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Abstract

Mixtures of truncated exponentials (MTE) potentials are an alternative to dis-
cretization for solving hybrid Bayesian networks. Any probability density func-
tion (PDF) can be approximated with an MTE potential, which can always be
marginalized in closed form. This allows propagation to be done exactly using the
Shenoy-Shafer architecture for computing marginals, with no restrictions on the
construction of a join tree. This paper presents MTE potentials that approximate
an arbitrary normal PDF with any mean and a positive variance. The properties of
these MTE potentials are presented, along with examples that demonstrate their
use in solving hybrid Bayesian networks. Assuming that the joint density exists,
MTE potentials can be used for inference in hybrid Bayesian networks that do not
fit the restrictive assumptions of the conditional linear Gaussian (CLG) model, such
as networks containing discrete nodes with continuous parents.

Key words: Hybrid Bayesian networks, mixtures of truncated exponentials,
Shenoy-Shafer architecture, conditional linear Gaussian models.

1 Introduction

Bayesian networks model knowledge about propositions in uncertain domains using graph-
ical and numerical representations [26]. At the qualitative level, a Bayesian network is a
directed acyclic graph where nodes represent variables and the (missing) edges represent
conditional independence relations among the variables. At the numerical level, a Bayesian
network consists of a factorization of a joint probability distribution into a set of conditional
distributions, one for each variable in the network.
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Hybrid Bayesian networks contain both discrete and continuous conditional probability dis-
tributions as numerical inputs. An example of a business domain with continuous and discrete
variables is a capital investment project where the outcome of an uncertain continuous vari-
able, such as cash flows or customer demand, affects the probability that a business will
invest (a discrete variable).

A commonly used type of hybrid Bayesian network is the conditional linear Gaussian (CLG)
model [6,12,13]. In CLG models, the distribution of a continuous variable is a linear Gaussian
function of its continuous parents. One limitation of CLG models is that discrete nodes
cannot have continuous parents. Lerner et al. [16] introduces augmented CLG networks where
discrete variables may depend on continuous parents. Several algorithms for performing
approximate inference in such networks have been developed (see, e.g., [2,10,15,16,21]).

Discretization of continuous distributions can allow approximate inference in a hybrid Bayesian
network without limitations on relationships among continuous and discrete variables. Dis-
cretization of continuous chance variables is equivalent to approximating a probability density
function (PDF) with mixtures of uniform distributions. Discretization with a small number
of states can lead to poor accuracy, while discretization with a large number of states can
lead to excessive computational effort. Kozlov and Koller [11] improve discretization accu-
racy by using a non-uniform partition across all variables represented by a distribution and
adjusting the discretization for evidence. However, the increased accuracy requires an iter-
ative algorithm and is still problematic for continuous variables whose posterior marginal
PDF can vary widely depending on the evidence for other related variables. A classification
tree structure is used by Davies and Moore [7] to construct discrete approximations that
may vary depending on the values of the parent variables.

To use general purpose algorithms, such as the Shenoy–Shafer architecture, to compute
marginal distributions in hybrid Bayesian networks, the operations of combination and
marginalization must always preserve potentials within a closed class of functions that can
be integrated in closed form. An alternative to discretization fulfilling this requirement is
suggested by Moral et al. [18] and Rumı́ [23]. They propose using mixtures of truncated ex-
ponentials (MTE) potentials to approximate PDF’s in hybrid Bayesian networks. The main
goal of this paper is to describe an implementation of MTE potentials in hybrid Bayesian
networks where continuous distributions are conditional linear Gaussian distributions. We
demonstrate propagation in such networks using two examples. Also, an MTE solution of an
augmented CLG network containing a discrete variable with a continuous parent is presented.

The remainder of this paper is organized as follows. Section 2 introduces notation and defi-
nitions used throughout the paper, including a description of the CLG model. Section 3 in-
troduces MTE potentials and defines the properties of MTE approximations for an arbitrary
normal PDF. Section 4 reviews the operations required for propagation in hybrid Bayesian
networks with MTE potentials using the Shenoy-Shafer architecture. Section 5 contains three
examples that demonstrate propagation of MTE potentials. Section 6 summarizes and states
some directions for future research.

2



2 Notation and Definitions

This section contains notation and definitions used throughout the paper.

2.1 Notation

Random variables in a hybrid Bayesian network will be denoted by capital letters, e.g.,
A,B,C. Sets of variables will be denoted by boldface capital letters, Y if all variables are
discrete, Z if all variables are continuous, or X if some of the components are discrete and
some are continuous. If X is a set of variables, x is a configuration of specific states of those
variables. The discrete, continuous, or mixed state space of X is denoted by ΩX.

MTE probability potentials and discrete probability potentials are denoted by lower-case
greek letters, e.g., α, β, γ. Subscripts are used for fragments of MTE potentials or conditional
probability tables when different parameters or values are required for each configuration of
a variable’s discrete parents, e.g., α1, β2, γ3

1 . Discrete probabilities for a specific element of
the state space are denoted as an argument to a discrete potential, e.g. δ(0) = P (D = 0).

In graphical representations, continuous nodes in hybrid Bayesian networks are represented
by double-border ovals, whereas discrete nodes are represented by single-border ovals.

2.2 Conditional Linear Gaussian (CLG) Models

Let X be a continuous node in a hybrid Bayesian network, Y = (Y1, . . . , Yd) be its discrete
parents, and Z = (Z1, . . . , Zc) be its continuous parents. Conditional linear Gaussian (CLG)
potentials [6,12,13] in hybrid Bayesian networks have the form

£(X | y, z) ∼ N(wy,0 +
c∑

i=1

wy,izi, σ
2
y), (1)

where y and z are a combination of discrete and continuous states of the parents of X. In this
formula, σ2

y > 0, wy,0 and wy,i are real numbers, and wy,i is defined as the i-th component of
a vector of the same dimension as the continuous part Z of the parent variables. This assumes
that the mean of a potential depends linearly on the continuous parent variables and that
the variance does not depend on the continuous parent variables. For each configuration of
the discrete parents of a variable X, a linear function of the continuous parents is specified

1 The term potential was introduced by Lauritzen and Spiegelhalter [14] to describe conditional
probability tables since the values in a conditional probability table do not sum to one, but to the
sum of the number of configurations of parent variables. The term fragment was introduced by
Demirer and Shenoy [8] to describe a portion of a potential that is defined over a subset of the
domain of the parent variables
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as the mean of the conditional distribution of X given its parents, and a positive real number
is specified for the variance of the distribution of X given its parents.

The scheme originally developed by Lauritzen [12] allowed exact computation of means
and variances in CLG networks; however, this algorithm did not always compute the exact
marginal densitites of continuous variables. A new computational scheme for CLG models
was later developed by Lauritzen and Jensen [13]. This scheme allows calculation of full
local marginals and also permits conditionally deterministic linear variables, i.e. distributions
where σ2

y = 0 in (1). To find full local marginals, restrictions are placed on construction and
initialization of the junction tree.

The CLG model has the property that for any assignment of values for the discrete variables,
the distribution for the continuous variables is multivariate Gaussian. This is because, given
an assignment of the discrete variables, the conditional probability distributions for the con-
tinuous nodes are simple linear univariate Gaussians. When these simple linear Gaussians
are combined, they produce a multivariate Gaussian. The joint distribution of all continu-
ous variables in the network is a mixture of Gaussians. CLG models cannot accommodate
continuous random variables whose conditional distribution is not Gaussian.

2.3 Logistic function

CLG models cannot accomodate discrete nodes with continuous parents because of the as-
sumption that the joint distribution is a mixture of Gaussians. One model for representing
the conditional distribution of a discrete variable given continuous parents is the logistic or
softmax distribution.

Let A be a discrete variable with ΩA = {a1, . . . , am} and let Z = {Z1, . . . , Zk} be its contin-
uous parents. The logistic function is defined as

P (A = ai | z) =
exp{gi +

∑k
n=1wi,nzn}∑m

j=1 exp{gj +
∑k

n=1wj,nzn}
, (2)

where the magnitude of wi,n determines the steepness of the threshold and g is the offset from
0. A large magnitude of wi,n corresponds to a hard threshold and a small magnitude of wi,n

corresponds to a soft threshold. If a discrete variable has discrete and continuous parents, a
different logistic function can be defined for each combination of its discrete parents.

If A is binary with ΩA = {a1, a2} and has continuous parents Z = {Z1, . . . , Zk}, the logistic
function can be simplified to a sigmoid function as follows

P (A = a1 | z) =
1

1 + exp{g +
∑k

n=1wnzn}
. (3)

Thus, in the binary case, P (A = a2 | z) = 1 − P (A = a1 | z).
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Methods of estimating parameters for logistic functions are discussed by McCullagh and
Nelder [17], and Jordan and Jacobs [9].

3 Mixtures of Truncated Exponentials

3.1 Definition

A mixture of truncated exponentials (MTE) [18,23] potential has the following definition.

MTE potential. Let X be a mixed n-dimensional random variable. Let Y = (Y1, . . . , Yd) and
Z = (Z1, . . . , Zc) be the discrete and continuous parts of X, respectively, with c+ d = n. A
function φ : ΩX �→ R+ is an MTE potential if one of the next two conditions holds:

(1) The potential φ can be written as

φ(x) = φ(y, z) = a0 +
m∑

i=1

ai exp{ d∑
j=1

b
(j)
i yj +

c∑
k=1

b
(d+k)
i zk} (4)

for all x ∈ ΩX, where ai, i = 0, . . . ,m and b
(j)
i , i = 1, . . . ,m, j = 1, . . . , n are real

numbers.
(2) There is a partition Ω1, . . . ,Ωk of ΩX verifying that the domain of continuous variables,

ΩZ, is divided into hypercubes, the domain of the discrete variables, ΩY, is divided into
arbitrary sets, and such that φ is defined as

φ(x) = φi(x) if x ∈ Ωi, (5)

where each φi, i = 1, ..., k can be written in the form of equation (4) (i.e. each φi is an
MTE potential on Ωi).

In the definition above, k is the number of pieces and m is the number of exponential terms
in each piece of the MTE potential. In this paper, all MTE potentials are equal to zero in
unspecified regions.

Moral et al. [19] proposes an iterative algorithm based on least squares approximation to
estimate MTE potentials from data. Moral et al. [20] describes a method to approximate
conditional MTE potentials using a mixed tree structure. Cobb et al. [3] describes a nonlinear
optimization procedure used to fit MTE parameters for approximations to standard PDF’s,
including the uniform, exponential, gamma, beta, and lognormal distributions. Romero et
al. [22] introduces a structural learning algorithm for Bayesian networks where the condi-
tional distribution for each variable is an MTE potential.
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3.2 MTE Approximation to the Normal PDF

Any continuous PDF can be approximated by an MTE potential. For instance, consider a
normally distributed random variable X with mean μ and variance σ2 > 0. The PDF for the
normal distribution is

fX(x) =
1√
2πσ

exp{− 1

2

(
x− μ

σ

)2}. (6)

A general formulation for a 4-piece, 1-term normalized MTE potential which approximates
a normal PDF is as follows:

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.017203
σ

+ 0.930964
σ

exp{1.27(x−μ
σ

)} if μ− 3σ ≤ x < μ− σ

0.442208
σ

− 0.038452
σ

exp{ − 1.64(x−μ
σ

)} if μ− σ ≤ x < μ

0.442208
σ

− 0.038452
σ

exp{1.64(x−μ
σ

)} if μ ≤ x < μ+ σ

−0.017203
σ

+ 0.930964
σ

exp{ − 1.27(x−μ
σ

)} if μ+ σ ≤ x < μ+ 3σ.

(7)

In this formulation, the mean, μ, of X may be represented by a linear function of its contin-
uous parents, as in (1). Details of the method used to determine the parameters (constants)
for the MTE approximation in (7) and others in this paper are available in [3].

The MTE potential in (7) has the following properties:

(1)

μ+3σ∫
μ−3σ

φ(x) dx = 1

(2) φ(x) ≥ 0
(3) φ(x) is symmetric around μ

(4)

μ+3σ∫
μ−3σ

x · φ(x)dx = μ

(5)

μ+3σ∫
μ−3σ

(x− μ)2 · φ(x)dx = 0.989532σ2.

Additionally, areas in the four regions of the MTE potential in (7) are

μ−σ∫
μ−3σ

φ(x) dx =

μ+3σ∫
μ+σ

φ(x) dx = 0.15522,

μ∫
μ−σ

φ(x) dx =

μ+σ∫
μ

φ(x) dx = 0.344784.
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Fig. 1. 4-piece, 1-term MTE approximation overlayed on the standard normal distribution.

The corresponding areas for the normal PDF are

μ−σ∫
μ−3σ

fX(x) dx =

μ+3σ∫
μ+σ

fX(x) dx = 0.157305,

μ∫
μ−σ

fX(x) dx =

μ+σ∫
μ

fX(x) dx = 0.341345.

Area in the extreme tails of the normal distribution is re-assigned to the four regions of the
MTE potential in proportion to the areas in the related regions of the normal distribution.
Fig. 1 shows a graph of the 4-piece, 1-term MTE approximation overlayed on the actual
normal PDF for the case where μ = 0 and σ2 = 1 over the domain [−3, 3].

Multiple MTE approximations can be created for a given PDF. For instance, by using three
exponential terms in each piece, the normal PDF can be fit with two pieces. A general
formulation for a 2-piece, 3-term un-normalized MTE potential which approximates the
normal PDF is as follows:

ψ′(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ−1(−0.010564 + 197.055720 exp{2.2568434(x−μ
σ

)}
−461.439251 exp{2.3434117(x−μ

σ
)}

+264.793037 exp{2.4043270(x−μ
σ

)}) if μ− 3σ ≤ x < μ

σ−1(−0.010564 + 197.055720 exp{ − 2.2568434(x−μ
σ

)}
−461.439251 exp{ − 2.3434117(x−μ

σ
)}

+264.793037 exp{ − 2.4043270(x−μ
σ

)}) if μ ≤ x ≤ μ+ 3σ.

(8)

The MTE potential in (8) has the following properties:
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Fig. 2. 2-piece, 3-term MTE approximation overlayed on the standard normal distribution.

(1)

μ+3σ∫
μ−3σ

ψ′(x) dx =

μ+3σ∫
μ−3σ

fX(x) dx = 0.9973

(2)

μ∫
μ−3σ

ψ′(x) dx =

μ+3σ∫
μ

ψ′(x) dx =

μ∫
μ−3σ

fX(x) dx =

μ+3σ∫
μ

fX(x) dx = 0.49865

(3) ψ′(x) ≥ 0
(4) ψ′(x) is symmetric around μ.

A normalized version of the 2-piece, 3-term MTE approximation to the normal PDF is

ψ(x) = (1/0.9973) · ψ′(x). (9)

The normalized MTE potential in (9) has the following properties:

(1)

μ+3σ∫
μ−3σ

ψ(x) dx = 1

(2)

μ+3σ∫
μ−3σ

x · ψ(x)dx = μ

(3)

μ+3σ∫
μ−3σ

(x− μ)2 · ψ(x)dx = 0.98187σ2.

Fig. 2 shows a graph of the 2-piece, 3-term MTE approximation overlayed on the actual
normal PDF for the case where μ = 0 and σ2 = 1 over the domain [−3, 3]. The un-normalized
potential in (8) shows the constants obtained using the method in [3]. Normalized potentials,
such as those shown in (7) and (9), are used in the initialization phase of the examples later
in the paper to solve hybrid Bayesian networks.
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Fig. 3. A sigmoid function with parameters w = −1 and g = 100 and its MTE approximation.

3.3 MTE Approximation to the Binary Sigmoid Function

Consider the univariate, binary case of the sigmoid function in (3) where g is any real number
and −∞ < w < 0 for a variable, A, with one continuous parent, Z. The general formulation
for a 2-piece MTE potential which approximates this function is

τ(z) = P (A = a1 | z) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if z < (5−g)
w

−0.021704 + 0.521704b exp{ − 0.635w(z − g(w + 1))} if (5−g)
w

≤ z < (−g)
w

1.021704 − 0.521704b−1 exp{0.635w(z − g(w + 1))} if (−g)
w

≤ z ≤ (−5−g)
w

1 if z > (−5−g)
w

,

(10)

where b = 0.529936g(w2+w+1).

Suppose the probability of a company making an investment in new equipment (I) depends
on continuous variable cash flow (C). The investment variable is binary with states I = 1
(invest) and I = 0 (do not invest). If the company establishes a soft threshold of $100
in cash flows for making an investment, this can be represented by the parameter g =
100 in the sigmoid function. With w = −1, the sigmoid function represents a family of
discrete conditional probability distributions for P (I = 1 | c). This sigmoid function is
shown graphically in Fig. 3, overlayed with the corresponding MTE approximation.

4 Propagation in MTE Networks

This section describes the operations required to carry out propagation of MTE potentials
in a hybrid Bayesian network. The definitions in this section are described in [18].
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4.1 Restriction

Restriction—or entering evidence—involves dropping coordinates to define a potential on a
smaller set of variables. During propagation, restriction is performed by substituting values
for known variables into the appropriate MTE potentials and simplifying the potentials
accordingly.

Let φ be an MTE potential for X = Y ∪ Z. Assume a set of variables X′ = Y′ ∪ Z′ ⊆ X,
whose values x↓ΩX′ are fixed to values x′ = (y′, z′). The restriction of φ to the values (y′, z′)
is a new potential defined on ΩX\X′ according to the following expression:

φR(X′=x′)(w) = φR(Y′=y′,Z′=z′)(w) = φ(x) (11)

for all w ∈ ΩX\X′ such that x ∈ ΩX, x↓ΩX\X′ = w and x↓ΩX′ = x′. In this definition, each
occurrence of X′ in φ is replaced with x′.

Example 1. Consider the following MTE potential:

δ1(d, e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.0086015 + 0.465482 exp{0.635(d− e− 5)} if e− 1 ≤ d < e+ 3

0.221104 − 0.019226 exp{ − 0.82(d− e− 5)} if e+ 3 ≤ d < e+ 5

0.221104 − 0.019226 exp{0.82(d− e− 5)} if e+ 5 ≤ d < e+ 7

−0.0086015 + 0.465482 exp{ − 0.635(d− e− 5)} if e+ 7 ≤ d < e+ 11.

If evidence is received that D = 12, the restriction operation is used to create a new MTE
potential as follows

ρ(e) = δ1(12, e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.0086015 + 0.465482 exp{0.635(7 − e)} if 9 < e ≤ 13

0.221104 − 0.019226 exp{ − 0.82(7 − e)} if 7 < e ≤ 9

0.221104 − 0.019226 exp{0.82(7 − e)} if 5 < e ≤ 7

−0.0086015 + 0.465482 exp{ − 0.635(7 − e)} if 1 < e ≤ 5.

4.2 Combination

Combination of MTE potentials is pointwise multiplication. Let φ1 and φ2 be MTE potentials
for X1 = Y1 ∪Z1 and X2 = Y2 ∪Z2. The combination of φ1 and φ2 is a new MTE potential
for X = X1 ∪ X2 defined as follows

φ(x) = φ1(x
↓X1) · φ2(x

↓X2) for all x ∈ ΩX. (12)
10



Example 2. Consider the following MTE potential:

ε1(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.017203 + 0.930964 exp{1.27(e− 5)} if 2 ≤ e < 4

0.442208 − 0.038452 exp{ − 1.64(e− 5)} if 4 ≤ e < 5

0.442208 − 0.038452 exp{1.64(e− 5)} if 5 ≤ e < 6

−0.017203 + 0.930964 exp{ − 1.27(e− 5)} if 6 ≤ e < 8.

The combination of the potential ρ(e) from Example 1 and ε1(e) produces the following
MTE potential

ε1(e) ⊗ ρ(e) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.0001 − 0.0001 exp{0.635e} − 0.00001 exp{1.27e} + (8.8844E − 06) exp{1.27e}
if 2 ≤ e < 4

−0.0038 + 1.2042 exp{ − 1.64e} − 0.7649 exp{ − 1.005e} + 0.0024 exp{0.635e}
if 4 ≤ e < 5

0.0978 − 2.6446 exp{ − 0.82e} + 0.0001 exp{0.82e} − (2.3351E − 06) exp{1.64e}
if 5 ≤ e < 6

−0.0038 − 3187.4407 exp{ − 2.09e} + 117.8418 exp{ − 1.27e} + 0.1029 exp{ − 0.82e}
if 6 ≤ e < 7

−0.0038 + 117.8418 exp{ − 1.27e} − 0.0329 exp{ − 0.45e} − (1.0633E − 06) exp{0.82e}
if 7 ≤ e < 8.

When two 4-piece MTE potentials are combined, the result can be an MTE potential
with up to 16 pieces. In this example, however, the domains of the two functions being
combined only intersect in five regions, so the resulting potential has five pieces.

4.3 Marginalization

Marginalization in a network with MTE potentials corresponds to summing over discrete
variables and integrating over continuous variables. Let φ be an MTE potential for X = Y ∪ Z.
The marginal of φ for a set of variables X′ = Y′ ∪ Z′ ⊆ X is an MTE potential computed as

φ↓X′
(y′, z′) =

∑
y∈ΩY\Y′

⎛
⎜⎝

∫
ΩZ′′

φ(y, z) dz′′

⎞
⎟⎠ (13)

where z = (z′, z′′), and (y′, z′) ∈ ΩX′ . Although we show the continuous variables being
marginalized before the discrete variables in (13), the variables can be marginalized in any
sequence, resulting in the same final MTE potential.
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Example 3. Consider the following MTE potential:

υ(g, h) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.448 − 163.28 exp{ − 1.64g} + 59449.91 exp{ − 1.64(g + h)} − 163.28 exp{ − 1.64h}
if (4 ≤ g < 5) ∩ (4 ≤ h < 5)

0.448 − 163.28 exp{ − 1.64g} − 0.000012 exp{ − 1.64h} + 0.0045 exp{ − 1.64(g − h)}
if (4 ≤ g < 5) ∩ (5 ≤ h < 6)

0.448 − 0.000012 exp{1.64g} + 0.0045 exp{ − 1.64(g − h)} − 163.28 exp{ − 1.64h}
if (5 ≤ g < 6) ∩ (4 ≤ h < 5)

0.448 − 0.000012 exp{1.64g} − 0.000012 exp{ − 1.64h} + (3.38E − 10) exp{1.64(g + h)}
if (5 ≤ g < 6) ∩ (5 ≤ h < 6).

The marginal of υ for g is

υ↓g(g) =

⎧⎪⎨
⎪⎩

0.334835 − 121.912 exp{ − 1.64g} if 4 ≤ g < 5

0.442208 − (8.879E − 6) exp{1.64g} if 5 ≤ g < 6.

4.4 Normalization

Let X = Y ∪Z be a set of variables with discrete and continuous elements, and let φ′ be an
un-normalized MTE potential for X. A normalization constant, K, for φ′ is calculated as

K =
∑

y∈ΩY

⎛
⎜⎝

∫
ΩZ

φ′(y, z) dz

⎞
⎟⎠ . (14)

Normalization is implicit in the definition of combination (in the sense that instead of nor-
malizing every time combination is done, we omit it and normalize just once at the end
of propagation). When using the Shenoy-Shafer architecture in a hybrid Bayesian network
with MTE potentials, a normalization constant, K, is determined by integrating a marginal
potential (that is computed at any node in the join tree by combining the input potential
with the incoming messages) over the continuous variables in its domain and summing over
the discrete variables in its domain. Each marginal potential in the network can then be
multiplied by the same constant K−1 to obtain a normalized MTE potential. In the case
where no evidence is observed, the normalization constant equals one, assuming the join tree
is initialized with normalized potentials.
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X Y Z

Fig. 4. The Bayesian network for the simple Gaussian example.

4.5 Shenoy-Shafer Architecture

Moral et al. [18] shows that the class of MTE potentials is closed under restriction, marginal-
ization, and combination when the domains of MTE potentials are hypercubes. In this paper,
we allow the domains of MTE potentials to be linearly dependent on parent variables, such
as in the potential δ1 in Section 4.1. In this case, the result of the marginalization opera-
tion may include linear terms in the remaining variables because the limits of integration
of some pieces may include linear functions. To ensure that the result of marginalization is
an MTE potential, we replace the variable in the linear terms with an MTE approximation.
Specifically, for a linear term x defined over the domain [xmin, xmax], we replace x with

(xmax − xmin) ·
(
xmin − 13.507018 + 13.512870 · exp

{
0.071387

xmax − xmin

· (x− xmin)
})

. (15)

With replacement of the linear terms, MTE potentials as defined in this paper are closed
under marginalization. Thus, MTE potentials can be propagated using the Shenoy-Shafer
architecture [25], since only restrictions, combinations and marginalizations are perfomed.
Normalization involves multiplication of an MTE potential by a real number (the reciprocal
of the normalization constant), so this operation is also closed under the class of MTE
potentials. In all examples that follow, the Shenoy-Shafer architecture is used for propagation.

5 Examples

5.1 Simple Gaussian Example

A simple Gaussian example [6] is depicted in Fig. 4. This CLG network contains three con-
tinuous variables with Gaussian potentials, thus the joint distribution for the three variables
is trivariate Gaussian.

5.1.1 Binary Join Tree Initialization

A binary join tree representation [24] of the simple Gaussian example is shown in Fig. 5.
The three potentials defined in this example are conditional linear Gaussian distributions.

The probability distribution for X is a standard normal PDF, i.e. £(X) ∼ N(0, 1). The PDF
13



Y {X,Y} X

αβ

Z {Y,Z}
Ze δ

Fig. 5. A binary join tree representation of the simple Gaussian example.

for X is approximated by an MTE potential as follows:

α(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.017203 + 0.930964 exp{1.27x} if − 3 ≤ x < −1

0.442208 − 0.038452 exp{ − 1.64x} if − 1 ≤ x < 0

0.442208 − 0.038452 exp{1.64x} if 0 ≤ x < 1

−0.017203 + 0.930964 exp{ − 1.27x} if 1 ≤ x < 3.

The probability distribution for Y is defined as £(Y | x) ∼ N(x, 1). The conditional PDF
for Y is approximated by an MTE potential as follows:

β(y, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.017203 + 0.930964 exp{1.27(y − x)} if x− 3 ≤ y < x− 1

0.442208 − 0.038452 exp{ − 1.64(y − x)} if x− 1 ≤ y < x

0.442208 − 0.038452 exp{1.64(y − x)} if x ≤ y < x+ 1

−0.017203 + 0.930964 exp{ − 1.27(y − x)} if x+ 1 ≤ y < x+ 3.

The probability distribution for Z is defined as £(Z | y) ∼ N(y, 1). The conditional PDF
for Z is approximated by an MTE potential as follows:

δ(z, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.017203 + 0.930964 exp{1.27(z − y)} if y − 3 ≤ z < y − 1

0.442208 − 0.038452 exp{ − 1.64(z − y)} if y − 1 ≤ z < y

0.442208 − 0.038452 exp{1.64(z − y)} if y ≤ z < y + 1

−0.017203 + 0.930964 exp{ − 1.27(z − y)} if y + 1 ≤ z < y + 3.

5.1.2 Entering Evidence

Assume evidence exists that Z = −1.5 and define eZ = −1.5. Using the Shenoy-Shafer
architecture, the following messages must be passed through the join tree in Fig. 5 to calculate
the posterior marginal distributions for variables X and Y :

1) eZ = −1.5 from {Z} to {Y, Z}
2) (δ ⊗ eZ) from {Y, Z} to {X, Y }
3) (δ ⊗ eZ ⊗ β)↓X from {X, Y } to {X}
4) α from {X} to {X, Y }

14



5) (α⊗ β)↓Y from {X, Y } to {Y }.

The details of the required messages are shown below:

(1) {Z} to {Y, Z}
The evidence potential eZ = −1.5 is sent from {Z} to {Y, Z}.

(2) {Y, Z} to {X, Y }
Given the evidence, the message restricts δ to δ(−1.5, y), which amounts to substituting
z = −1.5 into δ(z, y)—an operation denoted as η = (δ⊗eZ)—then restating the domain
in terms of Y as follows:

η(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.017203 + 0.930964 exp{1.905 + 1.27y} if − 4.5 < y ≤ −2.5

0.442208 − 0.038452 exp{ − 2.46 − 1.64y} if − 2.5 < y ≤ −1.5

0.442208 − 0.038452 exp{2.46 + 1.64y} if − 1.5 < y ≤ −0.5

−0.017203 + 0.930964 exp{ − 1.905 − 1.27y} if − 0.5 < y ≤ 1.5.

(3) {X, Y } to {X}
The combination (η ⊗ β) is performed, then this message is calculated as

∫
ΩY

(η(y) · β(y, x)) dy.

(4) {X} to {X, Y }
The potential α is sent from {X} to {X, Y }.

(5) {X, Y } to {Y }
This message is calculated by performing the combination (α⊗β), then integrating this
combination over the domain of X. This results in the un-normalized potential below:

∫
ΩX

(α(x) · β(y, x)) dy =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.0164 + 2.076 exp{1.27y} if x− 3 ≤ y < x− 1

0.4374 − 0.139 exp{ − 1.64y} if x− 1 ≤ y < x

0.4374 − 0.139 exp{1.64y} if x ≤ y < x+ 1

−0.0164 + 2.076 exp{ − 1.27y} if x+ 1 ≤ y < x+ 3.

5.1.3 Posterior Marginals

(1) Posterior Marginal for X
The posterior marginal distribution for X is determined by combining the message sent
from {X, Y } to {X} with the original potential for X. The combination is performed
as

ξ′(x) =

⎛
⎜⎝

∫
ΩY

(η(y) · β(y, x)) dy

⎞
⎟⎠ · α(x).

15
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Fig. 6. The un-normalized (left) and normalized (right) posterior distribution for X in the simple
Gaussian example.

The un-normalized MTE potential appears in Fig. 6. A normalization constant K is
calculated by evaluating the integral in the un-normalized potential over the domain in
each region. In this case,

K =
∫

ΩX

ξ ′(x) dx = 0.1584 .

The normalized posterior MTE potential for X is ξ(x) = K−1 · ξ ′(x). The expected
value and variance of this MTE potential are calculated as:

E(X) =
∫

ΩX

x · ξ(x) dx = −0.5000 ,

V ar(X) =
∫

ΩX

(x− E(X))2 · ξ(x) dx = 0.6664 .

These answers are comparable with exact results obtained using Hugin software,
which gives an expected value and variance of −0.5 and 0.6667, respectively. The nor-
malized posterior MTE potential for X is displayed in Fig. 6.

(2) Posterior Marginal for Y
The posterior marginal distribution for Y is determined by combining the messages
sent to Y on both the inward and outward passes through the binary join tree. This
combination is performed as

ψ ′(y) = η(y) ·
∫

ΩX

(α(x) · β(y, x)) dx .

The same normalization constant,K = 0.1584, used to determine the posterior marginal
distribution for X can be used to determine the posterior marginal distribution for Y .
The normalized posterior MTE potential for Y is ψ(y) = K−1 · ψ ′(y). The expected
value and variance of this distribution are calculated as

E(Y ) =
∫

ΩY

y · ψ(y) dy = −1.000 ,

V ar(Y ) =
∫

ΩY

(y − E(Y ))2 · ψ(y) dy = 0.6664 .
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Fig. 7. The marginal distributions created using the discretization in Table 1.

These answers are comparable with exact results obtained using Hugin software,
which gives an expected value and variance of −1.0 and 0.6667, respectively.

5.1.4 A Weakness of Discretization

One alternative for making inferences in the simple Gaussian example is to discretize the
three variables. The domain of X in the simple Gaussian example is [−3, 3], considering
only area within 3 standard deviations of the mean. Since £(Y |x) ∼ N(x, 1) and £(Z|y) ∼
N(y, 1), the domain of Y is [−6, 6] and the domain of Z is [−9, 9].

The values for a six-bin discrete approximation to the PDF for X are shown in the body of
Table 1, with the probabilities assigned to each bin listed in the column headings. Given the
six potential discrete values for X, {Y | x} can be discretized into 11 values. The discrete
approximation of the conditional PDF for Y given each discrete value of X is also shown
in Table 1, along with 11 different conditional probability mass functions (PMF’s) which
include 16 potential discrete values for Z.

The prior discrete approximations can be used to obtain a reasonable approximation of the
marginal distributions for the three variables, as shown in Fig. 7, which was produced using
Netica software.

Suppose we observe evidence that Z = −7.5. Using the discrete approximation in Table 1
and Bayes rule, the posterior marginal distributions forX and Y are degenerate, with P (X =
−2.5) = 1 and P (Y = −5) = 1 (see Fig. 8). This implies that the marginal density for X is
uniform from −3 to −2 and the marginal density for Y is uniform from −5.5 to −4.5.

When using the discrete approximation for inference, X is restricted to a uniform density.
However, since X actually has a domain of [z−6, z+6], X can take on a value from [−3,−1.5]
(considering only area within three standard deviations of the mean). The posterior marginal
distribution of X using the model with MTE potentials appears in Fig. 9, which shows that
X is clearly not uniform. This distribution has an expected value of −2.5. Thus, discretizing
the prior distributions does not guarantee that the posterior distributions given the evidence
will provide a reasonable approximation.

17



Table 1
Discretization of the variables in the simple Gaussian example. Each bin extends from Value−0.5
to Value+0.5.

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6

Value P = 0.022 P = 0.136 P = 0.342 P = 0.342 P = 0.136 P = 0.022

X -2.5 -1.5 -0.5 0.5 1.5 2.5

(Y | x = −2.5) -5 -4 -3 -2 -1 0

(Y | x = −1.5) -4 -3 -2 -1 0 1

(Y | x = −0.5) -3 -2 -1 0 1 2

(Y | x = 0.5) -2 -1 0 1 2 3

(Y | x = 1.5) -1 0 1 2 3 4

(Y | x = 2.5) 0 1 2 3 4 5

(Z| y = −5) -7.5 -6.5 -5.5 -4.5 -3.5 -2.5

(Z| y = −4) -6.5 -5.5 -4.5 -3.5 -2.5 -1.5

(Z| y = −3) -5.5 -4.5 -3.5 -2.5 -1.5 -0.5

(Z| y = −2) -4.5 -3.5 -2.5 -1.5 -0.5 0.5

(Z| y = −1) -3.5 -2.5 -1.5 -0.5 0.5 1.5

(Z| y = 0) -2.5 -1.5 -0.5 0.5 1.5 2.5

(Z| y = 1) -1.5 -0.5 0.5 1.5 2.5 3.5

(Z| y = 2) -0.5 0.5 1.5 2.5 3.5 4.5

(Z| y = 3) 0.5 1.5 2.5 3.5 4.5 5.5

(Z| y = 4) 1.5 2.5 3.5 4.5 5.5 6.5

(Z| y = 5) 2.5 3.5 4.5 5.5 6.5 7.5

5.2 Simple Waste Example

This example is derived from [6] and will provide an example of using MTE potentials
for inference in a hybrid Bayesian network. Some parameters have been changed from the
original example to make the domains of the MTE potentials easier to interpret, but all
relationships between variables are unchanged. The hybrid Bayesian network and join tree
for the problem are shown in Figs. 10 and 11, respectively. In this problem, the emission
(E) from a waste incinerator differs because of the type of waste (W ) and the waste burning
regime (B). The filter efficiency (E) depends on the technical state of the electrofilter (F )
and the type of waste (W ). The emission of dust (D) depends on the type of waste (W ), the

18



Fig. 8. The marginal distributions given evidence that Z = −7.5 created using the discretization
in Table 1.

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

1.2

Fig. 9. The posterior marginal distribution for X given Z = −7.5 using MTE potentials. The
uniform distribution from −3 to −2 represents the result from discretization.

E

D

F

WB

Fig. 10. The hybrid Bayesian network for the simple Waste example.

burning regime (B), and the filter efficiency (E).
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Fig. 11. The join tree for the simple Waste example.

5.2.1 Definition of Potentials

The potentials for the five nodes are the probability tables and distributions shown below:

α(0) = P (F = 0) = 0.90, α(1) = P (F = 1) = 0.10,

β(0) = P (B = 0) = 0.80, β(1) = P (B = 1) = 0.20,

γ(0) = P (W = 0) = 0.20, γ(1) = P (W = 1) = 0.80,

£(E | F = 0,W = 0) ∼ N(με1 , σ
2
ε1

) ⇒ ε1(e) ∼ N(5, 1),

£(E | F = 0,W = 1) ∼ N(με2 , σ
2
ε2

) ⇒ ε2(e) ∼ N(8, 1),

£(E | F = 1,W = 0) ∼ N(με3 , σ
2
ε3

) ⇒ ε3(e) ∼ N(0, 1),

£(E | F = 1,W = 1) ∼ N(με4 , σ
2
ε4

) ⇒ ε4(e) ∼ N(1, 1),

£(D | B = 0,W = 0, E) ∼ N(μδ1(e), σ
2
δ1

) ⇒ δ1(d, e, B = 0,W = 0) ∼ N(5 + e, 4),

£(D | B = 0,W = 1, E) ∼ N(μδ2(e), σ
2
δ2

) ⇒ δ2(d, e, B = 0,W = 1) ∼ N(6 + e, 4),

£(D | B = 1,W = 0, E) ∼ N(μδ3(e), σ
2
δ3

) ⇒ δ3(d, e, B = 1,W = 0) ∼ N(7 + e, 4),

£(D | B = 1,W = 1, E) ∼ N(μδ4(e), σ
2
δ4

) ⇒ δ4(d, e, B = 1,W = 1) ∼ N(8 + e, 4).
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The MTE potential fragment δ1 is defined as follows:

δ1(d, e, B = 0,W = 0) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.005296 + 98.794606 exp{1.1284217(d− e− 5)}
−231.344255 exp{1.1717059(d− e− 5)} + 132.754957 exp{1.2021635(d− e− 5)}

if e− 1 ≤ d < e+ 5

−0.005296 + 98.794606 exp{ − 1.284217(d− e− 5)}
−231.344255 exp{ − 1.1717059(d− e− 5)} + 132.754957 exp{ − 1.2021635(d− e− 5)}

if e+ 5 ≤ d ≤ e+ 11.

The MTE potential fragments δ2(d, e, B = 0,W = 1), δ3(d, e, B = 1,W = 0), and δ4(d, e, B =
1,W = 1) are defined similarly. The fragments δ1, ..., δ4 constitute the potential δ for
{B,W,E,D}. Similarly, four MTE potential fragments ε1, ..., ε4 which are defined according
the the 2-piece MTE approximation to the normal PDF in (9) constitute the potential ε for
{W,F,E}.

5.2.2 Propagation

At node {W,F,E}, the potentials α, γ, and ε are combined as follows:

ξ1(e, F = 0,W = 0) = α(0) · γ(0) · ε1(e),

ξ2(e, F = 0,W = 1) = α(0) · γ(1) · ε2(e),

ξ3(e, F = 1,W = 0) = α(1) · γ(0) · ε3(e),

ξ4(e, F = 1,W = 1) = α(1) · γ(1) · ε4(e).

The fragments ξ1, ..., ξ4 constitute the potential ξ for {W,F,E}.

Discrete variable F is deleted by summation from the combination of α, γ, and ε and new
MTE potential fragments are determined as follows:

θ0(e,W = 0) = ξ1(e, F = 0,W = 0) + ξ3(e, F = 1,W = 0) ,

θ1(e,W = 1) = ξ2(e, F = 0,W = 1) + ξ4(e, F = 1,W = 1) .

The potential fragment θ0 is shown graphically in Fig. 12. This message is sent from {W,F,E}
to {B,W,E,D} in the join tree.
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Fig. 12. The potential fragment θ0 formed by deleting F from (α ⊗ γ ⊗ ε).
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Fig. 13. The potential fragment η1 formed by combining β(0), θ0 and δ1 restricted to E = 5.

At {B,W,E,D} potential fragments η1, ..., η4 are determined as follows:

η1(d, e, B = 0,W = 0) = β(0) · θ0(e,W = 0) · δ1(d, e, B = 0,W = 0) ,

η2(d, e, B = 0,W = 1) = β(0) · θ1(e,W = 1) · δ2(d, e, B = 0,W = 1) ,

η3(d, e, B = 1,W = 0) = β(1) · θ0(e,W = 0) · δ3(d, e, B = 1,W = 0) ,

η4(d, e, B = 1,W = 1) = β(1) · θ1(e,W = 1) · δ4(d, e, B = 1,W = 1) .

The potential fragment η1 is shown graphically in Fig. 13 for a value of E = 5. The potential
fragments η1, ..., η4 constitute the potential η for {B,W,E,D}.

5.2.3 Posterior Marginals

Prior to calculating the marginal distributions for D and E, integration limits are defined
using the parameters from the original potentials in the problem. Although the integration
limits can always be set to −∞ and ∞, defining the limits as real numbers facilitates easier
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Fig. 14. The marginal potentials for D (left) and E (right) in the simple Waste example.

calculations.

The lower and upper limits of integration for E are denoted by λE and κE, respectively, and
are calculated as follows:

λE = Min
{
με1 − 3σ2

ε1
, με2 − 3σ2

ε2
, με3 − 3σ2

ε3
, με4 − 3σ2

ε4

}
= −3 ,

κE = Max
{
με1 + 3σ2

ε1
, με2 + 3σ2

ε2
, με3 + 3σ2

ε3
, με4 + 3σ2

ε4

}
= 11 , .

The lower and upper limits of integration for D are a function of the lower and upper limits
of integration for E, since the mean of each potential for D is a linear function of E. The
upper and lower limits of integration for D are denoted by λD and κD, respectively, and are
calculated as follows:

λD = Min
{
μδ1(λE) − 3σ2

δ1
, μδ2(λE) − 3σ2

δ2
, μδ3(λE) − 3σ2

δ3
, μδ4(λE) − 4σ2

δ4

}
= −3 ,

κD = Max
{
μδ1(κE) + 3σ2

δ1
, μδ2(κE) + 3σ2

δ2
, μδ3(κE) + 3σ2

δ3
, μδ4(κE) + 3σ2

δ4

}
= 25 .

The limits λD and κD are the lower and upper limits for the entire integration operation.
The limits of integration for a given piece of the MTE potential may include linear functions
of the remaining variables and require a replacement of a resulting linear term, as explained
in Section 4.5.

The marginal potential for D is calculated by removing B and W from η (references to B
and W in the domains are omitted) and integrating over E as follows:

ϕ(d) =

κE∫
λE

(η1(d, e) + η2(d, e) + η3(d, e) + η4(d, e)) de .

This potential is shown graphically in Fig. 14, plotted over the region from λD to κD.

The following integrals are calculated to verify that ϕ(d) is a PDF for D and to calculate
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the expected value and variance of the distribution:

κD∫
λD

ϕ(d) dd = 1.0000 ,

E(D) =

κD∫
λD

d · ϕ(d) dd = 12.9402 ,

V ar(D) =

κD∫
λD

(d− E(D))2 · ϕ(d) dd = 11.8380 .

These answers are comparable with exact results obtained using Hugin software, which gives
an expected value and variance of 12.9400 and 11.9284, respectively.

The marginal potential for E is calculated by removing B and W from η (references to B
and W in the domains are omitted) and integrating over D as follows:

ψ(e) =

κD∫
λD

(η1(d, e) + η2(d, e) + η3(d, e) + η4(d, e)) dd .

This potential is shown graphically in Fig. 14, plotted over the region from λE to κE.

The following integrals are calculated to verify that ψ(e) is a PDF for E and to calculate
the expected value and variance of the distribution:

κE∫
λE

ψ(e) de = 1.0000 ,

E(E) =

κE∫
λE

e · ψ(e) de = 6.7403 ,

V ar(E) =

κE∫
λE

(e− E(E))2 · ψ(e) de = 6.2143 .

These answers are comparable with exact results obtained using Hugin software, which gives
an expected value and variance of 6.7400 and 6.2324, respectively.

5.2.4 Entering Evidence

Suppose evidence is obtained that D = 10. The existing potential fragments for {B,W,E,D}
are restricted to η1(10, e, B = 0,W = 0), ..., η4(10, e, B = 1,W = 1). These potential frag-
ments are summed (to remove B and W ) and then integrated over the domain of E to obtain
a normalization constant,
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K =

κE∫
λE

(η1(10, e) + η2(10, e) + η3(10, e) + η4(10, e)) de = 0.0594 .

The normalized marginal distribution for E is

ϑ(e) = K−1 · (η1(10, e) + η2(10, e) + η3(10, e) + η4(10, e)) .

The following integrals are calculated to verify that ϑ(e) is a PDF for E and to calculate the
expected value and variance of the distribution:

κE∫
λE

ϑ(e) de = 1.0000 ,

E(E) =

κE∫
λE

e · ϑ(e) de = 5.3078 ,

V ar(E) =

κE∫
λE

(e− E(E))2 · ϑ(e) de = 4.1803 .

These answers are comparable with exact results obtained using Hugin software, which gives
an expected value and variance of 5.2935 and 4.1552, respectively.

To calculate revised marginal probabilities for discrete nodes W and F , the evidence that
D = 10 is used to restrict the potential δ as follows:

χ1(e, B = 0,W = 0) = δ1(10, e, B = 0,W = 0) ,

χ2(e, B = 0,W = 1) = δ2(10, e, B = 0,W = 1) ,

χ3(e, B = 1,W = 0) = δ3(10, e, B = 1,W = 0) ,

χ4(e, B = 1,W = 1) = δ4(10, e, B = 1,W = 1) .

These revised potential fragments are then sent to node {W,F,E} in the join tree after
marginalizing B in the following message:

τ0(e,W = 0) = β(0) · χ1(e, B = 0,W = 0) + β(1) · χ3(e, B = 1,W = 0) ,

τ1(e,W = 1) = β(0) · χ2(e, B = 0,W = 1) + β(1) · χ4(e, B = 1,W = 1) .
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At node {W,F,E} the message is combined with the existing potential as follows:

ζ1(e, F = 0,W = 0) = ξ1(e, F = 0,W = 0) · τ0(e,W = 0) ,

ζ2(e, F = 0,W = 1) = ξ2(e, F = 0,W = 1) · τ1(e,W = 1) ,

ζ3(e, F = 1,W = 0) = ξ3(e, F = 1,W = 0) · τ0(e,W = 0) ,

ζ4(e, F = 1,W = 1) = ξ4(e, F = 1,W = 1) · τ1(e,W = 1) .

To calculate revised probabilities for discrete node F , E must be removed by integration and
W and B must be removed by summation. The normalization constant K is still valid. The
revised probabilities P (F = 0) and P (F = 1) are calculated as follows:

�(0) = P (F = 0) = K−1

⎛
⎜⎝

κE∫
λE

(ζ1(e, F = 0,W = 0) + ζ2(e, F = 0,W = 1)) de

⎞
⎟⎠ = 0.8700 ,

�(1) = P (F = 1) = K−1

⎛
⎜⎝

κE∫
λE

(ζ3(e, F = 1,W = 0) + ζ4(e, F = 1,W = 1)) de

⎞
⎟⎠ = 0.1300 .

These answers are comparable with exact results obtained using Hugin software, which cal-
culates revised probabilities P (F = 0) = 0.8691 and P (F = 1) = 0.1309.

To calculate revised probabilities for discrete node W , E must be removed by integration
and F and B must be removed by summation. The normalization constant K is still valid.
The revised probabilities P (W = 0) and P (W = 1) are calculated as follows:

ν(0) = P (W = 0) = K−1

⎛
⎜⎝

κE∫
λE

(ζ1(e, F = 0,W = 0) + ζ3(e, F = 1,W = 0)) de

⎞
⎟⎠ = 0.5164 ,

ν(1) = P (W = 1) = K−1

⎛
⎜⎝

κE∫
λE

(ζ2(e, F = 0,W = 1) + ζ4(e, F = 1,W = 1)) de

⎞
⎟⎠ = 0.4836 .

These answers are comparable with exact results obtained using Hugin software, which cal-
culates revised probabilities P (W = 0) = 0.5156 and P (W = 1) = 0.4844.

To calculate revised probabilities for discrete node B, the restricted potential χ is combined
with the potential θ sent to {B,W,E,D}, then E is removed by integration and W is
removed by summation from the result. The normalization constant K is still valid. The
revised probabilities P (B = 0) and P (B = 1) (references to B and W in the domains
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Subsidy (S)

Price (P)

Crop (C)

Buy (B)

Fig. 15. The hybrid Bayesian network for the Crop example.

omitted) are calculated as follows:

ρ0 = P (B = 0) = K−1 · β(0) ·
⎛
⎜⎝

κE∫
λE

(χ1(e) · θ0(e) + χ2(e) · θ1(e)) de

⎞
⎟⎠ = 0.8682 ,

ρ1 = P (B = 1) = K−1 · β(1) ·
⎛
⎜⎝

κE∫
λE

(χ3(e) · θ0(e) + χ4(e) · θ1(e)) de

⎞
⎟⎠ = 0.1318 .

These answers are comparable with exact results obtained using Hugin software, which cal-
culates revised probabilities P (B = 0) = 0.8669 and P (B = 1) = 0.1331.

5.3 Crop Network Example

This example is used by Binder et al. [1] and Murphy [21] and will provide a simple example
of inference using MTE potentials in a hybrid Bayesian network with a discrete child of a
continuous parent. A diagram of the hybrid Bayesian network appears in Fig. 15. In this
model, the price (P ) of a crop is assumed to decrease linearly with the amount of crop (C)
produced. If the government subsidizes prices (S = 1), the price will be raised by a fixed
amount. The consumer is likely to buy (B = 1) if the price drops below a certain amount.

The discrete variable (B) is modeled by a softmax or logistic distribution, which in the
case of a binary discrete variable, reduces to a sigmoid function. For the Crop example,
P (B = 0|P = p) is given by sigmoid function parameters w = −1 and g = 5 and is
approximated by an MTE potential of the form presented in (10). The MTE potential
fragment for B = 0 given price (P ) is

β0(B = 0, p) = P (B = 0 | P = p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if p < 0

−0.021704 + 0.021804 exp{0.635p} if 0 ≤ p < 5

1.021704 − 12.4827 exp{ − 0.635p} if 5 ≤ p ≤ 10

1 if p > 10.

(16)
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Fig. 16. The MTE approximation to the sigmoid function representing P (B = 0 | P = p) in the
Crop network.
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Fig. 17. The join tree for the Crop example.

Since B is binary, β1(B = 1, p) = P (B = 1 | P = p) = 1 − P (B = 0 | P = p). The MTE
potential fragments β0 and β1 constitute the potential β for {B,P}. The MTE potential
fragment β0(B = 0, p) is shown graphically in Fig. 16.

5.3.1 Binary Join Tree Initialization

Other algorithms developed for inference in hybrid networks with discrete children of contin-
uous parents place special restrictions on the process of initializing the network. For instance,
Lerner et al. [16] requires a preprocessing phase where all potentials except those for the dis-
crete children of continuous parents are inserted. The algorithm suggested by Murphy [21]
requires any logistic or softmax functions to be converted to Gaussian potentials by using a
variational lower bound.

When all probability potentials in the hybrid Bayesian network are approximated with MTE
potentials (note that discrete potentials are a special case of the MTE potential), no restric-
tions are placed on join tree initialization. The join tree is initialized as usual and propagation
takes place according to the Shenoy–Shafer architecture.
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A join tree for the Crop example is shown in Fig. 17. The potential for {B,P} was stated
previously. The potential for the Subsidy variable (S) is the following binary discrete distri-
bution:

δ(0) = P (S = 0) = 0.30, δ(1) = P (S = 1) = 0.70.

The crop variable (C) follows a normal PDF, £(C) ∼ N(5, 1), which is approximated by the
following MTE potential:

α(c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.017203 + 0.930964 exp{1.27(c− 5)} if 2 ≤ c < 4

0.442208 − 0.038452 exp{ − 1.64(c− 5)} if 4 ≤ c < 5

0.442208 − 0.038452 exp{1.64(c− 5)} if 5 ≤ c < 6

−0.017203 + 0.930964 exp{ − 1.27(c− 5)} if 6 ≤ c < 8.

The price variable (P ) decreases linearly with the amount of crop (C) produced and is
increased by a fixed amount if the government subsidizes prices (S = 1). Thus, £(P |S =
0, C) ∼ N(10 − c, 1) and £(P |S = 1, C) ∼ N(20 − c, 1), which are represented by the
following MTE potential fragments:

ϕ0(p, c, S = 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.017203 + 0.930964 exp{1.27(p+ c− 10)} if 7 − c ≤ p < 9 − c

0.442208 − 0.038452 exp{ − 1.64(p+ c− 10)} if 9 − c ≤ p < 10 − c

0.442208 − 0.038452 exp{1.64(p+ c− 10)} if 10 − c ≤ p < 11 − c

−0.017203 + 0.930964 exp{ − 1.27(p+ c− 10)} if 11 − c ≤ p < 13 − c,

ϕ1(p, c, S = 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.017203 + 0.930964 exp{1.27(p+ c− 20)} if 17 − c ≤ p < 19 − c

0.442208 − 0.038452 exp{ − 1.64(p+ c− 20)} if 19 − c ≤ p < 20 − c

0.442208 − 0.038452 exp{1.64(p+ c− 20)} if 20 − c ≤ p < 21 − c

−0.017203 + 0.930964 exp{ − 1.27(p+ c− 20)} if 21 − c ≤ p < 23 − c.

5.3.2 Computing Messages

The following messages are required to compute the prior marginal distributions for P and
B in the Crop example

1) α from {C} to {C,P, S}
2) δ from {S} to {C,P, S}
3) (α⊗ δ ⊗ ϕ)↓P from {C,P, S} to {P}
4) ((α⊗ δ ⊗ ϕ)↓P ⊗ β)↓B from {B,P} to {B}.

29



5 10 15 20

0.05

0.1

0.15

0.2

Fig. 18. The prior marginal distribution for P in the Crop example.

5.3.3 Prior Marginals

(1) Prior Marginal for P

The message sent from {C,P, S} to {P} is the prior marginal distribution for P and
is calculated as follows:

ψ(p) =
∫

ΩC

(α(c) · (δ(0) · ϕ0(p, c, S = 0) + δ(1) · ϕ1(p, c, S = 1))) dc.

The expected value and variance of the prior marginal distribution for P are calculated
as follows:

E(P ) =
∫

ΩP

p · ψ(p) dp = 11.9902 ,

V ar(P ) =
∫

ΩP

(p− E(P ))2 · ψ(p) dp = 22.9373 .

These calculations can be verified by using Hugin software to construct a network
with variables S, C, and P only. Hugin gives an expected value and variance for P of
12 and 23, respectively. The prior marginal distribution for P is shown graphically in
Fig. 18.

(2) Prior Marginal for B
To calculate the prior marginal probabilities for B, the prior marginal distribution for
P is combined with the MTE potential fragments β0(B = 0, p) and β1(B = 1, p). First,
an MTE potential for {B = 0, P} is calculated as follows:

Ψ0(B = 0, p) = β0(B = 0, p) · ψ(p).

Next, an MTE potential for {B = 1, P} is calculated as follows:

Ψ1(B = 1, p) = β1(B = 1, p) · ψ(p).
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Table 2
Probabilities for the discrete approximation to the prior marginal distribution for P .

Min. Value Max. Value p=Mid-point P (P = p) P (B = 0|P = p) P (B = 1|P = p)

-1 1 0 0.0006 0.0067 0.9933

1 3 2 0.0229 0.0474 0.9526

3 5 4 0.1269 0.2689 0.7311

5 7 6 0.1269 0.7311 0.2689

7 9 8 0.0228 0.9526 0.0474

9 11 10 0.0013 0.9933 0.0067

11 13 12 0.0535 0.9991 0.0009

13 15 14 0.2960 0.9999 0.0001

15 17 16 0.2960 0.1000 0.0000

17 19 18 0.0532 1.0000 0.0000

19 21 20 0.0000 1.0000 0.0000

The prior marginal probabilities for B are found by removing P as follows:

P (B = 0) =
∫

ΩP

Ψ0(B = 0, p) dp = 0.8497 ,

P (B = 1) =
∫

ΩP

Ψ1(B = 1, p) dp = 0.1503 .

To compare these answers with a discrete approximation, an 11-bin discretization
was created using the prior marginal distribution for P , ψ(p). This distribution was
integrated over 11 regions, with the probabilities obtained listed in Table 2, along with
the conditional probabilities for {B = 0 | p} and {B = 1 | p} calculated by using the
logistic function specified in (16).

By using Bayes rule with the probabilities in Table 2, we can verify that P (B =
0) ≈ 0.85 and P (B = 1) ≈ 0.15, consistent with the answers obtained by using MTE
potentials.

6 Summary and Conclusions

We have described the details of 2-piece and 4-piece MTE potential approximations to a
normal PDF and defined their properties. Inference in three hybrid Bayesian networks us-
ing MTE potentials was demonstrated using the Shenoy–Shafer architecture for calculating
marginals.

MTE potentials have tremendous promise for use as an inference tool in hybrid Bayesian
networks where other methods lead to poor accuracy or high computational expense. MTE
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potentials can approximate any continuous PDF, so they can be used for inference without
limitations on the positioning of continuous and discrete variables within the network. Ad-
ditionally, other methods proposed for inference in hybrid Bayesian networks with discrete
children of continuous parents only calculate the moments of the marginal distributions,
whereas the approach presented in this paper can be used to calculate the complete density
functions.

Extensive future research on MTE potentials and their applications is needed. General formu-
lations for other continuous PDF’s can allow implementation to a broader range of problems.
These particularly include distributions that are formed when discrete variables have contin-
uous parents. Such MTE potentials will allow application to specific problems with threshold
parameters, such as the business investment project mentioned in Section 1. An adaptation
of the EM algorithm for approximating continuous distributions with mixtures of Gaussian
distributions may be useful in allowing mixtures of exponentials to be used for approximat-
ing probability distributions from data. Another challenge is to automate the algorithm for
computing marginals in MTE networks.

Another important class of problems are those that include conditionally deterministic vari-
ables (variables that are a deterministic function of their parents). In this case, if some of
the parents are continuous, then the joint density function does not exist. CLG distributions
can handle such cases when the deterministic function is linear and continuous variables
have Gaussian distributions. MTE methods can be used when continuous variables have
non-Gaussian distributions [5] and the deterministic functions are non-linear [4].

An alternative to using MTE potentials is using mixtures of Gaussians to represent non-
Gaussian distributions. However, the limitations of linear deterministic relationships and
no continuous parents of discrete variables pose many problems in this endeavor. Further
research is needed to make this approach viable.
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