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ABSTRACT 

Dietary restriction (DR)-induced changes in the serum metabolome may be biomarkers for 
physiological status (e.g., relative risk of developing age-related diseases such as cancer). 
Megavariate analysis (unsupervised hierarchical cluster analysis IHCAJ; principal compo­
nents analysis [PCAJ) of serum metabolites reproducibly distinguish DR from ad libitum fed 
rats. Component-based approaches (i.e., PCA) consistently perform as well as or better than 
distance-based metrics (i.e., HCA). We therefore tested the following: (A) Do identified sub­
sets of serum metabolites contain sufficient information to construct mathematical models 
of class membership (i.e., expert systems)? (B) Do component-based metrics out-perform 
distance-based metrics? Testing was conducted using KNN (k-nearest neighbors, supervised 
HCA) and SIMCA (soft independent modeling of class analogy, supervised PCA). Models 
were built with single cohorts, combined cohorts or mixed samples from previously studied 
cohorts as training sets. Both algorithms over-fit models based on single cohort training sets. 
KNN models had >85% accuracy within training/test sets, but were unstable (i.e., values of 
k could not be accurately set in advance). SIMCA models had 100% accuracy within all 
training sets, 89% accuracy in test sets, did not appear to over-fit mixed cohort training sets, 
and did not require post-hoc modeling adjustments. These data indicate that (i) previously 
defined metabolites are robust enough to construct classification models (expert systems) 
with SIMCA that can predict unknowns by dietary category; (ii) component-based analyses 
outperformed distance-based metrics; (iii) use of over-fitting controls is essential; and (iv) 
subtle inter-cohort variability may be a critical issue for high data density biomarker stud­
ies that lack state markers. 
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INTRODUCTION 

THE BENEFICIAL EFFECTS of dietary or caloric restriction in laboratory rodents (Kristal and Yu, 1994; 
Weindruch and Walford, 1988; McCay et al., 1935) and the detrimental effects of obesity on human 

health (Willett et al., 1999) reveal the influence of long term caloric intake and balance on morbidity and 
mortality. Indeed, over-nutrition may be second only to smoking as a preventable cause of cancer. We are 
therefore identifying serum profiles that can distinguish between ad libitum fed (AL) and dietary restricted 
(DR) rats. Our work is based on the belief that these profiles will be of use in understanding DR, in clari­
fying epidemiological relationships between caloric intake/balance and morbidity/mortality, and in the abil­
ity to predict relative risk of certain human diseases. Serotypes are being identified using HPLC coupled 
with coulometric electrochemical array detectors (Matson et al., 1984; Milbury, 1997; Vigneau-Callahan et 
al., 2001). Previous research has identified analytically valid metabolites (Vigneau-Callahan et al., 2001), 
demonstrated proof of principle (classification accuracy in the cohorts in which the markers were devel­
oped) (Shi et al., 2002b), and validation of the basic profiles in independent cohorts in independent cohorts 
(Shi et al., 2002a). These studies were conducted using unsupervised approaches based on hierarchical clus­
ter analysis (HCA) and principal components analysis (PCA). (Unsupervised approaches are used to math­
ematically describe a data set independently of prior information such as class membership. Supervised ap­
proaches utilize such prior information to help inform the analysis, often for the purposes of building 
predictive models for subsequent classification of unknowns.) The next stage in the identification of meta­
bolic serotypes is to build expert systems (i.e., mathematical classification models that can be used to pre­
dict the class or category of an unknown). In our direct example, the category would refer to a rat diet; in 
the planned long-term extension of our work, this will refer to the relative risk of developing a certain dis­
ease based on the serum profile of an individual. 

HCA and PCA are exploratory data analysis methods that enable investigators to appreciate the major 
sample or variable correlations within megavariate data sets, but neither PCA nor HCA directly enables 
prediction of class membership of a given sample. In contrast, classification algorithms such as K-Nearest 
Neighbor (KNN; Cover and Hart, 1967) and Soft Independent Modeling of Class Analogy (SIMCA; Wold, 
1976) construct models based on pre-defined (i.e., pre-assigned. supervised) samples, for example, an AL 
rat. These samples are thus used to leach or "train" the algorithm to recognize specific classes, and thus 
form what is called the "training set." These trained algorithms are then used to classify one or more un­
knowns, termed the "test set," for example, a set of AL and DR animals from an independent cohort. KNN, 
which is based on the same mathematical theory as HCA (KNN at k = 1 is HCA, in which k represents 
the number of mathematically closest observations ["neighbors"! polled), constructs models where the k 
nearest neighbors "vote" for membership in their own class. In other words, classification is accomplished 
by assigning observations (e.g., assigning a rat to either the AL or DR group) in such a way as to minimize 
differences within each cluster. Likewise, SIMCA is based on the mathematical principles that underlie 
PCA. While PCA calculates principal components on a whole data set, SIMCA generates principal com­
ponent models for each training set class. Whereas PCA can only describe a dataset and thus provide vi­
sual information as to the relationship between a new sample and members of the training sets, SIMCA 
predicts class membership of a new sample, or indicates that a new sample is not a member of the training 
class(es). Again, in our current work and direct example, "class" would refer to a rat diet, in the planned 
long term extension of our work, this will refer to the relative risk of developing a certain disease based on 
the serum profile of an individual. 

KNN and SIMCA are complementary approaches, although both are examples of what are termed sim­
ilarity techniques. Similarity techniques presuppose that objects closer together in mathematical space (e.g., 
smallest Euclidian distance) are more likely to be from the same group. Alternative approaches, known as 
separability and probability techniques, overfit (i.e., the ability and tendency of expert system algorithms 
to derive models that are too specific for the training set data, and thus of limited future applicability) sam­
ple poor-variable rich data sets, and thus are not useful for our studies. KNN is a distance-based metric 
(separations are made based on absolute [ie, scalar] differences between two observations in a n-dimen-
sional space, while SIMCA is component-based (separations are made based on both absolute and direc­
tional [i.e., vectorial 1 differences between two observations in a n-dimensional space, where n = the num-
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ber of variables in the study (metabolites in our study). KNN functionally weights all variables equally, 
whereas SIMCA functionally weights variables according to their distributions within and between groups. 
KNN can be particularly well-suited to a certain sample poor environments/distributions, and it can func­
tion even with only one training set sample per category. The main advantage of SIMCA is that it can rec­
ognize and utilize relationships that are unique to each class. Therefore, SIMCA may be particularly ef­
fective where the primary discriminators between classes are weighted relatively distinctly on different 
components than those that distinguish intra-class individuals. Based on the nature of the techniques and 
their advantages, KNN and SIMCA were chosen as the classification methods to be used in this study. 

MATERIALS AND METHODS 

Animal husbandry 

The husbandry, including diet, of the male and female Fischer 344 X Brown Norway F | rats obtained 
monthly from the National Institute on Aging colony at Harlan (Indianapolis, IN) and used in these stud­
ies has been described previously (Vigneau-Callahan et al., 2001; Shi et al., 2002b; Shi et al., 2002a). 

Animal cohorts 

Animals were grouped into cohorts based on entry into our animal colony, and were comprised as fol­
lows: 

Male cohort A: 5 AL and 8 DR rats 
Male cohort B: 6 AL and 6 DR rats 
Female cohort A: 6 AL and 5 DR rats 
Female cohort B: 8 AL and 8 DR rats 
Female cohort C: 8 AL and 8 DR rats 

To build KNN and SIMCA models, samples were broken into training sets and test sets as follows: (i) 
For single cohort studies in male rats, algorithms were developed on a training set consisting of all sam­
ples in a single male cohort (A or B), and algorithms were tested on all samples in the opposite male co­
hort (i.e., B or A, respectively), and for single cohort studies in female rats, algorithms were developed on 
a training set consisting of all samples in a single female cohort (A, B, or C), and algorithms were tested 
on all samples in the other female cohorts (B or C, A or C, A or B, respectively); (ii) for studies of the 
overall population, algorithms were built and tested on a the intact set of either all male rats in cohorts A 
and B, or all female rats in cohorts A, B, and C; (iii) to examine equivalent separation issues without com­
plications from cohort specificity, we created artificially mixed cohorts in both male and female datasets. 
For mixed cohort studies in male rats, two mixed cohort datasets were created. Male Mix I consisted of 
data from 3 DR/3 A cohort A and 3 DR/3 AL from cohort B. Male Mix 2 consisted of data from 5DR/2AL 
from cohort A and 3DR/3AL from cohort B. Algorithms were trained on one dataset, and when indicated, 
tested on the opposite. Two mixed cohort datasets were also created for mixed cohort studies in female rats. 
Female Mix 1 consisted of data from 3 DR/3 AL from cohort A, 4 DR/4AL from cohort B, and 4 DR/4 
AL from cohort C, Female Mix 2 consisted of data from the rest of the three female cohorts (3 AL/2 DR 
in cohort A, 4 AL/4 DR in cohort B, and 4 AL/4 DR in cohort C. Algorithms were trained on one dataset, 
when indicated, tested on the opposite. 

HPLC methodology 

HPLC separations and coulometric array detection was conducted essentially as described previously us­
ing an ESA CoulArray system (ESA, Inc., Chelmsford, MA) (Matson et al., 1984; Milbury, 1997; Vigneau-
Callahan et al., 2001; Milbury, 1997). Briefly, a gradient HPLC separation coupled with a 16-channel coulo­
metric electrode array was used to determine levels of analytes relative to a standard. 
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Statistical analysis 

Data were analyzed using the programs CEAS 504 (ESA, Inc., Chelmsford, MA), Pirouette 2.7/3.0 (In-
fometrix, Inc., Woodinville. WA). and SIMCA-P (Umetrics, Kinnelon, NJ). 

RESULTS AND DISCUSSION 

KNN and SIMCA were used to construct classification models based on previously defined metabolites 
identified in male (29 metabolites) and female (61 metabolites) rats. 
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FIG. 1. Accuracy testing in KNN training sets (males). Optimal value of K is unstable. The number of misses indi­
cates the number of samples whose predicated category did not match their a priori category. As in A, the miss is two 
at k = 1, which indicates there were two misclassified samples. Models were built with training sample sets: cohort A 
[13 samples] (A); cohort B 112 samples] (B); combined samples of cohorts A and B [25 samples] (C); Mix 1 [12 sam­
ples] (D) and Mix 2 [13 samples) (E). 
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KNN analysis 

In this study, there are two categories, DR and AL. Different training sample sets were composed from 
samples in the two male cohorts and three female cohorts as described in Materials and Methods. KNN cat­
egorizes each test set member based on its proximity in mathematical space to previously classified sam­
ples. The predicted class of an unknown depends on the class of its k nearest neighbors. Each of the k clos­
est training set samples votes once for its class, and the unknown is then assigned to the class with the most 
votes. A KNN prediction assigns each unknown to one and only one of the categories defined in the train­
ing set. The ability to select a single value for k that gives an assignment representative of related k values 
is essential for KNN to have utility in a given study. KNN models were constructed with single, combined, 
and mixed cohort training sets from both males and females (Figs. 1 and 2, Tables 1-4). Optimal values 
for k (number of neighbors to be considered) could not be consistently determined a priori (Figs. 1 and 2). 
When the optimal value for k was chosen after the data were examined, the predictive accuracy within the 
training set was 94 ± 6% (mean ± SD) within single cohort training sets, and 87 ± 8% in mixed/combined 
cohort training sets. To test the robustness of the models, these models were used to predict the category 
to which independent unknown samples belonged. Again, we were unable to determine an optimal value 
for k a priori. When the optimal value for k was chosen after the data were examined, accuracy in predic­
tions based on a single cohort training set was 59 ± 8%. These data indicate that there exist inter-cohort 
differences sufficiently large that the algorithms used can find separations between the cohorts that are com-
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FIG. 2. Accuracy testing in KNN training sets (females). Optimal value of K is unstable. Models were built with 
training sample sets: cohort A, (11 samples] (A); cohort B, [16 samples] (B); cohort C [16 samples] (C); combined 
samples of cohorts A, B and C (43 samples] (D); Mix I [22 samples] (E) and Mix 2 [21 samples] (F). Sec description 
in Figure 1. 
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TABLE 1. K N N CLASSIFICATION OF MALE SAMPLES: TRAINING SET STUDIES 

Models pDR pAL Accuracy 

KM A aDR 8 0 
aAL 2 3 8 5 % 

KM B aDR 5 1 
aAL 0 6 9 2 % 

KMAD aDR 12 2 
aAL 1 10 9 2 % 

KM M , aDR 5 2 
aAL 1 4 7 5 % 

K M M 2 aDR 6 1 
aAL 1 5 8 5 % 

Algorithms were trained and tested on the same datasets. Models KMA and KM B were built with single male cohorts A 
and B, respectively. K M A B was built with combined samples of male cohorts A and B. KMMI and KMM2 w «re built with 
mixed cohort male sample sets. Mix 1 and Mix 2, respectively. pDR and pAL were predicted DR and AL classes, respec­
tively. aDR and aAL were actual DR and AL classes, respectively. Accuracy = 100* (total correct/total samples). 

parable in magnitude to those found between AL and DR. This is a weakness resulting in part from the dis­
tance-based (scalar) nature of KNN and in part from "over-fitting." Accuracy based on mixed cohorts was 
89 ± 5%, indicating both that real AL/DR differences exist and that over-fitting can be addressed directly 
and readily using broader training sets (as expected). 

SIMCA analysis 

Unlike KNN, which is based on the distances between pairs of samples, SIMCA develops principal com­
ponent models for each training set category. The independent variable set U-block, the serum metabolite 
concentrations in our study) of each member of the test set is then projected into the principal component 
space of each class, and the unknown is assigned to the class it best fits. Unknowns insufficiently close to 
the principal component space of a class are considered non-members. While KNN assigns every unknown 

TABLE 2. K N N CLASSIFICATION OF FEMALE SAMPLES: TRAINING SET STUDIES 

Models pAL pDR Accuracy 

KF A 
aAL 6 0 
aDR 1 4 9 1 % 

K F B 
aDR 8 0 
aAL 0 8 100% 

K F C 
aDR 8 0 
aAL 0 8 100% 

KFABC aDR 22 0 
aAL 2 19 9 5 % 

KFMI aDR 9 2 
aAL 2 9 8 2 % 

KLM2 aDR 11 0 
aAL 1 9 9 5 % 

Algorithms were trained and tested on the same datasets. K F A , K F B , and KFC- were built with single female cohorts A. 
B. and C, respectively. K F A B c was built with combined samples of female cohorts A, B, and C. K F M 1 and K F M 2 were 
built with mixed cohort female sample sets, Mix 1 and Mix 2, respectively. pDR and pAL were predicted DR and AL 
classes, respectively. aDR and aAL were actual DR and AL classes, respectively. Accuracy = 100* (total correct/total 
samples). 
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TABLE 3. K N N CLASSIFICATION OF MALE 
SAMPLES: TEST SET STUDIES 

Model —> unknown Accuracy 

KM B —> cohort A 62% 
KM A -> cohort B 58% 
K M M 2 -» Mix 1 83% 
KM M I -» Mix 2 92% 

Algorithms were trained on one dataset and tested 
on data from an independent dataset. KMA and KM B 

were trained on data from single male cohorts A and 
B, respectively. KM M | and K M M 2 were trained on 
mixed cohort male sample sets. Mix 1 and Mix 2, 
respectively. Accuracy = 100* (total correct in the 
test set/total samples in test set). 

sample to exactly one pre-defined category, SIMCA assignments have three possible outcomes: (1) the sam­
ple fits only one pre-defined category; (2) the sample does not fit any pre-defined categories; or (3) the 
sample fits into more than one pre-defined categories. 

As with KNN, SIMCA models were initially constructed with single cohort sample sets and combined 
cohort sample sets. SIMCA correctly assigned all members of each training set cohort with 100% accuracy 
(not shown). Analysis of the residuals between the samples and the models of each class confirmed that 
DR and AL class models of both female and male samples were well-fitted to themselves and well-sepa­
rated from each other. 

SIMCA had considerably lower accuracy predicting across cohorts, but displayed satisfactory perfor­
mance in mixed cohort prediction (Tables 5 and 6). This again indicates that models built with single co­
horts are cohort specific; that is, they predict well with intra-cohort samples, but are not usable to predict 

TABLE 4. K N N CLASSIFICATION OF FEMALK 
SAMPLES: TEST SET STUDIES 

Model —> unknown Accuracy 

K F A —> cohort B 75% 
cohort C 50% 

K F H —> cohort A 55% 
—» cohort C 56% 

K F C -» cohort A 55% 
—» cohort B 63% 

KFMI -> Mix 2 86% 
K F M 2 -> Mix 1 95% 

Algorithms were trained on one dataset and tested 
on data from an independent dataset. K F A , K F B , nd 
K F C were trained on data from single female cohorts 
A, B, and C, respectively. K F M | and K F M 2 were 
trained on mixed cohort female sample sets, Mix 1 
and Mix 2. respectively. Accuracy = 100* (total 
correct in the test set/total samples in test set). 
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samples in other cohorts (accuracy was 40 ± 40%), suggesting that models built with single cohorts are 
over-fitted. Trained with mixed cohort sample sets Mix 1, Mix 2, Mix 3 and Mix 4, SIMCA built models 
SMvii, SMM2 . SFMI a n t l S F M : . respectively. The four models based on mixed cohort training sets again 
classified training samples to actual dietary categories with 100% accuracy (not shown). Intercla&s residu­
als showed that DR and AL classes in the models were well-fitted to themselves and well-separated from 
each other (Tables 5 and 6). The four models predicted test sets at 89 ± 8% accuracy, without requiring 
adjustments in model parameters after data collection. 

The requirement for mixed training sets suggests that either the algorithms are mathematically overfit-
ting the training set data or that cohort-specific effects might predominate over those reflecting caloric in­
take. The latter possibility was unexpected because the DR paradigm is dominant across genetically diverse 
animals, and yet our cohorts show metabolomic differences despite being composed of genetically identi­
cal Fl rats. The DR paradigm is also dominant over changes in dietary constituents, and yet our cohorts 
show metabolomic differences despite being fed essentially identical diets (although by definition there will 
always be some chemical variations between multiple lots of any non-synthetic diet). Thus, our working 
hypothesis is that the algorithms were over-fitting the training set data. We therefore more carefully ex­
amined the inter-cohort variability in both male and female rats. PCA was used to provide a mathematical 
description of the metabolomes of these rats. 

The cohort specificity of our models was examined in both male and female rats by PCA. As shown in 
Figure 3, both males and females cluster more tightly by cohort than by diet. This result indicates the need 
for developing models capable of overcoming whatever biological or analytical confound relates to cohort 
specificity, a requirement that was successfully addressed in the accompanying manuscripts (Paolucci et 
al.. 2004a,b). 

The last report addresses the possibility that the observed cohort to cohort variability results from changes 
in the concentration of compounds across the metabolome or changes in a defined subset of metabolites 
drawn from those that comprise the metabolome (Paolucci et al., 2004b). An alternative possibility, which 
appears more consistent with the data presented, is that DR induces a systematic change in the metabolome 
whose appearance is reflected differently in animals from different cohorts (Paolucci et al., 2004b). Such 

TABLE 5. S I M C A CLASSIFICATION OF MALE SAMIM.ES: TEST SET STUDIES 

Model —> unknown pDR PAL No match Accuracy 

SM B -» cohort A Factors 4 4 
aDR 6 0 2 
aAL 3 2 0 62% 
Unmodeled 0 0 0 

SM A -» cohort B Factors 3 1 
aDR 0 0 6 
aAL 0 I 5 8% 
Unmodeled 0 0 0 

S M M 1 -> Mix 2 Factors 1 1 
aDR 5 2 0 
aAL 0 5 0 83% 
Unmodeled 0 0 0 

S M M 2 -> Mix 1 Factors 2 1 
aDR 6 0 I 
aAL 1 5 0 85% 
Unmodeled 0 0 0 

Algorithms were trained on one datasel and tested on data from an independent dataset. "Factors" indicates the number 
of principal components in the models. SM A and SMi, were built with single male cohorts A and B, respectively. SM^i 
and SM M 2 were built with mixed cohort sample Mix 1 and Mix 2, respectively. pDR and pAL were predicted DR and AL 
classes, respectively. aDR and aAL were actual DR and AL classes. Accuracy - 100* (total correct/total samples). 
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TABLE 6. S I M C A CLASSIFICATION OK FEMALE SAMPLES: TEST SET STUDIES 

Model -> unknown pAL pDR No match Accuracy 

SF A —> cohort B —> cohort C Factors 4 3 
aAL 7 1 0 
aDR 0 8 0 94% 
Unmodclcd 0 0 0 

Factors 4 3 
aAL 7 1 0 
aDR 0 8 0 94% 
Unmodclcd 0 0 0 

SF B cohort A -» cohort C Factors 2 2 
aAL 5 0 1 
aDR 5 0 0 45% 
Unmodclcd 0 0 0 

Factors 2 2 
aAL 0 0 8 
aDR 0 0 8 0% 
Unmodeled 0 0 0 

SF C -> cohort A -» cohort B Factors 2 2 
aAL 0 0 6 
aDR 0 0 5 0% 
Unmodeled 0 0 0 

Factors 2 2 
aAL 0 0 K 
aDR 2 0 6 13% 
Unmodeled 0 0 0 

S F M | -» Mix 2 Factors 5 4 
aAL 11 n 0 
aDR 3 8 0 86% 
Unmodeled 0 0 (i 

SFM2 -» Mix 1 Factors 5 5 
aAL 11 0 0 
aDR 0 10 0 100% 
Unmodeled 0 0 0 

Algorithms were trained on one dataset and tested on data from an independent dataset. "'Factors" indicates the number 
of principal components in the models. SF A , SFg and SFc were built with single female cohorts A, B, and C, respectively. 
SF M i and S F M 2 were built with mixed cohort female samples Mix 1 and Mix 2, respectively. pDR and pAL were predicted 
DR and AL classes, respectively. aDR and aAL were actual DR and AL classes. Factors were the number of principal 
components in the models. Accuracy - 100* (total correct/total samples). 

changes are more complex, and require initial work to first eliminate the more basic potential confounds, 
such as magnitude changes. 

We therefore move systematically forward by directly addressing what might be termed monotonic 
changes in the metabolome, such as an overall magnitude shift—that is. a change in the concentration of 
all metabolites in one cohort as compared to another. Magnitude changes could be analytical in nature (i.e., 
reduced sensitivity in the electrode sensors), but this seems unlikely as many of the samples from the two 
cohorts were run consecutively. Magnitude changes could also result from sample treatment issues (i.e., 
longer storage time in the freezer for the samples from one cohort), but also this seems unlikely as we have 
unpublished data that demonstrate that most metabolites in the profiles are stable over years at —70°C. 
Magnitude changes could also be caused by environmental variation (e.g., a factor that changes hydration 
might alter overall solute concentration, although this seems unlikely). Changes that occur only in a de­
fined subset of metabolites would be apparent if the following criterion were met: if one were to remove 
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FIG. 3. Principal components analysis of male and female rats can distinguish cohort of origin. PCA plots based on 
63 variables in females and 66 variables in males, rotated to show cohort distinctions. Letter labels refer to cohort of 
origin. 

from consideration those metabolites that no longer differ between AL and DR statistically, then the re­
maining metabolites should largely follow the previously defined profile. These changes must be addressed 
by developing combined/common datasets comprised of data from multiple cohorts, a dataset that will be 
presented for the first time in the accompanying paper (Paolucci et al., 2004a). Generation of a single uni­
fied dataset from our current biologically and analytically distinct individual sets is primarily a problem in 
identification of the proper approaches to normalize our data across cohorts. Likewise, as we initially built 
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models in both sexes independently, wc now need to determine if the metabolite profiles that separate DR 
and AL males also separate females into these two classes (and vice-versa). The underlying, unstated hy­
pothesis behind this manipulation is consistent with the observation that DR extends longevity and decreases 
morbidity equally well in both sexes. Thus, the following report combines disparate dalasets to address the 
general nature of the DR-mediated change in the metabolome (Paolucci et al., 2004a), The cohort-to-co­
hort changes identified here by SIMCA also point to the potential requirement for a modified informatics 
strategy. 

SIMCA works, and works well, by defining the overall characteristics of a class (or, more specifically, 
a series of classes within a single experiment). Thus, SIMCA is at its strongest under conditions in which 
class descriptors are comprised of variables displaying little change across the total membership of the class 
in question. SIMCA is weakest when class descriptors are comprised of variables that drift with respect to 
multiple examples of a class. Thus, if the inter-cohort variability results from a scaling-type problem (e.g., 
differences in overall magnitude of variables between cohorts) or an inclusion-exclusion type problem (i.e., 
certain variables need to be discarded), SIMCA will, based on the evidence presented here, be an appro­
priate classification algorithm. In contrast, if the problem results from disproportionate changes across the 
metabolome, SIMCA will need to be replaced with an alternative, but similar approach. This issue will be 
discussed further in the accompanying reports (Paolucci et al.. 2004a,b). 

In summary, both KNN analysis and SIMCA analysis suggested that previously defined metabolites en­
code sufficient information to enable construction of classification models/expert systems with the poten­
tial to define biomarkers for future studies of cancer risk. Models built with single cohorts lacked power to 
classify samples other than samples from the same cohort, suggesting that these models are over-fitted and 
thus cohort specific, but models built from mixed cohort sample sets had reasonable accuracy. These data 
suggest that future studies will require careful attention to over-fitting concerns. The overall accuracy of 
SIMCA in test sets, the increased information available from SIMCA on the components of a given class, 
and the requirement of KNN for post-hoc optimization of k all lead us to select a component-based ap­
proach for future studies. While SIMCA was generally successful in this study, the cohort specificity is­
sues discussed previously suggest the need to generate single, integrated databases, determine whether sin­
gle profiles can be used for males and females, and consider other approaches that may optimize separation 
using the same basic approach (components); but with a focus on the separation rather than the groups. 
These issues are addressed in the accompanying manuscripts (Paolucci et al., 2004a,b). 

Given the well documented power of DR to cause significant changes in physiology, the evidence pre­
sented here that cohort-specific drift occurs in the metabolome, and that this drift is sufficient to obscure 
cross-cohort evaluations, suggests that this cohort-specificity effect will be a common issue that must be 
addressed in any nutrition-metabolomics study, and very likely in other biomarker studies as well. These 
observations do not, however, repudiate our claim that metabolome studies yield useful information for pre­
dictive model building. On the contrary, variability resultant from factors other than dietary intervention is 
expected and exploratory statistical analysis serves in part to identify and account for this variability. Fur­
thermore, the fact that no individual metabolite shows great variation in concentration between classes ex­
emplifies the complex interdependence of metabolome components. This finding also demonstrates how 
metabolic serotypes as a whole better reflect physiologic modulation resulting from DR than do alterations 
in specific metabolites. This issue, which we believe has broad relevance for biomarker development for 
pre-disease status, is further discussed in the accompanying manuscripts. 
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