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Purpose 

The purpose of this research is to investigate the kinetic reactivity of the quinone methide of 

butylated hydroxytoluene, BHT, with some potential nucleophilic buffer species and water, at 

various pH values and specifically to look for adduct formation. 

 

Introduction 

Butylated hydroxytoluene (BHT) is used as an antioxidant in many products including 

food, pharmaceuticals, cosmetics, jet fuels, rubber, paint, and petroleum products. It is also on 

the Food and Drug Administration’s (FDA) list of compounds generally regarded as safe 

(GRAS) [1].  

The mechanism of action of BHT as an antioxidant is through the formation of a stable 

phenoxyl radical, which further disproportionates to give the parent and a quinone methide (QM) 

[2], Scheme 1. Quinone methides are reactive electrophilic species, and easily form adducts with 

nucleophiles or polymerize. In pharmaceutical formulations, adduct formation between the 

quinone methide from BHT (QM) and a nucleophilic group of the active pharmaceutical 

ingredient (API) or another excipient is a very likely possibility. To date there is one report of 

API-QM adduct formation in a topical formulation [3].   
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Scheme 1. Reaction pathways for the oxidation of BHT to give QM and the subsequent 
addition of a nucleophile. 
 

Reactivity of Quinone Methides 

Quinone methides can be thought of as charge separated carbocations [4] as depicted in 

Scheme 2. Effective charges have been calculated for each position of the most simple p-quinone 

methide structure according to the Hückle Molecular Orbital (HMO) model. The effective charge 

of the methylene carbon is +0.39 and the phenoxyl oxygen has an effective negative charge of-

0.68. The 1 and 3 positions of the phenol ring also have a small effective positive charge of 

+0.18 and +0.11, respectively [5]. This charge distribution characterizes the methylene carbon as 

the center of nucleophilic reactivity.  
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Scheme 2.  Resonance structures of para- and ortho-quinone methides to charge separated 
carbocations. 

 

The reactivity of quinone methides is further enhanced by the aromatization of the phenyl 

ring in the product as a result of nucleophilic addition. This provides a strong thermodynamic 

driving force for addition by nucleophiles to the methylene group. Additional stabilization of the 

nucleophile adduct is achieved by the protonation of the phenoxyl oxygen in acidic solutions 

shown in Scheme 3. 

 

Scheme 3. Reaction pathway for the addition of a nucleophile to a p-quinone methide to 
produce an adduct. The nucleophile adduct is then protonated in an acidic environment. 

 
Both para- and ortho-quinone methides are used as intermediates in organic and bio-

chemistry. The activity of several anti-tumor and antibiotic drugs including tamoxifen [6, 7] and 

mitomycin C [8] is due to quinone methide formation.  

Quinone methides are involved in many biosyntheses. In the natural production of lignin, 

a copolymer of coniferyl alcohol, the initial coupling of two monomers progresses through a p-
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quinone methide intermediate [9, 10]. Quinone methides are also proposed intermediates in the 

biological metabolism of common phenols found in spices [11] through in vivo oxidation by 

cytochrome P-450 [12]. 

In synthetic chemistry, quinone methides are widely used in Diels-Alder [4+2] 

cycloaddition reactions with alkenes. This reaction is a key step in the synthesis of large organic 

molecules including carpanone [13], hexahydrocannabinol [14], and thielocin A1β [15, 16].  

There are a variety of known methods to generate quinone methides. Some of them have 

been reviewed previously, including oxidation of phenols, high temperature dehydration of 

hydroxybenzyl alcohols, fluoride-induced desilylation of silyl ethers, thermal extrusion of small 

molecules, and flash photolysis [11]. Due to their high reactivity, quinone methides are also 

often produced in situ.  

 

Brief Overview of Literature on the QM from BHT 

Generation 

For over half a century chemists have been investigating the properties and reactivity of 

QM. One of the first reports of the isolation of QM was in the early 1960s. QM was generated at 

concentrations below 10-5 M in isooctane by oxidizing BHT with metal oxides. Another method 

of generation was the treatment of the corresponding benzyl halide with a base such as 

triethylamine. At concentrations higher than 10-5 M, QM was found to dimerize. A λmax of 285 

nm and an extinction coefficient of 2.8 x 104 cm-1M-1 were reported [17].  

In the 1960s there was disagreement in the literature concerning the mechanism for the 

oxidation of BHT to QM. Several researchers disagreed on the mechanism of the decay of the 

phenoxyl radical; the reaction was said to occur through both first and second order kinetics [18, 
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19]. The mechanism was finally resolved in an experiment where the reaction was followed by 

ESR Spectrophotometry. The initial time points, from 0 to 500 seconds, appeared to follow first 

order kinetics. However, after 500 seconds the decay of the radical was clearly second order. The 

first order appearance of the initial time points was determined to be due to continual formation 

of the phenoxyl radical by unremoved lead dioxide [2]. Thus QM forms through the second order 

decay of the phenoxyl radical as shown in Scheme 1. 

 

Toxicity  

In 1981 the FDA and several other world regulatory organizations instituted a review of 

BHT safety as a food additive. This was due to the conflicting scientific evidence in laboratory 

animals showing both harmful effects in certain tissues and positive effects on lifespan [1]. In the 

late 1970s studies began to emerge showing toxicity of BHT in rodents [20-24]. Oral dosing of 

BHT has been shown to cause death in rats from hemorrhaging [21], liver tumors and 

gastrointestinal tissues [25, 26]. Additionally, lung tissue in mice has been shown to undergo 

acute damage following intraperitoneal injection [26, 27].  

Several of these studies lead to the idea that BHT toxicity comes from the oxidation of 

BHT to QM [22-24, 28]. In vivo BHT has been shown to metabolize through oxidation by 

cytochrome P-450 to QM [12]. QM has been observed in mouse liver and lung tissue [28] and 

has also been found to form adducts with glutathione and protein thiols in mouse lung tissue 

[29]. Similar to other quinone methides [30], QM also forms adducts to DNA in vitro [31] and 

there is some evidence it may also form adducts in vivo [32, 33]. In vitro, QM has been shown to 

form a stable thio-ether adduct with cysteine and unstable adducts with lysine and histidine [34].  
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Specific Aims 

BHT is present in pharmaceutical formulations as an antioxidant, however, when 

oxidized it forms a highly reactive and toxic electrophilic species, a quinone methide. There are a 

variety of nucleophilic groups present in pharmaceutical formulations as parts of active 

pharmaceutical ingredients (API), buffers, and excipients that can react with the electrophilic 

QM.  

The specific aims of the this research were to: 

1. Investigate the reactivity of the quinone methide of BHT with water under neutral, acidic, 

and basic conditions and with common buffers at various pH values. 

2. Attempt to observe and quantitate adduct formation.  

3. Further the general understanding of some of these reactions to lend a greater scientific 

understanding to the selection of BHT as a pharmaceutical excipient and antioxidant. 

QM and adducts formed with nucleophiles in the surrounding environment would be 

considered degradants and would need to be reported and identified depending on the amount 

generated. Additionally, very small amounts of these degradants could change the color or odor 

of the drug product leading to a shorter shelf-life due to perceived or actual adulteration of the 

product. 
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Experimental, Materials, and Methods 
 
Materials  

Butylated hydroxytoluene (BHT), lead dioxide, and 3, 5-di-tert-butyl-4-hydroxybenzyl 

alcohol (BA) were purchased from Sigma-Aldrich (St. Louis, MO) and used without additional 

purification. The following chemicals were reagent grade and purchased from VWR (Radnor, 

PN): sodium chloride, disodium hydrogen phosphate, and sodium acetate were from JT Baker 

(Phillipsburg, NJ), sodium dihydrogen phosphate hepta-hydrate was from Mallinckrodt 

(Phillipsburg, NJ), glacial acetic acid was from EMD (Darmstadt, Germany), while sodium n-

tris(hydroxymethyl)methyl-3-aminopropanesulfonate (TAPS) and sodium perchlorate were from 

Acros (Geel, Belgium). Pentane (EMD), methanol (JT Baker), and acetonitrile (Sigma Aldrich), 

were HPLC grade, purchased through VWR and Sigma-Aldrich, and were used for all sample 

preparations and analyses. Water for kinetics studies and HPLC analysis was distilled and passed 

through a Nano-Pure water purification system.  

 

Generation of Quinone Methide (QM)  

QM was generated by modification of a published procedure [35]. A 0.001 M solution of 

butylated hydroxytoluene (BHT) in pentane containing approximately 25-28 molar equivalents 

of PbO2 was stirred at room temperature for 2 hours. Following filtration through a 0.2 μm nylon 

syringe filter, an equal volume of acetonitrile (ACN) was added and the mixture was rotary 

evaporated for 1-1 ½ hours at 230 mbar and 40ºC to approximately 35% original volume. The 

resulting concentrate was added to a volumetric flask and additional acetonitrile was added until 

the total volume was 10.0 mL. The yield of QM was approximately 30%. The solution was kept 
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in the freezer for up to 1 week and further diluted for kinetics studies. Unreacted BHT did not 

appear to interfere with the kinetic analysis. 

 

Determination of QM Concentration  

The concentration of quinone methide was determined using total UV absorbance at 285 

nm and extinction coefficient values of εQM = 2.82 x 104 cm-1M-1 [2] and εBHT = 2.16 x 103 cm-

1M-1 [36] and Equations 1 and 2. 

       (Eq. 1) 

       (Eq. 2) 

 
 

Preparation of Buffer Solutions 

Buffer stock solutions were made at 0.2 M and I = 1.0 (NaClO4). Phosphate buffer stock 

was made by weighing out sodium dihydrogen phosphate, disodium hydrogen phosphate, and 

sodium perchlorate in appropriate amounts estimated to provide the desired pH value into a 100 

mL volumetric flask and dissolving in approximately 80 mL of water. The pH was adjusted with 

sodium hydroxide and/or perchloric acid to the target pH value. Similarly, acetate buffer stock 

was prepared from sodium acetate and sodium perchlorate and adding acetic acid in appropriate 

amounts with the final pH adjusted with sodium hydroxide and/or perchloric acid. TAPS buffer 

was made by weighting out sodium TAPS and sodium perchlorate and the pH adjusted with 

perchloric acid. Water was added to reach the target volume and the pH was measured and 

readjusted if necessary. Lower concentration stock solutions were made by diluting the 0.2 M 

stock with 1.0 M sodium perchlorate to maintain ionic strength and pH adjusted as above if 

necessary. Buffers were stored refrigerated for up to a month. 
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pH Measurements  

The pH measurements were performed at ambient conditions using a Thermo Orion 

9863BN Needle Tip combination electrode. The electrode was calibrated with three standards, 

pH 4, 7, and 10, before each series of measurements. 

 

High Performance Liquid Chromatography (HPLC) Analysis 

An Agilent 1100 and 1200 Series (Palo Alto, CA) High Pressure Liquid 

Chromatography—Ultraviolet Spectroscopy (HPLC—UV) instruments each equipped with a 

binary pump (G1312A), DAD detector (G1315B), auto sampler (G1329A), and 15 x 4.6 mm 5 

μm Phenomenex Luna C18 Column were used for the analysis. Elution was performed using a 

solvent gradient of 40% to 100% B (B = 100% methanol) in solvent A (A = 40% methanol in 

water) for 20 minutes at a flow rate of 1 mL/min. Peaks were detected at 285 nm and Dionex 

Chromeleon analysis software (Sunnyvale, CA) was used to integrate peak area. 

 

Ultra Violet-Visible Spectrophotometry (UV-Vis) Analysis  

Shimadzu UV-1700 (Japan) Ultra Violet-Visible Spectrophotometer (UV-Vis) equipped 

with deuterium and halogen lamps was used for sample analysis. For experiments in which the 

entire spectra were recorded, the spectra were zeroed at 400 nm and scanned from 400 to 190 nm 

with absorbance values calculated at 285 nm.  

Kinetic experiments were followed at 285 nm with sampling time depending on the rate 

of the kinetic reaction. The data was transferred into excel spreadsheets for analysis. To account 

for potential drift in the baseline for the long duration runs an empty cuvette was used as a 
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reference at each time point. Drift was less than 0.004 total absorbance units throughout the 

experiments so no correction was used.  

 

Kinetic Studies  

Kinetic studies were carried out at 25ºC in a 50% (v) aqueous acetonitrile and constant 

ionic strength, I = 0.5 (NaClO4). Reactions were initiated by mixing equal volumes of aqueous 

buffer solution and the acetonitrile solution of QM. The final concentration of QM in the reaction 

mixtures was (1.8 – 4.9) x 10-5 M, and the buffer concentration varied from 0.005 to 0.1 M. After 

initiation, the pHapp was measured and aliquots of the reaction mixture were transferred to HPLC 

vials and incubated in the thermostated HPLC sample holder at 25ºC. In those studies where UV-

Vis Spectrophotometry was also used, an additional aliquot was simultaneously transferred to a 1 

cm path length quarts cuvette for UV-Vis analysis. For reactions too rapid for HPLC, UV-Vis 

analysis was used exclusively to monitor the reaction. The reactions were monitored at λ = 285 

nm for both the loss of parent and the product formation by HPLC and for total absorbance by 

UV-Vis.  

 

Generation of Standard Curves 

A standard curve for QM was generated by diluting a preparation of QM with acetonitrile 

10 to 100 fold and measuring total UV absorbance and HPLC area. The total absorbance was 

used to calculate the amount of QM at each concentration and this was correlated with the HPLC 

area to produce a linear standard curve. Chromatograms showed only the presence of QM and 

BHT and no degradation of QM was observed for the duration of the experiment.  
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The standard curves for BHT and BA were generated by weighing out different amount 

of solid standards and dissolving in acetonitrile for UV-Vis and HPLC analysis. The lowest 

concentrations of BA were prepared by serial dilution in duplicate. The purity listed on the label 

and volatiles determined by TGA analysis of the standards were corrected for.  

 

Calculation of Mole Fractions 

Mole fraction data was calculated using the standard curves for BHT, QM, and BA. The 

known concentration of each species was subtracted from the total moles of BHT initially used 

to generate QM; moles unaccounted for were assumed to be the nucleophilic additional product 

where detected or not accounted for.  

 

Calculation of Rate Constants 

Observed first-order rate constants were calculated as the slopes of the semi-logarithmic 

plots of the HPLC area or change in UV absorbance (absorbance minus absorbance at infinity) 

against time. Observed second-order rate constants were calculated as the slopes of linear plots 

of the observed first-order rate constants versus nucleophile concentration. Where necessary, 

nonlinear curve fitting was performed using Sigma Plot version 11 software (San Jose, CA).  
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Results 
 
Modification of Published Procedure for the Generation of QM 

In a published preparation method for generation of QM, lead dioxide and BHT at a 14:1 

PbO2:BHT molar ratio were stirred in pentane at 25°C for 2 hours [35]. After filtration 

acetonitrile was added and the pentane removed by evaporation.  

Here, QM was prepared based on this procedure, which was modified during initial 

experiments to yield higher quantities of QM and to remove all residual pentane. In order to 

maximize the yield of QM, the reaction was followed over the course of 6 hours in pentane by 

UV spectroscopy, following the change in absorbance at 285 nm. The time course revealed the 

greatest increase in the concentration of QM between 0 and 2 hours. The concentration of QM 

continued to grow from 2 hours to 6 hours, however, the slight increase in concentration during 

this time did not justify the extended experimental time. Therefore, an incubation time of 2 hours 

was used for all preparations.  

The next experimental parameter examined was the amount of lead dioxide. The molar 

ratio of lead was doubled and tripled to 28:1 and 42:1 respectively, to test the effect of lead 

concentration on the reaction at the 2 hour time point. It was found that with double the molar 

ratio of lead dioxide (28:1) QM concentration was significantly increased. Tripling had little 

increased effect thus a molar ratio of approximately 25-28:1 was used for all preparations. 

During initial kinetic studies of the hydrolysis of QM in 50% (v) aqueous acetonitrile I = 

0.5 (NaClO4) it was noticed that at the initial time point the HPLC area of the quinone methide 

was lower than the following time point. Careful observation of the reaction mixtures revealed 

non-homogeneity, expressed as a thin coating on the vial walls. The coating was assumed to be 

residual pentane. In order to fully remove all the pentane, evaporation under N2 was replaced by 
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evaporation on a rotary evaporator. The pentane-acetonitrile mixture was rotary evaporated at 40 

ºC and 235 mbar until the initial volume was reduced to 35%. It was then transferred into a clean 

volumetric flask and additional acetonitrile added to reach the final volume. After establishing 

this procedure as routine, pentane was no longer detected in the quinone methide solution and for 

all experiments described in this work this final method of QM generation was used.  

 

Hydrolysis of QM in Water 

In 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) water reacted with QM to form a single 

product (Scheme 4). The product was identified as the corresponding benzyl alcohol (BA), 3, 5-

di-tert-butyl-4-hydroxybenzyl alcohol, by comparison of its HPLC retention time with that of a 

commercial standard.  

 

 

Scheme 4. Addition of water to QM to produce the benzyl alcohol, BA.  

 

Addition of QM to water without pH adjustment 

The addition of water to QM was monitored by both HPLC and UV-Vis analysis in 50% 

(v) aqueous acetonitrile solutions at a constant ionic strength of I = 0.5 (NaClO4) at 25°C. Over 

the course of the reaction, the disappearance of QM was accompanied by the appearance of BA. 

A typical chromatogram for this reaction is show in Figure 1. It clearly indicates that QM, the 

residual BHT, and the water addition product, BA, can all be reasonably separated from one 
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another. The amount of BHT contamination in the QM solution remains unchanged throughout 

the course of the reaction.  

 

 
Figure 1. HPLC Chromatogram of the reaction of QM with water in 50% (v) acetonitrile I 
= 0.5 (NaClO4) without pH adjustment and the formation of the benzyl alcohol product, 
BA, at 25°C. 

  

Figure 2 shows a linear semi-logarithmic plot of the loss of the QM versus time, which 

indicates the observed order of the reaction is pseudo-first order. The observed first-order rate 

constant for the disappearance of the QM, obtained from the slopes of these plots, was kobs = 

(5.33 ± 0.28)  x 10-2 hr-1 (average of 5 runs, Table 1). The measured apparent pH (pHapp) of the 

solutions at the end of the reactions was 7.2 ± 0.1.  
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Figure 2. A semi logarithmic plot of the loss of the QM versus time. Data for 1.75 x 10-5 M 
QM (♦) in 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) at 25°C. 

 

Table 1. Observed first-order rate constant values, kobs, for hydrolysis of QM in 50% (v) 
aqueous acetonitrile I = 0.5 (NaClO4) to BA followed by HPLC at 25°C. Observed rate 
constants were calculated as the slopes of the semi-logarithmic plots of the loss of HPLC 
area at 285 nm versus time. 

QM (M) 4.71 x 10-5 2.56 x 10-5 2.93 x 10-5 2.78 x 10-5 1.75 x 10-5 

pHapp 7.35 7.09 7.16 7.11 7.20 

kobs (hr-1) 5.37 x 10-2 5.36 x 10-2 5.08 x 10-2 5.08 x 10-2 5.75 x 10-2 

 

Hydrolysis of QM to BA in the presence of added acid 

The addition of water to QM in acidic solutions is rapid and was followed by UV 

spectroscopy as HPLC analysis is too slow to capture the reaction kinetics. The reactions were 

carried out in solutions containing 0.001 – 0.02 M hydrochloric or perchloric acid. Table 2 

summarizes the observed first-order rate constant values, kobs at various acid concentrations. At 

all concentrations of added acid the reaction followed pseudo-first order kinetics and observed 



16 
 

rate constants were calculated from plotting the logarithm of the loss of UV absorbance at 285 

nm versus time.  

 

Table 2. Observed first-order rate constant values, kobs at various added acid 
concentrations in 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) for reactions followed by 
UV-Vis at 25°C. Observed rate constants were calculated as the slopes of the semi-
logarithmic plots of the loss of UV absorbance at 285 nm versus time. 

[H+] (M) 0.001 0.005 0.0075 0.010 0.015 0.020 

Acid HClO4 HClO4 HCl HClO4 HClO4 HCl HCl HCl 

kobs (hr-1) 2.35 13.2 13.2 20.1 27.2 26.1 42.1 56.8 

 

 
Figure 3 shows the dependence of the observed first-order rate constants for the acid 

catalyzed addition of water to QM on the concentration of acid. The plot is linear and shows 

strong dependence of the loss of QM on acid concentration and no dependence on counter ion 

(chloride versus perchlorate). This plot would be expected to have a positive intercept, however, 

the small negative intercept is likely a result of data variability and error in the extrapolated 

value. The observed second-order rate constant for the acid catalyzed addition of water to QM, 

kH, was calculated as the slope of this plot, kH = 2.87 x 103 hr-1 M-1.  
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Figure 3. Dependence of the observed first-order rate constants for the hydrolysis of QM 
on concentration of added acid. Data for hydrochloric acid (▲) and perchloric acid (■) in 
50% (v) aqueous acetonitrile I = 0.5 (NaClO4) at 25°C.  

 

Hydrolysis of QM to BA in the presence of added sodium hydroxide 

The hydrolysis of QM in basic pH solutions with added sodium hydroxide (0.005 – 0.02 

M) is rapid and was followed by UV spectroscopy as HPLC analysis is too slow to capture the 

reaction kinetics. Table 3 summarizes the observed first-order rate constant values, kobs at various 

hydroxide concentrations. At all concentrations of added base the reaction followed pseudo-first 

order kinetics and observed rate constants were calculated from plotting the logarithm of the loss 

of UV absorbance at 285 nm versus time.  

 

Table 3. Observed first-order rate constant values, kobs at various concentrations of sodium 
hydroxide in 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) for reactions followed by UV-
Vis at 25°C. Observed rate constants were calculated as the slopes of the semi-logarithmic 
plots of the loss of UV absorbance at 285 nm versus time. 

[OH-] (M) 0.005 0.010 0.015 0.020 

kobs (hr-1) 0.50 x 10-1 1.07 x 10-1 1.61 x 10-1 2.10 x 10-1 
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Figure 4 shows the dependence of the observed first-order rate constants for the apparent 

base catalyzed addition of water (or hydroxide ions) to QM on the concentration of added 

hydroxide. The plot is linear and shows strong dependence of the loss of QM on hydroxide 

concentration. This plot would be expected to have a positive intercept, however, the small 

negative intercept is likely a result of data variability and error in the extrapolated value. The 

observed second-order rate constant for the base catalyzed addition of water to QM, kOH, was 

calculated as the slope of this plot, kOH = 11.1 hr-1 M-1. 

 

 

Figure 4. Dependence of the observed first-order rate constants for the hydrolysis of QM 
on concentration of added hydroxide. Data for sodium hydroxide (♦) in 50% (v) aqueous 
acetonitrile I = 0.5 (NaClO4) at 25°C.  

 

Hydrolysis of QM in the Presence of Chloride Ion 

The reaction of QM in the presence of added chloride ion was examined at three 

concentrations of sodium chloride ranging from 0.05 to 0.1 M and monitored by HPLC analysis. 
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Reactions were first order with respect to the loss of QM and the observed pseudo-first order rate 

constants are summarized in Table 4.  

 

Table 4. Observed first-order rate constant values for the reaction of QM in the presence of 
added sodium chloride, kobs in 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) for reactions 
followed by HPLC at 25°C. Observed rate constants were calculated as the slopes of the 
semi-logarithmic plots of the loss of HPLC area at 285 nm.  

[Cl-] (M) 0.050 0.075 0.100 

pHapp 7.2 7.5 7.8 

kobs (hr-1) 4.73 x 10-2 4.84 x 10-2 4.82 x 10-2 

 
 
 

Chromatograms for the reaction in the presence of added sodium chloride showed no 

additional product peaks besides the water addition product, BA, and approximate mass balance 

was observed throughout the course of the reaction. 

 

Hydrolysis of QM in the Presence of Phosphate Buffer Species 

The reaction of QM in the presence of phosphate buffer was examined at three 

concentrations ranging from 0.005 to 0.05 M and monitored by HPLC analysis. At the apparent 

pH values studied the buffer species present are mono- and dibasic phosphate. Reactions were 

first order with respect to the loss of QM and the observed pseudo-first order rate constants are 

summarized in Table 5.  
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Table 5. Observed first-order rate constant values for the reaction of QM in the presence of 
phosphate, kobs in 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) for reactions followed by 
HPLC at 25°C. Observed rate constants were calculated as the slopes of the semi-
logarithmic plots of the loss of HPLC area at 285 nm.  

[Phos] (M) 0.005 0.025 0.050 

pHapp 7.40 7.28 7.20 

kobs (hr-1) 5.37 x 10-2 5.18 x 10-2 4.83 x 10-2 

 

Chromatograms for the loss of QM in the presence of phosphate showed no additional 

product peaks (including any obvious perturbations at the solvent front) besides the water 

addition product, BA, throughout the course of the reaction. Extrapolation to t = 0 using the first 

order rate constant revealed the initial concentration of QM is the same as that in an acetonitrile 

QM standard, within the error of the measurement, and approximate mass balance was observed.  

The solubility of phosphate buffer in 50% (v) aqueous acetonitrile in the pH range of interest 

prohibited testing the reactivity at higher concentrations or higher pH values of phosphate buffer.  

   

Reaction of QM in the Presence of Acetate Buffers 

The reaction of QM in sodium acetate buffers was studied at three concentrations ranging 

from 0.05 M to 0.1 M acetate at pHapp values of 4 and 5. A typical chromatogram for the reaction 

of the QM with acetate buffer is show in Figure 5.  
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Figure 5. HPLC Chromatogram of the reaction of QM with acetate buffer at pH 5 in 50% 
(v) acetonitrile I = 0.5 (NaClO4) and the formation of the acetate adduct and BA at 25°C. 

 

The HPLC data for the loss of QM and the appearance of products displayed in mole 

fractions over time at all concentrations and both pHapp 4 and 5 is shown in Figures 6 and 7. Two 

products were observed over the course of the reaction, an unstable presumed acetate adduct and 

BA. The acetate adduct formed rapidly at early reaction times and slowly converted to BA with 

time. The initial amount of the acetate adduct was dependent on the total concentration of acetate 

and pHapp. Higher amounts were formed in solutions containing higher concentrations of acetate.  

The reaction with acetate did not follow simple first order kinetics. The treatment of the kinetic 

data is described in the discussion.  
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Figure 6. Time course of the reaction of QM in 0.100 – 0.050 M acetate buffer, pH 4. 
Experimental data points displayed in mole fraction of QM (●), BA(■), and presumed 
acetate adduct (▼) in 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) at 25°C. Solid lines are 
the theoretical curves calculated using equations 9-13. 
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Figure 7. Time course of the reaction of QM in 0.100 – 0.050 M acetate buffer, pH 5. 
Experimental data points displayed in mole fraction of QM (●), BA(■), and presumed 
acetate adduct (▼) in 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) at 25°C. Solid lines are 
the theoretical curves calculated using equations 9-13. 
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Reaction of QM in the Presence of TAPS Buffers 

The reaction of QM in the presence of TAPS buffers was studied at three concentrations 

ranging from 0.05M to 0.1 M at pHapp values 8 and 9. No addition product peaks, including any 

obvious perturbations at the solvent front, were detected aside from the water addition product, 

BA.  

Similar to the reaction with acetate buffers, the reaction of QM with TAPS buffers did 

not follow simple first order kinetics. The HPLC data for the loss of QM and the appearance of 

products displayed in mole fractions over time at both pHapp 8 and 9 is shown in Figures 8 and 9. 

The sum of the moles of QM and BA at each time point did not account for all the moles of QM 

initially in the reaction; a significant portion of the moles could not be accounted for by peaks in 

the chromatogram. 
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Figure 8. Time course of the reaction of QM in 0.100 – 0.050 M TAPS buffer, pH 8. 
Experimental data points displayed in mole fraction of QM (●), BA(■), and moles 
unaccounted for (∆) in 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) at 25°C. Solid and 
dashed lines are the theoretical curves calculated using equations 9-13. 
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Figure 9. Time course of the reaction of QM in 0.100 – 0.050 M TAPS buffer, pH 9. 
Experimental data points displayed in mole fraction of QM (●), BA(■), and moles 
unaccounted for (∆) in 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) at 25°C. Solid and 
dashed lines are the theoretical curves calculated using equations 9-13. 
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Discussion  
 
Hydrolysis of QM to form BA 

The hydrolysis of QM to form BA was studied in unbuffered solutions with pHapp 7.1-7.4 

and at QM concentrations of (1.8 - 4.7) x 10-5 M. The addition of water followed simple first 

order kinetics with an average value of ks = (5.33 ± 0.28) x 10-2 hr-1. Small changes in the initial 

concentration of QM and pH had no discernable effect on the kinetics.  

As reported, the conversion of QM to BA was catalyzed by both the addition of acid and 

base. The observed first-order rate constants appear to be described by Equation 3, where ks is 

the rate of the uncatalyzed addition of water, kH[H+] is the contribution of a acid catalyzed 

reaction, and kOH[OH-] is the contribution of a base catalyzed reaction. kH and kOH are the 

corresponding observed second-order rate constants for the acid and base catalyzed reactions, 

respectively. 

       (Eq. 3) 

 

The acid catalyzed addition of water to the QM to form the benzyl alcohol is a very rapid 

reaction. Followed by UV-Vis the reaction gave simple first-order kinetics throughout the acid 

concentration range examined regardless of the counter ion. The data gave an observed second-

order rate constant kH of 2.87 x 103 M-1 hr-1.  

The base catalyzed addition of water to the QM to form the benzyl alcohol is also a very 

rapid reaction. Followed by UV-Vis the reaction gave simple first-order kinetics throughout the 

hydroxide concentration range examined. The data gave an observed second-order rate constant 

kOH of 11.1 M-1 hr-1.  
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At neutral pH (corresponding to approximately the reaction kinetics carried out in 

unbuffered solutions) the effective contribution of the acid and base catalyzed reactions accounts 

for only 0.5% of the observed first-order rate constant, ks. Therefore, the uncatalyzed addition of 

water is a significant kinetic pathway. If a pH-rate profile of the hydrolysis of QM to BA were to 

be constructed from this data, it would show a plateau from approximately pHapp 6-10. 

 

Hydrolysis of QM in the Presence of Chloride Ion  

Chloride is a common ion found in many pharmaceutical preparations as an API salt 

counter ion or used to control the ionic strength of the solution. Followed by HPLC the reaction 

gave simple first-order kinetics throughout the sodium chloride concentration range examined. 

An increase in the concentration of sodium chloride from 0.5 to 0.1 M lead to only a 2% 

difference in the observed first-order rate constants for the reaction, kobs = 4.73 x 10-2 hr-1. A 

single product was observed throughout the course of the reaction, the benzyl alcohol, BA, and 

approximate mass balance was observed.  

The observed first-order rate constants are also within 10% of the rate of the addition of 

water without added chloride, ks = 5.33 x 10-2 hr-1. This difference is slightly outside the 

expected error for these measurements, and can be perhaps attributed to a non-specific ion effect. 

 

Hydrolysis of QM in the Presence of Phosphate Buffer 

Phosphate buffers are commonly used in pharmaceutical formulations. Followed by 

HPLC, the hydrolysis of QM followed first-order kinetics throughout the phosphate buffer 

concentration range examined with a single product, BA, observed. Mass balance was seen and 

extrapolation to t = 0 using the observed first order rate constant revealed the initial 
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concentration of QM is the same as that in an acetonitrile QM standard, within the error of the 

measurement.  

The pHapp values of these reaction solutions at different concentrations of phosphate 

differ by 0.2 pH units. Using the observed second-order rate constants for acid and base catalysis 

it is possible to take into account the possible contributions of acid and base catalysis but not the 

contributions from general acid and base catalysis by the mono- and dibasic phosphate species. 

Thus the observed rate constants for phosphate are reported as measured at each pHapp value. 

An increase in the concentration of phosphate buffer from 0.005 to 0.05 M lead to a 10% 

decrease in the observed first-order rate constants for the reaction, kobs = 5.37 x 10-2 hr-1. The 

observed first-order rate constants show a slight trend of increasing rate with decreasing 

phosphate concentration indicating a possible inverse dependence of the loss of QM on 

phosphate buffer concentration.  

The small effect on rate and the shift in equilibrium of phosphate species, from a change 

in pHapp of 0.2, makes it difficult to generalize about the effect of phosphate buffer concentration 

or the relative reactivity of either phosphate species on the rate of the loss of QM without 

additional experimentation. Unfortunately further concentrations and higher pH values for 

phosphate buffer could not be studied due to the low solubility of phosphate species in 50% (v) 

aqueous acetonitrile. 

The observed first-order rate constants are also within 10% of the rate of the addition of 

water without phosphate buffer present, ks = 5.33 x 10-2 hr-1. This difference is slightly outside 

the expected error for these measurements. A non-specific ion effect on the rate for addition of 

water caused by both phosphate species is possible. 
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Reaction of QM with Acetate Buffers 

Acetate is a common pharmaceutical excipient often used in formulations as a buffering 

agent. The reaction of QM in the presence of acetate buffer shows an initial decrease in total 

absorbance that is very rapid compared to the reaction with water. The initial decrease in total 

absorbance for the acetate buffer reaction is approximately 4 to 8 times faster than the reaction 

with water depending on pHapp and buffer concentration (Figure 10.)  

 

 
Figure 10. Plot of the total UV absorbance at 285 nm versus time for the reaction of QM 
with 100 mM Acetate at pH 4 (●) and QM with water without pH adjustment (▲) in 50% 
(v) aqueous acetonitrile I = 0.5 (NaClO4) at 25°C. 

 

The reaction in the presence of acetate buffer does not follow simple first-order kinetics 

in that the sharp decrease in total absorbance slows down after 5 to 12 hours but the reaction 

does not reach a stable endpoint. This decrease cannot be accounted for by drift in the UV-Vis 

instrument reading.  

The HPLC chromatograms also show the presence of an apparent adduct peak seen 

starting almost immediately upon mixing. The adduct peak is formed at the expense of QM and 
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not BA. After approximately 20 hours, the adduct peak begins to decrease and more BA begins 

to appear. The adduct peak was assumed to be the acetate adduct of QM because of the increase 

in the area of the peak at higher concentrations of acetate buffer and higher pHapp. The change in 

the concentration of the acetate adduct displayed in mole fraction, is shown in Figures 6 and 7.  

This kinetic behavior of parent and product concentrations can be accounted for by 

Scheme 5.  

 

Scheme 5. Proposed formation of the unstable acetate adduct of QM in 50% (v) acetonitrile 
I = 0.5 (NaClO4) and the formation of BA. 

 
The equations for the loss of the QM and the appearance of the acetate adduct based on 

Scheme 5 can be described by Equations 4-8 [37].  

   (Eq. 4) 

 

   (Eq. 5) 
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  (Eq. 6) 

 

  (Eq. 7) 

 

      (Eq. 8) 

 

The change in mole fractions of QM and the acetate adduct with time were fit to 

Equations 9 and 12, respectively. The parameters in Equations 9 and 12 are defined by Equations 

10, 11, and 13.  

        (Eq. 9) 
 

       
(Eq. 10) 

 

      
(Eq. 11) 

 

       (Eq. 12) 
  

  
(Eq. 13) 

 
The UV-Vis data for the initial fast disappearance of QM can be treated as first order. 

From comparison with the HPLC data, the large change in the total UV absorbance corresponds 

to the large decrease in the mole fraction of QM. Additionally, QM has a 10-fold larger 

extinction coefficient than BHT and BA; the same is assumed for the acetate adduct because of 

its structural similarity to BHT and BA. Thus QM has a dominant contribution to the total UV 

absorbance at any time point.  
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The observed first-order rate constants, kobs, were calculated as the slope of the semi-

logarithmic plot of the total absorbance versus time. An example of one of these semi-

logarithmic plots is shown in the supplemental data. The observed first-order rate constants and 

the parameters from the non-linear curve fit are shown in Table 6. 

 

Table 6. Table of data fit parameters at various concentrations and pHapp values of acetate 
buffer in 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) for reactions followed by HPLC 
and UV-Vis at 25°C. Parameters were obtained using Sigma Plot v. 11 software to fit 
HPLC data in units of mole fraction to Equations 9 and 12. Observed rate constants were 
calculated from the slope of the semi-logarithmic plot of the loss of UV absorbance at 285 
nm versus time.  

Acetate  kobs a b c d z 

0.100 M 
pHapp 3.99 

HPLC: QM  0.77 ±0 .04 12.46 ± 1.47 0.23 ± 0.021 0.052 ± 0.0073  

 HPLC: Adduct   11.57 ± 1.55  (3.0 ± 0.1) x 10-3 (7.0  ± 1.0) x 10-2 

 UV-Vis 0.32      

0.075 M 
pHapp 3.97 

HPLC: QM  0.71 ±0 .04 6.81 ± 0.91 0.29 ± 0.023 0.053 ± 0.0061  

 HPLC: Adduct   6.17 ± 0.97  (3.9  ± 0.2) x 10-3 0.12 ± 0.02 

 UV-Vis 0.25      

0.050 M 
pHapp 3.96 

HPLC: QM  0.62 ± 0.03 6.52 ± 0.82 0.38 ± 0.021 0.057 ± 0.0041  

 HPLC: Adduct   5.38 ± 0.99  (4.3  ± 0.3) x 10-3 0.13 ± 0.02 

 UV-Vis 0.19      

0.100 M 
pHapp 5.02 

HPLC: QM  0.90 ±0 .04 16.28 ± 1.80 0.096 ± 0.012 0.010 ± 0.0044  

 HPLC: Adduct   17.66 ± 1.82  (2.2 ± 0.2) x 10-3 0.048 ± 0.005 

 UV-Vis 0.42      

0.075 M 
pHapp 5.03 

HPLC: QM  0.88 ±0 .04 14.56 ± 1.86 0.12 ± 0.014 0.013 ± 0.0050  

 HPLC: Adduct   16.3 ± 1.67  (2.5 ± 0.2) x 10-3 0.050 ± 0.005 

 UV-Vis 0.38      

0.050 M 
pHapp 4.98 

HPLC: QM  0.72 ± 0.04 8.61 ± 1.36 0.28 ± 0.031 0.090 ± 0.016  

 HPLC: Adduct   7.44 ± 0.99  (4.3  ± 0.6) x 10-3 0.11 ± 0.01 

 UV-Vis 0.26      
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The parameters obtained from the non-linear curve fit of the acetate adduct reflect both 

the loss of QM and the formation and loss of the acetate adduct. From Equation 4, the parameters 

b and d can be described as the kinetic parameters for the fast and the slow reactions, 

respectively. There is very good agreement between the value of the parameter b obtained by the 

non-linear curve fit for the loss of QM and the formation and loss of acetate adduct. However, 

the values of d obtained the same way differ drastically (Table 6). The b parameter accounts for a 

large change over a short period of time while the d parameter accounts for a very small change 

over a much longer period of time. Therefore the fit is always dominated by the value of b. 

Additionally, any instrument errors or noise would have a larger effect on the smaller reaction 

parameter, d. 

The sum of the non-linear parameters, b + d, is plotted against nucleophile concentration 

and shown in Figure 11. The dependence is linear as expressed in Equation 8. The slope of this 

plot is the overall second-order rate constant for the reactions dependent on the nucleophile 

concentration and the intercept is the overall rate constant for the nucleophile independent 

reactions. 

The parameters from the linear fit (kobs, as determined by the initial UV data) were also 

plotted versus the nucleophile concentration and shown in Figure 12. The dependence is also 

linear. The slope of this plot is the observed second-order rate constant for the dependence on 

nucleophile concentration of the loss of QM. 
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Figure 11. Dependence of observed reaction parameters for the reaction of QM and acetate 
on concentration of acetate buffer. (A) Data for the  sum of b + d obtained as described in 
text for the reaction pHapp 4 (♦). (B) Data for the  sum of b + d obtained as described in text 
for the reaction pHapp 5. All reactions run in 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) 
at 25°C. 
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Figure 12. Dependence of observed first-order rate constant for the reaction of QM and 
acetate on concentration of acetate. (A) Data for the observed first order rate constant, kobs, 
from the fit of the initial UV-Vis data at pHapp 4 (▲). (B) Data for the observed first order 
rate constant, kobs, from the fit of the initial UV-Vis data at pHapp 5 (●). All reactions run in 
50% (v) aqueous acetonitrile I = 0.5 (NaClO4) at 25°C. 
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Comparison of the slopes on Figures 11 and 12 show that the dependence of the non-

linear curve fit parameters (b + d) on nucleophile concentration is very large compared to the 

dependence of the observed second-order rate constant for the loss of QM, kobs, at each pHapp 

value. The sum of the non-linear curve fit parameters, (b + d) is 46 and 62 times greater than kobs 

and pHapp 4 and 5, respectively. The additional dependence of (b + d) on the nucleophile 

concentration indicates the presence of additional kinetic pathways dependent on nucleophile 

concentration. 

The slopes of Figures 11 and 12 are dependent on pH. There is a 65% increase in the 

slope of the dependence of (b + d) on nucleophile concentration and a 20% increase in the slope 

of kobs on nucleophile concentration when pHapp is increased from 4 to 5.  

Both general acid and general base catalysis by acetate buffer on the addition of water to 

QM can be envisioned (Scheme 6). Additionally both general acid and base catalysis are likely 

contributors to the breakdown of the acetate adduct, since these mechanisms are common for 

ester hydrolysis. General base catalysis on the breakdown of the acetate adduct to QM cannot be 

excluded as well.  

 

Scheme 6. A) Proposed transition state for general acid catalysis for the addition of water 
to QM. B) Proposed transition state for general base catalysis for the addition of water to 
QM. C) Proposed transition state for general base catalysis on the breakdown of the 
acetate adduct to QM.  
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In order to reflect the large dependence of the reaction on acetate and to include terms for 

the general acid and base catalysis of the reaction by acetate Scheme 5 was amended to Scheme 

7. 

 

 

Scheme 7. Proposed scheme for the formation of the unstable acetate adduct of QM in 50% 
(v) acetonitrile I = 0.5 (NaClO4) and the formation of BA. 

 
For Scheme 7, b + d is given by Equation 14. 
 

  (Eq. 14) 

 
Where kA, kB, k’A, and k’B are the second-order rate constants for general acid and base catalysis 

of QM and the acetate adduct, respectively and k0
-Nu is the first-order rate constant for the 

uncatalyzed breakdown of the acetate adduct to QM. 
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Reaction of QM in the Presence of TAPS Buffers 

 

 
TAPS, 5, is a common laboratory buffer with three possible nucleophilic groups. The 

reaction of QM in the presence of TAPS buffer shows an initial decrease in total absorbance that 

is very rapid compared to the reaction with water and similar to that seen with the acetate data. 

The initial decrease in total absorbance for the reaction in the presence of TAPS buffer is 

approximately 12 to 36 times faster than the reaction with water.  

Like for acetate, the reaction in the presence of TAPS buffer is also not simple first-order 

kinetics in that the sharp decrease in total absorbance slows down after approximately 2 to 8 

hours, depending on pHapp and TAPS buffer concentration, but the reaction does not reach a 

stable endpoint. This decrease cannot be accounted for by drift in the instrument reading.  

Surprisingly, no additional product peaks could be detected in the method used besides 

that water addition product, BA. Careful examination of the solvent front peak did not show any 

obvious additional peaks. However, mass balance cannot be satisfied by the concentration of QM 

and BA, that is, a significant portion of the mass is missing. The HPLC data displayed in mole 

fractions is shown in Figures 8 and 9 in the results section, the fraction of missing mass is also 

included.  

TAPS contains three nucleophilic groups that could possibly form adducts with QM; a 

secondary amine, sulfonic acid, and three primary alcohols. Adduct formation with the 

secondary amine is most likely, however, addition of sulfonate to a quinone methide (quinone 

methide 4) has been reported [38]. Adduct formation with the primary alcohols is possible but 
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would most likely have to compete with the addition of water. The extinction coefficients of all 

the possible adduct structures would be assumed to be approximately 10 fold smaller than that of 

QM and similar to those of other substituted phenols including BHT itself and BA. Additionally, 

all the possible adduct structures would be quite polar and would most likely elute with the 

solvent front. Considering these factors combined with the unknown stability of the three 

possible adducts, it is not surprising that no adducts could be detected by this HPLC analysis 

during the course of the experiment. Changes to the chromatographic conditions could make 

possible the detection and quantitation of the small polar adducts. Scheme 8 was proposed. 

 

 
Scheme 8. Proposed formation of an unstable TAPS adduct of QM in 50% (v) acetonitrile I 
= 0.5 (NaClO4) and the formation of BA. 

 

For Scheme 8, the exact equations for the loss of the QM can be described by Equations 

4, and 6-8 where the ks’ could be equal to zero [37]. The change in mole fractions of QM with 

time was fit to Equation 9. The parameters in Equation 9 are defined by Equations 10 and 11. 
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The UV-Vis data for the initial fast disappearance of QM can be treated as approximately 

first order. From comparison with the HPLC data, the large change in the total UV absorbance 

corresponds to the large decrease in the mole fraction of QM. Additionally, QM has a 10-fold 

larger extinction coefficient than BHT and BA; the same is assumed for any TAPS adducts.  

Thus QM has a dominant contribution to the total UV absorbance at any time point.  

The observed first-order rate constants, kobs, were calculated as the slope of the semi-

logarithmic plot of the total absorbance versus time. An example of one of these semi-

logarithmic plots is shown in the supplemental data. The observed first-order rate constants and 

the parameters from the non-linear curve fit are shown in Table 7. 

 
Table 7. Table of data fit parameters at various concentrations and pHapp values of TAPS 
buffer in 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) for reactions followed by HPLC 
and UV-Vis at 25°C. Parameters were obtained using Sigma Plot v. 11 software to fit 
HPLC data in units of mole fraction to Equation 9. Observed rate constants were 
calculated from the slope of the semi-logarithmic plot of the loss of UV absorbance at 285 
nm versus time. 

TAPS  kobs a b c d 

0.100 M 
pHapp 8.05 

HPLC: QM  0.94 ± 0 .006 19.01 ± 0.36 0.058 ± 0.002 0.0081 ± 0.001 

 UV-Vis 0.97     

0.075 M 
pHapp 8.03 

HPLC: QM  0.93 ± 0.008 18.6 ± 0.46 0.072 ± 0.003 0.0091 ± 0.001 

 UV-Vis 0.86     

0.050 M 
pHapp 8.02 

HPLC: QM  0.90 ± 0 .01 14.94 ± 0.55 0.10 ± 0.005 0.014 ± 0.002 

 UV-Vis 0.65     

0.100 M 
pHapp 8.98 

HPLC: QM  0.91 ± 0 .002 10.2 ± 0.063 (9.0 ± 0.8) x 10-3 (2.0 ± 0.4) x 10-3 

 UV-Vis 1.90     

0.075 M 
pHapp 8.97 

HPLC: QM  0.89 ± 0 .005 7.41 ± 0.12 0.11 ± 0.002 0.023 ± 0.001 

 UV-Vis 1.55     

0.050 M 
pHapp 8.96 

HPLC: QM  0.86 ± 0 .005 7.64 ± 0.13 0.14 ± 0.002 (2.3 ± 0.8) x 10-3 

 UV-Vis 1.23     
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Since no adduct peaks were detected it is not possible to compare the UV and HPLC 

mole fraction data directly. The observed first-order rate constants, as determined by the initial 

UV data, were also plotted versus the concentration of nucleophile in Figure 13. The slope of this 

plot is the observed second-order rate constant for the loss of QM in the presence of TAPS. 

 

 

Figure 13. Dependence of observed first order rate constant, kobs, from the fit of the initial 
UV-Vis data for the reaction of QM in the presences of TAPS on the concentration of 
TAPS buffer. (A) Data for the reaction at pHapp 8 (♦). (B) Data for the reaction at pHapp 9 
(▲). All reactions run in 50% (v) aqueous acetonitrile I = 0.5 (NaClO4) at 25°C. 
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Comparing the rate constants from A and B in figure 13 shows a effect of pH on the 

dependence of the observed first-order rate constants on TAPS buffer concentration. The 

apparent second-order rate constant for the loss of QM as measured by the initial UV data is 2 

fold larger at pHapp 9 than at pHapp 8.  

TAPS contains two ionizable groups; a secondary amine and sulfonic acid and has an 

aqueous pKa of 8.4 [39]. At pHapp 8, the zwitterion species is dominant, at pHapp 9, the negative 

sulfonate ions are the dominant ionized species. Due to the large pH effect, it is possible to 

reasonably conclude that QM reacts more rapidly in the presence of the negatively charged 

TAPS ion than in the presence of the neutral zwitterion.  

 

Comparison of QM reactivity to other Quinone Methides 

There is a large amount of data published on the reactivity of structurally similar quinone 

methides with nucleophiles.  

 

 

Some relevant rate constants for these quinone methides are shown in Table 8.  
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Table 8. First and second-order rate constants for the reactions of various quinone 
methides with nucleophiles. Observed first-order constants reported in hr-1, observed 
second-order rate constants reported as hr-1M-1.  

 Solvent 1 2 3 QM 4 Reference 

ks hr-1 ACN/H2O 20/80 pH = 7.4 (Phos)  96 53 0.18  [29] 

 ACN/H2O 50/50 I = 0.5 (NaClO4)    0.053   

 H2O I = 0.1 (NaClO4) 1.2 x 104     [40] 

 H2O I = 1 (NaClO4)     2.3 [38] 

 TFE/H2O 50/50 I = 0.5 (NaClO4)     0.061 [41] 

kH hr-1M-1 ACN/H2O 50/50 I = 0.5 (NaClO4)    2.87 x 103   

 H2O I = 0.1 (NaClO4) 1.9 x 108     [40] 

 H2O I = 1 (NaClO4)     75.6 [38] 

 TFE/H2O 50/50 I = 0.5 (NaClO4)     12 [41] 

kCl hr-1M-1 ACN/H2O 50/50 I = 0.5 (NaClO4)    NR   

 H2O I = 0.1 (NaClO4) 4.0 x 106     [40] 

 H2O I = 1 (NaClO4)     576 [38] 

kAcetApp = 
(kAcet + kB)   
hr-1M-1 

ACN/H2O 50/50 I = 0.5 (NaClO4) pH 4    2.6   

H2O I = 1 (NaClO4)     176.4 [38] 

NR: no adduct was observed       

 

The simplest p-quinone methide, 1, was recently generated by flash photolysis [40] and 

found to be highly reactive with a half-life of 0.2 seconds in aqueous solvents. Adding 

substituents at the 2 and 6 positions greatly enhance the stability of the quinone methide as can 

be seen in the significantly reduced rate constant for the addition of water for 1 and 2 

respectively. The dimethyl (2), methyl, t-butyl (3), and di-t-butyl (QM) 2, 6-substituted quinone 

methides have a trend of decreasing reactivity with increased size of aliphatic substituents. The 

addition of a single t-butyl group almost doubles the half-life from 26 to 48 seconds; however, 
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replacing the methyl group of 3 with an additional t-butyl substituent increases the half-life 65-

fold to 3060 seconds.   

The greater enhancement in stability of QM versus quinone methides 2 and 3 has been 

attributed to steric hindrance [29]. The large t-butyl groups at the 2 and 6 positions effectively 

block solvent interactions and therefore, the stabilization of the partially negative charge on the 

phenoxyl oxygen. This increases the delocalization of the charge into the quinone methide 

structure leading to greater stability. 

Another possible contribution to the stabilization of QM can come from the distortion of 

the geometry or planarity of the quinone methide structure by the bulky t-butyl groups.  This 

distorted geometry would create a greater barrier to the delocalization of the electrons in the 

aromatic product of nucleophilic addition.  

In 50% (v) aqueous solvent systems QM has similar reactivity to quinone methide 4. The 

unsubstituted ring structure of 4 would lead to the assumption that it would be highly reactive but 

that is not the case. Researchers concluded that the trifluoro-methyl substituents on the 

methylene carbon decreased the bipolar nature of the molecule by increasing delocalization of 

the charge into the quinone methide structure and therefore increasing the intrinsic kinetic barrier 

for its reaction [38]. This is essentially the same argument made for the greater stability of QM. 

The reactivity of 4 is 35-40 fold higher in a fully aqueous environment with higher ionic 

strength. This same effect is seen in the two reported values for the observed first-order rate 

constant of QM for the addition of water. The previously published value is three fold larger and 

was obtained in a more aqueous solvent system than the value obtained in these experiment.  
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Chloride adducts to 1 and 4 have been observed and the kinetic and thermodynamic 

parameters of the reactions have been reported [38, 40]. Both of the above reactions were carried 

out in the presence of acid which stabilizes the chloride adduct of the quinone methide. In the 

work reported here, a chloride adduct was not observed at neutral pHapp values and it is possible 

that a chloride adduct between QM could be observed at lower pH values but that was not likely 

since no differences were seen for the reactivity of QM in perchloric acid versus hydrochloric 

acid in our studies. At concentrations of 0.005 to 0.010 M acid, the rate constant for the addition 

of water did not depend on the counter ion of the acid. This data leads to the conclusion that in 

this concentration range of chloride and acid, a chloride adduct was not formed to any significant 

extent. 

The effect of alkyl phosphates and inorganic phosphate on the rate of disappearance of 

the quinone methide 2 have been reported in the literature [42]. A stable adduct was observed 

between 2 and diethyl phosphate in the presence of acid but it was not specified if an adduct to 

inorganic phosphate was observed. Based on comparison of the reported rate constants for the 

addition of water and the observed rate constant in the presence of inorganic phosphate, we 

conclude that a phosphate adduct was not formed to any significant extent. At pHapp 7 the 

observed first-order rate constant from the reaction of 2 in the presence of inorganic phosphate 

increased 50%. However, no further experiments were done to determine if the difference in rate 

constant at the two pHapp values was due to the change in pH or the effect of phosphate.  

A stable acetate adduct to 4 has been reported [38]. The acetate adduct was stable when 

formed in dilute solutions of 4 (1 x 10-5 M), but at higher concentrations it reacted with a second 

molecule of 4 to give a dimeric product. An observed second-order rate constant, (kAcet + kB ) = 

176.4 hr-1 M-1, for the reaction of dilute solutions of 4 in the presence of acetate was reported, 
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where kAcet = 172.8 is the contribution of the nucleophilic addition of acetate and kB = 3.6 is the 

contribution of general base catalysis. The second-order rate constant kAcet for 4 is much larger 

than the observed second-order rate constant for the QM (kAcet + kB ) = 2.6 although the reactivity 

of both quinone methides towards addition of solvent is similar (Table 8). This results in 

significantly higher selectivity (kAcet/ks) for 4 compared to QM, and indicates that 4 is the more 

stable electrophile. 

At physiological conditions, the observed rate-constants of QM with nucleophiles is 

expected to be greater, since a 35-40 fold increase in rate constant was seen for the addition of 

water to 4 when the reaction was examined in a fully aqueous environment versus 50% (v) 

aqueous environment (Table 8). Similar effect of solvent on ks for reaction of QM was also 

observed (Table 8). 

  

Conclusions 

BHT is widely used as an antioxidant in many industries and is present at low levels in 

several marketed pharmaceutical formulations and some foods. Published data shows when BHT 

is oxidized to QM, which can form adducts with DNA in vitro, however, there is no literature on 

the reactivity of QM with common nucleophiles present in excipients, API molecules, buffers, 

and biological molecules present at the site of QM formation through biotransformation.   

The reactivity of QM was examined with water in the presence of acid, base, chloride, 

phosphate, acetate, and TAPS. The reaction with water resulted in a single product, BA. BA is 

formed through the addition of water to the highly electrophilic methylene carbon of the quinone 

methide. This reaction was catalyzed by the presence of both added acid and base (hydroxide 

ions). However, the presence of added chloride and phosphate had little effect on the reaction. 
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QM reacted very quickly with acetate to form an apparent acetate adduct that was unstable and 

subsequently hydrolyzed to form BA. The kinetics of the reaction were complicated and non-

linear curve fits were used to analyze the data. The reaction of QM in the presence of TAPS also 

resulted in complicated kinetics. The loss of QM was similar to that seen in the reaction with 

acetate however a TAPS adduct was not detected. 

Additional studies could be undertaken to fully understand the reactivity of QM with a 

variety of additional nucleophiles and extend the work reported here. The study of reactions with 

chloride and phosphate could be extended to acidic conditions to see if the presence of acid 

catalyzes and stabilizes adduct formation and detection. However, this would be technically 

challenging due to the reactivity of QM with whatever component is used to control the pH.  

The reaction with acetate could be studied at additional pH values to better understand 

the affects of general acid and base catalysis. In addition, the reaction with TAPS could be 

studied at additional pH values using an HPLC method more likely to detect the possible 

adducts, which could not be detected by the present HPLC method. Finally, the kinetics of 

reactions of QM with excipients and API molecules containing nucleophilic groups could be 

explored and the products identified. This work could be done in solution and the most reactive 

cases could also be investigated in the solid state. 

Understanding the reactivity of QM with these nucleophiles has consequences for the use 

of BHT in pharmaceutical formulations. This work has shown that QM reacts readily with water 

and a pharmaceutically relevant buffer. The formation of an apparent acetate adduct occurred 

very rapidly, however, due to the instability of the adduct and the equilibria of the system, small 

amounts of QM where still in solution for a much longer time period than would be expected for 

the addition of water to QM. 



49 
 

The prolonged levels of QM present in a drug product would risk additional reactivity 

with other nucleophilic groups. QM adducts formed through interaction between QM and 

nucleophiles in the drug product would be considered degradants and would need to be reported 

and identified depending on the amount generated, requiring additional regulatory submissions 

and the development of new analytical methods. Additionally, very small amounts of these 

possible degradants could change the color or odor of the drug product leading to a shorter shelf-

life. 

In addition to QM reacting with nucleophiles in the drug product it has also been shown 

to react with nucleophilic groups found in the body [29, 31-33]. No safe level of exposure to QM 

has been established for humans. The introduction of QM into the body as an oxidation product 

in the drug product or through the biotransformation of BHT to QM in vivo could lead to adduct 

formation with biological molecules including DNA. The consequences of repeated exposure are 

unknown but could include cellular toxicity that could lead to the development of tumors.  

The reactivity of QM at physiological conditions or fully aqueous environment would be 

expected to be greater than the reactivity shown in this work in 50% (v) aqueous solutions. The 

effect of competition from additional nucleophilic groups present in vivo could also greatly 

impact these reactions. Due to all of these factors and unknowns, BHT should be used with 

caution as a pharmaceutical antioxidant. 
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Appendix: Supplemental Data 
 

Supplemental Data Figure 2. A semi logarithmic plot of the loss of total absorbance versus 
time over two and a half half-lives. Data for reaction of  QM in 0.100 M Acetate pHapp 4 (♦) 
50% (v) aqueous acetonitrile I = 0.5 (NaClO4) at 25°C. 

 

Supplemental Data Figure 3. A semi logarithmic plot of the loss of total absorbance versus 
time over two and a half half-lives. Data for reaction of  QM in 0.100 M TAPS pHapp 8 (♦) 
50% (v) aqueous acetonitrile I = 0.5 (NaClO4) at 25 °C. 


