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ABSTRACT 

 

 The air pollution generated from mobile sources creates a large impact on the 

environment and on people's health. In order to meet the stringent emission regulations 

worldwide, aftertreatment devices are employed to reduce the toxic emissions emanating from 

the Internal Combustion engines in these mobile sources. In order to continually reduce 

emissions levels, it is essential to understand and develop more predictive aftertreatment models.  

Traditional devices are of the monolithic geometry consisting of small channels employing 

laminar flow.  However, often the reaction rate expressions utilized in these models are derived 

from more conventional packed bed reactor experimental setups.  The aim of this thesis is to 

develop a one-dimensional pseudo-homogeneous packed bed reactor model for this type of 

reactor setup built in collaboration with the Chemical and Petroleum Engineering Department at 

the University of Kansas. A brief summary of the pseudo-homogeneous model is presented in 

order to properly develop the chemical species and energy equations for dynamically 

incompressible flow in one-dimension. Furthermore, the chemical kinetics on the reduction 

reaction of nitric oxide by carbon monoxide over rhodium-alumina and platinum-alumina 

catalysts is investigated in detail.  This is accomplished in order to validate the model using 

fundamentally correct reaction kinetics via a precise global reaction mechanism. Finally, 

parametric studies including the different model components are presented and the specific 

choice of model does not largely influence the conversion profiles because of the similar 

effective transport values. Also, it is found that a careful consideration of source terms is 

required to model reactions accurately.  
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Variable Description Units 

A  Avogadro's Number  =  6.022142 x 10
23

 [mol
-1
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pbA  Surface area of packed bed [m
2
] 

wA  Reactor wall heat transfer area [m
2
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iA  Pre-exponential factor [varies] 

mBi  Biot number for mass transfer [-] 

Bi w,h Wall heat Biot number [-] 

Bi p,h Pellet heat Biot number [-] 

Cm Mean/volume averaged concentration [mol m
-3
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C  Molar species concentration [mol m
-3
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c  Constant pressure specific heat [J kg
-1

 K
-1
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c  Advection number [N m
-2

 K
-1
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rC  Volumetric ratio of the heat capacities [-] 

db Packed bed spherical material diameter [m] 

dp Pellet pore diameter [m] 

d  Diffusion number [-] 

D  Diameter of the reactor [m] 

mD  Molecular diffusion coefficient in a mixture [m
2
 s

-1
] 

KnD  Knudsen diffusivity coefficient [m
2
 s

-1
] 

Dij Binary molecular diffusion coefficient [m
2
 s

-1
] 

Da Macro pore diffusion coefficient [m
2
 s

-1
] 

Di Micro pore diffusion coefficient [m
2
 s

-1
] 

KnD  Effective Knudsen diffusion coefficient [m
2
 s

-1
] 

mD  Effective molecular diffusion coefficient [m
2
 s

-1
] 

eff

ID  Effective dispersion coefficient [m
2
 s

-1
] 

eff
D  Effective diffusivity of the species [m

2
 s

-1
] 
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Ea Apparent activation energy [J mol
-1

] 

f Flux of a component [mol m
-2

 s
-1

] 

fi Adsorption pre-exponential constant [atm
-1

] 

caG  Catalytic surface area per unit volume [m
2
 m

-3
] 

h  Molar specific enthalpy [J mol
-1
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fgh  Heat of vaporization of water [kJ kg
-1

] 

wh  Reactor wall heat transfer coefficient [W m
-2

 K
-1

] 

h  Heat transfer coefficient on outside of the reactor [W m
-2

 K
-1

] 

ΔH Heat of adsorption [J mol
-1

] 

Dj , Hj  Mass transfer and heat transfer j-factors [-] 

κ  Species mass transfer coefficient [m s
-1

] 

k  Kinetic pre-exponent  [varies] 

 
Bk  Boltzmann’s constant [J K

-1
] 

K  Adsorption equilibrium [atm
-1

] 

L  Length of packed bed reactor [m] 

Lcb  Length of catalyst packed bed  [m] 

mL  Characteristic length of the pellets [m] 

BL  Reactor bed length parallel to gas stream [m] 

Le Length of diffusion path [m] 

tL  Characteristic length of the reactor [m] 

MW Molecular weight of the species [g mol
-1

] 

Ma Mach Number [-] 

s pn 
  Species mass transfer between gas and surface [mol m

-3 
s

-1
] 

N Diffusion rate [mol s
-1

] 

Nu Nusselt number [-] 

 pi Partial pressure of the reactants [N m
-2

] 

Pr  Prandtl number [-] 



xiii 

 

Pe Peclet number [-] 

s pq 
  Convective heat transfer between gas and surface [W m

-3
] 

extq  External heat transfer [W m
-3

] 

condq  Energy released or absorbed by condensation or evaporation [W] 

wq  Energy flow through wall [W m
-3

] 

R Radius of the packed bed reactor [m] 

R  Molar gaseous reaction rate [mol m
-2

 s
-1

] 

 r Pellet radial coordinate [m] 

condr  Rate of water vapor condensation [kg s
-1

] 

re Equivalent pore radii [m] 

Re  Reynolds number [-] 

uR  Universal gas constant [J mol
-1

 K
-1

] 

Sc  Schmidt number [-] 

Sg BET surface area [m
2
 kg

-1
] 

t Time [s] 

*

ijT  Reduced temperature [J m
-1

] 

T  Temperature of the pellets and gases [K] 

T  Outside temperature [K] 

mT  Mean temperature [K] 

u Average bulk velocity [m s
-1

] 

us Gas velocity in interstitial pores [m s
-1

] 

U Overall heat transfer coefficient [W m
-2

 K
-1

] 

V Total volume of the packed bed [m
3
] 

Vij Diffusion volume of the molecule  [m
3
] 

W  Molecular weight of the species [g mol
-1

] 

x Reactor axial distance [m] 

X  Mole fraction of species  [-] 

Y Mass fraction of species [-] 
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 Greek Letters: 

Variable Description Units 

i  Ratio of molecular weight of the species [-] 

β Volumetric thermal expansion coefficient [K
-1

] 

  Porosity [-] 

ij  
Potential wall depth [Å] 

1  Macro-pore porosity [-] 

2  Micro-pore porosity [-] 

 r  Radial porosity [-] 

θ Coverage factor of the reactants over the catalysts [-] 

  Pellet thermal conductivity [W m
-1

 K
-1

] 

a  Axial thermal conductivity of the solid [W m
-1

 K
-1

] 

s  Molecular thermal conductivity of fluid [W m
-1

 K
-1

] 

eff  Effective thermal conductivity [W m
-1

 K
-1

] 

I

eff
 

Effective axial thermal conductivity [W m
-1

 K
-1

] 

eff

o  
Effective static thermal conductivity [W m

-1
 K

-1
] 

( )effr  Effective radial thermal conductivity coefficient [W m
-1

 K
-1

] 

  Dynamic viscosity [N s m
-2

] 

  Density of the pellet [kg m
-3

] 

w  Density of reactor wall [kg m
-3

] 

s  Density of the fluid [kg m
-3

] 

  Molar density [mol m
-3

] 

s  Molar density of the fluid [mol m
-3

] 

ij
 Reduced collision diameter [Å] 

  Stefan-Boltzmann constant [W m
-2

 K
-4

] 

  Tortuosity [-] 
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 Tortuosity factor  [-] 

k Tortuosity factor for Knudsen diffusivity [-] 

  Collision integral [-] 

ω, ωs Humidity ratio and saturated humidity ratio [-] 

 

  Subscript: 

Variable Description Units 

i, j Reactant species [-] 

m mean [-] 

r Radial [-] 

s Bulk gas or fluid medium [-] 

p Pellet [-] 

 

  Superscript: 

Variable Description Units 

n Time step [-] 



                                                              

CHAPTER 1 

INTRODUCTION 

 

1.0 MOTIVATION 

 Internal Combustion (IC) engines produce harmful exhaust gases like carbon monoxide 

(CO), nitrogen oxides (NOx), hydrocarbons (HC) and particulate matter (PM) due to incomplete 

combustion and high temperature dissociation of fuel, complete combustion products and air.  

While exhaust gas concentrations of NOx and CO for a typical four-stroke Spark Ignition (SI) 

engine range only between 100 and 4000 ppm depending upon the driving conditions, 

temperature and air-to-fuel ratio [1,2], these species are a major concern for global air pollution 

as they account for around 57.6% and 38.3% of the total emissions for CO and NOx respectively 

[3,4]. In the last three decades, emission regulations for IC engine exhaust have become 

increasingly stringent in order to preserve the environment for future generations. A major way 

to meet these low standards is to employ exhaust aftertreatment devices using heterogeneous 

catalysis for chemical species conversion.  This is because the temperature is too low and the 

residence time is too short for chemical reactions to happen in the exhaust via a homogeneous 

manner.   

 In order to continually reduce emission levels, it becomes essential to predict the 

conversion properties of individual pollutants from IC engines as a function of temperature and 

pressure within these aftertreatment devices. The early history of exhaust cleanup in the 1970s 

involved the use of packed bed reactors containing aluminum spheres washcoated with noble 

metal catalysts. Because of durability and operation issues, industry transitioned towards 
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monolithic type devices consisting of a large number of small channels containing the same 

noble metal catalysts washcoated on the surface. However, in the laboratory setting, a large 

number of researchers still employ packed bed reactors when determining the chemical reactions 

happening on the surface of the washcoat.  Moreover, collaborative efforts investigating 

chemical kinetics for exhaust aftertreatment between the Mechanical (ME) and Chemical and 

Petroleum Engineering (CPE) Departments at the University of Kansas require the creation of a 

packed bed model in parallel to an experimental setup in Burt Hall.  

 The transport of the chemical species contacting the catalytic surface plays a vital role in 

the design of the packed bed reactor. A complete understanding of the fluid flow distribution in a 

packed bed is of considerable practical importance due to its significant impact on transport 

phenomena and reaction rates.  As a result, it is important to derive the governing equations for a 

packed bed reactor and provide the corresponding limitations of the model on a laboratory scale. 

Furthermore, since the driving force for accuracy in any heterogeneous catalyst model is proper 

reaction kinetics, it is necessary to review the literature in order to incorporate a proper reaction 

rate expression within the packed bed model. 

1.1 INTRODUCTION TO PACKED BED REACTOR  

 The first commercial application of a packed bed reactor dates back to 1831 when 

Peregine Philips patented a process for making sulfur trioxide by passing air and sulfur dioxide 

over a relatively hot bed of platinum. As the catalyst was not consumed in the reaction, it could 

be used repeatedly as a continuous reactor. Since then, packed bed catalytic reactors have 

become one of the most often used units for gas-solid and liquid-solid reactions [5]. For 

example, petrochemical and oil refinery industries continue to employ packed bed reactors for a 
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large variety of catalytic processes such as catalytic reforming, hydro-treatment and ammonia 

and sulfuric acid synthesis.  

As previously mentioned, the original means for controlling hazardous pollutants from 

automobiles involved a catalytic converter (also known as aftertreatment device) made of packed 

spherical pellets placed into the exhaust stream as shown in Figure 1.  This device is an assembly 

of uniformly sized catalytic particles or pellets, which were randomly arranged and firmly held 

in position within a vessel or tube. The pellets were usually on the order of 3 to 6 mm in 

equivalent diameter in order to minimize pressure drop within the bed at the flow rates typically 

utilized.  The reactants were supplied to the reactor with the bulk of the fluid flowing through the 

packed bed. Through contacting with the catalytically active particles, the reactants underwent 

chemical transformations, which were usually accompanied with heat release or heat 

consumption. If necessary, heat was removed or supplied through the walls of the device. 

 

 

Figure 1: Packed bed reactor illustrating pellets and active catalytic material. 
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The degradation of this device in automobile exhaust during typical operation from 

vibration and temperature often resulted in pellet fracturing and plugging which caused the 

industry to shift to monolithic devices that are still in use today.  However, a significant number 

of researchers still utilize packed bed reactors in the laboratory in order to formulate the 

chemical kinetics [6-10].  There has been a relative shift in the automotive literature towards use 

of monolithic reactor studies, most notably by Olsson and Anderson [11], Heck et al. [12], 

Harned [13] and Oh et al. [14].  Nevertheless, there exists a significant catalog of experimental 

data that is still useful today.  In particular, as industry attempts to develop better kinetics as a 

function of interactions on the surface [15-22], and as indicated by efforts at KU through 

adaptive kinetics that include metal properties like dispersion and loading, this past data 

continues to provide insight [23].  As a result, it is necessary for the automotive engineer today 

working in the catalytic exhaust aftertreatment field to have both monolithic and packed bed 

reactor models available for chemical kinetics studies and utilization.  

Flow modeling of packed bed reactors is a challenging task because of the difficulty of 

incorporating the complex geometry into the flow equations while including the interactions 

between fluid, pellets and walls of the reactor [24]. The packed bed reactor is a heterogeneous 

system composed of solid particles and fluid flowing in the interstitial space among the particle 

pellets [25].  The spherical porous pellets are usually made of γ-alumina, 0.2 to 0.25 inches in 

diameter on the laboratory scale and a Brunauer-Emmett-Teller (BET) area of 100-200 m
2
/g.  

Manufacturers treat these pellets with stabilizers to prevent thermal sintering and add active 

catalytic metals like platinum, palladium and rhodium.  They have relatively good crush and 

abrasion resistance characteristics with better pore diffusion mass transfer characteristics than 

monolithic type systems in order to yield high conversion rates [26].    
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 An exact mathematical description of packed bed reactors is virtually impossible because 

of the interactions of fluid mechanics, heat and mass transport with chemical reactions.  As a 

result, simplified mathematical simulations in terms of averaged flow quantities have been 

developed.  These models are one-dimensional in nature and based upon the fundamental 

conservation laws of mass, momentum, species and energy. The derived versions for pelletized 

bed or packed bed type reactors are application specific and have their own corresponding 

numerical treatment [5].  Fundamentally, the result of these efforts are two types of general 

models; pseudo-homogeneous and heterogeneous.  Research illustrates that the pseudo-

homogenous model is the most commonly employed for designing packed bed reactors due to 

the simplifying assumptions of single phase equations utilizing effective properties for fluid and 

solid phases [27-29].  However, the literature is missing a thorough understanding of the 

assumptions presented in this model along with a summary of effective parameters. 

A previous effort by Dr. Christopher Depcik thoroughly documented the one-dimensional 

monolithic catalyst modeling field in order to determine the correct formulation of the governing 

equations for this application [30].  This work follows suit in the area of one-dimensional 

pseudo-homogenous packed bed reactor modeling.  It is important to note that a one-dimensional 

simplification of a monolithic or packed bed reactor may be simplistic in nature considering the 

device might have a significant cross-sectional area.  However, it is important to understand the 

fundamentals of one-dimensional model first before moving into the two-dimensional realm.  

Secondly, as illustrated in the monolithic catalyst modeling field [31], the extrapolation of the 

model into a second dimension can often be done by adding only a few terms.  Hence, the one-

dimensional model is frequently the foundation of the two-dimensional model.  Moreover, in the 

laboratory quite often a one-dimensional representation is sufficient, as the packed bed reactor is 
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often only a small core of material. The pseudo-homogeneous species and energy equations with 

their criteria are discussed thoroughly in Chapter 4. The importance of the various chemical 

kinetic parameters and their dependency in the numerical modeling of the packed bed can be 

understood from the chapters preceding.  

1.2  THESIS OVERVIEW 

 The purpose of this thesis is to develop a fundamental model for a packed bed reactor in 

one-dimension with the previous section providing a brief history and introduction the physical 

and transport phenomena within this type of experimental setup (followed up in significant detail 

in Chapter 4).  Since the accuracy of the model will be largely dependent on reaction kinetics, it 

is important to include an investigation into reactions occurring on the surface.  The reaction 

chosen of NO interacting with CO is one of the more important reactions in a Three-Way 

Catalyst (TWC) aftertreatment device for SI engine exhaust. The exhaust from SI engines 

contains considerable amounts of CO and NO, and so, it becomes important to eliminate these 

gases in a single step through NO reduction and CO oxidation over precious catalysts in a 

TWCC.  

Moreover, the choice of catalyst surface is important and this thesis focuses on Platinum 

Group Metals (PGM) because of their widespread usage within the industry.  Platinum Group 

Metals, like platinum (Pt), palladium (Pd) and rhodium (Rh), play a vital role in providing the 

conversion capabilities through surface bonding and subsequent reduction in the activation 

energy for reactions.  Hence, a review of reaction kinetics was accomplished in order to obtain a 

fundamental understanding of the detailed reactions on rhodium/alumina (Rh/Al2O3) and 

platinum/alumina (Pt/Al2O3) catalysts with alumina being the standard washcoat material for 

TWC devices. 
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 As a result, Chapter 2 provides a comprehensive review of NO reduction by CO over 

Rh/Al2O3 catalysts that has been published by the author [32]. This review describes the major 

reaction steps involved in the reduction reaction under a wide range of temperature and 

concentration conditions. This is necessary as SI and Compression Ignition (CI) engines have 

different compositions and exhaust temperatures, which may lead to different rate determining 

steps over the catalyst. As a result, distinctive global mechanisms are required to satisfy both low 

and high temperature conditions in order to give aftertreatment models the required accuracy.  

 Similarly, Chapter 3 involves a theoretical investigation of the NO reduction reaction by 

CO over Pt/Al2O3 catalysts [33]. Similar to Rh, the optimization of Pt metal loading over 

alumina substrate is very important due to the cost involved into the manufacturing of catalytic 

converters [34]. In addition, since aftertreatment devices contain a mixture of PGM components, 

the review of both Pt and Rh versions of the NO and CO reaction will help future researchers 

develop a more predictive model for metal combinations.   The outcome of this research is the 

formulation of a detailed kinetic mechanism that relies heavily on the previous research in order 

to indicate the main steps in the process.  From the detailed reaction steps, the authors create a 

global kinetic mechanism that will simulate this reaction better than the current versions utilized 

in the aftertreatment modeling literature.   

 Chapter 4 begins with a review of the literature for one-dimensional (1-D) pseudo-

homogeneous packed bed modeling by examining heat and mass transport properties. As a 

result, a general packed bed model with appropriate species and energy equations is developed in 

order to model reaction kinetics on a laboratory scale. Finally, the author concludes by 

presenting a parametric study using the NO-CO reduction reaction over Rh/Al2O3, illustrating 

the influence of model components and transport parameters. Furthermore, this thesis includes a 
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summary of various factors influencing the model in order to describe how to formulate a two-

dimensional packed bed simulation (radial effect) based upon this work.  It is important to note 

that the chapters in this thesis are self-contained with respect to writing as they are intended to be 

(or have already been) submitted to journals for possible publication.   
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CHAPTER 2 

REDUCTION REACTION OF NITRIC OXIDE BY CARBON 

MONOXIDE OVER RHODIUM/ALUMINA CATALYSTS
*
 

 

2.0  INTRODUCTION 

 The hazardous emissions from industrial, commercial and personal activities are one of 

the biggest challenges faced by scientists for improving air quality.  Of the various sources, on- 

road vehicle use accounts for a significant part of the problem with 2002 Environmental 

Protection Agency (EPA) levels indicating that carbon monoxide (CO) and nitrogen oxides 

(NOx) emissions, account for 57.6% and 38.3% respectively of the total emissions of each 

variety [3,4]. Over the past two decades, emissions produced from automobiles are of great 

concern because of their impact on human health and the environment.  Emission regulations set 

by governments across the world have made a considerable impact in reducing problematic 

species and continue to be set lower as researchers meet and exceed current standards.  However, 

these increasingly stringent regulations are becoming a technological challenge for the 

automotive companies. 

Of particular importance, the Three Way Catalyst (TWC) for Spark Ignition (SI) engines 

has had a significant impact on reducing both NOx and CO emissions.  Unlike Compression 

Ignition (CI) engines, SI engine exhaust contains enough CO, along with hydrocarbons (HC) and 

hydrogen (H2), to act as a reductant for the NOx emissions as indicated in Table 1.  

 

                                                           
*
 This chapter has been published as: Srinivasan, A., & Depcik, C. (2010). Review of chemical reactions in the NO 

reduction by CO on rhodium/alumina catalysts. Chem. Rev. Sci. Eng., 52, 462-493. 
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Table 1: Average concentrations of exhaust gas constituents during an FTP [35].   

HC NOx CO H2 CO2 O2 H2O 

750 ppm 1050 ppm 0.68 vol% 0.23 vol% 13.5 vol% 0.51 vol% 12.5 vol% 

 

A second catalyst then oxidizes any remaining CO, HC, and H2 by using the remaining 

oxygen and secondary air injection.  Through this combination of reduction and oxidation 

catalysts, the TWC has a well-known conversion curve as shown in Figure 2 [36].  Near 

stoichiometry, each chemical species has relatively high conversion rates. 

 

 

      Figure 2:  TWC chemical species conversion characteristics based on A/F ratio [36] 

 

In the reduction catalyst, Platinum Group Metals (PGM) like platinum (Pt), palladium 

(Pd) and rhodium (Rh) play a vital role in providing the conversion capabilities.  While these 

metals make up only a small amount of the washcoat, they contribute significantly to the catalyst 

cost as indicated in Figure 3.  Manufacturers adjust catalyst loading to take into account market 

fluctuations while trying to achieve the same reducing capabilities.  However, rhodium plays a 

vital role by enhancing NOx conversion capabilities and helps in the suppression of ammonia 
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(NH3) emissions at rich conditions.  In the past, researchers have found rhodium to be one of the 

best catalysts to serve this dual purpose.  Since it is significantly more expensive than the other 

metals, manufacturers weigh its use against the needed conversion potential.   

 

 

Figure 3:  Historical prices of platinum, palladium and rhodium adjusted for Consumer  

Price Index [37,38]. 

  

As a result, TWC models must predict correct mechanism rates in order to give users the 

ability to minimize the amount of rhodium being utilized.  With respect to the literature, one-

dimensional based catalyst models tend to follow the lead of Montreuil et al. [39] and Koltsakis 

et al. [31] in simulating NOx reduction reactions.  These reactions resulted from an early effort 

by Voltz et al. [40] and act more as an extension to the model rather than a fundamental study of 

the reaction and its associated global mechanism. 

In order to make models more accurate and predictive [23], this paper researches the 

history of the NO and CO reaction over rhodium to determine a better global kinetic mechanism 

for incorporation which requires an understanding and an explanation of the history of the 



12 

 

detailed reactions occurring on the surface as this mechanism leads to the global formulation 

through the rate-determining step.  This reaction mechanism occurred in the absence of other 

species such as hydrogen and hydrocarbons in order to provide a clear focus of efforts.  The 

result is a global reaction rate expression that will simulate this reaction better than the current 

versions in the aftertreatment literature.   

2.1  REACTION HISTORY 

  In 1957, Yang and Garl were among the first to study the NO-CO reaction over rhodium 

by investigating CO bonding to the surface [41].  Through Infrared (IR) exploration, they found 

three different gas-metal bonding structures: 1), a singular CO molecule bonding to the surface 

(single linear); 2) two CO molecules bonding to a singular Rh (twin type); and 3) three CO 

molecules interacting with two Rh surface sites (bridged).  Of the types illustrated in Figure 4, 

the linear and bridged versions are most common and will shift towards the linear form as the 

coverage of CO increases.  They also state that the twin type CO reacts with O2 even when 

heated at partial coverage; however, the linear and bridged CO reacts at room temperature at 

both low and high coverage. 

Fifteen years later, Bauerle et al. published an important paper for automotive 

applications by studying the reduction of NO by CO in the presence of oxygen on copper-based 

and noble metal catalysts [42].  The impact of oxygen on the reaction is important because the 

leaner an engine can run with excess O2 available during combustion, the more 

thermodynamically efficient the engine and the better the fuel economy.  In addition, since most 

engines were of the carbureted variety in this decade, fuel-air ratios could vary dramatically 

during operation, requiring catalysts to be more robust.  They found that the conversion of NO 

over Rh was virtually unaffected by O2 concentrations up to a certain level (2500 ppm) whereas 
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ruthenium (Ru) and platinum (Pt) started producing nitrous oxide (N2O) at lower levels of O2 of 

about 1250 ppm.  In addition, lowering temperatures did not reduce NO conversion capabilities 

at higher concentration levels of oxygen.  This work indicates the necessity of rhodium as a 

preferred metal in the catalysis of SI engine exhaust. 

                                                   

Figure 4: Different CO bonding structures with Rh surface: (a) Single linear (b) Twin type  

and (c) Bridged [41]. 

 

 In 1974, Uland and Barker researched the impregnation of rhodium catalysts with 

ruthenium for use under reduced conditions (excess fuel) in an automotive exhaust stream [43].  

The result of their efforts showed that alumina washcoat (-Al2O3) catalysts incorporating low 

levels of Rh were highly effective in NOx removal.  However, one drawback of the conversion 

process was the tendency to produce ammonia (NH3) under rich conditions [44] which is 

particularly important to note as a number of diesel aftertreatment systems under current 

development utilize this reaction to produce ammonia over a Lean NOx Trap (LNT) for later 

Selective Catalytic Reduction (SCR) devices [45-47]. 

 In the same year, Kobylinski compared the reduction of NO by hydrogen and carbon 

monoxide over the major Platinum Group Metals;  Rh, Pt, Ru and Pd [48].  His studies revealed 

that the rhodium catalysts have a higher activity of NO reduction by utilizing CO rather than H2.  

He found that when H2 is utilized as a reducing agent, the activity sequence for the reduction 

capability is Pd > Pt > Rh > Ru whereas for CO the sequence is reversed.  Moreover, the 
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formation of NH3 over Rh ceases around 590
º
C, indicating possible reconversion back to full 

combustion products; however, for Pt and Pd, significant ammonia formation was observed even 

at 790
º
C. 

 In 1976, Hiromichi and Hiroo studied NO/CO adsorption and bond strength over an 

alumina-supported rhodium catalysts [49].  They found that NO is adsorbed in two forms; 

cationic (Rh·NO
+
) in a linear angle structure (180

º
) and anionic (Rh·NO

-
) in a bent angle 

structure (120
º
) as illustrated in Figure 5.  Through an x-ray study of these compounds, both the 

Rh·N and N·O bonds of the cationic structure were stronger than the bonds of the anionic 

structure. Upon introducing oxygen to the feed stream, the Rh·NO
-
 bond strength decreases 

rapidly, and the adsorbed NO reacts to form a bidentate nitrato structure as shown in Figure 5.  

Under lean conditions, the frequency of this structure decreases and does not contribute to the 

reaction mechanism. In addition, they validated the three different CO bonding structures 

determined twenty years earlier by Yang and Garl [41]. 

   
Figure 5: Different NO bonding structures with Rh surface: (a) Linear/Cationic: Rh-NO

+
 (b) 

Bent/Anionic: Rh-NO
-
 (c) after introduction of oxygen to feed stream to bent form [49]. 

 

 They experimentally observed that the twin type CO bonding structure reacts with 

oxygen at elevated temperatures and remains inactive at temperatures below 100
º
C.  However, 

the linear and bridged CO structures react readily with oxygen at 25
º
C because the coordination 

site for adsorption of O2 remains at the metal atom.  Since Rh has the capability to have one more 

molecule on its surface, the latter structures have a greater probability towards oxygen 
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adsorption. Thus, the linear and bridged CO structures oxidize relatively easily to create CO2.  Of 

particular importance, when introducing either CO or NO to a rhodium surface covered with 

other associated species in linear form, Hiromichi and Hiroo found that the same bonding 

structure results as illustrated in Figure 5. 

These results suggest that the pre-absorbed cationic structure of NO changes to the 

anionic structure when CO is introduced, indicating a localized interaction of CO and NO 

species.  Both the linear and bridged type CO molecules on the surface interact with the gaseous 

NO to form this dual-bonded structure ( NO Rh CO  ) as shown in Figure 6 whereas the twin CO 

remains unchanged and does not interact with the gaseous NO species.  From these observations, 

they proposed an Eley-Rideal (E-R) mechanism where the pre-adsorbed NO and CO reacts with 

gaseous CO and NO, respectively:  

1

-1

CO Rh Rh CO
k

k

   (1) 

2

-2

NO Rh Rh NO
k

k

   (2) 

3

1
2 22

NO Rh CO CO N Rh
k

      (3) 

 

4

1
2 22

CO Rh NO CO N Rh
k

      (4) 

In this case, when CO and NO are both present in the dual bonded structure                              

( NO Rh CO  ), they react instantaneously and go to completion. Hiromichi and Hiroo also 

proposed a potential pathway of intermediate NCO and N2O production during the NO and CO 

conversion process from the dual bonded structure due to local interactions. 

5

2NO Rh CO Rh N CO
k

      (5) 

6

CO Rh N Rh NCO
k

     (6) 
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7

2NO Rh N Rh N O
k

     (7) 

where, NCO was found to be stable up to 400
º
C under vacuum. 

 

 
 

Figure 6: Resulting bond structure when CO or NO is introduced to a rhodium surface 

covered by the other [49]. 

 
  In 1978, Campbell and White suggested the first detailed kinetic mechanism over 

polycrystalline rhodium using Flash Desorption Spectroscopy (FDS) determined under steady-

state measurements at 3.2 x 10
-11

 bar [50]. They showed that NO adsorbs with a high initial 

sticking probability which then dissociates during heating to form N2 and O2 species.  Two peaks 

were found for nitrogen formation, illustrating nitrogen desorption and the disproportional 

reaction between NO and N.  Their model infers that N2 forms from mono-atomic adsorbed N or 

the disproportional reaction and starts with adsorption via Eqns. (1) and (2) followed by: 

8

Rh NO Rh Rh O Rh N
k

       (8) 

9

22Rh N 2Rh N
k

    (9) 

10

2Rh NO Rh N Rh O Rh N
k

        (10) 

11

2Rh CO Rh O 2Rh CO
k

      (11) 

  In the same year, Kroeker et al. used tunneling electron spectroscopy measurements to 

further validate the three forms of chemisorbed CO over alumina-supported rhodium [51].  From 
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their thermal desorption experiments at 10
-5

 torr CO pressure, they determined that the bridging 

bond is the strongest (75 meV) followed by single linear CO (58.1 meV) and twin linear species 

(51.6 meV).  In addition, they provided a summary of observed mode positions and indicated the 

presence of one additional configuration of a singular CO molecule bonded to two rhodium 

particles as indicated in Figure 7. 

 

Figure 7: Singular CO molecule bonded to two rhodium particles [51]. 

 

 Concurrent to these results, Solymosi and Sarkany performed infrared spectroscopic 

studies at temperature ranging from 25 to 400
o
C and observed almost the same range of bands 

for adsorbed NO and CO over Rh/Al2O3 confirming earlier work by other researchers [52]. In 

addition, these bands indicate the presence of an isocyanate complex with its formation sensitive 

to the composition of the reacting gas mixture.  The formation of NCO occurs when the reacting 

gas mixtures are at high temperatures or with excess NO and Rh
-
 sites. At high temperatures, 

they speculate that the formation of NCO occurs through Eqn. (6) and the formation of CO2 

follows an E-R mechanism which occurs through the reduction of oxidized rhodium by CO as 

given in Eqn. (12). 

12

2CO Rh O Rh CO
k

     (12) 

13

-13

2Rh NO Rh N Rh O
k

k

     (13) 
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 Under excess NO, they postulate another E-R mechanism for the formation of NCO via 

Eqn. (13) and Eqn. (6). At temperatures above 100
º
C, the formation of CO2 occurs via active 

NO·Rh·CO complexes, 

14

2CO Rh NO Rh N CO
k

    
 

(14) 

in which the adsorbed Rh·N follows Eqn. (6) to produce an isocyanate complex. 

At the turn of the decade, Yates et al. investigated the dissociation phenomenon of 

chemisorbed CO [53]. According to their auger spectroscopic and isotopic exchange 

measurements, at a surface temperature below 800 K, the maximum probability of dissociation 

of CO molecules in collision with Rh111 is approximately 10
-4

.  Hence, they conclude that the 

probability of the dissociation of CO is negligible when compared to the disassociation of the 

molecular desorption of CO and therefore rule out the dissociation of CO on Rh during the 

reaction kinetics.  At the same time, Baird and Wynblatt suggested that CO chemisorbs and 

desorbs molecularly at all coverages over Rh110 which is experimentally supported by their 

Temperature Programmed Desorption (TPD) curves and Ultraviolet Photoelectron Spectroscopy 

(UPS) studies [54], whereas, NO chemisorbs dissociatively at low coverage (150 to 500 ppm) 

and molecularly at high coverage (500 to 1500 ppm).  In these studies, NO desorbs from Rh110 at 

340
º
C and 195

º
C for low and high coverage, respectively, while the remaining atomic nitrogen 

desorbs at 250
º
C.  

 In the same year, Dubois et al. found from their electron energy loss spectroscopy 

measurements that oxygen occurs as an intermediate in the formation of CO2 and N2 over Rh311 

[55]. Adsorbed NO dissociates at 450K, which is well below catalytic converter operating 

temperatures of 600 to 800K.  Due to this reaction, they presume N2 formation follows via Eqn. 

(9).  They ignore the disproportional reaction of Eqn. (10) in contrast with Campbell and White's 
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model [50].  In addition, since they find oxygen desorbing above 700K, they state that the 

formation of gaseous CO2 over the catalyst occurs through Eqn. (12).  Two years later, Worley et 

al. studied the importance of the support material [56].  They show that the nature of this 

material is quite important in CO chemisorption behavior and is more pronounced when alumina 

(Al2O3) is used as a substrate rather than silica or kaolinite. 

In 1984, Edward and Robert investigated NO adsorption using IR studies to determine 

the effect of oxygen in the formation of the isocyanate complex and nitrous oxide over Rh/Al2O3 

[57].  At high temperatures, they found that the reaction follows an E-R scheme where rhodium 

reacts with gaseous NO to give N2O as a product, and the remaining adsorbed oxygen acts as an 

inhibitor. 

15

-15

Rh NO NO NO Rh NO
k

k

     (15) 

16

2Rh 2NO Rh O N O
k

     (16) 

17

-17

Rh O NO O Rh NO
k

k

     (17) 

Their experimental studies correlate with the results of Baird et al. [54] but are contrary 

to the results of Dubois et al. [55] since their IR study illustrates that the oxygen formed on the 

surface inhibits further reactions until 873K when oxygen desorbs.  Furthermore, they proposed 

a detailed reaction mechanism for the formation of NCO through Eqns. (14), (6)  and the 

formation of CO2 under high CO partial pressures with Rh·NCO as an intermediate: 

18

-18

Rh CO NO Rh NO CO
k

k

     (18) 

19

2Rh NO 2Rh CO Rh NCO CO
k

       (19) 
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Moreover, N2O formation does not begin with Eqn. (8); instead, it follows Eqn. (14) that further 

reacts with gaseous NO to form N2O.  They did not observe N2O in the absence of CO in the 

feed stream. 

  A few years later, Hendershot and Hansen recommended possible reactant structures 

over Rh100 crystals as illustrated in Figure 8 [58].  Under low energy electron diffraction and 

thermal desorption spectroscopy studies, they found that the adsorbed CO and NO species self-

inhibit their reaction rate as their partial pressure increases.  They determined that the kinetic 

order of CO in the reaction varies from +1 to -1 when CO partial pressure increases from 1 to 

250 Pa at constant NO partial pressure.  Similarly, the kinetic order for NO varies from +3/2 to -

1 when the NO partial pressure increases from 1 to 1800 Pa at a constant CO partial pressure.   

 

 
  

  
 

 
Figure 8: Possible additional structures for adsorbed species over rhodium [58]. 

 

In addition, they introduce a new L-H reaction mechanism with the traditional adsorption 

steps; Eqns. (1) and (2) followed by: 

20

20

22Rh NO Rh O Rh N O
k

k

     (20) 
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21

2 2 2Rh N O Rh CO 2Rh N CO
k

       (21) 

22

22

2Rh NO Rh O Rh NO Rh
k

k

      (22) 

23

2 2Rh NO Rh CO 2Rh NO CO
k

       (23) 

24

24

2Rh NO NO Rh NO Rh
k

k

     (24) 

In the above reaction mechanism, the oxidation of CO via adsorbed oxygen does not appear 

because the reaction rate with CO was determined to be negligible compared to oxidation via the 

NO pathway. 

 In 1988, Dictor proposed a reaction scheme based on a number of experimental 

conclusions over Rh/Al2O3 [59].  Starting with NO, he states that NO dissociates readily on a 

reduced rhodium surface via Eqn. (8) rather than an oxidized surface through the formation of 

isocyanate which forms immediately after the introduction of CO to the pre-adsorbed NO sites as 

in Eqn. (6).  In contrast, isocyanate formation does not occur when NO is introduced to pre-

adsorbed CO which differs from the results of the Solymosi and Sarkany studies [52].  

Moreover, the linear and bridged CO structures are suppressed in the presence of NO, suggesting 

that the interaction of NO and CO occurs on a contiguous rhodium surface and not on isolated 

sites.  The NO molecules adsorb as a neutral or net negatively charged species which later 

becomes a slightly positive charge due to electron withdrawing effect of oxygen atoms over 

rhodium as in Eqn. (1).  The rhodium surface reduces when CO oxidation removes oxygen atoms 

from the surface through an E-R mechanism.  This result proves that the oscillating effect, from 

reduced state to oxidized state, occurs as the function of the oxygen content over the surface.  
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Dictor also report that there is no experimental data to support the formation of 2Rh NO or 

NO Rh CO   as part of the reaction mechanism. 

  In the next few years, Fisher et al. were among the first to study the reaction kinetics 

under transient conditions over Rh111 [60-63].  Their Temperature Programmed Desorption 

spectra at transient conditions showed similar results to Campbell and White with N2O formation 

considered negligible in both Ultra High Vacuum (UHV) and moderate pressure conditions.  

Their model assumes nitrogen desorption as the rate-limiting step, and their reaction mechanism 

is similar to the Campbell and White model [50] which involves a modified L-H mechanism 

using surface reactions Eqns. (1), (2), (8), (9) and (11) and results in the following global rate 

equation at low pCO/pNO ratios:  

 
CO CO

2

CO CO1

kK p

K p



R  (G1) 

where k is the rate constant and KCO is the adsorption equilibrium constant for CO: 

 CO

CO 1 1 CO
uH R T

K k k A e


  .   

A year later, Carballo et al. proposed a reaction mechanism over noble metal catalysts 

operating at 250 to 600
o
C and 10

-5
 to 10

-3
 mbar total pressure through Eqns. (1), (2), (8) and (11) 

while adding:  

25

25

22Rh NO N 2Rh O
k

k

  
 

(25) 

26

26

2 2Rh + N O N Rh O
k

k

 
 

(26) 
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and neglecting N2O formation [64].  They found that the formation of N2O is significantly lower 

than the formation of nitrogen and carbon dioxide between 400 and 1000K.  Since gaseous N2O 

is an important greenhouse gas, it is imperative to understand the conditions at which N2O forms.   

The occurrence of N2O as a reaction intermediate in the reaction over Rh/Al2O3 was 

discussed by Cho et al. in 1989 [65].  Their results under steady feed and cyclic conditions 

suggest that the formation of N2O is an important intermediate step, and they propose an overall 

reaction scheme in which the formation of N2 and CO2 is dominant at high temperatures with a 

stoichiometric composition.  In the case of low temperatures and reduced conditions, N2O 

becomes an intermediate in the reaction.  Based on their observations, N2O occurs at relatively 

high concentrations of NO, and the oxygen produced in the reaction initiates the surface reaction 

Eqn. (11) to form CO2 under the light-off temperature: 

27

2Rh NO Rh N Rh N O Rh
k

       (27) 

28

28

2 2Rh N O N O Rh
k

k

   (28) 

29

2 2Rh N O N Rh O
k

     (29) 

In addition to the above three equations, their overall reaction mechanism includes Eqns. (1), (2), 

(8), (9) and (11).  Hence, below the light-off temperature, the rate of oxygen production via NO 

decomposition controls the overall reaction rate while oxygen scavenging from the surface via 

CO oxidation influences conditions above the light-off temperature. 

 The decade of the 1990s saw the beginning of an in-depth analysis of the detailed 

reaction mechanism.  Anderson et al. demonstrated the plausible modes of adsorbed NO2 over 

Rh as it undergoes self-ionization to NO
+
 and NO3

- 
[66].  According to the Solymosi and 

Sarkany [52] scheme previously mentioned, the Rh·NO
+ 

species formed experience a reversible 
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reaction to form the NO Rh CO   structure and in turn remove carbon monoxide in accordance 

with the expectation of a weak Rh CO and a strong C O bond: 

30

2NO Rh NO NO Rh NO Rh O N O
k

         (30) 

31

22Rh NO Rh NO Rh O
k

      (31) 

32

2 3Rh NO Rh O NO Rh NO Rh NO
k

         (32) 

33

33

Rh NO Rh O CO NO Rh CO Rh O
k

k

         (33) 

 One year later, the dissociation reaction of the Campbell and White studies are again 

verified through Bowker et al.'s TPD studies [67].  Their measurements show that the N2 

desorption from Rh110 occurs only after NO dissociation in the presence of oxygen atoms or after 

the removal of oxygen by CO through a "clean off" reaction.  The rate of CO2 production was 

determined to be much lower than the oxygen reaction, except at extreme temperatures.  This is 

because NO competes with CO for surface sites during steady-state and transient experiments 

and deposits oxygen atoms more efficiently.    

Around this time, as emission standards increased, researchers began enhancing the 

conversion rate of NO by modifying dispersion, metal loadings and including additives.  In 1993, 

Donald and Constance investigated the effect of Rh dispersion over alumina under cyclic 

reducing and oxidizing conditions at relatively high temperatures [68]. Under these conditions, 

Rh particles were recovered from their oxidized state in the form of large metal particles.  For an 

oxidization reaction, they suggest that the highly dispersed Rh is less active than a larger Rh 

particle.  The Rh particle migration was found to have a low sintering order (between 1.6 to 4.7) 

because of the strong bond between the rhodium catalyst and the alumina substrate. They present 

a model for sintering in their paper; however, it is beyond the focus of this work. 
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The developements in the early 90's paved the way to use different kinds of rhodium 

structutres to improve kinetic rates.  Baraldi et al. investigated the rate of NO dissociation with 

respect to the variation in the rhodium crystal structures using mass spectrometry, TPD and 

LEED measurements [69].  They found that the rate of N2 production at 460 to 510K correlates 

well with the Rh110 structure and the rate of CO2 production is maximum because of loosely 

bonded oxygen to the rhodium catalyst.  Above 670K, the variations in the reaction rate and 

surface structure are governed only by oxygen, and the rate of N2 production is maximum when 

oxygen begins regulating the restructuring of the substrate. 

 Similar to Donald et al. [68], Kaspar et al. studied the effect of the rhodium dispersion by 

using Temperature Programmed Desorption (TPD) measurments [10]. From their studies, the 

dispersion effect depends upon the operating temperture of rhodium catalysts.  Above 500K, 

reductive agglomeration of the rhodium particle occurs, and the TPD peaks shift significantly 

towards higher values as dispersion increases from 22% to 42%. Illustrating that NO dissociation 

is promoted by an increase of metal particle size.  

 In the same year, Byong again looked at the role of N2O as an intermediate over 

Rh/Al2O3 [70].  With reference to earlier results, it was found that when N2O interacts with CO 

on the surface, the reaction occurs twice as fast.  However, they found that the sticking 

coefficient of N2O under typical reacting conditions is very small (in the order of 2×10
-6

), and 

thus the rate-limiting step in the reaction could be the adsorption of N2O over Rh which 

contradicts most of the earlier research.  Moreover, they calculate the activation energy for N2O 

decomposition as 18 kcal/mol which is much larger than the decomposition for N2O desorption 

at 6 kcal/mol.  The rate of N2O dissociation increases with an increase in temperature and space 

velocity through N2O readsoprtion as the formation shifts right with respect to temperature.  In 
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addition, they state that Rh/Al2O3 produces N2O between 150 to 300
º
C, but this formation 

contradicts with their reactor experiment N2O conversion rate results.  Concurrently, Shelef and 

Graham report the importance of rhodium as the reduction material in a three-way catalyst [15].  

It was found that CO oxidation by O2 was insensitive towards rhodium dispersion whereas the  

NO dissociation rate was sensitive to the particle size and dispersion. 

 In 1995, Belton et al. proposed a reaction mechanism using Eqns. (1), (2), (8), (9), (10), 

(11), (27), (28) and (29); however, reactions Eqns. (2), (10), (11) and (27) were considered only 

in their experimental studies over Rh111 [71]. Through UHV studies, their results do not illustrate 

the formation of N2 as a product through Eqn. (10); instead, only N2O is formed.  Thus, the 

disproportionation reaction between adsorbed NO and N did not appear to occur.  They observed 

that the surface must be saturated with NO in order to form N2O; with the increase in N 

coverage, the N + N step is faster than the NO desorption or dissociation via Eqn. (9).  It is found 

that there is no evidence for N2O readsorption in the reaction mechanism. 

  In the same year, Charles et al. investigated the selectivity of N2 and N2O at relatively 

high pressures ranging from 1 to 100 torr over Rh110 and Rh111 surfaces [72].  Their experimental 

studies suggest that the selectivity towards N2 is greater than N2O for Rh110 due to more open 

surfaces whereas Rh111 shows more selectivity towards N2O (70% formation at all experimental 

conditions) because of the steric crowding of adsorbed NO inhibiting NO dissociation.  This 

result corresponds to low N2 coverages which increases N2O formation.  It was found that N2O 

formation is sensitive towards rhodium surface structures; however, with respect to the activity 

of the NO CO  reaction, both structures have similar NO consumption rates. The Rh110 surface 

does exhibit a lower apparent activation energy over a wide range of temperatures and pressures 

than the Rh111 surface due to a more facile NO dissociation process. 
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  With continued advances in computing efficiency, Zhdanov and Kasemo in 1996 

extrapolated the rate equations from ultra-high vaccum data to atomsperic pressures [73].  They 

proposed a reaction mechanism with Eqns. (1), (2), (8), (9), (10) and (11) based on their 

Temperature Programmed Desorption measurements. Their results indicate that nitrogen 

desorption is the rate-limiting step and N2O formation is not significant when utilizing the Oh et 

al. model [60-63].  Their experimental results were in poor agreement with their model because 

the calculated apparent activation energy for equal NO and CO partial pressures was 53 kcal/mol 

whereas the measured value was 32 kcal/mol.  However, they suggest potential changes to the 

scheme to obtain better validation for the experimental data;  changing the coverage dependence 

of the activation energies, introducing more than one type of adsorption sites or neglecting NO 

decomposition at high coverages.  

In addition to their earlier works, Belton and Permana provided an in-depth study of the 

species coverage dependence on the reaction rates over Rh111 [74].  They found that below 635K, 

N2O formation was favored and NO molecules dominate the surface whereas, above 635K, N2 

formation was preferred and CO is the major surface species.  From their kinetic experiments, 

they show that N2O readily converts to N2 when the temperature is less than 700K, and NO 

coverage plays a key role in determining the activity and selectivity over the catalyst.  When the 

temperature is greater than 623K, N2 formation rises sharply as a result of the increase in the 

coverage of nitrogen atoms due to a decrease in NO coverage through desorption and N2O 

formation reduces rapidly.  Based on their results, they propose a reaction mechanism via Eqns. 

(1), (2), (11), (13), (27), (28) and (29) while ignorning the recombination of atomic nitrogen step 

nitrogen via Eqn. (9).  At higher temperatures or at lower NO partial pressures, the N2O 

production kinetics are overwhelmed by the NO desorption reaction.  Thus, the selectivity of the 
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N2O reaction is largely based on the competition between the NO + N reaction and NO 

desorption.  Moreover, N2O readsorption is neglected as described in the earlier work of Belton 

et al. [71]. 

  In the same year, Zhdanov summarized nitrous oxide findings and determined that the 

mechanism suggested by Cho et al. is not supported [75].  According to Cho et al. [65], N2O 

readsorption plays an important role in the formation of nitrogen which contradicts the 

experimental results of Belton et al. [74] as well as Zhdanov’s own experimental results.  

Moreover, McCabe and Wong [76] and Belton et al. [74] have shown that the N2 formation rate 

from the  N2O and CO reaction is negligibly low compared to the rate in the NO and CO 

reaction. 

  From 1990, Permana et al. investigated the effect of oxygen at moderate pressures (lower 

than 100 torr) using Reflection Absorption Infra Red Spectroscopy (RAIRS) measurements over 

Rh111 [77].  Their work resulted in the addition of one more detailed kinetic step to their earlier 

model:  

34

2O Rh 2Rh O
k

    (34) 

It is shown that the NO and CO coverage was unaffected by the addition of stoichiometric 

oxygen under 675K; i.e. oxygen is not adsorbed by rhodium effectively as compared to NO or 

CO, and  thus it does not impact their coverage factors.  In this case, the rate of CO2 production 

increases by a factor of approximately four.  Moreover, the production rates of N2O and N2 are 

unaffected under lean conditions, and the NO consumption rate is independent of the presence of 

oxygen.  From the RAIRS experiments under 700K, the addition of oxygen increases the CO2 

formation rate without affecting the NO consumption rate or the N2O selectivity which supports 

Oh and Carpenter’s earlier results [60-63].   
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  In 1997, Novak et al. studied the variations on the rhodium structure during CO 

adsorption and found that rhodium has only one adsoption band due to a quick oxidative 

disruption reaction [78].  As a result, it is important to stabilize rhodium dispersion under 

catalytic conditions with low reductive agglomerization.  In the same year, Teuvo et al. 

corroborated the importance of rhodium as a catalyst in a three-way catalytic converter by 

finding that the rhodium decreases the formation of ammonia in rich conditions, and it is more 

active in the initiation of the NO CO  reaction and N2O decomposition [79].  Their experimental 

results show that the rate of N2O formation depends upon the amount of NO coverage. 

 Concurrently, Zhdanov and Kasemo presented the first review of the detailed reaction 

mechanism of NO and CO kinetics under 10
-7

 torr of ultra high vacuum and around 8 torr of 

moderate pressure conditions over Rh111 [80].  From their TPD and LEED results, they 

concluded that the adsorption and desorption behavior of CO and NO depends upon their 

sticking coefficients and coverage.  Specifically, the sticking coefficient and activation energy 

decreases with an increase in coverage, and the temperature dependence of the sticking 

coefficient for CO on Rh was found to be relatively weak.  Furthermore, NO decomposition 

occurs only when it has a nearby empty neighbor site. They found that the NO molecule desorbs 

at 400K whereas molecular nitrogen desorbs at 430K.  Their transient exchange experiments 

indicate that the oxidation of CO proceeds via an L-H mechanism consisting of Eqns. (1), (2), 

(8), (9) and (11).  They found that the NCO formed in the reaction scheme decomposes even at 

150K, and therefore they omitted its incorporation.  Their model follows the Charles et al. [74] 

mechanism and neglects the possibility of N2O formation in the system under UHV conditions.  

They discovered that at moderate pressures and temperatures lower than 800K, NO primarily 

covers the surface, and correspondingly, NO dissociation was chosen as the rate-limiting step.  
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  In 1998, Granger et al. investigated the catalytic reactions for the removal of NO in the 

presence of NH3, CO and H2 [17]. They report that the turnover frequency of NO increases as the 

dispersion of rhodium on the surface decreases from 100% to 1.7%.  The increase of the Rh 

loading from 5.84% to 11.21% caused a rapid decrease in the turnover frequency of NO, relating 

to the earlier efforts of Kasper et al. [10] which indicate that an increase in the rhodium particle 

size enhances the reaction rate. 

In the same year, Chuang and Tan suggested the formation of different products from the 

same adsorbed species based on unique states of rhodium over an alumina substrate [81].  As a 

result, the state of the rhodium (whether Rh
0
 or Rh

+
) can be determined based on these products 

as shown here (superscript '+' and '–' sign corresponds to the oxidized and reduced site of Rh 

atoms): 
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2Rh NO Rh N 2Rh N O
k

      (43) 

44
0 0

22Rh N 2Rh N
k

    (44) 

45
0 0Rh N Rh CO Rh Rh NCO

k

       (45) 

Under lean conditions, they found that the oxygen adsorbs over Rh and reacts with the adsorbed 

Rh
+
(CO)2 species to produce CO2 and Rh NO  which dissociates to form adsorbed nitrogen and 

oxygen.   In addition to the reaction mechanism suggested above, it was observed that the 

adsorbed oxygen from air reacts with Rh NO
 
at 473K, producing a nitrato species  3Rh NO  

that is reversible and provides more rhodium sites for the NO CO reaction.  When the species 

react above 473 K, the adsorbed oxygen reacts with Rh
+ 

(CO2), producing CO2 and thus blocks 

the reduced Rh
0
 sites for Rh NO  because it oxidizes Rh

0
 and Rh

+
 to Rh

2+
 sites and inhibits the 

NO conversion and N2O formation. 

In 1998, Kiss et al. investigated the stability of NCO under lean conditions using RAIR 

spectrum measurements over Rh111 at 5×10
-10

 mbar [82].  Their results indicate that pre-adsorbed 

oxygen atoms result in an increase in the relative amount of NCO formation.  However, at high 

temperatures and low concentrations, the NCO species have a shorter lifetime and fully 

decompose around 300K.  They found that adsorbed oxygen atoms enhance its stability by 60K.  

At the same time, Cant et al. studied the formation kinetics of nitrous oxide [16]. Their result 

shows the highest amount of N2O (370 ppm) formation below 400K, and as the temperature 

increases, N2O formation rapidly decreases.  Throughout this process, ammonia formation over 

rhodium is very small (30 ppm).  In addition, they suggest that N2O production increases with 

catalyst aging due to the sintering of rhodium particles at high temperatures. 
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 In the following year, Herman et al. compared Rh100 crystals with their earlier results 

over Rh110 and Rh111 of partial pressures at 8 Torr [83].  They found that the formation and 

selectivity towards N2O remains similar irrespective of the crystal structure, depending mainly 

upon NO partial pressure.  In addition, between 150 and 500K, the turnover number for NO over 

Rh100 is between Rh110 and Rh111, and thus the activity of the overall reaction is Rh110  > Rh100 > 

Rh111 which is inversely related to their surface atomic density.   

One year later, Chuang et al. investigated the reactivity of Rh
+
(CO)2 during 2CO O and 

CO NO reactions over Rh/Al2O3 [84]. With respect to their earlier efforts, Rh
+
(CO)2 remains 

inactive towards gaseous NO and the oxidization of CO.  This species requires sufficient Rh
0
 and 

Rh
+
 sites to initiate the redox reaction.  In this paper, 0Rh NO  is reported to

 
dissociate, 

producing N2 and Rh
+
 sites for the formation of Rh

+
(CO)2.  Any available CO reduces Rh 

+ 
to 

Rh
0
 which forms CO2 and leads to the dissociation of NO molecules.  The proposed reaction 

scheme follows Eqns. (1), (35), (37) and includes: 

   
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At the same time, Zaera and Gopinath supported the results of Cho et al. [65] by 

suggesting the presence of N2O as an intermediate in the reduction of NO using molecular beam 

experiments over Rh111 [18].  They found the formation of N2O through an NO+N reaction and 

not by N+N+O or NO+NO reactions.  In addition, they suggest that the recombination of 
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nitrogen atoms does occur at low temperatures, and N2 formation from NO does not appear to 

involve a direct N NO interaction. 

In 2001, Bustos et al. studied the overall kinetics using a lattice-gas model and Monte 

Carlo algorithm over Rh111 and provide a new reaction model with Eqns. (1), (2), (8), (10), (11) 

and the following [85]: 
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Rh NO Rh N Rh NO N Rh
k

k

       (50) 
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NO Rh N Rh NO N
k

      (51) 
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2Rh NO N Rh N O
k

     (52) 

Their experimental results show that the recombination of nitrogen atoms is not responsible for 

the reduction of NO over Rh; instead, an intermediate species  Rh NO N   forms. 

 In the same year, Harmsen et al. investigated NO reduction by CO under the presence 

and absence of oxygen using transient experiments at 1.1 bar total pressure [86].  Their results 

indicate that chemisorbed CO does not react directly with chemisorbed NO and N2.  Moreover, 

N2O formation occurs only after NO dissociation and the presence of oxygen inhibits its 

production.  Concurrently, Zaera and Gopinath investigated the kinetics over Rh111 under lean 

conditions [87].  They found that at low temperatures (less than 550K), the kinetics of NO 

reduction by CO does not differ; the rate of NO reduction by CO is six times faster than the rate 

of the oxidation reaction of CO.  At high temperatures above 600K, the inhibition effect of the 

adsorbed oxygen species decreases through Eqn. (12) and thus increasing the rate of production 

of nitrogen. However, the rate of the CO NO  reaction is much faster than the 2CO O  

interaction.  As a result, they infer that oxygen does not inhibit the kinetics of NO reduction by 

CO.  
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 In the following year, Baumer et al. looked at the structural sensitivity of CO dissociation 

over Rh crystals [88].  They found that the dissociation of CO is easier on a stepped surface like 

Rh211 rather than a flat surface like Rh111.  Their experimental results show that CO cannot 

dissociate on Rh111, but it may dissociate under a stepped structure or through defects on the 

surface.  One year later, concurrent with the results of  Baumer et al. [88] and Zaera et al. [87], 

Loffreda et al. investigated the chemisorption and dissociation of NO over different Rh crystals 

by using the density field theory (DFT) [89].  They found that the dissociation rate depends upon 

the Rh structure, and the activity order given has Rh100 > Rh511 > Rh111 with the dissociation rate 

highest on a Rh100 open surface because it has the lowest activation energy barrier as compared 

to the closely packed Rh111 surface.  In addition, they propose a detailed scheme for NO 

molecular dissociation by starting with a stable molecular adsorption through Eqn. (2), then 

through a metastable precursor state towards a transition state in which the energy difference 

between these two states gives the effective activation energy for dissociation via Eqn. (8). 

In 2005, Avalos et al. proposed a reaction model based on their experimental results and 

Monte Carlo simulations over Rh111 [90].  Their scheme follows Eqns. (1), (2), (8), (11), (51) 

with an additional reaction: 

53

2Rh NO N Rh O N
k

      (53) 

They state that in the above scheme, N2 forms via the Rh NO N   intermediate species through 

dissociation of adsorbed NO, and the reaction rate depends upon the coverage factor.  In other 

words, NO dissociation increases with an increase in vacant sites previously mentioned by 

Zhdanov and Kasemo [80]. They neglect the E-R reaction between the adsorbed nitrogen atom 

and gaseous NO because they find that nitrogen production from the Rh NO N 
 
intermediate is 

faster than the classical recombination step of nitrogen atoms.  
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One year later, Granger et al. studied the kinetics over Rh and Pt catalysts using TDP 

measurements [91].  They proposed reaction schemes for the NO CO  interaction and N2O 

dissociation.  Their NO CO  scheme follows Eqns. (1), (2), (3), (8), (9), (10), (11) while 

including one additional reaction to account for N2O formation: 

54

2Rh NO Rh N 2Rh N O
k

      (54) 

They suggest that the dissociation of adsorbed NO is the rate-determining step with their 

corresponding rate expression given as: 

 
NO

NO NO

2

NO NO CO CO1

kK p
R

K p K p


 
 (G2) 

Where, k is the rate constant for NO dissociation and KCO and KNO are the equilibrium adsorption 

constants:  NO

NO 2 2 NO
uH R T

K k k A e


  .   

The N2O dissociation mechanism follows Eqns. (1), (11) and the following new 

reactions: 
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with the corresponding global rate expression: 

 
2 2

N O2

2 2

N O N O

2

N O N O CO CO1

kK p
R

K p K p


 
 (G3) 

Where, k is the rate constant for N2O dissociation and 
2N OK  is the equilibrium adsorption 

constant:
 N O2

2 2N O 55 55 N O

uH R T
K k k A e



  .  They determined that N2O dissociates more readily 

on Rh/Al2O3, and the strong attraction of NO to the Rh surface prevents the readsorption of N2O.  
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They found a rapid decrease in N2O selectivity above the NO light-off temperature, and NO 

conversion is highest for Rh, followed by Pt/Rh and then Pt.  

  At the same time, Ricart et al. investigated the competitive decomposition of N2O over 

Rh111 [92].  They found that N2O adsorbs through Eqn. (55) without any distortion; i.e., no 

changes in their bond length and chemical structure after adsorption.  It then dissociates into two 

possible adsorbed species: NO+N or N2+O. The preferential decomposition process of N2O is 

the formation of N2 rather than NO because of the low adsorption energy of N2.  Hence, they 

infer that N2 is the main product from the reduction of NO over Rh, and N2O is only a minor 

factor. 

 In the following year, Granger et al. compared the utilization of Platinum Group Metals 

with respect to the conversion characteristics of NO reduction by CO/H2 under UHV conditions  

[19].  They found that the order of the activity sequence for NO reduction by CO is equal to 

Rh/Al2O3 > Pd/Al2O3 > Pt/Al2O3 with their rate determining step considered to be the 

dissociation of NO molecules over the rhodium site. In addition, the formation of N2O during 

NO reduction by CO over rhodium was lower in comparison to the other two metals.  Their 

proposed mechanism follows reactions (1), (2), (8), (9), (10), (11), (54) and they give the 

following reaction but neglect it in their final summary: 

58

22Rh NO N 2Rh O
k

     (58) 

Moreover, they observed a lack of ammonia formation over Rh/Al2O3 during the NO+H2 

reduction reaction.  

  As nano-technology continues to improve, Dent et al. in 2007 investigated the 

interaction of NO and CO species over rhodium nano-particles [93].  They illustrate that rhodium 

nano-particles corrode significantly at low temperatures (below 473K) to form Rh NO and 
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Rh(CO2), respectively.  Here the corrosion of rhodium metal means the substantial dispersion of 

nano-particulate rhodium to mononuclear rhodium sites. In addition, as the temperature of the 

catalytic bed increases, aggregation becomes more favored and the CO-NO redox reaction 

becomes more efficient. They propose an E-R mechanism that follows Eqns. (3) and (4) and 

suggest that the reaction Eqn. (3) is kinetically twice as fast as reaction Eqn. (4). 

  Recently, Na-Ranong et al. studied the steady state kinetics under periodic operations 

with a concentration of NO ranging from 500-2000 ppm and 1000-6000 ppm for CO [20]. 

According to the power rate law the reaction orders obtained for CO and NO over Rh were 0 and 

0.396 (positive values) whereas the reaction order for CO over Pt is negative (-0.7) [94],   

implying that the CO self-inhibiting effect over Rh is weaker than the effect on Pt and the 

reaction rate inhibition due to strongly adsorbed CO; NO is insignificant.  They propose a 

reaction mechanism that follows Eqns. (1), (2), (9), (54) and include the following reactions in 

accordance with their experimental results: 

59

2CO Rh NO Rh N CO
k

      (59) 

60

2Rh CO NO Rh N CO
k

    
 

(60) 

This reaction scheme is of the E-R type, including reversible NO and CO adsorption and rapid 

consumption of the NO Rh CO   structure; i.e., Eqn. (14) is much faster than its formation.  In 

addition, they neglect the NO dissociation step because their experimental operating temperature 

is below 450K and refer to Dubois et al. who state that NO dissociation does not occur below 

this temperature [55].  From their previous results, the formation of the isocyanate complex and 

Rh·(CO2) are not considered in their reaction scheme.  Their rate-limiting step in their reaction 

scheme is the recombination of nitrogen atoms.  In addition, they found a higher selectivity of 
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N2O compared to N2 under the light-off temperature; hence they consider the N2O formation step 

in the rate expression. 

2.2  REACTION HISTORY SUMMARY 

  Research began for the NO and CO reaction over rhodium in the late 1950s.  Early 

efforts focused on the adsorption profile of both CO and NO molecules.  Based on IR 

measurements, researchers found multiple structures for both species without singular preferred 

alternatives.  In addition, they started investigating the advantages of rhodium over other PGMs 

like platinum and ruthenium [41].  It was found that rhodium is an important catalyst for NO 

reduction, and it minimizes the production of ammonia under rich conditions [43,44].  In 

addition, lean conditions do not appear to affect the kinetics with high conversion rates 

maintained [42].   

The physical properties and the bond strength of the adsorbed species based on these 

chemical structures provided vital information for the initiation of detailed reaction mechanisms.  

Based on three forms of NO adsorption and four CO structures [49], researchers initially 

believed that the scheme follows an E-R type mechanism through Eqns. (3) and (4) with stable 

NCO formation [49].  However, a comprehensive detailed kinetic scheme proposed by Campbell 

and White instead supported an L-H mechanism without NCO formation [50].  While other 

researchers backed the E-R version with stable NCO formation [49,51], later work showed that 

this species is highly unstable [80]. 

In the early 1980s, researchers began to explore the reaction kinetics with respect to 

emission regulations.  The dissociation of CO was found to be negligible compared to NO 

[53,54] and researchers maintained the use of an E-R mechanism because of the oxygen 

desorption at high temperatures [55].  Furthermore, the alumina substrate became a preferred 
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washcoat material because of its efficient CO chemisorption ability [56].  In the mid 1980's, NO 

and CO kinetics began to include N2O species because their formation was found to be high 

during rich conditions [57].  Researchers started using both E-R and L-H mechanisms to explain 

the kinetics based on their oxygen and N2O investigations [55,57,58,61,65].  With the increasing 

emphasis on greenhouse gases, Cho et al. described a detailed kinetic mechanism with N2O as a 

reaction intermediate and proposed a modified L-H mechanism involving its formation [65,70].  

From their results, they suggest that N2O dissociation increases with an increase in temperature 

because of its higher activation energy.  

 Early in the 1990s, kinetics examination began based on dispersion, metal loadings, metal 

particle size and the catalyst face structure.  During an oxidation reaction, highly dispersed 

particles are less active than larger rhodium particles [67,69].  In addition, a loosely packed 

structure has the highest tendency for CO2 conversion [68].  It was also suggested that rhodium 

dispersion was insensitive to CO oxidation, but the NO dissociation rate was sensitive to particle 

size and dispersion [15].  Moreover, NO dissociation increases by an enlargement in the particle 

size [10] and open structures like Rh110 increase the production of nitrogen whereas closed face 

structures like Rh111 boost N2O formation due to its inhibition of NO dissociation [71,83].  

Furthermore, Belton et al. suggested a scheme for N2O formation by neglecting the traditional N2 

disproportional reaction [71].  Other researchers indicate that oxygen influences the selectivity of 

N2O and NO while NCO formation is instable at temperatures above 150K [41,74,77,83] .   

  Recent work targets accurate measuring techniques to study the NO turnover rate with 

respect to dispersion and metal loading.  This rate was found to increase with a decrease in 

dispersion and an increase in metal loading which corroborates the earlier results [10,17].  In- 

depth studies illustrate that NO dissociates easily over reduced rhodium particles which occurs in 
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the presence of CO [81].  In addition, experimental data show that N2O formation occurs only 

after NO dissociation while oxygen does not inhibit the NO reduction rate which validates earlier 

results [18,86].  In this decade, most researchers describe the reaction kinetics through an L-H 

mechanism by assuming negligible N2O production above a NO light-off temperature, and there 

is an increase in NO dissociation with more vacant rhodium sites [41,85,88,91,95].  As the price 

of rhodium rose exponentially, a comparative study was made which revealed that the formation 

of N2O and NH3 was lower as compared to platinum and palladium catalysts [19].  Moreover,  

N2O is a minor product compared to N2 because of the rapid decrease in N2O production after 

400K [16,92].  Recently, with the development of nano-technology, researchers found that 

rhodium nano-particles easily oxidize at low temperatures (around 473K) [93].  In addition, E-R 

mechanisms are still being considered with negligible N2O formation above the NO light-off 

temperature and more selectivity towards N2O under this temperature [20,93].  

2.3 DETAILED REACTION MECHANISM 

 Based on the analysis presented in the previous section, the author feel that NO reduction 

by CO over rhodium occurs via the following steps: 

 NO and CO Adsorption  

 NO Dissociation 

 N2O Formation and Dissociation  

 CO2 Formation 

 N2 Formation 

 In this mechanism, the formation of NCO is neglected because the detailed reaction 

mechanism described here is for operating temperature conditions of catalytic converters, and it 

is known from the history of the reaction mechanism that NCO is unstable above 150K over 
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Rh111 [80].  In addition, the adsorption of oxygen molecules is considered to be relatively small 

as compared to CO and NO adsorption, and the mechanism neglects its use [67,77,95]. 

Moreover, the formation of Rh(CO2) is not considered in the reaction mechanism since it reacts 

rapidly with chemisorbed oxygen atoms generated from NO dissociation [84]; also, diffusion of 

the reacting species over the surface is negligible [20].   

2.3.1 NO and CO Adsorption  

 The first step in the detailed reaction mechanism is the adsorption of the reacting species 

over rhodium. The sticking coefficients of the species NO and CO are found to be high and 

dependent on both temperature and composition [95].  The initial sticking coefficients of NO and 

CO were found to be 0.7 to 0.8 and 0.68, respectively [96,97].  Moreover, the sticking 

coefficients for both species increase with a decrease in coverage [41], and thus the coverage 

dependence on the reaction rate should be considered [71].  With an increase in temperature, 

there is also an increase in the sticking coefficient along with a decrease in the NO adsorption 

energy.  Concurrently, the sticking coefficient of CO decreases [95], suggesting that NO is more 

likely to adsorb rather than CO. Thus the first step towards the detailed reaction mechanism 

follows Eqns. (1) and (2).  

As for a bonding angle, researchers found that adsorbed NO frequently forms a bent 

structure (anionic) with weak NO bonds [49] while adsorbed CO is equally likely to form a 

linear or twin structure [41,59].  

2.3.2  NO Dissociation 

 The dissociation of NO is considered to be the second step in the reaction mechanism 

which follows Eqn. (8).  Adsorbed NO in its bent structure dissociates easily at temperatures 

above 450K at low coverages [54]. For compression ignition exhaust having low NO tailpipe 
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concentrations, this phenomenon is indeed true; however, NO may not dissociate on the surface 

under typical spark ignition exhaust conditions which contain a higher amount of NO and result 

in elevated coverages [54].  In this case, the dissociation characteristic changes with an increase 

in the temperature and vacant sites [90].  Because of the switching nature of this equation based 

on NO concentration, some authors consider this reaction the rate-limiting step [54].  In addition, 

researchers also believe NO dissociation is slow in spite of this low dissociation energy because 

of the high dispersion of rhodium over the alumina substrate, making it difficult for NO 

molecules to find vacant sites and dissociate [61,62,80,90,91]. 

2.3.3  N2O Formation and Dissociation  

 Researchers usually neglect the formation of N2O or include it via a separate pathway 

different from the detailed reaction mechanism.  After reviewing the previous work, the authors 

consider that it is reasonable to include N2O formation under the following conditions.  The 

formation of N2O occurs at temperatures around 400K which is below the NO light-off 

temperature.  The amount will increase with a rise in NO coverage because of the inhibition of 

the NO dissociation reaction [57,70,71,86,95].  Unlike Bustos et al. [85], the authors consider 

that N2O forms via an L-H mechanism as given in Eqn. (27) at high temperatures and there is no 

ready adsorption of N2O gas via an E-R mechanism because of its high adsorption energy as 

compared to NO and CO species. 

 Gas phase N2O is not an intermediate in NO-CO kinetics for the production of nitrogen, 

and N2O dissociates even at low temperatures of about 60K over a clean rhodium surface [97], 

serving as a precursor to the dissociative adsorption of N2O forming N2 and O atoms [76,98]. 

Moreover, the dissociation rate increases with a raise in temperature [70,92].  The authors 
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consider the dissociation reaction of N2O into nitrogen molecules and oxygen atoms because of 

the strong terminal bond of the oxygen with rhodium as provided in Eqn. (56). 

According to Oh et al., the N2O desorption rate is slow compared to the rate of N2O 

formation [61].  However, Byong et al. [70] consider the reversible desorption reaction with low 

desorption energy whereas other authors neglect the N2O desorption step and state that 

dissociation is relatively fast [18,61,65,92].  Since N2O formation can be found in the exhaust 

stream, the authors include this step but for lower temperatures.  Considering the fact that N2O 

desorption energy is less than the dissociation with respect to Byong et al. [70] and dissociation 

increases with an increase in temperature, the authors consider an additional reaction without 

subsequent readsorption of N2O molecules from the gas: 

61

2 2Rh N O Rh N O
k

    (61) 

These desorption and dissociation steps are still controversial when reviewing the history of N2O 

studies.     

2.3.4  CO2 Formation 

 The oxygen formed during the dissociation reactions of NO and N2O is considered stable 

on the surface, but in the presence of CO it reacts rapidly to form CO2 through an E-R 

mechanism [49,51,62] as presented in Eqn. (12). Furthermore, the authors consider that the 

intermediate CO Rh NO   forms at temperatures around 373K [20,49,52,59,66].  According to 

Hiromichi and Hiroo along with Na-Ranong et al., NO·Rh·CO formation occurs via the 

previously bonded CO or NO pathways [20,49]: 

62

CO Rh NO CO Rh NO
k

      (62) 

63

NO Rh CO CO Rh NO
k

    
 

(63) 
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The authors present both steps in spite of the higher sticking coefficient of NO, leading to a 

higher surface coverage of NO.   

Due to the strong attraction between CO and the weaker NO bond [49,51,62], they react 

to form CO2 as given in Eqn. (14). Since the dissociation of adsorbed CO is highly negligible due 

to its strong CO bond, the L-H mechanism for the formation of CO2 is not considered. The 

rhodium is reduced through the E-R mechanism to produce CO2, and in turn this reduced 

rhodium is highly effective for NO dissociation [84].  

2.3.5  N2 Formation 

 Nitrogen primarily forms through the recombination step of nitrogen atoms and the 

disproportional step.  The recombination of adsorbed nitrogen atoms as provided in Eqn. (9) can 

be considered as a rate-limiting step due to its low rate constant at temperatures below 400K 

[20]. In addition, its production kinetics were found to be high above 700K [95].  Apart from this 

recombination step, nitrogen can also form through the disproportional reaction of NO and N 

atoms through an L-H mechanism.  However, it is neglected here because no experimental 

evidence exists to warrant its inclusion [71,86] and this step is typically not indicated when 

incorporating the N2O formation step as in Eqn. (27).  Of note, according to Granger et al. 

[19,91], the consideration of this step is based upon the partial pressures of NO. Since nitrogen 

molecules are found to desorbs from 400K to 700K based on their coverage [73,80], they are 

rapidly released when formed under typical catalytic operating temperatures.  

2.4 GLOBAL RATE EXPRESSION 

 For completeness, this section presents two global kinetic mechanisms over Rh/Al2O3 as 

a function of the potentially different RDS depending on the concentrations of NO, CO and the 

temperature of the reacting species; NO dissociation and recombination of nitrogen atoms. 
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 The formulation of the first RDS mechanism starts with NO adsorption where the 

forward and reverse rate equations are:   

2 2 NO RhR k p   (64) 

-2 -2 Rh NOR k    (65) 

At equilibrium, the rates become equal: 

2 NO Rh -2 Rh NOk p k    (66) 

With the equilibrium constant in atm
-1

 defined as: 

NO 2 -2K k k  (67) 

The forward and reverse rate equations for CO adsorption are respectively: 

1 1 CO RhR k p   (68) 

-1 -1 Rh COR k    (69) 

Similarly, at equilibrium the following balance is generated: 

1 CO Rh -1 Rh COk p k    (70) 

where: 

CO 1 -1K k k  (71) 

Assuming that the dissociation reaction, Eqn. (8), only proceeds in the forward direction which 

results in: 

8 8 Rh NO RhR k    (72) 

If this is the RDS, a global reaction expression can be obtained from equating Eqns. (66) and 

(70) by solving for the associated coverage fractions of adsorbed NO and CO only. 

Rh NO NO NO RhK p    (73) 

Rh CO CO CO RhK p    (74) 

Substituting Eqn. (73) in Eqn. (72), 
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8

2

8 NO NO RhR k K p   (75) 

Using the fact that  Rh Rh NO Rh CO1       along with Eqns. (73) and (74), the coverage 

fraction for rhodium is found to be: 

 
Rh

CO CO NO NO

1

1 K p K p
 

 
 (76) 

Finally, by substituting Eqn. (76) into Eqn. (75) we obtain the following global reaction 

expression considering the dissociation of NO as the RDS: 

 
NO 8

8 NO NO

2

CO CO NO NO1

k K p
R R

K p K p
 

 
 (77) 

Where 8k is the rate constant in molm
-2

s
-1

 for the NO dissociation step with NOp and COp  the 

partial pressures of NO and CO species respectively. The expression derived above is similar to 

the expression developed by Granger et al. along with Dubois et al. [55,91]. 

 If the RDS is the recombination of nitrogen atoms at low temperatures as previous 

researchers have considered [18,99], the rate expression obtained is determined from the forward 

rate expression and the surface coverage via Eqn. (9): 

9

2

9 Rh NR k    (78) 

with an activation energy between 108 and 128 kJ/mol.  The overall rhodium coverage in the 

general case is equal to: 

History illustrates that oxygen does not disturb N2 production kinetics; instead, it rapidly 

forms into CO2 under the presence of CO [61,77].  In addition, the coverage factor of N2O over 

rhodium can be neglected due to its fast decomposition and desorption kinetics.  Moreover, the 

aforementioned history illustrates that the conversion of the intermediate CO Rh NO   into CO2 

is relatively fast and, therefore, its coverage factor can be neglected from the expression (79).   

2Rh Rh NO Rh CO NO Rh CO Rh N Rh N O Rh O 1                      (79) 
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These calculations result in a simplified expression for the surface coverage which is in 

similar to vacant site expression of Araya and Cortes [100], excluding the factor for oxygen 

coverage: 

Rh Rh NO Rh CO Rh N 1          (80) 

 Incorporating the adsorption steps (1) and (2), the coverage fraction can be simplified 

into just Rh and Rh·N fractions: 

Rh NO NO Rh CO CO Rh Rh N 1K p K p         (81) 

Solving for the Rh·N fraction results in: 

 Rh N NO NO CO CO Rh1 1K p K p       (82) 

and the following for the rate expression in molm
-2

s
-1

 as a function of Rh coverage: 

 9

2

9 NO NO CO CO Rh1 1R k K p K p        (83) 

2.5 CONCLUSION 

 This chapter illustrates a comprehensive review of NO reduction by CO over rhodium.  

The author found that the adsorption of NO is greater than the adsorption of  

CO with a negligible self-inhibiting property due to the associated species coverage.  Moreover, 

NO adsorbed species over rhodium frequently form an anionic or bent structure which is more 

suitable for NO dissociation due to their weak NO bonds.  Based on the research performed, the 

author believe that the reaction mechanism follows the five fundamental steps given below: NO 

and CO Adsorption; NO Dissociation; N2O Formation and Dissociation; CO2 Formation; and N2 

Formation.  The proposed detailed reaction mechanism from the analysis suggests a combination 

of Langmuir-Hinshelwood and Eley-Rideal mechanisms. In particular, CO oxidation follows an 

E-R mechanism at high temperatures and rich conditions.  In addition, CO2 conversion is high at 
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temperatures below 500K, and conversion is slow at higher temperatures and rich NO 

conditions.  The reduction reaction of NO follows the L-H mechanism with the recombination of 

nitrogen atoms, and the dissociation of NO is considered to be the rate-limiting steps. The 

formation of N2O and their corresponding decomposition is still under research, but from past 

studies, it is understood that the formation of N2O occurs at low temperatures and at high NO 

pressures. Thus, in order to minimize N2O formation, it is necessary to preheat the rhodium 

catalysts.  

 Furthermore, it is observed that the catalytic activity of rhodium metal to dissociate NO 

molecules decreases with an increase in dispersion or a decrease in rhodium size over an alumina 

substrate. Research is still required to finalize these effects and to choose the reaction mechanism 

that works best under realistic catalytic converter conditions. In the next chapter, similar analysis 

is carried out on platinum catalysts with appropriate global mechanisms.  
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CHAPTER 3 

REDUCTION REACTION OF NITRIC OXIDE BY CARBON 

MONOXIDE OVER PLATINUM/ALUMINA CATALYSTS
†
 

 

3.0  INTRODUCTION 

  Internal combustion engines produce harmful exhaust gases like carbon monoxide (CO), 

nitrogen oxides (NOx), hydrocarbons (HC) and particulate matter (PM) due to incomplete 

combustion and high temperature dissociation of fuels.  While exhaust gas concentrations of NO 

and CO for a typical four-stroke spark ignition engine range only between 100-4000 ppm 

depending upon the driving conditions, temperature and air/fuel ratio [1,2], they are a major 

concern for global air pollution as given in Figure 9 and account for around 57.6% and 38.3% of 

the total emissions for CO and NOx respectively [3,101,102].  Because of the inability to remove 

these emissions completely using in-cylinder combustion techniques, engine manufacturers 

result to using catalytic exhaust aftertreatment devices as a preferred method to control their 

release into the atmosphere. 

 In the last two decades, emission regulations for automobile exhaust has become 

increasingly stringent and led to many studies on the reduction of nitric oxide over noble metal 

catalysts such as platinum, palladium and rhodium [35,40].  Since exhaust from spark ignition 

engines produces sufficient carbon monoxide under stoichiometric conditions, the NO-CO 

reaction over these noble metal catalysts plays an important role for effective NOx reduction. In 

particular, researchers have investigated this reaction from both theoretical and experimental 

viewpoints and a significant amount of literature exists on this topic. 

                                                           
†
 This chapter has been submitted to Surface Reviews and Letters Journal. 
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Figure 9: Total emissions of NOx worldwide from 1990 to 2000 [102]. 

 

 In this work, the author restrict a review of this research to platinum-alumina (Pt/Al2O3) 

catalysts to supplement rhodium-alumina (Rh/Al2O3) efforts documented in an earlier paper [32].  

Similar to rhodium, the optimization of platinum metal loading over alumina substrate is very 

important due to the cost involved into the manufacturing of catalytic converters as given in 

Figure 10 [34].  With respect to platinum, research documents that this catalytic material 

effectively promotes the NO-CO reaction based on knowledge of platinum structures.  

Throughout these papers, researchers propose detailed reaction mechanisms based on the 

platinum surface orientation, kinetic oscillations and pressure conditions.  In the recap of these 

efforts, the completed work presented here investigates this reaction mechanism in the absence 

of other species, such as hydrogen and hydrocarbons, in order to provide a clear focus of efforts.   
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Figure 10: Historical prices of platinum per ounce based on yearly average from 1960-2010 in US dollars 

(plot reproduced based on the data provided) [34]. 

 

The outcome of this research is the formulation of a detailed kinetic mechanism that 

relies heavily on the previous research to indicate the main steps in the process.  From this, the 

authors create a global kinetic mechanism that will simulate this reaction better than the current 

versions utilized in aftertreatment modeling literature [23]. 

3.1  REACTION HISTORY 

  In 1973, Unland became the first researcher to investigate the interaction of NO and CO over 

Pt/Al2O3 using infrared (IR) spectroscopy [103].  His results illustrate that the mechanism occurs via the 

following pathway with the inclusion of isocyanate (NCO) as a reaction intermediate:  

82NO Pt Pt N Pt O
k

      (84) 

83Pt N CO Pt NCO
k

     (85) 

84

2Pt O CO CO Pt
k

     (86) 

85

2 2Pt NCO NO N CO Pt
k

      (87) 
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His efforts also document that that the dissociation of NO occurs at temperature higher than 

300K. 

 In the following year, Kobylinksi and Taylor study the reduction of nitric oxide over 

platinum group catalysts and find that the reaction rate for Pt is lower than compared to rhodium 

(Rh) and ruthenium (Ru) due to the hindrance caused by the adsorbed CO molecules [104].  

Moreover, they find the production of significant ammonia, approximately 77.6%, over Pt until 

reaching 1033K.   

 Concurrent to these efforts, Lambert and Comrie determine, from Auger 

spectroscopy and flash desorption experiments, that CO and NO adsorb non-dissociatively over 

Pt [105].  Above 300K, thermal dissociation of NO over Pt occurs and any dissociated 

monatomic oxygen reacts rapidly with adsorbed CO molecules.  They establish that N2 and CO2 

are the main products of the reaction kinetics with small amounts of nitrous oxide (N2O) and O2 

produced and find no evidence for nitrogen dioxide (NO2) and isocyanate formation.  Their 

reasoning for the negligible formation of NO2 and isocyanate is due to their relatively high 

activation energies when compared to that of the formation of CO2 from monatomic oxygen.  As 

a result, they propose the following reaction kinetics pathway: 

86

86

CO Pt Pt CO 
k

k
   (88) 

87

87

NO Pt Pt NO
k

k
   (89) 

88Pt NO Pt Pt N Pt O
k

       (90) 

89

2Pt CO Pt O CO 2Pt
k

      (91) 

90

22Pt N N 2Pt
k

    (92) 

91

2Pt N Pt NO N O 2Pt
k

      (93) 
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92

2Pt O Pt O 2Pt O
k

      (94) 

 Two years later, Niiyama et al. investigate the formation of isocyanate over Pt surfaces 

using IR spectroscopy [106].  Their results show that isocyanate complexes form above 573K 

with a decline in rate for formation when the partial pressure of NO increases.  The formation of 

NCO species acts as an inhibitor and not as a reaction intermediate in the NO-CO kinetics. 

Moreover, under practical conditions NCO readily forms ammonia when reacting with water. 

 In the following year, Solymosi et al. looked into the interaction of NO-CO species and 

their formation of isocyanate complexes over 5% Pt/Al2O3 using thermal decomposition and IR 

spectroscopic measurements with the temperature ranging between 298 and 673K [107].  They 

suggest that reduced platinum sites play an important role by factoring in the adsorption and 

dissociation of NO species.  In particular, adsorbed NO species usually bond to platinum in 

linear form.  Moreover, they indicate that at high temperatures the Eley-Rideal (E-R) mechanism 

between CO and adsorbed NO is responsible for isocyanate formation.  Besides clean Pt111 and 

Pt100 catalysts, Pt/Al2O3 demonstrates no evidence for the formation of isocyanate complexes.  

This results in a reaction mechanism that follows Eqns. (85), (88), (89), (90), (91) and (92).  

They follow this effort by studying the influence of the support materials on the formation of 

isocyanate over Pt using infrared spectroscopy [108].  Their efforts show that the stability and 

formation of isocyanate species depends upon the substrate metal.  Experimental results 

demonstrate that dissociated nitrogen atoms migrate from platinum catalyst to alumina and react 

with gaseous or adsorbed CO to yield isocyanate species.  Moreover, isocyanate formed over 

Al2O3 is relatively unstable as compared to MgO and SiO2 support materials. 

In 1979, Chang and Hegedus investigate the influence of inhibitors in the reduction of 

NO by CO [109].  From their IR and integral reactor experimental results, chemisorbed CO at 
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richer than stoichiometric conditions and dissociatively chemisorbed oxygen at lean conditions 

act as inhibitors for the NO-CO reaction.  They reason that the high conversion rates for NO and 

CO molecules at a stoichiometric feed ratio occur because of sufficient oxygen to control the 

inhibition caused by CO, but not too much to act as an inhibitor for the reaction.  Hence, the 

formation of species on the surface serves to indicate the stoichiometric range.  In the next year, 

Hegedus et al. investigate Pt/Al2O3 when exposed to NO, CO and O2 at 1051K [110].  They find 

an increase in cyclic frequency augments the conversion rates of CO and NO molecules. 

Moreover, they find that the formation of isocyanate requires at least two surface species; e.g., its 

formation follows a Langmuir-Hinshelwood (L-H) mechanism between the adsorbed NO and 

CO species. 

 In 1980, Singh-Boparai and King characterize the NO-CO reactions over Pt100 at 300K 

and ultrahigh vacuum (UHV) conditions using a molecular beam technique [111].  From their 

experimental results, they determine that L-H kinetics between adsorbed CO and NO do not 

apply for this reaction because experiments occurring under two different conditions provided 

different results.  In particular, the first experiment between pre-absorbed NO and gaseous CO 

proceeds via an L-H mechanism to produce N2 and CO2.  Whereas, when CO is pre-adsorbed, 

the reaction does not complete until termination of the NO beam indicating that it does not 

follow the same pathway. 

 In the following year, Gorte and Schmidt study the interaction of NO and CO over Pt111 

using temperature programmed desorption [112].  Under UHV conditions, the reaction between 

NO and CO does not occur to a measurable extent until it reaches the desorption temperature of 

NO which ranges from 250 – 350K.  They determine that the sticking coefficient of CO is 

independent of CO, NO coverage, and the sticking coefficient of NO follows similarly but it 
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sharply reduces near CO saturation.  Moreover, the co-adsorption of CO affects the NO 

desorption temperature by lowering it around 100K; whereas, the co-adsorption of NO does not 

influence CO desorption temperature due to its strong bond to the platinum surface. 

Two years later, Banholzer and Masel research the adsorption characteristics of NO and 

CO on Pt100 with reflection-adsorption infrared spectroscopy (RAIRS) [113].  Their results show 

clear evidence for strong chemical interactions between NO and CO over this surface.  These 

efforts demonstrate an autocatalytic behavior of the species; i.e., surface explosion of the N2 and 

CO2 products were produced at a narrow peak temperature above 450K (later supported by 

Lesley and Schmidt [114]).  Moreover, they discover that adsorbed CO does not form an 

impenetrable island over Pt100 and this supports the adsorption of NO over these islands in the 

form of bridged structure.  

 In 1985, Lesley and Schmidt demonstrate the autocatalytic behavior of the reduction 

reaction of NO by CO over Pt100 using temperature programmed desorption (TPD), low energy 

electron diffraction (LEED) and isothermal desorption mass spectrometry measurements [114].  

From the TPD spectra for the NO-CO reaction, N2 and CO2 desorb instantaneously at 410K and 

are virtually independent of the coverage fractions up to 10
-6

 torr.  They determine that as the 

partial pressure of the reactants increases, the peak temperature of the products increases 

considerably and this trend suggests that first or second order rate expressions cannot describe 

the reaction kinetics.  Various factors cause the autocatalytic behavior, which is known as an 

abrupt change in the reaction rate; two of which are the formation of CO islands over Pt with 

strong attraction between CO molecules [112] and the decrease in the activation energy with the 

corresponding decrease in coverage due to the interaction between adsorbents [115].  However, 

the above factors do not have a greater influence on the reaction rate due to their insufficient and 
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inconsistent experimental evidence.  Moreover, they propose a possible reaction mechanism 

satisfying the trends of production peaks and suggest that the dissociation of NO atoms is the 

slowest step while the formation of CO2 from L-H mechanism is instantaneous.  Their reaction 

mechanism follows Eqns. (88), (89), (90), (91), (92) and the following reaction with the 

formation of reactive intermediate species or structural changes in the platinum catalyst 

promoting the autocatalytic mechanism.  

93Pt N Pt NO 2Pt N Pt O 
k

        (95) 

One year later, Schwartz and Schmidt review their experimental results and describe that 

the NO-CO reaction over clean Pt100 or on polycrystalline Pt can exhibit oscillations at all 

pressures between 10
-8 

and 1 torr [116].  They determine this to be due to the change in the 

surface phase transition from hexagonal to a square (11) surface.  Concurrently, Muraki and 

Fujitani provide a broad view on the reduction of NO by CO over platinum group metals (PGM) 

supported by α-Al2O3 under cyclic feed streams [117].  The catalytic activity of platinum in the 

NO reduction is the least among platinum group metals because of its susceptibility to CO self-

poisoning. Moreover, the formation of N2O is the highest when compared to Rh, Pd and Ru.   

In 1988, Matyshak investigated the kinetics of NO-CO under lean conditions and 

proposed a reaction mechanism that follows Eqns. (88), (89), (90), (91), (92) with the subsequent 

additions [118]: 

94Pt N Pt CO Pt NCO Pt
k

       (96) 

95

2 2Pt NCO Pt NO N Pt CO Pt
k

        (97) 

96

2 2Pt CO  CO Pt
k

    (98) 

It is shown that the formation of nitrogen reaction through the adsorbed isocyanate is included at 

low temperature conditions of about 400K.  
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 At the same time, Schwartz and Schimdt continue their investigation of NO-CO 

oscillations over Pt100 under steady state conditions using LEED measurements [119].  They 

conclude that the reaction rate of CO and O2 is ten times lower than NO and CO at UHV 

conditions.  Moreover, they establish that the dissociation of NO increases with an increase in 

temperature above 450K.  They state that the oscillatory behavior of the reaction occurs due to 

the surface phase transition from 11 to a hexagonal surface that does not strongly absorb CO or 

NO molecules.   

 In 1989, Banse et al. investigate transient NO-CO kinetics over a polycrystalline platinum 

surface [120].  Their study involves two possible mechanisms (both L-H and E-R) and the 

corresponding rate law equations for transient conditions.  Based on their observations, they 

propose that the reaction to CO2 proceeds through an L-H mechanism.  Their efforts demonstrate 

that the dissociative mechanism of NO is responsible for the production of monatomic oxygen 

atoms on the surface, which in turn produces CO2.  As a result, they theorize that the reaction 

mechanism follows Eqns. (88), (89), (90), (91) and (92). 

 In 1991, Fink et al. propose a mechanism for the NO-CO reaction over Pt100 [121].  Their 

reaction mechanism considers the dissociation of NO as the rate-determining step with five 

individual steps as follows:  

 Under high CO partial pressures, CO molecules poison the Pt surface due to their low 

adsorption enthalpy and eventual desorption of the molecules yields vacant sites. 

 As the temperature increases, CO forms CO2 and this creates vacant sites for NO 

dissociation that in turn produces N2 leading to a 'surface explosion' of CO2 and N2 

occurring at 390K. 
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 Any NO adsorbed on clean Pt sites dissociates and the corresponding atomic nitrogen 

produced desorbs rapidly as N2 through a recombination step leading to an increase 

the oxygen coverage that eventually hinders NO dissociation. 

 Due to the previous step, adsorption of NO and monatomic oxygen molecules 

increases. 

 Adsorbed CO removes surface oxygen in order to produce CO2 that ultimately 

regenerates mixed NO+CO adsorbed sites.  

Their reaction mechanism follows Eqns. (88), (89), (90), (91) and (92) with the requirement of at 

least three Pt sites.  

 Concurrently, Yaldram and Khan study the reaction kinetics using Monte Carlo 

simulations over square and hexagonal surfaces of a Pt catalyst [122].  Their reaction mechanism 

follows Eqns. (88), (89), (90), (91) and (92) with the dissociation of NO being the rate 

determining step while also including a higher CO affinity during adsorption.  They observe that 

the reactivity of the surface oxygen from NO dissociation is somewhat less when compared to 

the reactivity of the surface oxygen from the dissociated oxygen.  One year later, Fink et al. look 

into the oscillatory characteristics of the products over Pt100 under isothermal conditions at low 

pressures of 10
-6

 mbar using bifurcation theory [123].  Their results collaborate with their earlier 

efforts by following a similar reaction mechanism as proposed above with Eqns. (88), (89), (90), 

(91) and (92) and the dissociation of NO considered the rate-determining step.  They formulate 

differential equations for CO, NO and O coverage factors with equations for empty sites and the 

repulsive interactions of CO-NO chemisorbed molecules.  The resultant numerical integration of 

the differential equations yields the kinetic oscillations of the reaction that in turn substantiates 

the proposed reaction mechanism. 
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 In 1992, Scharpf and Benziger investigate the adsorption-desorption characteristics of 

NO and CO molecules [124].  They conclude that the sticking probability of CO species is nearly 

constant from 430 to 490K and therefore consider it temperature independent.  Desorption of CO 

is found to be high above 450K and the presence of NO molecules over Pt is directly 

proportional to desorption of the CO molecules.  Their theorized reaction mechanism follows 

Eqns. (88), (89), (90), (91) and (92) while additionally including: 
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2Pt NO Pt CO Pt N CO Pt
k

        (99) 

They postulate that this bimolecular reaction step, Eqn. (99), is the rate limiting step as their data 

correlates well with previous findings by Klein et al. [125].  Moreover, their experimental data 

shows inconsistency towards the commonly assumed rate-determining step of NO dissociation. 

 At the same time, Uchida et al. examine the structural changes due to the influence of 

explosive reactions of NO-CO using reflection electron microscopy (REM) under 10
-6

 Torr of 

chamber pressure [126].  They discern that the transition between 11 and hex phase of the Pt100 

crystal structure occurs because of adsorption of CO and NO molecules.  Whereas, a Pt111 flat 

surface is insensitive to the NO-CO reaction.  Based on their experiments, they determine that 

Pt100 is likely to be more active than Pt111 for NO reduction.  Concurrently, Veser and Imbihl 

scrutinize the spatial pattern formation in the NO-CO reaction using photoemission electron 

microscopy (PEEM) under 10
-6

 torr and temperature ranging between 380 and 430K [127].  

They conclude that the Pt100 and Pt310 surfaces are highly active for NO dissociation and propose 

a reaction mechanism similar to others that follows Eqns. (88), (89), (90), (91) and (92). 

            Two years later, David uses molecular beam studies to examine the oscillatory behavior 

of the reaction over Pt100 [128].  From their studies under high CO-NO coverage at temperatures 

ranging from 380 to 410K, they determine NO dissociation to be the rate-determining step.  



60 

 

Their proposed reaction mechanism is of L-H type that again follows Eqns. (88), (89), (90), (91) 

and (92).  Their experiments show that as the temperature increases, so does the density of empty 

sites available for dissociation and their sustained oscillations. 

 In 1994, Evans et al. analyze lattice-gas models over a Pt100 surface [129].  They suggest 

the common reaction mechanism following Eqns. (88), (89), (90), (91) and (92) with the 

requirement of two empty sites for the adsorption species and neglecting their diffusion between 

sites.  They conclude that adsorbed NO instantaneously dissociates in order to create nitrogen 

atoms that detach immediately when nitrogen forms.  Moreover, adjacent CO and O atoms 

instantaneously react to produce CO2.  Concurrently, Zagatta et al. examine the products of the 

reaction over Pt100 using temperature programmed reaction methods [130].  They find that the 

major reaction products are N2 and CO2 along with the formation of small amounts of N2O. 

Furthermore, they observe that a part of the oxygen produced from dissociation reaction of NO 

does not react with CO and instead remains adsorbed on the Pt site.  

 In tandem, Vesser and Imbihl probe the oscillatory characteristics of the reaction over 

Pt100 at 10
-6

 mbar using PEEM [131].  At a partial pressure ratio of NO and CO ranging from 0.8 

to 1.9 and at low temperatures below 405 K, they observe unsynchronized oscillations with the 

indication of high sensitivity towards NO-CO reaction under small microscopic defects in the 

structure.   

 In the following year, Graham and Kevrekidis investigate concentration patterns using 

the Karhunen-Loeve (KL) decomposition method in order to provide a clear recognition of the 

visual arrangement [132].  They state that this method clarifies the surface dynamics even with 

small surface defects over Pt and can strongly modify the local reactivity in the NO-CO 

mechanism. The details about the structural aspects of the platinum were mostly irrelevant to this 
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review and considered to be beyond the scope of this research.  Meanwhile, Svoronos et al. 

explore a different perspective of the kinetics based upon the preparation conditions of the 

catalyst [133].  Their TPD measurements under steady state conditions indicate that the catalytic 

activity of the acid treated catalysts were higher (up to five times the magnitude) than those 

prepared under basic conditions.  Therefore, the results indicate that impregnated pH will 

influence metal dispersion and the reaction activity of the catalysts. 

 In 1996, Mergler and Nieuwenhuys investigate the reaction over 0.4% wt of Pt/Al2O3 

under reducing conditions [134].  They find that the deactivation of the catalyst occurs without 

any oscillations under reducing conditions at 673K.  This happens because of the accumulation 

of strongly adsorbed CO molecules that reduce the number of vacant sites required for NO 

dissociation.  They discover that the dispersion of the Pt catalysts over alumina allows for a 

relatively easily oxidation due to the preferential dissociation step of oxygen molecules.  Thus, 

adsorbed CO molecules are relatively inert until 673K under oxidizing conditions.  Furthermore, 

they conclude that isocyanate does not form over Pt/Al2O3.  In the same year, Sadhankar and 

Lynch investigate reaction transient characteristics using an external recycle reactor [135].  

Based on their experiments, they propose a reaction mechanism that follows Eqns. (88), (89), 

(90), (91), (92), (93)  and the following while including negligible internal diffusion: 

98

2 2N O Pt N Pt O 
k

     (100) 

They find that their model corroborates well with the previous works with respect to the CO 

conversion; i.e., the decrease in CO conversion is proportional to the increase in CO surface 

coverage. 

One year later, Sadhankar and Lynch follow up their efforts by investigating the reaction 

under steady state conditions with the temperature ranging from 465 to 520K [136].  They utilize 
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the same reaction mechanism and observe the formation of N2O under high NO partial pressures 

with a selectivity decreasing rapidly corresponding to an increase in NO conversion.  Moreover, 

they find a relatively strong inhibition by CO molecules.  At the same time, Miners et al. suggest 

a technique to determine the phase relationship of CO and NO adsorption bands over Pt100 based 

on their partial pressures in the low temperature region ranging from 380 to 411K [137].  This 

technique involves measuring real time infrared data from an oscillatory reaction system.  They 

find that their experimental method correlates well with the Fink et al. [123] results that describe 

the driving factor of oscillations is a surface explosion.  This phenomenon reduces the surface 

coverage of the CO and NO molecules, which subsequently increases the vacant sites for NO 

dissociation. 

In 1998, Granger et al. develop reaction kinetics at 573K with CO and NO partial 

pressures ranging from 1.510
-3

 to 910
-3

 atm [138].  Their experimental studies reveal that the 

nature of the support material determines the adsorption and dissociation rate constants of the 

reaction.  Their kinetic mechanism follows Eqns. (88), (89), (90), (91), (92), (93) and the 

following:  

99

2Pt N Pt NO N Pt O Pt
k

        (101) 

They discern that the apparent activation energy for CO, NO and N2O are 19, 22 and 27 kcal 

mol
-1

 respectively following the order of Pt/Al2O3 < Pt/Si3N4 < Pt/Cr3C2.  Moreover, the 

selectivity of N2O is higher for Pt/Al2O3 due to a lower activation energy as compared to 

Pt/Si3N4 and Pt/Cr3C2.  Their reaction mechanism assumes the rapid non-dissociative adsorptions 

of CO and NO with the dissociation of NO species on the nearest vacant Pt site.  This 

mechanism utilizes three Pt sites by considering the dissociation of NO molecule as the rate-

determining step with the corresponding rate expression given below: 
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Where, KCO and KNO are the adsorption equilibrium constants of CO and NO respectively. 

 In the next year, Frank and Renken were among the first to study the reaction kinetics 

involving the formation of N2O over a MoO3 supported Pt/Al2O3 catalyst [139].  Their proposed 

reaction mechanism is of the L-H type following Eqns. (88), (89), (90), (91) and (92) with NO 

dissociation being the rate determining step.  They state that the rate of N2O formation decreases 

above 673K with a relatively slow deactivation of the catalyst observed under reducing 

conditions.  In this case, they refer to deactivation as the cause for reduction in the NO 

conversion rate.  Moreover, a relatively low activity occurs in the deactivated state due to the 

strong adsorption of CO over Pt and, hence, is not due to the presence of isocyanates that only 

act to delay the deactivation state.  

 Miners et al. investigating the kinetics of the reaction and propose favorable conditions 

for the formation of NCO over Pt100 using Infrared Reflection Absorption Spectroscopy (IRAS) 

under non-oscillatory conditions [140].  They discover that the CO molecules have a higher 

enthalpy of adsorption over NO and as a result, CO absorbs first creating an initial poisoning 

over the Pt100 surface.  As the temperature increases to 415K, adsorbed CO molecules form CO2 

that in turn provide sites for NO molecular adsorption.  Their theorized reaction mechanism 

follows Eqns. (88), (89), (90), (91), (92) and (96) with rapid desorption of N2 and CO2 molecules 

from the surface.  They suggest that NCO formation becomes favorable at low temperatures 

around 380K when the surface is covered with significant CO molecules and low concentration 

of N atoms.  A high coverage of CO molecules, therefore, hinders the diffusion of monatomic 
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nitrogen atoms resulting in the production of NCO.  Moreover, they mention that dissociation of 

NCO occurs above 396K following: 

101Pt NCO Pt Pt CO Pt N 
k

       (103) 

Under rich combustion, relatively high CO coverages reduce the diffusion of N-atoms, even at 

high temperatures of about 453K. 

 In the same year, Takeshima et al. suggest a new method for preparing catalysts using 

micro-emulsion (ME) techniques [141].  Based on their experimental results, they show that 

anisotropic platinum catalysts have relatively low NO conversion and low N2 selectivity due to 

their low activity for NO dissociation.  Whereas, Pt catalysts prepared using the ME method 

demonstrate high NO conversion with high N2 selectivity even at temperatures above 613K.  

Concurrently, Granger et al. extend their earlier efforts by proposing a kinetic mechanism for the 

intermediate N2O with CO [142].  They express that the CO and N2O reaction occurs more 

readily on Pt rather than on Rh and the decomposition of N2O is very slow; conversion is around 

6% even at 773K.  Their efforts reveal that the dissociation of adsorbed N2O over Pt is the rate-

determining step in this reaction.  

In this same year, Aida et al. research the influence of intra-pellet diffusion and 

adsorption of the species along a plug flow reactor [143].  Their model calculations on the time-

averaged conversion of NO species suggest that the effect of this diffusion requires consideration 

for strong adsorption under periodic operations.  Meanwhile, Akama and Matsushita discuss the 

progress in NOx reducing catalysts for spark ignition and compression ignition engines [144].  

They suggest that a platinum catalyst allows for effective reduction of NOx at low temperatures 

ranging from 523 to 573K; however, the formation of N2O is relatively high at these respective 

temperatures. 
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With advancement in crystal technology, in the next year Hartmann et al. investigate 

pattern formation of the NO-CO reaction over a Pt100 surface by changing crystal surface size 

and geometry [145]. They employ photoelectron emission microscopy (PEEM) in creating 

different patterns such as circles, rings and dumbbells that correspond to various size and 

geometry of the Pt100 sites.  These Pt100 sites show significant differences in their NO-CO 

reaction rate based on their respective patterns. Thus, this is one of their techniques to find the 

change in reaction rate based on the Pt100 domains. At the same time, Miners and Gardner 

scrutinize the oscillatory behavior of the reaction kinetics over the same surface at a partial 

pressure of 10
-7

 mbar [140].  From their LEED and IRAS studies, they find that reaction rates 

and oscillations are relatively high when the surface is in the hex phase.  Moreover, they discover 

that their surface should be a defective hex site i.e.: the platinum sites with square and hex phase 

for efficient NO dissociation. 

In 2001, Bourane et al. describe the adsorption of NO molecules on a reduced catalyst 

using Fourier Transform Infrared (FTIR) spectroscopy at temperatures ranging from 300 to 680K 

[146].  They observe two types of linear adsorbed NO species that correspond to defect and 

terrace sites of Pt.  They identify linear NO species at 1764 and 1710 cm
-1

 infrared bands and 

consider that these adsorbed species are immobile with the heat of adsorption having a linear 

trend with surface coverage.  Based on their assumptions, they formulate an expression relating 

coverage and heat of adsorption of the species as follows: 

0

1

1
ln

1

u a a

a

R T K p

H K p


 
  
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Where, ΔH is the difference in the heat of adsorption at coverage, θ = θ(E0) and θ = θ(E1), K0 and 

K1 are the adsorption coefficients at θ = 0 and θ = 1, respectively; and Ta and pa are the 

adsorption temperature and pressure respectively.  From their analytical results, they determine 
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the heat of adsorption of linear NO species to have a linear trend with Ea0 = 135 kJ mol
-1

 at zero 

coverage to Ea1 = 105 kJ mol
-1

 at full coverage.  Moreover, they state that NO dissociates over 

the catalyst at temperatures greater than 400K. 

 Concurrently, Ikeda et al. explore the thermal stability characteristics of Pt particles 

prepared by different methods and examine their corresponding catalytic activity [147].  They 

determine that pressed micro-emulsion Pt catalysts have the highest NO conversion rate and 

greatest resistance towards sintering even after a thermal treatment at 973K as compared to sol-

gel and impregnation prepared catalysts.  At the same time, Granger et al. re-consider the 

kinetics of the reaction using IR spectroscopy [148].  Their revised reaction mechanism then 

follows Eqns. (88), (89), (90), (91), (92) and (101).  They additionally make mention of different 

states at which NO is adsorbed over Pt. It is observed that neutral NO species were predominant 

over Pt/Al2O3 which indicates weaker NO adsorption and a slower dissociation of NO species.  

 Their studies reveal a higher probability towards strong CO adsorption with a weaker NO 

adsorption and corresponding slow rate of NO dissociation.  Similar to rhodium, NO species 

demonstrate the ability to have positive, neutral and negatively charged adsorption species 

dependent upon the oxidation state of Pt sites. 

 In 2002, Na-Ranong et al. explore the reaction kinetics at 423K under periodic and steady 

state conditions [149].  Based on the slope of their logarithmic plots under steady state 

conditions, they determine that the reaction order is 0.9 and -0.7 with respect to NO and CO 

concentrations.  The negative reaction order for CO occurs because of strong CO adsorption over 

Pt.  Their proposed reaction kinetics follows an L-H mechanism that neglects the NO 

dissociation step because of findings from their low temperature experiments.  As a result, their 

reaction mechanism includes Eqns. (88), (89), (90), (91), (92) and (105). 
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with the global reaction rates of NO described as: 
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Where 
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Here, 'KNO' and 'KCO' are in s
-1

 and 'α' in 'mol m
-3

s
-1

'. In Eqn. (106), the numerator 

corresponds to the elimination of NO molecules through Eqns (93) and (105) and the 

denominator corresponds to the Pt vacant sites.  Furthermore, they illustrate that the selectivity 

towards nitrogen increases as the concentration of CO species increases and present this 

selectivity as: 
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Concurrently, Zhdanov employs the first Monte Carlo simulations of the kinetic 

oscillations that occur in the catalytic reaction over Pt100 [150].  This results in a proposed 

reaction mechanism that follows Eqns. (88), (89), (90), (91), (92) and (93) while including a 

consideration of diffusion of the adsorbed CO and NO molecules over Pt for the effective 

dissociation of NO.  In addition to this work, Zhdanov utilized Monte Carlo simulations to 

examine experiments conducted under UHV conditions with temperatures ranging from 400 to 

500 K [151].  This ends in the proposition of the same reaction mechanism with kinetic 

oscillations depending upon the NO dissociation step at temperatures below 430K. 

  In 2003, Yubing and Shoujia document a mathematical model at high NO pressures over 

Pt/Al2O3 catalyst [152].  They determine that the dissociation of NO dominates at low pressures; 
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whereas, at high NO pressures, the bimolecular reaction between CO and NO is the rate-

determining step.  Their detailed L-H reaction mechanism follows Eqns. (88), (89), (92), (93) 

and (105) with the corresponding production rates of CO2 and N2 equal to: 
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During this same year, Matsushima et al. investigate desorption dynamics of the 

explosive NO-CO reaction over Pt100 using thermal desorption and time-of-flight techniques 

[153].  Their investigation ends in the commonly proposed reaction mechanism following Eqns. 

(88), (89), (90), (91) and (92).  They determine that the L-H reaction between adsorbed CO and 

adsorbed O atoms occurs rapidly at 400K and the recombination of nitrogen atoms is the only 

step possible to produce nitrogen because of the lack of experimental evidence for the other 

nitrogen formation steps.  They find the peak of desorption for CO2 and N2 species occurs in a 

narrow range of temperature between 360 and 400K.  Moreover, they find the formation of N2O 

and its decomposition occurs even at 140K over a Pt112 surface.   

Meanwhile, Rienks et al. spend the year examining the reaction over Pt100 using 

synchrotron X-ray photoelectron spectroscopy under 10
-7

 mbar of total pressure [154].  Again, 

the same reaction mechanism is proposed through Eqns. (88), (89), (90), (91) and (92) while 

additionally considering the reconstruction of the Pt structure during the clean state; i.e., the 

phase transition from hexagonal state to square (1×1) phase. Moreover, they consider the square 

phase to be active for NO dissociation.  Based on their experimental results, they postulate that 

NO dissociates rapidly and thus it is not the rate-determining step.  Instead, they consider the 
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removal of adsorbed monatomic oxygen and monatomic nitrogen from the dissociation reaction 

the rate-determining step. 

 In the following year, Zhdanov simulates the kinetic oscillations in the reaction using 

Monte Carlo methods while varying the lattice size of the Pt catalysts down to the nanometer 

scale [21].  The reaction mechanism considered for simulation follows Eqns. (88), (89), (90), 

(91) and (92) with rapid formation of N2 indicating low N-atoms coverage.  He finds that the 

kinetics of the nanometer-sized catalyst lattice indicates irregular kinetic oscillations as 

compared to that of uniform lattices.  At the same time, Makeev and Kevrekidis investigate the 

kinetics over Pt100 using coarse grained bifurcation analysis with a resulting reaction mechanism 

following Eqns. (88), (89), (90), (91) and (92) [155]. Miners et al. examined the same metal 

looking at the coverage dependency of the molecules in the low temperature oscillatory region 

[156].  They suggest that adsorbed CO molecules occur atop; i.e., CO molecules top the Pt site 

and create bridged structures while exhibiting identical adsorption and reaction behaviors. 

Moreover, the oscillatory characteristics that result corroborate Fink et al.’s earlier model [121]. 

 In 2005, Alas et al. propose a relatively new reaction mechanism over Pt100 by replacing 

the classical recombination step of nitrogen atoms with an N-NO intermediate step while 

additionally neglecting the formation of N2O [157].  Moreover, they disregard the diffusion and 

desorption of oxygen atoms.  They deem this intermediate step responsible for the formation of 

gaseous nitrogen but they do not find any experimental data available for its rate of formation 

and subsequent decay.  Their proposed mechanism follows Eqns. (88), (89), (90), (91) and two 

new reactions: 
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k

     (112) 

Meanwhile, Horino and Matsushima study the angular and velocity distributions of the 

desorbing products like N2 and CO2 over Pt100 [158].  From their experimental results during a 

steady-state reaction, they discover that the reaction rate increases around 400K due to an 

increase in desorption of CO, further allowing vacant sites for NO dissociation.  Moreover, the 

structural transformation from 1×1 to hex occurs during the explosive desorption of the products 

leading to a faster recombination step of nitrogen atoms. 

 In the next year, Alas and Zgrablich investigate oscillations and pattern formation over 

Pt100 crystals at low pressure conditions around 0.4×10
-5

 Pa [159].  They state that sustained 

oscillations are formed when NO and CO diffusion rates are relatively high and linear.  This 

higher rate of NO diffusion causes an increase in the vacant sites and augments the rate of 

dissociation of NO.  Their experimental oscillatory studies reveal that the diffusion of both 

species, NO and CO molecules, requires consideration when determining the appropriate 

reaction rate for the mechanism. 

 In 2006, Bianchi and Derrouiche examine the effect of oxidation on CO species due to 

the adsorption of NO molecules over 2.9 wt% Pt/Al2O3 utilizing FTIR and mass spectrometer 

(MS) experiments [160].  They illustrate that CO and NO adsorbs through linear and bridged 

type molecules with the linear bond being the strongest.  Furthermore, they determine that the 

adsorbed N-species from NO dissociation inhibits CO oxidation and the oxidation of CO species 

involves an L-H mechanism to form CO2.  Their micro-kinetic studies reveal that CO is favored 

during adsorption under competitive CO-NO chemisorptions at 300K.  Experiments demonstrate 

that linear CO bonds are stronger than bridged CO structures and NO does not displace linear 

CO species but it can dissociate over free Pt sites that form during the desorption of bridged CO.  
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These resulting adsorbed N atoms do not desorbs easily; experimentally corroborated by their 

higher binding energies (>3.9 eV) than that of adsorbed NO (>1.3 eV) and adsorbed oxygen 

(>3.2 eV).   

Concurrently, Liu et al. scrutinize the influence of surface impurities on the oscillations 

of the reaction mechanism over Pt100 [161].  Their efforts demonstrate that an increase in 

impurities shifts regular sustained oscillations into a damped oscillation regime.  Moreover, 

global sustained oscillations appear when diffusion rates of NO and CO molecules increases. 

In the following year, Mantri et al. propose a small change to the reaction mechanism 

under atmospheric pressures by taking into account the formation of N2O [162].  Their 

elementary steps follow Eqns. (88), (89), (90), (91), (92) with two additional reactions:  

111

2Pt N Pt NO Pt N O Pt
k

       (113) 
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2 2Pt N O N O Pt
k

    (114) 

In their mechanism, they consider the dissociation of NO the rate-determining step.  According 

to their findings, N2O concentrations are higher than N2 at temperatures around 603K; however, 

this phenomenon sharply decreases as temperature rises.  Under atmospheric conditions, strong 

competition for the catalyst sites results in oscillations (bifurcations) over Pt111; whereas, under 

UHV conditions, Pt111 does not demonstrate any oscillations due to the relatively low activity of 

NO dissociation.  

 Mantri and Aghalayam follow this paper with a second effort in order to provide detailed 

results in the reduction of NO based on the influence of temperature, coverage and surface area 

[22].  Their reaction mechanism follows Eqns. (87), (88), (89), (90), (91), (92), (113) and (114) 

with the dissociation step of NO considered the rate-determining step.  They observe that the 

formation of nitrogen occurs through the recombination of nitrogen atoms, and the formation of 
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N2O happens through Eqn. (113).  Their detailed study on surface coverage suggests the 

following phenomenon: 

i. At temperatures less than 523K, the Pt catalyst is saturated with CO molecules 

making the catalyst relatively inert and resulting in low conversion rates of NO and 

CO. 

ii. At temperatures between 553 and 623K, the abundant presence of adsorbed NO and 

N atoms lead to the formation of N2O through an L-H mechanism. 

iii. At temperatures higher than 643K, most of the adsorbed NO dissociates which in 

turn leads to less N2O production. 

iv. At temperatures higher than 673K, the dissociated NO rapidly forms N2 and 

simultaneously CO rapidly forms CO2 leading to a lower oxygen coverage and 

reduced state of the Pt catalyst at all ranges.  

From their comparative studies with Rh catalysts, they determine that the activation energy for 

the dissociation of adsorbed NO molecules over Rh is lower than that of Pt making rhodium a 

better catalyst for NO conversion at low temperatures while additionally leading to less N2O 

production.  Moreover, they illustrate that at temperatures above 300K, an increase in surface 

area and residence time will increase the conversion activity of adsorbed NO.  

  Two years later, in an extension to their previous work, Alas and Vicente scrutinize the 

surface explosion phenomenon under low pressures about 10
-6

 to 10
-4

 Pa and 300 to 550K 

temperature conditions using temperature programmed reaction (TPR) experiments [163].  They 

state that co-adsorbed NO and CO species inhibit the dissociation of NO; however, dissociation 

improves under the presence of empty sites and adsorbed N atoms at the nearest site.  Within this 

temperature range, they discover that adsorbed NO and CO molecules react to form narrow CO2 
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and N2 production peaks for a short period of time also known as surface explosion.  Under the 

presence of CO and NO diffusion, the TPR spectra shifts towards lower temperatures indicating 

the production of CO2 and N2 occurs between 400 and 410K.  Moreover, due to the mobility of 

the NO and CO species, the probability for NO dissociation is relatively high.  This explosive 

phenomenon shifts towards the lower temperature region; i.e., from 422 to 402K, as the diffusion 

rate increases from zero to 30s
-1

.  Therefore, they indicate that the diffusion properties of CO and 

NO molecules are important with respect to the explosive phenomenon. 

3.2  REACTION HISTORY SUMMARY 

 Research began for the NO and CO reaction over a platinum washcoat with alumina 

support in the early 1970s [103,164].  These early efforts focused on the kinetics of the reaction 

and the stable formation of isocyanate and ammonia species [103,104].  During this time, 

investigators began including relative studies of the platinum catalysts in comparison to other 

PGMs, like rhodium and ruthenium.  They determined that platinum is comparatively less 

reactive than rhodium and ruthenium [104].  Moreover, adsorption profile experiments of CO 

and NO molecules during this decade provided information about their relative bond strength 

with platinum [104,105,164].  The physical properties and bond strength of the adsorbed species 

provided vital information for the initiation of detailed reaction mechanisms.  Based on their 

experiments, researchers initially believed that the reaction kinetics follow a Langmuir-

Hinshelwood type mechanism following the Eqns. (85), (88), (89), (90), (91), (92), and (93) with 

stable NCO formation.  They additional believed that the isocyanate species acts as a reaction 

inhibitor [105-107].  Later researchers discovered that isocyanate species formed over Al2O3 

substrates were unstable when compared to MgO and SiO2 substrates [108].  Moreover, the 
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literature demonstrates that adsorbed oxygen under lean conditions and adsorbed CO molecules 

during rich conditions can inhibit the reaction mechanism [109]. 

 In the early 1980s, researchers began to explore the reaction kinetics with respect to 

emission regulations.  Comprehensive detailed kinetic mechanisms were proposed utilizing a 

clear insight into the adsorption profiles of NO and CO molecules [111,112].  As discussed 

earlier, these reaction mechanisms were based on the relatively strong adsorption of CO with 

strong chemical interactions between adsorbed NO and CO [112,113].  In the mid 1980's, the 

autocatalytic behavior of the reduction reaction included the discussion of surface explosion of 

the products occurring around 400K [114].  Concurrently, researchers began including the 

influence of structural changes in the platinum catalyst in their L-H reaction mechanism 

[114,116,125].  They determined that the reaction proceeds with the dissociation of NO as the 

rate-determining step with its rate increasing above 450K [118-120].  Moreover, NO and CO 

mechanisms began to include the decomposition of isocyanates under lean conditions depending 

on the structure of platinum [118,119].  

 When the 1990s began, researchers were examining the kinetics based on oscillations in 

the reaction and the face structure of platinum catalytic material [121-123,126,129].  These 

oscillations occur due to the surface transition between square (1×1) and hexagonal faces of the 

Pt catalyst.  They find that a detailed mechanism consisting of Eqns. (88), (89), (90), (91) and 

(92) agrees well with these oscillatory characteristics [122,123,126-129].  Moreover, during this 

time, the literature examined the bimolecular reaction based on adsorption and desorption 

characteristics [124,139] with open surface Pt100 catalysts found to be more active with respect to 

NO dissociation [127].  Later in this decade, the focus shifted to oscillations under reduction and 

oxidation conditions and observations indicated that strongly adsorbed CO molecules deactivate 



75 

 

the catalyst under reducing conditions [132,134]. With an increasing emphasis on greenhouse 

gases, Sadhankar and Lynch [136] described a detailed kinetic mechanism with N2O as a 

reaction intermediate based on their transient experimental results [136,138].  They suggest that 

N2O formation increases with an increase in NO partial pressures and decreases rapidly with an 

increase in NO conversion [136,138,144].  Findings in the literature additionally document that 

formation of N2O is high in the temperature range of 523 to 573K, but decreases drastically 

above 673K [139,144].  Since cold start engine tests have a large impact on emission regulations, 

researchers around this time found in necessary to investigate emissions at low temperatures 

[165].  As a result, they theorize that NCO becomes favorable around 380K at high CO partial 

pressures, but it dissociates rapidly above 400K through Eqn. (93) [165].  Additional 

advancements in catalyst preparation techniques found that pressed platinum catalysts prepared 

by micro-emulsion methods have high NO conversion characteristics and a high thermal 

resistance towards sintering [141,147].   

 Recent work targets accurate measuring techniques to study the NO turnover rate with 

respect to their adsorption bands, structural changes and dispersion [145,146,156].  NO 

molecules adsorb in a linear form, and CO molecules occur in linear and bridged structures with 

the linear bonds stronger than the bridged structures [156,160].  Researchers additionally 

illustrate that NO adsorption energy increases with an increase in coverage [146].  Most 

researchers support the L-H mechanism proposed in the 1990s with considerable N2O formation 

and strong CO adsorption as characteristics of the model [22,148-151,153,160].  They find that 

the rate of formation of CO2 increases above 400K and the recombination of nitrogen atoms is 

the only step for nitrogen formation because of the lack of experimental evidences for other 

nitrogen formation steps [158].  Moreover, the rate of NO dissociation varies with the respect to 
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the structure of platinum i.e., NO dissociation is rapid over square phase platinum structures 

[21,154,158].  In-depth studies on detailed mechanisms provide slightly different reaction steps 

for nitrogen formation [159] and oscillatory studies reveal that the diffusion of NO and CO 

molecules are important for characterizing a precise detailed mechanism along with the 

explosive phenomenon [159,162,163]. 

3.3  DETAILED REACTION MECHANISM 

 Based on the analysis presented, the author feel that NO reduction by CO over 

platinum/aluminum surface occurs via the following steps:   

  NO and CO Adsorption 

  NO Dissociation 

  CO2 Formation 

  N2O Formation 

  N2 Formation 

 In this mechanism, the formation of NCO occurs rapidly at high NO partial pressures but 

it decomposes at real time operating temperature conditions for catalytic converter and so, the 

detailed reaction mechanism do not consider NCO formation and its subsequent decomposition.  

It is known from the history of the reaction mechanism that NCO is unstable over Pt/Al2O3 

[105,107,134] and Pt100 [108].  Moreover, the adsorption of oxygen molecules is relatively small 

as compared to CO and NO adsorption, and the mechanism neglects its use because of its rapid 

formation to form CO2 from monatomic oxygen [105,148,150,157].  Finally, the formation of 

PtNO2 [105,148,153], bimolecular steps [139,153] and the diffusion of the reacting species [146] 

over the surface are negligible in this reaction mechanism.  
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3.3.1  NO and CO Adsorption 

 The first step in the detailed reaction mechanism is the adsorption of the reacting species 

NO and CO over the platinum surface.  Researchers find that NO and CO adsorb non-

dissociatively [105] and the sticking coefficients of the species are relatively high and 

independent on both temperature [124] and coverage [112].  However, the sticking coefficient 

and desorption temperature of adsorbed NO is slightly influenced by the strong adsorption of the 

CO molecules [124].  These CO molecules act as an inhibitor due to their low adsorption 

enthalpy [109,112,114,139,148,162,165].  Thus, the accumulation of adsorbed CO tends to 

reduce the number of vacant sites for NO dissociation [118,121,122,134,160].  Unlike NO 

molecules, the desorption temperature of CO is independent of partial pressures and has higher 

desorption temperature above 450K when compared to NO [134,158].  Moreover, CO molecules 

do not form an impenetrable island over Pt catalysts [112-114] and, therefore, NO molecules 

adsorb even during rich conditions through bridged CO structures.  In addition, it is found that 

the NO adsorption occurs over reduced Pt sites [107].  The literature illustrates a negative 

reaction order of CO concentration [149] due to strong adsorption and suggests that CO is more 

likely to adsorb than NO over Pt surface.  Thus, the first two steps towards the detailed reaction 

mechanism follow Eqns. (88) and (89) respectively. As for a bonding angle, researchers 

determined that adsorbed CO frequently forms linearly atop and bridged structures [156,160] 

while adsorbed NO is equally likely to form a linear or bridged structure [107,146,148,156,157]. 

3.3.2  NO Dissociation 

 Dissociation of NO via Eqn. (90) is the second step in the reaction mechanism with 

adsorbed NO molecules dissociating relatively easily at temperatures above 400K 

[103,105,119,146,151].  The historical review indicates that the dissociation of NO depends 
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upon the concentration of CO molecules and this attribute differentiates the platinum catalysts 

apart other PGMs.  In this case, these characteristics change with the increase in the temperature, 

vacant sites and the desorption temperature above 450K of the CO molecules [124,134].  In 

addition, researchers find that NO dissociation is slow in spite of this low dissociation energy 

because of the high dispersion of platinum over the alumina substrate.  This makes it difficult for 

NO molecules to find vacant sites among the strongly adsorbed CO molecules and dissociate 

above 400K.  Thus, similar to others, the authors believe that the NO dissociation step is the rate-

determining step [122,134,148]. 

3.3.3  CO2 Formation 

 Oxygen formed during the dissociation reaction of NO is considered stable over the 

surface, but in the presence of CO it reacts rapidly to form CO2 above 400K via Eqn. (91) 

[22,108,148,160]. The formation of CO2 leads to an increase in NO adsorption and NO 

dissociation respectively.  Since dissociation of adsorbed CO is highly negligible due to the 

strong bond between the C and O atoms, the L-H mechanism for the formation of CO2 through 

the dissociated oxygen from CO is not considered.  Platinum is reduced during the L-H 

mechanism that produces CO2, and, in turn, this reduced platinum is highly effective for NO 

dissociation i.e., the adsorbed oxygen over platinum reacts with the adsorbed CO through L-H 

mechanism and thus reduces the platinum site due to the lack of oxygen [108]. 

3.3.4  N2O formation 

 The historical summary indicates to the author that it is reasonable to include N2O 

formation under the following conditions.  N2O occurs at temperatures under 400K which is 

below the NO light-off temperature [139].  The amount of N2O will increase with a rise in NO 

coverage because of the inhibition of the NO dissociation reaction, and the formation of N2O 
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decreases with an increase in the NO conversion [135,136,138].  N2O will form via an L-H 

mechanism through Eqn. (93) in the temperature range between 250 and 350K. The literature 

illustrates that there is no ready adsorption of N2O gas because of its high adsorption energy as 

compared to that of NO and CO species.  Thus, there is always a small amount of N2O formation 

at the outlet during the NO and CO reaction over Pt catalysts.  Moreover, the literature suggests 

the formation of N2O happens only through the dissociation reaction and not through a 

bimolecular reaction of adsorbed NO and CO molecules [139].  Unlike rhodium catalysts, N2O 

dissociation occurs slowly over platinum, and it is experientially shown that the decomposition 

of N2O is very slow and less than six percent even at 773K over Pt/Al2O3 [142].  Moreover, gas 

phase N2O is not an intermediate in the NO and CO reactions kinetics during the production of 

nitrogen.  However, the author note that desorption and dissociation steps are still controversial 

when reviewing the history of N2O studies.     

3.3.5  N2 formation 

 Nitrogen primarily forms through the recombination step of nitrogen atoms as indicated 

by Eqn. (92) [105,107,114,120,121,123,135,138,148].  Moreover, its formation is significantly 

high above 673K.  Apart from this recombination step, nitrogen can also form through the 

disproportional reaction of NO and N atoms through an L-H mechanism.  However, the author 

neglect this option because no experimental evidence exists to warrant its inclusion [153] and 

this step is typically not indicated when incorporating the N2O formation step as in Eqn. (93).  

Since nitrogen molecules desorbed in the temperature range between 400 and 700K based on 

their coverage, they rapidly release when formed under typical catalytic operating temperatures. 

Now, let us derive the global rate expression based on the detailed reaction steps.  
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3.4 GLOBAL RATE EXPRESSION 

 For completeness, this section presents the global kinetic mechanism of the NO and CO 

reaction over Pt/Al2O3 as a function of the rate-determining step (RDS) depending on relative 

concentrations of NO and CO. Moreover, this section includes a theorized N2O global kinetic 

mechanism based on the historical review.  

 The formulation of the mechanism begins with inlet of CO, NO and inert gas streams. In 

which, CO adsorption occurs first due to the affinity and their corresponding forward and reverse 

rate equations are given below respectively: 

86 86 CO PtR k p   (115) 

-86 -86 Pt COR k    (116) 

Under equilibrium, the rates become equal: 

86 CO Pt -86 Pt COk p k    (117) 

with the equilibrium constant in atm
-1

 defined as: 

CO 86 -86K k k  (118) 

The forward and reverse rate equations for NO adsorption are respectively: 

87 87 NO PtR k p   (119) 

-87 -87 Pt NOR k    (120) 

Similarly, at equilibrium the following balance is generated: 

87 NO Pt -87 Pt NOk p k    (121) 

where KNO in atm
-1

:  

NO 87 -87K k k  (122) 

Assuming that the dissociation reaction, Eqn. (90) proceeds only in the forward direction, the 

corresponding reaction rate is: 
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88 88 Pt NO PtR k    (123) 

As the literature suggests, utilizing this reaction as the RDS, a global reaction expression in 

terms of molm
-2

s
-1

 is obtained by equating Eqns. (119) and (122) through solving for the 

associated coverage fractions of adsorbed CO and NO only: 

Pt CO CO CO PtK p    (124) 

Pt NO NO NO PtK p    (125) 

Substituting Eqn. (125) in Eqn. (123), 

2
88 88 NO NO PtR k K p   (126) 

 

Since there is a rapid formation of CO2 from adsorbed CO and adsorbed oxygen atoms above 

400K; the amount of oxygen coverage over Pt is negligible and so, the amount of vacant sites is 

given by: 

 Pt Pt NO Pt CO1       (127) 

 

Substituting Eqns. (124) and (125), the coverage fraction for platinum is found to be: 

 
Pt

CO CO NO NO

1

1 K p K p
 

 
 (128) 

Finally, by substituting Eqn. (128) into Eqn. (126) the author obtain the following global reaction 

expression considering the dissociation of NO as the RDS: 

 
88 NO NO

NO 88
2

CO CO NO NO1

k K p
R R

K p K p
 

 
 (129) 

where, k88 is found to be the rate constant for NO dissociation step in terms of molm
-2

s
-1

 with pNO 

and pCO the partial pressures of the NO and CO species respectively.  This expression is similar 

to the reaction rate developed by Granger et al. [138] and it can be used for competitive 

adsorptions of NO and CO.   
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As indicated in the previous section, the bimolecular step of the adsorbed CO and NO 

molecules through Eqn. (99) does not influence this detailed mechanism.  Hence, the authors 

neglect this reaction step in the reaction mechanism and the formation of CO2 from adsorbed CO 

and oxygen atom is rapid.  Therefore, the dependence of CO pressures is negligible in the global 

rate expression for the rate-determining step.  

 Because of potential need to predict N2O production for future emission regulations, the 

author include here a global expression for the formation of N2O over Pt/Al2O3 catalyst based on 

the detailed reaction mechanism.  The historical review indicates that the formation of N2O 

occurs at high NO pressures/lean conditions and at temperatures less than 400K.  Since the N2O 

formation temperature is lower than the NO light-off temperature, the formation of nitrogen 

through Eqn. (92) is neglected for finding the global expression. Considering high NO pressures 

and negligible N2O re-adsorption, only the forward reaction rate is important in the 

corresponding N2O detailed step: 

91 91 Pt NO Pt NR k     (130) 

Here, the platinum vacant site (θPt) is given by: 

 Pt Pt NO Pt CO Pt N Pt O1             (131) 

The above equation Eqn. (131) contains nitrogen and oxygen atom coverage factors 

added to the previous platinum vacant site Eqn.(127) and this is due to the high NO pressures 

and low temperatures conditions. The formation of CO2 and N2 is found to be negligible below 

400K and hence, it becomes important to calculate the coverage factor of nitrogen and oxygen 

atoms over Pt. Moreover, the endothermic reaction for formation of NO2 from adsorbed oxygen 

atom and adsorbed NO is found to occur above 475K [166-168]; the formation of NO2 is not 

considered in finding the global reaction mechanism. 
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 The coverage factors Pt N  and Pt O   can be calculated by applying a quasi-steady-state 

approximation to the nitrogen and oxygen adsorbed species respectively:  

Pt N

88 Pt NO Pt 91 Pt NO Pt N Pt N = 0
d

k k
dt


    

       (132) 

Pt O

88 Pt NO Pt Pt O = 0
d

k
dt


  

    (133) 

The last term in the Eqns. (132) and (133) corresponds to the non-reactive adsorbed nitrogen and 

oxygen atoms over the Pt surface.  Eqns. (125) and (132) allow for obtaining the coverage 

fractions: 

88 Pt NO Pt

Pt N

91 Pt NO

 = 
1

k

k

 








 (134) 

Pt O 88 Pt NO Pt = k     (135) 

Substituting Eqns. (134) and (135) into Eqn. (131) and using Eqns. (124) and (125) yields:  

Pt

88 NO NO
CO CO NO NO 88 NO NO

91 NO NO

1

1
1

k K p
K p K p k K p

k K p

 
 
    

 

 
(136) 

Now, Eqns. (127) and (136) are substituted in Eqn. (132) to give the rate expression for the 

formation of N2O in terms of molm
-2

s
-1 

is: 

 

 

2

88 91 NO NO Pt
91

91 NO NO Pt1

k k K p
R

k K p






  
(137) 

where, θPt is given by the Eqn.(136) and 88k  is in molm
-2

s
-1

 and 91k  is dimensionless. 

 The above expression for the formation of the N2O considers the effect of oxygen and 

carbon monoxide coverage factor and neglects the recombination step as it occurs above 600K. 

This gives the global rate expression for the formation of N2O over Pt/Al2O3 in the NO reduction 

mechanism. 
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3.5  CONCLUSION 

 This paper provides a comprehensive review of NO reduction by CO over a platinum 

washcoat with alumina substrate.  The authors find that the adsorption of CO is greater than the 

adsorption of NO over Pt with a relatively high self-inhibiting property of CO molecules under 

high CO concentrations. A thorough historical examination illustrates that the reaction 

mechanism follows five fundamental steps: (I) CO and NO Adsorption; (II) NO Dissociation; 

(III) CO2 Formation; (IV) N2O Formation; and (V) N2 Formation.  A proposed detailed reaction 

mechanism from this analysis suggests that the reaction proceeds via a Langmuir-Hinshelwood 

pathway unlike rhodium catalysts that follow both an L-H and Eley-Rideal mechanism.  History 

indicates that NO dissociation is the rate-determining step because of its dispersion over the 

alumina substrate.  The creation of N2O in the mechanism is still under research, but from past 

studies, researchers believe that the formation of N2O occurs at low temperatures and at high NO 

pressures.  Furthermore, the literature demonstrates that the catalytic activity of the platinum 

metal in dissociation of NO molecules decreases with an increase in dispersion or a decrease in 

platinum size over an alumina substrate.  Research is still required to finalize these effects under 

realistic catalytic converter conditions.  

 In the next Chapter, the fundamental knowledge gained through detailed reaction 

mechanisms and global rate expressions are utilized in the modeling of packed bed reactor.  
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CHAPTER 4 

ONE-DIMENSIONAL PSEUDO-HOMOGENEOUS PACKED BED 

MODELING 

 

4.0 HISTORY OF PSEUDO-HOMOGENEOUS CHEMICAL SPECIES EQUATION 

 It is important to understand the fundamentals of the pseudo-homogenous one-

dimensional model in order to formulate the chemical species equation.  When the packed bed 

under study does not have a significant length in the radial direction, for instance: less than 2 cm 

in the radial direction with 6 cm in axial direction, simplification allows modeling in one-

dimension to be sufficient.  In addition, since the flow through the packed bed is often relatively 

small in comparison to the speed of sound (Ma « 0.3), modelers can often assume dynamic 

incompressibility to further simplify the governing equations [30].  As a result, only the species 

and energy equations require solving.  If the pressure drop is deemed to be important, 

experimental results indicate that the Ergun equation [169], derived from the conservation of 

momentum, accurately models this phenomenon over the packed bed reactor.  The pseudo-

homogeneous incorporation comes into the model by coalescing the properties of the solid 

(pellets) and fluid (exhaust gas) into a single governing equation while assuming a negligible 

pressure drop.  This allows one equation each for the governing equations of species and energy, 

instead of the requirement of modeling both the solid and fluid phases independently as typically 

seen in monolithic converter simulations.  The assumption of uniform catalyst pellet exterior 

further simplifies the task to omit the requirement of including catalyst characterization in the 

model [170].  This section presents a history of the development of the pseudo-homogeneous 
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model for the chemical species equation.  A following section will document the energy 

equation. 

 Taylor in 1953 and Aris in 1956 [171,172] describe a lumped pseudo-homogeneous 

model for the species equation when the transverse diffusion time is much smaller than the 

advection time with axial mixing.  They find that the molecules move at an average axial 

velocity similar to the plug flow model, but some degree of mixing is always present e.g., some 

molecules may move faster or slower than the average velocity.  Moreover, this axial mixing 

results from the random velocity fluctuations of molecules travelling in the reactor that they 

reason as the degree of mixing of fluids due to the molecular diffusion.  Due to this effect, they 

include a dispersion term and referred to as the dispersed plug flow model.  This model gives a 

similar solution to the two-dimensional advection-diffusion equation when replacing the 

diffusion coefficient of the plug flow model with the dispersion coefficient. 

2

2

eff

s Iu
t x x

  
  

  

C C C
D R

 

(138) 

In this equation, the indicated concentration of the species is the mean or volume-averaged 

concentration which combines the different phases that changes as a function of time, while 

advecting through the mixture as indicated on the left hand side of the equation.  The first term 

on the right-hand side includes an effective dispersion (not diffusion) coefficient and the last 

term on this side incorporates the reactions occurring on the surface.  

 In 1965, McGuire and Leon [173] analyzed the stability of a packed-bed reactor and 

present a lumped model for the species and energy equations with the chemical reactions 

happening on the surface of the pellets: 
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2

eff

t x

 

 
 

C C
D R

 

(139) 

They include a porosity term, , in front of the time-change of species to incorporate the space 

within the packed-bed particles; hence, this model requires consideration of the porosity of the 

interface.  Furthermore, they write the reaction rate expression as a function of the surface 

composition and temperature.    

 In 1972, Harned [13] investigates the performance of packed-bed catalytic converters 

using a one-dimensional flow model and assumes negligible flow diffusion effects.  To provide 

consistency, model nomenclature conversion occurs here for comparison purposes: 

su
x





 



X R

 
(140) 

Instead of modeling the concentration of the species, Harned uses mole fractions that provide the 

same results since the assumption of dynamic incompressibility is inferred [174].  Harned's work 

explains that for automotive type converters, the time-change of species term in the governing 

equation is small and does not significantly influence the model solution.  Moreover, this work 

calculates the mass and heat transfer coefficients using Wicke's model [175].   

 Harned mentions that there are three distinct catalytic reaction regimes based on an 

increase in temperature from warm-up to 700
o
C.  The first regime is when reaction rates are low 

and the diffusion flux is insignificant.  The second regime is when there is an increase in 

diffusion flux represented by an increase in the pore diffusion and the effectiveness factor 

reduces gradually with pore diffusion controlling the regime.  The last regime involves the 

diffusion flux governing the reaction rate through boundary layer from the bulk gas stream and 

thus extra pellet diffusion governs the reaction.  In this region, the chemical reaction zone is 

restricted to a small portion of the bead volume near the external pellet surface.  Harned 
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considers the reaction occurring to be of a first order dependency regardless of the intrinsic 

kinetics of the species. These findings provide information for the formulation of an 

effectiveness factor and diffusivity based on the regime.  However, the analysis of these regimes 

and their formulation is beyond the scope of this paper’s research. 

 In the same year, Eigenberger [176] proposed a heterogeneous model that this paper 

combines for consistency by merging both solid and fluid phases into the following pseudo-

homogeneous model. 

s cau G
t x


 

  
 

C C
R  (141) 

Eigenberger assumes that heat conduction only takes place in the catalyst phase and suggests that 

the model reduces down to a few solutions for steady state conditions. 

 Two years later, Ferguson and Finlayson [27] study the mathematical models of 

automobile packed bed reactors for the reduction of nitric oxide over various catalysts.  They 

compare the models under the regulated Federal Test Procedure as follows: 

i.  Quasi-static – In this model, all the processes are steady-state except for the solid 

temperature and inlet conditions.  Furthermore, the temperature is constant throughout 

the catalyst with only a temperature change at the boundary.  This approximation 

recognizes that thermal response of the packed bed catalytic material governs the time 

response of the system.  They suggest utilizing the Quasi-static model for small time-

steps resulting in reasonable computational time limited only by the desired accuracy. 

ii.  Simple – They obtain this model by simplifying the quasi-static model through 

reducing the diffusion and reaction components into a first order isothermal reaction 



89 

 

i.e., the reaction takes place at a constant temperature.  This results in an analytical 

calculation of outlet concentrations.  

iii.  Fully dynamic – This simulates all of the equations considering transient conditions and 

leads to a set of numerically stiff ordinary differential equations.  It increases 

computational time and limits the time step used in the dynamic model by stability. 

They proposed a heterogeneous model considering radial effects and it has been 

modified based on pseudo-homogeneous assumptions: 

2

2

eff

s cau G
t x x


  

  
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C C C
D R  (142) 

 In 1980, Robertson [177] describes a model of the packed bed catalytic converter that 

predicts the temperature distribution and converter efficiency during catalyst warm-up.  This 

one-dimensional species equation considers concentration of the chemical species from the 

exhaust gas to the surface of the pellets with the reaction at the surface of the pellets: 

s cau G
x


 



C
R  (143) 

The above equation uses a quasi-static assumption neglecting transient terms because the 

dominant time-dependent behavior is the relatively large heat capacity of the catalyst's pellets.  

This model additionally neglects intrapellet diffusion.  

 Concurrently, Oh and Cavendish [178] develop a one-dimensional model of a spherical 

catalyst pellet in contrast to modeling axial flow through a bed of pellets as given below: 

   
2

2

2 2

1 eff

car r r G
t r r r


   

  
   

C C
D R

     

(144) 

In this model, the porosity and diffusion values change as a function of the radial direction 

through the pellet.  The computations based on their model show the influence of catalyst design 
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parameters and converter operating conditions on the light-off behavior of the catalyst pellets.  

They find that low pellet density and high exhaust gas flow rates favor a lower temperature light-

off conversion.  Moreover, a decrease in effective diffusivity in the pellets has a trade-off 

between high and low catalyst activities with respect to warm-up temperatures.  Their results 

indicate that the reaction rate through a single pellet can change radially before warm-up 

temperatures; whereas, the temperature profile becomes relatively flat above its reaction 

temperature.  This illustrates the reasonable assumption of uniform pellet temperature in 

modeling packed bed catalytic converters. 

 A few years later in 1982, Wakao and Kaguei [25] investigate the heat and mass transfer 

of packed bed reactors in detail and model the species equation with the reaction rate constant 

modeled as a first order irreversible catalytic reaction under isothermal conditions: 

2

2
0eff

s I cau G
x x 

 
  

 

C C R
D  (145) 

This model utilizes a dispersion coefficient suggesting that it depends on molecular diffusivity in 

fluid phase, effective diffusivity in the solid pellet and additionally on the chemical reaction of 

the particles.  They determine that the dispersion coefficient is twenty times larger than the fluid 

molecular diffusivity for a packed bed undergoing fast chemical reactions; whereas, the 

dispersion coefficient is one quarter the value of the molecular diffusivity. 

 In 2000, Winterberg et al. [7] demonstrates that the quasi-homogeneous, one-phase 

model provides good accuracy in modeling packed bed reactors with chemical reactions.  They 

modify the species equation to neglect variation in bed porosity, radial thermal conductivity and 

radial mass dispersion:  



91 

 

2

2

eff

I s ca

s

u G
t x x




  
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X X X R
D  (146) 

Again, this work indicates the use of an axial dispersion coefficient instead of diffusion constant.  

 Recent work by Younis investigates the flow of hydrogen and air through a packed bed 

reactor considering the flow to be laminar, unsteady, one-dimensional and adiabatic [179].  

Moreover, Younis assumes that the thermal properties of the pellets such as the density specific 

heat and porosity are uniform and constant.  In addition, the mathematical model includes both a 

gas phase and catalytic surface species equation, simplified into the following: 

  2

2

s eff ca

s

u G

t x x 

 
  
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Y RWY Y
D  (147) 

 Research in modeling packed bed reactors started in the late 1960s with the focus mainly 

on finding the tortuosity, diffusion and thermal conductivity coefficients as illustrated in a 

following section [180-185].  As computational technology improved, researchers developed 

detailed chemical species equations to include radial effects with more nonlinearity factors 

[13,27,178,186,187] . This shifted into a trade-off between accuracy, with respect to varying 

concentrations and temperatures, and computational efficiency.  Researchers find that the 

pseudo-homogeneous model with the inclusion of advection and an effective diffusion 

coefficient provides a good approximation of the flow pattern [25,179,188]. Moreover, the 

presence of concentration gradients and variations in velocity of molecules through packed bed 

induces mixing in the radial direction.  When modeling mixing, researchers utilize a dispersion 

term in the pseudo-homogeneous species equation instead of an effective diffusion coefficient 

[7,25,171,172,189-191].  A subsequent section illustrates the possible options for either a 

dispersion or effective diffusion term; whereas, the next section derives the pseudo-

homogeneous chemical species equation from first principles. 
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4.1  CHEMICAL SPECIES EQUATION 

One method of modeling a packed bed reactor system is to model the fluid flowing in the 

interstitial space and the gas at the surface of the catalyst independently.   For the gas flowing 

through the packed bed, the governing equation of chemical species in one-dimensional, 

compressible format is: 

   s s s s s eff s
s s p

u
n

t x x x

 
    

    
   

    

X X X
D   (148) 

where the first term on the left hand side describes the time-change of species within the 

interstitial space and the second term represents the advection of the species in the pores.  Since 

the pore structure involves relatively small areas, diffusion effects become important and need to 

be included as shown in the first term on the right hand side of the equation.  The history of this 

model illustrates the use of an effective diffusion vector for the species; a description will follow 

for this term later in this paper.  The last term on the right hand side accounts for the mass 

transfer of species between the gas and the surface of the packed bed catalytic material (this term 

is well known in the one-dimensional monolithic catalyst modeling community [192]).  It is 

included here in a non-descriptive manner, as it will not play a role in the final version of the 

pseudo-homogeneous chemical species governing equation.  Of importance, this equation 

includes a void fraction or porosity term, since it involves only the gas in the interstitial region, 

which is a fraction of the total reactor volume.  

For the gas adsorbed on the surface of the packed bed catalytic material, the governing 

equation of chemical species in one-dimensional compressible format is: 

 
 
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p p

s p ca
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
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X
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This equation includes a corresponding mass transfer term the right hand side to balance the 

previous interstitial gas equation.  The terms from Eqns. (148) and (149) must cancel each other, 

as the fluxes are required to balance because they utilize the same surface areas [193].  A similar 

type of arrangement regarding this mass transfer term was seen in the one-dimensional 

monolithic catalyst modeling field when Harned [13] separated Kuo et al.’s model [194] into two 

distinct phases for the chemical species equations in the channel and on the surface of the 

catalyst.  The last term on the right-hand side includes the influence of the reaction rates on the 

surface along with a catalytic surface area per unit volume term.  Often this term is lumped into 

the reaction rate expression when calibration of the chemical kinetics occurs [192]. 

Unlike monolithic catalyst modeling involving a channel and surface, the distance 

between the interstitial space and the catalytic surface in a packed bed can be considered small 

enough to assume that the gas in the bulk is equivalent to the gas at the surface:  s p X X X .  

As a result, the two governing equations., (148) and (149) are added as follows while 

additionally writing the equation using concentration terms [193]: 

 s eff

ca

u
G

t x x x
  
   

   
    

CC X
D R  (150) 

The species equation can be lumped into a single concentration term when the ratio of 

Knudsen to Molecular diffusivity is less than 0.1 and this limitation has been used for our 

modeling purposes [8]. 

Since the flow through a packed bed reactor is significantly less than the Mach number, 

often the assumption of dynamic incompressibility is made [195].  This is a common occurrence 

in the monolith catalyst modeling field [174,196].  Because the density is now assumed constant 

through the packed bed, the velocity must also be constant since mass flow into the packed bed 
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needs to be balanced by the mass flow out of the packed bed due to the continuity equation e.g. 

no accumulation of mass within the reactor.  Another assumption to simplify the computational 

task is that the effective diffusivity of each species will not change significantly in the x-direction 

resulting in the following version: 

2

2

eff

s cau G
t x x

 
  

  
  

C C C
D R  (151) 

As discussed in an earlier reference from the Dr. Christopher Depcik's results, the 

assumption of dynamic incompressibility is valid when there is not a significant pressure drop or 

temperature excursion.  There is a considerable pressure drop due to the tortuous flow of the 

species over a lengthy packed bed with high Reynolds number; however, solving this version of 

the governing equations has a distinct advantage in terms of numerical run time [174].  Since 

solution of the chemical species equation is independent of the energy equation, this eliminates 

the constraint of the ideal gas law in a compressible system that creates a differential-algebraic 

set of equations.  The previous historical review of the model illustrates that researchers are 

inferring dynamic incompressibility through their independent solution of the chemical species 

and energy equations. 

One-dimensional catalyst modeling has determined that the time-rate of change of 

chemical species is much faster than that of the monolithic substrate [30].  As a result, the energy 

equation specifies the time-step of the simulation while the species equation goes to steady-state.  

Since packed bed pellets are on the same order of magnitude in terms of thermal properties of a 

monolithic substrate, and previous researchers in the packed bed field made this connection, this 

assumption is followed further simplifying the governing equation as follows: 
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 The species equation formulated above involves the advection effect of the fluid flow, 

effective diffusivity and reaction rate terms for each species over the catalyst pellet surface. This 

equation is similar to the models described in the previous section with respect to the steady state 

and diffusivity assumptions. The reaction rate source term of the catalyst and the advection term 

of the species concentration derived are slightly different from the previous models based on the 

assumptions and the fundamental equations of two phases.  The method for calculating effective 

diffusion coefficient is dealt with in detail in the effective diffusion section. 

As discussed in the beginning of the historical section, this version of the governing 

equation of chemical species is only valid during one-dimensional flow and any number of 

species.  Most reactor studies in the laboratory that calculate chemical kinetics utilize only a 

small core of material without significant length in the radial direction.  Moreover, advection will 

largely follow in the axial direction only.  However, there is the potential for diffusion in the 

radial direction.  To ensure that the model presented here remains valid, the mass transfer Biot 

number should be checked across all species [27,197]: 

10m
m eff

L
 
κ

Bi
D

 (153) 

where,  is the species mass transfer vector and Lm is the characteristic length in the radial 

direction.  When the mass Biot number of each species is less than 10, the effectiveness factor of 

the pellet is found to be negligible i.e. the concentration in the pellet would be equal to the 

surface concentration and there is a negligible radial effect of diffusion of the species. Since the 

flow through a packed-bed follows a tortuous path, described in more detail later, the 

characteristic length should involve this factor as follows:  
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m bL d   (154) 

where,  is the tortuosity of the flow and db is the diameter of the pellets. 

 Hayes and Kolaczkowski [198] illustrate that the species mass transfer coefficient in 

packed beds needed in the Biot number calculation of Eqn. (153) can obtained using j-factors 

2 3

s Du j
κ

Sc
 (155) 

This factor (jD) for automotive converter design is found from Harned as [13,178] and it depends 

on the Reynolds number calculated from the axial flow velocity as:  

0.4810.667 Re    where    10 < Re  < 300Dj   (156) 

and the Schmidt number is computed from the mixture diffusivity: 

s

  
m




Sc

D
 (157) 

Therefore, calculation of the Schmidt and Reynolds number allows computation of the mass 

transfer coefficient in order to check the Biot number ensuring that a one-dimensional 

representation is valid. 

4.2  HISTORY OF PSEUDO-HOMOGENEOUS ENERGY EQUATION 

An isothermal experimental test requires only modeling of the chemical species equation 

in order to determine chemical kinetic parameters.  However, since the hysteresis of the reactions 

on the surface can be important under light-off conditions, the energy equation is often included 

in the model solution to provide the thermal response of the packed bed reactor.  In such a case, 

heat transfer due to convection can usually be neglected in relation to that of radiation and 

conduction [199,200].  Under low Reynolds number conditions and the dynamic 

incompressibility assumption, researchers find that there is not any appreciable difference 
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between a psuedo-homogeneous model and a two-phase model [27,201].  This is from the 

determination that under these conditions there is no difference between steady-state and 

transient methods for experimental calculation of an effective thermal conductivity parameter; 

hence, similar to the chemical species equation and diffusion, a single integrated model can 

include both fluid and surface phases using the appropriately calculated property [201].  

Moreover, one-dimensional modeling of the energy equation assumes no radial changes with a 

lack of heat transfer through the wall.  The above assumptions with the combined flat velocity 

profile imply that there is no radial gradient at the macroscopic level [198].  Similar to the 

chemical species equation, a check of the thermal Biot number will provide a check for correct 

use of the model. 

 With respect to the history of the energy equation, Harned initially studied the 

performance of packed-bed catalytic converters using a one-dimensional flow model with 

negligible flow dispersion effects [13]:   
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where the first term on the left hand side represents the energy storage term of the catalyst 

pellets, the second term models the transfer of heat energy through advection of gas between the 

pellets, and the first term on the right hand side describes the energy generated through catalytic 

endothermic or exothermic reactions.  The last term on the right hand side is a measure of heat 

loss to the ambient: 

 
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D

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Where, D is the diameter of the packed bed.  Harned finds that for automotive type converters, 

the time rate of change, or energy storage term, in the energy equation is much larger than the 
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corresponding term in the chemical species equation as mentioned earlier.  Hence, energy 

storage term sets the time-step of the simulation.    

 In the 1972, Eigenberger  [176] proposed a two-phase model extending the equations of 

Liu and Amundson  [202] by including heat conduction in the solid phase.  The energy equation 

provided below is transformed based on the pseudo-homogeneous model assumptions: 
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This model utilizes a heat conduction term in the catalyst phase in order to predict the 

phenomenon where the maximum temperature moves to the front of the reactor driven by the 

backward conduction of heat.  This finding is analogous to that of Oh and Cavendish who 

discover the same phenomenon in the monolithic catalyst modeling field in their 1982 paper  

[14]. 

 Two years later, Vortmeyer and Schaefer  [190] develop a single phase pseudo-

homogeneous energy equation from a two-phase model and calculate a one-dimensional 

effective thermal conductivity coefficient developed from experimental tests involving two-

dimensional measurements.  They assume a small interphase time for heat transfer when 

compared to the time for advection:   
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The above model neglects the thermal capacity of the gas phase when compared to the solid 

phase. The first term on the right hand side includes an axial effective thermal conductivity 

which is presented in a later section. Here, the axial effective thermal conductivity is the sum of 

the stagnant bed thermal conductivity, gas-solid heat transfer and intraparticle conduction. 
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At the same time, Ferguson and Finlayson [27] describe simple, quasi-static and dynamic 

models for the energy equation based on the assumptions discussed in the chemical species 

section.  The energy equation provided below is for the dynamic model considering all processes 

in the transient state: 
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From this, the quasi-static model neglects the energy storage term in gas phase when compared 

with the dynamic model.   

 In 1980, Robertson [177] describes a one-dimensional mathematical model for the 

analysis of a packed-bed catalytic converter considering heat transfer from exhaust gas to the 

catalyst pellets and support.  The reaction takes place at the surface of the pellets with 

condensation and evaporation of water vapor occurring at the surface of the pellets: 
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This model includes heat transfer due to condensation and evaporation of the water as: 

cond cond fgq r h   (164) 

Where: 

( )cond D sr h A     (165) 

Moreover, this model includes heat transfer with the converter wall: 

( )w w w
w

w w

h A T T
q

V 


  (166) 

This model neglects the accumulation of the energy in the gas phase and the heat loss from the 

converter walls to the ambient because of assumed adiabatic conditions. 
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 Concurrently, as discussed previously, Oh and Cavendish [178] develop a one-

dimensional model of a spherical catalyst pellet in contrast to modeling axial flow through a bed 

of pellets.  Their proposed energy equation considers the radial effect through the spherical 

catalyst pellets: 
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This model of the energy equation provides information about the light-off temperature of the 

catalyst and the radial effect on each layer of the catalyst pellets for different physical and 

chemical properties. 

 Jumping ahead to 2000, Winterberg et al. [7] suggests modification of the energy 

equation to neglect the variation in bed porosity, along with omitting radial thermal conductivity: 
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This equation contains an axial thermal dispersion coefficient independent of the bed length and 

chemical reactions. 

Recent work by Younis considers the thermal properties of the pellets, such as the 

density, specific heat and porosity, are assumed to be uniform and constant [179].  In contrast to 

the other models presented, radiation coming from the catalytic pellets is included in the 

effective thermal conductivity parameter.  He includes this radiative heat transfer in the packed 

bed by making the effective thermal conductivity of the pellets a function of temperature e.g., the 

model augments the thermal conductivity of the porous bed with a radiative conductivity.  In 

addition, Younis mathematical model includes both gas phase and catalytic surface species 
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equation with Arrhenius reactions of a single step global type.  These heterogeneous equations 

condensed to a single energy equation are as follows: 
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with both heterogeneous and homogeneous reactions due to the conversion into this paper’s 

pseudo-homogeneous model. 

 In the same year, Nield and Bejan publish a book on porous media describing different 

methods at which to calculate the energy equation when combining gas and surface phases [193].  

In particular, they provide an understanding of the thermal conductivity term in their model 

formulation:  
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The energy equation above is valid for an isotropic medium with negligible radiative effects, 

viscous dissipation and pressure drop.  In this model, a local thermal equilibrium between solid 

and fluid exists: s pT T T  .  They state that the work done by the pressure change is negligible; 

therefore, the coefficient of volumetric thermal expansion () is not added to the left hand side of 

the energy equation: 
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A significant pressure drop within a packed bed reactor requires the incorporation of this  term 

in the energy equation through compressible flow.  Moreover, they state that viscous dissipation 

is negligible in natural convection phenomenon i.e. the flow occurring due to a small amount of 

pressure difference neglects the viscous dissipation term.  
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 In the beginning, researchers proposed an energy equation based on quasi-static 

assumptions by considering the reactor as a continuous phase with different source terms 

[13,27,177,188]. They initially considered the radial effect on the conductivity of pellets and 

various modes of heat transfer within the packed bed [7,178,179]. They based their formulations 

of the energy equation on intended packed bed reactor applications as seen in their methodology 

of changing source terms based on the temperature, ambient and flow conditions.  Using the 

assumptions and information found in this historical summary, the next section describes the 

derivation of the pseudo-homogeneous energy equation for a one-dimensional packed bed 

reactor from first principles.  

 

4.3  ENERGY EQUATION 

Similar to the chemical species governing equation, computation of the energy equation 

for the interstitial gas follows by utilizing the assumption of dynamic incompressibility: 
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  (172) 

Where, first term on the left hand side describes the time-change of temperature of the gas within 

the interstitial space and the second term represents the advection of the gas in the pores.  Since 

the pore structure involves relatively small distances, conduction effects may become important 

as demonstrated in the history of model development (from the denominator of the 
2
Ts/x

2
 

term).  Hence, the model includes this dependency in the first term on the right hand side of the 

equation.  At this stage, the model does not include an effective thermal conductivity parameter 

and instead uses the thermal conductivity of the gas.  Its inclusion will happen after combining 

the gas and surface phase energy equations. 
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Analogous to the species equation, the last term on the right hand side represents 

convective heat transfer between the gas and the surface of the packed bed catalytic material; 

again, this term is well known in the monolithic catalyst modeling community [30].  As it will 

not play a role in the final version of the pseudo-homogeneous governing equation, its inclusion 

here is in a non-descriptive manner.  Of importance, this equation includes a void fraction or 

porosity term, since it involves only the gas in the interstitial region, which is a fraction of the 

total reactor volume. 

 The temperature of the solid material in the packed bed in one-dimensional format is: 
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This equation includes a corresponding heat transfer term on the right hand side in order to 

balance the previous interstitial gas equation.  The terms from Eqns. (172) and (173) must cancel 

each other, as the fluxes are required to balance because they utilize the same surface areas 

[193].  The second to last term on the right hand side includes the influence of endothermic and 

exothermic reactions on the surface along with a catalytic surface area per unit volume term.  As 

discussed previously, often this term is lumped into the reaction rate expression during 

calibration of the chemical kinetics.  The last term on the right hand side describes the influence 

of external heat transfer to the ambient discussed in more depth later in this section. 

Similar to the chemical species equations, the distance between the gas and catalytic 

surface is small and is similar to what it is found in the porous walls within Diesel Particulate 

Filter modeling [203] along with the historical review of packed bed modeling, convection 

between the gas and surface far outweighs other contributions.  Therefore, it is commonplace to 
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assume a local thermodynamic equilibrium with s pT T T   [190] .  Adding the two governing 

equations results in the following: 
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However, as Nield and Bejan state [193] and as indicated in the history of the model 

development, thermal conductivity is often represented as an effective parameter because it can 

be computed in a number of different manners based on the temperature and their corresponding 

heat transfer phenomenon.  As a result, the governing equation of energy for the pseudo-

homogeneous model equals: 
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There will be a thorough investigation of the effective conductivity parameter provided later in 

this paper. 

From monolithic catalyst modeling [174], the external heat transfer term includes the 

influence of convection and radiation: 
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written incorporating the diameter of the packed bed reactor.  In order for this term to be valid in 

model formulation, a check of the wall heat Biot number is required [27,170]:   

, 1
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
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with the characteristic length computed from the external surface area of packed bed per unit 

length: 

A D  (178) 
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and the total volume of the packed bed per unit length: 
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as follows: 
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 Similar to the mass transfer coefficient, calculation of the heat transfer coefficient of the 

reactor  is possible using appropriate Nusselt number and Reynolds number of the pellet particles 

[13,204]:    
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The wall heat Biot number limitation is used to eliminate the external heat transfer to the 

ambient, and the radial effect of the temperature can be neglected. It is further required to 

consider pellet heat Biot number as an additional limitation for using 'lumped temperature 

parameters' for the energy equation [205]. The pellet Biot number should be less than 0.1 in 

order to neglect intra-particle temperature gradients.  

, 0.1
2

b
p h

h d


 Bi  (184) 



106 

 

Further, the ratio of mass over wall heat Biot number is usually around the value of 10; 

and when this condition is reached the concentration and temperature profiles over the catalyst 

radius is negligible, and this condition is used for the modeling purposes to check the effect of 

temperature gradients [197]. 

The history of the use of the energy equation illustrates that the gas-phase accumulation 

term in this equation could be neglected because of its relatively low value [13,177,190].  In 

order to utilize this assumption properly without any degree of error requires the development of 

a proper criterion.   Researchers have found that when the volumetric ratio of the heat capacities 

is less than 0.002, it is relevant to neglect the fluid phase heat capacity term in the energy 

equation [27,206].  
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 This section describes the one-dimensional energy equation with corresponding 

assumptions for the effective conversion of the two-phase, two-dimensional energy equation into 

a one-dimensional pseudo-homogeneous model.  The following section explains the fundamental 

concepts of diffusivity and thermal conductivities for the efficient use of these coefficients in the 

species and energy equations respectively. 

4.4  MOLECULAR AND KNUDSEN DIFFUSIVITIES 

 This section provides a detailed analysis of the molecular and Knudsen diffusivities in a 

packed bed reactor before moving on to the calculation of an effective diffusivity term in the 

species equation.  The classification of both molecular and Knudsen diffusivities occurs based on 

the pore size.  Molecular diffusion provides the dominant resistance to mass transfer in porous 

catalyst when pore radii are larger than one μm [198].  In comparison, Knudsen diffusivity is at a 
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maximum when pore radii are less than 50Å at standard pressure and temperature [198].  History 

illustrates that diffusion occurs in more than one coordinate direction due to the tortuous nature 

of the pores.  In addition, effective diffusion is inversely proportional to the square root of its 

molecular weight and it is species specific as the pore diffusion in the gas phase varies inversely 

with the square root of the molecular weight.  Hence, larger molecules have smaller diffusivities 

[25,207].  Moreover, mass transfer within the pores is negligible at small Reynolds numbers in 

spite of the nonzero species velocity of the reactants and products in the pores and diffusion 

dominates advective transport [207].   

The theoretical computation of diffusion begins by calculating the binary diffusion 

constants between two species, i and j, from molecular kinetic theory [208,209]: 
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Where, ij is the reduced collision diameter, or intermolecular separation at which the interaction 

potential between molecules vanishes,  1,1
  is the collision integral, Wij is the reduced molecular 

weight utilizing the molecular weight of the species 
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 (187) 

Ru is the universal gas constant; A is Avogadro’s number and *

ijT is the reduced temperature: 

* B s
ij

ij

k T
T


  (188) 

which includes Boltzmann’s constant (kB) and the potential well depth between the two 

molecules, ij.   
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This depth of potential well is a measure of strength of the interaction as a balance 

between the repulsion from the Pauli Exclusion Principle and the attraction from van der Waals 

forces as formulated from the Lennard-Jones potential model.  Therefore, its value is a function 

of the relative charge of the particles involved.  For a polar molecule interacting with a polar 

molecule, or a non-polar with a non-polar: 

ij ji

B B Bk k k

   
   

  
 (189) 

When a non-polar molecule interacts with a polar molecule, an additional factor is included: 
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Note that the Lennard-Jones parameters,  and, are available in the literature for individual 

species [207,210]. 

The parameter  is: 
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which is a function of the polarizability,  
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and dipole moment of the species: 
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Polarizability relates to the movement of the electrons in the molecular cloud of the species 

resulting in an electrostatic force.  The dipole moments are a function of the sharing of the 

electrons between atoms in a covalent bond and are not necessarily shared equally.  The result is 
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that the species has a polarity with the center of negative charge generally residing on the atom 

having the higher electronegativity.  The values for the polarizability and dipole moments of 

chemical species are found in the literature significantly [211,212]. 

 The reduced collision diameter is a function of the individual diameters of the species and 

the relative charge.  When a polar molecule interacts with a polar molecule (or non-polar with 

non-polar) [210]: 

2

i j
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
  (194) 

and when a non-polar molecule interacts with a polar molecule, the parameter  is again utilized 

as follows: 
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 The collision integral involves an understanding of how the molecules interact.  

Following the Stockmayer extension of the Lennard-Jones potential model including attractive 

and repulsive forces, the collision between non-polar molecules can be estimated as [210]: 

     
0.15504 2.17051,1 * * *1.0548 0.55909ij ij ijT T T
 

     (196) 

For polar molecules and non-polar and polar interactions, a look-up table for the collision 

integral is utilized [210].   

 At this stage, the model of diffusion purely consists of a binary mixture where Dij is equal 

to Dji.  Since the exhaust of an internal combustion engine contains a large number of species in 

varying magnitude, this model of binary diffusion requires extension.  Bird et al. wrote mixture-

averaged diffusion constant as [213]: 
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using the mass and mole fractions of the respective species in order to calculate how one species 

will diffuse in a mixture of many different species.  However, Kee et al. stated that this 

expression is not mathematically well defined in the limit of the mixture becoming a pure species 

[209].  While diffusion does not have any real meaning in the case of a singular species, 

numerically the model must ensure that the diffusion coefficients work properly in such a case.  

As a result, they write the mixture averaged diffusion constants as: 
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Kee et al. stated that the round off accumulates in nearly the same way between the numerator 

and denominator, with the quotient well behaved as the pure species limit is approached.  While 

the formula is still undefined in the limit of a pure species, numerically the model is more stable 

when using this version. 

 To simplify the computation, Schettler et al. gave an empirical relation replacing the 

Lennard-Jones potential in finding the molecular diffusion coefficient [214] 
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using the molecular weight of the species with Vi1 and Vi2 describing the fraction of molecular 

volume of the species 1 and  2 respectively [210].  

 The next step in finding the effective diffusion coefficient is to understand the micro 

scale diffusion of the pores in the packed bed reactor.   The average pore size within a packed 

bed governs the major contribution to diffusional resistance that moves the fluid toward and 
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away from the internal catalytic surface.  Free-molecule Knudsen flow provides the major 

resistance to mass transfer if pore sizes are less than 50Å.  This is because the mean free path of 

the gas is larger than the pore diameter and gas molecules collide with the catalyst pellets more 

frequently than they collide with other gas molecules.  The regime is of importance in situations 

involving very small length scales and/or very low gas density (large mean free path).  Under 

these circumstances, the product of the number of molecules entering the hole and the 

probability of a molecule that enters the pore passes through (e.g., not bouncing back out) 

determine the number of molecules passing through the small channel or pore.  This is expressed 

through the calculation of Knudsen diffusion coefficient in a mixture in an array of straight 

cylindrical pores as given by [25,207,215]: 
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 For simplification, using a pore size expressed in Angstroms and temperature in K, the 

Knudsen diffusion coefficient in cm
2
/s is [207]: 

41.05 10

2

p

K

d T


D
W

 (201) 

In packed bed reactors, calculation of the Knudsen diffusion with good accuracy can be 

simplified as follows [198,216]:  

97K e

T
rD

W
 (202) 

where, re is the equivalent pore radii determined from the porosity, pellet density (d) and BET 

surface area (Sg):  
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 This section presents the foundation of the effective diffusivity calculation for each 

species through determination of the fundamental mixture-averaged molecular diffusion and 

Knudsen diffusivities.  The next section explains their incorporation into the packed bed reactor 

through a historical perspective.  

 

 

4.5  EFFECTIVE DIFFUSIVITY 

 Aris in 1956 describes a lumped one-dimensional pseudo-homogeneous model for the 

species equation under axial mixing conditions [171].  This model superimposes a dispersion 

coefficient term that depends on the molecular diffusion coefficient and the advection of the flow 

in the radial direction:   
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Aris applies the following condition in order to validate the use of one-dimensional flow in a 

packed bed:  

0.16 s
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   (205) 

with the above assumption stating that the tube radius must be small in comparison to a relatively 

long catalytic reactor length. 

 The simplest form for calculating the effective diffusivity from both the molecular and 

Knudsen diffusion coefficients was first accomplished by Evans and Watson in their Series Pore 

model [187]. This model is utilized due to the occurrence of molecular and Knudsen resistances 
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to the flow of the species through packed bed pores. The average porosity and tortuosity factor 

used in this model are based on the average pore radius and this model satisfies the fact that the 

diffusion flux ratio for binary mixtures is equal to the square root inverse of the molecular 

masses. As a result, the Series Pore model is expressed as:  

1 1 1
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               (Series Pore model) (206) 

In 1962, Beek expresses the effective diffusion coefficient of the species where the flux 

of the one of gases is measured on the surface of the pellet [217]: 
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
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Here, the effective diffusion coefficient is given in terms of the difference between the mole 

fractions at the beginning and end of the reactor, diffusion length (Le), a flux of the component 

that can be experimentally determined (f) and the molar density of the mixture.   

 

Figure 11: Random pore model for a bidisperse porous solid  [25]. 
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In the same year, Wakao and Smith, propose a Random pore model for calculating the 

diffusion coefficient in the catalyst layer for a bidisperse system [218].  They originally applied 

this model to pellets prepared via the compression of porous catalyst particles.  Their model 

depends upon the pores within the pellets themselves (micro-pores) and spaces between the 

pellets (macro-pores), which in this paper is the bed porosity (ε) as illustrated in Figure 11.  Both 

pores have a significant effect on the resulting diffusion calculation:   
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with the diffusion coefficient for the macro-pores and micro-pores corresponding to the 

molecular and Knudsen diffusion coefficients respectively.  They determine that this model 

works well for active catalysts in the micro-pores region because of the mutual contribution 

towards diffusion [185].   

 Three years later, Johnson and Stewart introduce a diffusion model that incorporates the 

radial influence of the pellet [186].  
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     (Cylindrical Pore model) (209) 

Where: 

 
1/2

1 i ja W W    (210) 

This model integrates the radial variations of porosity with their corresponding molecular and 

Knudsen diffusion coefficients.  They infer that the tortuosity factor depends upon the particle 

porosity and more reasonable values of tortuosity factors were obtained from the cylindrical pore 

model because the diffusion contribution is integrated over the entire range of pore size 

distribution as compared to an average pore radius used in the Series and Parallel Pore models.  
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Since the one-dimensional model derived by the author infers a constant porosity in order to 

minimize the amount of information required for model usage, this work does not explore the 

Cylindrical Pore model in the resulting parametric studies.  

In a packed bed, it is important to understand that the fluid flow does not follow a straight 

path.  Instead, it twists and turns its way through the pores and this tortuous flow requires 

modeling.  This tortuosity is a methodology of accounting for the additional path length and the 

resulting increase in the capillary velocity over the interstitial axial velocity: 

eL

L
   (211) 

with the above equation being the standard definition for tortuosity ().   

Jumping ahead slightly in the historical summary, with respect to incorporation in the 

governing equation of the chemical species, Eqn. (152), Epstein states that there is some 

confusion regarding whether tortuosity relates to either flow or diffusion [183].  He states that 

tortuosity is the ratio of the average pore length (Le) to the length of the porous medium along 

the major flow axis (L), and a tortuosity factor () influences the diffusivity of a species in a 

medium.  Hence, an effective diffusion of mixture-averaged species requires the use of a 

tortuosity factor: 
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which is the square of the tortuosity: 

2   (213) 
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For a randomly packed bed of pellets with pressure driven flow, researchers [219-222] elucidate 

that the tortuosity factor can range from one to seven with Carman experimentally determining a 

value of 2.5 for packed bed reactors.   

It is important to mention that this factor is a strong function of the model.  This is 

demonstrated by the fact that researchers calculate the effective Knudsen diffusivity using a 

separate tortuosity factor [181,182]: 

K s
k

K






D
D  (214) 

with Ho and Strieder in 1980 describing the mixture-averaged and Knusden tortuosity factors, 

respectively, for the series pore model, explained later, as [223]:   
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Continuing an investigation into the effective diffusivity, Wakao and Kaguei [25] 

describe this value as: 

 0.6 ~ 0.8 0.5eff

b p sd u D D  (217) 

with the second term added in order to account for turbulence when the flow velocity increases 

above a Reynolds number equal to five.  From this point forward, the mixture averaged and 

Knudsen diffusivities will incorporate the tortuosity factors given their significance.  

In 1991, Muller experimentally determines that the porosity of the packed bed can be 

computed as a function of the diameter of the reactor and the pellet diameter as follows [184]: 
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While not explicitly related to the effective diffusion, this finding makes it possible for the 

modeler to determine the porosity without requiring experimental tests. 

In the same year, Sharma summarizes effective diffusion models available and revisits 

the Parallel Pore model of Wheeler from 1951 incorporating a tortuosity factor [185,224]: 
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D DD
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The author was unable to find a literature based fit of tortuosity factor as a function of 

porosity for the parallel pore model.  As a result, using data from [225-228], the following fit 

was created: 

1 6.85ln    (220) 

Note that while a model for the tortuosity factor as function of porosity is simplistic and may not 

capture all pertinent phenomena, it minimizes the need for additional calibration or models of 

surface effects. 

In 2000, Winterberg et al. [7] describes the correlation for the axial mass dispersion 

coefficient for turbulent flow of the species: 

Peeff eff

I b

axK
 D D D  (221) 

where Kax is a constant for the mass dispersion influence that they calculate with a value equal to 

two [229,230].  The effective diffusivity is provided in terms of bed porosity and they calculate 

the molecular diffusivity using a correlation given by Zehner and Schlunder [231].  They 

determine that the value of axial mass dispersion coefficient does not depend strongly on the 

type of species.  Therefore, the species in the packed bed reactor will disperse at approximately 

the same rate with the Peclet number as: 
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Similar to the studies of Evans and Watson [187], Belfiore states that it is necessary to 

add the resistances from Knudsen flow and ordinary molecular diffusion in order to calculate the 

net diffusivity in a porous pellet system when the average pore size is between 50 and 10
4
 Å 

[207].  In the pore-size regime, where Knudsen and ordinary molecular diffusion are equally 

probable, they construct these resistances in series as they occur sequentially within the catalytic 

pore.   
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where,  represents the contribution from advective mass transfer: 
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The previous historical summary indicates that the mass transfer resistance is large when 

the advective mass transfer is negligible relative to diffusion at insignificant average species 

velocity and this condition prevails in porous catalytic pellets [207]. The average species velocity 

is the mole-fraction-weighted sum of species velocities in the reactor. Hence, advective mass 

transfer or  = 0 and this ultimately leads to the addition of the inverse diffusivities as provided 

by Evans and Watson [187]: 
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This is also suggested by Bosanquet from an empirical basis e.g., for transition region conditions, 

bulk diffusion and Knudsen diffusion act in series [232]. In the Series Pore model, it is also 

observed that the change in pressure does not influence the Knudsen diffusion but it does factor 

into the bulk diffusion coefficient. It is known that automotive catalytic converters operate at 1 

bar pressure, and at this pressure their bulk diffusion coefficient does not show any sudden 

variations [198]. Furthermore, the bulk diffusion coefficient is relatively much higher than that 

of the Knudsen or pore diffusion coefficient. 

 In order to validate model predictions, measurement of the effective diffusivity in a 

porous solid can occur by utilizing the Wicke and Kallenbach cell method that is commonly used 

for measuring diffusivity over pellets [233].  This method determines the effective diffusion 

coefficient by measuring the diffusion rate (N) and incorporating it in the equation below 

[25,176]: 

eff C
N A

L


 D  (227) 

where ∆C is the difference in concentration across the catalyst length.  

 This section elucidates the Parallel, Series and Random Pore models used for the 

calculation of effective diffusion coefficient and their incorporation into the packed bed reactors 

[185-187,207,218]. It completes the historical findings of the diffusion coefficient parameter of 

the species equation which is used for the parametric studies and modeling purposes. In the next 

section, the chronological summary of the effective thermal conductivity parameter used in the 

energy equation is studied in detail by incorporating various modes of heat transfer.  
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4.6 EFFECTIVE THERMAL CONDUCTIVITY 

 Similar to the effective diffusivity discussion, this section describes a historical 

perspective of the effective thermal conductivity calculations present in the literature.  This starts 

in 1955 with Plautz and Johnstone [234] proposed a correlation based on experiments that relate 

it to the molecular viscosity of the fluid, 
avg , at the average bed temperature: 

 0.439 0.00129eff

b s p avgd c     (228) 

In 1960, Yagi et al. [189] were the first to measure its value in packed bed reactors.  They 

determine that models should not neglect the effective axial thermal conductivity term in design 

calculations of adiabatic packed bed reactors because of relatively steep axial temperature 

gradients under low flow conditions.  Their resulting formula is as follows: 

0 Pr Reeff eff

I s     (229) 

where, eff

I  is the axial effective thermal conductivity dependent upon the conduction of pellets 

as well as local fluid mixing [198].  The axial thermal conductivity effect reduces significantly 

with the decreases in size of the pellets. The effective thermal conductivity is a function of its 

value in a motionless fluid (
0

eff ) and the molecular thermal conductivity of a moving fluid ( s ) 

with the constant δ equal to 0.7 for metallic balls.  The Reynolds number and Prandtl number for 

this equation are: 
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 In the following year, Gorring and Churchill [199] propose an empirical correlation to 

find the static contribution towards the effective thermal conductivity.  They determine that the 
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static thermal conductivity is only a function of conduction as compared to convection and 

radiation: 
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Their efforts state that there is not a significant loss of accuracy when expressing the static value 

in terms of solid and fluid conductivities with porosity in the denominator: 
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In the early 1960s for the parallel and series models, Yagi et al., Kunii and Smith 

[189,235] propose that the static thermal conductivity model includes all modes of heat transfer 

in the packed bed including radiation.  They assume that a stagnant fluid film surrounds the 

particles and heat transfer occurs through the stationary fluid in the void spaces of the packed 

bed and in the solid phase.  They use this reasoning to derive the effective thermal conductivity 

while continuing the reasoning of Gorring and Churchill with respect to neglecting radiation 

effects: 
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In this equation,  is the ratio of the effective distance between particles to the particle diameter, 

which is equal to one for loose packing, 0.895 for close packing and an average of 0.95 for an 

intermediate packing.  The variable  is the stagnant fluid thickness and they provide it 

graphically in terms of loose and dense packing with respect to the ratio of solid and fluid 

conductivities.  
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In 1966, Krupiczka [180] includes an empirical formula for finding the effective static 

thermal conductivity of granular materials with a porosity ranging between 0.215 and 0.476: 

   0.28 0.751log 0.057log
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This static thermal conductivity coefficient is determined using derivations consisting of 

relatively long cylinders and spheres with two different porosities.  This is simplified down into 

the influence of a single value of porosity as given. 

At the turn of the decade, Zehner and Schlunder [231] present a model based on one-

dimensional conductive heat flow through a packed bed of spherical particles.  They assume a 

point contact of particles in the direction of heat flow e.g., the heat conduction through pellets 

over large surface contact area is not considered: 
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Where: 
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with the value of B more accurately predicted by Hsu et al. [236] as given in Eqn. (238).  

 A few years later, Eigenberger [176] investigates the heat conduction phenomenon in a 

packed bed and demonstrates that the energy equation of their model in the solid phase requires a 

conduction term due to the high amount heat exchange through conduction to adjacent pellets 

when compared to convection and radiation terms.  This work clarifies that the heat transfer to 

adjacent pellets occurs through pure conduction and when fluid velocity is high, heat transfer is a 
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function of the fluid vortices in the interstitial spaces between pellets and convection becomes 

important as shown in Figure 12. 

 

 

Figure 12: Heat exchange between adjacent pellets: I. Exchange by pure conduction, II. Exchange by fluid 

vortices in the larger interstices [176]. 

 

In 1974, Vortmeyer and Schaefer [190] derive the single phase pseudo-homogeneous 

energy equation from the two-dimensional heat equation under the assumption that the 

interphase heat transfer time is much smaller than the time for advection.  In this model, they 

write energy equation in terms of an effective axial thermal conductivity: 
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This equation is in correlation with the Yagi et al.’s relationship given in Eqn. (229).  By 

modifying the last term in Eqn. (229) into a dimensionless parameter, this makes the equation 
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more versatile for different materials that can be used in the packed bed reactor.  In this case, the 

Nusselt number is given by: 

Nu b
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h d
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  (240) 

with the effective static contribution of the thermal conductivity obtained from Eqn. (235).  

In 1979, Dixon and Cresswell [191] provide a detailed discussion in predicting the 

effective axial thermal conductivity for a pseudo-homogeneous model and suggest a two-phase 

continuum model and single phase lumped model including both radial and axial conductivities.  

They suggest a detailed expression for the effective axial conductivity as follows: 
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(241) 

They state that axial conductivity depends not only on the conductivities of the two 

phases but also on the fluid to solid heat transfer coefficient, the particle diameter and reactor 

tube to particle diameter ratio.  In the above relationship, the axial solid conductivity (a) and 

axial fluid conductivity (as) are: 
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with the Peclet number expressed as: 
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and 
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Where, C equals 1.25 for spheres and they use a Peclet number of approximately two in 

calculating axial fluid conductivity with h equal the fluid to/from solid heat transfer coefficient. 

 The following year, Kulkarni and Doraiswamy present a detailed review on the 

estimation of the transport properties in packed bed reactors [237].  They state that the effective 

thermal conductivity has a definite value when there is no flow and it rises sharply when flow 

begins.  Therefore, there are two distinct contributors to the effective thermal conductivity in a 

packed bed catalytic reactor, namely static and dynamic.  Static contributes to the thermal 

conductivity when there is not any fluid motion; whereas, the dynamic contribution is a function 

of the heat exchange due to a moving fluid.  They mention that the heat transfer coefficient at the 

wall does not require consideration in the pseudo-homogeneous model.  Moreover, they give an 

expression for the overall heat transfer coefficient, U, as: 

  0.95exp 6 1.26Reb

s

UD
d D


  (246) 

when the Reynolds number is between 20 and 7600 and db/D is between values of 0.05 and 0.3.  

In 1988, Opris and Johnson [238] describe an effective thermal conductivity for fluid 

flow through porous media such as a diesel particulate traps:  
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While this model is not expressly utilized for a packed bed reactor, it is important to illustrate the  

effective diffusion coefficient dependency on the average porosity and fluid thermal 

conductivity. 
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 In 2000, Winterberg et al. provide an expression for the effective axial thermal 

conductivity neglecting variation in bed porosity, radial thermal conductivity and radial mass 

dispersion [7]: 

0
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eff eff
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     (248) 

 with the Peclet number now calculated as: 
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(249) 

and Kax described in the effective diffusivity section as equal to two [229].  This model 

incorporates a detailed description of porosity and flow distribution by utilizing the static thermal 

conductivity and Peclet number terms. 

 Two years later, Elsari and Hughes [239] calculate the axial thermal conductivity for a 

pseudo-homogeneous model under steady-state conditions without including radiation heat 

transfer.  Based on their experimental results using alumina and chromite/alumina pellets, they 

provide an effective axial thermal conductivity calculation for alumina spheres equal to six 

millimeters in diameter: 

 8.63 3.12Reeff

I s    (250) 

They deduce the axial thermal conductivity in this model from the correlation determined by 

Vortmeyer and Schaefer [190].  It depends only on the Reynolds number because they find that 

the Prandtl number is constant at low flow rates and factored into the constants.  Furthermore, 

the axial thermal conductivity indicates a strong dependence on the particle size, and they 

determine that the coefficients in the equation decrease with a diminishing pellet diameter size.  
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Recently, Younis [179] suggests an effective thermal conductivity for the packed bed at 

high temperatures above 500K by including the influence of fluid conductivity and heat transfer 

through conduction and radiation as given below: 
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316
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where,   is the extinction coefficient and   is the Stefan-Boltzmann constant involving the 

effect of radiation by the pellets in addition to the solid conductivity as formulated by the 

Rosseland diffusion approximation [240]. 

 At the same time, Nield and Bejan [193] provide a thorough investigation into the energy 

equation and give a clear understanding of the thermal conductivity term for a wide range of 

temperature conditions, shown here as calculated via Eqn. (174) : 

 1eff

s       (252) 

They consider that the pellets are parallel to the fluid flow even though the flow is tortuous.  

Hence, they use the weighted arithmetic mean of the conductivities as evident through the 

derivation of the energy equation [9,241].  However, for practical purposes, a weighted 

geometric mean also provides a good estimation of the thermal conductivity: 

1eff

s

      (253) 

 This section described a historical perspective of methods for determining the effective 

thermal conductivity for incorporation into the energy equation.  At this point, this paper gives a 

clear understanding of the species and energy equations with varying treatments of the 

diffusivity and thermal conductivities evident in a packed bed reactor.  The next section details a 

finite difference approximation of the species and energy equations in order to obtain a 

numerical solution.  By using this model, the author will explore the different diffusivity and 
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thermal conductivity models in parametric studies in order to suggest appropriate models 

depending on flow parameters. 

4.7  NUMERICAL MODELING 

 The proposed species and energy equations are in differential equation format, and their 

solution is obtained using an appropriate numerical method [198].  The utilization of various 

numerical methods depends upon the type of differential equations used and the desired 

accuracy.  There are two broad categories for solving the governing equations: 

i.) Initial Value Problems (IVP) allow for solution of the packed bed reactor with 

known inlet concentration conditions while calculating the concentration of the 

reactor downstream until the reactor exit is reached [242,243]. 

ii.) Boundary Value Problems (BVP) solves the one-dimensional dispersion model of 

the packed bed reactor.  Here, the value of the dependent variable, such as 

concentration or temperature or its derivative, is required at two different values of 

the spacial values (length).  Dividing the domain into a finite number of nodes or a 

grid allows for a numerical solution of the BVP.  A number of different finite 

difference methods are available for solution of this problem during steady-state 

and transient conditions.  In addition, it is understood that the finite difference 

method is simple when compared to orthogonal collocation or the weighted 

residuals method which involves more computation for the species and energy 

equations [243]. 

The resulting species and energy equations of the packed bed reactor have to be treated using the 

appropriate finite difference discretization technique in order to study the temperature and 

concentration variations in the converter.  
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 The first step towards numerical modeling involves the treatment of the species equation 

given in Eqn. (152).  This equation involves advection of fluid flow, effective diffusivity and 

catalytic reaction rates.  The molar concentration of the species is independent of time and 

dependent on space for both the advection and diffusion terms.  The steady-state chemical 

species equation is numerically modeled based upon the convection-diffusion parabolic partial 

differential equation [242,244] as shown below: 
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Where, G is a constant that is equal to caG  . 

 The above chemical species equation can be solved using a modified centered 

differentiation for the first-order derivative in order to provide an upwind interpretation for the 

advective flow and a second-order centered differentiation for the second-order derivatives as 

given below respectively [245]:  
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Evaluation of the reaction rate R  occurs at each axial step and at each new time-step, the 

solution of the chemical species equation occurs implicitly until convergence.  This eventually 

computes the molar concentration of each species at the outlet of the reactor as a function of 

temperature. Hence, using the above representations, the species equation becomes:  
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where n

iC  is implicitly computed until convergence at each axial node before moving onto the 

next axial step and the implicit computation is explained in detail in the next section. 

The next step is the numerical treatment for the energy equation as represented in Eqn. 

(175).  It is in the form of a convection-diffusion parabolic PDE that is a function of time and 

space.  Since it is time dependent, it must satisfy an initial condition at time t = 0.  Consequently, 

two boundary conditions are required because of the second-order space variable dependency 

and are provided later in this chapter.  Hence, the energy equation is dependent on time (t) and 

space or catalyst bed length (x) as shown below: 

2

2
1

1eff NM
ext

s ca

j

qT T T
Bu G

t x A x A A





   
    

    
Rh


 (258) 

where the constants are described as:  
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Solution of the convection-diffusion equation, as given in Eqn. (258), can occur 

numerically by various methods. The first is the Forward-Time Centered-Space (FTCS) method 

that is explicit, single-step, conditionally stable, and convergent having a second order accuracy 

[245]. This method provides relatively good accuracy for the convection-diffusion equation 

when compared to the Richardson Leapfrog method, Lax method, implicit Backward-Time 

Centered-Space method (BTCS) and first-order upwind method [13,242].  Other options include 

the McCormack with Predictor and Corrector method, Crank-Nicolson approximation and 

explicit Hopscotch method that provide good accuracy with unconditional stability for solving 

the convection-diffusion equations [242].  However, the amount of information required for 
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finding the properties of the base point (i.e., the inlet of the reactor) through adjacent grid points 

increases greatly and thus, the amount of computational time increases over the FTCS method. 

The only drawback for the FTCS method is the increase in computational effort in order 

to achieve desired accuracy by reducing the length between the nodes ( x ). This is due to the 

fact that the time step has to be decreased four times the space ( x ) in order to maintain the 

stability for FTCS method as discussed in a later section [242].  The numerical discretization of 

the FTCS method follows for the energy equation:  
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 Subsequently, using the above representations of the FTCS method, the energy equation 

becomes: 

1

1 1 1 1

2
1

2 1

2

n n n n n n neff NM
i i i i i i i ext

s ca

j

T T T T T T T q
Bu G

t x A x A A



   



         
         

         
Rh


 (264) 

 As discussed earlier, the temperature in the energy equation is time dependent over the 

reactor length and it is essential to determine the stability of the above equation by figuring out 

the condition for the time-step in order provide a bounded solution. 

4.7.1  Stability Analysis 

 The FTCS finite difference energy equation given in Eqn. (264) includes a time-

dependency term, and it is necessary to perform a stability analysis in order to determine a stable 

time-step.  This is required to prevent the growth or amplification of resulting errors, thus 

avoiding an unbounded solution.  This stability analysis can be accomplished using a Fourier or 
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Von Neumann method [242] .  In this method, the exact solution of the equation is denoted by D 

and the numerical solution with finite accuracy is N and the difference between the solution (N - 

D) is said to be the round-off error denoted by E.  This round-off error is obtained from the 

approximation of the numerical solution at each grid point and its repetitive operation on the 

remaining grid points that can increase the round-off error magnitude substantially [244].  As a 

result, the computed numerical solution must satisfy the finite difference equation to yield: 
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Simultaneously, the exact solution must satisfy:  
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Calculation of the round-off error occurs by subtracting Eqn. (266) from Eqn. (265): 
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The round-off error and the exact numerical solution possess the same growth properties as a 

function of time and either of the above equations can be used to examine stability [244].  The 

subsequent error term is expressed using a Fourier series written in terms of time and spatial 

wave number as exponentials: 

mik xn at

iE e e  (268) 

Where, a is a constant and km denotes a wavelength number based on the catalyst length and the 

number of space increments.  Substituting Eqn. (268) into Eqn. (267): 
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and dividing both sides of the resultant equation by mik xate e  results in: 
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Further modification gives,  
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where the diffusion and advection numbers are given as: 
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Using trigonometric properties,  
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and modifying the equation results in: 
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This resulting equation represents an ellipse in the complex plane with real (2d/A) and 

imaginary axes (Bc) respectively.  In order to attain stability, the real and imaginary axes must be 

less than or equal to one because stability constrains the ellipse to be within or lie on the unit 

circle.  Hence, the round-off error in the forward time-step should be equal or less than the error 

at the previous time-step n:  
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Furthermore, the curvature of the ellipse obtained by the above equation should be greater than 

the curvature of the unit circle and this condition is satisfied as follows: 
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Therefore, the stability criteria for the FTCS approximation of the energy equation and 

the solution for the time-step can be determined as follows:  
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As a result, numerical computation of the solution illustrates that the above time-step 

conditions should be satisfied in order to provide a stable solution.  Both time-step criteria are 

checked and the lower value of the two is utilized for modeling purposes.  Solution of the finite 

difference energy equation utilizes the corresponding boundary and initial conditions as 

described in the next section. 

4.7.2  Initial and Boundary Conditions 

The first boundary condition for the species equation is the inlet condition as given 

below: 

0

n
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
C  (280) 

Since the finite discretization contains second-order derivatives, Neumann boundary conditions 

should be utilized at the outlet [242]: 
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In order to calculate the concentrations of the species at the n
th

 node (exit) and n+1
th

 node, we 

use the Neumann boundary condition to provide the concentration at n-1
th

 node is equal to the 

concentrations at n
th

 and n+1
th

 node.    

Since the governing equations are second-order in nature, the Equilibrium Method 

provides the discretization of this boundary condition [176,198,242].  Using this method for the 

last node of the chemical species equation results in: 
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Since N+1 is expected when solving the last node according to the discretization of Eqn. (256), 

the model substitutes Eqn. (282) in order to complete the solution of the entire domain. 

             At the start of the simulation, the temperature at the first node of the packed bed rector is 

specified and the rest of the nodes are set equal to the ambient temperature (or the temperature of 

the first node). Hence, the initial condition for the energy equation becomes: 
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 The second boundary condition for the last node of the reactor uses the assumption that 

the packed bed reactor is being modeled in an adiabatic manner [14,198,246]: 
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Similar to the species equation, the Equilibrium Method is utilized for the discretization of this 

boundary condition before substitution into the governing equation for energy.  Therefore, the 

numerical treatment for the pseudo-homogeneous species and energy equations with 
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corresponding initial and boundary conditions are performed considering appropriate limitations 

as discussed in the previous sections.  

 In order to model chemical reactions within the packed bed, it is required to apply a 

reaction rate expression to the species and energy equations. In this case, the reduction reaction 

of nitric oxide (NO) by carbon monoxide (CO) over rhodium/ alumina catalysts is employed in 

order to study light-off characteristics of this interaction in a packed bed reactor. The reason for 

using this reaction is to make the initial modeling efforts less convoluted by considering only 

two species (NO and CO).  Moreover, as the previous chapters elucidate, this reaction has been 

extensively studied for utilization in modeling aftertreatment devices [32]. As a result, the next 

section will simulate the above reduction reaction over rhodium under packed bed reactor 

conditions. The modeling will occur via a global reaction equation as in Eqn. (77) and eliminates 

the usage of detailed reaction kinetics in order to reduce the number of parameters that require 

calibration for each step and thus, lessen the difficulty of modeling the chemical kinetics.  

 

4.7.3  Modeling Data 

 The data utilized in simulating a packed bed reactor, of length 3 mm, comes from results 

by Granger et al. as presented in Table 2 [247-250]. In the simulation, the values of specific heat 

and enthalpy of each species were calculated using thermodynamic data and the Chemkin curve-

fit equations [251] with the detailed equations provided in APPENDIX A. 

Table 2: Packed bed reactor properties and reactant properties [247-250]. 

Parameter Variable Value Units 

Diameter of the packed bed reactor D 0.012 m 

Length of packed reactor bed L 0.06 m 
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Length of packed bed  Lcb 0.003 m 

Pellet diameter db 0.00008 m 

Pore diameter of pellets dp 1.7x10
-9

 m 

Space velocity SV 93000 hr
-1

 

Velocity of the reactants at the inlet of the 

reactor (calculated from space velocity) 
us 1.55 m/s 

Density of the pellets   1000 kg/m
3
 

Specific heat capacity of pellets c  813.25 J/kg/K 

Geometric surface area per unit volume Gca 1 m
2
/m

3
 

Thermal conductivity of pellets   0.22 W/m/K 

Thermal conductivity of the working fluid s  0.14884 W/m/K 

 

 The tortuosity factor for the model is initially calculated from the Series Pore expression 

of Eqn. (215), and the porosity of the packed bed reactor is calculated from Muller's expression 

as given in Eqn. (218). Based on the above geometric data and reactants' thermodynamic 

properties, the criteria for one-dimensional modeling are met through the mass and heat Biot 

numbers respectively. The methodology for solving mass, wall heat and pellet heat Biot numbers 

are provided in the previous sections in detail. In specific, the wall heat Biot number treats 

external heat transfer and the radial gradient of the reactor, and pellet heat Biot number checks 

the radial gradient of the pellets.  

 Table 3 and Table 4 list the mass and heat Biot numbers calculated for the diffusion and 

thermal conductivity models considered in the study. The mass Biot number for each species 

demonstrate values less than ten, satisfying the condition for neglecting diffusion in the radial 
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direction [27,197]. The wall and pellet heat Biot numbers for the conductivity models studied are 

less than one and 0.1 respectively [27,170].  This satisfies the conditions for neglecting radial 

temperature gradient change in the reactor and external heat transfer while justifying the use of 

the lumped model for the energy equation [205]. 

 

 

Table 3: Mass Biot number for packed bed reactor modeled 

Species 

Mass Biot Number 

Series Pore 

model  
[187]

 

Parallel Pore 

model 
[185,224]

 

Random Pore 

model 
[218]

 

NO 2.273 8.093 0.877 

CO 2.249 8.006 0.885 

CO2 0 0 0.934 

N2 0 0 0.984 

He 3.874 9.850 0.482 

 

Table 4: Heat Biot number for packed bed reactor modeled 

Model 

Wall heat  

Biot 

Number 

Pellet heat  

Biot 

Number 

Parallel flow Model 
[193]

 0.255 0.003 

Zehner and Schlunder Model 
[231]

 0.259 0.003 

Younis Model 
[179]

 0.255 0.003 

Weighted G.M Model 
[9,241]

 0.302 0.004 

Opris and Johnson Model
 [238]

 0.258 0.003 
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Furthermore, the axial dispersion effect in the energy equation can be neglected when the 

calculated Reynolds number of the packed bed reactor is greater than twenty [252].  In this case, 

the reactor Reynolds number is about 144. Thus, the Biot number limitations for the one-

dimensional analysis, stability conditions for the energy equation and inlet conditions for the 

packed bed reactor can be modeled in MATLAB based on the above the geometric and transport 

data with the detailed MATLAB programming of the reactor provided in APPENDIX B. 

  The final modeling task is to calibrate the chemical kinetic parameters for NO reduction 

by CO over the rhodium/alumina catalysts and incorporate these values into the species and 

energy equations. The amount of rhodium used in the catalyst bed is 0.023 gm with 94% 

dispersion over the alumina substrate.  The inlet partial pressures of the reactants are maintained 

at 0.005 atm (pCO = pNO = 0.005 atm) with helium acting as an inert gas [248]. The reactor is 

operated at a nominal pressure of 1 atm and the inlet temperature of the catalyst bed is increased 

by 2K/min from 423K until it reaches 573K.  

 At these partial pressures, the observed apparent activation energy for the rate-

determining step under adsorption equilibrium is found to be 196,648 J/mol [248]and this value 

is relatively higher when compared to the corresponding apparent activation energy of rhodium 

crystals; Rh(111). This is due to the high dispersion of rhodium molecules over alumina 

substrate [61,248]. The above values of apparent activation energy and the amount of rhodium 

catalyst are effectively utilized in the estimation of the pre-exponential factors of the reaction 

rate expressions given in Table 5. 

 In order to improve the modeling efforts, values of the pre-exponential factors and 

adsorption enthalpies in the Arrhenius and equilibrium constants expressions, 
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are not calibrated in accordance with the experimental data given. 

In particular, the adsorption enthalpies for carbon monoxide (CO) and nitric oxide (NO) 

are determined based on the influence of the partial pressures of the reactants over rhodium 

catalysts using the correlations provided by Granger et al. [249]: 

 NO CO NO34.8 1.9ln 0.7lnH p p                    (288) 

 CO CO NO10.3 2.3ln 1.9lnH p p      (289) 

The above semi-empirical equations for adsorption enthalpies of NO and CO are obtained 

respectively based on the coverage factor of the reactants along with experimental evidence. The 

rest of the values needed for reaction rate utilization are provided in Table 5.  

Each species equation incorporates a corresponding reaction rate as a source term 

calculated based on the global rate reaction step as given in Eqn. (77).  The concentration of each 

species attains steady-state at each axial node for the respective time step by using the embedded 

ODE15s MATLAB solver [253]. Since the reaction rate expression used in the source term of 

the species and energy equations is relatively numerically sensitive with respect to temperature 

and pressure; it is necessary to use the ODE15s solver that is of fifth-order accuracy. It solves 

stiff ordinary differential equations as given in Eqn. (257) by computing the concentrations of 

each species at relatively small time steps while attaining steady-state based on previous time 

step values. Similarly, the concentrations of other axial nodes are determined using the above 
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ODE15s solver and a while loop condition. Finally, the concentrations at each axial node are 

simultaneously calculated by using another while loop that provides accurate steady-state 

concentrations based on the previous values. 

 

Table 5: NO-CO reaction kinetic parameters [248]. 

Parameter Variable Value Units 

Apparent activation energy  Ea 196.648 kJ/mol 

Pre-exponential factor ANO 0.32x10
21

 mol/m
2
s 

Adsorption enthalpy of NO ∆HNO -48.576 kJ/mol 

Adsorption enthalpy of CO ∆HCO -32.554 kJ/mol 

Proportionality constant of NO adsorption fNO 2.4x10
-2

 atm
-1

 

Proportionality constant of CO adsorption fCO 1.4x10
-2

 atm
-1

 

   

 The above modeling efforts were carried out using Intel Xeon E3110 Processor at 3 GHz 

clock speed and 8 GB RAM.  MATLAB R2008a is used for the numerical modeling of the 

packed bed reactor and the operating system in which MATLAB operates is Windows Vista 64-

bit. 

 

4.8  RESULTS AND PARAMETRIC STUDIES 

 This section presents the conversion profiles of NO and CO and their light-off 

characteristics over rhodium catalysts along a catalyst bed in a temperature range of 423K to 

573K. These conversion profiles are compared to the experimental values of Granger et al. 

[249,250] in order to study the accuracy of the species and energy equations derived in the 
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previous sections. The predicted conversion profiles of NO and CO species is found to be of a 

good fit when comparing with the experimental results in Figure 13 as in the simulated light-off 

temperature (533.5K) is close to the experimental light-off temperature (535K). 
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Figure 13:  Comparison between experimental and simulated (a) NO and (b) CO conversion curves vs. 

temperature over rhodium/alumina catalysts [Series Pore Diffusion Model and Parallel Flow Conductivity 

Model with discretization equal to six]  

 To recap, for these simulations, the species equation uses the Series Pore Effective 

Diffusion model and the energy equation uses the Parallel Flow Effective Thermal Conductivity 

model with the global reaction rate expression as given in Eqn. (77). The NO light-off 

temperature is found to be 533.5K which is quite close to the experimental NO light-off 

temperature of 535K [250]. Since NO and CO are at stoichiometric inlet conditions and have 

equimolar conversion rate, the light-off temperature of CO is equal to that of NO. Thus, this 

model can be used for wide range of operating temperatures ranging from 300K to 800K and low 

(10 torr) to moderate pressures. 

 The discretization of the catalyst bed is based on the stability conditions presented in 

Eqns. (278) and (279). Since an increase in discretization (number of nodes) decreases the space 
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over which the equations are calculated, in order to maintain stability for the FTCS method, the 

time step has to decrease four times as much [242]. Based on the current geometric conditions, 

the maximum number of discretizations possible is proportional to the inlet temperature rise of 

the reactor and its corresponding time step. In the current modeling effort, the maximum number 

of discretizations considered is nine and this is due to considerable reduction in the 

computational time with good accuracy. The stability conditions for calculating the time step are 

highly sensitive towards the length of the catalyst bed and effective thermal conductivity. In this 

case, the length of the catalyst bed is small (3 mm), and so, the time step and the corresponding 

temperature rise for modeling the catalyst bed reduces significantly for a FTCS system and the 

value of time step reaches up to 0.27 second for the above conditions. Therefore, the temperature 

rise value used for the modeling, i.e., 0.00833
 
K rise in temperature of the reactor for every 0.25 

second, should be less than the experimental temperature rise of 2
 
K/min and the corresponding 

time step is calculated based on stability conditions to avoid unbounded solutions. If the time 

step from the stability condition is further reduced by increasing the discretizations the model 

dynamically adjusts the temperature rise value for calculating the conversion profiles. This 

adjustment in reducing the temperature step from 0.00833
 
K rise for every 0.25 second to 

0.001667 K for every 0.05 second significantly increases the computational time due to the 

calculation of species at each time step with the increased number of nodes. This increases the 

computational time exponentially with negligible increase in the accuracy of the model when 

compared with the experimental data. 

 Increasing the spatial discretization of the bed increases computational time while 

influencing model accuracy. This effect is due to the increase in the number of nodes that are 

used to attain steady-state for the species equation. The mean computational time and standard 
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deviation after 15 cycles for different discretizations are listed in Table 6 with corresponding 

error percentage values for the light-off temperatures when compared to the experimental values. 

The results show than an increase in the number of discretizations beyond six raises the 

computational time with a negligible increase in accuracy. Therefore, the following parametric 

studies for the species and energy equations are modeled using a discretization equal to six. 

 

Table 6: Effect of discretization on the computational time and accuracy of the light-off temperature 

Number of Nodes Computational Time (sec) Standard Deviation Percentage Error 

5 378 2.912 0.85% 

6 498 7.057 0.61% 

7 644 7.124 0.514% 

8 760 8.260 0.514% 

9 930 8.922 0.514% 

  

 In addition to the computational time studies, sensitivity study on the reaction kinetics is 

essential to check the model's dependency on the chemical kinetics parameters. The activation 

energy for the reaction modeled is constant for the given partial pressures, but the pre-

exponential factor in the Arrhenius equation is a cure-fit. It is understood that the activation 

energy and pre-exponential factor is sensitive towards the conversion curves and the activation 

energy depends on partial pressures of the reactants [254] [255]. Effect of varying the pre-

exponential factor on conversion characteristics is illustrated in the Figure 14. It is inferred that 

the value of the pre-exponential factor used in the reaction rate expression is relatively sensitive 

with respect to the conversion characteristics when compared to the change in the enthalpy of 

formation (∆Hi) and the proportionality constant (fi) of the adsorption step used in the kinetic rate 
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expression. However, when the pre-exponential factor is reduced by more than 50% of its 

original cure-fit value, the conversion characteristics of the species completely changes with a 

maximum of 10% conversion of the reactant species over the experimental temperature range. 
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Figure 14: Comparison between experimental and simulated (a) NO and (b) CO conversion curves vs. 

temperature over rhodium/alumina catalysts for a range of Pre-exponential factors [Series Pore Diffusion 

Model and Parallel Flow Conductivity Model with discretization equal to six]   

 Now that the model accuracy and the kinetic rate parameter dependency has been 

verified, this work explores the dependency of the model on different diffusion and thermal 

conductivity models that can be used in a packed bed reactor simulation. This is accomplished in 

order to understand the influence and accuracy of different diffusion and thermal conductivity 

models on the species and energy equations of the packed bed reactor respectively.  

 The Series and Parallel Pore Diffusion models are constructed based on the molecular 

and Knudsen diffusivities acting in series and parallel respectively along the catalyst bed.  In 

particular, the effective resistances on macro- and micro-pores of the pellets are considered when 

predicting the effective conversion of the species. Furthermore, the Random Pore model 

considers the detailed influence of micro- and macro-porosities of the pellets for the species 
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conversion. Based on the availability of experimental data and literature review of various 

diffusion models; it is important to understand the difference between the series pore model by 

Evans and Watson [187], the Parallel Pore model by Wheeler [185,224] and Random Pore model 

by Wakao and Smith [218]. Other models, such as the Cylindrical Pore and Axial Dispersion 

versions, are not considered. This is because the Cylindrical Pore model requires knowledge of 

the radial porosity of the catalyst bed, and the axial dispersion model is neglected due to the 

relatively high Reynolds number condition of the modeled experiment [243]. Thus, the effect of 

the three most widely used diffusion models, while keeping the thermal conductivity modeled in 

a parallel flow manner, is presented in Figure 15. These diffusion models are used when the flow 

is laminar and with negligible pressure drop. 
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Figure 15: Comparison between experimental and simulated (a) NO and (b) CO conversion curves 

respectively, for Series, Parallel and Random Pore models vs. temperature over Rh/Al2O3 catalysts [Parallel 

Flow Conductivity model with discretization equal to six]  

   These figures demonstrate that the Parallel Pore (Eqn. (219)) and Random Pore (Eqn. 

(208)) models result in similar conversion profiles as that of the Series Pore model.  This is 
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because all models end up calculating a similar effective diffusivity that has a minimal effect on 

the light-off characteristics when incorporated with porosity, concentrations and space velocity 

parameters of this particular experiment. The computational time for each diffusion model is 

presented in Table 7.  The Random Pore model takes longer to run when compared to the other 

diffusion models because of the inclusion of micro-pore and macro-pore diffusion calculations at 

each node. As a result, since the Series Pore Diffusion model takes the least amount of time with 

minimum amount information needed to calculate the diffusion coefficients and has equivalent 

accuracy with respect to the NO-CO conversion profiles and the experimental data, this diffusion 

model is utilized to study the effect of different thermal conductivity models on the conversion 

curves.    

Table 7: Comparison of computational time's average different diffusion models with the same effective 

thermal conductivity model (all models run using discretization value of six) 

Diffusion Model Computational Time (sec) Standard Deviation Percentage Error 

Series Pore 644.00 6.124 0.514% 

Parallel Pore 644.52 7.812 0.514% 

Random Pore 649.20 6.473 0.514% 

  

 The axial effective thermal conductivity correlations suggested by Yagi et al. [189], 

Winterberg et al. [7], Elasri & Hughes [239], Dixon and Creswell [191] and Krupiczka [180] are 

neglected in the parametric studies due to the relatively high Reynolds number simulated [243] 

and insufficient experimental data corresponding to the calculation of the static thermal 

conductivity needed for these correlations. In addition, the influence of axial effective thermal 

conductivity decreases with a decrease in pellet particle size from 0.1 mm [239].  For the 

experiment modeled, pellet particle size is on the order of 10
-5

 m (powdered form) that should 
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result in a negligible impact of axial conductivity on the energy equation [239]. Thus, this work 

simulates the effective thermal conductivity models proposed by Zehner and Schlunder (Eqn. 

(236), Opris and Johnson (Eqn. (247), Younis (Eqn. (251), Tavman (Eqn. (253) and Nield and 

Bejan Eqn. (252). These correlations for a pseudo-homogeneous model provide an investigation 

into different forms of heat transfer such as conduction; convection and radiation involved 

between the pellets and reactor under appropriate heat Biot number considerations with 

temperature ranging from 350-800K. Moreover, these models incorporate fluid and pellet 

thermal conductivities and the porosity of the pellets.  
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Figure 16: Comparison between experimental and simulated (a) NO and (b) CO conversion curves for 

Parallel, Zehner, Younis, Weighted G.M and Opris flow models vs. temperature over Rh/Al2O3 catalysts 

[Series Pore Diffusion model with discretization equal to six] 

 

 Figure 16 presents a comparison between the Opris and Johnson model, Younis model 

considering the effect of radiation between pellets, the Weighted Geometric Mean model, 

Parallel Flow model, and the Zehner and Schlunder model respectively in modeling the energy 

equation and species conversion characteristics. Similar to the various diffusion models, there is 
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negligible difference between the effective thermal conductivity models by the first three 

researchers and the Parallel Flow model on the conversion profiles and light-off temperatures. 

This is due to the calculation of a similar conductivity at the conditions employed in the reactor 

experiment.  However, the Zehner and Schlunder model demonstrates slightly different light-off 

temperature characteristics due to their calculation of a higher thermal conductivity coefficient. 

Moreover, their correlation involves the calculation of the conductivity term using a point 

contact of the pellets in the direction of heat flow leading to a further deviation from the other 

researchers’ models. Table 8 provides the values of the different effective thermal conductivities 

considering the influence of temperature.  In the case of the Younis model, radiation of the 

pellets is calculated at each temperature and utilized in the temperature equation 

correspondingly. The rest of the models are calculated based on values of the thermal 

conductivity of fluid and pellets. The computational time for all models is around 640 seconds 

with a standard deviation of 7.145.  

 

Table 8: Effective thermal conductivity values for different models and error percentage  

for NO with experimental light-off temperature 

Thermal Conductivity  

Model 

Effective Thermal 

Conductivity (W/m/K) 

Percentage 

Error for NO 

Parallel flow 0.1930 0.514% 

Zehner and Schlunder 0.2199 0.018% 

Younis model 0.2087 0.501% 

Opris and Johnson 0.1930 0.514% 

Weighted Geometric Mean 0.2081 0.504% 
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 It is important to note that since the experiment occurred at a relatively moderate Space 

Velocity (SV) of 93,000 hr
-1

, there is sufficient time for diffusion to occur through the pellets.  

This can be the reason why the different diffusion models all produced similar results. Whereas, 

the thermal conductivity models show small variations on their conversion profiles at this SV.  

This demonstrates a larger model dependency on velocity of the fluid and porosity of the 

medium. In order to study the effect of mass and heat transfer limitations on diffusion and 

thermal conductivity models, the simulations were repeated under high SV conditions. 
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Figure 17: Comparison between experimental and simulated (a) NO and (b) CO conversion curves for 

various diffusion models versus temperature over Rh/Al2O3 catalyst at high SV conditions 

 Figure 17 presents the NO and CO conversion results respectively of the different 

diffusion models simulated under a high Space Velocity of 420,000 hr
-1

.  Both the Series and 

Random Pore models show a shift towards a higher light-off temperature because of the high 

species velocity through pellets resulting in a lower residence time for the reaction to take place. 

There is a offset in the light-off characteristics by the random pore model by 1 K due to a lower 

diffusion rate in the micro-pore region when compared to Series Pore model that considers the 
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summation of molecular and Knudsen diffusivities. Furthermore, the Parallel Pore model 

violates the mass Biot limitations at a SV greater than 125,000 hr
-1

; hence, the latter model is not 

used for the mass transfer limitation studies.  
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Figure 18: Comparison between experimental and simulated (a) NO and (b) CO conversion 

 curves for various thermal conductivity models versus temperature over Rh/Al2O3 catalysts at high SV 

conditions 

 Similar to the diffusion models, thermal conductivity models are studied at a Space 

Velocity of 420,000 hr
-1

 as shown in Figure 18. The effective thermal conductivity predicted by 

all the models shows relatively small variations in their conversion profiles under appropriate 

heat Biot number limitations. Small variations in the light-off characteristics are due to the model 

dependence on the velocity of the species flowing through the reactor. Furthermore, the light-off 

temperature is increased by around 10 K when compared to the experimental values at this high 

Space Velocity due to the increase in the advective energy of the species travelling through the 

pellets.    

As a result, based on an understanding of the literature, experimental data and parametric 

studies performed, the author suggests utilizing the Series Pore Diffusion model for effective 
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diffusivity.  This is because it has equivalent accuracy as the other two models considered 

(Parallel and Random), runs slightly faster and does not violate the mass Biot limitation under 

high flow rate conditions.   

Different thermal conductivity models are proposed in the literature, and one can 

investigate their differences based on the changes in particle size and porosities of the pellets.  It 

has been found that no single model can explain the heat transfer phenomenon accurately for a 

wide range of catalyst materials and porosities [180,182,207,231,236,237,241]. In the case of a 

one-dimensional psuedo-homogeneous packed bed reactor model, the thermal conductivity 

models presented all provide a relatively good estimation of the thermal conductivity with the 

experimental findings and light-off temperature when compared to the experimental results. 

However, literature indicates that the Zehner and Schlunder model [231] typically provides a 

more accurate light-off temperature in comparison with experimental results while offering a 

better dependency on the porosity of the packed bed reactor [241].  The results in this work 

demonstrate an increased accuracy for CO conversion, but a decreased accuracy for NO 

conversion using this model.  Therefore, further testing against experimental data of the models 

is needed that will be accomplished in the Chemical and Petroleum engineering laboratories at 

the University of Kansas. 

4.9  CONCLUSION 

 A complete set of equations along with a detailed numerical scheme for one-dimensional 

modeling of a packed bed reactor has been presented following a comprehensive review of the 

literature, finite difference techniques and detailed reaction mechanisms. This work provides a 

full methodology in solving one-dimensional packed bed reactors to be used in estimating 
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conversion characteristics for a wide number of different chemical reactions. Furthermore, the 

history of detailed kinetic mechanisms of NO and CO reacting over rhodium and platinum 

catalysts are presented in order to provide global rate expressions for precisely predicting their 

light-off characteristics.  

 The results were obtained using a first principle basis of the species and energy equations 

by elaborating on all limiting conditions presented in the literature. The results illustrate that a 

careful consideration of source terms on species and energy equations with appropriate Biot 

number limitations are essential in modeling a packed bed reactor accurately.  Moreover, the 

chapters are neatly summarized with criteria affecting one-dimensional modeling and parametric 

studies in order to provide the knowledge for researchers to build more complex packed bed 

models based upon this work. Parametric studies demonstrate that conversion characteristics do 

depend on the diffusion and thermal conductivity models; however, the specific choice of model 

does not largely influence the conversion profiles because of the similar effective transport 

values. Future work will employ this model in the simulation of NO oxidation over platinum 

catalysts in order to compare with experimental values measured in a packed bed reactor at the 

University of Kansas in the Department of Chemical and Petroleum Engineering. 
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APPENDICES 

 

APPENDIX A: CHEMKIN DATA 

 In this appendix, various CHEMKIN thermodynamic data used in the modeling are 

provided. The thermodynamic data are stored as polynomial fits to find the constant pressure 

specific heat (cp) and enthalpy (Hp) of the reactants [251].  

 2 3 4

1 2 3 4 5p uc R a a T a T a T a T           (290) 

        2 3 4 5

1 2 3 4 5 6/ 2 / 3 / 4 / 5p uH R a a T a T a T a T a            (291) 

The above correlations have coefficients numbered in front of the temperature terms and these 

coefficient values are based on the species used and the temperature range. In this case, the 

author used the coefficients ranging from 300 K to 1000 K of temperature for NO, CO, N2, CO2 

and He species. The table below provides the list of polynomial coefficients for each species at 

temperature between 300 K and 1000 K.  

 

Table 9: Polynomial coefficients for the species in the packed bed reactor 

Species 
Polynomial coefficients for the specific heat and enthalpy  

a1 a2 a3 a4 a5 a6 

NO 3.376541 0.0012530634 -3.302750x10
-6

 5.217810 x10
-9

 -2.446262 x10
-12

 9817.961 

CO 3.262451 0.0015119409 -3.881755 x10
-6

 5.581944 x10
-9

 -2474951 x10
-12

 -14310.54 

N2 3.298677 0.0014082404 -3.963222 x10
-6

 5.641515 x10
-9

 -2.444854 x10
-12

 -1020.89 

CO2 2.275724 0.009922072 -1.040911 x10
-5

 6.866686 x10
-9

 -2.117280 x10
-12

 -48373.14 

He 2.500000 0 0 0 0 -745.3750 
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APPENDIX B: MOLECULAR DIFFUSION COEFFICIENT 

 This section provides data for calculating molecular diffusion coefficient using the 

Chapman-Enskog diffusion equation [210]. The table below lists values of collision diameter and 

epsilon ratio for each species used in the modeling of NO-CO reaction over rhodium/alumina 

catalysts.  

 

Table 10: Values of collision diameter and epsilon ratio for  

calculating molecular diffusion coefficients 

Species Collision Diameter (Å) Epsilon ratio (K
-1

)  

NO 3.492 116.7 

CO 3.690 91.7 

N2 3.798 71.4 

CO2 3.941 195.2 

He 2.551 10.22 
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APPENDIX C: MATLAB CODE FOR MODELING PACKED BED REACTOR 

 The MATLAB code presented in this section is to provide complete access to the 

modeling of the one-dimensional packed bed reactor and thus improve the modeling efforts 

accordingly.  

C.1. Packed bed modeling for series pore diffusion and parallel flow thermal conductivity: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%  ONE DIMENSIONAL PACKED BED REACTOR MODELING FOR AFTERTREATMENT  %%%% 
%%%%%%%%%%%%%%%%     STUDIES IN LABORATORY SCALE    %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%    PROGRAM BY: ANAND SRINIVASAN, DR. CHRISTOPHER DEPCIK    %%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% Modeling of Packed bed (or) Pellet type Catalytic Converter for %%%%% 
%%%%% NO reduction reaction by CO over rhodium/alumina is performed  %%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Finite Difference Method is used for modeling the species and energy 
% equations. FTCS (Forward Time, Center Space method is used for the  
% temperature modeling and Modified Central Difference method with forward  
% upwind interpretation is used for species equation. 
% Neumann Boundary Condition is used at the end of packed bed reactor 
% with specified initial conditions for the species and energy equation. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% Pre-allocation of the variables are done to optimize the speed %%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Parametric studies are made for various effective diffusivity and  
% thermal conductivity models and, compared with the experimental values.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Reaction Studied: CO + NO ----> (1/2) N2 + CO2  
% from 423 K to 573 K at 2 degree K/min 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Assigning Numbers to Species 
% 1:NO  - nitric oxide  
% 2:CO - carbon monoxide 
% 3:N2 - nitrogen 
% 4:CO2 - carbon dioxide 
% 5:He  - helium (Inert gas) 

  
clc;            % Clear command window screen   
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clear all;      % Clear workspace data 

  
tic             % Start Clock time 

  
% Defining Global Variables 
global E 
global DiffMix 
global Deff 
global Tia 
global i 
global Ru 
global Pres 
global RR 
global EffDia 
global EffMol 
global EffKBEp 
global u 
global L 
global dx 
global Concc 
global h 

  

  
%%%%%%%%%%%%%%%%%%%%%%   MODELING PARAMETERS      %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Universal Gas Constant (J/K/mol) 
% Ref: From Fundamentals of Heat and Mass Transfer by Frank Incorporation 
Ru=8.314;  

  
% Defining values of coefficients from Chemkin thermodynamics data which  
% needs to be incorporated for the calculation of CP and Enthalpy 
% The values given below can be used when the temperatures are from 300 to 
% 1000K for the respective species 
a11=3.376541;   a12=0.0012530634;   a13=-0.000003302750;    

a14=0.000000005217810; a15=-0.000000000002446262; a16=9817.961;        

% Coefficients of NO 
a21=3.262451;   a22=0.0015119409;   a23=-0.000003881755;    

a24=0.000000005581944; a25=-0.000000000002474951; a26=-14310.539;      

% Coefficients of CO 

a31=3.298677;   a32=0.0014082404;   a33=-0.000003963222;    

a34=0.000000005641515; a35=-0.000000000002444854; a36=-1020.8999;      

% Coefficients of N2 
a41=2.275724;   a42=0.009922072;    a43=-0.000010409113;    

a44=0.000000006866686; a45=-0.000000000002117280; a46=-48373.14;       

% Coefficients of CO2 
a51=2.500000;   a52=0.000000000;    a53=0.0000000000000;    

a54=0.0000000000000; a55=0.0000000000000; a56=-745.3750;     

% Coefficients of He 

  
% Ref: Granger et al.2001_TPDstudiesofNO-CORn_Topicsofcatalysis_V16-17_394. 
% Granger et al.1998_KineticsofNO-CORnoverRh/Al2O3_J.Catal.V175_194-203 
% Density of particle density (kg/m^3) 
DenP = 1000;        
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% Thermal Conductivity of the pellets based on Prater Number (W/m/k)  
Kp=0.22;             
% Thermal Conductivity of the gas (NO+CO+He) at initial conditions (W/m/K) 
Kg=0.14884;  
% Constant Specific Heat for pellets at Constant Pressure (J/KgK) 
Cpp = 813.25;       
% Length of Pellet bed Reactor (m) -> (6 cm) 
L=0.06;      
% Length of Catalyst bed used for modeling (m) -> (3 mm) 
Lcb = 0.003; 
% Diameter of Packed bed reactor (m) -> (1.2 cm) 
D=0.012;  
% Space velocity (per hour) 
SV = 93000;   
% Diameter of the pellets (m) 
db = 8*10^-5;           
% Pore Diameter of the pellets (m) 
dp = 1.7*10^-9; 
% Pressure of the packed bed reactor (N/m^2) (or) 1 atm 
Pres=101325;  
% Geometric Surface area per unit volume (m^2/m^3) 
Gca= 1;                                         
% Inlet Velocity for packed bed calculated from space velocity (m/s) 
u = (SV/3600)*L;    
% Porosity of the packed bed reactor from Muller's Expression 
E = 0.379 + (0.078/((D/db)-1.80)); 
% Since, we don't have data for the tortuous path. We can use Ho and 
% Strider expression for finding out tortuosity factor 
TorF = 1- (0.5*log(E)); 

% Since, we don't have data for the tortuous path. We can use Ho and 
% Strieder expression for finding out Knusden tortuosity factor 
KnTorF = (9/8)-(0.5*ln(E))+(((13/8)-(9/8))*((E)^0.4)); 
% Tortuosity of the flow in packed bed reactor 
Tor = sqrt (TorF); 
% dynamic viscosity of the fluid in (Kg/m.s) 
DyVis= 2.1974*10^-5;    

  
% Values for calculating molecular diffusivity  
% Ref: Diffusion Mass Transfer in Fluid System by Cussler 
% Collision diameter in angstroms 
Dia(1)=3.492;               % Diameter of NO 
Dia(2)=3.690;               % Diameter of CO 
Dia(3)=3.798;               % Diameter of N2 
Dia(4)=3.941;               % Diameter of CO2 
Dia(5)=2.551;               % Diameter of He 

  
% Ratio of Epsilon by kb in degree Kelvin 
EpKB(1)=116.7;              % Epsilon by Kb for NO 
EpKB(2)=91.7;               % Epsilon by Kb for CO 
EpKB(3)=71.4;               % Epsilon by Kb for N2 
EpKB(4)=195.2;              % Epsilon by Kb for CO2 
EpKB(5)=10.22;              % Epsilon by Kb for He 

  
% Molecular weight of the species  
Mol(1)=30.0061;             % Molecular Weight of NO (Kg/Kmol) 
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Mol(2)=28.01;               % Molecular Weight of CO (Kg/Kmol) 
Mol(3)=28.01348;            % Molecular Weight of N2 (Kg/kmol) 
Mol(4)=44.0095;             % Molecular Weight of CO2 (Kg/Kmol) 
Mol(5)=4.003;               % Molecular Weight of He (Kg/Kmol) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
%%%%%%%%%%%%%%%%    DISCRETIZATION OF THE REACTOR    %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
disp('Welcome to 1-D Packed Bed Modeling for NO reduction reaction by CO over 

rhodium/alumina catalysts'); 
disp('Length of the catalyst bed in 0.003 m'); 
h=input('Enter the Discretization number:');  
while h > 10 
    disp('For this modeling the length of the catalyst bed is 0.003 m and so, 

please discritize accordingly to reduce computational time'); 
    h=input('Enter the Discretization number:');   
    if isempty(h) 
    h=input('Please enter the Discretization number less than 10:');  
    end  
end  

  
% Discretization Length of the reactor (m) 
dx = Lcb/(h-1);  

  
%%%%%%%% INITIALIZE MOLE FRACTIONS AND TEMPERATURE OF THE REACTOR  %%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Initial Mole fractions are equal to the initial partial pressures of  
% NO and CO provided as the reactor operates at 1 atm pressure condition 

  
% Partial Pressure of the reactants (atm) 
P(1)=0.005;                 % Inlet NO partial pressure 
P(2)=0.005;                 % Inlet CO partial pressure 
P(3)=0;                     % Inlet N2 partial pressure 
P(4)=0;                     % Inlet CO2 partial pressure 
P(5)=0.99;                  % Inlet He partial pressure 

  
% Initial Mole fractions of the reactants to check Biot Number limitations 
X(1,1)=0.005;               % Inlet NO Mole fraction   
X(1,2)=0.005;               % Inlet CO Mole fraction   
X(1,3)=0;                   % Inlet N2 Mole fraction   
X(1,4)=0;                   % Inlet CO2 Mole fraction   
X(1,5)=0.99;                % Inlet He Mole fraction   

  
% Initial Temperature across the reactor bed (K) 
Tin=303;  

  

  
%%%%%%%%%%%%%%%%% CALCULATION OF MOLECULAR DIFFUSIVITY   %%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Initialization Molecular mass mixture (Kg/Kmol) 
MolMassMix=0;  
MolMass = zeros(5); 
for j=1:5                                                        
    MolMass(j)=0; 
    for k=1:5 
        % Calculation of Effective Collision Diameter  
        EffDia(j,k)=0.5*(Dia(j)+Dia(k));         
        % Calculation of Effective Molecular Weight 
        EffMol(j,k)=((Mol(j)+Mol(k))/(Mol(j)*Mol(k)))^0.5;        
        if j~=k 
            % Effective Energy Calculation     
            EffKBEp(j,k)=(1/((EpKB(j)*EpKB(k))^0.5));                
        end 
    end 
    % Molecular Mass of individual Species in 1 kmol of mixture (Kg/Kmol)  
    MolMass(j)= X(1,j)*Mol(j); 
    % Calculation of Molecular Mass of Mixture (Kg/Kmol) 
    MolMassMix=MolMassMix+MolMass(j);                         
end 

  
% Gas Constant of Mixture (J/Kg/K) 
Rmass=(Ru*1000)/MolMassMix; 

  
% Density of the fluid (Kg/m^3) 
DenF=Pres/(Rmass*Tin);                                       

  
 % Initializing inlet concentrations and mass fractions for all species 
 % at the initial condition  
 Cin = zeros(1,5); 
 Y = zeros(1,5); 
 KBTEp = zeros(5,5); 
 Ohm = zeros(5,5); 
 Diff = zeros(5,5); 
 DiffMix = zeros(5); 
 Dm = zeros(5); 
 DKn = zeros(5);  

  
 for j=1:5 
    % Inlet Concentration of Individual Species at first node (mol/m^3)  
    Cin(1,j)=(DenF/MolMassMix)*X(1,j)*1000;  
    % Mass Fraction of Individual Species at first node 
    Y(1,j)=(X(1,j)*Mol(j))/MolMassMix;                           
 end 

  
% Calculating Binary Molecular diffusivity of the species  
for j=1:5 
    for k=1:5 
        % Inverse Energies  
        KBTEp(j,k)=(EffKBEp(j,k)*Tin);      
        % Calculation of Omega 
        if KBTEp(j,k)<5                             
            Ohm(j,k)=1.4803*(KBTEp(j,k)^-0.397);     
        else 
            Ohm(j,k)=1.0765*(KBTEp(j,k)^-0.16);      
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        end 
        % Calculation of Indiviual Diffusion (m^2/sec) 
        Diff(j,k)=(0.000000186*Tin^1.5*EffMol(j,k))/(Pres*(9.87*10^-

6)*EffDia(j,k)^2*Ohm(j,k));  
        % Assign binary diffusions equal to zero when it goes to infinity 
        if Diff(j,k)==inf 
            Diff(j,k)=0; 
        end 
        Naa=isnan(Diff(j,k)); 
        if Naa==1 
        Diff (j,k)=0;  
        end 
    end 
end 

            
% Calculating Molecular Diffusivity of the species in mixture  
 for j=1:5       
    for k=1:5 
        if j~=k 
            % Diffusion in Mixture 
            DiffMix(j)= DiffMix(j)+(X(1,k)/Diff(j,k));       
        end 
    end 
     DiffMix(j)=((1-Y(1,j))/DiffMix(j)); 
     if DiffMix(j)==inf 
         DiffMix(j)=0; 
     end 
     Na=isnan(DiffMix(j)); 
     if Na==1 
         DiffMix(j)=0;  
     end 
 end 

  
% Molecular diffusivity of each species (m^2/sec) 

     
 for j=1:5  
 Dm(j) = DiffMix(j); 
 end  

  

  
%%%%%%%%%%%%%%%%% CALCULATION OF KNUDSEN DIFFUSIVITY   %%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Calculation of Knudsen Diffusivity of each species (m^2/sec) 
% Ref: Hayes and Kolaczkowski_ Introduction to catalytic combustion 

  
for j=1:5 
DKn(j) = (dp/3)*sqrt((8* Ru * 10^3 * Tin)/(3.14* MolMass(j))); 
if DKn(j)==inf 
   DKn(j)=0; 
end 
Na=isnan(DKn(j)); 
if Na==1 
    DKn(j)=0;  



162 

 

end  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
% To check the ratio of the diffusivities of each species less than 0.1 for 
% having reasonably very less deviation on the radial direction 
% Ref: Desmet et al.2003_Chem.Eng.Sci_V58_3203 
e(j)=0; 
for j=1:5  
e(j) = DKn(j) /Dm(j);  
end 
if e(j) < 0.1 
    disp ('The ratio of diffusivity is less than 0.1 and lumped model of the 

species equation can be used'); 
end 

  
%%%%%%%%%%%%%%%% CALCULATION OF EFFECTIVE DIFFUSIVITY   %%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Effective diffusivities of the species in m^2/sec (series Pore Model) 
Deff(j)=0; 
for j=1:5 
    Deff(j) = ((DKn(j)*Dm(j))*E)/((DKn(j)*TorF)+(KnTorF*Dm(j))); 
end 

  
% Schmidt number for each species  
Sc(j)=0; 
for j=1:5 
    Sc(j) = (DyVis)/(DenF*Deff(j)); 
    if Sc(j)==inf 
         Sc(j)=0; 
     end 
     Na=isnan(Sc(j)); 
     if Na==1 
         Sc(j)=0;  
     end 
end 

  

  
%%%%%%%%%%%%%%%%  CALCULATION OF REYNOLDS NUMBER   %%%%%%%%%%%%%%%%%%%%%%%% 

  
% Reynolds number for packed bed reactor 
% When Reynolds number of the reactor is greater than 50, we can neglect 
% axial dispersion of heat in the energy equation. Ref: Borkink,J.G.H_1991 

  
Re = (D*u*DenF)/(DyVis); 
if Re > 20 
    disp('Neglect Axial dispersion effect in the energy equation'); 
end 

  
% Reynolds number for packed bed particles 
Rep = (db*u*DenF)/(DyVis); 
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%%%%%%%%%%%%%%%%  CALCULATION OF MASS BIOT NUMBER  %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Calculation of j-factor for finding species mass transfer 
jD =  (0.667)/(E*((Rep)^0.481)); 

  
% Calculation of Species mass transfer for each species (m/s) 
km = zeros(5); 
for j=1:5 
km(j) = (jD*E*u)/((Sc(j))^0.66667); 
if km(j)==inf 
   km(j)=0; 
end 
   Na=isnan(km(j)); 
   if Na==1 
      km(j)=0;  
   end 
end 

  
% Characteristic length (m) 
Lm = (Tor*(db/2)); 

  
% To ensure the model validity - Checking Mass Transfer Biot number for 
% each species  
Bim = zeros(5); 
for j=1:5 
Bim(j) = ((km(j) * Lm)/Deff(j)); 
Na=isnan(Bim(j)); 
if Na==1 
    Bim(j)=0; 
end 
end 

  
% Mass Biot number for each species should be less than 10 for neglecting 
% radial diffusion effect-Ref: Venderbosch et al.Chem.Eng.Sci._V53_19_3355. 

  
if Bim(j) < 10              
    disp ('Mass Transfer Biot number is less than 10'); 
    disp ('Neglect diffusion effect of the species in the radial direction'); 
else  
    disp ('1-D model is invalid') 
    disp ('Please use 2-D model with radial effect') 
    pause(30) 
end 

  

  
%%%%%%%%%%%%%%%%  CALCULATION OF HEAT BIOT NUMBER  %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Characteristic length for finding thermal biot number in (m) 
Lt = D/4;   
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% Nusselt number for finding heat transfer coefficient using Li and 
% Finlayson Correlation (1977) 
Nu = 0.17*(Rep)^0.79; 

  
% Heat transfer coefficient on outside of the reactor (W/m2/K) 
hcoff = (Nu*Kg)/Lt; 

  
% Parallel flow model to find effective conductivity (W/m/K)  
% Ref: Nield and Bejan_2006_Convection in Porous Media 
Keff = Kg*(1+(3*(1-E)*((Kp/Kg)-1))/(3+E*((Kp/Kg)-1)));  
% Keff = (E*Kg)+((1-E)*Kp);    

  
% To neglect the external heat transfer term check thermal Biot number  
% Ref: Finlayson1971_Packedbedanalysis_Chem.Eng.Sci_V26_1081, Ref: Ferguson 
% andFinlayson1974_NO-COmodeling_AIChE_V20_3_539 
Bih = (hcoff*D)/(2*Keff);  

  
if Bih < 1 
    disp ('Wall Heat transfer Biot Number is less than 1 and so, neglect the 

radial effect of temperature change in the reactor'); 
else 
    disp ('1-D model is invalid') 
    disp ('Please use 2-D model with radial effect') 
    pause(30) 
end 

  
% To neglect intraparticle gradients (or) lumping pellets and bulk into 
% same temperature. The Particle Biot number condition will check this 
% statement. Ref: Ruud.J.Wijngaarden and 
% K.RoelWesterterp1993_Chem.Eng.Technol.V16_363 
Bihp = (hcoff*db)/Kp; 

  
if Bihp < 0.1  
    disp('Temperature in bulk and pellet surface can be lumped in the energy 

equation') 
else 
    disp('Two phase temperatures for pellet and bulk should be used for the 

energy equation') 
    pause(30) 
end 

  
% If the Biot number ratios of mass and heat transfer is approximately 
% equal to ten, then the concentration and temperature profiles over the 
% catalyst radius have very less gradients. ref: Venderbosch et al. 
% Chem.Eng.Sci._V53_19_3355. 

  
Biratio(j)=0; 
for j=1:5 
Biratio(j) = Bim(j)/Bih; 
Biratio(j)= round(Biratio(j)); 
end     
if ((Biratio(1))&&(Biratio(2))) < 10 
   disp ('The lumped model derived for the packed bed model can be used'); 
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end 

  
%%%%%%%%% Calculating Constant Specific Heat for Gas at Node 1: %%%%%%%%%%% 

  
Cp(1,1)=Ru*(a11+a12*Tin+a13*Tin*Tin+a14*Tin*Tin*Tin+a15*Tin*Tin*Tin*Tin); 
Cp(1,2)=Ru*(a21+a22*Tin+a23*Tin*Tin+a24*Tin*Tin*Tin+a25*Tin*Tin*Tin*Tin); 
Cp(1,3)=Ru*(a31+a32*Tin+a33*Tin*Tin+a34*Tin*Tin*Tin+a35*Tin*Tin*Tin*Tin); 
Cp(1,4)=Ru*(a41+a42*Tin+a43*Tin*Tin+a44*Tin*Tin*Tin+a45*Tin*Tin*Tin*Tin); 
Cp(1,5)=Ru*(a51+a52*Tin+a53*Tin*Tin+a54*Tin*Tin*Tin+a55*Tin*Tin*Tin*Tin); 
Cpmix=0; 

  
% Calculation of Constant Pressure Specific Heat Mol Basis (KJ/Kmol.K)   
for j=1:5 
   Cpmix=Cpmix+Cp(1,j)*X(1,j);                                 
end 

  
% Calculation of Constant Pressure Specific Heat kg basis (J/Kg.K) 
Cpmixmass=Cpmix*1000/MolMassMix;     

  
% Volumetric ratio of heat capacities by Ferguson 
% andFinlayson1974_NO-COmodeling_AIChE_V20_3_539 
Cr = (E*DenF*Cpmixmass)/((1-E)*DenP*Cpp); 
if Cr < 0.002   
    disp ('Fluid phase heat capacity term in the energy equation can be 

neglected'); 
else 
    disp ('Fluid phase heat capacity term in the energy equation is 

considered in the energy equation and not neglected'); 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
disp('Simulation paused for 40 secs to view the limitation conditions used 

for the model'); 
pause(40) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Initialization of various parameters of the reactor bed before simulation 
for i=1:h 
    % Initial Temperature Values Across the reactor in K 
    Tia(i)= 303;             
    % Initialization of Reaction Rate at Various Nodes 
    RR(i)=0;                            

     
    % Partial Pressure of the reactants (atm) 
    P(1)=0;          % Inlet NO partial pressure 
    P(2)=0;          % Inlet CO partial pressure 
    P(3)=0;          % Inlet N2 partial pressure 
    P(4)=0;          % Inlet CO2 partial pressure 
    P(5)=1;          % Inlet NO partial pressure 

     
    % Initial Mole fractions of the reactants  
    X(i,1)=0;        % Inlet NO Mole fraction   
    X(i,2)=0;        % Inlet CO Mole fraction   
    X(i,3)=0;        % Inlet N2 Mole fraction   
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    X(i,4)=0;        % Inlet CO2 Mole fraction   
    X(i,5)=1;        % Inlet He Mole fraction  

     
    % Initializing inlet concentrations and mass fractions for all 
    % species at the initial condition  
    MolMassMix=0; 

     
    for j=1:5 
    % Molecular Mass of Individual Species in 1 Kmol of Mixture(Kg/Kmol) 
    MolMasss(i,j)= X(i,j)*Mol(j);   
    % Calculation of Molecular Mass of Mixture (Kg/Kmol) 
    MolMassMix=MolMassMix+MolMasss(i,j);                           
    end 

     
    % Gas Constant of Mixture (J/Kg/K) 
    Rmass=(Ru*1000)/MolMassMix;     
    % Density of the fluid (Kg/m^3) 
    DenF=Pres/(Rmass*Tin);                                       

  
    % Inlet Concentration of Individual Species at first node (mol/m^3) 
    for j=1:5 
    Concc(i,j)=(DenF/MolMassMix)*X(i,j)*1000;                        
    Na=isnan(Cin(1,j)); 
    if Na==1 
        Concc(i,j)=0; 
    end 

  
    % Mass Fraction of Individual Species at first node 
    Y(i,j)=(X(i,j)*Mol(j))/MolMassMix;                            
    Na=isnan(Y(i,j)); 
    if Na==1 
        Y(i,j)=0; 
    end  
    end     
end   

  
% Option for ODE Solver 
options=odeset('RelTol',1e-6,'Stats','on');  

  
%%%%%%%  Starting calculation for Initial time step at first node  %%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Initial Mole fractions of the reactants.  
    X(1,1)=0.005;           % Inlet NO Mole fraction   
    X(1,2)=0.005;           % Inlet CO Mole fraction   
    X(1,3)=0;               % Inlet N2 Mole fraction   
    X(1,4)=0;               % Inlet CO2 Mole fraction   
    X(1,5)=0.99;            % Inlet He Mole fraction  

     
    % Initializing inlet concentrations and mass fractions for all 
    % species at the initial condition  

     
    MolMassMix=0; 
    Cinp = zeros(10,5); 
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    Cinpp = zeros(10,5); 

     
    for j=1:5 
    % Molecular Mass of Individual Species in 1 Kmol of mixture (Kg/Kmol) 
    MolMasss(1,j)= X(1,j)*Mol(j);   
    % Calculation of Molecular Mass of Mixture (Kg/Kmol) 
    MolMassMix=MolMassMix+MolMasss(1,j);                           
    end 

     
    % Temperature at node 1 (K) 
    Tia(1)=423; 
    % Gas Constant of Mixture (J/Kg/K) 
    Rmass=(Ru*1000)/MolMassMix;               
    % Density of the fluid (Kg/m^3) 
    DenF=Pres/(Rmass*Tia(1));       

     
    % Inlet Concentration of Individual Species at first node (mol/m^3) 
    for  j=1:5 
    Concc(1,j)=(DenF/MolMassMix)*X(1,j)*1000;                      
    Na=isnan(Cin(1,j)); 
    if Na==1 
    Concc(1,j)=0; 
    end 
    end 

     
    for i=2:h 
        for j=1:5  
          Cinp(i,j)=Concc(i,j);  
          Cinpp(i,j)=Concc(i,j); 
        end 
    end 
%%%%%%%% Calculating Constant Specific Heat for Gas at Node 1: %%%%%%%%%%% 

  
Cp(1,1)=Ru*(a11+a12*Tia(1)+a13*Tia(1)*Tia(1)+a14*Tia(1)*Tia(1)*Tia(1)+a15*Tia

(1)*Tia(1)*Tia(1)*Tia(1)); 
Cp(1,2)=Ru*(a21+a22*Tia(1)+a23*Tia(1)*Tia(1)+a24*Tia(1)*Tia(1)*Tia(1)+a25*Tia

(1)*Tia(1)*Tia(1)*Tia(1)); 
Cp(1,3)=Ru*(a31+a32*Tia(1)+a33*Tia(1)*Tia(1)+a34*Tia(1)*Tia(1)*Tia(1)+a35*Tia

(1)*Tia(1)*Tia(1)*Tia(1)); 
Cp(1,4)=Ru*(a41+a42*Tia(1)+a43*Tia(1)*Tia(1)+a44*Tia(1)*Tia(1)*Tia(1)+a45*Tia

(1)*Tia(1)*Tia(1)*Tia(1)); 
Cp(1,5)=Ru*(a51+a52*Tia(1)+a53*Tia(1)*Tia(1)+a54*Tia(1)*Tia(1)*Tia(1)+a55*Tia

(1)*Tia(1)*Tia(1)*Tia(1)); 
Cpmix=0; 

  
% Calculation of Constant Pressure Specific Heat Mol Basis (KJ/Kmol.K)   
for j=1:5 
   Cpmix=Cpmix+Cp(1,j)*X(1,j);                                 
end 

  
% Calculation of Constant Pressure Specific Heat kg basis (J/Kg.K) 
Cpmixmass=Cpmix*1000/MolMassMix;     

  
% 'AConstant' is used in the energy equation   



168 

 

Aconstant = ((1- E)* DenP * Cpp)+(E*DenF*Cpmixmass); 
% 'Bconstant' for finding time step in energy equation 
Bconstant = (E*DenF*Cpmixmass)/(((1- E)* DenP * Cpp)+(E*DenF*Cpmixmass));   

  
%%%%%%%%%% Defining the Time Difference for Temperature Modeling %%%%%%%%%% 
delt=(2*Keff)/(Aconstant*(Bconstant^2)*(u^2));   
delt1 = ((dx^2)*(Aconstant))/(Keff);  

  
% The above equation is used for finding time step which provides the 
% minimum value for the time step and thus, used for modeling purposes 
% Defining the Time Step as Per Input File 
 if delt1 > 0.25    
  TimeStep=0.25;    
 else   
    TimeStep=0.1;  
    TempStep = (2/60)* TimeStep; 
    disp ('Change the Temperature step value to:'); 
    disp(TempStep); 
    pause(30) 
 end 
 if (TimeStep < delt)&&(TimeStep < delt1) 
  dt=TimeStep;    
 else 
   disp ('Check the time step for stability conditions'); 
   pause (100)  
 end  

  
% Defining the Initial Value for Time 
a=1;  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%   TEMPERATURE AND SPECIES MODELING FROM NODES '2' to 'h' FOR    %%%%% 
%%%%%   EACH TIME STEP - INCREMENT BASED ON STABILITY CONDITIONS      %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
 % Pre-allocate variables for the maximum possible time and space steps 
 Hp = zeros(10,5); 
 THR = zeros(10,1); 
 Hcond = zeros(10,1); 
 Hconv = zeros(10,1); 
 Tf = zeros(10,1); 
 Cinn = zeros(10,5); 
 B = zeros(5); 
 C = zeros(10,5); 
 MolMasss = zeros(10,5); 
 Dm = zeros(10,5); 
 DKn = zeros(10,5); 

   
for T=423:0.0083333:573                                    % 2 degree K/min 
    % If the time step(dt) is 0.1, then use temperature rise step as 0.0033 

  
    % Initial Mole fractions is equal to the initial partial pressures of  
    % NO and CO provided and the reactor operates at 1 atm pressure  

     



169 

 

    % Calculation of Pellet Temperature at Next Time Step. 
    for i=2:h   

         
        % Calculation of Enthalpy for each species (J/kg) 
        % Calculation of Enthalpy for NO 
        

Hp(i,1)=Ru*Tia(i)*(a11+((a12*Tia(i))/2)+(a13*Tia(i)*Tia(i)/3)+(a14*Tia(i)*Tia

(i)*Tia(i)/4)+(a15*Tia(i)*Tia(i)*Tia(i)*Tia(i)/5)+(a16/Tia(i)));       
        % Calculation of Enthalpy for CO 
        

Hp(i,2)=Ru*Tia(i)*(a21+((a22*Tia(i))/2)+(a23*Tia(i)*Tia(i)/3)+(a24*Tia(i)*Tia

(i)*Tia(i)/4)+(a25*Tia(i)*Tia(i)*Tia(i)*Tia(i)/5)+(a26/Tia(i)));       
        % Calculation of Enthalpy for N2 
        

Hp(i,3)=Ru*Tia(i)*(a31+((a32*Tia(i))/2)+(a33*Tia(i)*Tia(i)/3)+(a34*Tia(i)*Tia

(i)*Tia(i)/4)+(a35*Tia(i)*Tia(i)*Tia(i)*Tia(i)/5)+(a36/Tia(i)));       
        % Calculation of Enthalpy for CO2 
        

Hp(i,4)=Ru*Tia(i)*(a41+((a42*Tia(i))/2)+(a43*Tia(i)*Tia(i)/3)+(a44*Tia(i)*Tia

(i)*Tia(i)/4)+(a45*Tia(i)*Tia(i)*Tia(i)*Tia(i)/5)+(a46/Tia(i)));       
        % Calculation of Enthalpy for He 
        

Hp(i,5)=Ru*Tia(i)*(a51+((a52*Tia(i))/2)+(a53*Tia(i)*Tia(i)/3)+(a54*Tia(i)*Tia

(i)*Tia(i)/4)+(a55*Tia(i)*Tia(i)*Tia(i)*Tia(i)/5)+(a56/Tia(i)));       

       
        % Total Heat Released from NO - CO reaction 
        THR(i)=(-Hp(i,1)*RR(i))-

(Hp(i,2)*RR(i))+(Hp(i,3)*RR(i)*0.5)+(Hp(i,4)*RR(i)); 

                         
        if i<h 
            % Heat From Conduction 
            Hcond(i)=(((Keff*dt)/(Aconstant*dx*dx))*(Tia(i+1)-

(2*Tia(i))+(Tia(i-1))));   
            % Heat From Convection 
            Hconv(i)=(((u*Bconstant*dt)/(2*dx))*(Tia(i+1)-Tia(i-1)));                    
            % Calculations of pellet reactor at new node  
            Tf(i)=Tia(i)-Hconv(i)+ Hcond(i)-((dt/Aconstant)*THR(i));                         
        else 
            % Heat From Conduction 
            Hcond(i)=(((2*Keff*dt)/(Aconstant*dx*dx))*(Tia(i-1)-Tia(i))); 
            % Heat From Convection 
            Hconv(i)=0;                  
            % End Boundary Condition for pellet reactor at the end 
            Tf(i)=Tia(i)-Hconv(i)+ Hcond(i)-((dt/Aconstant)*THR(i));                         
        end 
    end         

     
    Tia(1)=T; 
    for i=2:h 
        Tia(i)=Tf(i);    
    end 

  
%%%%%%%%%%%%%%%%%%%%%%%     SPECIES MODELING      %%%%%%%%%%%%%%%%%%%%%%%%% 
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   % While loop to make the species concentrations from nodes '2' to 'h' 
   % steady state for the corresponding temperature 

    
 delc = 1; 
 while delc > 0.0000000001  
   for i=2:h  

       
      for j=1:5      
      % Molecular Mass of Individual Species in 1 Kmol of Mixture (Kg/Kmol)   
      MolMasss(i,j)= X(i,j)*Mol(j);                                  
      % Calculation of Molecular Mass of Mixture (Kg/Kmol) 
      MolMassMix=MolMassMix+MolMasss(i,j);                          
      end   

       
   % Calling Molecular diffusivity calculator Function  
   [DiffMix]=MolecularDiffusion(Tia,X,Y); 

  
   for j=1:5 
       % Molecular diffusivity of each species at each node (m^2/sec) 
       Dm(i,j)=DiffMix(j);  

               
       % Knudsen Diffussivity of each species at each node (m^2/sec) 
       DKn(i,j) = (dp/3)*sqrt((8* Ru * 10^3 * Tia(i))/(3.14* MolMasss(i,j))); 
       if DKn(i,j)==inf 
         DKn(i,j)=0; 
       end  
         Na=isnan(DKn(i,j)); 
       if Na==1 
         DKn(i,j)=0;  
       end 

         
       % Effective diffusivity of each species  at each node (m^2/sec) 
       Deff(i,j) = ((DKn(i,j)*Dm(i,j))*E)/(DKn(i,j)*TorF)+(KnTorF*Dm(i,j)); 
   end   

    
   % Solving Concentration at each nodes for the corresponding temperature  
   delb = 1;     
   % While loop used to obtain steady state solution 
   while delb > 0.0000000001  
        % Calling ODE Solver for the corresponding node 
        [t,Z]=ode15s(@SpeciesODE, [0 dt],Cinp(i,:), options);                     
        [m,n]=size(Z);  
            % Putting the Values back in designated species 
            Cinn(i,1)=Z(m,1);                                        
            Cinn(i,2)=Z(m,2);                                        
            Cinn(i,3)=Z(m,3);                                        
            Cinn(i,4)=Z(m,4);                                        
            Cinn(i,5)=Z(m,5);                                        
        for j=1:5        
        % Calculate error to make concentration steady state at that node  
            B(j)=abs(Cinn(i,j)-Cinp(i,j));                               
            Concc(i,j)=Cinn(i,j); 
            Cinp(i,j)=Cinn(i,j); 
        end 
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        % The maximum value in the array is compared with 'delb' 
        delb=max(B);  
    end   

          
   end       

     
   for i=2:h 
    for j=1:5 
        % Calculate error to make concentration steady state at all nodes 
        C(i,j)=abs(Concc(i,j)-Cinpp(i,j)); 
        Cinpp(i,j)=Concc(i,j); 
    end 
   end 
   % The maximum value in the array is compared with 'delc' 
   delc=max(C); 

         
 end         
    % Store Temperature each cycle 
    Tempp(a,1)=T; 
    % Store: NO and CO conversions of the packed bed reactor (%) 
    NOConv(a,1)=((Concc(1,1)-Cinpp(h,1))/Concc(1,1))*100; 
    COConv(a,2)=((Concc(1,2)-Cinpp(h,2))/Concc(1,2))*100;  

    
    % Increment the counter step by 1 
    a = a + 1;     
end           

  
% Plot for Temperature Vs Concentration of NO  
    figure; 
    plot(Tempp(:,1),NOConv(:,1)) 
    xlabel('Inlet Temperature (K)') 
    ylabel('Conversion of NO in (%)') 
    legend('NO Conversion Curve') 
    axis([423 573 0 100]) 
    title('Conversion Curve for NO reduction by CO') 

     
% Plot for Temperature Vs Concenration of CO  
    figure; 
    plot(Tempp(:,1),COConv(:,2)) 
    xlabel('Inlet Temperature (K)') 
    ylabel('Conversion of CO in (%)') 
    legend('CO Conversion Curve') 
    axis([423 573 0 100]) 
    title('Conversion Curve for NO reduction by CO')  

  
% Provides total process time of the model 
SimulationTime = toc;  

   
%End Program 

 

C.2.  ODE15s sub-routine for calculating species concentrations: 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%  ODE SOLVER FOR SPECIES EQUATION   %%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
% ODE Function to solve concentration of the species for the corresponding 
% node and temperature 
function dZdt = SpeciesODE(t,Z) 

  
% Defining Global Variables 
  global E 
  global Deff 
  global Tia 
  global i 
  global u 
  global Concc 
  global Ru 
  global dx 
  global RR 
  global h 
  global Pres 

  
% Assigning Numbers to Species 
% 1:NO 
% 2:CO 
% 3:N2 
% 4:CO2 
% 5:He  

  
% Getting the Initial Values from array 
Cs(1)=Z(1); 
Cs(2)=Z(2); 
Cs(3)=Z(3); 
Cs(4)=Z(4); 
Cs(5)=Z(5); 

  
% Values from Granger et. al.  
% Pre-Exponential factor (mol/m^2.sec) => Conversion from (mol/gm/hr) 
% ((7.4453657*10^21)*0.023)/(3600*3.14*0.012*0.003) 
PreExp=0.33*10^21; 
% Activation Energy in J/mol which is 47kcal/mol for NO dissociation step 
Ea =196648; 
% Per Atmosphere  
ANO=2.4*10^-2; 
% The Enthalpy is calculated using the equation given by Granger et al. 
% 2001_TPDstudies_Topicsofcatalysis_V16-17_394. 
% Enthalpy for NO and CO are calculated based on their partial pressures 
% and correlation factors given in Granger et al.2001. This correlation 
% takes care of the influence of partial pressures and temperature on the 
% reactor 

  
% Enthalpy of NO in J/mol  
HNO=-48576;                            
% Equilibrium Constant of NO 
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KNO=ANO*exp(((-1)*(HNO))/(Ru*Tia(i))); 
% Per Atmosphere 
ACO=1.4*10^-2; 
% Enthalpy of CO in J/mol 
HCO=-32554;                            
% Equilibrium Constant of CO 
KCO=ACO*exp(((-1)*(HCO))/(Ru*Tia(i))); 

  
%Partial pressures for calculating reaction rates  
Ctot = 0; 
for j=1:5 
    Ctot = Ctot + Cs(j); 
end 

     
PP(1)=(9.86923*(10^-6)*Pres)*(Cs(1)/Ctot); 
PP(2)=(9.86923*(10^-6)*Pres)*(Cs(2)/Ctot); 
if PP(1)<0  
    PP(1)=0;  
end 
if PP(2)<0 
    PP(2)=0; 
end  

  
% Reaction Rate Expression for NO dissociation step 
% Ref: AnandSrinivasanandDr.Depcik2010_Cat.Rev.Sci.Eng._V52_1-32 
RR(i)=((PreExp * exp(-1*((Ea)/(Ru*Tia(i)))) 

*(KNO*PP(1)))/((1+(KNO*PP(1))+(KCO*PP(2)))^2)); 

  
%Calculation of Concentrations for the corresponding time step 
if i<h 

  
dZdt(1)=-((((Cs(1))-(Concc((i-1),1)))*E*u)/(dx)) 

+(Deff(i,1)*E*((Concc((i+1),1))-(2*Cs(1))+(Concc((i-1),1)))/(dx^2))-(RR(i)); 
dZdt(2)=-((((Cs(2))-(Concc((i-1),2)))*E*u)/(dx)) 

+(Deff(i,2)*E*((Concc((i+1),2))-(2*Cs(2))+(Concc((i-1),2)))/(dx^2))-(RR(i)); 
dZdt(3)=-((((Cs(3))-(Concc((i-1),3)))*E*u)/(dx))+(Deff(i,3)*E* 

((Concc((i+1),3))-(2*Cs(3))+(Concc((i-1),3)))/(dx^2))+(0.5*RR(i)); 

dZdt(4)=-((((Cs(4))-(Concc((i-1),4)))*E*u)/(dx))+(Deff(i,4)*E* 

((Concc((i+1),4))-(2*Cs(4))+(Concc((i-1),4)))/(dx^2))+(RR(i)); 
dZdt(5)=-((((Cs(5))-(Concc((i-1),5)))*E*u)/(dx))+(Deff(i,5)*E* 

((Concc((i+1),5))-(2*Cs(5))+(Concc((i-1),5)))/(dx^2));      

  
% Concentration calculation for the node i=h (or) last node of  
% the reactor using Neumann boundary condition 
else 

  
dZdt(1)=-((((Cs(1))-(Concc((i-1),1)))*E*u)/(dx))+(Deff(i,1)*E*((2*Concc((i-

1),1))-(2*Cs(1)))/(dx^2))-(RR(i)); 
dZdt(2)=-((((Cs(2))-(Concc((i-1),2)))*E*u)/(dx))+(Deff(i,2)*E*((2*Concc((i-

1),2))-(2*Cs(2)))/(dx^2))-(RR(i)); 
dZdt(3)=-((((Cs(3))-(Concc((i-1),3)))*E*u)/(dx))+(Deff(i,3)*E*((2*Concc((i-

1),3))-(2*Cs(3)))/(dx^2))+(0.5*RR(i)); 
dZdt(4)=-((((Cs(4))-(Concc((i-1),4)))*E*u)/(dx))+(Deff(i,4)*E*((2*Concc((i-

1),4))-(2*Cs(4)))/(dx^2))+(RR(i)); 
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dZdt(5)=-((((Cs(5))-(Concc((i-1),5)))*E*u)/(dx))+(Deff(i,5)*E*((2*Concc((i-

1),5))-(2*Cs(5)))/(dx^2));     

  
end 

  
dZdt=dZdt'; 

C.3. Sub-routine for calculating molecular diffusivity of the species: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%  MOLECULAR DIFFUSIVITY   %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
% Function for calculating Molecular Diffusion for NO-CO species 
function [DiffMix]=MolecularDiffusion(Tia,X,Y) 

  
global i 
global EffDia 
global EffMol 
global EffKBEp 
global Pres 

  
KBTEp=zeros(5,5); 
Ohm=zeros(5,5); 
Diff=zeros(5,5); 
DiffMix=zeros(5); 

  
% Binary Diffusion of Species (m^2/sec) 

  
for n=1:5 
    for k=1:5 
        % Inverse Energies  
        KBTEp(n,k)=(EffKBEp(n,k)*Tia(i)); 
        % Calculation of Omega 
        if KBTEp(n,k)<5   
            % Equation from Curve Fitting in Excel 
            Ohm(n,k)=1.4803*(KBTEp(n,k)^-0.397);     
        else 
            % Equation from Curve Fitting in Excel 
            Ohm(n,k)=1.0765*(KBTEp(n,k)^-0.16);     
        end 
        % Calculation of Binary Diffusion (m^2/sec) 
        Diff(n,k)=(0.000000186*Tia(i)^1.5*EffMol(n,k))/(Pres*(9.87*10^-

6)*EffDia(n,k)^2*Ohm(n,k));   
        % 'Not-a-number' values are checked in the array and assigned to be 
        % zero 
        if Diff(n,k)==inf 
            Diff(n,k)=0; 
        end  
        Naa=isnan(Diff(n,k)); 
        if Naa==1 
         Diff (n,k)=0;  
        end 
    end 



175 

 

end 

  
% Diffusion of Species in mixture 

    
  for n=1:5 
     % Initialization 
     DiffMix(n)=0;                                          
     for k=1:5 
        if n~=k 
            % Diffusion in Mixture 
            DiffMix(n)= DiffMix(n)+(X(i,k)/Diff(n,k));       
        end 
    end 
     DiffMix(n)=((1-Y(i,n))/DiffMix(n)); 
     % 'Not-a-number' values are checked in the array and assigned to be zero 
     if DiffMix(n)==inf 
         DiffMix(n)=0; 
     end 
     Na=isnan(DiffMix(n)); 
     if Na==1 
         DiffMix(n)=0;  
     end 
 end 
end 
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