental adhesiweith a longer clinical lifetime than those already on the market.

The CMD methodology begins with the calculation of molecular descriptors that describe
the crosslinked polymer structure. Conmatyt indexareused as the primary set of
descriptors, and have been used successfully in other CMD projects. Quantitative
structure property relationships (QSPRs) were developed relating the structural
descriptors to the experimentally collected propddia Models were chosen using

Ma | | &pwstlocorrelation coefficient significance. Desirable target property values
were chosen which lead to an improved clinical lifeti@keuctural constraints were

defined to increase stability and eassyfthesisTheTabu Searcloptimization

algorithm was usetb designpolymers with desirable properties. Finally, a prediction
interval was calculated for each candidate to represent the possible error in the predicted

properties.

The described methodology proesh list of candidate monomers with predicted
properties near the desired target valwdsch are selected such that the adresswill

show improved propess relative to thetandard HEMA/BisGMA formulatiorlThe
methodology can be easily altered tlmal for additional property calculations and
structural constraints. This methodology can also be used for molecular design projects

beyond crosslinked polymers.
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Chapter 1.

Introduction

1.1 Motivation

The motivation for this research begins with the choice between dental resin composites
and dental amalgam. Fillings in the anterior tedtioat exclusivelyuseresin

compositesas well agnost posteriodependingn the market. Resin composites have
many advantages over amalgaroludingimproved aesthetics and lower environmental
impact. Amalgam is still being used in posterior fillingsdngse it is difficult to apply

resin composites wherteis harder to stay dry, and because amalgam has a significantly
lower failure rate than resin composites. The failure rate of resin composites is more than

50% greater than that of amalgam after &yé@ollins, 1998)

Current researcbeekdo developdental resin composites with improved longevity and
lower failure rate (Spencer, 2010). Much of recent research employsantiairor
approach: small changes are made to an established moleeulmlecule is

synthesized, and its properties are tested in hopes that it is superior to the established
molecule (Park, 2007; Edgaat al1999). This is an expensive and tHz@nsuming

process. With this method one could try to improve a few propeidiesxample by

understanding the effect of rotational freedom on glass transition tempeBit@ao,
1



2002, but it can be difficult to predict how this change will affect other properties. This

method may cause some properties to improve while otbpegies deteriorate.

A more effective method of designing new matensthe use of computational

molecular design. With a computational molecular design method, the values of many
different properties arestimatedand the molecule is changed sattthese property

values are optimized simultaneousfiearly any optimization method that can solve for a
nonlinear objective function can be used, such as genetic algo(klumig), 1999) ant

colony optimization iKorb, 2006) or Tabu searc{Eslick, 20®). This solves the

backwards design problem, which is to design a molecule with a set of desired properties.
This is much more difficult than the forward design problem, which is predicting the
properties of a known molecule (Gani, 1993). The solutidhefeverse design problem

was named amof the grand challenges in the computational needs in the chemical

industry (Edgar, 1999).

Little attention has been given to error analysis in computational molecular design
(Roughton, 2011 When developing QSRRthere is experimental error and error from

the QSPR not fitting the data perfectly. This error propagates through the design process.
When the properties of the designed molecules are calculated the actual value of the
property is most likely within aange of values, known as a prediction interval
(Wasserman, 2004). Previous research in CMD only reports a single value as their result,
while a ranged value may be more appropriékes work uses a ranged value for

predicted properties.



1.2 Optimization Procedure

The reverse design problem begins with the development of quantitative structure
property relationships (QSPRSs), which are statistically derived models that relate the
mol ecul eds structure to its propferthei es.
type of material being designed. Because polymer property data is often dependent on
processing conditions (Eslick, 2009) property data published in the literature may not be
consistentin this work aset of consistent experimentasdesignedd collectimportant
property data for a set of methacrylptdymers, such as glass transition temperature,

viscosity, and storage modulus.

Theexperimentaproperty data ishen correlated witimolecular descriptors of the
polymer. In the past, group mwibutionmethods haveeen used extensively to predict
the properties of polymers and other materials. A major problem with using group
contribution methods for polymerstisatthey misssome information by not taking into
account thénternal structuref the repeat unitsThe use of topologicahdiceshasbeen
shown to be very effectivia describingpolymers (Camarda, 1999). In this wprk
Randil's mol e indidesare eropioyed &s sttudtwal desgriptors. These
numerical valuesontain information about the bonds and oxidation staéach atom in
the polymer repeat unity examining the paths of the hydrogen suppressed ntatecu

graph of the polymer (Randili, 1975) .

Prop



Once the molecular descriptors and property data are coll€@&tRsare then created
Experimentabata is exported to statistical soétve which creates a list of potential
QSPRswith thehighest correlation @dficient for each sizénumber of variables)

leaving the user to create criterion for choosing which QSBRperior This is not

always straightforward, as adding more descriptors will always raise the correlation
coefficient. Adding too many descripgowill lower the statistical significance of the
coefficients, leading to more error, or uncertainty, when using the correlation to design a
new molecule. This work aims to create a criterion for QSPR selection using correlation

coefficient, statisticalignificanceMa | | &€pyvand number of coefficients.

Then the optimization problem is formulated using target properties to create the
objective functionand structural constraint&n optimization method is used to find a
molecule which minimizes thabjective functionresulting in a molecule with properties
close to the targetén this project weise the Tabu Search algorithm because ibkas
shown to handle the polymer design optimization problem effectigaly it allows the

use of nodinearobjective functions and QSPRs.

1.3 Research Goals

The goal of this project is to develop a method of comgaitked molecular desidgor
crosslinked polymers. The method includes the development of quantitative structure
property relationships (QSPR#)eformulaton ofthe design problem, and the use of the
Tabu Search optimization methtaldesign crosslinked polymeidditional analysis of

the error from the QSPRs were done in order to calculate a confidence interval for the

4



calculated properties of tlesigned molecules, something which is frequently
overlooked in many other studigequghton, 2011 A design example wasmpleted
for crosslinked methacrylate dental polymers, but the procedure will work for many other

types of moleculefLin, 2004; McLeese, 2010)

1.4 Thesis Overview

Background information is provided to the reader in Chapter 2. Included is background
on the experiments that were done to collect property dataplecular descriptorgnd
onthe methods behind QSPR development, the fiEldolecular design, and

optimization.

In the development of QSPRSs, choosing the list of prospective molecular descriptors is an
important step. The list of molecular descriptors studied, how they were calculated, and

why they were chosen are given ihapter 3.

The QSPRs that were developed during this researgir@rigledin Chapter 4. This
section describes how each QSPR was chosen, how their validity was tested, and how the

prediction interval was calculated.

Once the QSPRs are developed, thitnapation problem is then formulated. Details of
how target properties and additional structural constraints were used to develop the

objective function are given in Chapter 5. It will then explain how Tabu Search is used to

5



solve this optimization probhe, and explains the advantages that Tabu Search has over

other optimization methods for problems like this.

Multiple examples were performed with different sets of target properties to test the
validity of our Tabu Search algorithm. Explanations of tleesamples, as well as a list of

candidate monomers, are given in Chapter 6.

Conclusions and recommendations for future projects are provided in Chapter 7.

In the appendices, a more thorough explanation of experimental procedures is given. In
QSPR devalpment, experimental consistency is important. If the reader wishes to add to
the experimental data provided in this research, it would be advised that they follow the
experimental procedures provided here for consistency. The appendices also provide a
marual for the Polymer Designer program designed by Eslick (Eslick, 2008) which was
used extensively in this project. This manual should be condidaraddendum to Eslick
(2008) as this manual only explains how Polymer Designer can be modified in order to

solve other design problems involving polymers or other molecules.



Chapter 2.

Background

This Chapter provides backgroumdbout the experimentgerformedo collect property
data, theQSPRghat werecreatedo predict these properties for the entire space of
metacrylate monomeyandthe computational molecular design framework which

utilizes thes&®@SPRg0 design a monomer which minimizes the objective function.

2.1 Experimental Background

This section provides background to the experiments done for propextgdlaction, as

well as background in theynthesiof the composite resins which are being studied in

this project Experiments werperformedo collect property data for percent solubility,
percent water sorption, storage modulus, rubbery modahgviscosity. These

properties were chosen as they can describe the behavior of the resin both before and
after polymerization, and can be useddpresentlinical lifetime of the resin. Data was
collected experimentally, rather than through literaturearebe to improve consistency

of results. For example, the value of the recorded glass transition temperature can be very

different depending on how it is measured (Bicerano, 19963.would make it



impossible for a QSPR, depending on only the structutfeeamolecule, to accurately

predict the measured property.

2.1.1 Sample Preparation

Dental resin composites are composed of monomers or comonomers and a photoinitiator,
such as camphorquinone (CQ). The most common monomers used in dental resin
composites arg,2-Bis[4-(2-hydroxy-3-methacryloxypropoxy) phenylPropane

(BisGMA), ethoxylated bisphenol A glycol dimethacrylate (BiSEMA), and urethane
dimethacrylate (UDMA) (Sideridou, 2001). Other methacrylatash as hydroxyethyl
methacrylate (HEMAYan be add®to change certain properties of the final resin

(Collins, 1998)

The resins are polymerizérough light curing. A common photoirator system is the

use of CQ as a photosensitizer, and Hdifethylaminoethyl methacryla(®@MAEMA)

as a reducing age(®ideridou, 2001). The photoinitiator system used in this study is CQ
as a photosensitizer, ethyINiN-dimethylaminobenzoate (EDMAB) as a reducing agent,
and the hydrophilic iodonium salt 2¢dichlorophenclindophenol (DPIHP)This system
gives a largedegree of polymerization than the standard photoinitiator system when the

resin is polymerized in the presence of wateouassier, 1993(e, 2009).

Dental resins are polymerized through the use of a curing light at the appropriate

wavelength. The phosensitizer absorbs photons of a certain frequency range, exciting



the molecule to an activated triplet state. The most common photosensitizer, CQ, absorbs
photons at 468 nanometeos blue light (Lovell, 2001). Once in the triplet state, the
photosensitier reacts with the reducing agent to form an aminoalkyl free radical. An
aminoalkyl free radical breaks the metimyl double bond group in the methacrylate to
start the chain initiation for the chain growth polymerization. Because BisGMA and

many of theother monomers used in the making of dental resins are dimethacrylates,
crosslinking occurs (Cook, 1992). The purpose of the iodonium salt is to act as the
reducing agent in the hydrophilic regions for resins cured in ywatech he

hydrophobic amia reducing agent cannot rea¢Yie, 2009).

Resin samples for experimental testing@epared byuring the resin in a mold so that

the polymer sample will be either a beam, rod, or a film, depending on what properties
are beingleterminedSideridou, 2008Podgorski, 2010). In the experimepesrformed

in this study the beam samples were cured in rectangular glass beams with dimensions of
1mm x Imm x 15mm. Samples for mechanical testing fegreed agound glass beams

with dimensions of Imm x 15mm.

2.1.2 Storage Modulus and Rubbery Modulus

Storage modulus is a measurement of energy steeggability The rubbery modulus is
the storage modulus at temperatures higher than the glass transition temperature, when
the resin is rubbery. A high storage modulus coresléd a high tensile strength (Bosze,

2006), so a dental resin composite with large storage and rubbery modulus is desired.



Storage modulus is measured using dynamic mechanical analysis (DMA), a technique
widely used to study the viscoelastic behaviopalfymers (Brostow, 2010; Deshayes,
2011; Ge, 2010). A sinusoidal stress is applied at a constant frequency, and the resulting
strain is measured. For viscoelastic materials, there will be a phase difference between
stress and strain. This gives the foliogvequations for strain and stress:
e=g,sin(tw)

s =5, sin(tw+d)
where w is the frequency of the straih,is time, andd is the phase lag between stress
and strain in rdians . For purely elastic materials there is no phase difference, so delta is
zero. For purely viscous materials, delta would be 90 degrees (Meyers, 1999). The
propertyt a ncdanibe used as a measure of how viscous a material is, with a value of

zero bemg purely elastic and a value of one being purely viscous (Ferry, 1980).

The dynamic modulus is the ratio of stress to strain. The dynamic modulus can be divided

into real and imaginary parts such that

E = E+E"
E'= 20 cogd)
0

s
"= sin(d
o sin(d)

whereE is the dynamic modulug @s defined as the storage modulus, Bndidefined

as the loss modulus. The storage modulus is a measurement of energy storage, as opposed

10



to the loss modulus which is a measurement of energy digsilue to viscous forces

(Menard, 1999).

In this study, the storage modulus was measured’&tt87simulate oral conditions, and
the rubbery modulus was measured at’C7%vell above the glass transition temperature
for the systems being studiethe strain frequency was 1 Hz for both the storage and

rubbery modulus.

2.1.3 Water Sorption and Solubility

Water sorption is a measure of how much water the resin absorbs. The presence of water
in the polymer network may lower mechanical properties by actingpkstcizer, or by
interferingwith hydrogen bonding between monomers (Park, 2009). A resin with high
solubility is of concern as the leaching of molecules to the surroundings can cause the
composite to break down over timhus esin composites of low Wer sorption and

solubility are desired. The American Dental Association requires that water sorption be
lessthanorgual to 40 €g per cubic millimeter,

7.5 €g per cubic millimeter (ADA, 2003).

The ADA has a standardized test for determining water sorptidis@ubility. The

initial massof adisk-shaped resin samplemeasired (m,). The samplés soaked in
water for seven days at ®7to simulate oral conditions, and the saturated mass is
measuredify,). The samplés thendried inadesiccator at 3 and the mass is recorded

again(m,). The solubility is calculated as

11
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and

Wep = m,-m

is water sorption (ADA, 2003; Dhanpal, 2009).

Some studies instead weight the water sorption and solubility equations withnaisisl
instead of volume (Sideridou, 2004; Park, 2009). This study does the same, which is not
an issue as the HEMA/BisGMA control sample passes the ADA standardized test, and
finding a resin with superior properties to the control will result in a restwiliaalso

pass the standardized test (Malacarne, 2006; Park, 2007).

2.1.4 Glass Transition Temperature

The glass transition temperature is the temperature where amorphous polymers transition
between being hard and brittle beingsoft and pliable. Above thglass transition
temperature, thermal energy is high enough that long polymer chains can move around
each other in random micirownian motion, making the polymer appear rubbery.

Below the glass transition temperature the polymer chains can only makessiya

motions, making the resin appear hard (Fried, 2003). A dental adhesive resin near its
glass transition temperature would be pliable and the dental restoration would not be
secure. Dental adhesive resins with a glass transition temperature sigiyitiogher

than body temperatuagedesired.

12



The glass transition temperature of the resin can be measured using differential scanning
calorimetry (DSC). A sample is placed in a temperature controlled chamber with a

standard, and the temperature isyoincreased. The DSC measures the rate of energy
needed to slowly raise the samplebs temperat

function of temperature can be calculated (Dean, 1995).

Cp _l/\

Temperature

Figure 2.1- Glass transition temperature

During the glass phase transition the heat capacity incrasaescond order transition;
a continuous transition with no latent heat (USM, 2005). The glass transition temperature
can be read fro the DSC results as the median temperature where this heat capacity

change i s o0ccur Expenmgentél dataNam be fdund inth@ é&ppendices.

2.1.5 Viscosity

The viscosity of the unreacted resifects how wellacomposite can bond to the tooth
surface. If the viscosity is too higthe composite does not bond to the tooth surface well,

whichleavesroom for increased levels of bacteria to colletthin the gapcausing
13



decay. During polymerization, some parts of the resin solidify before others.
Polymerization shrinkage occurs, and the parts of the resin which are bonded to the
surface will move away, leaving a gap. If the resin has a low viscosity, the still liquid
resin can then flow into these gaps before polymerizing, decreasing the gap size
(Spencer, 2010pental resin composites with viscosities that are lower than the standard

are desired.

v

v

fluid —> Ll
Ly

Figure 2.2 - Velocity gradient for a cone and plate viscometer

Viscosityis commonlymeasured using a cone and plate viscometer. A thin layer of resin
is placed between a flat plate and a catevery shallow angle. As the cone rotates, the
viscosity of the resin causes resistance to the rotation. The force that the viscomete
applies to rotate the cone is converted to torque by dividing the force by the area of the
plate (Barnes, 1993). For straight, parallel, uniform flow, the viscosity is proportional to

torgue using the equation

Ell‘:/]&

A Hy
where u is the rotainal velocity, and y is the position is the axial direction. For a
Newtonian fluid, the velocity gradient in the axial direction is constant, so it can be
calculated by dividing the rotational velocity of the cone by the thickness of the resin

layer. Thepurpose of using a cone and plgeametry rather tharvo flat plates is that
14



using a cone keeps the velocity gradient roughly constant in the radial direction (Barnes,
1993). In this studythe viscosity was measured at a range of shear rates to ctmdirm

the resins are Newtonian fluidsxperimental data can be found in the appendices.

2.2 Molecular Descriptors

In order to design a modihking molecular structure to physical and chemical
properties of interest, a numerical representation of a mole@ilestructure is required
Molecular descriptors provide a way to describe the structure of a molecule
mathematically. Examples of simple molecular descriptors are molecular weight or
number of rings. This section provides background for molecular gessrand how

they are calculated.

The group contribution method is a technique used to predict properties of molecules.
Group contribution uses the idea thamber and type dtinctional groupsn a molecule

is proportional to many physical properti€oup contribution has been used in polymer
design (Satyanarayana, 2008) and in the UNIFAC method to calculate activity

coefficients for equilibrium (Fredenslund, 1975).

The Joback metho@oback, 1987)ses group contribution to predict eleven propsrtf
small organic molecule§ he Joback method uses a very simple method of group
assignment, making it useful for users with limited experience in chemistry. Rigure

gives an example of calculating the boiling point with the Joback method.
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=CH; 15.18
== 24.14
ZHs 23.58
=io=0 FE75
ZHz 22.80

-O- fnonringy | 22.42
ioH {alcohol) | 92.88

T, =198+1818+24.14+ 2358+ 76.75+ 23 2288+ 2242+ 9288 @30371K

Figure 2.3 - Calculating the boiling point using the Joback method (Joback, 1987)

Marrero and Gan(2001)expanded on the Joback method and other simple -group
contribution methods for pperty prediction. The Marrero/Gani group contribution
considers three levels of molecular groups. In the first group the entire molecule is
described similarly to the Joback meth8dme poperties osmall organianolecules

only need to be described ugithe first group. The second group is used to better

describe polyfunctional compounds and differentiate between isomers. The third group is
used to better describe polycyclic compounds (Marrero, 2002). The second and third
groups do not need to describe entire molecule, and can overlap. The Marrero/Gani
group contribution method has shown to be more accurate than the other simpler group

contribution methods (Marrey@001).
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Figure 2.4 - The molecular graph for HEMA

Many molecular descriptors are found by examining the molecular graph, where each
vertex represents an atom and each edge represents a bond. When calculating descriptors
for organic molecules, the hydrogen malles are often excluded in the molecigeaph,
because the number of hydrogen atoms is implied through valBEmeyis called a

hydrogen suppressed graph (Bicerano, 2002; Eslick, 2009). Molecular descriptors that are

found using the molecular graph aedled structural descriptors.

A structural descriptor similar to the group contribution that has been used in molecular
design is the Signature descriptor (Weis, 2010). The Signature descriptor describes the
local neighborhood of a molecule starting framoot atom. The Signature extends

outward from the root atom and records the atomic bonds present. The number of steps
outward is equal to the predefined heidhiThis is repeated for all the atoms and

summed to give the molecular Signature,

's =8 "s(c)

clv
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where"s is the Signature descriptor of height ¢ is an atom in the molecule, and the

setVis all the atoms present in the molecule (Brown, 2006). A héi@ignature would

be a list of the atos present in the molecule.

N o N

Figure 2.51 Bonds present in different heights of the Signature descriptor from a root carbon atom.

Carbon-hydrogen bonds are not being represented.

Figure 25 shows one step in finding the Signature descriptor for HEMA. The hgight
atomic Signature for the root carbon atom would be [C]([C],=[O],0). This des¢hibes
identity ofthe root atom, the atomehich the root atom is bonded to, and theaymf
bonds.Computingthis for theentiremolecule gives a table of the atomic Signatures
present with the number of times it occurs. For example, the Heigfioimic Signature

[H](C) occurs seven times in HEMA. Similar to the group contribution metied, t
number of times an atomic Signature occurs can be correlitethe desired properties.
The Signature descriptor has been used to design solvents (Weis, 2009), and polymers

(Brown, 2006).
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Anotherset ofstructural descriptewhich hare been used ipolymer desigrare

Randi c0s wmdcestRardit, 1975).tCgnnectivitpdexcontain information

about the amount of branching in the molecule and the oxidation stakesnon

hydrogen atomby examining the paths of the molecular graph. Biceresed zeroth

order and firsorder connectivityndexto correlate a large number of physical properties
for straightchain polymers (Bicerano, 2002). Raman and Maranas were the first to use
connectivityindexfor product design (Raman, 1998). Connectiindex have been used
successfully in the design of alkenes (Nelson, 2001) ionic liquids (McLeese, 2010) and
polymers (Camarda, 1999; Eslick, 2009). This research uses connantiexys its

primary set of descriptors.

The simple and valence connedlf indexare calculated from the simple atomic
connectivityindexand the atomic valency connectivibdex The simple atomic
connectivityindex U0, i s equal -hydoogen atembonedrobagiven of non
basic group, which is also the vertex dagfor the vertex in the hydrogsappressed

molecular graph. The atomic valency connectiingexis found using

_Z"- Ny
Z-72"-1

where Z is the number of valence electrons around the atom, Z is the total number of
electrons around the atom, aNgdis the number of hydrogen atoms bonded to the atom
(Bicerano, 2002). Theth order simple and valence molecular connectivitiex are

given by
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c= a
ki n-lengthpaths ' O 0:
il atomsn k
n v .. 1

ki n—Ienagthpaths / O ai"’

il atomsn k
wherek is all of the paths of length In graph theory, agth is a sequence of vertices
where the next vertex is always adjacent to the previous vertex. Two vertices are adjacent
if there is a bond connecting them. The path length is equal to the number of edges in the
path, so a zerothrder connectivity indexrdy examines the individual atoms and can be

computedusing the following equations (Bicerano, 2002).

0

. 1
c= —
il baggroup\/ﬁi

= &

1
” f / v
il basigroup q

Table 2.1- Simple and valence atomic connectivityindex for basic groups used in this research

d a’ d d’

C 4 4 = 3 4

CH 3 3 = 1 6

CH, 2 2 o) 2 6
CHs 1 1
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Figure 2.6 - The molecular graph of HEMA with the simple atomic connectivity index for each vertex

Figure 3 shows the molecular graph of HEMA with the simple atomic connedtigiy
for each vertex shown. The zeragtder simple connectivitindexwould be equal to

0 1.1 1 1 1 1 1 1

c +—=7.28

1

Sttt —+—
VI V3 V1 V3 V1 V2 V2 V2 N1
after summingver eachatom. The firsiorder simple connectivitwdexwould be equal

to

11 1 1 1 1 1 1 1
+ + + + + + +

c= =418
V133 V133 /333 J133 233 232 232 231

after summing each-fiath, or edgeThe connectivity index is an extrinsic property so it
is afunction of the molecular weight of the molecutescaled or intrinsic,connectivity
index, 3; can be found by dividing by the nier of paths (Bicerano, 2002). Both

intrinsic and extrinsic connectivity indices are used in this project.

This project tudies crosslinked polymers. The degof crosslinking has a gredteet
on the polymer properties, and many descriptors do not account for crosslinking.

Bicerano correlated the change of glass transition temperature to crosslink density in

crosslinked plymers (Bicerano, 1996). Researchers have shown crosslinking affects the
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pol ymersdé properties (Matsui, 1999, Manu,

property prediction for randomly crosslinked copolymers (Eslick, 2009).

The Polymer Desiger program used in this research uses a novel method to account for
crosslinking (Eslick, 208). The monomer concentration and degree of polymerization

are predetermined, and a large random copolymer is randomly generated. The polymer is
divided into an iner core and an outer buffer. Crosslinked polymer networks are

generally treated as being infinite, but polymer graphs need to be finite. This means the
chain has to be cut. The core and buffer technique separates the core from the chain cut
by putting a bffer region ofmonomer groups between. The descriptors are calculated
based on the molecules in the core, with some buffer molecules being used depending on
the type of descriptor being calculated. The size of the core and buffer region can be
adjusteddepending on the project. A larger core gives more consistent descriptor
calculations, as there is randomness in the placement of monomers and crosslinks. A
larger buffer region further reduces the effect of chain cuts. However, larger polymer
graphs catbe very computationally expensive, especially during CMD when thousands

of candidate monomers might be generated (Eslick3)200
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H = HEMA
B = bisGMA
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Figure 2.7 - The core and buffer region for a polymer graph. (Eslick, 208)

Many other molecular descriptors exist which can be used to describe polymers.
Todeschini and Consonni provided a comprehensive list of molecular descriptors which
could be useful for this work in this project (Todeschini, 2000). The list of molecular
degriptors, and the methodology of how they are calculated within the CMD framework,

is provided in Section 3.

2.3 QSPR Development

This section describes the techniques used to develop and anal@?®RRaused in this

project.
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2.3.1 Model Creation

This projectuses multiple linear regression in the developmeQ®PRYDraper, 1966)
Non-linear QSPRswverecorrelatedhrough manipulating the response and predictor
variables such that linear regression could still be used. For example, the natural log of
the respnse variable can be taken, or the response variable could be multiplied by a

predictor variable before linear regression is done.

2.3.2 Model Selection

Choosing between models of different sigasmber of descriptors$ an issue in QSPR
development. Modellmice involves finding a balance between bias and variance.
Choosing too few descriptors leads to high bias, or underfitting. Bias is the difference
between the predicted value and observed value. Choosing too many descriptors leads to
high variance, or aarfitting. Variance is a measure of how sensitiventioglel is to the

original data A model with high varianceron't be able to predict the properties of

molecules that are outside of the original d&allinaria, 2010). There are numerous

methods thatry to find the proper balance. This section describes some of these methods.
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Figure 2.8 - A model with no bias but high variance

Figure 2.9 - A model with no variance and high bias

The coefficient of determination?, canbe viewed as a model selection technique. The

coefficient of determination is defined as

) a- (YI - Yp,i )2
r<=1- —a (Yi - \_()2
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whereY is the observed valu¥, is the predicted value, andis the average observed
value(Draper, 1966)The problem with usintf for model selection is that it only takes
bias into account. Adding more descriptors will always increasehich leads to
overfitting and high variance. However, ttfevalue can be used to determine what the

best model is of a specific size.

A method for comparing models of different sizeMelowsdCp (Mallows, 1973).
MallowsdCp addresses the problem of overfitting by putting a price on adding more
descriptors. Br a model withP descriptors chosen from a poolkodescriptorsCp is

equal to

a (Y| - Yo )2

i=1 p=k
whereY is the true value of the propert; is the predicted value, afdlis the number of
data points (Wasserman, 2004). This equation could bgihof as

Cp = Error + Complexity of Model.
Models with values o€p roughly equal td are ideal, lowering variance while not

dramatically increasing biaM@llows, 1973).

Another method for comparing modelskifold crossvalidation. Crossvalidation is used

to assess how well a model will be able to describe outside data points, or data that was
not used to develop the model. The data is first randomly divide& grmups of

roughly equal size. For each grdkighe model is reevaluated leaving tlie data points
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in k. Then the new model is used to predict the data poikisaimd the error is used to
calculate the crosgalidation coefficienQ? (Wasserman, 2004). The val@ has an
upper bound of?. Values ofQ? close tor? means the model bdittle variance, because

changing the initial data sdbes notffect the overall error.

The crossvalidation coefficient is calculated using the predicted residual sum of squares

(PRESS) equal to

K
PRESS=3 & (v - Y.

k=1l k
wherek is a test sety is the observed value, ang} is the predicted value. The value of
Q?is then equal to

Q =1 PRESS

aal-vf

k=1 if k

whereY is the average observed value with ktieset omitted (Picard, 1984). Because
the groups ok are randomly selected tlkefold crossvalidation should be repeated
numerous times to find an average. The following graph shows how the randomaess in
group selection can increase error. If the data points circled were selected to be in the
same group the value BRESSvould ke very high. A widely used variant is the Leave
oneoutcrossvalidation, where is equal to the number of data poi(fscard, 1984)
Leaveoneout is computationally expensive because of the number of different models

that need to be created. HowevegJeoneout does not need to be repeated because it

eliminates the randomnesslefold crossvalidation.
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Observed Y

Predicted Y

Figure 2.10- k-fold crossvalidation should be repeated numerous times to find an average

Thesignificance value of each correlation coefficient can also be calculate-vithae

is the probability thabne can obtaiwill get similar or better correlation results if there is
no relationship between the predictor and response variable. Genéth#yp-value is

less than 0.05 or 0.01 then the coefficient is signifi(afgsserman, 2004Models that
pass the criteria for the correlation coefficigvigllowsdCp, and croswvalidation may

still have coefficients that are not statistically sigrafit.

2.3.3 Error Analysis

A concept within statistical analysis whibas not been used extensively in molecular
design is the prediction intervdR@ughton, 201l The prediction interval is similar to a
confidence interval, but for predicted values. Theljteon interval depends on the error
in the original model, and on how different the predictor variables for the new

observation are compared to the original variables. If the candidate molecule is very
28



similar to the molecules used to develop the QSR&ptediction interval will be

smaller. The prediction interval is equal to

° t.91/2,n-(k+1) \/E(l-i- le (x' x)_lxp)

wheret is the critical value of thedistribution at the desired confidence level and

degrees of freedon#? is the mean square errapis an array of descriptors for the new
observation used in the model, aXié the matrix of descriptors of previously observed
data points (each row is a different observation, eakthmoois a different descriptor)

(ReliaSoft, 2008)

After the moécular design algorithm finds a solution, the prediction interval can be
calculated for each property. The results can be presented as a range in which the

property lies in, instead of a single value.

2.4 Molecular Design and Formulating the Design Problem

This section provides an overview of molecular design, molecular design techniques, and
the formulation of the design problem. Computational molecular design is the use of an
optimization method to design a molecule or set of molecules which fit a sedirafdde
properties (Gani, 1998). CMD can be used to greatly decrease the resources used in
product design compared to the t@adderror approach. Using CMD, a list of candidate
molecules is created which should have the desired properties, making thenerfzdr

synthesis more efficient (Lin, 2005).
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CMD requires the solution of both the forward and backward design problem. The
forward design problem is the prediction of
structure. The backwards design problem idifig a molecule which fits a set of desired

properties (Edgar, 1999).

The forward design problem is usually solved through the use of either group
contributionadditivity models or through quantitative structure property relationships
(QSPR$. Group contibution has been widely used in molecular design, and uses the
properties of atoms or groups to predict the properties artieemolecule (Gani, 1991;
Marrero, 2001; Friedler, 1998; Constaninou, 1994; Karunanithi, 2005). A major problem
with the use bgroup contribution to describe polymerghsitit does not take into

account the order of threonomenmepeat units (Camarda, 1999). More recently, the use

of QSPRswith topologicalindexas structural descriptors has been used successfully to
describe plymers and other molecules (Camarda, 1999; Raman, 1998; Visco, 2002).
QSPRsare developed by regressing property data versus structural descriptors, such as
the Wienerh d e x , Randi ' s nmdéxecsimpladescriporalike ct i vi ty

molecular weight, to form an empirical model.

Once the forward design problem has been solved, the backwards design problem needs
to be formulated. The objective function definessbeof target properties, and has the

non-linear general form

P Q

i target ~ i predicted &)

P

i target -

~2

f=a s

il properties
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where P

i,predictec

is the value of propertypredicted by th€QSPRs P .., is the desired

value of property, and s is a scaling factor used to adjust the importance of each

property (Eslick, 2009). As the predicted properties approach the target values, the
objective function approaches zero, so the objective function should be minimized. A
disadvantage to this form tfe objective function is that properties can not be minimized
or maximized. However, this is han issue aQ SPRsshould not be used to predict
properties outside of the range of data used to formulate them (Eslick, 2008). The
objective function can beritten in other forms, perhaps in linear or convex forms to
simplify the solution methodhis is needed for some determinisiftimization
techniquesThis is not necessary in this project, as the Tabu Search algorithm can solve

nortlinear, norconvex poblems.

Beyond the objective function, the design probleohas constraints. One constraint

that must always be present in molecular design is that the molecule has to be feasible;
thevalency of each atom is satisfied, and the moleculartsteis connectedOther

structural constraints can be present, such as the exclusion of unstable peroxide groups,
or a minimum and maximum molecular weight. Candidate molecules nbedhecked

for feasibility before the objective function for that molecdlealculated. If a molecule

is infeasible it should be rejected immediately. In this project, most of the constraints are
implied in the search algorithm; candidate molecules are changed such that an infeasible

solution can not be produced. This is desatiburther inSection5.2.
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Constraints can also be accounted for by using the penalty method. The penalty method
can be used toonverta constrained optimization problem into an unconstrained
optimization problem, simplifying the solution while stilvgig the same solutions. This

is done by adding a penalty term to the objective function (Viswanathan, 1990). When
the constraint is not violated the penalty term is equal to zero, and when the constraint is
violated the penalty term becomes an arbitrdaitge value so that any infeasible

solutions will not be picked as the best solution. In this project, the constraint of having
no peroxide groups present was accounted for using the penalty method. A penalty term
was added to the objective function, cbog the number of peroxide groups present and
adding a thousand to the objective function for each. Good objective functions in this
project are less than one, so a molecule with a peroxide group present will never be

presented as a candidate moleculas Téchnique islescribed further iection 5.2.

The design problem can be solved using either deterministic or stochastic search
algorithms. A deterministic method aims to find a global minimum to the objective
function, and does this by determiningatlthe nextandidatesolution is by examining
the current solution. It acts predictably, so that with the same initial solution the
algorithm will always take the same route to the same final solution (Horst, 1996). A
simple example of a deterministic rhetlfor this type of combinatorial optiization
problem is BranctandBound Deterministic methods have been successfully used to
solve molecular design problems previously (Sahinidis, 2004; Maranas, 1996). A
stochastic method uses random elements inlgogidom, and aims to find good near

optimal solutions, which wilhot necessarily be the global optimum. Deterministic
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methods have many problems when solving large design problems. Finding a global
optimum can be prohibitively computationally expensiva,(2005). Also, th€QSPRs

have limited accuracy, so there is no guarantee that the global optimal solution will
actually be superior to the neaptimal solutions thaa stochastic methoaiould provide.
Multiple runs of a stochastic method will resultatist of different neaoptimal

solutions. This allows the use of other criteria, such as cost or ease of synthesis, to help

rank the final candidate molecules.

An example of a stochastic method that has been used in molecular design is the genetic
algorithm. Genetic algorithms have been used to design linear polymers
(Venkatasubramanian, 1994), model proteins (Konig, 1999)amnded extensively

outside of molecular design (Jeon, 2010; Layric, 2005). Genetic algorithms mimic natural
evolution by albwing the best known solutions to breed with each other, resulting in
offspring solutions which should have solutions superior to the parent solutions.
Candidate solutions need to be described in strings, called chromosomes. At each
generation the most folutions are stochastically selected to breed, being combined and
possibly introducing mutations, creating a new generation of solutions. The least fit
solutions are abandoned, mimicking natural selection (Banzhaf, 1998; Goldberg, 1989).

This is repeatedntil a satisfactory solution is found.

Another stochastic method which has been used more recently for molecular design is the
Tabu Search algorithm. Tabu Search has been used to design catalysts (Lin, 2005),

crosslinked polymers (Eslick, 2009), hagbeised to solve the traveling salesman
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problem (Knox, 1994), as well as many other applications. The Tabu Search algorithm
relies on a memory of previously visited solutions to avoid revisiting areas of the solution

space thahavealready been explored.

Tabu Search starts with an initial solution. At each iteration, the algorithm can make a
specified number of moves away from the current solution. These rmorrespond to
changing atoms or groups in the molecule. Solutions that can be reached wsthin th
specified number of moves make up the neighbors of the current solution. These moves
are stochastically chosen, and a subset of neighbors are evaluated. After a possible
solution is evaluated it is added to the Tabu list, and solutions on the Takill hsit be
revisited. The neighbor with the lowest objective function is chosen as the new current
solution, and the next iteration begins. The inclusion of the Tabu list guarantees that
previous solutions will not be revisited, which could occur if & Iscal minima, saving
calculation time. The Tabu list also encourages searching in more divers¢gEatieks
2008) The algorithm isontinueduntil a stop criteria is reached, possibly afteset

number of noAmproving iterations.

The length of th Tabu list is limited to reduce computation and memory usage, and to
allow solutions to be revisited if the search is proceeding in a different direction (de

Werra, 1989).

Many additions can be made to the basic Tabu Search algorithm. One is theoauge of |

term memory to store a list of good previous solutions, highlighting areas of the solution
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space that might have better solutions tieate nobeen found. The algorithm can then
revisit these areas. This is called intensificaf@Gfover, 1990) Localintensification can

be used by limiting the number of moves the algorithm makes when already at a good
solution. Thisforces the algorithm to look more thoroughly around areas where-a near
optimal solution may exist. Diversification can be used by rengnthie algorithm at a
different starting point, allowing the algorithm to explore pafthe solution space that

have no been evaluateGlover, 1990)

There are many adjustable parameters in Tabu Search, siheleagyth of the Tabu list,
thenumbe of moves, andhesize of the subset of neighbors being evaluated. The value

of these parameters can make a substantial difference to the quality of solutions found, or
the computation time needed to find the solutions. The optimal values of thesetpesame
depend on the size and type of design problem being séleeéxample, in this project

using a larger possible step size of 8 improved the average objective function

significantly compared to a smaller step size of 2.

The rest of this thesis de#z#s how this specific project was implemented. The

following Chapter describes the molecular descriptors used and how they were

calculated.
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Chapter 3.

Calculating Descriptors

Methods used in calculating the molecular descriptors in Polymer Designer areatkscrib
in this section. The main focus in this project was the use of conneatidéy, which

require a path finding algorithm. Connectivitylexhave been successfully used to
createQSPRdor polymer systems before (Bicerano, 2002). Polymer Designer uses
subgraph isomorphism to find chemical substructures within the monomer or polymer,
which can be used in group contribution techniques (Eslick, 2009). Methods for
calculating 100% crosslink densityimber of rotationallegrees of freedom, and

molecular weght are alsaliscussedn this Chapter.

3.1 Group Contribution and Subgraph Isomorphism

The subgraph isomorphism algorithm (Ullmann, 1976) is used to identify the molecular
substructures for the group contribution metHod also used in other descriptor
calculations to find functional groups, such as number of vinyl groups for calculating

crosslink density (Eslick, 2009).
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A subgraph is a graph that is contained within a larger graph. Two géaqindH are
isomorphic if you can apply a bijection to thertex sets

f:V(G)- V(H)
such that an edge connecting vertiopesdv in G exists only if an edge connecting
verticesf(u) andf(v) exists. More generally, if the only difference between two graphs are
the names of the vertices and spatiat@haent, then they are isomorpfWest, 2001)

Figure 3.1shows two isomorphic graph® show that it is not immediately obvious when

two graphs are isomorphic.

Figure 3.1 - Different representations ofa cube graph Aspnes, 2010)

The subgraph isomorphism algorithm is used to find how many subgraphs exist of a
certain functional group or group contribution substructures within the monomer graph.
Finding doublebonded oxygens in the molecular graph of HEM used as an example.

These graphs are shown in Figure 3.2 and Figure 3.3.
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Figure 3.217 HEMA Graph

1=0

Figure 3.3 - Double-bonded oxygen subgraph. The atorfabeled as '1' is a dummy atom

The original implementation of the algorithm Ullman(1976)was not made with
molecular graphs in mind. Atoms and bond types had to be added so that the hydroxide

or doublebonded carbowould notbe found by the algorith.

In group contribution, firsbrder groups can not overlap. The algorithm was modified so
that vertices can be labeled as already beitigin a subgraplso that atoms will not be
included in more than one substructure. For second andattdest group, this is not

necessary as they can overlap (Marrero, 2001).

3.1.1 Connectivity Indices and Path Finding

The calculation of connectivitypdicesuses a path finding algorithm. For example, the
third order connectivityndex( ¢*) needs ai$t of all paths of length three. The path

finding algorithm used in this project is a breadth first search (West, 2001). The
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algorithm builds a path tree starting from a root vertex. The algorithm records all vertices
that are one edge from the root, titlee paths of length one. The algorithm continues by
finding the vertices adjacent to each of these vertices, and so on. A vertex is not counted
twice if a cycle exists. The following figure gives an example of a path tree where each
number is the ID ofhe atom. The path finding algorithm is repeated for all atoms as the
root vertex. This will find each path twice; backwards and forwards. This was fixed by
only allowing paths where the ID number of the head vertex is larger than that of the tail

vertex Eslick, 2009).

Length Paths
1 14 162 18°

2 13%17° 19° 20" 21

o

3 1f5 ﬁzlf 2fl¥ﬁs-2
4 1ﬁ;ilﬁl* 2ﬁ;5ﬁ5;6
5 10710 24 ¥ 247"

Figure 3.4 - Path tree from the breadth first search (Eslick, 2009)

The simple ¢) and valency ¢') atomic connectivityndexneed to be calculate The

atomic connectivityndexwere precalculated for each type of atom needed in this

project. The algorithm | ooks at the atomds h
atoms anassignsatomic connectivityndexusing anf-thenelsestatement. fie

connectivityindicesare then calculated using the following equations (Bicerano, 2002).
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The connectivityndicesaresizedependent descriptror extrinsicSome properties
may correlate better withsaizeindependentor intrinsic,descriptor, so a weighted

connectivityindexis calculated using the following equation

n

cn
X =—
N

whereN is the number of nehydrogen atoms.

The connectivityndexcan be calculated for either the singlenomer or a

representative piece of the polymer. Some of the paths will extend into the buffer region.

When this occurs, only a fraction of the pat
index This is done using the equation

n 1

c= a core
ki n-lengthpaths n / O OII
il atomsin k

wherenqqre is the number of atoms in the path that are in the core régsdick, 2008)

n

A mole average connectivitgdexcan also be easily calculated. The connectinitex
for HEMA and BisGMA are pre&alculated. The path fiting algorithm only has to be

usedon the test monomer, instead of the entire crosslinked polymer. When Tabu Search
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is beingemployed possibly thousands of large polymer graphs have to be created. This
can be very computationally expensive. Correlatisisgiless computationally
expensive descriptors should be chosen if they perform as well as those with the more

expensive descriptors.

3.1.2 100% Crosslink Density

The 100% crosslink density lke maximum numlbyeor crosslinks per repeat unit if the

monomers g randomly crosslinkedt is found using the following equation
CDlOO = a. %; (nv,i - 1)

wheren, is the number of vinyl groups of monomegandyx; is the mole fraction of

monomei (Eslick, 2009) This is the crosslink density if every double bond inrgyl

group is broken and become part of the backb®hes.is unlikely to occur physically,

though processing conditions can be altered and candidate monomers can be chosen to

increase degree of polymerization.

The number of vinyl groups can be foundhgsthe subgraph isomorphism algorithm
described previously. However, the number of vinyl graspsrmally prespecified prior
to the design phase&his limits the size of the design space, and therefore reduces

computation time
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3.1.3 Molecular Weight

The mdecular weights for each atom are stored in a database. Since the molecular graphs
stored are hydrogen suppressed, the number of hydrogen atorasoneedalculated.
This is done by examining the hybridization of each atom and its vertex degree to see if

any hydrogen atoms are bonded to that atom. The atomic weights are then summed.

3.1.4 Rotational Degrees of Freedom

Thenumber of rotational degreesfoéedom N, is used in the correlation for the ga
transition temperature. Biano (1996) found thdhe glass transition temperature for
randomly crosslinked polymers correlated well with how flexible the monomiéorishe
polymers used in this projedt,.; is equal to the number of single bonds not in a ring

plus the number of vinyl groups. The sudggn isomorphism algorithm is used to count

the number of single bonds. Bonds in a ring can be labeled as being aromatic so that they

are not counted as single bonds by the algorithm.

With the experimental data collected and the molecular descriptowsatattthe QSPRs

can be correlated. Chapter 4 summarizes the correlation results.
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Chapter 4.

Development of QSPRs

This sectiorprovides a summary of the QS&mRat were developed for this projesiso

described is how each model was chosen over other prospeuidels.

4.1.1 Physical and Chemical Properties

Properties of a set of methacrylate polymesere collected experimentally. A set of

fifteen methacrylate test monomers were tested at a range of concentrations. The dental
polymers were made from a mixturetbé test monomer, the methacrylate HEMA, and

the methacrylate BisGMA. HEMA and BisGMA are commonly used in dental polymers
(Ye, 2009). The concentrations tested were 25, 35, 45, and 55 weight percent test
monomer, each time with 45 weight percent HEMA #dralbalance BisGMAFigures

4.1and 4.2 showvthe test monomers used in this project.
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1,3-Butanediol dimethacrylate Ethylene glycol dimethacrylate
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Diethylereglycol dimethacrylate Triethylene glycol dimethacrylate
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Figure 4.17 Test monomers.

44



Aoy
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="

Pentaerythritol trimethacrylate
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Tetraethylene glycol dimethacrylate
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Figure 4.27 Additional test monomers

Correlations were made for viscosity, storage modulus, rubbery modulus, percent water
sorption, percent water solubility, and glass transition temperature. The storage modulus,
rubbery modulus, and glassnsition temperature would beightenedn an ideal dental
polymer, while water sorption and solubilfyr the polymerized materiatould be
lowered(Park, 2009; Fried, 2003; Bosze, 200be range in property data is limited,

and extrapolating ressloutside the initial data set would result in large errors. Because

of this, the target values for these properties were set to near the high or low end of the
experimental valuet.ow viscosity resins are desiré8pencer, 2010), but choosing a
viscosityvalue too low may make the resin difficult to handle or collect on the surface of

the tooth. A median value of viscosity was chosen.

4.1.2 Model Selection and Statistical Analysis

TheR statistics prograniR, 2007)was used to create the correlatioisghgmultiple
linear regregsn. The descriptor selectiggackageLEAPS examines all combinations
of descriptors up to a certain size using a braarathbound method (Lumley, 2004).
LEAPS provides the best subset of descrippoovidedfor the prediction of tl property,

along with a value ofallowsdCp andr? for each model.

The choiceof model size is firstdeterminedusingMallowsdCp. The first model
examined is the one with the smallbkillowsdCp. The purpose of minimizinylallowsd

Cpis to lower var@ance while not increasing bias too much. However, no single model
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selection technique is perfect, and sometiMalowsoCpis too sensitive towards
increasing bias. If a much smaller model gives a géodlue, then it may be best to
ignoreMa | | €masdachoose the smaller model. The statistical significance of each
descriptor is then calculated. If any descriptor does not pass the 5% level of significance

the model is rejected and the next best model is examined.

Once the final model is chosen for baroperty the confidence interval is calculated for
the observations used in making the model. This gives another view of how aeeatate
individual QSPR is

The descriptors used in these correlations are summaridedle 4.1

Table 4.17 Molecular descriptors used in creating correlations.

Molecular Descriptors

Cave Average nthorder simple connectivity index

Cav Average nthorder valence connectivity index

c, Nth-order simple connectivity index of test monomer

c." Nth-order valence connectivity index of test monomer

Xavg Average weighted ntbrder simple connectivity index

Xam Average weighted ntbrder valence connectivity index

Xy Nth-order weighted simple connectivity index of test monomer

X" Nth-order weighted valence connectivity index of test monomer
CD100 Crosslink density ofdlly crosslinked polymer
MW avg Mole average molecular weight of comonomer
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MW Molecular weight of test monomer

Nrot Number of rotational degrees of freedom

4.1.3 Viscosity

The val ue sCpardr’fotahe Visoosity éorrelations are given in Tablé
This is an example dallowsdCp being sensitive to increasing bias. The fifteen
descriptor model had low significance of some coefficients. The five descriptor model

was chosen because of its high significamceadequate?.
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Table 4.27 Statistical resultsfor viscosity prediction models. Red highlighted cells represent a model

which was rejected. The green highlighted cells represent the selected model.

Viscosity Model
# Mallows6Cp R®
1 936 0.68
2 654 0.78
3 480 0.83
4 297 0.89

L

6 105 0.96
7 96.4 0.96
8 72.8 0.97
9 65.0 0.97
10 57.0 0.97
11 42.9 0.98
12 39.5 0.98
13 29.1 0.99
14 19.9 0.99
16 17.7 0.99

Multiple linear regression gives the following model.
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m=(119)+(- 0.0935c;} +(0.10)c2,, +(- 0.217)cyS +(0.246)cy +(0.00354MW,
Figure 43 showsthe predicted viscosity versus the experimental viscosity and includes
the 95% confidence inteals. The 45 degree line does not represent the model, and is
only shown to aid the reader. Data points on the 45 dégeeeepresent data points
where the experimental value is exactly equal to the predicted value. Ideally the 95%
confidence values would overlap the 45 degree line for all points. The pahtothot

overlap could be due to additional experimentalresrdhe models could not adequately

describe that particular monomer.

Viscosity - 5 Descriptors

0.14

0.12 _
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s 01 /rf/f
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0.02 jﬂg’
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
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Figure 4.3 7 Confidence interval for viscosity
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4.1.4 Percent Water Sorption

The val ue sCparidrfstahevwatvssrtiorcorelations are given in Table
4.2

Table 4.3 - Statistical results for water sorption prediction modelsRed highlighted cells represent a

model which was rejected. The green highlighted cells represent the sekd model.

Water Sorption Model

# Mal | €ws o r

1 1494.06 0.13

2 1146.81 0.33

3 882.98 0.48

4 459.77 0.72

5 348.82 0.78

6 264.25 0.83

7 233.13 0.85

8 197.92 0.87

9 162.58 0.89
(o]l s [

11 60.45 0.95

12 16.19 0.98

13 12.9 0.98
BT

15 12.03 0.99
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The fourteen descriptor model had low significance for many of its descriptors. The ten

descriptor model was selected because of its high significance and adéquate

W, = 21180+ (94.82)cl,, +(76.4) L, + (- 22436)c2,,+(- 80.82)cy2 +(- 2385)cly,

avg

+(15966)cyz + (- 117665400, + (- 2612548)x,, +(144766)x . +(- 263015)x.;2

avg avg
Figure 4.4 showthe predicted water sorption versus the experimental water sorption and
includes the 95% confidence intervals. The 95% confidence intervals do not overlap the

45 degree line for only a few of the data points.

Percent Water Sorption - 10 Descriptors

13

12 +

11

Predicted

g o N 00 ©
_«&
o

Experimental

Figure 4.4 - 95% Confidence interval for percent water sorption

4.1.5 Glass Transition Temperature

The degree of crosslinking greatly affects the glass transition temperature. Crosslinking
restricts the movement of polymer chains, raising the amounewhti energy needed

for Brownian motion to occur (Fried, 2008)jultiple linear regression of the glass
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transition temperature data proved difficult, and research in the literature suggested a
nonlinear correlation would be necesséBycerano, 1996; Sclander, 1999; Bicerano,

2002).

Bicerano (1996) gives a correlation between crosslinked and uncrodgjjiaies

transition temperature for randomly crosslinked high polymers.

In this correlationn is the molecular weight in betweerosslinkswhich is the

reciprocal of our definition ofrosslink density. Theumber ofrotational degrees of
freedom N, can be defined for all types of polymers (Bicerano, 1996yever for our
purposes, with these monomers, isiisiply equal tathe number of single bonds that are
not in a cycle, plus the number of vinyl groups for crosslinksigce the actual crosslink
density is a function of processing conditions, the 1@08éslink denisy was used in

this expression.

A nonlinear transformation of the glass transition temperature experimental data was
performedo create a nonlinear model using multiple linear regression. The resulting

correlation replacethe T, (a ) term in the QSPR.
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Thevalueo f  Ma ICpamdr’$obthe glass transition temperature are given in Table
4.3 The ten descriptor model was chosen becauseithe@ | o we sCpvalMa | | ows 6

good significance for each parameterd had an adequate
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Table 4.4 - Statistical results for glass transition temperature prediction modelsThe green

highlighted cells represent the selected model.

Glass Transition

# Mal | €ws o r

1 64.5 0.48
2 35.8 0.64
3 23.2 0.71
4 13.6 0.77
5 9.9 0.80
6 8.4 0.82
7 2.9 0.86
8 2.1 0.87
9 1.2 0.89
10 -0.2 0.90
11 0.7 0.91

Multiple linear regression gave the following model.

5C:DlOO
Nrot

T, =

+

"O?@Q-”

+(2456)c2,, +(- 1153)c3

avg

+(- 9.

O)MW,,., + (- 662

3)clo +

avg

(- 2.

MW, +

avg

d(- 3826)+ (- 382)c? +(269)c? +(212)cy® + (- 326)cy?

(- 1909)CD,,)

Figure 4.5 shows the predicted glass transition temperature vergxgérenental glass

transition temperature and includes the 95% confidence intervals.
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Glass Transition - 8 Descriptors
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55
50
45
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Predicted [C]

25 35 45 55 65
Experimental [C]

Figure 4.5 - 95% confidence interval for glass transition temperature

4.1.6 Storage Modulus

When examining models for the stige modulus the intercept tended to not pass the 5%
significance level. A model without an intercept was fodnth. e v al uesCpof Mal | ov
andr?for the storage modulus correlations are given in Table 4.4. The four descriptor

model was chosen becaushia s t h e | o @pevalue and hdd highw s 6

significance.
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Table 4.5 - Statistical results for storage modulus prediction modelsThe green highlighted cells

represent the selected model.

Storage Modulus

# Mal | €ws 6 r

N

3.08 0.45

0.96 0.63

]

1.58 0.75

(&)

Regression gave the following model.

E'=(49005)c? +(- 367.81)c)° + (38885972)% +(29217)N,,,

avg
Figure 4.6 shows the predicted storage modulus versus the experimental storage modulus
and includes the 95% confidenceeirvals.Less experimental data was collected for

storage modulus than other properties.
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Storage Modulus - 4 Descriptors
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Figure 4.6 - 95% confidence interval for storage modulus

4.1.7 Rubbery Modulus

The same as with the storage modulus,wéramining models for the rubbery modulus

the intercept tended to not pass the 5% significance level. A model without an intercept

was foundT h e

given in Table 4.5. The three descoipimodel was chosen because it had the lowest

Ma | | €pygodd significance, and adequste

Table 4.6 - Statistical results for rubbery modulus prediction models.The green highlighted cells

represent theselected model.

Rubbery Modulus

Mal | €ws 6

53

0.83
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v al u e s Cpardr®fbrahe tultberysndodulus correlations are




3 1.59 0.88

4 2.89 0.91

5 4.01 0.91

Multiple linear regression gives the following correlation.
E, =(11027)CD,y,+ (67.75)ct,, + (- 4.624MW,,
Figure 4.7 shows the predicted rubbery modulus versus the expetimaatiery
modulus and includes the 95% confidence intertadss experimental data was collected
for rubbery modulus than other propertia#i.of the confidence intervals overlap thé

degree line for this model, which is ideal.

Rubbery Modulus - 3 Descriptors
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Figure 4.7 - 95% confidence interval for rubbery modulus
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4.1.8 Solubility

The val ue sCparddr’fitahe peccenssolubility correlations are given in
Table 4.6 The seven descriptor model was chosen because it had #stNéallowsd

Cp, passed the 5% significance level, and had an adeduate

Table 4.7 - Statistical results for solubility prediction models.The green highlighted cells represent

the selected model.

Percent Solubility

# Mal | €ws o r?

1 43.95 .094
2 18.83 541
3 10.96 704
4 7.81 .789
5 9.26 .798
6 5.98 .885
7 4.19 .947
8 6.02 .950

Multiple linear regression gives the following correlation.

W, = (12666) +(24.307)c?, +(- 5480)c, +(4820)c’2 +(0.294)c® +(- 77.14MW,

avg avg avg avg

+(0.294) 2 + (- 77.14MW, + (- 144N, +(- 6.94)cL°
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Figure 4.8shows the predicted solubility versus the experimental solubility and includes
the 95% confidence intervals. All of the 95% confidence irtisraverlap the 45 degree

line, which is ideal.

Solubility - 7 Descriptors
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Figure 4.8 - 95% confidence interval for percent solubility

4.1.9 Summary

Table 4.8 summarizes the correlation resiuisst of the QSPRs have strong correlations
greater than or approachingarrelation coefficient of 0.90'he correlation for storage
modulus can be impred through collecting more experimental dddso other types of
descriptors can be considered beyond connectivity index. Few QSPRs have been
correlated for crosslinked methacrylates, and were correlated with a smaller set of

experimental data (Eslick, 20).

61



With the experimental data correlated the backwards design problem can be solved.
Section 5 describes how the molecular design problem was formulated and solved in this

project.

62



Table 4.8 - Summary of QSPR results

Property Number of Descriptors R?
Gl st ;
Percent Water Sorption 10 0.93
Percent Solubility 7 0.95
Storage Modulus 4 0.70
Rubbery Modulus 3 0.88
Viscosity 5 0.%4
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Chapter 5.

Molecular Design

This section desdres the design problem formulation and implementation of molecular
design using th&abu Searclalgorithm. Section 5.1 gives a description of how the
problem would be solved using any type of CMD, while Section 5.2 gives details on how

the problem was sodd usingTabu Search

5.1.1 Problem Formulation

This projectseeks talesign a methacrylate monomer for the use in dental resin
composites. The goal is to find a monomer that will lead to resin composites that are
more durable that those currently on the miarkarget values for important physical

properties werselectedhat wouldgive an increaselifespan of the composite.
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Table 5.1- Target property values

Property Target Value
Storage Modulus [MPa] 3500
Rubbery Modulus [MPa] 40
Water Sorption [%)] 6
Viscosity [Pa s] 0.1
Glass Transition Temperature [C 74

Target values could only be chosen that are within the range of the experimental values
used in the development of tRESPRs Large values of storagand rubbery modulus

were chosen because the value correlaittsa high tensile strength (Bosze, 2006).

Water sorption was minimized because the absorption of water can lower the mechanical
properties of the monomer (Park, 2009). A median viscositychvasenvhich was lower

than the standard. Lower viscosity values allow the resin to imame tightlyto the tooth

while the resin is curing (Spencer, 2010).

The properties were measured experimentally at concentrations of 55, 45, 35, and 25
weight percat test monomer, each time with 45 weight percent HEMA and the balance
BisGMA. The CMDmethodologyasapplied atach of these concentrations. It would
be expected that one candidate monomer may perform well at one concentration but
poorly at another. Fute versions of the program could allow the evaluation of each

candidate monomer at every concentratimn,this added complexity could make the
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optimizationcomputationally expensive. Candidate monomers for each concentration are

presented in Section 6.

The candidate monomers dailt as combinations of a set different functional groups.
Each monomer is represented as an oligomer molecular graph in the program. The

functional groups were chosen bgnsidering algroups in the monomers used to make

the QSPRs
CHa
Xx 4’7% OH X < > ¥ CHa
X X
CHs Hx —LXx K —l—)(x
chain 1 chain 2 chain 3 chain 4
0] o]
e don |
X —0O —Xx ¥ /\Xx N )K/ ¥x ¥
chain 5 chain 6 chain 7 chain 8
(8]
¥x M CHsz
o
Xx K CHz
branch 1 terminal 1

Figure 5.1 - Functional groups. Xx represent dummy atomg(Eslick, 2008)

Each candidate monomer was forced to hamemethacrylate groupsePRoxide groups
were not allowegto avoid unstable molecules. Further stability criterion can be added to
future version®f the CMD methodFeasibility criteria also have to be met; valency must

be satisfied, and the molecular structure must be connected.
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The goal of thigroject isto designthe molecular structuref apolymerwith desired

propertiesThe objective function has the form

2
P Q

ap - .
f = - aol,target |,pred|ctedQ
a 5% Q

il properties Pi,target =

wheref is the objective functiorR; target iS the target value for properityP; predictedis the
predicted property, arglis a weighting factolWeighting factors of 1 were used for each
property because no data was available regarding the amount each property affected the

lifespan of the dental polymeFhe objective function is zero whemet predicted

properties match the target values.

TheTabu Searclalgorithmis used to find a solution that minimizes the objective

function. The following section describes h®abu Searcls implemented.

5.1.2 Tabu Search

Figure 5.2describeghe Tabu Searcalgorithm.All monomersconsiderediuringthe
optimization phasarecreated fronpredefined functional groups. The monomers are
represented as an oligomer molecular graph. Each functional group is represented by a
vertex, and bonds are represented ag®dgvo types of initial solutionvereevaluated:

in some cases, the structureBisGMA was usedo find similar solutiongo that
structurewhile in other casesandomly generategolymer structures were ustal

explore different parts of the solutiopaxe.
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During aTabu Searckolution,a set of valid moves are made during each iteration. The
valid moves in this project adeletion of functional groups (then adding bonds

connecting neighboring functional groupagidition of functioal groups in thechain, or
changing one functional group for another. These moves were chosen randomly.
Feasibility criteria did not need to be included explicitly in the program, as they were
implied in the set of legal moves. Each functional groupssgmenbdf a polymer chain

with a single bond on each end, so any valid move will not make the molecule infeasible.

Methacrylate groups are not changed by the algorithm.

At each iteration, a list of neighbors to the current solution is made. A neighbor is any
molecule that is within a set number of moves from the current solution. The number of
possible moves chosen was eight in order to overcome the valleys that contain local
minima, andexplore other parts of the solution space. The most efficient step size may be
different for each problenWhen the objective functiomalue forthe current solution is

less than onghe number of moves is set to one. This is a type of local intensification,

and is used to focus on areas of the solution space where a good solutionsmdyex
objective function of each neighbor is examined, and the bestamun solution is

chosen to be the next solution. The previous solution is then added to the Tabu list.

The Tabu list is a list of previous solutions that neighbor molecules amgatced to. If a
neighbor molecule is too similar to any molecule on the Tabu list it is labeled as Tabu
andwill not be selected as a new solution. Tisefulness athe Tabu listies in the

ability to avoid revisiting previous solutions, or to keep tlgoathm from being stuck in
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a local minima. If all neighbors are labeled as Tdben the best neighbor is chosen. If

this occurs too frequently the Tabu criteria are too stricttaecklaxed.

Molecules were said to be too similar if all connectiwmyicesused in this project

(°c,'c,?c,’c,c",*c¢",?¢c",*¢") lie within 15%of the previous@ution range For

examplejf the range of observed values far is 11.128.7, then ithe values of ¢ are

within 2.6 of each othethe moleculesretoo similar. Even if a molecule is labeled as
Tabu, it will dill be chosen if its objective function is better than the best solution found

so far. This is a type of aspiration criteria.

At each iterationthe objective function is calculated for each neigtgmution The

general form of the objective functieused, with the addition of a penalty function.

The penalty functioms used to avoid unstable solutions that contain peroxide groups. The
number of peroxide groupsset as a descriptor variable, calculated using the subgraph
isomorphism algorithm desbed in Section 3. A penalty functiosiadded to the

objective function so that 1000 is added to the objective for each peroxide group present.
Good objective function values in this project are less than one, so no solution with a

peroxide group will b@resented as a candidate.

The algorithm continues until a stop criterion is met. In this prajeistlimit is set to400
non-improving iterationsNumerous test runs of the algorithm showed that optimal
solutions were rarely found after more than #08-improving iterations, and were

frequently found before 20@nce the stop criterion is reach#ue progranreportsthe
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best known solutioriThe followingChaptersummarizes the results found from using this

procedure.
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No
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Figure 5.2 - Tabu Searchflowchart
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Chapter 6.

Results

This section summarizes thesults found after completing ti@bu Searcloptimization
procedure described previousEhe target values are summarized in TablewHich

would yield a éntal polymer with improved clinical lifetime to those currently on the
market. Included are the overall results for the algorithm, as well as the candidate
monomersThe algorithm was run at concentrations of 25, 35, 45, and 55 weight percent
of the tesmonomer, each time with 45 weight percent HEMA, and the balance BisGMA.
There were two different starting points: BisGMA, and a randomly generated monomer.
The search was terminated after 400-imoproving iterations and took less than a minute

to complee for each run.

6.1 Tabu Results

TheTabu Searclalgorithm wasappliedmultiple times aR5 weight percent test
monomer for the improved dental polynoase studyn order to judge the overall
effectiveness of the algorithihe objective function and numbefriterations were

recorded and an average objective function was found.
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TheTabu Searclalgorithm uses stochastic parameter to define its search direcoe

run of the algorithm may be able to find a good solution very quickly, while the next run
may only look at an area of the solution space with no good solution and not be able to
escape that regioimntroducingadditional heuristics to the algorithsnch as

diversification, described in Chapter 2.4, to #hgorithmdecreasgthe chances that gn

single runwill give a poorresult.

The average objective function and number of iterationthis exampleare given in the
following table. An average objective function of 0.056 shows that any single run of the
algorithm would likely give a reasoble result. Some adjustable parameters, such as the
stop criteria or the step sizes, were changed to try to improve these results. Increasing the
number of noAmproving iterations lowered the average objective function and its
standard deviation, as exped. Howeverthese changes only lowered the average
objective functiorbecausenore iterationsvere availabléo escapehe parts of the

solution spaceorresponding to molecules with properties far from the target valbes

did not increase the freguey or quality of the very best results, which tended to be
found very quickly. Increasing the number of fiorproving iterations greatly increases
the run time while not greatly improving the quality of the top tiered reJuiissnumber

of nonimprovingiterations was limited to 400 his lendstself to the idea that th€abu
Searchalgorithm may work best when run in parallel, running fewer iterations but in
many different parts of the solution space simultaneously. This is addressed further in

Chapter7.
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Table 6.1 - Average Tabu Searchresultsfor dental polymer case study The numbers in parenthesis

are standard deviations.

Average Tabu Search Results

Objective Function 0.056 (0.03)

Iterations 660 (220

6.2 Candidate Monomers

This section describes the candidate monoreera dental polymer with improved

clinical lifetimefound at each concentration: 25, 35, 45, and 55 weight percent candidate
monomey given in Figure 6.1 through Figure 6.Hach polymealso contained 45

weight percent HEMA, with the balance BisGMPe objective functions and predicted

property values are summariziedTable 6.2 through Table 6.9

Currently, ease of synthesgsnot being considered in the formulation. Also, the only
consideration for stability is the prohibition of peroxide groups. Further restrictions can

be added in future versions of the program to help make stable, easily synthesizable
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Figure 6.1 - Candidate monomer 25.1. Concentration of 25 weight percent.
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Figure 6.3 - Candidate manomer 25.3 Concentration of 25 weight percent.

Table 6.2 - Objective functions for candidate monomers at 25 weight percent

25 Weight Percent Candidate Monomers
... | Molecular Number : .
Name | Objective . of Starting Point
Weight .
Iterations
BisGMA
Control 1.07 513 - -
25.1 0.012 599 860 BisGMA
25.2 0.023 599 785 BisGMA
253 | 0023 | 585 617 Random
Monomer

Table 6.3 - Predicted properties for candidate monomers at 25 weidlpercent

25 Weight Percent Candidate Monomers
Storage | Rubbery| Water | Viscosity | Glass Transitior
Modulus | Modulus | Sorption| [Pa s] Temperature

Name
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[MPa] [MPa] [%] [C]
Target | 3500 40 6 01 74
BISGMA 1 3306 305 | 75 0.197 68.9
Control
251 3485 | 413 | 56 0.107 709
252 34901 | 413 | 523 0.107 70.0
253 3510 | 374 | 6.1 0.110 67.2
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Figure 6.4 - Candidate monomer 3.1. Concentration of35 weight percent.

A,

"
e

' u , o
AN \)'LN/

144

Figure 6.517 Candidate monomer 35.2 Concentration of 35 weight percent.
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Figure 6.6 1 Candidate monomer 35.3 Concentration of 35 weight percent.

Table 6.4 - Objective functions for candidate monomers at35 weight percent

35 Weight Percent Candidate Monomers
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Molecular Number
Name | Objective . of Starting Point
Weight .
Iterations
BisGMA
Control 1.07 513 i i
35.1 0.045 569 402 BisGMA
35.2 0.062 577 885 BisGMA
35.3 0.039 596 1153 BisGMA

Table 6.57 Predicted properties for candidate monomers aB5 weight percent

35 Weight Percent Candidate Monomers
Storage | Rubbery| Water Viscost Glass Transitior]
Name Modulus | Modulus | Sorption [Pa S]y Temperature
[MPa] [MPa] [%0] [C]
Target 3500 40 6 0.1 74
BISGMA | 3306 | 305 | 75 | 0.197 68.9
Control
35.1 3297 33.4 6.0 0.090 78.1
35.2 3407 37.4 4.8 0.096 82.2
35.3 3410 38.6 5.5 0.097 86.8
o]
:::“R\I/\O

.
£«
XY

Figure 6.7 - Candidate monomer45.1. Concentration of45 weight percent.

77



L]

Figure 6.8 - Candidate monomer 45.2. Concentration of45 weight percent.

Table 6.6 - Objective functionsfor candidate monomers atd5 weight percent

45 Weight Percent Candidate Monomers
. .| Molecular Number , .
Name | Objective . of Starting Point
Weight .
Iterations

BisGMA
Control 1.07 513 - -

45.1 0.068 578 930 BisGMA

45.2 0.074 565 681 BisGMA

Table 6.7 Predicted properties for candidate monomers a#5 weight percent

45 Weight Percent Candidate Monomers

Storage | Rubbery| Water Viscosity Glass Transition
Name Modulus | Modulus | Sorption [Pa s] Temperature
[MPa] [MPa] [%] [C]
Target 3500 40 6 0.1 74
BISGMA | 3306 | 305 | 75 | 0.197 68.9
Control
45.1 3364 45.9 6.0 0.119 80.7
45.2 3535 32.4 7.0 0.109 82.2
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Candidate monomer 55.2. Concentration of55 weight percent.

Candidate monomer 55.1. Concentraton of 55 weight percent.

Table 6.8 - Objective functionsfor candidate monomers & 55 weight percent

55 Weight Percent Candidate Monomers
. .| Molecular Number , .
Name | Objective . of Starting Point
Weight .
Iterations

BisGMA
Control 1.07 513 - -

55.1 0.043 550 656 BisGMA

55.2 0.028 552 980 BisGMA

Table 6.9 Predicted properties for candidate monomers ab5 weight percent

55 Weight Percent Candidate Monomers
Storage | Rubbery| Water Viscosity Glass Transitior]
Name Modulus | Modulus | Sorption [Pa s] Temperature
[MPa] [MPa] [%0] [C]
Target 3500 40 6 0.1 74
BISGMA | 3306 | 305 | 75 | o0.197 68.9
Control
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55.1

3534

34.2

5.2

0.100

68.6

55.2

3445

35.3

5.9

0.093

67.5

An interesting trend for the 25 weight percent monomers is that good solutions tended to

have three aromatic ring groups, oftentimes bonded biregether. This may make the

monomer hard to synthesize, or unstable in some dasssictions can be added to the

algorithm to only allow two or zero aromatic rings if it is decided that other

configurations are undesirable or infeasiliés also nteresting that candidate monomers

25.1 and 25.2 are very similar; they are actually made from the same functional groups.

Monomers similar to 25.1 and 25.2 should be explored if these two monomers can not be

synthesized.

The candidate monomers at 35 gldipercent are more similar to the other monomers

used to make the correlations, especially candidate 35.1. Candidate 35.1 should be stable

and synthesidae, as it is nearly symmetric

A literature search was made to find molecules similar to the datedmonomers.

Accor di
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synthesized previously, but there were some molecules very similar to candidate 35.1.

Candidate 35.1 has the molecular formulgHz,0s, while the similar moomers are

CssH48010. Both of these monomers were patented for use in soft contact lenses.
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Figure 6.11 - Molecule similar to Candidate 35.1 (Hiroo, 1982)
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Figure 6.12 - Molecule similar to Candidate 35.1 (Kiyoshi, 1995)

The property values for these molecules were calculated. The correlations gave
unrealistic negative values for water sorption. This is because the water sorption
correlation is sensitive time size of the molecule, and these molecules are larger than
any molecule previouslyonsideredThe other properties gave realistic values. The
objective functions were calculated excluding water sorption, with weighting factors to

correct for only usig four properties instead of five.

Table 6.10 - Predicted property values for monomer found by Hiroo, et a(1982)

Predicted Property Values for Monomer found by Hiroo, et al
. . Glass
Weight Wellghted Storage Rubbery Viscosity Transition
Percent Objective Modulus Modulus [Pa s] Temperature

Monomer Function [MPa] [MPa] [%]
25 0.29 3324 42.6 0.140 93.4
35 0.41 3364 52.7 0.138 95.8
45 0.69 3405 62.5 0.136 98.5
55 1.12 3448 72.1 0.133 101.4
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Table 6.11 - Predicted property values for monomer found byKiyoshi, et al (1995)

Predicted Property Values for Monomer found by Kiyoshi, et al

. . Glass
Weight Weighted Storage Rubbery . : "
Percent Objective Modulus Modulus V'[TDC;JZ']W T-Ie-:flmzlrgﬂre

Monomer Function [MPa] [MPa] [%]
25 0.28 3312 42.6 0.139 93.3
35 0.40 3353 52.7 0.136 95.7
45 0.67 3394 62.5 0.134 98.3
55 1.10 3436 72.1 0.131 101.2

At 25 weight percent, both of these monomers show slight improvementhesy

HEMA/BisGMA control group. Using th&abu Searclalgorithm to design a monomer,

and then finthg similar moleculesvhich already exist, could be a valid strategy if it

turns out to be difficult to includstability and ease of synthegnsthe algoithm.

The results show that the algorithm can provide candidate monomers with good objective

functions at any of the concentrations tested. The following section examines the error

associated with these objective function and property values.
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6.3 Prediction Intervals

The 95% prediction interval was calculated for each property. The calculation of a
prediction interval, or error calculation, has seldom been calculated in molecular design

(Roughton, 20111 The prediction interval wasefinedin Section2.3.3.

The prediction interval is found using the following equation,

PI = c>ta/2,n—(k+1) \/g(l-i_ le (X'X)_lxp)

wheret is the critical value of thedistribution at the desired confidence level and

degrees of freedon#? is the mean square errap,is an array of descriptors for the new
observation used in the model, axé the matrix of descriptors of previously observed
data points. The prediction interval is a function of the bias of the original correlation,
and how different the descriptors of ttendidate molecule are to the descriptors used to
make the correlation. For example, the correlation for viscosity includes molecular
weight, and the range of molecular weight used to make the correlation3%Q@g§8nol.

If the molecular weight of theandidate molecular is much larger than §4@ol, there

will be more error. A large prediction interval may show that the correlation is unsuited
to describe that molecule. Even if the descriptors match perfectly, there is still the error
associated withhie original correlation, which is equal to thealue multiplied by the

mean error&. This is reported as the minimal errhe following tables summarize the
prediction intervals for each property and candidate monomer. Figlrgigels a visual
representation dhe distribution of the calculated property within the prediction interval

for one of the candidate monomers.
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The prediction interval overlaps the target value in each case. This overlap shows that the
global optimum bthe design problem may actually perform worse than some local

optima that th&@abu Searclalgorithm finds. The 68% prediction interval for rubbery
modulus is reported. This was because of the large error in the correlation, which is due
to having too fewexperimental data points, limiting the number of descriptors that could

be used.

The prediction intervals were sensitive to the molecular weight or size of the candidate
monomers. Most of the monomers tested to build the correlations were smallérethan t
candidate monomers. Correlations could be updated to include more experimental data

for monomers that are larger than BisGMA.
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Table 6.12 - Prediction interval for glass transition temperature

Glass Transion Temperaturé 95% Prediction Interval

Name | Predicted valug  “JITEICE | ae | value?
Minimal Error - 8.1 11 -
25.1 70.9 19.1 26 Yes
25.2 70.9 155 21 Yes
25.3 67.2 9.6 13 Yes
35.1 78.1 20.9 28 Yes
35.2 82.2 44.6 60 Yes
35.3 86.8 32.5 44 Yes
45.1 80.7 51.7 70 Yes
45.2 82.2 45.8 62 Yes
55.1 68.6 58.7 79 Yes
55.2 67.5 49.8 67 Yes
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Table 6.13 - Prediction interval for viscosity

Viscosityi 95% Predictiorinterval

Name | Predicted valug  “JITEICE | ae | value?
Minimal Error - 0.016 16 -
25.1 0.107 0.045 45 Yes
25.2 0.107 0.046 46 Yes
25.3 0.110 0.018 18 Yes
35.1 0.090 0.037 37 Yes
35.2 0.096 0.017 17 Yes
35.3 0.097 0.044 44 Yes
45.1 0.119 0.020 20 Yes
45.2 0.109 0.026 26 Yes
55.1 0.100 0.022 22 Yes
55.2 0.093 0.049 49 Yes
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Table 6.14 - Prediction interval for percent water sorption

Water Sorptiori 95% Predition Interval

Name Predicted Valug Confidence Percent of Crosses Targe
Interval TargetValue Value?
Minimal Error - 1.0 17 -
25.1 5.6 1.6 27 Yes
25.2 5.3 1.6 27 Yes
25.3 6.1 1.7 28 Yes
35.1 6.0 1.5 25 Yes
35.2 4.8 2.5 42 Yes
35.3 5.5 1.6 27 Yes
45.1 6.0 2.3 38 Yes
45.2 7.0 2.0 33 Yes
55.1 5.2 2.0 33 Yes
55.2 5.9 1.4 23 Yes
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Table 6.15 - Prediction interval for storage modulus

Storage Modulu$ 95% Prediction Interval

Name | Predicted valug "R | e ae | value?
Minimal Error - 310 9 -
25.1 3485 1337 38 Yes
25.2 3491 1337 38 Yes
25.3 3510 1390 40 Yes
35.1 3297 1360 39 Yes
35.2 3407 1398 40 Yes
35.3 3410 1360 39 Yes
45.1 3364 1370 39 Yes
45.2 353% 1358 39 Yes
55.1 3534 1379 39 Yes
55.2 3445 1329 38 Yes
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Table 6.16 - Prediction interval for rubbery modulus

RubberyModulusi 68% Prediction Interval

Name | Predicted valug  “JIEICE | e | Value?
Minimal Error - 13.7 34 -
25.1 41.3 19.2 48 Yes
25.2 41.3 19.2 48 Yes
25.3 37.4 18.6 45 Yes
35.1 334 19.1 46 Yes
35.2 37.4 19.6 48 Yes
35.3 38.6 20.2 49 Yes
45.1 45.9 18.8 51 Yes
45.2 324 18.7 42 Yes
55.1 34.2 18.9 47 Yes
55.2 35.3 18.7 49 Yes
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Figure 6.13- Normal distribution for percent water sorption for Candidate 25.1

6.4 Summary

These results show that this methodology can be used to design crosdtitykeere

using theTabu Searclalgorithm.The prediction intervals foundereas small as 13% of
the target value. This is an acceptable range whegonsides that findingcandidate
monomers whickare improved compared to the standard resin is more fangdhan

finding a resin with @&pecificproperty valueThe algorithm can provide a lotigt of
candidate monomers whidan be examined by experimental chemists to be considered
for synthesis. Polymer Designer has a flexible framework that can beechtmgdd

more restrictions to create candidates that are more easily synthesizable.
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The addition of stability criterion decreased the chances of finding an unusable solution.
When the algorithm was run without any stability criteria, candidate solutiims

peroxide groups often appear.

More property data should be gathered to create more accurate correlations that will give

predicted values with less error.

The next @apter gives overall conclusions and recommendations for this project.
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Chapter 7.

Conclusions and Recommendations

The previouhapter provided a list of candidate molecules with predicted property
values superior to that of the standard HEMA/BisGMA composite. The results show that
this methodology can be used to design molecules with spktafiget propertiest also
shows that this methodology is capable of handling the complexity that comes from
crosslinking.Further restrictions or more accurate correlations can easily be added to
create more suitable molecules. This methodology calsdxt by other projects to design

different types of molecules.

Currently the Polymer Designer program is being edited to be used in other projects. It
provides a flexible framework that can be changed to work with different molecules and

types of functioal groups.

A set ofcriteria for choosing the overall béd36PR modelsvas created, but can be
improved The goal of any model selection technique is to give a correlation with low
error. In this project we found that the prediction interval is depermtetite correlation
error, the number of descriptors, and even the type of descriptors used. A more

computationally extensive method coulddmployed in which therediction interval for
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a subset of moleculésund, the correlatioand with he smallest gediction interval is
chosenlt may even be best to complete CMD with many different correlations to choose

the best models.

Prediction intervad have rarely been consideriedmolecular dsign projects (Roughton,
2011). This method of error analysian be used in a number of different ways to
improve the projectThe value of the prediction intervedinbe calculated as part of the
Tabu Searcllgorithm. The objective function can be changed to take the prediction
interval into account, favoring canditks both with favorable properties and smaller

prediction intervals. A possible form of the objective function would be

N 2 2 2
0 ~ o _ ~ o _ ~ ﬂ
f — a S G;&apl::i',tan_:)et - I::i’,predicted8 + _gppi,target Pi,predicteq.g 8 + 9'3 i,target F?,predicteeh 8 L‘]
il properties g Pi,target 9 (;)e Pi,target 9 ée Pi,target 9 H

wherePzis the lower bound of the prediction intervi},is the upper bound for the
prediction interval, and; is a weighting factor for the prediction interval values. A
further restriction can be made to only allow candidates where the prediction interval

overlaps the target property value.

The target property values and weighting functions should be examined carefully. The
general effect that these properties have on the longevity was found, but a better
understanding could give more exact values. Ther@biproperty value could lie outside
of the range of the experimental datahHt isthe case, more molecules should be tested

and rew correlations should be created.
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The primary descriptors used in this project were connectiuliges There are

thousands of structural descriptors that can be used in GQwjbature descriptors (Weis,
2010) and Kier shape indices (Kier, 1987) have been used to design polyneers.
algorithms already being used by Polymer Designer allow the calculation of many of
thesedescriptors within the Tabu Search algorithm. Additional structural descriptors
should be studiedh partially theoretical model could be built by studying chemically
how different functional groups affect certain properties. This would give guidelines to

which types of structural descriptors would more likely be able to model these properties.

Besides the experimental properties, other factors could possibly be related to structural
descriptors. During the experimental testing phase, many monomershoo biel

included in this study because they would not dissolve into HEMA at the concentrations
being tested. If solubility in HEMA could be predictéois would save disnificant
experimental efforand resourcewhichwould have been spent synthesizingpadidate

monomer thats notfeasible.

Additional stability criterion can be applied to the algorithm. Fink and Reymond (2007)

applied a filter of rejected functional groups when creating a database of feasible stable

organic molecules. Many of thesenfional groups can not be made with the chain

groups used in this project. Onnkeegiol®e part of
added to the Tabu Search algoritiRestrictions can be added using the penalty method

and the subgraph isomorphism altjum described in Chapter 31h.addition, criterion

for ease of synthesis could be added in a similar manner.
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A literature search to find molecules similar to the candidate moleculgserfasmed
described in Section 6.Zhe property values at thested resin concentrations were
predicted for these similar molecules. This method could find an existing molecule
suitable for use as part of a dental polymer which has never been considered before. The
CMD results wouldprovide a way of narrowing the seh, as searching through all

available monomers would be infeasible.

Overall the project shows that the Tabu Search algorithm is robust enough for the design
of crosslinked polymers. The procedure outlined provided a list of candidate monomers
that coutl show improvement to tretandard dental composite resin on the market today.
The examination of the correlation error through the prediction interval shows the error
that is likely present in many other molecular design projects, suggesting that future

projects should include error propagation during the design phase.

95



References

American Dental AssociatigiiiResinBased Compositesdournal of American Dental
Association134, 510512 003.

As p nes, Noleaon&msaph TheoryRetrieved from
http://pine.cs.yale.edu/pinewiki/GraphTheory (2010

Banzhaf, Wolfgang; Nordin, Petergler, Robert; Francone, FrarfBenetic
Programmingi’ An Introduction Morgan KaufmannSan Francisy, CA (1998.

Barnes, HowardHutton, John; Walters, KennetAn Introduction to Rheolog¥lsevier
(1993.

Bicerano, J.Prediction of Polymer Propertie8rd edition, Marcel Dekker, Inc.Z002.

Bicerano, J., R. L. Sammler, @. Carrier, and J. B e i Carrelatidn between glass
transition temperature and chain structure for randomly crosslinked high polymers,”
Journal of Polymer Sciencd4, 2247 (1996).

Bosze, E.J.; Alawar, A.; Berscag O.; Tsai, Yur ; N u t High-TeSpeRture i
Strengthand Storage Modulus in Unidirectional Hybrid Composit@mposites
Science and Technology6, 19631969,(2006.

Brostow, Witold; Datashvili, Te ; Geodakyan, Jeemmalsnd Lou, Jesse
mechanical properties of EPDM/PP + thermal shesistantcea mi ¢ composites, 0
Journal of Materials Sciencdg, 2445 (2011).

96


http://pine.cs.yale.edu/pinewiki/GraphTheory%20(2010






































































