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Abstract

In this work we obtain results related to H-sets, Katětov spaces, and H-closed exten-

sions with countable remainder. As we shall see, these three areas are closely related

but the results of each section carry their own definite flavor.

Our first results concern finding cardinality bounds of H-sets in Urysohn spaces. In

particular, a Urysohn space X is constructed which has an H-set A with |A| > 2ψ̄(X),

where ψ̄(X) is the closed pseudocharacter of the space X . The space provides a coun-

terexample to Fedeli’s question in [16]. In addition, it is demonstrated that there is no

θ -continuous map from a compact Hausdorff space to the space X with the H-set A as

the image, giving a Urysohn counterexample to Vermeer’s conjecture in [51]. Finally,

it is shown that the cardinality of an H-set in a Urysohn space X is bounded by 2χ(Xs),

where χ(X) is the character of X and Xs is the semiregularization of X . This refines

Bella’s result in [4] that the cardinality of such an H-set is bounded by 2χ(X).

The next section concerns the relationship of H-sets and Katětov spaces. We recall

that a Katětov space can be embedded as an H-set in some space. Herrlich showed in

[23] that the space of rational numbers, Q, is not Katětov. Later Porter and Vermeer [41]

refined this result with the fact that countable Katětov spaces are scattered. We obtain

a similar refinement of Herrlich’s result, and a generalization under an additional set-

theoretic assumption. Our results include that a countable crowded space cannot be
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embedded as an H-set and that, assuming the Continuum Hypothesis, neither can the

minimal η1 space.

Chapter 4 investigates necessary and sufficient conditions for a space to have an

H-closed extension with countable remainder. For countable spaces we are able to give

two characterizations of those spaces admitting an H-closed extension with countable

remainder.

The general case appears more difficult, however, we arrive at a necessary condition

– a generalization of Čech completeness, and several sufficient conditions for a space to

have an H-closed extension with countable remainder. In particular, using the notation

of Császár in [11], we show that a space X is a Čech g-space if and only if X is Gδ in

σX or equivalently if EX is Čech complete. An example of a space which is a Čech

f -space but not a Čech g-space is given answering a couple of questions of Császár.

We show that if X is a Čech g-space and R(EX), the residue of EX , is Lindelöf, then

X has an H-closed extension with countable remainder. Finally, we investigate some

natural extensions of the residue to the class of all Hausdorff spaces.
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Chapter 1

Introduction

In this work we consider two generalizations of compact Hausdorff spaces along a

certain line. In particular, all spaces considered will be Hausdorff.

The class of compact Hausdorff spaces is perhaps the best known and useful class

of topological spaces. As a few examples of how well-behaved the class of compact

Hausdorff is recall the following facts.

• A closed subset of a compact Hausdorff space is compact Hausdorff.

• A continuous image of a compact Hausdorff space is compact Hausdorff.

• A product of compact Hausdorff spaces is compact Hausdorff.

• Every Tychonoff space can be densely embedded in a compact Hausdorff space.

Sometimes a salient feature of a property stands out more plainly in a well-chosen

generalization of the property. Many different generalizations of compact Hausdorff

have been considered in the literature, e.g. the Lindelöf property, paracompactness,

metacompactness, and several others.

We consider here two similar generalizations of a compact space: an H-closed space

and an H-set. We will see that many of the properties of compact spaces extend to H-
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closed spaces and H-sets as well – with some subtle but important differences. As a

preview, consider these properties parallel to the properties of compact spaces above.

• A regular closed subset of an H-set is H-closed.

• A θ -continuous image of an H-set is an H-set.

• A product of H-closed spaces is H-closed.

• Every Hausdorff space can be densely embedded in an H-closed space.

The first new results presented here concern finding cardinality bounds on H-sets

in terms of well-known cardinal functions. These results extend a tradition of similar

bounds. For example, in [35] Pol proved that if X is a compact space then |X | ≤ 2χ(X).

Several years later, Dow and Porter [14] extended Pol’s result to H-closed spaces, i.e.

if X is an H-closed space then |X | ≤ 2χ(X). In fact, they showed |X | ≤ 2ψ̄(X) when X is

H-closed. Finally, Bella [4] was able to extend Pol’s result even to H-sets of Urysohn

spaces: if A is an H-set in X and X is Urysohn then |A| ≤ 2χ(X). Our results here refine

Bella’s result by showing providing an example of an Urysohn space X with an H-set

A with |A|> 2ψ̄(X).

Recall that if τ is a Hausdorff topology on a set X and τ ⊆ σ then the topology on

X generated by σ will also be Hausdorff. Also notice that if τ is a compact topology on

X and σ ⊆ τ then the topology generated by σ is compact. If one considers the lattice

of all topologies on an infinite set then the Hausdorff topologies occupy the upper part

of the lattice, whereas the compact topologies occupy the lower part. These two major

classes of topologies on a set meet in the family of compact Hausdorff topologies. Note

that every infinite set must have some compact Hausdorff topology by the well-ordering

lemma. It turns out that any two compact Hausdorff topologies are incomparable in this

lattice, i.e. if one adds open sets the space is no longer compact whereas if one removes
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open sets the space is no longer Hausdorff. The set of compact Hausdorff spaces then

forms an anti-chain in the lattice of topologies. A reasonable question to ask then is

whether this anti-chain is maximal. It turns out it is not. Indeed, there are spaces,

which we will call minimal Hausdorff, which have no coarser Hausdorff topology, but

are not compact as they are not Urysohn.

Examining the top part of the lattice of topologies, the Hausdorff topologies, in

closer detail we find that some Hausdorff spaces don’t even have a coarser minimal

Hausdorff topology. The best known example of this is the space of rational numbers

Q, as shown by Herrlich [23]. For Q, one may think of this property as meaning that

every coarser Hausdorff topology on the space has sequences which do not converge.

Topological spaces which do have a coarser minimal Hausdorff topology are called

Katětov. One of our major results is the proof that a well known generalization of Q,

the minimal η1 space, is not Katětov – if one assumes the Continuum Hypothesis.

The last part of this work concerns finding H-closed extension of Hausdorff spaces.

We will see that the theory of H-closed extensions is in many aspects parallel to the

theory of compactifications of a Tychonoff space. As Porter and Stephenson [38] say:

“The starting point for the theory of H-closed [extensions] is a problem posed in 1924

by P. Alexandroff and P. Urysohn about whether a space can be densely embedded in

some H-closed space.”

Just as the theory of compactifications is invaluable to the study of Tychonoff

spaces, the theory of H-closed extensions is a major part of the study of general Haus-

dorff spaces. The most familiar, and perhaps oldest examples of compactifications, are

the “small” compactifications of the real line, namely extended real line and the one

point compactification, S1.

In 1930, Tychonoff [49] showed that every completely regular T1 space can be

densely embedded in a compact Hausdorff space – in fact, constructing the projec-
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tive maximum of all compactifications of a space X : βX . However, it took until the

late 1930s for Alexandroff and Urysohn’s question to be answered positively [46, 29,

17, 1, 45]. As one might expect, each of these constructions was projectively large in

the family of all H-closed extensions.

Returning to the “small” compactifications of the reals, we notice that S1 is also a

compactification of the rationals, Q, and of the irrationals, P. However, one might say

that S1 is a small compactification of P since the difference, S1 \P is countable, while,

on the other hand, it is a “large” compactification of Q since S1 \Q is uncountable. In

fact, Q has no “small” compactification.

Here we will examine what conditions will guarantee that a space has a “small” ex-

tension – in particular, an H-closed extension with countable remainder. For the case of

countable spaces, we obtain two characterizations of spaces with an H-closed extension

with countable remainder – in particular, the fact that Q has no H-closed extension with

countable remainder will be a corollary. For the general case we consider a necessary

condition and several sufficient conditions for a space to have an H-closed extension

with countable remainder.
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Chapter 2

Preliminaries

Several basic definitions will be required throughout the paper. We give some defini-

tions, notation, and a few examples which the reader should keep in mind throughout.

We will assume the reader is familiar with several basic notions of topology, in par-

ticular separation axioms, compactness, extensions, the Stone-Čech compactification,

and filters on a family of sets. All spaces considered in this dissertation will be Haus-

dorff and examples will either easily be seen to be or will be explicitly shown to be

Hausdorff.

2.1 Semiregular spaces

We will occasionally require our space to be “nicer” than the typical Hausdorff space.

From the title of the section one might suspect we will require a stronger separation

property, but this is a red herring – in fact, we will be coarsening the topology of the

space.

Definition 2.1.1. Given a space X , a subset U is said to be regular open if U = intX clX U .

The family of regular open subsets of X is denoted RO(X).
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The collection of regular open sets has several nice properties we will make use of

later. For now, we consider using them as a basis for a topology.

Definition 2.1.2. The semiregularization of a space (X ,τ), denoted Xs, is the set X with

the topology, σ , generated by RO(X). Note RO(X) is in fact a basis and σ ⊆ τ , i.e. σ

is a coarser topology on X .

The semiregularization of X is very closely related to the original space, as we will

see in more detail later. The following proposition is necessary before we can continue.

Proposition 2.1.3. [43] Given a Hausdorff space X , the space Xs is also Hausdorff.

A space Y is called semiregular if RO(Y ) forms a base for the topology on Y . Since

intX clX U = intXs clXs U for every open set U of a space X , it is clear that Xs is a semireg-

ular space.

2.2 θ -continuity

Various possible properties of maps between topological spaces will be required through-

out. The most common is a generalization of the usual concept of continuity commonly

required in analysis.

Definition 2.2.1. A function f : X → Y is said to be θ -continuous at x ∈ X if for each

neighborhood, V , of f (x) there is a neighborhood, U , of x such that f [clX U ] ⊆ clY V .

A function is said to be θ -continuous if it is θ -continuous at each point in its domain.

Though the concept of θ -continuous is exactly what is required for our work, it

is perhaps not as well behaved as we would hope. Some qualities of θ -continuous

functions which are particularly nice or highlight differences from continuous functions

are listed.
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Fact 2.2.2. [43] Suppose f : X →Y is θ -continuous, then the following statements are

true.

1. If Y ⊆ Z, then f : X → Z is θ -continuous.

2. If A⊆ X, then f |A : A→ Y is θ -continuous.

3. If f [X ]⊆ D⊆ Y and D is dense in Y , then f : X → D is θ -continuous.

4. The identity map id : X → Xs is θ -continuous.

5. Compositions of θ -continuous functions are θ -continuous.

In particular, notice 4 above; this statement implies that X and Xs are θ -homeomorphic

according to the following definition.

Notation 2.2.3. Given a function f : X → Y , we use the notation “ f←” for the set map

P(Y )→P(X) by f [A] 7→ A. When f is a bijection we use the same notation for the

inverse function.

Definition 2.2.4. Given two spaces X and Y and a function f : X →Y . If f is bijective,

θ -continuous and f← : Y → X is also θ -continuous, then X and Y are said to be θ -

homeomorphic.

2.3 H-closed spaces and H-sets

Recall that a space X is called compact if every open cover of X has a finite subcover.

In 1924, P. S. Alexandroff and P. S. Urysohn [2] proved that compact spaces are always

closed.

Theorem 2.3.1. If X is a compact space and X is a subspace of Y , then X is closed in

Y .
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Extrapolating from the theorem above Alexandroff and Urysohn proposed a concept

first called Hausdorff-closed, and now shortened to H-closed.

Definition 2.3.2. A Hausdorff space X is called H-closed if X is a closed subspace in

every Hausdorff space in which it is embedded.

Alexandroff and Urysohn went on to demonstrate how close the concept of H-closed

is to compactness, and provided an internal characterization with the following theo-

rem.

Theorem 2.3.3. A Hausdorff space X is H-closed iff for every open cover U of X there

is a finite subfamily F of U for which the union of the closures of the members of F

cover X.

Recall that a compact Hausdorff is normal. The following example is an H-closed

space which is not Urysohn – hence not compact. Ironically the space is commonly

called Urysohn’s Example.

Example 2.3.4. Let

U ′ = {(1/n,0) : n ∈ N}∪{(1/n,1/m) : n,m ∈ N}∪{(1/n,−1/m) : n,m ∈ N} ⊂ R2

and U=U ′∪{p−, p+} with topology as follows:

1. The points of the subset U ′ inherit basic open sets from the usual topology of R2.

2. A basic open neighborhood of p+ is of the form

{p+}∪{(1/n,1/m) : n > N,m ∈ N}.
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Similarly a basic open neighborhood of p− is of the form

{p−}∪{(1/n,−1/m) : n > N,m ∈ N}.

In showing Urysohn’s Example is Hausdorff we need only double check those

points whose neighborhood base doesn’t come directly from R2, namely p+ and p−.

First if x ∈ U\{p+, p−}, then x = (1/N,r0) for some N ∈ N and r0 ∈ {0}∪{1/n : n ∈

N}. So the set {p+, p−}∪ {(1/n,1/m) : n > N,m ∈ N} is an open neighborhood of

p+ and p− whose closure misses x. Note that any basic open sets of p+ and p− of the

form given in the construction of the space will serve to separate them. So Urysohn’s

Example is Hausdorff.

Next we show the space is not Urysohn. It is enough to exhibit two points which

cannot be separated with closed neighborhoods. Note, in fact, that the closure of the

basic open neighborhoods of p− and p+ given in the construction will always meet in

a set of the form {(1/n,0) : n > N} for some N ∈ N. Hence the space is not Urysohn.

Finally we show the space is H-closed. Consider an open cover of the space. We

may refine the open cover to a cover with basic open sets, U . So there exist sets

U+,U− ∈U such that p+ ∈U+ and p− ∈U−. Reserve U+ and U− and note that the

subspace U \ (cl U+∪ cl U−) is compact – and so has a finite subcover F . Now the

closures of the family of sets F ∪{U+,U−} cover U.

Another example of a space which is H-closed but not compact, and demonstrates

a common technique for generating H-closed spaces, is the following.

Example 2.3.5. Let J be the set of real numbers [0,1] with basis {U ∪ (V ∩Q) : U,V

are open in [0,1]⊆ R}. The space J is H-closed, but not compact.

Several basic properties of H-closed spaces appear in [43]. We include some of

these which will be frequently used and which highlight the differences from com-
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pactness. In particular, 2.3.6.3 and 4 provide alternative internal characterizations of

H-closed spaces which are invaluable.

Fact 2.3.6. [43]

1. A closed subset of an H-closed space need not be H-closed. (See 2.3.8.)

2. A regular closed subset of an H-closed space is H-closed.

3. A space X is H-closed iff every open filter has nonempty adherence.

4. A space X is H-closed iff every open ultrafilter converges.

5. If f is a θ -continuous surjection and X is H-closed, then Y is H-closed.

The concept of an H-set, a further generalization of the H-closed property, was

introduced by Velicko [50] and Porter and Thomas [39].

Definition 2.3.7. Given a space X , we say that A ⊆ X is an H-set of X if every family

of open sets of X covering A has a finite subfamily for which the closure of the union

contains A. More technically, given a family of open sets of X , U , for which A⊆
⋃

U ,

there exists a finite subfamily F ⊆U for which A⊆
⋃
{clX V : V ∈F}.

Notice the H-set property is a property of a subspace of a parent space. A given

space may be an H-set when embedded in one space, but not an H-set in another. Also

notice a space X is H-closed iff it is an H-set in itself.

Urysohn’s Example contains an example of an H-set which is infinite, discrete and

not H-closed, and hence is not an H-set in every space which contains it.

Example 2.3.8. Consider the subset A = {(1/n,0) : n ∈N}∪{p+} in Urysohn’s Exam-

ple. In every cover of A with open sets of U one of the sets must contain p+. But the

closure of a basic open set of p+ contains all but finitely many of the points of the form
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(1/n,0). Hence A is an H-set of U. However, A with the subspace topology from U is

discrete, i.e. it is homeomorphic to the countable discrete space ω , and therefore is not

H-closed.

Porter and Woods [43] also examine H-sets in some detail, we list here some basic

properties.

Fact 2.3.9. [43]

1. If X is an H-set of a space Y , then X is closed in Y .

2. If X is an H-set of a space Y and Y is a subspace of Z, then X is an H-set of Z.

3. If X is an H-closed subspace of Y , then X is an H-set in Y .

4. If f : X → Y is θ -continuous and A is an H-set of X, then f [A] is an H-set of Y .

5. If A is an H-set of X, B is a regular closed (B = clX intX B) subset of X, and B⊆ A,

then B is H-closed.

6. An H-set of a regular space is compact.

2.4 Minimal Hausdorff and Katětov spaces

For a given set X , one may consider the collection of Hausdorff topologies on the set.

If the set X is finite, this collection has only one member, namely the discrete topology,

but if X is infinite this collection is quite large, with cardinality 22|X | , and can be partially

ordered by inclusion. Given this structure we may consider which members of the poset

are maximal or minimal. In fact, there is only one maximal, hence maximum, member,

namely the discrete topology, but, again assuming the set X is infinite, there are many

minimal members. The minimal members of the partially ordered set of Hausdorff

topologies on a set X are called minimal Hausdorff topologies.
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Definition 2.4.1. A space (X ,τ) is called minimal Hausdorff if there is no Hausdorff

topology σ on X for which σ ( τ .

In 1939, Parhomenko [34] showed that compact topologies are minimal Hausdorff.

We will see, however, that the converse does not hold.

Still considering the poset of Hausdorff topologies on X , we may consider how the

minimal topologies are related to the rest of the poset. To examine this question we

make the following definition.

Definition 2.4.2. A space (X ,τ) is called Katětov if there is a topology σ ⊆ τ for which

(X ,σ) is minimal Hausdorff.

A major result on this topic is that not all topologies on a countable space are

Katětov. In particular, in 1965, Herrlich [23] showed the space of rational numbers,

Q, has no coarser minimal Hausdorff topology.

Noting that compact spaces are minimal Hausdorff, we may suspect that H-closed

spaces and minimal Hausdorff spaces are closely related as well. This is indeed the

case.

Now we can consider the relationship between H-closed spaces, minimal Hausdorff

spaces, and Katětov spaces.

Theorem 2.4.3. [29] A space is minimal Hausdorff iff it is H-closed and semiregular.

In particular, if X is H-closed then Xs is minimal Hausdorff.

Proof. First, suppose X is minimal Hausdorff, then Xs is also Hausdorff. Since Xs is a

coarser topology, X = Xs, and X is semiregular. Let F be a free open filter on X and

x ∈ X . Note that {U ⊆ X : U ∈ τ(X) and x /∈U}∪F is a strictly coarser Hausdorff

topology on X ; this is a contradiction as X is minimal Hausdorff. Hence X is H-closed.

The other half relies heavily on 2.3.6 and 2.3.9. Now suppose X is H-closed and

semiregular. Let X ′ be X with a coarser Hausdorff topology. Note id : X → X ′ is
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continuous. If U is open in X , then clX U is H-closed. Hence id[clX U ] = clX U is H-

closed as a subspace of X ′. Therefore clX U is closed in X ′. Since X is semiregular,

{clX U : U ∈ τ(X)} is a closed base for X . Hence id← is continuous and a homeomor-

phism. Thus X is minimal Hausdorff.

The next corollary indicates the relationship between H-closed and Katětov topolo-

gies.

Corollary 2.4.4. A space (X ,τ) is Katětov iff there is an H-closed topology σ on X for

which σ ⊆ τ .

2.5 The Katětov and Fomin Extensions

The Stone-Čech compactification of a Tychonoff space, defined to be the maximal

Hausdorff compactification, is a well-known construction. Here we give the construc-

tion using ultrafilters due to Stone [46], rather than the product embedding construction

due to Čech [9], as a warm-up for a generalization of the compactification to all Haus-

dorff space. First we recall the definition of a zero-set.

Definition 2.5.1. Given a space X , a set Z ⊆ X is a zero-set (or z-set) if there exists a

continuous function f : X → R and Z = f←(0).

We now construct a compactification equivalent to the Stone-Čech compactification

of a Tychonoff space using z-ultrafilters.

Theorem 2.5.2. Given a Tychonoff space X, the set X ∪ {p : p is a free z-ultrafilter

on X} with the closed sets for a topology generated by {Z ∪Z : Z is a z-set of X and

p ∈Z iff Z ∈ p} is equivalent to the the Stone-Čech compactification of X, βX.
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In their 1924 paper, Alexandroff and Urysohn [2] posed the question of whether

every Hausdorff space can be densely embedded in an H-closed space. In the late

1930s and early 1940s several positive constructions were given [46, 29, 17, 1, 45].

One of these, the Katětov extension, was seen to be the maximal H-closed extension of

a space.

Definition 2.5.3. [29] Given a Hausdorff space X , the Katětov extension, denoted κX ,

is the set X ∪{p : p is a free open ultrafilter on X}, with the topology generated by sets

of the form {p}∪U where U ∈ p ∈ κX \X .

Another of the constructions, by Fomin, is quite similar and will be useful in this

dissertation.

Definition 2.5.4. [17] Given a Hausdorff space X , the Fomin extension, denoted σX ,

is the set X ∪{p : p is a free open ultrafilter on X}, with the topology generated by sets

of the form oU = {p ∈ σX \X : U ∈ p}∪U .

Notice κX is the same set as σX , but with a finer topology in which the remainder

of the extension, κX \X , is discrete. Since the sets are the same we will often use the

notation oU even when considering κX . Concerning these sets the following lemma

will prove useful.

Lemma 2.5.5. [43] Given a Hausdorff space X, open sets U and V of X, and Y = κX

or σX we have:

1. (oU)∩X =U.

2. oU =
⋃
{W : W is open in Y and W ∩X ⊆U.

3. clY U = (clX U)∪oU.

4. There is a continuous θ -homeomorphism j from κX onto σX.
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5. If B is an open neighborhood base of x ∈ X, then
⋂
{oB : B ∈B}= {x}.

2.6 The Iliadis Absolute

In analysis and topology we are used to the concepts of open and closed sets and how

these families of sets may be used to define a topology on a space. The spaces we

are most familiar with, Rn, are rather nice in that they are connected. Equivalent to

the statement “The space X is connected” is the statement “The space X contains no

proper, non-trivial subsets which are both open and closed.” These sets which are both

open and closed are called clopen and, though they destroy any hope of connectivity,

lend some rather nice properties to some of the spaces we will consider.

Definition 2.6.1. Given a space X , a set E ⊆ X is said to clopen in X if E is both open

and closed in the topology on X .

Definition 2.6.2. A space X is said to be zero-dimensional if the family of clopen sets

of X forms a base for the topology on X .

Note that a zero-dimensional Hausdorff space X is Tychonoff. Given a point p ∈ X

and a closed set A ⊂ X with p /∈ A there is basic open (hence clopen) set U such that

p ∈U and A∩clX U =∅. Let I be the closed unit interval. Now the function f : X → I

defined by

f (x) =

 0 x ∈U

1 x ∈ X \U

is a continuous real-valued function separating p and A.

Definition 2.6.3. A space X is said to be extremally disconnected if the closure of any

open set of the space is also open. In other words, regular closed sets are clopen.
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Besides θ -continuity,we will require a few more nice properties that maps between

topological spaces may posses.

Definition 2.6.4. A map f : X → Y is said to be closed if f [A]⊆ Y is closed whenever

A⊆ X is closed.

Definition 2.6.5. A map f : X→Y is called compact if f←(y)⊆ X is compact for each

y ∈ Y .

Combining the previous two concepts gives us the following commonly used defi-

nition.

Definition 2.6.6. A map f : X→Y is said to be perfect if it is both closed and compact.

Note we do not require that f be continuous.

Finally, we may require maps to have a property which forces images of closed sets

to be small.

Definition 2.6.7. A map f : X → Y is called irreducible if for every closed set A ( X ,

f [A] 6= Y .

Since the properties above frequently appear together, functions which posses all of

them are given a special designation.

Definition 2.6.8. A map f : X → Y is called a θ -cover if it is a θ -continuous, perfect

and irreducible surjection.

Filters, and in particular ultrafilters, allow us to construct our most powerful tool:

the Iliadis absolute of a space. There are several different constructions of EX given an

initial Hausdorff space X ; one uses open ultrafilters, another regular open ultrafilters,

and the last regular closed ultrafilters. It turns out that these different constructions are
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equivalent (in a stronger sense than simply being homeomorphic) and we may occa-

sionally conflate the open ultrafilter and regular open ultrafilter constructions.

One construction, by Gleason [20], of the absolute of a space X characterizes it as

the dense subspace of the Stone space of the Boolean algebra of the regular open sets of

X consisting of the regular open ultrafilters with non-empty adherence. A map is also

constructed along with the absolute in which each ultrafilter is mapped to its (single)

point of adherence in the original space.

Definition 2.6.9. The absolute of a space X , denoted (EX ,k), is the unique (up to equiv-

alence) pair such that EX is a zero-dimensional and extremally disconnected Hausdorff

space and k : EX → X is a θ -cover.

Equivalence in this case means if (E ′X ,k′) is another pair satisfying our require-

ments, then there exists a homeomorphism h : EX → E ′X such that k = k′ ◦ h. In this

case we will write (EX ,k)≡ (E ′X ,k′) or just EX ≡ E ′X .

Corollary 2.6.10. For a space X, EX ∼= E(Xs).

Proof. Note id : X → Xs is a θ -homeomorphism, hence id◦kX : EX → Xs is a θ -cover.

Therefore, by the uniqueness of the absolute, EX ∼= E(Xs).

When using the open filter construction, we can easily define a basis for EX .

Lemma 2.6.11. Given a space X the subsets of EX of the form OU = {p∈ EX : U ∈ p}

form a basis for EX.

The following theorem lists some basic properties of the absolute.

Theorem 2.6.12. [43] Given a space X and U,V ∈ τ(X).

1. If X is H-closed then EX is compact.
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2. If D is dense in X, then ED≡ k←X [D] with the restriction map.

3. If hX is an H-closed extension of X then E(hX) and β (EX) are equivalent exten-

sions of EX.

4. βEX \EX ∼= σX \X.

2.7 The θ -quotient topology

Given a Hausdorff space X and a quotient map f : X → Y , we define a topology on

Y , called the θ -quotient, or sometimes pseudo-quotient, or small image topology on Y .

The name small image topology comes from the following characterization.

Definition 2.7.1. Let X and Y be sets and f : X → Y a function. For A ⊆ X define

f #[A] = {y ∈ Y : f←(y)⊆ A}. The set f #[A] is often called the small image of A.

Fact 2.7.2. [37] Given the setup in the definition above, we have the following.

1. f #[X \A] = Y \ f [A]

2. f #[A∩B] = f #[A]∩ f #[B]

3. If X is a space then the family { f #[U ] : U ∈ τ(X)} is a base for a topology on Y ,

namely the small image topology.

If the map is compact we get a Hausdorff topology on the image set.

Fact 2.7.3. [37] Let X be a space, Y a set and f : X → Y be a compact surjection. Let

σ be the topology on Y generated by { f #[U ] : U ∈ τ(Xs)}, then (Y,σ) is a Hausdorff

space.

If we assume the map is irreducible as well we get the following.
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Theorem 2.7.4. [44, 52] Let X be a space, Y a set, and f : X → Y a compact and

irreducible surjection, then the collection { f #[U ] : U ∈ τ(X)} is a base for a Hausdorff

topology σ on Y . Further, f : X → (Y,τ) is θ -continuous and if X is compact then

(Y,τ) is minimal Hausdorff.

19



Chapter 3

H-sets and Katětov Spaces

3.1 Cardinality bounds of H-sets in Urysohn spaces

The bulk of this section can be found in [31]. Before we can start the bulk of this

section we must continue with a few definitions. The following cardinal functions are

well-known in topology.

Definition 3.1.1. The character at x ∈ X is

χ(x,X) = min{|B| : B is a local base for x},

while the character of X is χ(X) = sup{χ(x,X) : x ∈ X}.

Definition 3.1.2. The pseudocharacter at x ∈ X is

ψ(x,X) = min{|U | :
⋂

U = {x} and U ⊆ τ(X)},

while similarly the pseudocharacter of X is ψ(X) = sup{ψ(x,X) : x ∈ X}.

When considering non-regular spaces the following definition is also interesting.

20



Definition 3.1.3. The closed pseudocharacter at x ∈ X is

ψ̄(x,X) = min{|V | :
⋂
V

clX V = {x}

and V ⊆ τ(X)}, and the closed pseudocharacter of X is ψ̄(X) = sup{ψ̄(x,X) : x ∈ X}.

It is well known that for a Hausdorff space X , ψ(X) ≤ ψ̄(X) ≤ χ(X) (see [24]),

in fact, when we consider the semi-regularization, ψ(X) ≤ ψ̄(Xs) = ψ̄(X) ≤ χ(Xs) ≤

χ(X). In particular, it follows that 2ψ(X) ≤ 2ψ̄(Xs) = 2ψ̄(X) ≤ 2χ(Xs) ≤ 2χ(X).

Several of the basic properties of H-closed spaces and H-sets were given the pre-

vious chapter. Since the concepts are closely related, we would expect many of these

properties to be similar. That is, if a statement P is true for all H-closed spaces a natural

question to ask is whether P also holds for H-sets, or perhaps for H-sets embedded in a

space with a particularly nice property. Here we consider the possibility of extending a

particular cardinality bound for H-closed spaces. For example, Dow and Porter show in

[14] that if X is an H-closed space then |X | ≤ 2χ(X) (in fact they show |X | ≤ 2ψ̄(X)), and

later, in [4], Bella shows that if X is Urysohn and A is an H-set of X then |A| ≤ 2χ(X).

On the other hand, Bella and Yaschenko show in [6] that an H-set A of a Hausdorff

space X may have cardinality larger than 2χ(X).

Similar results are those of Bella and Porter in [5] showing if X is H-closed then |X |

may be larger than 2ψ(X), in fact one example of this has X = κω , an H-closed Urysohn

space. Here a space, X , is constructed demonstrating that the cardinality of an H-set of

a Urysohn space is not always bounded by 2ψ̄(X). We also prove that the cardinality of

an H-set of an Urysohn is bounded by 2χ(Xs). These two results constrain the maximum

cardinality of an H-set of a Urysohn space as much as is possible with the inequalities

listed above.
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In [51], Vermeer conjectures that a subset A of a space X is an H-set if and only

if there is a compact Hausdorff space K and a θ -continuous map f : K → X with

f [K] = A. Bella and Yaschenko provide a Hausdorff counterexample with countable

character with their construction. A counterexample to Vermeer’s conjecture, simi-

lar in construction to Bella and Yaschenko’s, but which is Urysohn and has countable

closed pseudocharacter, is provided in this dissertation – by letting the character of the

space grow we are able to achieve this surprising separation.

Bella and Yaschenko’s example also demonstrates that if the space X is not Urysohn

we cannot be sure that the cardinality of an H-set is bounded by 2χ(X). Fedeli, recalling

Dow and Porter’s tighter bound on H-closed spaces, then asked whether the bound

could be improved if restricted to Urysohn spaces. In particular he asked the following

question.

Question 3.1.4. [16] Let A be an H-set in the Urysohn space X . Is is true that |A| ≤

2ψ̄(X)?

We will construct an example showing that the answer to Fedeli’s precise question

is “no,” but will also provide a proof that the bound can be somewhat improved.

Bella and Yaschenko in [6] re-introduce under the name of relatively H-closed a

concept first considered by Lambrinos in [30] under the name of H-bounded and in-

vestigated further by Mooney in [32]. Given a space X a subset A is called relatively

H-closed if for every open cover U of X there is a finite subfamily of U whose closures

cover A. Clearly an H-set is relatively H-closed, but the converse does not hold.

Example 3.1.5. Recalling Urysohn’s Example, we note that the subset {(1/n,0) : n ∈

N} is relatively H-closed in U, though it is not an H-set.

The following notation is introduced for the purpose of this work.
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Notation 3.1.6. Let X ⊆ Y ⊆ Z be spaces. We write H(X ;Y ;Z) if every cover U of Y

with open sets of Z has a finite subfamily F ⊆U for which X ⊆
⋃

U∈F clZ U .

Using this notation, X is H-closed iff H(X ;X ;X), A is an H-set of X iff H(A;A;X),

and A is relatively H-closed in X iff H(A;X ;X).

Finally given a space X , we say an open filter G ⊆ τ(X) has the weak countable

intersection property if for every countable subset G ′ of G we have
⋂
{clX U : U ∈

G ′} 6=∅. We then call a space X weakly realcompact if every open ultrafilter U ⊆ τ(X)

with the weak countable intersection property has nonempty adherence.

The first construction is a basic space from which the counterexample to Fedeli’s

question will be built. We modify a construction given by Bella and Yaschenko in [6].

Construction 3.1.7. Let X be a weakly realcompact space with countable closed pseu-

docharacter and κX Urysohn, e.g. X = ω , and let X̂ = κX \X. Define

Z0 = X ∪ (X×ω× X̂)∪ X̂

with the following topology. If U ∈ τ(X) and n ∈ ω then

U(n) =U ∪ (U× [n,ω)× X̂) ∈ τ(Z0)

is a basic open neighborhood of x ∈ X, and if p ∈ X̂ = κX \X and U ∈ p then a basic

open neighborhood of p is

U(p) = (U×ω×{p})∪{p} ∈ τ(Z0).

Finally, the points of X×ω× X̂ are isolated.

Fact 3.1.8.
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1. Z0 is Urysohn.

2. X is relatively H-closed in Z0, in other words H(X ;Z0;Z0).

3. H(X ;X ∪ X̂ ;Z0).

4. Z0 has countable closed pseudocharacter.

Proof.

1. If x,y ∈ X then there exist U and V open neighborhoods, in X , of x and y respec-

tively with clX U ∩ clX V = ∅. Hence clZ0 U(0)∩ clZ0 V (0) = ∅, and U(0) and

V (0) are neighborhoods of x and y in Z0. If p,q ∈ X̂ then there exist U ∈ p and

V ∈ q such that clX U ∩ clX V = ∅. Thus p ∈U(p), q ∈ V (q), and clZ0 U(p)∩

clZ0 V (q) = ∅. If x ∈ X and p ∈ X̂ then there exist U an open neighborhood of

x in X and V ∈ p with clX U ∩ clX V = ∅. Therefore x ∈U(0), p ∈ V (p), and

clZ0 U(0)∩ clZ0 V (p) =∅. Finally, the points of X×ω× X̂ are isolated.

2. Let C be an open cover of Z0. Without loss of generality, for each x ∈ X we can

assume there exists an Ux ∈ τ(X) and an nx ∈ ω with x ∈Ux(nx) ∈ C ; also we

can assume that for each p ∈ X̂ there exists a Vp ∈ p with Vp(p) ∈ C . Now, {Ux :

x ∈ X}∪{Vp∪{p} : p ∈ X̂} is an open cover of κX . Since κX is H-closed, there

exist finitely many x1,x2, . . . ,xn and p1, . . . , pm such that κX =
⋃n

i=1 clκX Uxi ∪⋃m
i=1 clκX Vpi . Hence

X ⊆
⋃n

i=1 clX Uxi ∪
⋃m

i=1 clX Vpi

⊆
⋃n

i=1 clZ0 Uxi(nxi)∪
⋃m

i=1 clZ0 Vpi(pi).

3. Take a cover U of X ∪ X̂ with open sets of Z0. Now extend U to an open cover,

U ′ of all of Z0 by adding in the isolated singletons not already covered. Then
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there is a finite subfamily V ⊂ U ′ with X ⊆ clZ0

⋃
V . However, it is clear that

V need not contain any of the isolated singletons added to extend U . Hence we

may take V ⊂U .

4. We must show every point in Z0 is the intersection of a countable collection of

closed neighborhoods. This is certainly true for the isolated points of X×ω× X̂ .

If, on the other hand, x∈ X ⊂ Z0 take {Un : n∈ω} ⊆ τ(X) with
⋂

ω clX Un = {x}.

Then
⋂

ω clZ0 Un(n) =
⋂

ω(clX Un ∪ (Un× [n,ω)× X̂)∪ o(Un)) = {x}. Finally,

for points of X̂ ⊆ Z0 consider the following: let p ∈ X̂ , then p is a free open

ultrafilter on X and
⋂

U∈p clX U = ∅. But X is also weakly real-compact, hence

there is a countable family C ⊆ p with
⋂

U∈C clX U =∅. Considering the family

C ′= {U(p) : U ∈C }we have
⋂

C ′ clZ0 U(p) =
⋂

C clX U∪(
⋂

C U×ω×{p})∪

{p} = {p}. Hence {p} is the intersection of a countable collection of closed

neighborhoods and Z0 has countable closed pseudocharacter.

Now we construct a space, again modifying a construction of Bella and Yaschenko

in [6], which is Urysohn, has countable closed pseudocharacter and has a large H-set.

Theorem 3.1.9. There is a space Z with the following properties:

1. Z is Urysohn;

2. Z has countable closed pseudocharacter;

3. Z has an H-set H of cardinality greater than 2ω .

Construction 3.1.10. Let {Xn : n ∈ ω} be a sequence of spaces defined recursively

as follows: X0 = ω and Xn+1 = X̂n = κXn \Xn. For each n ∈ ω let Zn = Xn ∪ (Xn×

ω × X̂n)∪ X̂n. Finally let Zω be the quotient space formed from
⋃

ω Zn by identifying

X̂n−1 with Xn, and let Z = Zω ∪{∞}. A basic neighborhood of ∞ in Z will be {∞}∪⋃
i∈ω\n{Xi×ω× X̂i : n ∈ ω}.
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Fact 3.1.11.

1. The space Z is Urysohn.

2. Z has countable closed pseudocharacter.

3. The set H =
⋃

ω Xn∪{∞} is an H-set of Z.

4. The cardinality of H is larger than 2ψ̄(Z) = c.

Proof.

1. That the points which are isolated can be separated from the other points of Z via

closed neighborhoods is clear. Now for x,y ∈ H, if x,y ∈ Zn for some n ∈ ω then

by Fact 3.1.8.1 the two points can be separated by closed neighborhoods. If, on

the other hand, x ∈ Zn and y ∈ Zm where n 6= m, then may assume further that

x ∈ Xn, y ∈ Xm and n < n+2 ≤ m. Now let Ux be a basic open set of x and Uy a

basic open set of y. Then

clZ Ux ⊆ Xn−1∪ (Xn−1×ω×Xn)∪Xn∪ (Xn×ω×Xn+1)

while

clZ Uy ⊆ Xm−1∪ (Xm−1×ω×Xm)∪Xm∪ (Xm×ω×Xm+1).

Hence clZ Ux ∩ clZ Uy = ∅. Finally, if x = ∞ and y ∈ Zn for some n, we may

simply take the basic open neighborhood {∞}∪
⋃

∞
i=n+2(Xi×ω × X̂i) for x = ∞

and a typical neighborhood for y.
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2. This is clear for each point in Zn for some n. For ∞ we let U be the neighborhood

base {{∞} ∪
⋃

i∈ω\n(Xi×ω × X̂i) : n ∈ ω}. Then
⋂

U∈U clZ U = {∞}. U =

{Un = {∞}∪
⋃

i∈ω\n Xi×ω× X̂i : n ∈ ω}, then {∞}=
⋂

U clZ Un.

3. Let U be a cover of H with basic open sets of Z. There is some U ∈ U for

which ∞ ∈U . Then for some m ∈ ω , clZ U contains Xi for all i ≥ m. The cover

U contains, for each n < m, a subfamily, U n which covers Xn∪Xn+1. Now as in

3.1.8.3 above, we have H(Xn;Xn∪Xn+1;Zn). Hence we obtain a finite subfamily

F n of U n, therefore of U , for which Xn ⊆
⋃

U∈F n
clZ U . The collection {U}∪⋃

{F n : n < m} is a finite family whose closure contains H.

4. This is clear since |X1|= |κω|= 2c > c.

We require a lemma before continuing.

Lemma 3.1.12. [3] Let Y be a compact Hausdorff space and A a partition of Y into

closed Gκ subsets, then |A | ≤ 2κ .

Vermeer’s [51] conjecture that an H-set of a space is the θ -continuous image of a

compact space would impose a cardinality restriction on the H-set in the following way.

Theorem 3.1.13. Let X be a space, κ = ψ̄(X), A an H-set of X, K a compact Hausdorff

space, and f : K→ X a θ -continuous function with f [K] = A, then |A| ≤ 2κ .

Proof. The proof follows the outline of the comments after Theorem 5’ of [6]. Note that

point inverses under a θ -continuous map are closed. Let x∈A and take a family of open

neighborhoods of x, {Uα : α ≤ κ}, such that
⋂

κ clX Uα = {x}. For every p ∈ f←(x)

fix an open neighborhood Wα,p satisfying f [clK Wα,p]⊆ clX Uα and let Wα =
⋃
{Wα,p :

p ∈ f←(x)}. Then f [Wα ] ⊆ clX Uα and hence f←(x) ⊆
⋂

κ Wα ⊆ f←[
⋂

κ clX Uα ] =

f←(x). Now since f←(x) is closed, and compact in this case, 3.1.12 implies the family

{ f←(x) : x ∈ A} must have cardinality not more than 2κ , and hence |A| ≤ 2κ .
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Corollary 3.1.14. The H-set H of the space Z constructed above cannot be the θ -

continuous image of a compact space.

What is most notable about the above corollary is that the space Z is a Urysohn

counterexample to Vermeer’s conjecture – rather than simply Hausdorff as Bella and

Yaschenko’s example.

The following proposition pins down the cardinality of an H-set as much as may be

possible with the cardinal functions we have considered.

Proposition 3.1.15. If A is an H-set of a Urysohn space X then |A| ≤ 2χ(Xs).

Proof. Let A be an H-set in a Urysohn space X . In [4] Bella shows |A| ≤ 2χ(X). Now

A⊂ Xs is also an H-set of Xs, and Xs is also Urysohn. Hence |A| ≤ 2χ(Xs).

3.2 Katětov spaces

In the preliminary chapter we considered a few of the relations between Katětov, H-

closed, and minimal Hausdorff spaces. We now consider the relation between H-sets

and Katětov spaces.

In 1941, Bourbaki [7] proved that Q does not have a coarser compact Hausdorff

topology, but it took until 1965 for Herrlich [23] to show Q is not Katětov. A conse-

quence of Herrlich’s proof is that a Katětov space is not the countable union of compact,

nowhere dense subsets. In fact, had it been noticed, Herrlich’s result is an immediate

corollary of this 1961 result of Bourbaki.

Theorem 3.2.1. [8] The set of isolated points of a countable H-closed space is dense.

Theorem 3.2.7 provides some characterizations of the Katětov property, one in

terms of the remainder of an extension and the others as the image of a particular type
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of function. What is lacking is an internal characterization of the Katětov property – in

fact, this is one of the major unsolved problems of topology.

A few definitions and preliminary results will be useful before stating the theorem.

Definition 3.2.2. Given a space X and a set A ⊆ X , the θ -closure of A, denoted clθ A,

is the set {x ∈ X : for all U ∈N x, clX U ∩A 6= ∅}. Further, a set A is called θ -closed

if A = clθ A. Note that clθ A is closed, clX A⊆ clθ A, but that, in general, the θ -closure

is not a Kuratowski closure operator as it is not idempotent.

Fact 3.2.3. Let X be a space and A⊆ X.

1. [43] X is H-closed iff EX is compact.

2. [12] A is θ -closed in X iff k←[A] is closed in EX.

The next fact is two results of Dow and Porter providing half of one characterization

of Katětov spaces. Vermeer [51] provided the other half as we will see in 3.2.7.

Fact 3.2.4. [14]

1. Let D be a space and hD and H-closed extension of D. Suppose X is a space such

that there is a continuous bijection f : X → hD \D, then there is an H-closed

extension h′D of D such that h′D\D = X.

2. If X is an infinite H-closed space with |X |= κ , then there is an H-closed extension

hκ of κ such that hκ \κ is homeomorphic to X.

Combining the two items above we get the following corollary.

Corollary 3.2.5. If X is an infinite Katětov space then there is a discrete space D with

an H-closed extension hD such that hD\D = X.
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The following theorem provides several characterizations of the Katětov property

– notice that, except for the definition itself, all other characterizations involve some

other space. Before we state the proposition we make the following definition for the

purposes of this dissertation.

Definition 3.2.6. A map f : X →Y is called almost perfect (or θ -perfect) if f is closed

and f←(y) is θ -closed for each y ∈ Y .

Theorem 3.2.7. [14, 41, 51] For a space X, the following are equivalent:

1. X is Katětov.

2. X is the remainder of an H-closed extension of a discrete space.

3. X is the perfect image of a compact space.

4. X is the perfect image of an H-closed space.

5. There is an H-closed space Y and an almost perfect surjection f : Y → X.

Proof. The corollary above provides 1 implies 2. Vermeer [51] provides the following

proof of 2 implies 1. Let D be a discrete space with H-closed extension hD and hD\D=

X . Notice E(hD) ∼= βD and k[βD\D] = hD\D. We note that k|βD\D : βD\D→ X is

perfect surjection. Now there exists a compact subset C⊆ βD\D such that k|C : C→ X

is perfect, onto, and also irreducible. Theorem 2.7.4 shows that the closed base {k[A] : A

is a closed subset of C} induces a minimal Hausdorff topology τ∗ on X . But τ∗ ⊆ τ(X)

since k|C : C→ X is closed.

The implications 3 implies 4 and 4 implies 5 are clear. To prove 1 implies 3, let σ

be a coarser minimal Hausdorff on X . If Y = E(X ,σ) then Y is compact and since the

function k : Y → (X ,σ) is perfect and σ ⊆ τ(X), then k : Y → X is also perfect.
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To prove 5 implies 1, let Y be an H-closed space and f :Y→X be a closed surjection

such that f←(x) is θ -closed for each x ∈ X . Now EY is compact and k : EY → Y is

perfect. Since k←[ f←(x)] is compact for each x ∈ X , it follows that f ◦ k is perfect.

Now there is a closed set D⊆ EY such that f ◦k|D : D→ X is an irreducible surjec-

tion. Since f ◦ k|D is compact, by 2.7.4 there is a minimal Hausdorff topology σ on X .

Since f ◦ k|D is closed, σ ⊆ τ(X). Hence X is a Katětov space.

Corollary 3.2.8. [41] The perfect image of a Katětov space is Katětov.

Corollary 3.2.9. [41] If X has an H-closed extension hX and a closed discrete subspace

A such that |hX \X | ≤ |A|, then X is a Katětov space.

Proof. Let f : hX \X → A be a one-to-one function. Define g : hX → X by g|X = idX

and g|hX\X = f . Since g←(y) is finite for all y ∈ X , g is compact. Let B be a closed

subset of hX . Since g[B] = (B∩X)∪ f [B \X ], f [B \X ] ⊆ A, and every subset of A is

closed in X , it follows that g[B] is closed. By 3.2.7, X is Katětov.

Corollary 3.2.10.

1. [40] A space is θ -closed in some H-closed space iff it is Katětov.

2. [14] A Katětov space X is an H-set in some space.

Proof. One direction of 1 is from 3.2.7.2 and the fact that the remainder of an H-closed

extension of a discrete space is θ -closed in the extension. Conversely assume A is

a θ -closed subspace of an H-closed space X . It follows from 3.2.3 that k←[A] is a

compact subspace of EX . Since k|k←[A] : k←[A]→ A is a perfect surjection (though not

necessarily θ -continuous), it follows from 3.2.7 that A is Katětov.

For the proof of 2, consider these two statements: the remainder of an H-closed

extension of a discrete space is θ -closed, and a θ -closed subspace of an H-closed space

is an H-set.
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Corollary 3.2.10 indicates the studies of Katětov spaces and H-sets are closely re-

lated – in fact, frequently to prove a space is not Katětov one proves instead that the

space cannot be embedded as an H-set in a larger space.

Proposition 3.2.13 below indicates that the number of H-sets of an H-closed space

can be quite large, and, assuming an image space can be found, provides a mechanism

to partition an H-closed space into sets – which are both Katětov subspaces and H-sets.

It is convenient to state a lemma first.

Lemma 3.2.11. Given spaces X and Y , A⊆ X compact, and f : X→Y a θ -continuous

function, then f [A] is an H-set of Y .

The next proposition demonstrates a nice property of θ -continuous functions.

Proposition 3.2.12. Given spaces X and Y and a θ -continuous function f : X → Y ,

f←(y) is a θ -closed subset of X .

Proof. Let y ∈ f [X ] and suppose x ∈ X \ f←(y), then f (x) ∈ Y and f (x) 6= y. Since

Y is Hausdorff, there exist open sets of Y , V1 and V2, such that f (x) ∈ V1, y ∈ V2, and

V1∩V2 = ∅. Since f is θ -continuous there is U1 an open neighborhood of x such that

f [clxU1]⊆ clY V1. Now clY V1∩V2 =∅, so f [clX U1]∩V2 =∅. In particular y /∈ f [clxU ]

and clX U1∩ f←(y) =∅. Hence x /∈ clθ f←(y).

Proposition 3.2.13. If X is an H-closed space, f : X → Y is θ -continuous and p ∈ X ,

then f←( f (p)) is an H-set of X .

Proof. Note since X is H-closed then EX is compact and k : EX → X is θ -continuous.

Hence f ◦k : EX →Y is θ -continuous. So ( f ◦k)←(y) is closed in EX , hence compact,

for any point y ∈Y . Now if y = f (p) then f←( f (p)) = k[( f ◦k)←(y)] is the image of a

compact set under a θ -continuous map and is therefore an H-set.
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We extend the definition of the closed pseudocharacter, ψ̄(X), for the next proposi-

tion.

Definition 3.2.14. Let X be a space and A ⊆ X , we define the closed pseudocharacter

of A relative to X as ψ̄(A,X) = min{|U | : U ⊂ τ(X) and
⋂

U clX U = A.

Definition 3.2.15. Let X be a space and K be a family of subsets of X . We denote by

ψ̄(K ) the quantity supK ψ̄(K,X).

Proposition 3.2.16. If X is an H-closed space, f : X → Y is θ -continuous, and K =

{ f←( f (p)) : p ∈ X}, then |K |= | f [X ]| ≤ 2ψ̄(K ).

Proof. Note f [X ] is an H-set of Y and | f [X ]| ≤ |X | ≤ 2ψ̄(X).

Given spaces X and Y and a function f satisfying the hypotheses, we have k←[K ]

is a partition of the compact space EX into compact sets. By the proof of 3.1.12 |K |=

| f [X ]| ≤ 2ψ̄(K ).

Recall from above that Q is not Katětov. This fact is an immediate corollary of the

following proposition, the proof of which is a generalization of the method used in [23].

Theorem 3.2.17. [41] A Katětov space is not the countable union of compact, nowhere

dense sets.

For countable spaces we can improve the result. Recall a space is called crowded if

it contains no isolated points.

Theorem 3.2.18. A countable crowded space is not an H-set of any space.

Proof. Suppose A is a countable crowded space and A is a subspace of X . List A as

A = {an : n ∈ ω}. We construct by induction a chain of open sets which meets A, but

the intersection of whose closures misses A. Let U0 be an open set of X such that
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a1 ∈U0 and a0 /∈ clX U0. Suppose we have Un ⊆Un−1, an /∈ clX Un and Un∩A 6=∅ for

all n < m. Since Um−1∩A is open in A (and non-empty), there is some a ∈Um−1∩A

such that a 6= am. Let Um be an open set of X such that a ∈Um but am /∈ clX Um and

Um ⊆Um−1. Now the chain of open sets {Un : n ∈ ω} meets A, but
⋂

ω clX Un∩A =∅.

Hence A is not an H-set of X .

The reader may also notice the above theorem applies to many spaces besides Q.

In particular, Bing’s space, also known as the Sticky Foot space, is not an H-set of any

space – hence not Katětov.

We quote the following proposition of Porter and Vermeer, which is in the same

vein as the previous two results. First recall that, by definition, a space is scattered if

every nonempty subspace has an isolated point.

Proposition 3.2.19. [41] A countable Katětov space is scattered.

Now Q is an η0 space – meaning that given two finite subsets A,B⊆Q with A < B

there exists an element q ∈ Q such that A < q < B. We consider here an η1 space –

which is a generalization of an η0-set in the following sense. A space X is an η1 space

if X is ordered and given two countable sets A,B⊆X with A<B there exists an element

r ∈ X such that A < r < B.

Gillman and Jerison [19] construct an η1 space, Q, which is a generalization of Q

in the sense that Q is a minimal η1 space, i.e. every η1 space contains a copy of Q.

Moreover, they show that the cardinality of Q is c.

The following theorem illustrates another commonality of Q and Q, at least if we

allow the Continuum Hypothesis as an axiom. Recall that the Continuum Hypothesis

(CH) states that the cardinality of the real line, c, is equal to the cardinality of the power

set of the natural numbers, i.e. c = 2ω . This statement is independent of the usual

axioms of set theory, ZFC.
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Theorem 3.2.20. Assuming CH, the space Q is not an H-set of any space.

Proof. The proof proceeds by induction, in many respects similar to the proof of 3.2.18.

Assume 2ω = ω1. Note then |Q| = c = ω1, so let Q = {qα : α < ω1}. Suppose there

exists a space X for which Q ⊆ X is an H-set. That is for every cover of Q with open

sets of X there is a finite subfamily whose closures (in X) contain Q. We will find a

family of open sets, U , of X which meets Q and for which
⋂

U clX U ∩Q = ∅. This

will demonstrate Q is not an H-set of X . The proof proceeds by induction.

Base step: Choose U0 open in X such that U0∩Q is an interval and q1 ∈U0 but

q0 /∈ clX U0.

β = γ + 1: Assume we have Uα+1 ⊆Uα , qα /∈ clX Uα and Uα ∩Q 6= ∅ for all

α < γ . Since Uγ ∩Q 6=∅, Uγ ∩Q is infinite, so we may choose q ∈Uγ ∩Q with

q 6= qγ+1. Let Uγ+1 be an open subset of X such that Uγ+1 ∩Q is an interval,

q ∈Uγ+1 ⊆Uγ and qγ+1 /∈ clX Uγ+1.

β a limit ordinal: We note
⋂

α<β Uα ∩Q 6= ∅. We can construct two sets in Q:

L = {inf Uα ∩Q : α < β} and R = {sup Uα ∩Q : α < β}. Note L < R and

since β < |Q| = ω1, the sets are countable. Now since Q is an η1 set there is

some q ∈ Q such that L < q < R. Hence
⋂

α<β Uα ∩Q 6= ∅, in fact the set is

infinite (and contains the open set of Q: (sup L, inf R)). So we may choose some

q ∈
⋂

α<β Uα ∩Q with q 6= qβ and find some Uβ open in X such that Uβ ∩Q is an

interval, q ∈Uβ ⊆
⋂

α<β Uα and qβ /∈ clX Uβ .

By construction, the family {Uα : α < ω1} satisfies our requirements, that is,

⋂
U

clX U ∩Q =∅.
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Chapter 4

H-closed Extensions with Countable Remainder

4.1 Preliminaries

We begin with a definition necessary for the discussion of our topic.

Definition 4.1.1. Given a space X and Z, an extension of X , we say the space Z \X is

the remainder of the extension.

In the theory of compactifications much research has been focused on finding com-

pact extensions of a particular size or with remainders of a particular size – the most

common examples being what would be called minimal compactifications, e.g. the one

point compactification of the real line. Next to be thoroughly pinned down was the

maximal compactification, i.e. the Stone-Čech compactification, βX , of a Tychonoff

space X .

In this chapter we will concern ourselves with finding H-closed extensions with

countable remainder, i.e. the smallest H-closed extensions. Our topic is a generalization

of a question of of Morita [33]: characterize those spaces which have compactifications

with countable remainder – an area studied in depth by Henriksen [22], Hoshina [26,

27, 28], Terada [47] and Charalambous [10] but still not entirely resolved.
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For subspaces of R, we note P clearly has a compactification with countable re-

mainder, but Q has none. In fact, for a Tychonoff space to have a compactification with

countable remainder it must be Čech complete – a property we will investigate in the

next section.

The question of which spaces allow H-closed extensions with countable remain-

der is an obvious generalization of the question of compactifications with countable

remainder, and has been considered by Porter and Vermeer [41] and Tikoo [48].

The bulk of the results in this chapter are informed by the following facts.

Theorem 4.1.2. [36, 42, 43] Let X be a Hausdorff space.

1. Then σX \X is homeomorphic to βEX \EX.

2. For each H-closed extension hX of X, there is a θ -continuous function fh : σX→

hX such that fh = idX and { f←h (y) : y ∈ hX \X} is a partition of compact subsets

of σX \X.

3. For each partition P of nonempty compact sets of σX \X, there is an H-closed

extension hX of X such that P = { f←h (y) : y ∈ hX \X}.

4. Let η be a cardinal. There is an H-closed extension hX of X with |hX \X | = η

iff σX \X can be partitioned into η many compact sets.

Corollary 4.1.3. The space X has an H-closed extension with countable remainder iff

σX \X ∼= βEX \EX has a countable partition of compact sets.

A few more facts about the Iliadis absolute will be useful in this chapter.

Fact 4.1.4. Let X be a Hausdorff space and k : EX → X be the absolute map.

1. [43] If U ∈ τ(X), OU = O(intX clX U), k[OU ] = clX U and clEX k←[U ] = OU.

37



2. [43] For x ∈ X and U ∈ τ(X), k←(x) ⊆ OU iff x ∈ intX clX U, in particular,

k#[OU ] = intX clX U.

3. If T is clopen in EX then T = O(k#[T ]).

Proof. Since T is clopen in EX , T = OU for some U ∈ τ(X). By the above

k#[T ] = intX clX U and so T = OU = O(intX clX U) = O(k#[T ]).

4.2 Countable spaces

Our goal is to determine which spaces have H-closed extensions with a countable re-

mainder. As a sub-goal we first consider which countable spaces have countable H-

closed extensions. Recall the following definition.

Definition 4.2.1. A space X is said to be first countable if there is a countable neigh-

borhood base for each point x ∈ X .

We know by 3.2.19 that a countable H-closed space is scattered. If Y is a countable

H-closed extension of a space X , then Y is scattered and hence X is as well. Also Ys is

first countable and a minimal Hausdorff extension of Xs, therefore Xs is first countable.

Fact 4.2.2. A countable space X with a countable H-closed extension is Katětov.

Proof. By 3.2.9, it suffices to show X has an infinite closed discrete subspace. If X has

no infinite closed discrete subspaces, then every infinite subset of X has a derived point.

This means X is countably compact. As X is countable, it follows that X is compact –

hence Katětov.

The other direction is to determine which countable spaces have a countable H-

closed extension. We start with a countable, first countable, semiregular, Katětov space
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X . We may also assume X is not countably compact; that is, X contains an infinite,

closed discrete subspace A.

Theorem 4.2.3. A countable Hausdorff space X has a countable H-closed extension iff

X is Katětov and Xs is first countable.

Proof. Suppose a countable space X is Katětov and Xs is first countable. We want to

show X has an H-closed extension with countable remainder. By 4.1.2, it suffices to

show βEX \EX has a countable partition of compact sets.

Let X ′ denote X with the coarser H-closed topology. So we have that the identity

function idX : X → X ′ is continuous.

1. By [13], there is a continuous function f : EX→ EX ′ such that kX ′ ◦ f = idX ◦kX .

That is, the following diagram commutes:

EX

kX
��

f
// EX ′

kX ′
��

X
idX // X ′

As X ′ is H-closed, EX ′ is compact Hausdorff by 4.1.2. Also, there is a continuous

extension β f : βEX → EX ′ and the following diagram commutes.

βEX
β f

##FFFFFFFF

EX

kX
��

f
//

?�

OO

EX ′

kX ′
��

X
idX // X ′

Let X = {pn : n∈ω} and X ′= {p′n : n∈ω} where idX(pn) = p′n for n∈ω . Since

kX is perfect, we have that {k←X (pn) : n ∈ ω} is a partition of EX into compact
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subsets, {k←X ′ (p′n) : n ∈ ω} is a partition of EX ′ into compact subsets, and {(kX ′ ◦

β f )←(p′n) : n∈ω} is a partition of βEX into compact subsets. By commutativity

of the diagram, it follows that k←X (pn) = (kX ′ ◦ f )←(p′n) ⊆ (kX ′ ◦β f )←(p′n) and

(kX ′ ◦β f )←(p′n)∩EX = k←X (pn) for n ∈ ω .

2. As Xs is first countable, for each x ∈ X there is a countable neighborhood base

{Un}ω of regular open sets for x∈Xs. We now show {clβEX OUn}ω is a countable

family of clopen sets for which if k←X (x)⊆ T ∈ τ(βEX) then there is some m∈ω

such that clβEX OUm ⊆ T . Let T be an open set in βEX such that k←X (x)⊆ T . As

the clopen family {clβEX S : S is clopen in EX} is a base for βEX which is closed

under finite unions and k←X (x) is compact, we can suppose T = clβEX S for some

clopen set S of EX . By 4.1.4, S = OU for some U ∈ τ(X). As k←X (x) ⊆ OU , it

follows that x ∈ intX clX U and so for some n ∈ ω , x ∈Un ⊆ intX clX U . Hence

we have k←X (x)⊆ OUn ⊆ O(intX clX U) = OU = S and k←X (x)⊆ clβEX OUn ⊆ T .

Thus, k←X (x) =
⋂

ω clβEX OUn, and we can suppose

clβEX OUn+1 ⊆ clβEX OUn

for n ∈ ω .

3. Using the notation of 1, for each n ∈ ω we have k←X (pn)⊆ (kX ′ ◦β f )←(p′n) and

(kX ′ ◦β f )←(p′n)\ k←X (pn)⊆ βEX \EX and finally

⋃
ω

(
(kX ′ ◦β f )←(p′n)\ k←X (pn)

)
= βEX \EX .

Note

[(kX ′ ◦β f )←(p′n)\ k←X (pn)]∩ [clβEX OUk \ clβEX OUk+1] = Knk
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is a compact subset of βEX \EX . Now,
⋃

k∈ω Knk = (kX ′ ◦β f )←(p′n)\ k←X (pn),

βEX \EX =
⋃

n,k∈ω Knk and {Knk : n,k ∈ ω} is a partition of βEX \EX . By

4.1.2, as βEX \EX has a countable partition of compact subsets, both EX and X

have H-closed extensions with countable remainder.

Conversely, suppose the countable Hausdorff space X has a countable H-closed

extension hX . By 4.1.2, σX \X has a countable partition of compact sets. If X is

not countably compact, X has a countably infinite closed discrete subspace. By

4.2.2, X is Katětov. If the countable space X is countably compact, then X is also

compact and hence Katětov. As hX is countable and H-closed, hXs is a countable

minimal Hausdorff extension of Xs. But countable minimal Hausdorff spaces are

first countable. Thus, Xs is first countable as well.

4.3 Generalizations of Čech completeness

We recall some basic definitions before considering the question of how generalizations

of Čech completeness relate to finding H-closed extensions with countable remainder.

Definition 4.3.1. A Tychonoff space X is Čech complete if it is Gδ in every Hausdorff

extension.

The following theorem is well-known and provides two important characterizations

of Čech completeness. The first allows us a reduction in the number of compact Haus-

dorff extensions we must consider, and the second provides an internal characterization

of the property.

Theorem 4.3.2. [18, 15] The following are equivalent for a Tychonoff space X.

1. The space X is Čech complete.
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2. The space X is Gδ in βX.

3. There exists a sequence (C n)ω of open covers of X such that every filter base of

closed sets subordinate to (C n)ω has non-empty intersection.

The following corollary is immediate.

Corollary 4.3.3. If a space X has an H-closed extension with countable remainder then

EX is Čech complete.

Proof. Recall from 4.1.2 that a space X has an H-closed extension with countable re-

mainder iff βEX \EX has a countable partition of compact sets. Of course, a prerequi-

site for βEX \EX to be the countable partition of compact sets is that it actually be the

union of countably many compact sets. So if βEX \EX =
⋃

ω Kn where Kn is compact,

then Gn = βEX \Kn is a family of open sets of βEX and EX ⊆Gn for all n ∈ ω . Since⋃
ω Kn = βEX \EX , we have

⋂
ω Gn = EX . Hence EX is Čech complete.

Though Čech completeness of the absolute is a necessary condition for the existence

of an H-closed extension with countable remainder, we will see that it is not sufficient

– some additional property is required.

For metric space, restrictions related to the following definitions (along with Čech

completeness) are sufficient to allow a compactification with countable remainder.

Notation 4.3.4. For a Tychonoff space X , let R(X) = (clβX βX \X)∩X . We call R(X)

the residue of X .

Definition 4.3.5. A space X called rim-compact (or semicompact) if X has a basis of

open sets each of which has a compact boundary.

Definition 4.3.6. A space X is called Lindelöf if every open cover of X has a countable

subfamily which covers.
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The characterization of metric spaces allowing compactification with countable re-

mainder is due to Hoshina.

Theorem 4.3.7. [26] A metrizable space X has a compactification with countable re-

mainder iff X is Čech complete, rim-compact and R(X) is Lindelöf.

For compactifications of Tychonoff spaces with countable remainder Hoshina also

provides a sufficient condition.

Theorem 4.3.8. [26] Let X be a Čech complete, rim-compact space. If R(X) is sepa-

rable metrizable then X has a compactification with countable remainder.

We quote the following lemma of Hoshina [27], which is necessary for the next

example.

Lemma 4.3.9. If X has a countable compactification and U is a collection of pairwise

disjoint open sets of X with U ∩R(X) 6=∅ for each U ∈U , then U is countable.

First we consider an example of Charalambous [10] showing that not only is Čech

completeness is not enough to guarantee that a space has a compact extension with

countable remainder but there exist two spaces X and X1 with homeomorphic residues,

R(X) ∼= R(X1), one of which has a compactification with countable remainder – while

the other does not.

Example 4.3.10. [10] The construction starts with the following setup due to Terada

[47]. Note X = βR \N has a compactification with countable remainder, namely βR,

and R(X) = βN\N.

Now let Z = N∪{∞}, the one point compactification of N, Y = Z× Z× βN \N

and X1 = Y \ ({∞}×N× βN \N). Since Y is compact and Y \X1 is σ -compact and

zero-dimensional, then X1 is Čech complete and rim-compact. In addition, R(X1) =
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{∞}× {∞}× βN \N is homeomorphic with R(X). But X1 has no compactification

with countable remainder. For let U be an uncountable collection of pairwise disjoint

nonempty open subsets of βN\N. For each U ∈U let U ′ = Z×Z×U , then {U ′∩X1 :

U ∈U } is an uncountable collection of pairwise disjoint open sets of X1 with U ′∩X1∩

R(X1) 6=∅ for each U ∈U . So by the lemma above, X1 has no compactification with

countable remainder.

We note here, however, that X1 does have an H-closed extension with countable

remainder, since Y \X1 = {∞}×N× (βN \N) is zero-dimensional and the countable

union of compact Gδ sets.

We now consider how it may be possible to partition the space βEX \ EX into

countably many compact sets – which would allow us to construct an H-closed exten-

sion of X with countable remainder. Since βEX \EX is zero-dimensional, the following

proposition, communicated to Porter and Vermeer by F. Galvin, will be very useful.

Proposition 4.3.11. [41] A zero-dimensional space Y can be partitioned into a count-

able number of compact sets iff Y is the countable union of compact Gδ -sets.

Proof. If Y can be partitioned into a countable number of compact sets, then clearly

each of the compact sets is Gδ . Conversely, suppose Y =
⋃

ω An where each An is

compact and Gδ in Y . Since the finite union of compact Gδ sets is a compact Gδ set,

we will assume An ⊆ An+1 for all n ∈ ω . From the fact that Y is zero-dimensional,

it follows that for each n ∈ ω , An =
⋂
{Cn

m : m ∈ ω}, where Cn
m is clopen, Cn

0 = X ,

and Cn
m+1 ⊆ Cn

m for all m ∈ ω . Let Dm
n = An+1 ∩ (Cn

m \Cn
m+1) for n,m ∈ ω , then P =

{A0}∪{Dm
n : n,m ∈ ω}\{∅} is a countable partition of Y with compact sets.

Seeking to generalize Hoshina’s characterization of metrizable spaces allowing com-

pactifications with countable remainder, Porter and Vermeer found the following suffi-

cient conditions for an H-closed with countable remainder.

44



Theorem 4.3.12. [41] If cX is a zero-dimensional compactification of a Čech complete

space X and R(X) is Lindelöf, then cX \X has a countable partition of compact sets.

Corollary 4.3.13. [41] Let X be a space.

1. If X is not countably compact, EX is Čech complete, and R(EX) is Lindelöf, then

X has an H-closed extension with countable remainder and is Katětov.

2. If X is Tychonoff and Čech complete and R(X) is Lindelöf, then X has an H-closed

extension with a countable remainder

Noting that Čech completeness of the absolute is necessary for a space to have an

H-closed with countable remainder – we seek a generalization of Čech completeness to

Hausdorff spaces which we may be able use directly. K. Császár in [11] modifies the

internal characterization of a Čech complete space to obtain three different generaliza-

tions, two of which we will consider in depth.

Before we begin we will need the following definition also due to Császár:

Definition 4.3.14. A subset A of a topological space X is said to regularly embedded

in X if whenever x ∈ A ⊆ G and G is open, then there exists an open set V such that

x ∈V ⊆ clX V ⊆ G.

Proposition 4.3.15. [11] Suppose A⊆ X ⊆Y are spaces. If A is regularly embedded in

Y , then it is regularly embedded in X .

Theorem 4.3.16. [11] If X is a Hausdorff space, then X is regularly embedded in σX.

Proof. Let G ∈ τ(σX) such that X ⊆ G and let x ∈ X . There is a set U ∈ τ(X), such

that x ∈ oU ⊆ G. We note that clσX oU \X = oU \X and hence clσX oU ⊆ G.

The following definitions generalize the internal characterization of Čech complete-

ness for Tychonoff spaces to all Hausdorff spaces.
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Definition 4.3.17. Let (C n)ω be a sequence of families of sets of a set X and A a

family of sets. The family A is subordinate to the sequence (C n)ω if, for every m ∈ ω ,

there is some set A ∈A and also a set C ∈ C m such that A⊆C.

Definition 4.3.18. Let X be a topological space. A Čech sequence (Čech f -sequence,

Čech g-sequence) in X is a sequence (C n)ω of open covers of X such that every filter

base A (of closed sets, of open sets) subordinate to (C n)ω has an adherent point.

Definition 4.3.19. A Hausdorff space X is a Čech space (Čech g-space, Čech f -space)

if there is a Čech sequence (Čech g-sequence, Čech f -sequence) in X .

Notice that for a Tychonoff space the concepts of Čech space, Čech g-space, Čech

f -space, and Čech complete space coincide.

Theorem 4.3.20. [11] A regularly embedded open subspace of a Čech g-space is a

Čech g-space.

Proof. Let Y be a Čech g-space, X ⊆ Y regularly embedded and open, and (C n)ω a

Čech g-sequence on Y . Define Bn to be the family of open subsets B of X for which

clY B ⊆ X and B ⊆ C for some C ∈ C n, then Bn is a cover of X . In fact, if x ∈ X ,

there is a C ∈ C n such that x ∈ C, and an open V such that x ∈ V ⊆ clY V ⊆ X , then

x ∈C∩V ∈Bn. Now we show (Bn)ω is a Čech g-sequence in X .

Suppose U is a filter base of open subsets of X subordinate to (Bn)ω , then it is

also a filter base of open subsets of Y subordinate to (C n)ω . Hence there is some x ∈⋂
U clY U . Considering a particular U ⊆ B ∈Bn, we see clY U ⊆ X and so x ∈ X .

Theorem 4.3.21. [11] A regularly embedded, dense Gδ subspace of a Čech g-space is

a Čech g-space.

Proof. Let (C n)ω be a Čech g-sequence in Y , X ⊆ Y dense, regularly embedded, and

Gδ , so X =
⋂

ω Gn where Gn ∈ τ(Y ). Define Bn to be the system of relatively open
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subsets B of X for which B = H ∩X , where H is open in Y , clY H ⊆ Gn, and H ⊂Cn

for some Cn ∈ C n, then Bn is an open cover of X . In fact, if x ∈ X , there is some

Cn ∈ C n such that x ∈Cn and an open set V ∈ τ(Y ) such that x ∈ V ⊆ clY V ⊆ Gn and

x ∈V ⊆Cn∩X ∈Bn. We show (Bn)ω is a Čech g-sequence on X .

Let U be a filter base of relatively open subsets of X which is subordinate to (Bn)ω .

Define U ′ as the system of those open sets of Y , U ′, for which U ′∩X ∈U , then U ′ is

an open filter base on Y subordinate to (C n)ω . In fact, for every n ∈ ω , we may find a

set Un ∈U such that Un ⊆ Bn ∈Bn, hence sets Dn and Hn, open in Y , such that

Un = Dn∩X ⊆ Bn = Hn∩X ⊆Cn ∈ C n, clY Hn ⊆ Gn,

and

Un = Dn∩Hn∩Cn∩X , Dn∩Hn∩Cn ∈U ′.

Therefore there exists x ∈ {clY U ′ : U ′ ∈ U ′}. Since, with the above notation, x ∈

clY (Dn ∩Hn ∩Cn) ⊆ clY Hn ⊆ Gn for every n, we have x ∈ X . Finally if U = D∩X ,

D ∈ U ′, then x ∈ clY D ⊆ clY (D∩X) = clY U since D is open and X is dense in Y .

Hence x ∈ clY U ∩X and x is an adherent point of U in X .

Definition 4.3.22. A sequence of open covers (C n) is said to be monotone if C n+1

refines C n.

Proposition 4.3.23. [11] If there exists a Čech sequence (g-sequence, f -sequence) for

a space X , then there exists a monotone Čech sequence (g-sequence, f -sequence).

The following proposition provides an external characterization of a Čech g-space

comparable to that of a Čech complete space.

Proposition 4.3.24. [11] For a space X the following are equivalent.
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1. X is Gδ in every Hausdorff extension.

2. X is Gδ in σX .

3. X is a Čech g-space.

Proof. That 1 implies 2 is obvious.

That 3 follows from 2 is a consequence of the facts that σX is a Čech g-space (since

it is H-closed) and X is regularly embedded in σX . A more constructive proof is the

following: Suppose X is Gδ in σX . Then we have X =
⋂

ω Uk where Uk is open in σX .

Note that Uk =
⋃

oVα where Vα is open in X . Let

C k = {Vα :
⋃

oVα =Uk}.

We show the sequence (C n)ω is a Čech g-sequence. First notice that since X ⊆Uk, C n

is an open cover of X . Now suppose p is an open ultrafilter subordinate to (C n)ω , then

for each k ∈ ω there is some V ∈ C k such that V ∈ p. Now for each k, p ∈ oV ⊆Uk,

hence p ∈
⋂

ω Uk, i.e. p ∈ X . That is to say p is a fixed open ultrafilter, and so (C n)ω is

a Čech g-sequence.

For 3 implies 1, suppose X is a Čech g-space so there exists a Čech g-sequence,

(C n)ω , in X and let Y be an extension of X . Let

Gk =
⋃
{V ⊆ Y : C ⊆V and C ∈ C k}

for k ∈ ω . Since C k is an open cover of X , X ⊆ Gk ⊆ Y . Clearly then X ⊆
⋂

ω Gk,

so to show X is Gδ we need only show
⋂

ω Gk ⊆ X . On the contrary suppose there is

some p ∈
⋂

ω Gk ∩ (Y \X). Let B denote the system of all open neighborhoods of p
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and define

U = {B∩X : B ∈B}.

Then U is a filter base of open subsets of X and is subordinate to (C n)ω since, for

k ∈ ω , there is an open V such that C = V ∩X ∈ C k, p ∈ V ⊆ Gk and then V ∈ B,

C ∈ U ∩C k. Hence there is an adherent point of U , x ∈ X . Now the points p and

x have disjoint open neighborhoods Wp and Wx. But then Wp ∈ B, Wp ∩X ∈ U so

that Wx ∩Wp ∩X = ∅ contradicts the fact that x is an adherent point of U . Hence

X =
⋂

ω Gn.

With regard to finding countable H-closed extensions, the previous proposition indi-

cates that Čech g-spaces may be the generalization of Čech complete spaces we should

consider. The next theorem provides more support for this observation.

Proposition 4.3.25. A space X is a Čech g-space iff EX is Čech complete.

Proof. The space X is a Čech g-space iff X is Gδ in σX , i.e. X =
⋂

ω Un where

Un ∈ τ(σX). Let Kn = σX \Un, so σX \X =
⋃

Kn. Now recall σX \X ∼= σEX \EX .

Consider Kn ⊆ σEX \EX , and let Ûn = σEX \Kn. Note EX ⊆ Ûn, and since
⋃

Kn =

σEX \EX , then EX =
⋂

Ûn and EX is Gδ in σEX and hence Čech complete.

The argument can also be reversed.

Corollary 4.3.26. A space X is a Čech g-space iff Xs is a Čech g-space.

Proof. This follows from EX = EXs.

The following proposition is another characterization of countable spaces admitting

an H-closed extension with countable remainder. First we note that if X is countable

then EX is Lindelöf.

Lemma 4.3.27. Let X be a countable space, then EX is Lindelöf.
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Proof. Since k : EX → X is compact, EX =
⋃
{k←(x) : x ∈ X} is the countable union

of compact sets – hence Lindelöf.

Proposition 4.3.28. A countable space X admits an H-closed extension with countable

remainder iff X is a Čech g-space.

Proof. Clearly if X admits an H-closed extension with countable remainder the it is a

Čech g-space.

Now suppose X is countable and a Čech g-space, then EX is Tychonoff and Čech

complete. Also note since X is countable that X is Lindelöf. Therefore EX is Lindelöf.

Since R(EX) is a closed subset of EX , it is Lindelöf as well. By 4.3.12, EX has an

H-closed extension with countable remainder. Therefore X does as well.

Combining the above with 4.2.3 we have the following.

Theorem 4.3.29. For a countable space X the following are equivalent.

1. X has an H-closed extension with countable remainder.

2. X is Katětov and Xs is first countable.

3. X is a Čech g-space.

The following provides a characterization of all Hausdorff spaces having an H-

closed extension with countable remainder in terms of a special class of Čech g-sequences.

Proposition 4.3.30. The space X has an H-closed extension with countable remainder

iff X admits a Čech g-sequence (C n)ω for which each free open ultrafilter p is not

subordinate to C m only for m = N for some Np ∈ ω .

Proof. Recall X has an H-closed extension with countable remainder iff σX \ X =

βEX \EX has a countable partition of compact sets {Kn}. Let Gn = σX \Kn, then
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Gn is open in σX and so Gn =
⋃

oU where oU ⊆ Gn and U ∈ τ(X). Since X ⊆ Gn

and oU ∩X = U , X =
⋃
{U : oU ⊆ Gn}, i.e. {U : oU ⊆ Gn} is an open cover of X .

Note for each p ∈ σX \X , p ∈ Kn implies p /∈ Km for m 6= n, i.e. p /∈ σX \Gn implies

p ∈ σX \Gm for m 6= n. Finally we get U /∈ p for all U such that oU ⊆ Gm implies

V ∈ p for all V such that oV ⊆ Gm for m 6= n. Let C n = {U : oU ⊆ Gn}, then (C n)

is a sequence of open covers of X . Also, for each p ∈ σX \X there is an N ∈ ω such

that U /∈ p for all U ∈ C N (i.e. p ∈ KN). In addition, for all p ∈ σX \X , p (as an

open filter) is subordinate to all C n where n 6= N. Hence no free open ultrafilter on X

is subordinate to (C n) and (C n) is a Čech g-sequence on X – one in which each open

ultrafilter is excluded at exactly one level.

The argument above can be reversed. That is given an special Čech g-sequence

(C n)ω , we simply notice that {Kn : Kn =σX \
⋃
{oU : U ∈C n}} is a countable compact

partition of σX \X .

Császár [11] gives an example showing not all Čech g-spaces are Čech f -spaces, a

somewhat simpler example is provided by the following.

Example 4.3.31. Let X be the unit interval with the topology generated by open sets of

the form I \M where I is an interval and M is countable. Then X is a Hausdorff Čech

g-space which is not a Čech f -space.

Proof. Since X is H-closed, it is a Čech g-space.

To show X is not a Čech f -space, let (C n) be a sequence of open covers of X . Select

Cn ∈ C n such that 0 ∈Cn and then In and Mn such that 0 ∈ In \Mn ⊆Cn. Define

M0 =
∞⋃
1

Mn∪{0},
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find some

xk ∈

((
∞⋂
1

In

)
∩
[

0,
1
k

))
\M0,

and finally let

An = {xk : k ≥ n}.

After noting that An is closed by virtue of being countable, by An ⊆ In \M0 ⊆ In \

Mn ⊆Cn the system A = {An : n ∈ N} is a closed filter base subordinate to (C n). So

since
⋂

An =∅, X is not a Čech f -space.

Császár goes on to ask whether every Čech f -space is also a Čech g-space. This is

not the case.

Theorem 4.3.32. There is a space which is a Čech f -space but not a Čech g-space.

The following lemma is well known and can be found in Chapter 9 of [19].

Lemma 4.3.33. If X is locally compact and realcompact, then every infinite closed

subset of βX \X has cardinality at least 2c.

We now construct a special subset of βω \ω .

Lemma 4.3.34. There is a set D ⊆ βω \ω = ω∗ for which D intersects every infinite

compact subset of ω∗ and ω∗ \D also intersects every infinite compact subset of ω∗.

Proof. Note any infinite compact subset of ω∗ has a countably infinite subset. We

consider the family of sets C = {C : C is a countably infinite subset of ω∗}. Note |C |=

(2c)ω = 2c. Hence if K = {K : K = clβω C for some C ∈ C }, then |K | ≤ 2c. We

construct D recursively; begin by well-ordering K = {Kβ : β < 2c}. Let p ∈ D0 and

q ∈ E0 where p,q ∈ K0 and p 6= q.
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For α + 1 a successor ordinal, let Dα+1 = Dα ∪{p} and Eα+1 = Eα ∪{q} where

p,q ∈ Kα+1 \ (Dα ∪Eα) and p 6= q. Note Kα+1 \ (Dα ∪Eα) 6=∅ since |Kα+1|= 2c but

|Dα ∪Eα |< 2c.

For α a limit ordinal, let Dα =
⋃

β<α Dβ ∪{p} and Eα =
⋃

β<α Eβ ∪{q} where

p,q ∈ Kα \ (
⋃

β<α Dβ ∪
⋃

β<α Eβ ) and p 6= q. Note Kα \ (
⋃

β<α Dβ ∪
⋃

β<α Eβ ) 6= ∅

since |Kα |= 2c but still |
⋃

β<α Dβ ∪
⋃

β<α Eβ |< 2c.

Let D =
⋃

2c Dα and E =
⋃

2c Eα . Note D∩E = ∅ and for each infinite compact

subset K of ω∗, K∩D 6=∅ and K∩E 6=∅.

The following lemma generalizes a theorem appearing in [42].

Lemma 4.3.35. Let X be a space. If A⊆ σX \X and A is closed in σX \X, then clσX A

is an H-set of σX.

Proof. Let U be an open cover of clσX A. Extend, and possibly refine, U to an open

cover, C , of all of σX with basic open sets of the form oU where U ∈ τ(X). Since

σX is H-closed we can find a finite subfamily of C with the closures covering σX , and

since clσX oU = clX U∪oU we get a finite subfamily covering A, hence finite subfamily

whose closures cover clσX A.

Corollary 4.3.36. [42] Let X be a space. If A⊆ σX \X and A is closed in σX, then A

is compact.

Proof of 4.3.32. Consider the set D constructed above as a subset of κω . Let X =

κω \D, then X is a Čech f -space but not a Čech g-space.

To show X is a Čech f -space we must find a sequence of open covers (C n)ω of X

for which every subordinate closed filter base has nonempty adherence. The sequence

(C n)ω where C n =C = {{p}∪ω : p∈X \ω} suffices. For suppose F is a subordinate

closed filter base, then there is some F ∈ F and U ∈ C for which F ⊆ U . Now F
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cannot contain an infinite subset V of ω because then oV ⊆ F , but oV 6⊆U . So F ∩ω

is finite, and hence F is finite. Now F contains a compact set and hence has nonempty

adherence.

To show X is not a Čech g-space we consider the following diagram:

ω = Eω
� � //

��

EX = Xs
� � //

��

E(κω) = βω

��

ω
� � // X � � // κω

.

In this case if X is a Čech g-space then EX = Xs is Čech complete. But then EX is

Gδ in every Hausdorff extension, in particular βω – contradicting the construction of

D.

From the above a space must be a Čech g-space if it is to have an H-closed extension

with countable remainder. By 4.3.12, if we also have that the residue of EX , R(EX),

is Lindelöf, then this is sufficient to guarantee an H-closed extension of the space with

countable remainder. Hence we have the following corollary.

Corollary 4.3.37. If a space X is a Čech g-space and R(EX) is Lindelöf, then X has

an H-closed extension with countable remainder.

It seems that the next step would be to generalize the condition on R(EX) to a

condition on the original space X . What follows are several theorems and examples

obtained while trying to find conditions both necessary and sufficient for a space to

have an H-closed extension with countable remainder.

Lemma 4.3.38. The countable intersection of σ -compact subspaces in a regular space

is Lindelöf.
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Proof. Let X be a regular space, Bn ⊆ X where Bn is σ -compact for n ∈ ω , and A =⋂
ω Bn. Note ∏ω Bn is Lindelöf. The function e : A→∏ω Bn defined by e(x)(n) = x is

an embedding and e[A] is closed in the product. Therefore A is Lindelöf.

Proposition 4.3.39. [41] Let X be a Tychonoff, nowhere locally compact space. If

X has an H-closed extension with countable remainder, then X has a dense Lindelöf

subspace.

Proof. From 4.1.2 and since k : EX → X is irreducible, it follows that EX is nowhere

locally compact and has an H-closed extension with countable remainder. By the con-

tinuity of k (when X is regular), it suffices to show EX has a dense Lindelöf sub-

space. Now βEX \EX has a countable partition {An : n ∈ ω} of compact sets. Fix

n ∈ ω , then for each m ∈ ω there is an open set Um in βEX such that An ⊆ Um and

(clβEX Um)∩Ak = ∅ for 0 ≤ k < n and n < k ≤ n+m+ 1, and clβEX Um ⊆ Um−1 if

m ≥ 1. Hence Bn =
⋂
{clβEX Um : m ∈ ω} is compact, βEX \Bn is σ -compact, and

Bn \EX = An. If V is an open set in βEX and V ⊆ Bn, then clβEX V = clβEX(V \EX) as

βEX \EX is dense in βEX . Since V \EX ⊆ Bn \EX = An, clβEX V ⊆ clβEX An = An.

So V ⊆ An ⊆ βEX \EX implying V = ∅. Hence, βEX \Bn is open and dense. By

Baire’s Theorem and 4.3.38,
⋂
{βEX \Bn : n ∈ ω} is dense in EX and Lindelöf.

Fact 4.3.40. [41] A complete metric space is Katětov.

Example 4.3.41. [41] Let D be the discrete space of cardinality ℵ1, and P be the irra-

tionals. Note both D and P have compact extensions with countable remainder. Also,

the space D×P is locally Lindelöf and a complete metric space – hence Čech com-

plete, first countable and Katětov. Recall P has a coarser compact Hausdorff topology.

In particular, P ∼= ∏ω ω , and there is a continuous bijection f : ∏ω ω→∏ω(ω∪{∞}).

Let P′ denote P with this coarser compact Hausdorff topology, then D×P′ is locally
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compact and Hausdorff. Thus, D×P has a coarser compact Hausdorff topology. How-

ever, since the space is nowhere locally compact and has no dense Lindelöf subspace,

D×P has no H-closed extension with countable remainder.

The converse of 4.3.39 is false, for consider the space Q. Also consider the fol-

lowing example, which has a dense subspace admitting an H-closed extension with

countable remainder, but has none itself.

Example 4.3.42. Again let D be the discrete space of cardinality ℵ1 and let D∗ be the

one point compactification of D. Let R denote the real numbers with the usual topology

and let R+ denote the two point compactification of R. Let X = P×D∗×R+ and note

that cX = R+×D∗×R+ is a compactification of X where cX \X =Q×D∗×R+ has

a countable partition into compact sets. So X has an H-closed extension with countable

remainder. Let Y = X ∪ (Q×D×P), then cX is also a compactification of Y . However

cX \Y = Q× [(D∗×R+) \ (D×P)] does not have a countable partition of compact

sets, so Y has no H-closed extension with countable remainder. This is despite the fact

Y is nowhere locally compact, X is a dense Lindelöf subspace of Y , and X itself has an

H-closed extension with countable remainder.

Example 4.3.43. The space X = P× 2 with the lexicographic order has an H-closed

extension with countable remainder, namely Y = R+×2 with the lexicographic order,

since X is both a Čech g-space and Lindelöf. The space X2 also has an H-closed

extension with countable remainder, though X2 is not Lindelöf. In particular, notice

Y 2 is a zero-dimensional compactification of X2, which has a remainder that can be

expressed as the countable union of compact Gδ sets. Namely,

Y 2 \X2 =
⋃

q∈R+\P
[({q}×2)× (R×2)]∪

⋃
q′∈R+\P

[(R×2)× ({q′}×2)].
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Consider the following fact.

Fact 4.3.44. Let a Tychonoff space X have an H-closed extension hX with a countable

remainder. If U is a family of pairwise disjoint open sets in X, then {U ∈ U : U ∩

R(X) 6=∅} is countable.

Proof. If U is an open set of X we denote by ohU the largest open set in hX such that

ohU ∩X = U . By the denseness of X in hX , {ohU : U ∈ U } is a family of pairwise

disjoint open sets in hX . If U ∩R(X) 6=∅, then ohU \X 6=∅. As hX \X is countable,

{U ∈U : U ∩R(X) 6=∅} is countable.

We define the relative cellularity of a space X relative to a subspace A as follows:

c(A,X) = sup{U : U is a family of pairwise disjoint nonempty open subsets of X such

that U ∩A 6=∅ for all U ∈U }.

Thus by the fact above, if X is a Tychonoff space with an H-closed extension with

countable remainder, then c(R(X),X) = ω .

Corollary 4.3.45. If X is Tychonoff, nowhere locally compact and has an H-closed

extension with a countable remainder then c(X) = ω .

Remark 4.3.46. As the space D×P described in 4.3.41 is nowhere locally compact and

c(X) = ω1, it follows from the above that X has no H-closed extension with a countable

remainder.

The next result extends a result of Hoshina [27] which states that if a paracompact

space X has a compactification with a countable remainder then R(X) is Lindelöf, and

answers a question of Porter and Vermeer [41].

Definition 4.3.47. A family of sets which is composed of countably many pairwise

disjoint families is called σ -discrete.
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Proposition 4.3.48. Let X be a paracompact Tychonoff space which has an H-closed

extension hX with a countable remainder, then R(X) is Lindelöf.

Proof. Let C be an open cover of R(X). Extend each C ∈C to an open set C′ of X such

that C′∩R(X) = C. Now {C′ : C ∈ C }∪{X \R(X)} is an open cover of X and has a

σ -discrete open refinement {U n}ω . For each ninω , U n is a family of pairwise disjoint

open sets in X . Also, {U ∩R(X) : U ∈ U n,n ∈ ω,U ∩R(X) 6= ∅} is a refinement of

C . By 4.3.44, for each n ∈ ω , {U ∩R(X) : U ∈U n,U ∩R(X) 6=∅} is also countable.

Hence C has a countable subcover.

Considering the importance R(X) seems to play in finding extension with countable

remainder for Tychonoff spaces, we seek to generalize it all Hausdorff spaces. There are

a few possibilities to consider. To begin we make the following notational definitions.

Definition 4.3.49. Given a space X set Rσ (X) = X ∩ clσX(σX \X).

Notice that x ∈ Rσ (X) iff for every open neighborhood U of x there is some p ∈

σX \X such that U ∈ p.

Definition 4.3.50. Given a space X set REX(X) = k[R(EX)].

Another characterization of REX(X) is x ∈ REX(X) iff for each U ∈ τ(X) with x ∈

clX U there is some p ∈ σX \X such that U ∈ p.

Definition 4.3.51. Given a space X let

RH(X) = {x ∈ X : x has no H-closed neighborhood}.

Note that if U ∈ τ(X), A is an H-set of X and U ⊆ A then clX U is H-closed, so

replacing “H-closed” with “H-set” in the previous definition does not obtain a larger

set.
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Proposition 4.3.52. For a space X , REX(X)⊆ Rσ (X) = RH(X).

Proof. Suppose x ∈ REX(X), then there is some p ∈ R(EX) such that k(p) = x. Now

p ∈ R(EX) iff for each U ∈ p there is some q ∈ σEX \EX such that U ∈ q. Since

k(p) = x then N p ⊆ p. So for every open neighborhood U of there is some q ∈ σX \X

such that U ∈ q.

Now suppose x /∈ RH(X), then there is some U ∈N x such that clX U is H-closed.

Now if p is an open ultrafilter on X then ad(p) =
⋂

p clX V =
⋂

p clX(U ∩V ) 6= ∅. So

every open ultrafilter containing U is fixed and x /∈ Rσ (X). Therefore Rσ (X)⊆ RH(X).

Finally suppose x /∈ X Rσ (X), then there is some U ∈ N x for which if p is a

open ultrafilter and U ∈ p, then ad(p) 6= ∅. This means every open filter on clX U

has nonempty adherence and hence clX U is H-closed.

The next example shows that the containment in the previous proposition can be

strict.

Example 4.3.53. Let X = [0,1]∪ ([1,2]∩Q) with the usual topology as a subspace of

R. Let x = 1, then x has no H-closed neighborhood so 1 /∈ Rσ (X). But 1 ∈ clX(0,1) so

1 ∈ REX(X).
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Chapter 5

Concluding Remarks

We mention here some of the author’s continuing research and questions raised by the

results presented.

With regard to Katětov spaces, the major problem of finding an internal characteri-

zation remains unsolved. However, in the countable case we may be close to an answer.

Our dual characterization of countable spaces with countable H-closed extensions in-

dicates that a countable space is a Čech g-space exactly when its semiregularization is

first countable and it is Katětov.

In the general case, we note that since many examples of spaces which are not

Katětov rely heavily on the topology of Q (a countable space), our proof that, under the

Continuum Hypothesis, the minimal η1 space, Q, is not Katětov provides a somewhat

different direction for this study. A natural question is whether or not Q is Katětov, or

can even be embedded as an H-set, under ¬CH.

Question 5.0.54. Is the minimal η1 space Q Katětov under ¬CH?

Concerning H-closed extensions with countable remainder, though we have given

two internal characterizations for countable spaces as well as an internal characteriza-

tion for an arbitrary Hausdorff spaces, the author feels that the relationship among the

60



concepts of Čech g-spaces, Katětov spaces, and spaces admitting H-closed extensions

with countable remainder has not been fully explored.

We note, for example, that the concept of a Katětov refers explicitly to a coarsening

of the topology on a space. In addition, in analogy to the family of open sets of P,

C n = {( n
m ,

n+1
m )∩P : n∈Z,m∈N} – demonstrating that P is Čech-complete – we note

that the Čech property can also be thought of as a type of coarsening of the topology.

For, though in this in example
⋃

C n forms a basis for the topology, that need not always

be the case.

On the other hand, in the Tychonoff setting additional assumptions on R(X) – in

particular R(X) being Lindelöf (or having a countable network) – have been useful in

showing a space has an H-closed (or compact) extension with countable remainder.

However, none of these conditions has been proven both necessary and sufficient, ex-

cept in the metric case. Generalizing these conditions to Hausdorff spaces also poses

a problem. As earlier, one can easily pull the problem back to a condition on R(EX)

– but understanding how conditions on R(EX) relate to the original space has proven

difficult.
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