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Abstract

In this dissertation, I investigate two types of stochastic differential equations driven by

fractional Brownian motion and backward stochastic differential equations. Malliavin

calculus is a powerful tool in developing the main results in this dissertation.

This dissertation is organized as follows.

In Chapter 1, I introduce some notations and preliminaries on Malliavin Calculus

for both Brownian motion and fractional Brownian motion.

In Chapter 2, I study backward stochastic differential equations with general ter-

minal value and general random generator. In particular, the terminal value has not

necessary to be given by a forward diffusion equation. The randomness of the genera-

tor does not need to be from a forward equation neither. Motivated from applications to

numerical simulations, first the Lp-Hölder continuity of the solution is obtained. Then,

several numerical approximation schemes for backward stochastic differential equa-

tions are proposed and the rate of convergence of the schemes is established based on

the obtained Lp-Hölder continuity results.

Chapter 3 is concerned with a singular stochastic differential equation driven by

an additive one-dimensional fractional Brownian motion with Hurst parameter H > 1
2 .

Under some assumptions on the drift, we show that there is a unique solution, which

has moments of all orders. We also apply the techniques of Malliavin calculus to prove

that the solution has an absolutely continuous law at any time t > 0.
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In Chapter 4, I am interested in some approximation solutions of a type of stochas-

tic differential equations driven by multi-dimensional fractional Brownian motion BH

with Hurst parameter H > 1
2 . In order to obtain an optimal rate of convergence, some

techniques are developed in the deterministic case. Some work in progress is contained

in this chapter.

The results obtained in Chapter 2 are accepted by the Annals of Applied Probability,

and the material contained in Chapter 3 has been published in Statistics and Probability

Letters 78 (2008) 2075-2085.
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Chapter 1

Introduction

1.1 Notations and preliminaries

1.1.1 Notations and preliminaries Malliavin calculus for Brownian

motion

Let W = {Wt}0≤t≤T be a one-dimensional standard Brownian motion defined on some

complete filtered probability space (Ω, F , P, {Ft}0≤t≤T ). We assume that {Ft}0≤t≤T

is the filtration generated by the Brownian motion and the P-null sets, and F = FT .

We denote by P the progressive σ -field on the product space [0,T ]×Ω.

For any p≥ 1 we consider the following classes of processes.

• M2,p, for any p ≥ 2, denotes the class of square integrable random variables F

with a stochastic integral representation of the form

F = EF +
∫ T

0
utdWt ,

where u is a progressively measurable process satisfying sup0≤t≤T E|ut |p < ∞.
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• H p
F ([0,T ]) denotes the Banach space of all progressively measurable processes

ϕ : ([0,T ]×Ω, P)→ (R, B) with norm

‖ϕ‖H p =

(
E
(∫ T

0
|ϕt |2dt

) p
2
) 1

p

< ∞.

• Sp
F ([0,T ]) denotes the Banach space of all the RCLL (right continuous with left

limits) adapted processes ϕ : ([0,T ]×Ω, P)→ (R, B) with norm

‖ϕ‖Sp =

(
E sup

0≤t≤T
|ϕt |p

) 1
p

< ∞.

Next, we present some preliminaries on Malliavin calculus for the Brownian motion

W and we refer the reader to the book by Nualart [31] for more details.

Let H= L2([0,T ]) be the separable Hilbert space of all square integrable real-valued

functions on the interval [0,T ] with scalar product denoted by 〈·, ·〉H. The norm of an

element h ∈H will be denoted by ‖h‖H. For any h ∈H we put W (h) =
∫ T

0 h(t)dWt .

We denote by C∞
p (Rn) the set of all infinitely continuously differentiable functions

g : Rn → R such that g and all of its partial derivatives have polynomial growth. We

make use of the notation ∂ig = ∂g
∂xi

whenever g ∈C1(Rn).

Let S denote the class of smooth random variables such that a random variable

F ∈S has the form

F = g(W (h1), . . . ,W (hn)), (1.1.1)

where g belongs to C∞
p (Rn), h1, . . . ,hn are in H, and n≥ 1.
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The Malliavin derivative of a smooth random variable F of the form (1.1.1) is the

H-valued random variable given by

DtF =
n

∑
i=1

∂ig(W (h1), . . . ,W (hn))hi(t).

For any p≥ 1 we will denote the domain of D in Lp(Ω) by D1,p, meaning that D1,p is

the closure of the class of smooth random variables S with respect to the norm

‖F‖1,p =
(
E|F |p +E‖DF‖p

H
) 1

p .

We can define the iteration of the operator D in such a way that for a smooth random

variable F , the iterated derivative DkF is a random variable with values in H⊗k. Then

for every p≥ 1 and any natural number k≥ 1 we introduce the seminorm on S defined

by

‖F‖k,p =

(
E|F |p +

k

∑
j=1

E‖D jF‖p
H⊗ j

) 1
p

.

We will denote by Dk,p the completion of the family of smooth random variables S

with respect to the norm ‖ · ‖k,p.

Let µ be the Lebesgue measure on [0,T ]. For any k≥ 1 and F ∈Dk,p, the derivative

DkF = {Dk
t1,...,tkF, ti ∈ [0,T ], i = 1, . . . ,k},

is a measurable function on the product space [0,T ]k×Ω, which is defined a.e. with

respect to the measure µk×P.

We use L1,p
a to denote the set of real-valued progressively measurable processes

u = {ut}0≤t≤T such that

(1) For almost all t ∈ [0,T ], ut ∈ D1,p.
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(2) E
((∫ T

0 |ut |2dt
) p

2
+
(∫ T

0
∫ T

0 |Dθ ut |2dθdt
) p

2
)
< ∞.

Notice that we can choose a progressively measurable version of the H-valued process

{Dut}0≤t≤T .

1.1.2 Notations and preliminaries on Malliavin calculus for frac-

tional Brownian motion

For any a ≤ b and any β ∈ (0,1), Cβ ([a,b];Rd) denotes the space of Rd-valued β -

Hölder continuous functions, and C([a,b];Rd) denotes the Banach space of Rd-valued

continuous functions equipped with the supremum norm on the interval [a,b]. We will

make use of the notations

‖x‖a,b,β = sup
a≤θ<r≤b

|x(r)− x(θ)|
|r−θ |β

,

if x : [a,b]→ Rd is in Cβ ([a,b];Rd), and

‖x||a,b,∞ = sup
a≤r≤b

|x(r)|,

if x : [a,b]→ Rd is in C([a,b];Rd).

If d = 1, then denote Cβ ([a,b]) =Cβ ([a,b];R).

Let BH = {BH
t }t≥0 be a fractional Brownian motion with Hurst parameter H ∈

(1/2,1), defined on a complete probability space (Ω,F ,P). Namely, BH is a mean

zero Gaussian process with covariance

E(BH
t BH

s ) = RH(s, t) =
1
2
(
t2H + s2H−|t− s|2H) . (1.1.2)
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Notice that for any β ∈ (0,H), T > 0, the fractional Brownian motion {BH
t }0≤t≤T ∈

Cβ ([0,T ]) a.s.

Next, we make some preliminaries on the Malliavin calculus for the fractional

Brownian motion, and we refer to Decreusefond and Üstünel [10], Nualart [31] and

Saussereau and Nualart [36] for a more complete treatment of this topic.

Fix a time interval [0,T ]. Denote by E the set of real valued step functions on [0,T ]

and let H be the Hilbert space defined as the closure of E with respect to the scalar

product 〈1[0,t],1[0,s]〉H = RH(t,s), where RH is the covariance function of the fBm,

given in (1.1.2). We know that

RH(t,s) = αH

∫ t

0

∫ s

0
|r−u|2Hdudr

=
∫ t∧s

0
KH(t,r)KH(s,r)dr,

where KH(t,s) = cHs
1
2−H ∫ t

s (u− s)H− 3
2 uH− 1

2 du1{s<t} with cH =

√
H(2H−1)

B(2−2H,H− 1
2 )

and B

denotes the Beta function, and αH = H(2H−1). In general, for any ϕ,ψ ∈ E we have

〈ϕ,ψ〉H = αH

∫ T

0

∫ T

0
|r−u|2H−2

ϕrψududr .

The mapping 1[0,t] 7−→BH
t can be extended to an isometry between H and the Gaussian

space H1 spanned by BH . We denote this isometry by ϕ 7−→ BH(ϕ).

We consider the operator K∗H : E → L2(0,T ) defined by

(K∗Hϕ)(s) =
∫ T

s
ϕ(t)

∂KH

∂ t
(t,s)dt. (1.1.3)
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Notice that (K∗H(1[0,t]))(s) = KH(t,s)1[0,t](s). For any ϕ,ψ ∈ E we have

〈ϕ,ψ〉H = 〈K∗Hϕ,K∗Hφ〉L2(0,T ) = E(BH(ϕ)BH(φ)), (1.1.4)

and K∗H provides an isometry between the Hilbert space H and a closed subspace of

L2([0,T ]). We denote KH : L2([0,T ])→HH := KH(L2([0,T ])) the operator defined by

(KHh)(t) :=
∫ t

0 KH(t,s)h(s)ds. The space HH is the fractional version of the Cameron-

Martin space. Finally, we denote by RH = KH ◦K∗H : H →HH the operator RHϕ =∫ ·
0 KH(·,s)(K∗Hϕ)(s)ds. For any ϕ ∈H , RHϕ is Hölder continuous of order H. In fact,

RHϕ(t) = 〈K∗H1[0,t],K∗Hϕ〉H = E(BH
t BH(ϕ)),

which implies

|RHϕ(t)−RHϕ(s)| ≤ ‖ϕ‖H |t− s|H .

If we assume that Ω is the canonical probability space C0([0,T ]), equipped with

the Borel σ -field and the probability P is the law of the fBm. Then, the injection

RH : H →Ω embeds H densely into Ω and (Ω,H , P) is an abstract Wiener space in

the sense of Gross ([16] and [21]). In the sequel we will make this assumption on the

underlying probability space.

Let S be the space of smooth and cylindrical random variables of the form

F = f (BH(ϕ1), . . . ,BH(ϕn)), (1.1.5)

where f ∈C∞
b (R

n) ( f and all its partial derivatives are bounded). For a random variable

F of the form (1.1.5) we define its Malliavin derivative as the H -valued random

14



variable

DF =
n

∑
i=1

∂ f
∂xi

(BH(ϕ1), . . . ,BH(ϕn))ϕi.

We denote by D1,2 the Sobolev space defined as the completion of the class S , with

respect to the norm

‖F‖1,2 =
[
E(F2)+E

(
‖DF‖2

H

)]1/2
.

Since we shall deal with Brownian motion and fractional Brownian motion in sep-

arate chapters, it is not confusing if the same D is used to denote the corresponding

Malliavin derivatives.

1.2 Introduction to main results

This dissertation is mainly based on three papers joint with Yaozhong Hu and David

Nualart.

Chapter 2 is mainly from the paper “ Malliavin calculus for backward stochastic

differential equations and application to numerical solutions”, which is accepted by

the Annals of Applied Probability.

In this chapter, we are concerned with the following backward stochastic differential

equation (BSDE, for short):

Yt = ξ +
∫ T

t
f (r,Yr,Zr)dr−

∫ T

t
ZrdWr, 0≤ t ≤ T , (1.2.6)

where W = {Wt}0≤t≤T is a standard Brownian motion, the generator f is a measurable

function f : ([0,T ]×Ω×R×R, P⊗B⊗B)→ (R, B), and the terminal value ξ is

an FT -measurable random variable.

15



Definition 1.2.1. A solution to the BSDE (1.2.6) is a pair of progressively measurable

processes (Y,Z) such that:
∫ T

0 |Zt |2dt < ∞,
∫ T

0 | f (t,Yt ,Zt)|dt < ∞, a.s., and

Yt = ξ +
∫ T

t
f (r,Yr,Zr)dr−

∫ T

t
ZrdWr, 0≤ t ≤ T.

The most important result in this chapter is the Lp-Hölder continuity of the process

Z. Here we emphasize that the main difficulty in constructing a numerical scheme for

BSDEs is usually the approximation of the process Z. It is necessary to obtain some

regularity properties for the trajectories of this process Z. The Malliavin calculus turns

out to be a suitable tool to handle these problems because the random variable Zt can

be expressed in terms of the trace of the Malliavin derivative of Yt , namely, Zt = DtYt .

This relationship was proved in the paper by El Karoui, Peng and Quenez [13] and used

by these authors to obtain estimates for the moments of Zt . We shall further exploit

this identity to obtain the Lp-Hölder continuity of the process Z, which is the critical

ingredient for the rate estimate of our numerical schemes.

Assumption 1.2.1. Fix 2≤ p < q
2 .

(A3) ξ ∈ D2,q, and there exists L > 0, such that for all θ , θ ′ ∈ [0,T ],

E|Dθ ξ −Dθ ′ξ |p ≤ L|θ −θ
′|

p
2 , (1.2.7)

sup
0≤θ≤T

E|Dθ ξ |q < ∞, (1.2.8)

and

sup
0≤θ≤T

sup
0≤u≤T

E|DuDθ ξ |q < ∞. (1.2.9)

(A4) The generator f (t,y,z) has continuous and uniformly bounded first and second

order partial derivatives with respect to y and z, and f (·,0,0) ∈ Hq
F ([0,T ]).
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(A5) Assume that ξ and f satisfy the above conditions (A3) and (A4). Let (Y,Z) be the

unique solution to Equation (1.2.6) with terminal value ξ and generator f . For

each (y,z) ∈ R×R, f (·,y,z), ∂y f (·,y,z), and ∂z f (·,y,z) belong to L1,q
a , and the

Malliavin derivatives D f (·,y,z), D∂y f (·,y,z), and D∂z f (·,y,z) satisfy

sup
0≤θ≤T

E
(∫ T

θ

|Dθ f (t,Yt ,Zt)|2dt
) q

2

< ∞, (1.2.10)

sup
0≤θ≤T

E
(∫ T

θ

|Dθ ∂y f (t,Yt ,Zt)|2dt
) q

2

< ∞ , (1.2.11)

sup
0≤θ≤T

E
(∫ T

θ

|Dθ ∂z f (t,Yt ,Zt)|2dt
) q

2

< ∞ , (1.2.12)

and there exists L > 0 such that for any t ∈ (0,T ], and for any 0≤ θ , θ ′ ≤ t ≤ T

E
(∫ T

t
|Dθ f (r,Yr,Zr)−Dθ ′ f (r,Yr,Zr)|2dr

) p
2

≤ L|θ −θ
′|

p
2 . (1.2.13)

For each θ ∈ [0,T ], and each pair of (y,z), Dθ f (·,y,z) ∈ L1,q
a and it has continu-

ous partial derivatives with respect to y,z, which are denoted by ∂yDθ f (t,y,z)and

∂zDθ f (t,y,z), and the Malliavin derivative DuDθ f (t,y,z) satisfies

sup
0≤θ≤T

sup
0≤u≤T

E
(∫ T

θ∨u
|DuDθ f (t,Yt ,Zt)|2dt

) q
2

< ∞. (1.2.14)

Under the above integrability conditions, we can obtain the regularity of Z in the Lp

sense in the following theorem.

Theorem 1.2.2. Let Assumpaion 1.2.1 be satisfied.

(a) There exists a unique solution pair {(Yt ,Zt)}0≤t≤T to the BSDE (1.2.6), and Y, Z

are in L1,q
a . A version of the Malliavin derivatives {(DθYt , Dθ Zt)}0≤θ , t≤T of the

17



solution pair satisfies the following linear BSDE:

DθYt = Dθ ξ +
∫ T

t
[∂y f (r,Yr,Zr)DθYr +∂z f (r,Yr,Zr)Dθ Zr

+Dθ f (r,Yr,Zr)]dr−
∫ T

t
Dθ ZrdWr, 0≤ θ ≤ t ≤ T ;

(1.2.15)

DθYt = 0, Dθ Zt = 0, 0≤ t < θ ≤ T. (1.2.16)

Moreover, {DtYt}0≤t≤T defined by (1.2.15) gives a version of {Zt}0≤t≤T , namely,

µ×P a.e.

Zt = DtYt . (1.2.17)

(b) There exists a constant K > 0, such that, for all s, t ∈ [0,T ],

E|Zt−Zs|p ≤ K|t− s|
p
2 . (1.2.18)

Our first numerical scheme has been inspired by the paper of Zhang [40], where the

author considers a class of BSDEs whose terminal value ξ takes the form g(X·), where

g satisfies a Lipschitz condition with respect to the L∞ or L1 norms (similar assumptions

for f ), and X is a forward diffusion of the following form

Xt = X0 +
∫ t

0
b(r,Xr)dr+

∫ t

0
σ(r,Xr)dWr .

Let π = {0 = t0 < t1 < · · · < tn = T} be any partition of the interval [0,T ] and

|π|= max0≤i≤n−1(ti+1− ti). Denote ∆i = ti+1− ti, i = 0,1, . . . ,n−1.
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The discretization scheme in [40] is based on the regularity of the process Z in the

following mean square sense

n−1

∑
i=0

E
∫ ti+1

ti

[
|Zt−Zti|

2 + |Zt−Zti+1 |
2]dt ≤ K|π| , (1.2.19)

where K is a constant independent of the partition π . Moreover, the following rate of

convergence is proved in [40] for this approximation scheme

max
0≤i≤n

E|Yti−Y π
ti |

2 +E
∫ T

0
|Zt−Zπ

t |2dt ≤ K|π| . (1.2.20)

We consider the case of a general terminal value ξ which is twice differentiable

in the sense of Malliavin calculus and the first and second derivatives satisfy some

integrability conditions and we also made similar assumptions for the generator f (see

Assumption 1.2.1). In this sense our framework extends that of [40] and is also natural.

In this framework, we are able to obtain an estimate of the form

E|Zt−Zs|p ≤ K|t− s|
p
2 , (1.2.21)

where K is a constant independent of s and t. Clearly, (1.2.21) with p = 2 implies

(1.2.19). Moreover, (1.2.21) implies the existence of a γ-Hölder continuous version of

the process Z for any γ < 1
2 −

1
p . Notice that, up to now the path regularity of Z has

been studied only when the terminal value and the generator are functional of a forward

diffusion.
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After establishing the regularity of Z, we consider different types of numerical

schemes. First we analyze a scheme similar to the one proposed in [40]:

Y π
tn = ξ

π , Zπ
tn = 0,

Y π
t = Y π

ti+1
+ f

(
ti+1,Y π

ti+1
,E
(

1
∆i+1

∫ ti+2

ti+1

Zπ
r dr|Fti+1

))
∆i

−
∫ ti+1

t
Zπ

r dWr , t ∈ [ti, ti+1) , i = n−1,n−2, . . . ,0, (1.2.22)

where, by convention, E
(

1
∆i+1

∫ ti+2
ti+1

Zπ
r dr|Fti+1

)
= 0 when i = n− 1, and ξ π is an ap-

proximation of the terminal value ξ .

In this case we can improve Zhang’s work in [40] to be of the following form.

Theorem 1.2.3. Consider the approximation scheme (1.2.22). Let Assumption 1.2.1

be satisfied, and let the partition π satisfy max0≤i≤n−1 ∆i/∆i+1 ≤ L1, where L1 is a

constant. Assume that a constant L2 > 0 exists such that

| f (t2,y,z)− f (t1,y,z)| ≤ L2|t2− t1|
1
2 , (1.2.23)

for all t1, t2 ∈ [0,T ], and y, z ∈ R. Then there are positive constants K and δ , indepen-

dent of the partition π , such that, if |π|< δ , then

E sup
0≤t≤T

|Yt−Y π
t |2 +E

∫ T

0
|Zt−Zπ

t |2dt ≤ K
(
|π|+E|ξ −ξ

π |2
)
. (1.2.24)

We also propose and study an “implicit” numerical scheme of the following form:

Y π
tn = ξ

π ,

Y π
t = Y π

ti+1
+ f

(
ti+1,Y π

ti+1
,

1
∆i

∫ ti+1

ti
Zπ

r dr
)

∆i−
∫ ti+1

t
Zπ

r dWr ,

t ∈ [ti, ti+1), i = n−1,n−2, . . . ,0, (1.2.25)
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where ξ π is an approximation of the terminal value ξ . For this scheme we obtain a

much better result on the rate of convergence.

Theorem 1.2.4. Let Assumption 1.2.1 be satisfied, and let π be any partition. Assume

that ξ π ∈ Lp(Ω) and there exists a constant L1 > 0 such that, for all t1, t2 ∈ [0,T ],

| f (t2,y,z)− f (t1,y,z)| ≤ L1|t2− t1|
1
2 .

Then, there are two positive constants δ and K independent of the partition π , such

that, when |π|< δ , we have

E sup
0≤t≤T

|Yt−Y π
t |p +E

(∫ T

0
|Zt−Zπ

t |2dt
) p

2

≤ K
(
|π|

p
2 +E|ξ −ξ

π |p
)
.

In both schemes, the integral of the process Z is used in each iteration, and for this

reason they are not completely discrete schemes. In order to implement the scheme

on computers, one must replace an integral of the form
∫ ti+1

ti Zπ
s ds by discrete sums,

and then the convergence of the obtained scheme is hardly guaranteed. To avoid this

discretization we propose a truly discrete numerical scheme using our representation of

Zt as the trace of the Malliavin derivative of Yt :

Y π
tn = ξ , Zπ

tn = DT ξ ,

Y π
ti = E

(
Y π

ti+1
+ f (ti+1,Y π

ti+1
,Zπ

ti+1
)∆i

∣∣∣∣Fti

)
,

Zπ
ti = E

(
ρ

π
ti+1,tnDtiξ +

n−1

∑
k=i

ρ
π
ti+1,tk+1

Dti f (tk+1,Y π
tk+1

,Zπ
tk+1

)∆k

∣∣∣∣Fti

)
,

i = n−1,n−2, . . . ,0, (1.2.26)
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where ρπ
ti,ti = 1, i = 0,1, . . . ,n, and for 0≤ i < j ≤ n,

ρ
π
ti,t j

= exp

{
j−1

∑
k=i

∫ tk+1

tk
∂z f (r,Y π

tk ,Z
π
tk)dWr

+
j−1

∑
k=i

∫ tk+1

tk

(
∂y f (r,Y π

tk ,Z
π
tk)−

1
2
[∂z f (r,Y π

tk ,Z
π
tk)]

2
)

dr
}
. (1.2.27)

We make the following assumptions:

(B1) f (t,y,z) is deterministic, which implies Dθ f (t,y,z) = 0.

(B2) f (t,y,z) is linear with respect to y and z, namely, there are three functions g(t),

h(t) and f1(t) such that

f (t,y,z) = g(t)y+h(t)z+ f1(t) .

Assume that g, h are bounded and f1 ∈ L2([0,T ]). Moreover, there exists a con-

stant L2 > 0, such that, for all t1, t2 ∈ [0,T ],

|g(t2)−g(t1)|+ |h(t2)−h(t1)+ | f1(t2)− f1(t1)| ≤ L|t2− t1|
1
2 .

(B3) Esup0≤θ≤T |Dθ ξ |r < ∞, for all r ≥ 1.

For this new scheme, we obtain a rate of convergence result of the form

E max
0≤i≤n

{
|Yti−Y π

ti |
p + |Zti−Zπ

ti |
p}≤ K|π|

p
2−ε ,

for any ε > 0. In fact, we have a slightly better rate of convergence

Theorem 1.2.5. Let Assumption 1.2.1 (A3) and assumptions (B1)-(B3) be satisfied.

Then there are positive constants K and δ independent of the partition π , such that,
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when |π|< δ we have

E max
0≤i≤n

{
|Yti−Y π

ti |
p + |Zti−Zπ

ti |
p}≤ K|π|

p
2−

p
2log 1

|π|

(
log

1
|π|

) p
2

.

Chapter 3 is based on the paper “A singular stochastic differential equation driven

by fractional Brownian motion”. Statistics and Probability Letters 78 (2008), 2075-

2085.

In this chapter, we are interested in the following stochastic differential equation

driven by an additive fractional Brownian motion (fBm) BH with Hurst parameter H >

1/2

Xt = x0 +
∫ t

0
f (s,Xs)ds+BH

t , (1.2.28)

where x0 ≥ 0 is a constant and f (s,x) has a singularity at x = 0 of the form x−α with

α > 1
H −1.

The study of this type of singular equations is partially motivated by the equation

satisfied by the d-dimensional fractional Bessel process Rt = |BH
t |, d ≥ 2 (see Guerra

and Nualart [17], and Hu and Nualart [18]):

Rt = Yt +H(d−1)
∫ t

0

s2H−1

Rs
ds,

where the process Yt is equal to a divergence integral, Yt =
∫ t

0 ∑
d
i=1

BH,i
s
Rs

δBH,i
s . Except in

the case H = 1
2 , the process Y is not a one-dimensional fractional Brownian motion (see

Eisenbaum and Tudor [11] and Hu and Nualart [18] for some results in this direction),

although it shares with the fBm similar properties of scaling and 1
H -variation. Notice

that here the initial condition is zero.
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The aim of this chapter is to consider the case where x0 ≥ 0 and the drift f (t,x) is

nonnegative and it has a singularity at x = 0 of the form x−α , where α > 1
H − 1, and

x0 ≥ 0. We impose some conditions on f as follows.

(i) f : [0,∞)×(0,∞)→ [0,∞) is a nonnegative, continuous function which has a contin-

uous partial derivative with respect to x such that ∂x f (t,x)≤ 0 for all t > 0, x > 0.

(ii) There exists x1 > 0 and α > 1
β
− 1 such that f (t,x) ≥ g(t)x−α , for all t ≥ 0 and

x ∈ (0,x1), where g(t) is a nonnegative continuous function with g(t)> 0 for all

t > 0.

(iii) f (t,x) ≤ h(t)
(
1+ 1

x

)
for all t ≥ 0 and x > 0, where h(t) is a certain nonnegative

locally bounded function.

Using arguments based on fractional calculus inspired by the estimates obtained by Hu

and Nualart in [19] and under the above conditions (i)-(iii), we can show that there

exists a unique global solution which has an estimate of this form

‖X‖0,T,∞ ≤C1,γ,β ,T (|x0|+1)exp
{

C2,γ,β ,T

(
1+‖BH‖

γ

β (γ−1)
0,T,β

)}
, (1.2.29)

where β is a constant in (1
2 ,H) and T > 0. If we choose γ such that γ > 2β

2β−1 , then

γ

β (γ−1) < 2, and by Fernique’s theorem (see [14], Theorem 1.3.2, p. 11), we obtain

E(eC‖BH‖
γ

β (γ−1)
0,T,β )< ∞, (1.2.30)

for all C > 0, which implies that E(‖X‖p
0,T,∞)< ∞ for all p≥ 1.

Furthermore, we can obtain the absolute continuity of the law of the solution.
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Theorem 1.2.6. Suppose that f satisfies the assumptions (i)-(iii). Let Xt be the solution

to Equation (1.2.28). Then for any t ≥ 0, Xt ∈D1,2. Furthermore, for any t > 0 the law

of Xt is absolutely continuous with respect to the Lebesgue measure on R.

In the particular case f (t,x) = Kx−1, if t is small enough, we are able to show

show the existence of negative moments for the solution. We will also show that the

solution has an absolutely continuous law with respect to the Lebesgue measure, using

the techniques of Malliavin calculus for the fractional Brownian motion.

Chapter 4 is part of my current project “Approximation schemes of the solution of

a stochastic differential equation driven by fractional Brownian motion”, which is in

progress.

In this chapter, we consider approximation solutions of multidimensional stochastic

differential equations of the form

X i
t = X i

0 +
m

∑
j=1

∫ t

0
σ

i, j(Xs)dBH, j
s , i = 1, . . . ,d, (1.2.31)

where the integral is a pathwise Riemann-Stieltjes integral.

Fix n, and set τk =
kT
n for k = 0, . . . ,n. Set κn(t) = kT

n if kT
n ≤ t < (k+1)T

n , k =

0, . . . ,n. We will also set δ = T
n . The aim of the this project is to establish an optimal

rate of convergence of the Euler scheme of the form

X (n),i
t = X i

0 +
m

∑
j=1

∫ t

0
σ

i, j(X (n)
κn(s)

)dBH, j
s , i = 1, . . . ,d,

or equivalently,

X (n),i
t = X (n),i

κn(t)
+

m

∑
j=1

σ
i, j(X (n)

κn(t)
)(BH, j

t −BH, j
κn(t)

),
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for any kT
n < t ≤ (k+1)T

n , k = 0, . . . ,n.

The numerical solution of stochastic differential equations (SDEs, for short) driven

by Brownian motion is essentially based on the method of time discretization and has a

long history. Difficulties appear in constructing numerical solutions of SDEs driven by

fractional Brownian motion, because the fraction Brownian motion BH is not a semi-

martingale. Numerical schemes for SDEs driven by fractional Brownian motion are

studies only in few works, see [29] and the references therein. The authors in [30] gave

an exact rate of convergence of the Euler scheme in one-dimensional case by using a

specific representation for the solution. However, new techniques are required in multi-

dimensional case. In our work, we are searching for optimal estimates of the errors

of Euler Scheme and Milstein scheme by using some different techniques such as the

variation property of the fractional Brownian motion.

First, we investigate the following differential equation driven by a Hölder continu-

ous function g : [0,T ]→ Rm of order β > 1
2 :

X i
t = X i

0 +
m

∑
j=1

∫ t

0
σ

i, j(Xs)dg j
s , i = 1, . . . ,d, (1.2.32)

where σ : Rd → Rd×m is a continuously differentiable function whose partial deriva-

tives are bounded and Hölder continuous of order γ > 1
β
−1.

The Euler scheme is given by

X (n),i
t = X (n),i

κn(t)
+

m

∑
j=1

σ
i, j(X (n)

κn(t)
)(g j

t −g j
κn(t)

), (1.2.33)

for any kT
n < t ≤ (k+1)T

n , k = 0, . . . ,n.

We summarize the conditions on σ as follows.

(H1) |σ(x)| ≤ L1(1+ |x|), for some positive constant L1.
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(H2) |σ(x)−σ(y)| ≤ L2|x− y|, ∀x, y ∈ Rd , for some positive constant L2.

(H3) |σxi(x)−σxi(y)| ≤M|x− y|γ , ∀x, y ∈ Rd, i = 1, . . . ,d, for some positive constant

M.

Theorem 1.2.7. Suppose σ satisfies the conditions (H1) - (H3). Let X and X (n) be the

solutions to equations (1.2.32) and (1.2.33) respectively. Then there exist two positive

constants δ0 and K such that

sup
0≤t≤T

∣∣∣Xt−X (n)
t

∣∣∣≤ Kδ
1−2α ,

for all δ ≤ δ0.

This project has not been completed yet, and it requires our further investigation.
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Chapter 2

Malliavin calculus for backward stochastic differential

equations and application to numerical solutions

2.1 Introduction

The backward stochastic differential equation (BSDE, for short) we shall consider in

this chapter takes the following form:

Yt = ξ +
∫ T

t
f (r,Yr,Zr)dr−

∫ T

t
ZrdWr, 0≤ t ≤ T , (2.1.1)

where W = {Wt}0≤t≤T is a standard Brownian motion, ξ is the given terminal value,

and f is the given (random) generator. To solve this equation is to find a pair of adapted

processes Y = {Yt}0≤t≤T and Z = {Zt}0≤t≤T satisfying the above equation (2.1.1).

Linear backward stochastic differential equations were first studied by Bismut [3]

in an attempt to solve some optimal stochastic control problem through the method of

maximum principle. The general nonlinear backward stochastic differential equations

were first studied by Pardoux and Peng [34]. Since then there have been extensive

studies of this equation. We refer to the review paper El Karoui, Peng and Quenez
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[13], and to the books of El Karoui and Mazliak [12] and of Ma and Yong [25] and the

references therein for more comprehensive presentation of the theory.

A current important topic in the applications of BSDEs is the numerical approxi-

mation schemes. In most work on numerical simulations, a certain forward stochastic

differential equation of the following form

Xt = X0 +
∫ t

0
b(r,Xr,Yr)dr+

∫ t

0
σ(r,Xr)dWr (2.1.2)

is needed. Usually it is assumed that the generator f in (2.1.1) depends on Xr at the time

r: f (r,Yr,Zr) = f (r,Xr,Yr,Zr), where f (r,x,y,z) is a deterministic function of (r,x,y,z),

and f is global Lipschitz in (x,y,z). If in addition the terminal value ξ is of the form

ξ = h(XT ), where h is a deterministic function, a so-called four step numerical scheme

has been developed by Ma, Protter and Yong in [23]. A basic ingredient in this chapter

is that the solution {Yt}0≤t≤T to the BSDE is of the form Yt = u(t,Xt), where u(t,x) is

determined by a quasi-linear partial differential equation of parabolic type. Recently,

Bouchard and Touzi [4] propose a Monte-Carlo approach which may be more suitable

for high-dimensional problems. Again in this forward-backward setting, if the genera-

tor f has a quadratic growth in Z, a numerical approximation is developed by Imkeller

and Dos Reis [20] in which a truncation procedure is applied.

In the case where the terminal value ξ is a functional of the path of the forward

diffusion X , namely, ξ = g(X·), different approaches to construct numerical methods

have been proposed. We refer to Bally [1] for a scheme with a random time partition.

In the work by Zhang [40], the L2-regularity of Z is obtained, which allows the use of

deterministic time partitions as well as to obtain the rate estimate (see Bender and Denk

[2], Gobet, Lemor and Warin [15] and Zhang [40] for different algorithms). We should
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also mention the works by Briand, Delyon and Mémin [7] and Ma, Protter, San Martin

and Torres [24], where the Brownian motion is replaced by a scaled random walk.

The purpose of the present chapter is to construct numerical schemes for the gen-

eral BSDE (2.1.1), without assuming any particular form for the terminal value ξ and

generator f . This means that ξ can be an arbitrary random variable and f (r,y,z) can be

arbitrary Fr-measurable random variable (see Assumption 2.2.2 in Section 2.2 for pre-

cise conditions on ξ and f ). The natural tool that we shall use is the Malliavin calculus.

We emphasize that the main difficulty in constructing a numerical scheme for BSDEs

is usually the approximation of the process Z. It is necessary to obtain some regularity

properties for the trajectories of this process Z. The Malliavin calculus turns out to be a

suitable tool to handle these problems because the random variable Zt can be expressed

in terms of the trace of the Malliavin derivative of Yt , namely, Zt = DtYt . This relation-

ship was proved in the paper by El Karoui, Peng and Quenez [13] and used by these

authors to obtain estimates for the moments of Zt . We shall further exploit this identity

to obtain the Lp-Hölder continuity of the process Z, which is the critical ingredient for

the rate estimate of our numerical schemes.

Our first numerical scheme has been inspired by the paper of Zhang [40], where the

author considers a class of BSDEs whose terminal value ξ takes the form g(X·), where

X is a forward diffusion of the form (2.1.2), and g satisfies a Lipschitz condition with

respect to the L∞ or L1 norms (similar assumptions for f ). The discretization scheme

is based on the regularity of the process Z in the mean square sense, that is, for any

partition π = {0 = t0 < t1 < · · ·< tn = T}, one obtains

n−1

∑
i=0

E
∫ ti+1

ti

[
|Zt−Zti|

2 + |Zt−Zti+1 |
2]dt ≤ K|π| , (2.1.3)

where |π|= max0≤i≤n−1(ti+1− ti) and K is a constant independent of the partition π .
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We consider the case of a general terminal value ξ which is twice differentiable

in the sense of Malliavin calculus and the first and second derivatives satisfy some

integrability conditions and we also made similar assumptions for the generator f (see

Assumption 2.2.2 in Section 2.2 for details). In this sense our framework extends that

of [40] and is also natural. In this framework, we are able to obtain an estimate of the

form

E|Zt−Zs|p ≤ K|t− s|
p
2 , (2.1.4)

where K is a constant independent of s and t. Clearly, (2.1.4) with p= 2 implies (2.1.3).

Moreover, (2.1.4) implies the existence of a γ-Hölder continuous version of the process

Z for any γ < 1
2 −

1
p . Notice that, up to now the path regularity of Z has been studied

only when the terminal value and the generator are functional of a forward diffusion.

After establishing the regularity of Z, we consider different types of numerical

schemes. First we analyze a scheme similar to the one proposed in [40] (see (2.3.2)).

In this case we obtain a rate of convergence of the following type

E sup
0≤t≤T

|Yt−Y π
t |2 +

∫ T

0
E|Zt−Zπ

t |2dt ≤ K
(
|π|+E|ξ −ξ

π |2
)
.

Notice that this result is stronger than that in [40] which can be stated as (when ξ π = ξ )

sup
0≤t≤T

E|Yt−Y π
t |2 +

∫ T

0
E|Zt−Zπ

t |2dt ≤ K|π| .

We also propose and study an “implicit” numerical scheme (see (2.4.1) in Section

2.4 for the details). For this scheme we obtain a much better result on the rate of

convergence

E sup
0≤t≤T

|Yt−Y π
t |p +E

(∫ T

0
|Zt−Zπ

t |2dt
) p

2

≤ K
(
|π|

p
2 +E|ξ −ξ

π |p
)
,
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where p > 1 depends on the assumptions imposed on the terminal value and the coeffi-

cients.

In both schemes, the integral of the process Z is used in each iteration, and for this

reason they are not completely discrete schemes. In order to implement the scheme

on computers, one must replace an integral of the form
∫ ti+1

ti Zπ
s ds by discrete sums,

and then the convergence of the obtained scheme is hardly guaranteed. To avoid this

discretization we propose a truly discrete numerical scheme using our representation

of Zt as the trace of the Malliavin derivative of Yt (see Section 2.5 for details). For this

new scheme, we obtain a rate of convergence result of the form

E max
0≤i≤n

{
|Yti−Y π

ti |
p + |Zti−Zπ

ti |
p}≤ K|π|

p
2−ε ,

for any ε > 0. In fact, we have a slightly better rate of convergence (see Theorem 2.5.2)

E max
0≤i≤n

{
|Yti−Y π

ti |
p + |Zti−Zπ

ti |
p}≤ K|π|

p
2−

p
2log 1

|π|

(
log

1
|π|

) p
2

.

However, this type of result on the rate of convergence applies only to some classes of

BSDEs and thus this scheme remains to be further investigated.

In the computer realization of our schemes or any other schemes, an extremely

important procedure is to compute the conditional expectation of form E(Y |Fti). In

this chapter we shall not discuss this issue but only mention the papers [2], [4] and

[15].

This chapter is organized as follows. In Section 2.2 we obtain a representation of the

martingale integrand Z in terms of the trace of the Malliavin derivative of Y . And then

we get the Lp-Hölder continuity of Z by using this representation. The conditions that

we assume on the terminal value ξ and the generator f are also specified in this section.
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Some examples of application are presented to explain the validity of the conditions.

Section 2.3 is devoted to the analysis of the approximation scheme similar to the one

introduced in [40]. Under some differentiability and integrability conditions in the

sense of Malliavin calculus on ξ and the nonlinear coefficient f , we establish a better

rate of convergence for this scheme. In Section 2.4, we introduce an “implicit” scheme

and obtain the rate of convergence in the Lp norm. A completely discrete scheme is

proposed and analyzed in Section 2.5.

Throughout this chapter for simplicity we consider only scalar BSDEs. The results

obtained in this chapter can be easily extended to multi-dimensional BSDEs.

2.2 The Malliavin calculus for BSDEs

2.2.1 Estimates on the solutions of BSDEs

The generator f in the BSDE (2.1.1) is a measurable function f : ([0,T ]×Ω×R×

R, P ⊗B⊗B)→ (R, B), and the terminal value ξ is an FT -measurable random

variable.

Definition 2.2.1. A solution to the BSDE (2.1.1) is a pair of progressively measurable

processes (Y,Z) such that:
∫ T

0 |Zt |2dt < ∞,
∫ T

0 | f (t,Yt ,Zt)|dt < ∞, a.s., and

Yt = ξ +
∫ T

t
f (r,Yr,Zr)dr−

∫ T

t
ZrdWr, 0≤ t ≤ T.

The next lemma provides a useful estimate on the solution to the BSDE (2.1.1).

Lemma 2.2.2. Fix q ≥ 2. Suppose that ξ ∈ Lq(Ω), f (t,0,0) ∈ Hq
F ([0,T ]), and f is

uniformly Lipschitz in (y,z), namely, there exists a positive number L such that µ ×P
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a.e.

| f (t,y1,z1)− f (t,y2,z2)| ≤ L(|y1− y2|+ |z1− z2|) ,

for all y1,y2 ∈ R and z1,z2 ∈ R. Then, there exists a unique solution pair (Y,Z) ∈

Sq
F ([0,T ])×Hq

F ([0,T ]) to Equation (2.1.1). Moreover, we have the following estimate

for the solution

E sup
0≤t≤T

|Yt |q +E
(∫ T

0
|Zt |2dt

) q
2

≤ K

(
E|ξ |q +E

(∫ T

0
| f (t,0,0)|2dt

) q
2
)
, (2.2.1)

where K is a constant depending only on L, q and T .

Proof. The proof of the existence and uniqueness of the solution (Y,Z) can be found

in [13, Theorem 5.1] with the local martingale M ≡ 0, since the filtration here is the

filtration generated by the Brownian motion W . The estimate (2.2.1) can be easily

obtained from Proposition 5.1 in [13] with ( f 1,ξ 1) = ( f ,ξ ) and ( f 2,ξ 2) = (0,0).

As we will see later, for a given BSDE the process Z will be expressed in terms

of the Malliavin derivative of the solution Y , which will satisfy a linear BSDE with

random coefficients. To study the properties of Z we need to analyze a class of linear

BSDEs.

Let {αt}0≤t≤T and {βt}0≤t≤T be two progressively measurable processes. We will

make use of the following integrability conditions.

Assumption 2.2.1. (A1) For any λ > 0,

Cλ := E exp
(

λ

∫ T

0

(
|αt |+β

2
t
)

dt
)
< ∞.
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(A2) For any p≥ 1,

Kp := sup
0≤t≤T

E(|αt |p + |βt |p)< ∞.

Under condition (A1), we denote by {ρt}0≤t≤T the solution of the linear stochastic

differential equation


dρt = αtρtdt +βtρtdWt , 0≤ t ≤ T

ρ0 = 1 .
(2.2.2)

The following theorem is a critical tool for the proof of the main theorem in this

section, and it has also its own interest.

Theorem 2.2.3. Let q > p ≥ 2 and let ξ ∈ Lq(Ω) and f ∈ Hq
F ([0,T ]). Assume that

{αt}0≤t≤T and {βt}0≤t≤T are two progressively measurable processes satisfying con-

ditions (A1) and (A2) in Assumption 2.2.1. Suppose that the random variables ξ ρT and∫ T
0 ρt ftdt belong to M2,q, where {ρt}0≤t≤T is the solution to Equation (2.2.2). Then,

the following linear BSDE

Yt = ξ +
∫ T

t
[αrYr +βrZr + fr]dr−

∫ T

t
ZrdWr, 0≤ t ≤ T (2.2.3)

has a unique solution pair (Y,Z) and there is a constant K > 0 such that

E|Yt−Ys|p ≤ K|t− s|
p
2 , (2.2.4)

for all s, t ∈ [0,T ].

We need the following lemma to prove the above result.
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Lemma 2.2.4. Let {αt}0≤t≤T and {βt}0≤t≤T be two progressively measurable pro-

cesses satisfying condition (A1) in Assumption 2.2.1, and {ρt}0≤t≤T be the solution of

Equation (2.2.2). Then, for any r ∈ R we have

E sup
0≤t≤T

ρ
r
t < ∞ . (2.2.5)

Proof. Let t ∈ [0,T ]. The solution to Equation (2.2.2) can be written as

ρt = exp
{∫ t

0

(
αs−

β 2
s

2

)
ds+

∫ t

0
βsdWs

}
.

For any real number r, we have

E sup
0≤t≤T

ρ
r
t = E sup

0≤t≤T
exp
{∫ t

0
r
(

αs−
β 2

s
2

)
ds+ r

∫ t

0
βsdWs

}
≤ E

(
exp
{
|r|
∫ T

0
|αs|ds+

1
2
(|r|+ r2)

∫ T

0
β

2
s ds
}

× sup
0≤t≤T

exp
{

r
∫ t

0
βsdWs−

r2

2

∫ t

0
β

2
s ds
})

.

Then, fixing any p > 1 and using Hölder’s inequality, we obtain

E sup
0≤t≤T

ρ
r
t ≤C

(
E sup

0≤t≤T
exp
{

rp
∫ t

0
βsdWs−

pr2

2

∫ t

0
β

2
s ds
}) 1

p

, (2.2.6)

where

C =

(
E exp

{
q |r|

∫ T

0
|αs|ds+

q
2
(|r|+ r2)

∫ T

0
β

2
s ds
}) 1

q

,

and 1
p +

1
q = 1.
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Set Mt = exp
{

r
∫ t

0 βsdWs− r2

2
∫ t

0 β 2
s ds
}

. Then, {Mt}0≤t≤T is a martingale due to

(A1). We can rewrite (2.2.6) into

E sup
0≤t≤T

ρ
r
t ≤C

(
E sup

0≤t≤T
Mp

t

) 1
p

. (2.2.7)

By Doob’s maximal inequality, we have

E sup
0≤t≤T

Mp
t ≤ cpEMp

T , (2.2.8)

for some constant cp > 0 depending only on p. Finally, choosing any γ > 1, λ > 1 such

that 1
γ
+ 1

λ
= 1 and applying again the Hölder inequality yield

EMp
T = E

(
exp
{

rp
∫ T

0
βsdWs−

γ

2
p2r2

∫ T

0
β

2
s ds
}

×exp
{

γ p−1
2

pr2
∫ T

0
β

2
s ds
})

≤
(
Eexp

{
rpγ

∫ T

0
βsdWs−

1
2

γ
2 p2r2

∫ T

0
β

2
s ds
}) 1

γ

×
(
Eexp

{
λ (γ p−1)

2
pr2

∫ T

0
β

2
s ds
}) 1

λ

=

(
Eexp

{
λ (γ p−1)

2
pr2

∫ T

0
β

2
s ds
}) 1

λ

< ∞.

Combining this inequality with (2.2.7) and (2.2.8) we conclude the proof.

Proof of Theorem 2.2.3. The existence and uniqueness is well-known. We are going

to prove (2.2.4). Let t ∈ [0,T ]. Denote γt = ρ
−1
t , where {ρt}0≤t≤T is the solution to

Equation (2.2.2). Then {γt}0≤t≤T satisfies the following linear stochastic differential
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equation: 
dγt = (−αt +β 2

t )γtdt−βtγtdWt , 0≤ t ≤ T

γ0 = 1.

For any 0≤ s≤ t ≤ T and any positive number r ≥ 1, we have, using (A2), the Hölder

inequality, the Burkholder-Davis-Gundy inequality and Lemma 2.2.4 applied to the

process {γt}0≤t≤T ,

E|γt− γs|r = E
∣∣∣∣∫ t

s
(−αu +β

2
u )γudu−

∫ t

s
βuγudWu

∣∣∣∣r
≤ 2r−1

[
E
∣∣∣∣∫ t

s
(−αu+β

2
u )γudu

∣∣∣∣r+CrE
∣∣∣∣∫ t

s
β

2
u γ

2
u du
∣∣∣∣ r

2
]

≤ C(t− s)
r
2 , (2.2.9)

where Cr is a constant depending only on r and C is a constant depending on T , r, and

the constants appearing in conditions (A1) and (A2).

From (2.2.3), (2.2.2), and by Itô’s formula, we obtain

d(Ytρt) =−ρt ftdt +(βtρtYt +ρtZt)dWt .

As a consequence,

Yt = ρ
−1
t E

(
ξ ρT +

∫ T

t
ρr frdr

∣∣Ft

)
= E

(
ξ ρt,T +

∫ T

t
ρt,r frdr

∣∣Ft

)
, (2.2.10)

where we write ρt,r = ρ
−1
t ρr = γtρr for any 0≤ t ≤ r ≤ T .
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Now, fix 0≤ s≤ t ≤ T . We have

E|Yt−Ys|p = E
∣∣∣∣E(ξ ρt,T +

∫ T

t
ρt,r frdr

∣∣Ft

)
−E

(
ξ ρs,T +

∫ T

s
ρs,r frdr

∣∣Fs

)∣∣∣∣p
≤ 2p−1

[
E
∣∣E(ξ ρt,T

∣∣Ft
)
−E(ξ ρs,T

∣∣Fs)
∣∣p

+E
∣∣∣∣E(∫ T

t
ρt,r frdr

∣∣Ft

)
−E

(∫ T

s
ρs,r frdr

∣∣Fs

)∣∣∣∣p]
= 2p−1(I1 + I2) .

First we estimate I1. We have

I1 = E
∣∣E(ξ ρt,T

∣∣Ft
)
−E

(
ξ ρs,T

∣∣Fs
)∣∣p

= E
∣∣E(ξ ρt,T

∣∣Ft
)
−E

(
ξ ρs,T

∣∣Ft
)
+E

(
ξ ρs,T

∣∣Ft
)
−E

(
ξ ρs,T

∣∣Fs
)∣∣p

≤ 2p−1 [E ∣∣E(ξ ρt,T
∣∣Ft
)
−E

(
ξ ρs,T

∣∣Ft
)∣∣p +E

∣∣E(ξ ρs,T
∣∣Ft
)
−E

(
ξ ρs,T

∣∣Fs
)∣∣p]

≤ 2p−1 [E |ξ (ρt,T −ρs,T )|p +E
∣∣E(ξ ρs,T

∣∣Ft
)
−E

(
ξ ρs,T

∣∣Fs
)∣∣p]

= 2p−1(I3 + I4).

Using the Hölder inequality, Lemma 2.2.4, and the estimate (2.2.9) with r = 2pq
q−p , the

term I3 can be estimated as follows

I3 ≤ (E|ξ |q)
p
q

(
E|ρt,T −ρs,T |

pq
q−p

) q−p
q

≤ (E|ξ |q)
p
q

(
E|γt− γs|

2pq
q−p

) q−p
2q
(
Eρ

2pq
q−p
T

) q−p
2q

≤C|t− s|
p
2 ,

where C is a constant depending only on p,q,T , E|ξ |q, and the constants appearing in

conditions (A1) and (A2).
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In order to estimate the term I4 we will make use of the condition ξ ρT ∈M2,q. This

condition implies that

ξ ρT = E(ξ ρT )+
∫ T

0
urdWr,

where u is a progressively measurable process satisfying sup0≤t≤T E|ut |q < ∞. There-

fore, by the Burkholder-Davis-Gundy inequality, we have

E
∣∣E(ξ ρT

∣∣Ft)−E(ξ ρT
∣∣Fs)

∣∣q = E
∣∣∣∣∫ t

s
urdWr

∣∣∣∣q
≤ CqE

∣∣∣∣∫ t

s
u2

r dr
∣∣∣∣ q

2

≤Cq(t− s)
q−2

2 E
(∫ t

s
|ur|qdr

)
≤ Cq(t− s)

q
2 sup

0≤t≤T
E|ut |q.

As a consequence, from the definition of I4 we have

I4 = E|γs[E(ξ ρT |Ft)−E(ξ ρT |Fs)]|p

≤
(
Eγ

pq
q−p
s

) q−p
q

(E|E(ξ ρT |Ft)−E(ξ ρT |Fs)|q)
p
q ≤C|t− s|

p
2 ,

where C is a constant depending on p,q,T, sup0≤t≤T E|ut |q < ∞, and the constants

appearing in conditions (A1) and (A2).
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The term I2 can be decomposed as follows

I2 = E
∣∣∣∣E(∫ T

t
ρt,r frdr|Ft

)
−E

(∫ T

s
ρs,r frdr|Fs

)∣∣∣∣p
≤ 3p−1

[
E
∣∣∣∣E(∫ T

t
ρt,r frdr|Ft

)
−E

(∫ T

t
ρs,r frdr|Ft

)∣∣∣∣p
+E
∣∣∣∣E(∫ T

t
ρs,r frdr|Ft

)
−E

(∫ T

s
ρs,r frdr|Ft

)∣∣∣∣p
+E
∣∣∣∣E(∫ T

s
ρs,r frdr|Ft

)
−E

(∫ T

s
ρs,r frdr|Fs

)∣∣∣∣p
]

= 3p−1(I5 + I6 + I7) .

Let us first estimate the term I5. Suppose that p < p′ < q. Then, using (2.2.9) and the

Hölder inequality, we can write

I5 = E
∣∣∣∣E(∫ T

t
ρt,r frdr|Ft

)
−E

(∫ T

t
ρs,r frdr|Ft

)∣∣∣∣p
≤ E

∣∣∣∣∫ T

t
(ρt,r−ρs,r) frdr

∣∣∣∣p = E
(
|γt− γs|p

∣∣∣∣∫ T

t
ρr frdr

∣∣∣∣p)

≤
{
E |γt− γs|

pp′
p′−p

} p′−p
p′
{
E
∣∣∣∣∫ T

t
ρr frdr

∣∣∣∣p′
} p

p′

≤ C|t− s|
p
2

E
(∫ T

t
ρ

2
r dr
) p′q

2(q−p′)


p(q−p′)

p′q {
E
(∫ T

t
f 2
r dr
) q

2
} p

q

≤ Ĉ|t− s|
p
2 ‖ f‖p

Hq,

where Ĉ is a constant depending on p, p′, q, T , and the constants appearing in conditions

(A1) and (A2).
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Now we estimate I6. Suppose that p < p′ < q. We have, as in the estimate of the

term I5,

I6 = E
∣∣∣∣E(∫ T

t
ρs,r frdr|Ft

)
−E

(∫ T

s
ρs,r frdr|Ft

)∣∣∣∣p
≤ E

∣∣∣∣∫ t

s
ρs,r frdr

∣∣∣∣p = E
(

ρ
−p
s

∣∣∣∣∫ t

s
ρr frdr

∣∣∣∣p)

≤

{
Eρ
− pp′

p′−p
s

} p′−p
p′
{
E
∣∣∣∣∫ t

s
ρr frdr

∣∣∣∣p′
} p

p′

= C

{
E
∣∣∣∣∫ t

s
ρr frdr

∣∣∣∣p′
} p

p′

≤ C|t− s|
p
2

{
E sup

0≤t≤T
ρ

p′q
q−p′

t

} p(q−p′)
p′q

‖ f‖p
Hq = Ĉ|t− s|

p
2 ,

where Ĉ is a constant depending on p, p′, q, T , and the constants appearing in conditions

(A1) and (A2).

The fact that
∫ T

0 ρr frdr belongs to M2,q implies that

∫ T

0
ρr frdr = E

∫ T

0
ρr frdr+

∫ T

0
vrdWr,

where {vt}0≤t≤T is a progressively measurable process satisfying sup0≤t≤T E|vt |q < ∞.

Then, by the Burkholder-Davis-Gundy inequality we have

E
∣∣∣∣E(∫ T

s
ρr frdr|Ft

)
−E

(∫ T

s
ρr frdr|Fs

)∣∣∣∣q
= E

∣∣∣∣E(∫ T

0
ρr frdr|Ft

)
−E

(∫ T

0
ρr frdr|Fs

)∣∣∣∣q
= E

∣∣∣∣∫ t

s
vrdWr

∣∣∣∣q ≤Cq(t− s)
q
2 sup

0≤t≤T
E|vt |q.
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Finally, we estimate I7 as follows

I7 = E
∣∣∣∣E(∫ T

s
ρs,r frdr|Ft

)
−E

(∫ T

s
ρs,r frdr|Fs

)∣∣∣∣p
= E

∣∣∣∣ρ−1
s

(
E
(∫ T

s
ρr frdr|Ft

)
−E

(∫ T

s
ρr frdr|Fs

))∣∣∣∣p
≤

{
Eρ
− pq

q−p
s

} q−p
p
{
E
∣∣∣∣E(∫ T

s
ρr frdr|Ft

)
−E

(∫ T

s
ρr frdr|Fs

)∣∣∣∣q}
p
q

≤ C
{
E
∣∣∣∣E(∫ T

s
ρr frdr|Ft

)
−E

(∫ T

s
ρr frdr|Fs

)∣∣∣∣q}
p
q

≤ Ĉ|t− s|
p
2 , (2.2.11)

where Ĉ is a constant depending on p, q, T , sup0≤t≤T E|vt |q, and the constants appear-

ing in conditions (A1) and (A2).

As a consequence, we obtain for all s, t ∈ [0,T ]

E|Yt−Ys|p ≤ K|t− s|
p
2 ,

where K is a constant independent of s and t.

2.2.2 The Malliavin calculus for BSDEs

We return to the study of Equation (2.1.1). The main assumptions we make on the

terminal value ξ and generator f are the following.

Assumption 2.2.2. Fix 2≤ p < q
2 .

(A3) ξ ∈ D2,q, and there exists L > 0, such that for all θ , θ ′ ∈ [0,T ],

E|Dθ ξ −Dθ ′ξ |p ≤ L|θ −θ
′|

p
2 , (2.2.12)

43



sup
0≤θ≤T

E|Dθ ξ |q < ∞, (2.2.13)

and

sup
0≤θ≤T

sup
0≤u≤T

E|DuDθ ξ |q < ∞. (2.2.14)

(A4) The generator f (t,y,z) has continuous and uniformly bounded first and second

order partial derivatives with respect to y and z, and f (·,0,0) ∈ Hq
F ([0,T ]).

(A5) Assume that ξ and f satisfy the above conditions (A3) and (A4). Let (Y,Z) be the

unique solution to Equation (2.1.1) with terminal value ξ and generator f . For

each (y,z) ∈ R×R, f (·,y,z), ∂y f (·,y,z), and ∂z f (·,y,z) belong to L1,q
a , and the

Malliavin derivatives D f (·,y,z), D∂y f (·,y,z), and D∂z f (·,y,z) satisfy

sup
0≤θ≤T

E
(∫ T

θ

|Dθ f (t,Yt ,Zt)|2dt
) q

2

< ∞, (2.2.15)

sup
0≤θ≤T

E
(∫ T

θ

|Dθ ∂y f (t,Yt ,Zt)|2dt
) q

2

< ∞ , (2.2.16)

sup
0≤θ≤T

E
(∫ T

θ

|Dθ ∂z f (t,Yt ,Zt)|2dt
) q

2

< ∞ , (2.2.17)

and there exists L > 0 such that for any t ∈ (0,T ], and for any 0≤ θ , θ ′ ≤ t ≤ T

E
(∫ T

t
|Dθ f (r,Yr,Zr)−Dθ ′ f (r,Yr,Zr)|2dr

) p
2

≤ L|θ −θ
′|

p
2 . (2.2.18)

For each θ ∈ [0,T ], and each pair of (y,z), Dθ f (·,y,z) ∈ L1,q
a and it has continu-

ous partial derivatives with respect to y,z, which are denoted by ∂yDθ f (t,y,z)and

∂zDθ f (t,y,z), and the Malliavin derivative DuDθ f (t,y,z) satisfies

sup
0≤θ≤T

sup
0≤u≤T

E
(∫ T

θ∨u
|DuDθ f (t,Yt ,Zt)|2dt

) q
2

< ∞. (2.2.19)
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The following property is easy to check and we omit the proof.

Remark 2.2.5. Conditions (2.2.16) and (2.2.17) imply

sup
0≤θ≤T

E
(∫ T

θ

|∂yDθ f (t,Yt ,Zt)|2dt
) q

2

< ∞ ,

and

sup
0≤θ≤T

E
(∫ T

θ

|∂zDθ f (t,Yt ,Zt)|2dt
) q

2

< ∞ ,

respectively.

The following is the main result of this section.

Theorem 2.2.6. Let Assumption 2.2.2 be satisfied.

(a) There exists a unique solution pair {(Yt ,Zt)}0≤t≤T to the BSDE (2.1.1), and Y, Z

are in L1,q
a . A version of the Malliavin derivatives {(DθYt , Dθ Zt)}0≤θ , t≤T of the

solution pair satisfies the following linear BSDE:

DθYt = Dθ ξ +
∫ T

t
[∂y f (r,Yr,Zr)DθYr +∂z f (r,Yr,Zr)Dθ Zr

+Dθ f (r,Yr,Zr)]dr−
∫ T

t
Dθ ZrdWr, 0≤ θ ≤ t ≤ T ;

(2.2.20)

DθYt = 0, Dθ Zt = 0, 0≤ t < θ ≤ T. (2.2.21)

Moreover, {DtYt}0≤t≤T defined by (2.2.20) gives a version of {Zt}0≤t≤T , namely,

µ×P a.e.

Zt = DtYt . (2.2.22)
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(b) There exists a constant K > 0, such that, for all s, t ∈ [0,T ],

E|Zt−Zs|p ≤ K|t− s|
p
2 . (2.2.23)

Proof. Part (a): The proof of the existence and uniqueness of the solution (Y,Z),

and Y, Z ∈ L1,2
a is similar to that of Proposition 5.3 in [13], and also the fact that

(DθYt ,Dθ Zt) is given by (2.2.20) and (2.2.21). In Proposition 5.3 in [13] the expo-

nent q is equal to 4, and one assumes that
∫ T

0 ‖Dθ f (·,Y,Z)‖2
H2dθ < ∞, which is a

consequence of (2.2.15) and the fact that Y, Z ∈ L1,2
a .

Furthermore, from conditions (2.2.13) and (2.2.15) and the estimate in Lemma

2.2.2, we obtain

sup
0≤θ≤T

{
E sup

θ≤t≤T
|DθYt |q +E

(∫ T

θ

|Dθ Zt |2dt
) q

2
}

< ∞. (2.2.24)

Hence, by Proposition 1.5.5 in [31], Y and Z belong to L1,q
a .

Part (b): Let 0≤ s≤ t ≤ T . In this proof, C > 0 will be a constant independent of s

and t, and may vary from line to line.

By the representation (2.2.22) we have

Zt−Zs = DtYt−DsYs = (DtYt−DsYt)+(DsYt−DsYs). (2.2.25)
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From Lemma 2.2.2 and Equation (2.2.20) for θ = s and θ ′ = t respectively, we obtain,

using conditions (2.2.12) and (2.2.18),

E|DtYt−DsYt |p +E
(∫ T

t
|DtZr−DsZr|2dr

) p
2

≤ C

[
E|Dtξ −Dsξ |p +E

(∫ T

t
|Dt f (r,Yr,Zr)−Ds f (r,Yr,Zr)|2dr

) p
2
]

≤ C|t− s|
p
2 . (2.2.26)

Denote αu = ∂y f (u,Yu,Zu) and βu = ∂z f (u,Yu,Zu) for all u ∈ [0,T ]. Then, by Assump-

tion 2.2.2 (A4), the processes α and β satisfy conditions (A1) and (A2) in Assumption

2.2.1, and from (2.2.20) we have for r ∈ [s,T ]

DsYr = Dsξ +
∫ T

r [αuDsYu +βuDsZu +Ds f (u,Yu,Zu)]du−
∫ T

r DsZudWu.

Next, we are going to use Theorem 2.2.3 to estimate E|DsYt −DsYs|p. Fix p′ with

p < p′ < q
2 (notice that p′ < q

2 is equivalent to p′
q−p′ < 1). From conditions (2.2.13)

and (2.2.15), it is obvious that Dsξ ∈ Lq(Ω) ⊂ Lp′(Ω) and Ds f (·,Y,Z) ∈ Hq([0,T ]) ⊂

H p′([0,T ]) for any s ∈ [0,T ]. We are going to show that, for any s ∈ [0,T ], ρT Dsξ and∫ T
s ρuDs f (u,Yu,Zu)du are elements in M2,p′ , where

ρr = exp
{∫ r

0
βudWu +

∫ r

0

(
αu−

1
2

β
2
u

)
du
}
.
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For any 0≤ θ ≤ r ≤ T , let us compute

Dθ ρr = ρr

{∫ r

θ

[∂yz f (u,Yu,Zu)DθYu +∂zz f (u,Yu,Zu)Dθ Zu

+Dθ ∂z f (u,Yu,Zu)]dWu +∂z f (θ ,Yθ ,Zθ )

+
∫ r

θ

(∂yy f (u,Yu,Zu)−∂yz f (u,Yu,Zu)βu)DθYudu

+
∫ r

θ

(∂yz f (u,Yu,Zu)−∂zz f (u,Yu,Zu)βu)Dθ Zudu

+
∫ r

θ

(Dθ ∂y f (u,Yu,Zu)−βuDθ ∂z f (u,Yu,Zu))du
}
.

By the boundedness of the first and second order partial derivatives of f with respect

to y and z, (2.2.16), (2.2.17), (2.2.24), Lemma 2.2.4, the Hölder inequality and the

Burkholder-Davis-Gundy inequality, it is easy to show that for any p′′ < q,

sup
0≤θ≤T

E sup
θ≤r≤T

|Dθ ρr|p
′′
< ∞. (2.2.27)

By the Clark-Ocone-Haussman formula, we have

ρT Dsξ = E(ρT Dsξ )+
∫ T

0
E(Dθ (ρT Dsξ )|Fθ )dWθ

= E(ρT Dsξ )+
∫ T

0
E(Dθ ρT Dsξ +ρT Dθ Dsξ |Fθ )dWθ

= E(ρT Dsξ )+
∫ T

0
us

θ dWθ ,
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and

∫ T

s
ρrDs f (r,Yr,Zr)dr

= E
∫ T

s
ρrDs f (r,Yr,Zr)dr+

∫ T

0
E
(

Dθ

∫ T

s
ρrDs f (r,Yr,Zr)dr

∣∣Fθ

)
dWθ

= E
∫ T

s
ρrDs f (r,Yr,Zr)dr

+
∫ T

0
E
(∫ T

s
[Dθ ρrDs f (r,Yr,Zr)+ρr∂yDs f (r,Yr,Zr)DθYr

+ρr∂zDs f (r,Yr,Zr)Dθ Zr +ρrDθ Ds f (r,Yr,Zr)]dr
∣∣Fθ

)
dWθ

= E
∫ T

s
ρrDs f (r,Yr,Zr)dr+

∫ T

0
vs

θ dWθ .

We claim that sup0≤θ≤T E|us
θ
|p′ < ∞ and sup0≤θ≤T E|vs

θ
|p′ < ∞. In fact,

E|us
θ |

p′ = E |E(Dθ ρT Dsξ +ρT Dθ Dsξ |Fθ )|p
′

≤ 2p′−1
(
E|Dθ ρT Dsξ |p

′
+E|ρT Dθ Dsξ |p

′
)

≤ 2p′−1

(E|Dθ ρT |
p′q

q−p′

) q−p′
q

(E|Dsξ |q)
p′
q +

(
Eρ

p′q
q−p′
T

) q−p′
q

(E|Dθ Dsξ |q)
p′
q

 .

By (2.2.13)-(2.2.14), (2.2.27), and Lemma 2.2.4, we have sup0≤s≤T sup0≤θ≤T E|us
θ
|p′ <

∞. On the other hand,

E|vs
θ |

p′ = E
∣∣∣∣E(∫ T

s

[
Dθ ρrDs f (r,Yr,Zr)+ρr∂yDs f (r,Yr,Zr)DθYr

+ρr∂zDs f (r,Yr,Zr)Dθ Zr +ρrDθ Ds f (r,Yr,Zr)
]
dr
∣∣Fθ

)∣∣∣∣p′
≤ 4p′−1[J1 + J2 + J3 + J4],
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where

J1 = E
∣∣∣∣∫ T

s
Dθ ρrDs f (r,Yr,Zr)dr

∣∣∣∣p′ ,
J2 = E

∣∣∣∣∫ T

s
ρr∂yDs f (r,Yr,Zr)DθYrdr

∣∣∣∣p′ ,
J3 = E

∣∣∣∣∫ T

s
ρr∂zDs f (r,Yr,Zr)Dθ Zrdr

∣∣∣∣p′ ,
and

J4 = E
∣∣∣∣∫ T

s
ρrDθ Ds f (r,Yr,Zr)dr

∣∣∣∣p′ .
For J1, we have

J1 ≤ E

(
sup

θ≤r≤T
|Dθ ρr|p

′
∣∣∣∣∫ T

s
Ds f (r,Yr,Zr)dr

∣∣∣∣p′
)

≤

(
E sup

θ≤r≤T
|Dθ ρr|

p′q
q−p′

) q−p′
q (

E
∣∣∣∣∫ T

s
Ds f (r,Yr,Zr)dr

∣∣∣∣q)
p′
q

≤ T
p′
2

(
E sup

θ≤r≤T
|Dθ ρr|

p′q
q−p′

) q−p′
q
(
E
(∫ T

0
|Ds f (r,Yr,Zr)|2dr

) q
2
) p′

q

.
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For J2, we have

J2 ≤ E

 sup
θ≤r≤T

|DθYr|p
′

(
sup

0≤r≤T
ρr

∫ T

s
|∂yDs f (r,Yr,Zr)|dr

)p′


≤

(
E sup

θ≤r≤T
|DθYr|q

) p′
q

E

(
sup

0≤r≤T
ρr

∫ T

s
|∂yDs f (r,Yr,Zr)|dr

) p′q
q−p′


q−p′

q

≤

(
E sup

θ≤r≤T
|DθYr|q

) p′
q
(
E sup

0≤r≤T
ρ

p′q
q−2p′
r

) q−2p′
q

×
(
E
(∫ T

s
|∂yDs f (r,Yr,Zr)|dr

)q) p′
q

≤ T
p′
2

(
E sup

θ≤r≤T
|DθYr|q

) p′
q
(
E sup

0≤r≤T
ρ

p′q
q−2p′
r

) q−2p′
q

×

(
E
(∫ T

0
|∂yDs f (r,Yr,Zr)|2dr

) q
2
) p′

q

.

Using a similar techniques as before, we obtain that

J3 ≤ T
p′
2

(
E
(∫ T

0
|Dθ Zr|2dr

) q
2
) p′

q
(
E sup

0≤r≤T
ρ

p′q
q−2p′
r

) q−2p′
q

×

(
E
(∫ T

0
|∂zDs f (r,Yr,Zr)|2dr

) q
2
) p′

q

,

and

J4 ≤ T
p′
2

(
E sup

0≤r≤T
ρ

p′q
q−p′
r

) q−p′
q
(
E
(∫ T

0
|Dθ Ds f (r,Yr,Zr)|2dr

) q
2
) p′

q

.
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By (2.2.15), (2.2.16)-(2.2.19), (2.2.27), and Lemma 2.2.4, we obtain that

sup
0≤s≤T

sup
0≤θ≤T

E|vs
θ |

p′ < ∞.

Therefore, ρT ξ and
∫ T

0 ρuDs f (u,Yu,Zu)du belong to M2,p′ .

Thus by Theorem 2.2.3 with p < p′, there is a constant C(s)> 0, such that

E|DsYt−DsYs|p ≤C(s)|t− s|
p
2 ,

for all t ∈ [s,T ]. Furthermore, taking into account the proof of the estimates Ik (k =

3,4, · · · ,7) in the proof of Theorem 2.2.3, we can show that sup0≤s≤T C(s) =: C < ∞.

Thus we have

E|DsYt−DsYs|p ≤C|t− s|
p
2 , (2.2.28)

for all s, t ∈ [0,T ]. Combining (2.2.28) with (2.2.25) and (2.2.26), we obtain that there

is a constant K > 0 independent of s and t, such that,

E|Zt−Zs|p ≤ K|t− s|
p
2 ,

for all s, t ∈ [0,T ].

Corollary 2.2.7. Under the assumptions in Theorem 2.2.2, let (Y,Z) ∈ Sq
F ([0,T ])×

Hq
F ([0,T ]) be the unique solution pair to Equation (2.1.1). If sup0≤t≤T E|Zt |q < ∞,

then there exists a constant C, such that, for any s, t ∈ [0,T ],

E|Yt−Ys|q ≤C|t− s|
q
2 . (2.2.29)
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Proof. Without loss of generality we assume 0 ≤ s ≤ t ≤ T . C > 0 is a constant inde-

pendent of s and t, which may vary from line to line. Since

Ys = Yt +
∫ t

s
f (r,Yr,Zr)dr−

∫ t

s
ZrdWr,

we have, by the Lipschitz condition on f ,

E|Yt−Ys|q = E
∣∣∣∣∫ t

s
f (r,Yr,Zr)dr−

∫ t

s
ZrdWr

∣∣∣∣q
≤ 2q−1

(
E
∣∣∣∣∫ t

s
f (r,Yr,Zr)dr

∣∣∣∣q +E
∣∣∣∣∫ t

s
ZrdWr

∣∣∣∣q)
≤ Cq

(
|t− s|

q
2E
(∫ t

s
| f (r,Yr,Zr)|2dr

) q
2

+E
(∫ t

s
|Zr|2dr

) q
2
)

≤ C
{
|t− s|

q
2

[
E
(∫ t

s
|Yr|2dr

) q
2

+E
(∫ t

s
|Zr|2dr

) q
2

+E
(∫ t

s
| f (r,0,0)|2dr

) q
2
]
+ |t− s|

q
2 sup

0≤r≤T
E|Zr|q

}
≤ C|t− s|

q
2 .

The proof is completed.

Remark 2.2.8. From Theorem 2.2.6 we know that {(DθYt ,Dθ Zt)}0≤θ≤t≤T satisfies

Equation (2.2.20) and Zt = DtYt , µ × P a.e. Moreover, since (2.2.13) and (2.2.15)

hold, we can apply the estimate (2.2.1) in Lemma 2.2.2 to the linear BSDE (2.2.20)

and deduce sup0≤t≤T E|Zt |q < ∞. Therefore, by Lemma 2.2.7, the process Y satisfies

the inequality (2.2.29). By Kolmogorov’s continuity criterion this implies that Y has

Hölder continuous trajectories of order γ for any γ < 1
2 −

1
q .

2.2.3 Examples

In this section we discuss three particular examples where Assumption 2.2.2 is satisfied.
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Example 2.2.9. Consider Equation (2.1.1). Assume that:

(a1) f (t,y,z) : [0,T ]×R×R → R is a deterministic function that has uniformly

bounded first and second order partial derivatives with respect to y and z, and∫ T
0 f (t,0,0)2dt < ∞.

(a2) The terminal value ξ is a multiple stochastic integral of the form

ξ =
∫
[0,T ]n

g(t1, . . . , tn)dWt1 . . .dWtn , (2.2.30)

where n≥ 2 is an integer and g(t1, . . . , tn) is a symmetric function in L2([0,T ]n),

such that,

sup
0≤u≤T

∫
[0,T ]n−1

g(t1, . . . , tn−1,u)2dt1 . . .dtn−1 < ∞,

sup
0≤u,v≤T

∫
[0,T ]n−2

g(t1, . . . , tn−2,u,v)2dt1 . . .dtn−2 < ∞,

and, there exists a constant L > 0 such that for any u,v ∈ [0,T ]

∫
[0,T ]n−1

|g(t1, . . . , tn−1,u)−g(t1, . . . , tn−1,v)|2dt1 . . .dtn−1 < L|u− v|.

From (2.2.30), we know that

Duξ = n
∫
[0,T ]n−1

g(t1, . . . , tn−1,u)dWt1 . . .dWtn−1.

The above assumption implies Assumption 2.2.2, and therefore, Z satisfies the Hölder

continuity property (2.2.23).

Example 2.2.10. Let Ω =C0([0,1]) equipped with the Borel σ -field and Wiener mea-

sure. Then, Ω is a Banach space with supremum norm ‖ · ‖∞ and Wt = ω(t) is the
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canonical Wiener process. Consider Equation (2.1.1) on the interval [0,1]. Assume

that:

(g1) f (t,y,z) : [0,1]×R×R→R is a deterministic function that has uniformly bounded

first and second order partial derivatives with respect to y and z, and
∫ 1

0 f (t,0,0)2dt <

∞.

(g2) ξ = ϕ(W ), where ϕ : Ω→ R is twice Fréchet differentiable and the first and

second order Fréchet derivatives δϕ and δ 2ϕ satisfy

|ϕ(ω)|+‖δϕ(ω)‖+‖δ 2
ϕ(ω)‖ ≤C1 exp{C2‖ω‖r

∞},

for all ω ∈ Ω and some constants C1 > 0, C2 > 0 and 0 < r < 2, where ‖ · ‖

denotes the operator norm (total variation norm).

(g3) If λ denotes the signed measure on [0,1] associated with δϕ , there exists a con-

stant L > 0 such that for all 0≤ θ ≤ θ ′ ≤ 1,

E|λ ((θ ,θ ′])|p ≤ L|θ −θ
′|

p
2 ,

for some p≥ 2.

It is easy to show that Dθ ξ = λ ((θ ,1]) and DuDθ ξ = ν((θ ,1]× (u,1]), where ν de-

notes the signed measure on [0,1]× [0,1] associated with δ 2ϕ . From the above assump-

tions and Fernique’s theorem, we can get Assumption 2.2.2, and therefore, the Hölder

continuity property (2.2.23) of Z.
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Example 2.2.11. Consider the following forward-backward stochastic differential equa-

tion (FBSDE for short)


Xt = X0 +

∫ t
0 b(r,Xr)dr+

∫ t
0 σ(r,Xr)dWr,

Yt = ϕ

(∫ T
0 X2

r dr
)
+
∫ T

t f (r,Xr,Yr,Zr)dr−
∫ T

t ZrdWr,

(2.2.31)

where b, σ , ϕ and f are deterministic functions, and X0 ∈ R.

We make the following assumptions.

(h1) b and σ has uniformly bounded first and second order partial derivatives with

respect to x, and there is a constant L > 0, such that, for any s, t ∈ [0,T ], x ∈ R,

|σ(t,x)−σ(s,x)| ≤ L|t− s|
1
2 .

(h2) sup0≤t≤T{|b(t,0)|+ |σ(t,0)|}< ∞.

(h3) ϕ is twice differentiable, and there exist a constant C > 0 and a positive integer

n such that

∣∣∣∣ϕ(∫ T

0
X2

t dt
)∣∣∣∣+ ∣∣∣∣ϕ ′(∫ T

0
X2

t dt
)∣∣∣∣+ ∣∣∣∣ϕ ′′(∫ T

0
X2

t dt
)∣∣∣∣≤C (1+‖X‖∞)

n ,

where ‖x‖∞ = sup{|x(t)|, 0≤ t ≤ T} for any x ∈C([0,T ]).

(h4) f (t,x,y,z) has continuous and uniformly bounded first and second order partial

derivatives with respect to x, y and z, and
∫ T

0 f (t,0,0,0)2dt < ∞.

Notice that in this example, Φ(X) = ϕ

(∫ T
0 X2

t dt
)

is not necessarily globally Lipschitz

in X and the results of [40] cannot be applied directly.
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Under the above assumptions (h1) and (h4), Equation (2.2.31) has a unique solution

triple (X ,Y,Z), and we have the following classical results: for any real number r > 0,

there exists a constant C > 0 such that

E sup
0≤t≤T

|Xt |r < ∞, E|Xt−Xs|r ≤C|t− s|
r
2 ,

for any t,s∈ [0,T ]. For any fixed (y,z)∈R×R, we have Dθ f (t,Xt ,y,z)= ∂x f (t,Xt ,y,z)Dθ Xt .

Then, under all the assumptions in this example, by Theorem 2.2.1 and Lemma 2.2.2 in

[31] and the results listed above, we can verify Assumption 2.2.2. Therefore, Z has the

Hölder continuity property (2.2.23).

Note that in the multidimensional case we do not require the matrix σσT to be

invertible.

2.3 An explicit scheme for BSDEs

In the remaining part of this chapter, we let π = {0 = t0 < t1 < · · · < tn = T} be a

partition of the interval [0,T ] and |π|=max0≤i≤n−1 |ti+1−ti|. Denote ∆i = ti+1−ti, 0≤

i≤ n−1.

From equation (2.1.1), we know that, when t ∈ [ti, ti+1],

Yt = Yti+1 +
∫ ti+1

t
f (r,Yr,Zr)dr−

∫ ti+1

t
ZrdWr. (2.3.1)
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Comparing with the numerical schemes for forward stochastic differential equations,

we could introduce a numerical scheme of the form

Y 1,π
tn = ξ

π ,

Y 1,π
ti = Y 1,π

ti+1
+ f

(
ti+1,Y

1,π
ti+1

,Z1,π
ti+1

)
∆i−

∫ ti+1

ti
Z1,π

r dWr ,

t ∈ [ti, ti+1) , i = n−1,n−2, . . . ,0,

where ξ π ∈ L2(Ω) is an approximation of the terminal condition ξ . This leads to a

backward recursive formula for the sequence {Y 1,π
ti ,Z1,π

ti }0≤i≤n. In fact, once Y 1,π
ti+1

and

Z1,π
ti+1

are defined, then we can find Y 1,π
ti by

Y 1,π
ti = E

(
Y 1,π

ti+1
+ f

(
ti+1,Y

1,π
ti+1

,Z1,π
ti+1

)
∆i

∣∣∣∣Fti

)

and {Z1,π
r }ti≤r<ti+1 is determined by the stochastic integral representation of the random

variable

Y 1,π
ti −Y 1,π

ti+1
− f

(
ti+1,Y

1,π
ti+1

,Z1,π
ti+1

)
∆i.

Although {Z1,π
r }ti≤r<ti+1 can be expressed explicitly by Clark-Ocone-Haussman for-

mula, its computation is a hard problem in practice. On the other hand, there are diffi-

culties to study the convergence of the above scheme.

An alternative scheme is introduced in [40], where the approximating pairs (Y π ,Zπ)

are defined recursively by

Y π
tn = ξ

π , Zπ
tn = 0,

Y π
t = Y π

ti+1
+ f

(
ti+1,Y π

ti+1
,E
(

1
∆i+1

∫ ti+2

ti+1

Zπ
r dr|Fti+1

))
∆i

−
∫ ti+1

t
Zπ

r dWr , t ∈ [ti, ti+1) , i = n−1,n−2, . . . ,0, (2.3.2)
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where, by convention, E
(

1
∆i+1

∫ ti+2
ti+1

Zπ
r dr|Fti+1

)
= 0 when i = n− 1. In [40] the fol-

lowing rate of convergence is proved for this approximation scheme, assuming that the

terminal value ξ and the generator f are functionals of a forward diffusion associated

with the BSDE,

max
0≤i≤n

E|Yti−Y π
ti |

2 +E
∫ T

0
|Zt−Zπ

t |2dt ≤ K|π| . (2.3.3)

The main result of this section is the following, which on one hand improves the

above rate of convergence and on the other hand extends terminal value ξ and generator

f to more general situation.

Theorem 2.3.1. Consider the approximation scheme (2.3.2). Let Assumption 2.2.2

be satisfied, and let the partition π satisfy max0≤i≤n−1 ∆i/∆i+1 ≤ L1, where L1 is a

constant. Assume that a constant L2 > 0 exists such that

| f (t2,y,z)− f (t1,y,z)| ≤ L2|t2− t1|
1
2 , (2.3.4)

for all t1, t2 ∈ [0,T ], and y, z ∈ R. Then there are positive constants K and δ , indepen-

dent of the partition π , such that, if |π|< δ , then

E sup
0≤t≤T

|Yt−Y π
t |2 +E

∫ T

0
|Zt−Zπ

t |2dt ≤ K
(
|π|+E|ξ −ξ

π |2
)
. (2.3.5)

Proof. In this proof, C > 0 will denote a constant independent of the partition π , which

may vary from line to line. The inequality (2.2.23) in Theorem 2.2.6(b) yields the

following estimate (Theorem 3.1 in [40]) with p = 2

n−1

∑
i=0

E
∫ ti+1

ti
(|Zt−Zti|

2 + |Zt−Zti+1 |
2)dt ≤C|π|.
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Using this estimate and following the same argument as the proof of Theorem 5.3 in

[40], we can obtain the following result

max
0≤i≤n

E|Yti−Y π
ti |

2 +E
∫ T

0
|Zt−Zπ

t |2dt ≤C
(
|π|+E|ξ −ξ

π |2
)
. (2.3.6)

Denote

Z̃π
ti =


0 if i = n;

E
(

1
∆i

∫ ti+1
ti Zπ

r dr
∣∣Fti

)
if i = n−1,n−2, . . . ,0.

(2.3.7)

If ti ≤ t < ti+1, i = n−1,n−2, . . . ,0, then, by iteration, we have

Y π
t = Y π

ti+1
+ f

(
ti+1,Y π

ti+1
, Z̃π

ti+1

)
∆i−

∫ ti+1

t
Zπ

r dWr

= ξ
π +

n

∑
k=i+1

f
(
tk,Y π

tk , Z̃
π
tk

)
∆k−1−

∫ T

t
Zπ

r dWr . (2.3.8)

Therefore,

Y π
t = E

(
ξ

π +
n

∑
k=i+1

f
(

tk,Y π
tk , Z̃

π
tk

)
∆k−1

∣∣∣∣Ft

)
, t ∈ [ti, ti+1).

We rewrite the BSDE (2.1.1) as follows

Yt = ξ +
∫ T

t
f (r,Yr,Zr)dr−

∫ T

t
ZrdWr

= ξ +
n

∑
k=i+1

f (tk,Ytk ,Ztk)∆k−1−
∫ T

t
ZrdWr +Rπ

t , (2.3.9)
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where

|Rπ
t | =

∣∣∣∣∣
∫ T

t
f (r,Yr,Zr)dr−

n

∑
k=i+1

f (tk,Ytk ,Ztk)∆k−1

∣∣∣∣∣
=

∣∣∣∣∣ n

∑
k=i+1

∫ tk

tk−1

[ f (r,Yr,Zr)− f (tk,Ytk ,Ztk)]dr−
∫ t

ti
f (r,Yr,Zr)dr

∣∣∣∣∣
≤

n

∑
k=i+1

∫ tk

tk−1

| f (r,Yr,Zr)− f (tk,Ytk ,Ztk)|dr+
∫ ti+1

ti
| f (r,Yr,Zr)|dr.

By Lemma 2.2.2 and the Lipschitz condition on f , we have

E
(∫ T

0
| f (r,Yr,Zr)|2dr

) p
2

< ∞,

and hence,

E max
0≤i≤n−1

(∫ ti+1

ti
| f (r,Yr,Zr)|dr

)p

≤ |π|
p
2 E
(∫ T

0
| f (r,Yr,Zr)|2dr

) p
2

. (2.3.10)

Define a function {t(r)}0≤r≤T by

t(r) =


T if r = T ,

ti+1 if ti ≤ r < ti+1, i = n−1, . . . ,0.
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By the Hölder inequality, the boundedness of the first order partial derivatives of f ,

(2.3.4), (2.2.23), Remark 2.2.8 and (2.3.10), it is easy to see that

E sup
0≤t≤T

|Rπ
t |p ≤ 2p−1

[
E
(∫ T

0

∣∣ f (r,Yr,Zr)− f
(
t(r),Yt(r),Zt(r)

)∣∣dr
)p

+E max
0≤i≤n−1

(∫ ti+1

ti
| f (r,Yr,Zr)|dr

)p]
≤ (2T )p−1E

∫ T

0

∣∣ f (r,Yr,Zr)− f
(
t(r),Yt(r),Zt(r)

)∣∣p dr

+2p−1|π|
p
2 E
(∫ T

0
| f (r,Yr,Zr)|2dr

) p
2

≤ C|π|
p
2 , (2.3.11)

where, by convention, RT = 0. In particular, we obtain

E sup
0≤t≤T

|Rπ
t |

2 ≤C|π| . (2.3.12)

To simplify the notation we denote

δY π
t = Yt−Y π

t , δZπ
t = Zt−Zπ

t , for all t ∈ [0,T ],

and

Ẑπ
ti = Zti− Z̃π

ti , for i = n,n−1, . . . ,0.

Then, when ti ≤ t < ti+1, by (2.3.8) and (2.3.9) we can write

δY π
t =

n

∑
k=i+1

[
f (tk,Ytk ,Ztk)− f (tk,Y π

tk , Z̃
π
tk)
]

∆k−1−
∫ T

t
δZπ

r dWr +Rπ
t +δξ

π ,
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where δξ π = ξ −ξ π . Therefore, we obtain

δY π
t = E

(
n

∑
k=i+1

[
f (tk,Ytk ,Ztk)− f (tk,Y π

tk , Z̃
π
tk)
]

∆k−1 +Rπ
t +δξ

π

∣∣∣∣Ft

)
. (2.3.13)

Denote f̃ π
tk = f (tk,Ytk ,Ztk)− f (tk,Y π

tk , Z̃
π
tk). From the equality (2.3.13) for t j ≤ t < t j+1,

where i≤ j ≤ n−1, and taking into account that δY π
T = δY π

tn = δξ π , we obtain

sup
ti≤t≤T

|δY π
t | ≤ sup

ti≤t≤T
E

(
n

∑
k=i+1

∣∣ f̃ π
tk

∣∣∆k−1 + sup
0≤r≤T

|Rπ
r |+ |δξ

π |
∣∣∣∣Ft

)
.

The above conditional expectation is a martingale if it is considered as a process indexed

by t ∈ [ti,T ]. Thus, using Doob’s maximal inequality, we obtain

E sup
ti≤t≤T

|δY π
t |2 ≤ E sup

ti≤t≤T

[
E

(
n

∑
k=i+1

∣∣∣ f̃ π
tk

∣∣∣∆k−1 + sup
0≤r≤T

|Rπ
r |+ |δξ

π |
∣∣∣∣Ft

)]2

≤ CE

(
n

∑
k=i+1

∣∣∣ f̃ π
tk

∣∣∣∆k−1 + sup
0≤r≤T

|Rπ
r |+ |δξ

π |

)2

≤ C

E

(
n

∑
k=i+1

∣∣∣ f̃ π
tk

∣∣∣∆k−1

)2

+E sup
0≤r≤T

|Rπ
r |

2 +E|δξ
π |2
 .

From (2.3.12), we deduce

E sup
ti≤t≤T

|δY π
t |2 ≤ C

E

(
n

∑
k=i+1

∣∣∣ f̃ π
tk

∣∣∣∆k−1

)2

+E|δξ
π |2 + |π|

 .
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Using the Lipschitz condition on f , we obtain

E sup
ti≤t≤T

|δY π
t |2 ≤ C

{
(T − ti)2E sup

i+1≤k≤n
|δY π

tk |
2 +E

(
n−1

∑
k=i+1

|Ẑπ
tk |∆k−1

)2

+E|Ẑtn |2∆
2
n−1

}
+C

(
E|δξ

π |2 + |π|
)
. (2.3.14)

Notice that

E

(
n−1

∑
k=i+1

|Ẑπ
tk |∆k−1

)2

= E

(
n−1

∑
k=i+1

∣∣∣∣Ztk−
1
∆k

∫ tk+1

tk
E(Zπ

u |Ftk)du
∣∣∣∣∆k−1

)2

≤ E

(
n−1

∑
k=i+1

∆k−1

∆k

∫ tk+1

tk
E
(
|Ztk−Zπ

u |
∣∣∣Ftk

)
du

)2

≤ L2
1E

(
n−1

∑
k=i+1

∫ tk+1

tk
E
(
|Ztk−Zπ

u |
∣∣∣Ftk

)
du

)2

≤ 2L2
1

{
E

(
n−1

∑
k=i+1

∫ tk+1

tk
E
(
|Ztk−Zu|

∣∣∣Ftk

)
du

)2

+E

(
n−1

∑
k=i+1

∫ tk+1

tk
E
(
|Zu−Zπ

u |
∣∣∣Ftk

)
du

)2}
= 2L2

1(I1 + I2). (2.3.15)

Now the Minkowsk and the Hölder inequalities yield

I1 ≤ E

(
n−1

∑
k=i+1

{∫ tk+1

tk

(
E
(
|Ztk−Zu|

∣∣∣Ftk

))2
du
}1/2

∆
1/2
k

)2

≤ (T − ti)
n−1

∑
k=i+1

∫ tk+1

tk
E
(
E
(
|Ztk−Zu|

∣∣∣Ftk

))2
du

≤ (T − ti)
n−1

∑
k=i+1

∫ tk+1

tk
E|Ztk−Zu|2du

≤ C(T − ti)
n−1

∑
k=i+1

∫ tk+1

tk
|tk−u|du≤C|π|. (2.3.16)
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In a similar way and by (2.3.6), we obtain

I2 ≤ (T − ti)
n−1

∑
k=i+1

∫ tk+1

tk
E|Zu−Zπ

u |2du

= (T − ti)
∫ T

ti+1

E|δZπ
u |2du≤C|π|. (2.3.17)

On the other hand,

E
(

Ẑπ
tn∆n−1

)2
= E|Ztn|2|∆n−1|2 ≤C|π|2 . (2.3.18)

From (2.3.14)-(2.3.18), we have

E sup
ti≤t≤T

|δY π
t |2 ≤C1(T − ti)2E sup

i+1≤k≤n
|δY π

tk |
2 +C2

(
E|δξ

π |2 + |π|
)
. (2.3.19)

where C1 and C2 are two positive constants independent of the partition π .

We can find a constant δ > 0 independent of the partition π , such that, C1(3δ )2 < 1
2

and T > 2δ . Denote l = [ T
2δ
] ([x] means the greatest integer no larger than x). Then l≥ 1

is an integer independent of the partition π . If |π|< δ , then for the partition π we can

choose n−1 > i1 > i2 > · · ·> il ≥ 0, such that, T −2δ ∈ (ti1−1, ti1], T −4δ ∈ (ti2−1, ti2 ],

. . . , T −2δ l ∈ [0, til ] (with t−1 = 0).

For simplicity, we denote ti0 = T and til+1 = 0. Each interval [ti j+1, ti j ], j = 0,1, . . . , l,

has length less than 3δ , that is, |ti j−ti j+1|< 3δ . On each interval [ti j+1, ti j ], j = 0,1, . . . , l,

we consider the recursive formula (2.3.2), and (2.3.19) becomes

E sup
ti j+1≤t≤ti j

|δY π
t |2 ≤C1(ti j − ti j+1)

2E sup
i j+1+1≤k≤i j

|δY π
tk |

2 +C2

(
E|δY π

ti j
|2 + |π|

)
.

(2.3.20)
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Using (2.3.20), we can obtain inductively

E sup
ti j+1≤t≤ti j

|δY π
t |2

≤ C1(ti j − ti j+1)
2E sup

i j+1+1≤k≤i j

|δY π
tk |

2 +C2

(
E|δY π

ti j
|2 + |π|

)
≤ C1(ti j − ti j+1)

2 . . .C1(ti j − ti j−1)
2E|δY π

ti j
|2 +C2

(
E|δY π

ti j
|2 + |π|

)
×
(

1+C1(ti j − ti j+1)
2 +C1(ti j − ti j+1)

2C1(ti j − ti j+1+1)
2

+ · · ·+C1(ti j − ti j+1)
2C1(ti j − ti j+1+1)

2 . . .C1(ti j − ti j−1)
2
)

≤ (C1(3δ )2)i j−i j+1E|δY π
ti j
|2

+C2

(
E|δY π

ti j
|2 + |π|

)(
1+C1(3δ )2 +(C1(3δ )2)2 + · · ·+(C1(3δ )2)i j−i j+1

)
≤ E|δY π

ti j
|2 + C2

1−C1(3δ )2

(
E|δY π

ti j
|2 + |π|

)
≤ E|δY π

ti j
|2 +2C2

(
E|δY π

ti j
|2 + |π|

)
= (2C2 +1)E|δY π

ti j
|2 +2C2|π|. (2.3.21)

By recurrence, we obtain

E sup
ti j+1≤t≤ti j

|δY π
t |2

≤ (2C2 +1) j+1E|δξ
π |2 +C2|π|

(
1+(2C2 +1)+ · · ·+(2C2 +1) j)

≤ (2C2 +1)l+1E|δξ
π |2 +C2|π|

(
1+(2C2 +1)+ · · ·+(2C2 +1)l

)
≤ 3(2C2 +1)l+1

2
(
E|δξ

π |2 + |π|
)
. (2.3.22)

Therefore, taking C = 3(2C2+1)l+1

2 , we obtain

E sup
0≤t≤T

|δY π
t |2 ≤ max

0≤ j≤l
E sup

ti j+1≤t≤ti j

|δY π
t |2 ≤C

(
|π|+E|ξ −ξ

π |2
)
.
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Combining the above estimate with (2.3.6), we know that there exists a constant K > 0

independent of the partition π , such that,

E sup
0≤t≤T

|Yt−Y π
t |2 +E

∫ T

0
|Zt−Zπ

t |2dt ≤ K
(
|π|+E|ξ −ξ

π |2
)
.

Remark 2.3.2. The numerical scheme introduced before, as other similar schemes, in-

volves the computation of conditional expectations with respect to the σ -field Fti+1 . To

implement this scheme in practice we need to approximate these conditional expecta-

tions. Some work has been done to solve this problem, and we refer the reader to the

references [2], [4] and [15].

2.4 An implicit scheme for BSDEs

In this section, we propose an implicit numerical scheme for the BSDE (2.1.1). Define

the approximating pairs (Y π ,Zπ) recursively by

Y π
tn = ξ

π ,

Y π
t = Y π

ti+1
+ f

(
ti+1,Y π

ti+1
,

1
∆i

∫ ti+1

ti
Zπ

r dr
)

∆i−
∫ ti+1

t
Zπ

r dWr ,

t ∈ [ti, ti+1), i = n−1,n−2, . . . ,0, (2.4.1)

where the partition π and ∆i, i = n− 1, . . . ,0 are defined in Section 2.3, and ξ π is an

approximation of the terminal value ξ . In this recursive formula (2.4.1), on each subin-

terval [ti, ti+1), i = n−1, . . . ,0, the nonlinear “generator” f contains the information of

Zπ on the same interval. In this sense, this formula is different from formula (2.3.2),

and (2.4.1) is an equation for {(Y π
t ,Zπ

t )}ti≤t<ti+1 . When |π| is sufficiently small, the
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existence and uniqueness of the solution to the above equation can be established. In

fact, Equation (2.4.1) is of the following form:

Yt = ξ +g
(∫ b

a
Zrdr

)
−
∫ b

t
ZrdWr , t ∈ [a,b] and 0≤ a < b≤ T (2.4.2)

For the BSDE (2.4.2), we have the following theorem.

Theorem 2.4.1. Let 0≤ a< b≤ T and p≥ 2. Let ξ be Fb-measurable and ξ ∈ Lp(Ω).

If there exists a constant L > 0 such that g : (Ω×R,Fb⊗B)→ (R,B) satisfies

|g(z1)−g(z2)| ≤ L|z1− z2|,

for all z1,z2 ∈R, and g(0)∈Lp(Ω), then there is a constant δ (p,L)> 0, such that, when

b−a< δ (p,L), Equation (2.4.2) has a unique solution (Y,Z)∈ Sp
F ([a,b])×H p

F ([a,b]).

Proof. We shall use the fixed point theorem for the mapping from H p
F ([a,b]) into

H p
F ([a,b]) which maps z to Z, where (Y,Z) is the solution of the following BSDE

Yt = ξ +g
(∫ b

a
zrdr

)
−
∫ b

t
ZrdWr, t ∈ [a,b]. (2.4.3)

In fact, by the martingale representation theorem, there exist a progressively measurable

process Z = {Zt}a≤t≤b such that E
∫ b

a Z2
t dt < ∞ and

ξ +g
(∫ b

a
zrdr

)
= E

(
ξ +g

(∫ b

a
zrdr

)∣∣∣∣∣Fa

)
+
∫ b

a
ZtdWt .

By the integrability properties of ξ , g(0) and z, one can show that Z ∈ H p
F ([a,b]).

Define Yt = E
(

ξ +g
(∫ b

a zrdr
)
|Ft

)
, t ∈ [a,b]. Then (Y,Z) satisfies Equation (2.4.3).

Notice that Y is a martingale. Then by the Lipschitz condition on g, the integrability of

ξ , g(0) and z, and Doob’s maximal inequality, we can prove that Y ∈ Sp
F ([a,b]).
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Let z1, z2 be two elements in the Banach space H p
F ([a,b]), and let (Y 1,Z1), (Y 2,Z2)

be the associated solutions, i.e,

Y i
t = ξ +g

(∫ b

a
zi

rdr
)
−
∫ b

t
Zi

rdWr, t ∈ [a,b], i = 1,2.

Denote

Ȳ = Y 1−Y 2 , Z̄ = Z1−Z2 , z̄ = z1− z2 .

Then

Ȳt = g
(∫ b

a
z1

r dr
)
−g
(∫ b

a
z2

r dr
)
−
∫ b

t
Z̄rdWr , (2.4.4)

for all t ∈ [a,b]. So

Ȳt = E
(

g
(∫ b

a
z1

r dr
)
−g
(∫ b

a
z2

r dr
)
|Ft

)
,

for all t ∈ [a,b]. Thus by Doob’s maximal inequality, we have

E sup
a≤t≤b

|Ȳt |p = E sup
a≤t≤b

∣∣∣∣E(g
(∫ b

a
z1

r dr
)
−g
(∫ b

a
z2

r dr
)
|Ft

)∣∣∣∣p
≤ CE

∣∣∣∣g(∫ b

a
z1

r dr
)
−g
(∫ b

a
z2

r dr
)∣∣∣∣p

≤ CE
∣∣∣∣∫ b

a
z1

r dr−
∫ b

a
z2

r dr
∣∣∣∣p

≤ C(b−a)
p
2 E
(∫ b

a
|z̄r|2dr

) p
2

, (2.4.5)

where C > 0 is a generic constant depending on L and p, which may vary from line to

line. From Equation (2.4.4), it is easy to see

Ȳt = Ȳa +
∫ t

a
Z̄rdWr,
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for all t ∈ [a,b]. Therefore, by the Burkholder-Davis-Gundy inequality and (2.4.5), we

have

E
(∫ b

a
|Z̄r|2dr

) p
2

≤ CE sup
a≤t≤b

∣∣∣∣∫ t

a
Z̄rdWr

∣∣∣∣p
≤ C

[
E |Ȳa|p +E sup

a≤t≤b
|Ȳt |p

]

≤ C(b−a)
p
2 E
(∫ b

a
|z̄r|2dr

) p
2

, (2.4.6)

that is,

‖Z̄‖H p ≤C1(b−a)
1
2‖z̄‖H p,

where C1 is a positive constant depending only on L and p.

Take δ (p,L) = 1/C2
1 . It is obvious that the mapping is a contraction when b−a <

δ (p,L), and hence there exists a unique solution (Y,Z) ∈ Sp
F ([a,b])×H p

F ([a,b]) to the

BSDE (2.4.2).

Now we begin to study the convergence of the scheme (2.4.1).

Theorem 2.4.2. Let Assumption 2.2.2 be satisfied, and let π be any partition. Assume

that ξ π ∈ Lp(Ω) and there exists a constant L1 > 0 such that, for all t1, t2 ∈ [0,T ],

| f (t2,y,z)− f (t1,y,z)| ≤ L1|t2− t1|
1
2 .

Then, there are two positive constants δ and K independent of the partition π , such

that, when |π|< δ , we have

E sup
0≤t≤T

|Yt−Y π
t |p +E

(∫ T

0
|Zt−Zπ

t |2dt
) p

2

≤ K
(
|π|

p
2 +E|ξ −ξ

π |p
)
.
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Proof. If |π|< δ (p,L), where δ (p,L) is the constant in Theorem 2.4.1, then Theorem

2.4.1 guarantees the existence and uniqueness of (Y π ,Zπ). Denote, for i = n− 1,n−

2, . . . ,0,

Z̃π
ti+1

=
1

ti+1− tti

∫ ti+1

ti
Zπ

r dr.

Notice that {Z̃π
ti ,}i=n−1,n−2,...,0 here is different from that in Section 2.3. Then

Y π
ti = Y π

ti+1
+ f

(
ti+1,Y π

ti+1
, Z̃π

ti+1

)
∆i−

∫ ti+1

ti
Zπ

r dWr, i = n−1,n−2, . . . ,0.

Recursively, we obtain

Y π
ti = ξ

π +
n

∑
k=i+1

f
(

tk,Y π
tk , Z̃

π
tk

)
∆k−1−

∫ T

ti
Zπ

r dWr, i = n−1,n−2, . . . ,0.

Denote

δξ
π = ξ −ξ

π , δY π
t = Yt−Y π

t , δZπ
t = Zt−Zπ

t , t ∈ [0,T ],

and

Ẑπ
ti = Zti− Z̃π

ti i = n−1, . . . ,0.

If t ∈ [ti, ti+1), i = n−1,n−2, . . . ,0, then by iteration, we have

δY π
t = δξ

π +
n

∑
k=i+1

[
f (tk,Ytk ,Ztk)− f

(
tk,Y π

tk , Z̃
π
tk

)]
∆k−1

−
∫ T

ti
δZπ

r dWr +Rπ
t , (2.4.7)

where Rπ
t is exactly the same as that in Section 2.3.
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Denote f̃ π
tk = f (tk,Ytk ,Ztk)− f (tk,Y π

tk , Z̃
π
tk). Then for t ∈ [ti, ti+1), i= n−1,n−2, . . . ,0,

we have

δY π
t = E

(
δξ

π +
n

∑
k=i+1

f̃ π
tk ∆k−1 +Rπ

t

∣∣∣∣Ft

)
. (2.4.8)

From the equality (2.4.8) for t j ≤ t < t j+1, where i≤ j≤ n−1, and taking into account

that δY π
T = δY π

tn = δξ π , we obtain

sup
ti≤t≤T

|δY π
t | ≤ sup

ti≤t≤T
E

(
n

∑
k=i+1

∣∣∣ f̃ π
tk

∣∣∣∆k−1 + sup
0≤r≤T

|Rπ
r |+ |δξ

π |
∣∣∣∣Ft

)
.

The above conditional expectation is a martingale if it is considered as a process in-

dexed by t for t ∈ [ti,T ]. Using Doob’s maximal inequality, (2.3.11), and the Lipschitz

condition on f , we have

E sup
ti≤t≤T

|δY π
t |p

≤ E sup
ti≤t≤T

[
E

(
n

∑
k=i+1

∣∣∣ f̃ π
tk

∣∣∣∆k−1 + sup
0≤r≤T

|Rπ
r |+ |δξ

π |
∣∣∣∣Ft

)]p

≤ CE

(
n

∑
k=i+1

∣∣∣ f̃ π
tk

∣∣∣∆k−1 + sup
0≤r≤T

|Rπ
r |+ |δξ

π |

)p

≤ C

{
E

(
n

∑
k=i+1

∣∣∣ f̃ π
tk

∣∣∣∆k−1

)p

+E sup
0≤r≤T

|Rπ
r |

p +E|δξ
π |p
}

≤ C

{
E

(
n

∑
k=i+1

∣∣δY π
tk

∣∣∆k−1

)p

+E

(
n

∑
k=i+1

∣∣∣Ẑπ
tk

∣∣∣∆k−1

)p

+ |π|
p
2 +E|δξ

π |p
}

≤ C

{
(T − ti)pE sup

i+1≤k≤n

∣∣δY π
tk

∣∣p +E

(
n

∑
k=i+1

∣∣∣Ẑπ
tk

∣∣∣∆k−1

)p

+ |π|
p
2 +E|δξ

π |p
}
,

where and in the following C > 0 denotes a generic constant independent of the partition

π and may vary from line to line. On the other hand, we have, by the Hölder continuity
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of Z given by (2.2.23),

E

(
n

∑
k=i+1

∣∣∣Ẑπ
tk

∣∣∣∆k−1

)p

= E

(
n

∑
k=i+1

∣∣∣∣Ztk−
1

∆k−1

∫ tk

tk−1

Zπ
r dr
∣∣∣∣∆k−1

)p

≤ E

(
n

∑
k=i+1

∫ tk

tk−1

|Ztk−Zr|dr+
n

∑
k=i+1

∫ tk

tk−1

|Zr−Zπ
r |dr

)p

≤ C|π|
p
2 +2p−1E

(∫ T

ti
|Zr−Zπ

r |dr
)p

≤ C|π|
p
2 +2p−1(T − ti)

p
2 E
(∫ T

ti
|Zr−Zπ

r |2dr
) p

2

= C|π|
p
2 +2p−1(T − ti)

p
2 E
(∫ T

ti
|δZπ

r |2dr
) p

2

.

Hence, we obtain

E sup
ti≤t≤T

|δY π
t |p ≤ C1

{
(T − ti)pE sup

i+1≤k≤n
|δYtk |

p +(T − ti)
p
2 E
(∫ T

ti
|δZπ

r |2dr
) p

2

+|π|
p
2 +E|δξ

π |p
}
, (2.4.9)

where C1 is a constant independent of the partition π . By the Burkholder-Davis-Gundy

inequality, we have

E
(∫ T

ti
|δZπ

r |2dr
) p

2

≤ cpE
∣∣∣∣∫ T

ti
δZπ

r dWr

∣∣∣∣p . (2.4.10)

From (2.4.7), we obtain

∫ T

ti
δZπ

r dWr = δξ
π +

n

∑
k=i+1

f̃ π
tk ∆k−1 +Rπ

ti −δY π
ti . (2.4.11)
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Thus, from (2.4.10) and (2.4.11), we obtain

E
(∫ T

ti
|δZπ

r |2dr
) p

2

≤Cp

{
E

∣∣∣∣∣ n

∑
k=i+1

f̃ π
tk ∆k−1

∣∣∣∣∣
p

+E |δξ
π |p +E

∣∣Rπ
ti

∣∣p +E
∣∣δY π

ti

∣∣p} .

As in the proof of (2.4.9), we have

E
(∫ T

ti
|δZπ

r |2dr
) p

2

≤ C2

{
(T − ti)pE sup

i+1≤k≤n
|δYtk |

p +(T − ti)
p
2 E
(∫ T

ti
|δZπ

r |2dr
) p

2

+|π|
p
2 +E|δξ

π |p
}
,

where C2 is a constant independent of the partition π .

If C2(T − ti)
p
2 < 1

2 , then we have

E
(∫ T

ti
|δZπ

r |2dr
) p

2

≤ 2C2(T − ti)pE sup
i+1≤k≤n

|δYtk |
p +2C2

(
|π|

p
2 +E|δξ

π |p
)
.

(2.4.12)

Substituting (2.4.12) into (2.4.9), we have

E sup
ti≤t≤T

|δY π
t |p ≤ C1

(
1+2C2(T − ti)

p
2

)
(T − ti)pE sup

i+1≤k≤n
|δYtk |

p

+C1

(
1+2C2(T − ti)

p
2

)(
|π|

p
2 +E|δξ

π |p
)

≤ 2C1(T − ti)pE sup
i+1≤k≤n

|δYtk |
p +2C1

(
|π|

p
2 +E|δξ

π |p
)
.(2.4.13)

We can find a positive constant δ < δ (p,L) independent of the partition π , such that,

C2(3δ )
p
2 <

1
2
, (2.4.14)

2C1(3δ )p <
1
2
, (2.4.15)
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and T > 2δ . Denote l = [ T
2δ
]. Then l ≥ 1 is an integer independent of the partition π .

If |π| < δ , then for the partition π we can choose n− 1 > i1 > i2 > · · · > il ≥ 0, such

that, T −2δ ∈ (ti1−1, ti1], T −4δ ∈ (ti2−1, ti2], . . . , T −2δ l ∈ [0, til ] (with t−1 = 0). For

simplicity, we denote ti0 = T and til+1 = 0. Each interval [ti j+1, ti j ], j = 0,1, . . . , l, has

length less than 3δ , that is, |ti j − ti j+1| < 3δ . On [ti j+1, ti j ], we consider the recursive

formula (2.4.1). Then (2.4.13)-(2.4.15) yield

E sup
ti j+1≤t≤ti j

|δY π
t |p ≤ 2C1(ti j − ti j+1)

pE sup
i j+1+1≤k≤i j

|δYtk |
p +2C1

(
|π|

p
2 +E|δY π

ti j
|p
)

≤ 2C1(3δ )pE sup
i j+1+1≤k≤i j

|δYtk |
p +2C1

(
|π|

p
2 +E|δY π

ti j
|p
)

≤ 1
2

sup
i j+1+1≤k≤i j

|δYtk |
p +2C1

(
|π|

p
2 +E|δY π

ti j
|p
)
. (2.4.16)

As in the proof of (2.3.21) and (2.3.22), we have

E sup
ti j+1≤t≤ti j

|δY π
t |p ≤ (4C1 +1)E|δY π

ti j
|p +4C1|π|

p
2 ,

and

E sup
ti j+1≤t≤ti j

|δY π
t |p ≤

3(4C1 +1)l+1

2

(
E|δξ

π |2 + |π|
p
2

)
.

Therefore, we obtain

E sup
0≤t≤T

|δY π
t |p ≤ max

0≤ j≤l
E sup

ti j+1≤t≤ti j

|δY π
t |p ≤

3(4C1 +1)l+1

2

(
E|δξ

π |p + |π|
p
2

)
.

(2.4.17)
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On [ti j+1, ti j ], j = 0,1, . . . , l, based on the recursive formula (2.4.1) and (2.4.17), inequal-

ity (2.4.12) becomes

E

(∫ ti j

ti j+1

|δZπ
r |2dr

) p
2

≤ 2C2(ti j − ti j+1)
pE sup

i j+1+1≤k≤i j

|δYtk |
p +2C2

(
|π|

p
2 +E|δξ

π |p
)

≤ 2C2(3δ )pE sup
i j+1+1≤k≤i j

|δYtk |
p +2C2

(
|π|

p
2 +E|δξ

π |p
)

≤ 1
2
E sup

i j+1+1≤k≤i j

|δYtk |
p +2C2

(
|π|

p
2 +E|δξ

π |p
)

≤
(

3(4C1 +1)l+1

4
+2C2

)(
|π|

p
2 +E|δξ

π |p
)
.

Thus

E
(∫ T

0
|δZπ

t |2dt
) p

2

= E

(
l

∑
j=0

∫ ti j

ti j+1

|δZπ
t |2dt

) p
2

≤ (l +1)
p
2−1

l

∑
j=0

E

(∫ ti j

ti j+1

|δZπ
t |2dt

) p
2

≤ (l +1)
p
2

(
3(4C1 +1)l+1

4
+2C2

)(
|π|

p
2 +E|δξ

π |p
)
.(2.4.18)

Combining (2.4.17) and (2.4.18), we know that there exists a constant

K = (l +1)
p
2

(
3(4C1 +1)l+1

2
+4C2

)

independent of the partition π , such that

E sup
0≤t≤T

|Yt−Y π
t |p +E

(∫ T

0
|Zt−Zπ

t |2dt
) p

2

≤ K
(
|π|

p
2 +E|ξ −ξ

π |p
)
.

Remark 2.4.3. The advantages of this implicit numerical scheme are:
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(i) we can obtain the rate of convergence in Lp sense;

(ii) the partition π can be arbitrary (|π| should be small enough) without assuming

max0≤i≤n−1 ∆i/∆i+1 ≤ L1.

2.5 A New Discrete Scheme

For all the numerical schemes considered in Sections 2.3 and 2.4, one needs to evaluate

processes {Zπ
t }0≤t≤T with continuous index t. In this section, we use the representation

of Z in terms of the Malliavin derivative of Y to derive a completely discrete scheme.

From Equation (2.2.20), {DθYt}0≤θ≤t≤T can be represented as

DθYt = E
(

ρt,T Dθ ξ +
∫ T

t
ρt,rDθ f (r,Yr,Zr)dr

∣∣∣∣Ft

)
, (2.5.1)

where

ρt,r = exp
{∫ r

t
βsdWs +

∫ r

t

(
αs−

1
2

β
2
s

)
ds
}

(2.5.2)

with αs = ∂y f (s,Ys,Zs) and βs = ∂z f (s,Ys,Zs).

Using that Zt = DtYt , µ ×P a.e., from Equations (2.1.1), (2.5.1) and (2.5.2), we

propose the following numerical scheme. We define recursively

Y π
tn = ξ , Zπ

tn = DT ξ ,

Y π
ti = E

(
Y π

ti+1
+ f (ti+1,Y π

ti+1
,Zπ

ti+1
)∆i

∣∣∣∣Fti

)
,

Zπ
ti = E

(
ρ

π
ti+1,tnDtiξ +

n−1

∑
k=i

ρ
π
ti+1,tk+1

Dti f (tk+1,Y π
tk+1

,Zπ
tk+1

)∆k

∣∣∣∣Fti

)
,

i = n−1,n−2, . . . ,0, (2.5.3)
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where ρπ
ti,ti = 1, i = 0,1, . . . ,n, and for 0≤ i < j ≤ n,

ρ
π
ti,t j

= exp

{
j−1

∑
k=i

∫ tk+1

tk
∂z f (r,Y π

tk ,Z
π
tk)dWr

+
j−1

∑
k=i

∫ tk+1

tk

(
∂y f (r,Y π

tk ,Z
π
tk)−

1
2
[∂z f (r,Y π

tk ,Z
π
tk)]

2
)

dr
}
. (2.5.4)

An alternative expression for ρπ
ti,t j

is given by the following formula

ρ
π
ti,t j

= exp

{
j−1

∑
k=i

∂z f (tk,Y π
tk ,Z

π
tk)(Wtk+1−Wtk)

+
j−1

∑
k=i

(
∂y f (tk,Y π

tk ,Z
π
tk)−

1
2
[∂z f (tk,Y π

tk ,Z
π
tk)]

2
)

∆k

}
. (2.5.5)

However, we will only consider the scheme (2.5.3) with ρπ
ti,t j

given by (2.5.4).

We make the following assumptions:

(B1) f (t,y,z) is deterministic, which implies Dθ f (t,y,z) = 0.

(B2) f (t,y,z) is linear with respect to y and z, namely, there are three functions g(t),

h(t) and f1(t) such that

f (t,y,z) = g(t)y+h(t)z+ f1(t) .

Assume that g, h are bounded and f1 ∈ L2([0,T ]). Moreover, there exists a con-

stant L2 > 0, such that, for all t1, t2 ∈ [0,T ],

|g(t2)−g(t1)|+ |h(t2)−h(t1)+ | f1(t2)− f1(t1)| ≤ L|t2− t1|
1
2 .

(B3) Esup0≤θ≤T |Dθ ξ |r < ∞, for all r ≥ 1.
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Notice that (B1)-(B2) imply (A4)-(A5) in Assumption 2.2.2.

Remark 2.5.1. We propose condition (B1) in order to simplify {Zπ
ti }i=n−1,...,0 in for-

mula (2.5.3). In fact, there are some difficulties in generalizing the conditions (B)’s,

especially (B1), to a forward-backward stochastic differential equation (FBSDE, for

short) case

If we consider a FBSDE


Xt = X0 +

∫ t
0 b(r,Xr)dr+

∫ t
0 σ(r,Xr)dWr,

Yt = ξ +
∫ T

t f (r,Xr,Yr,Zr)dr−
∫ T

t ZrdWr,

where X0 ∈R, and the functions b, σ , f are deterministic, then under some appropriate

conditions (for instance, (h1)-(h4) in Example 2.2.11) Zπ
ti for i = n−1, . . . ,0 in (2.5.3)

is of the form

Zπ
ti = E

(
ρ

π
ti+1,tnDtiξ +

n−1

∑
k=i

ρ
π
ti+1,tk+1

∂x f (tk+1,Xπ
tk+1

,Y π
tk+1

,Zπ
tk+1

)DtiX
π
tk+1

∆k

∣∣∣∣Fti

)
,

where (Xπ ,Y π ,Zπ) is a certain numerical scheme for (X ,Y,Z). It is hard to guarantee

the existence and the convergence of Malliavin derivative of Xπ , and therefore, the

convergence of Zπ is difficult to derive.

Theorem 2.5.2. Let Assumption 2.2.2 (A3) and assumptions (B1)-(B3) be satisfied.

Then there are positive constants K and δ independent of the partition π , such that,

when |π|< δ we have

E max
0≤i≤n

{
|Yti−Y π

ti |
p + |Zti−Zπ

ti |
p}≤ K|π|

p
2−

p
2log 1

|π|

(
log

1
|π|

) p
2

.
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Proof. In the proof, C > 0 will denote a constant independent of the partition π , which

may vary from line to line. Under the assumption (B1), we can see that

Zπ
ti = E

(
ρ

π
ti+1,tnDtiξ

∣∣∣∣Fti

)
, i = n−1,n−2, . . . ,0. (2.5.6)

Denote, for i = n−1,n−2, . . . ,0,

δZπ
ti = Zti−Zπ

ti , δY π
ti = Yti−Y π

ti .

Since |ex− ey| ≤ (ex + ey)|x− y|, we deduce, for all i = n−1,n−2, . . . ,0,

|δZπ
ti | =

∣∣∣∣E(ρti,tnDtiξ

∣∣∣∣Fti

)
−E

(
ρ

π
ti+1,tnDtiξ

∣∣∣∣Fti

)∣∣∣∣
≤ E

(∣∣∣ρti,tn−ρ
π
ti+1,tn

∣∣∣ |Dtiξ |
∣∣∣∣Fti

)
≤ E

(
|Dtiξ |

(
ρti,tn +ρ

π
ti+1,tn

)∣∣∣∣∣
∫ T

ti
h(r)dWr +

∫ T

ti
g(r)dr

−1
2

∫ T

ti
h(r)2dr−

n−1

∑
k=i+1

∫ tk+1

tk
h(r)dWr−

n−1

∑
k=i+1

∫ tk+1

tk
g(r)dr

+
1
2

n−1

∑
k=i+1

∫ tk+1

tk
h(r)2dr

∣∣∣∣∣
∣∣∣∣Fti

)

≤ E

(
|Dtiξ |

(
ρti,tn +ρ

π
ti+1,tn

)[∣∣∣∣∫ ti+1

ti
h(r)dWr

∣∣∣∣+∫ ti+1

ti
|g(r)|dr

+
1
2

∫ ti+1

ti
h(r)2dr

]∣∣∣∣Fti

)
.
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From (B2), we have

|Dtiξ |ρ
π
ti+1,tn ≤ |Dtiξ |exp

{∫ T

ti+1

h(r)dWr +
n−1

∑
k=i+1

∫ tk+1

tk
g(r)dr− 1

2

∫ T

ti+1

h(r)2dr

}

≤ C1

(
sup

0≤θ≤T
|Dθ ξ |

)(
sup

0≤t≤T
exp
{∫ T

t
h(r)dWr

})
,

where C1 > 0 is a constant independent of the partition π .

In the same way, we obtain

|Dtiξ |ρti,tn <C1

(
sup

0≤θ≤T
|Dθ ξ |

)(
sup

0≤t≤T
exp
{∫ T

t
h(r)dWr

})
.

Thus for i = n−1,n−2, . . . ,0,

|δZπ
ti | ≤ 2C1E

((
sup

0≤θ≤T
|Dθ ξ |

)(
sup

0≤t≤T
exp
{∫ T

t
h(r)dWr

})[∣∣∣∣∫ ti+1

ti
h(r)dWr

∣∣∣∣
+
∫ ti+1

ti
|g(r)|dr+

1
2

∫ ti+1

ti
h(r)2dr

]∣∣∣∣Fti

)

≤ 2C1E

((
sup

0≤θ≤T
|Dθ ξ |

)(
sup

0≤t≤T
exp
{∫ T

t
h(r)dWr

})[
sup

0≤k≤n−1

∣∣∣∣∫ tk+1

tk
h(r)dWr

∣∣∣∣
+ sup

0≤k≤n−1

∫ tk+1

tk
|g(r)|dr+

1
2

sup
0≤k≤n−1

∫ tk+1

tk
h(r)2dr

]∣∣∣∣Fti

)
.

The right-hand side of the above inequality is a martingale as a process indexed by

i = n−1,n−2, . . . ,0.

Let ηt = exp
{
−
∫ t

0 h(u)dWu
}

. Then, ηt satisfies the following linear stochastic

differential equation


dηt =−h(t)ηtdWt +

1
2h(t)2ηtdt,

η0 = 1.
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By (B1), (B2), the Hölder inequality and Lemma 2.2.4, it is easy to show that, for any

r ≥ 0,

E

(
sup

0≤t≤T
exp
{∫ T

t
h(u)dWu

})r

= E

(
exp
{∫ T

0
h(u)dWu

}
sup

0≤t≤T
exp
{
−
∫ t

0
h(u)dWu

})r

≤
(
Eexp

{
2r
∫ T

0
h(u)dWu

}) 1
2
(
E sup

0≤t≤T
exp
{
−2r

∫ t

0
h(u)dWu

}) 1
2

= exp
{

r2
∫ T

0
h(u)2dr

}(
E sup

0≤t≤T
η

2r
t

) 1
2

< ∞. (2.5.7)
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For any p′ ∈ (p, q
2), by Doob’s maximal inequality and the Hölder inequality, (B3) and

(2.5.7), we have

E sup
0≤i≤n

|δZπ
ti |

p

≤ CE

((
sup

0≤θ≤T
|Dθ ξ |

)p(
sup

0≤t≤T
exp
{∫ T

t
h(r)dWr

})p[
sup

0≤k≤n−1

∣∣∣∣∫ tk+1

tk
h(r)dWr

∣∣∣∣
+ sup

0≤k≤n−1

∫ tk+1

tk
|g(r)|dr+

1
2

sup
0≤k≤n−1

∫ tk+1

tk
h(r)2dr

]p)

≤ C

E(( sup
0≤θ≤T

|Dθ ξ |

) pp′
p′−p
(

sup
0≤t≤T

exp
{∫ T

t
h(r)dWr

}) pp′
p′−p
)

p′−p
p′

×

[
E

(
sup

0≤k≤n−1

∣∣∣∣∫ tk+1

tk
h(r)dWr

∣∣∣∣+ sup
0≤k≤n−1

∫ tk+1

tk
|g(r)|dr

+
1
2

sup
0≤k≤n−1

∫ tk+1

tk
h(r)2dr

)p′] p
p′

≤ C

E( sup
0≤θ≤T

|Dθ ξ |

) 2pp′
p′−p


p′

2(p′−p)
E( sup

0≤t≤T
exp
{∫ T

t
h(r)dWr

}) 2pp′
p′−p
)

p′
2(p′−p)

×

[
E sup

0≤k≤n−1

∣∣∣∣∫ tk+1

tk
h(r)dWr

∣∣∣∣p′+E sup
0≤k≤n−1

(∫ tk+1

tk
|g(r)|dr

)p′

+E sup
0≤k≤n−1

(∫ tk+1

tk
h(r)2dr

)p′
] p

p′

= C[I1 + I2 + I3]
p
p′ .
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For any r > 1, by the Hölder inequality we can obtain

I1 = E sup
0≤k≤n−1

∣∣∣∣∫ tk+1

tk
h(r)dWr

∣∣∣∣p′ ≤
{
E sup

0≤k≤n−1

∣∣∣∣∫ tk+1

tk
h(r)dWr

∣∣∣∣p′r
} 1

r

≤

{
E

n−1

∑
k=0

∣∣∣∣∫ tk+1

tk
h(r)dWr

∣∣∣∣p′r
} 1

r

.

For any centered Gaussian variable X , and any γ ≥ 1, we know that

E|X |γ ≤ C̃γ
γ

γ

2 (E|X |2)
γ

2 ,

where C̃ is a constant independent of γ . Thus, we can see that

I1 ≤

C̃p′r(p′r)
p′r
2

n−1

∑
i=0

(∫ ti+1

ti
h(r)2dr

) p′r
2

 1
r

≤Cr
p′
2 |π|

p′
2 −

1
r .

Take r =
2log 1

|π|
p′ . Assume |π| is small enough, then we have

I1 ≤C|π|
p′
2 −

p′

2log 1
|π|

(
log

1
|π|

) p′
2

.

It is easy to see that

I2 = E sup
0≤k≤n−1

(∫ tk+1

tk
|g(r)|dr

)p′

≤C|π|p
′
,

and

I3 = E sup
0≤k≤n−1

(∫ tk+1

tk
h(r)2dr

)p′

≤C|π|p
′
.
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Consequently, we obtain

E sup
0≤i≤n

|δZπ
ti |

p ≤ C|π|
p
2−

p
2log 1

|π|

(
log

1
|π|

) p
2

. (2.5.8)

Applying recursively the scheme given by (2.5.3), we obtain

Y π
ti = E

(
ξ +

n

∑
k=i+1

f (tk,Y π
tk ,Z

π
tk)∆k−1|Fti

)
, i = n−1,n−2, . . . ,0.

Therefore, for i = n−1,n−2, . . . ,0,

|δY π
ti | ≤ E

(
n

∑
k=i+1

∣∣ f (tk,Ytk ,Ztk)− f (tk,Y π
tk ,Z

π
tk)
∣∣∆k−1 + |Rπ

ti |+ |δξ
π |
∣∣Fti

)
,

where Rπ
t is exactly the same as in Section 2.3, and δξ π = ξ −ξ = 0. In fact, we keep

the term δξ π to indicate the role it plays as the terminal value .

For j = n−1,n−2, . . . , i, we have

|δY π
t j
| ≤ E

(
n

∑
k=i+1

∣∣ f (tk,Ytk ,Ztk)− f (tk,Y π
tk ,Z

π
tk)
∣∣∆k−1 + sup

0≤t≤T
|Rπ

t |+ |δξ
π |
∣∣Ft j

)
.

By Doob’s maximal inequality and (2.5.8), we obtain

E sup
i≤ j≤n

|δY π
t j
|p

≤ CE

(
n

∑
k=i+1

∣∣ f (tk,Ytk ,Ztk)− f (tk,Y π
tk ,Z

π
tk)
∣∣∆k−1

)p

+C
(
|π|

p
2 +E|δξ

π |p
)

≤ C

{
E

(
n

∑
k=i+1

∣∣Ytk−Y π
tk

∣∣∆k−1

)p

+E

(
n

∑
k=i+1

∣∣Ztk−Zπ
tk

∣∣∆k−1

)p}
+C
(
|π|

p
2 +E|δξ

π |p
)

≤ C2(T − ti)pE sup
i+1≤k≤n

∣∣Ytk−Y π
tk

∣∣p +C3

(
|π|

p
2−

p
2log 1

|π|

(
log

1
|π|

) p
2

+E|δξ
π |p
)

,
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where C2 and C3 are constants independent of the partition π .

We can obtain the estimate for Emax0≤i≤n |Yti−Y π
ti |

p by using similar arguments to

analyze (2.4.13) in Theorem 2.4.2 to get the estimate for Esup0≤t≤T |Yt−Y π
t |.
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Chapter 3

A singular stochastic differential equation driven by

fractional Brownian motion

3.1 Introduction

Consider the following stochastic differential equation, driven by an additive fractional

Brownian motion (fBm) BH with Hurst parameter H

Xt = x0 +
∫ t

0
f (s,Xs)ds+BH

t . (3.1.1)

The existence of weak and strong solutions for this type of equation has been proved

under different hypotheses on the function f . In [32], using a Girsanov transformation

for the fBm, Nualart and Ouknine proved the existence of a unique strong solution

assuming that f (s,x) satisfies the linear growth condition | f (s,x)| ≤C(1+ |x|) if H ≤ 1
2 ,

and that f (s,x) is Hölder continuous of order α > 1− 1
2H in x and of order γ > H− 1

2

in s if H > 1
2 . This result was extended by Boufoussi and Ouknine in [5] to the case

where we add to the drift a bounded non-decreasing left-(or right-) continuous function,

in the case H > 1
2 . The existence of weak solutions assuming that the drift might have
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some jump-discontinuities was derived also in the paper by Mishura and Nualart [28],

assuming H ∈ (1
2 ,H0), for some H0 >

1
2 , by means of Girsanov theorem.

The aim of this chapter is to consider the case where H > 1
2 , x0 ≥ 0, and the drift

f (t,x) is nonnegative and it has a singularity at x= 0 of the form x−α , where α > 1
H −1,

and x0 ≥ 0. This singular drift cannot be covered by the above previous results and

requires new techniques.

The study of this type of singular equations is partially motivated by the equation

satisfied by the d-dimensional fractional Bessel process Rt = |BH
t |, d ≥ 2 (see Guerra

and Nualart [17], and Hu and Nualart [18]):

Rt = Yt +H(d−1)
∫ t

0

s2H−1

Rs
ds,

where the process Yt is equal to a divergence integral, Yt =
∫ t

0 ∑
d
i=1

BH,i
s
Rs

δBH,i
s . Except in

the case H = 1
2 , the process Y is not a one-dimensional fractional Brownian motion (see

Eisenbaum and Tudor [11] and Hu and Nualart [18] for some results in this direction),

although it shares with the fBm similar properties of scaling and 1
H -variation. Notice

that here the initial condition is zero.

Using arguments based on fractional calculus inspired by the estimates obtained by

Hu and Nualart in [19], we will show that there exists a unique global solution which

has moments of all orders, and even negative moments, in the particular case f (t,x) =

Kx−1, if t is small enough. We will also show that the solution has an absolutely

continuous law with respect to the Lebesgue measure, using the techniques of Malliavin

calculus for the fractional Brownian motion. As an application we obtain the existence

of a unique solution with moments of all orders for a fractional version of the CIR

model in mathematical finance ([9]), which is a singular stochastic differential equation

driven by fractional Brownian motion with the diffusion coefficient being
√

x.
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This chapter is organized as follows. In Section 3.2 we will consider the case of

a deterministic differential equation driven by a Hölder continuous function, and with

singular drift. The case of the fractional Brownian motion is developed in Section 3.3.

3.2 Singular equations driven by rough paths

Fix β ∈ (1/2,1). Suppose that ϕ : R+ → R is a function such that ϕ(0) = 0, and

ϕ ∈Cβ ([0,T ]) for all T > 0. Consider the following deterministic differential equation

driven by the rough path ϕ

xt = x0 +
∫ t

0
f (s,xs)ds+ϕ(t) , (3.2.1)

where x0 ≥ 0 is a constant. We are going to impose the following assumptions on the

coefficient f :

(i) f : [0,∞)×(0,∞)→ [0,∞) is a nonnegative, continuous function which has a contin-

uous partial derivative with respect to x such that ∂x f (t,x)≤ 0 for all t > 0, x > 0.

(ii) There exists x1 > 0 and α > 1
β
− 1 such that f (t,x) ≥ g(t)x−α , for all t ≥ 0 and

x ∈ (0,x1), where g(t) is a nonnegative continuous function with g(t)> 0 for all

t > 0.

(iii) f (t,x) ≤ h(t)
(
1+ 1

x

)
for all t ≥ 0 and x > 0, where h(t) is a certain nonnegative

locally bounded function.

Theorem 3.2.1. Under the assumptions (i)-(ii), there exists a unique solution xt to

Equation (3.2.1) such that xt > 0 on (0,∞).

Proof. Assume first that x0 > 0. It is easy to see that there exists a continuous local

solution xt to Equation (3.2.1) on some interval [0,T ), where T satisfies T = inf{t > 0 :
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xt = 0}. Then it suffices to show that T = ∞. Suppose that T < ∞. Then, then xt → 0,

as t ↑ T . Since ϕ ∈Cβ ([0,T ]), there exists a constant C > 0, such that |ϕ(t)−ϕ(s)| ≤

C|t− s|β , for all s, t ∈ [0,T ]. Since xt satisfies Equation (3.2.1), for all t ∈ [0,T ] we

have

0 = xT = xt +
∫ T

t
f (s,xs)ds+ϕ(T )−ϕ(t).

Since f (s,xs) is positive, for all t ∈ [0,T ] we have

xt ≤ xt +
∫ T

t
f (s,xs)ds = ϕ(t)−ϕ(T )≤C(T − t)β .

From the assumption (ii), there exists t0 ∈ (0,T ) and a constant K > 0, such that g(t)≥

K and xs ∈ (0,x1) for all t ∈ [t0,T ). Then, for all t ∈ [t0,T ) we have

f (t,xt)≥
g(t)
xtα
≥ K

xtα
≥ K

Cα (T − t)αβ
.

Consequently, for all t ∈ [t0,T ) we obtain

K(T − t)1−αβ

Cα(1−αβ )
=
∫ T

t

K
Cα(T − s)αβ

ds≤
∫ T

t
f (s,xs)ds≤C(T − t)β ,

which is a contradiction because 1−αβ − β < 0 and t can be arbitrarily close to T .

Therefore, T = ∞. This proves the existence of the solution for all t.

To handle the case x0 = 0, let us denote by xn
t the solution to Equation (3.2.1) with

initial condition x0 =
1
n . The sequence (xn

t ,n≥ 1) is non increasing and positive, so it

has a limit, denoted by xt . By the monotone convergence theorem (putting f (t,0) =

+∞) we obtain

xt =
∫ t

0
f (s,xs)ds+ϕ(t) .
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Hence, f (t,xt)< ∞ for almost all t ≥ 0, and this implies that xt > 0 for almost all t ≥ 0.

By the previous arguments, if xt > 0, then xs > 0 for all s > t. As a consequence, xt > 0

for all t > 0.

Now we show the uniqueness. If x1,t and x2,t are two positive solutions to Equation

(3.2.1), then

x1,t− x2,t =
∫ t

0
[ f (s,x1,s)− f (s,x2,s)]ds .

Because ∂x f (t,x)≤ 0 for all t > 0, x > 0, we deduce

(x1,t− x2,t)
2 = 2

∫ t

0
(x1,s− x2,s)[ f (s,x1,s)− f (s,x2,s)]ds≤ 0.

So x1,t = x2,t .

Thus we conclude that there exists a unique solution xt to Equation (3.2.1) such that

xt > 0 on (0,∞).

Remark 3.2.2. From the continuity of xt and f (t,x) and the Hölder continuity of ϕ(t),

we obtain that for any T > 0, x ∈Cβ ([0,T ]).

The next result provides an estimate on the supremum norm of the solution in terms

of the Hölder norm of the driving function ϕ .

Theorem 3.2.3. Let the assumptions (i)-(iii) be satisfied. If xt is the solution to Equa-

tion(3.2.1), then for any γ > 2, and for any T > 0,

‖x‖0,T,∞ ≤C1,γ,β ,T (|x0|+1)exp
{

C2,γ,β ,T

(
1+‖ϕ‖

γ

β (γ−1)
0,T,β

)}
, (3.2.2)

where C1,γ,β ,T and C2,γ,β ,T are constants depending on β ,γ , ‖h‖0,T,∞ and T .
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Proof. Fix a time interval [0,T ]. Let yt = xγ

t . Then the chain rule applied to xγ

t yields

yt = xγ

0 + γ

∫ t

0
f (s,y

1
γ

s )y
1− 1

γ

s ds+ γ

∫ t

0
y

1− 1
γ

s dϕ(s). (3.2.3)

The second integral in (3.2.3) is a Riemann-Stieltjes integral (see Young [38]). From

Assumption (iii), we have

|yt− ys| = γ

∣∣∣∣∫ t

s
f (u,y

1
γ

u )y
1− 1

γ

u du+
∫ t

s
y

1− 1
γ

u dϕ(u)
∣∣∣∣

≤ KT γ

∫ t

s

[
y

1− 2
γ

u + y
1− 1

γ

u

]
du+ γ

∣∣∣∣∫ t

s
y

1− 1
γ

u dϕ(u)
∣∣∣∣ , (3.2.4)

where KT = supt∈[0,T ] h(t). Since γ > 2, we have

∫ t

s
y

1− 2
γ

u du≤
[
‖y‖

1− 2
γ

s,t,∞ +‖y‖
1− 1

γ

s,t,∞

]
(t− s) . (3.2.5)

Since α > 1
β
− 1, we have α > αβ > 1−β . Thus 1−α < β . From Remark 1.1, we

know that y ∈Cβ ([0,T ]), for any T > 0. A fractional integration by parts formula (see

Zähle [39]) yields

∫ t

s
y

1− 1
γ

u dϕ(u) = (−1)−α

∫ t

s
Dα

s+y
1− 1

γ

u D1−α
t− ϕt−(u)du , (3.2.6)

where ϕt−(u) = ϕ(u)−ϕ(t), and Dα
s+ and D1−α

t− denote the left and right-sided frac-

tional derivatives of orders α and 1−α , respectively (see [35]), defined by

Dα
s+y

1− 1
γ

u =
1

Γ(1−α)

 y
1− 1

γ

u

(u− s)α
+α

∫ u

s

y
1− 1

γ

u − y
1− 1

γ

r

(u− r)α+1 dr

 , (3.2.7)
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and

D1−α
t− ϕt−(u) =

(−1)1−α

Γ(α)

(
ϕ(u)−ϕ(t)
(t−u)1−α

+(1−α)
∫ t

u

ϕ(u)−ϕ(r)
(r−u)2−α

dr
)
. (3.2.8)

From (3.2.7), and using the Hölder continuity of y we obtain

|Dα
s+y

1− 1
γ

u | ≤ C

‖y‖1− 1
γ

s,t,∞(u− s)−α +
∫ u

s

|y
1− 1

γ

u − y
1− 1

γ

r |
(u− r)α+1 dr


≤ C

(
‖y‖

1− 1
γ

s,t,∞(u− s)−α +
∫ u

s

|yu− yr|1−
1
γ

(u− r)α+1 dr

)

≤ C
(
‖y‖

1− 1
γ

s,t,∞(u− s)−α +‖y‖
1− 1

γ

s,t,β

∫ u

s
(u− r)β (1− 1

γ
)−α−1dr

)
≤ C

(
‖y‖

1− 1
γ

s,t,∞(u− s)−α +‖y‖
1− 1

γ

s,t,β (u− s)β (1− 1
γ
)−α

)
, (3.2.9)

where and in what follows, C denotes a generic constant depending on α , β and T . On

the other hand, from (3.2.8) we have

|D1−α
t− ϕt−(u)| ≤C‖ϕ‖0,T,β (t−u)α+β−1. (3.2.10)

Substituting (3.2.9) and (3.2.10) into (3.2.6) yields

∣∣∣∣∫ t

s
y

1− 1
γ

u dϕ(u)
∣∣∣∣ ≤ C

∫ t

s

(
‖y‖

1− 1
γ

s,t,∞(u− s)−α +‖y‖
1− 1

γ

s,t,β (u− s)β (1− 1
γ
)−α

)
×‖ϕ‖0,T,β (t−u)α+β−1du

≤ C‖ϕ‖0,T,β

×
(
‖y‖

1− 1
γ

s,t,∞(t− s)β +‖y‖
1− 1

γ

s,t,β (t− s)β (2− 1
γ
)
)
. (3.2.11)
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Substituting (3.2.11) and (3.2.5) into (3.2.4) we obtain

|yt− ys| ≤ KT γ

[
‖y‖

1− 2
γ

s,t,∞ +‖y‖
1− 1

γ

s,t,∞

]
(t− s)+Cγ‖ϕ‖0,T,β

×
(
‖y‖

1− 1
γ

s,t,∞(t− s)β +‖y‖
1− 1

γ

s,t,β (t− s)β (2− 1
γ
)
)
.

Consequently, using the estimate x1− 1
γ ≤ 1+ x for all x > 0, we obtain

‖y‖s,t,β ≤ KT γ

[
‖y‖

1− 2
γ

s,t,∞ +‖y‖
1− 1

γ

s,t,∞

]
(t− s)1−β +Cγ‖ϕ‖0,T,β

×
(
‖y‖

1− 1
γ

s,t,∞ +(1+‖y‖s,t,β )(t− s)β (1− 1
γ
)
)
,

which implies

[
1−Cγ‖ϕ‖0,T,β (t− s)β (1− 1

γ
)
]
‖y‖s,t,β ≤ KT γ

[
‖y‖

1− 2
γ

s,t,∞ +‖y‖
1− 1

γ

s,t,∞

]
×(t− s)1−β +Cγ‖ϕ‖0,T,β

(
‖y‖

1− 1
γ

s,t,∞ +(t− s)β (1− 1
γ
)
)
.

Suppose that ∆ satisfies

∆≤
(

1
2Cγ‖ϕ‖0,T,β

) γ

β (γ−1)
. (3.2.12)

Then for all s, t ∈ [0,T ], s≤ t, such that t− s≤ ∆, we have

‖y‖s,t,β ≤ 2KT γ

[
‖y‖

1− 2
γ

s,t,∞ +‖y‖
1− 1

γ

s,t,∞

]
(t− s)1−β +2Cγ‖ϕ‖0,T,β‖y‖

1− 1
γ

s,t,∞ +1 ,
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and this implies

‖y‖s,t,∞ ≤ |ys|+‖y‖s,t,β (t− s)β

≤ |ys|+2KT γ

[
‖y‖

1− 2
γ

s,t,∞ +‖y‖
1− 1

γ

s,t,∞

]
(t− s)

+2Cγ‖ϕ‖0,T,β‖y‖
1− 1

γ

s,t,∞(t− s)β +(t− s)β .

Using again the inequality xα ≤ 1+ x for all x > 0 and α ∈ (0,1), we have

‖y‖s,t,∞ ≤ |ys|+4KT γ (1+‖y‖s,t,∞)(t− s)

+2Cγ‖ϕ‖0,T,β (1+‖y‖s,t,∞)(t− s)β +(t− s)β ,

which can be written as

‖y‖s,t,∞

(
1−2Cγ‖ϕ‖0,T,β (t− s)β −4KT γ(t− s)

)
≤ |ys|+4KT γ(t− s)+2(t− s)β . (3.2.13)

Now we choose ∆ such that

∆ =

(
1

2Cγ‖ϕ‖0,T,β

) γ

β (γ−1)
∧
(

1
16KT γ

)
∧
(

1
8Cγ‖ϕ‖0,T,β

) 1
β

. (3.2.14)

Then, for all s, t ∈ [0,T ], s < t, such that t− s≤ ∆, the inequality (3.2.13) implies

‖y‖s,t,∞ ≤ 2|ys|+Cγ,β ,T , (3.2.15)

where Cγ,β ,T = 8KT γT +4T β . Take n = [T
∆
]+1 (where [a] denotes the largest integer

bounded by a). Divide the interval [0,T ] into n subintervals. Applying the inequality
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(3.2.15) for s = 0 and t = ∆, we have for all t ∈ [0,∆]

‖y‖0,t,∞ ≤ 2|y0|+Cγ,β ,T . (3.2.16)

Applying the inequality (3.2.16) on the intervals [∆,2∆], . . . , [(n−2)∆,(n−1)∆], [(n−

1)∆,T ] recursively, we obtain

‖y‖0,T,∞ ≤ 2n|y0|+2n−1Cγ,β ,T + · · ·+Cγ,β ,T

≤ 2[
T
∆ ]+1(|y0|+Cγ,β ,T )

≤ 2T(2Cγ‖ϕ‖0,T,β)
γ

β (γ−1)∨(16KT γ)∨(8Cγ‖ϕ‖0,T,β)
1
β +1(|y0|+Cγ,β ,T ) .

Therefore, we obtain

‖x‖0,T,∞ ≤C1,γ,β ,T (|x0|+1)exp
{

C2,γ,β ,T

(
1+‖ϕ‖

γ

β (γ−1)
0,T,β

)}
,

which concludes the proof of the theorem.

3.3 Singular equations driven by fBm

Let BH = {BH
t }t≥0 be a fractional Brownian motion with Hurst parameter H ∈ (1/2,1).We

are interested in the following singular stochastic differential equation

Xt = x0 +
∫ t

0
f (s,Xs)ds+BH

t , (3.3.1)

where x0 ≥ 0, and the function f (s,x) has a singularity at x = 0 and satisfies the as-

sumptions (i) to (iii). As an immediate consequence of Theorem 3.2.3 we have the

following result.
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Theorem 3.3.1. Under the assumptions (i)-(iii), there is a unique pathwise solution

X = (Xt , t ≥ 0) to Equation (3.3.1), such that Xt > 0 on (0,∞) and for any T > 0,

‖X‖0,T,∞ ∈ Lp(Ω), for all p > 0.

Proof. Fix β ∈ (1
2 ,H) and T > 0. Applying Theorem 3.2.3, we obtain that there is a

unique pathwise solution X = (Xt , t ≥ 0) to Equation (3.3.1), such that Xt > 0 on (0,∞)

and

‖X‖0,T,∞ ≤C1,γ,β ,T (|x0|+1)exp
{

C2,γ,β ,T

(
1+‖BH‖

γ

β (γ−1)
0,T,β

)}
. (3.3.2)

If we choose γ such that γ > 2β

2β−1 , then γ

β (γ−1) < 2, and by Fernique’s theorem (see

[14], Theorem 1.3.2, p. 11), we obtain

E(eC‖BH‖
γ

β (γ−1)
0,T,β )< ∞, (3.3.3)

for all C > 0, which implies that E(‖X‖p
0,T,∞)< ∞ for all p≥ 1.

Note that in the case f (s,x) = 1
x and x0 = 0, the solution to Equation (3.3.1) is

positive for any t > 0, as in the case of the standard Brownian motion.

Theorem 3.3.1 implies the existence of a unique solution to the following stochastic

differential equation with non Lipschitz diffusion coefficient:

Yt = y0 +
∫ t

0
f (s,Ys)ds+

∫ t

0

√
YsdBH

s , (3.3.4)

where y0 is a nonnegative constant and f is a nonnegative continuous function satisfying

the following conditions:

(i’) There exists x1 > 0 such that f (t,x)≥ g(t) for all t > 0 and x ∈ (0,x1), where g is

a continuous function such that g(t)> 0 if t > 0.
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(ii’) f (t,x)≥ x∂x f (t,x) for all t > 0 and x > 0.

(iii’) f (t,x) ≤ h(t)(x+ 1) for all t ≥ 0 and x > 0, where h is a nonnegative locally

bounded function.

The stochastic integral in Equation (3.3.4) is a path-wise Riemann-Stieltjes integral,

which exists by the results of Young [38]. The term
√

Ys appears in a fractional version

of the CIR process in financial mathematics (see [9]) and cannot be treated directly by

the approaches in Lyons [22], Nualart and Răşcanu [33], since function g(x) =
√

x does

not satisfy the usual Lipschitz conditions commonly imposed. We make the change of

variables Xt = 2
√

Yt . Then, from the chain rule for the Young integral, it follows that a

positive stochastic process Y = (Yt , t ≥ 0) satisfies (3.3.4) if and only if Xt satisfies the

following equation:

Xt = 2
√

y0 +
∫ t

0

2 f (s,Xs)

Xs
ds+BH

t . (3.3.5)

Let f1(t,x) = 2 f (t,x)x−1. Then f1(t,x) satisfies all assumptions (i)-(iii), and hence

from Theorem 3.3.1, we know that there exists a unique positive solution Xt to Equation

(3.3.5) with all positive moments. So Yt = X2
t /4 is the unique positive solution to

Equation (3.3.4), and it has finite moments of all orders.

The next result states the scaling property of the solution to Equation (3.3.1), when

the coefficient f (s,x) satisfies some homogeneity condition on the variable x.

Proposition 3.3.2. (Scaling Property) We denote by Eq(x0, f ) Equation (3.3.1). Sup-

pose that x0 ≥ 0, and f (t,x) satisfies assumptions (i)-(iii), and f (t,x) is homogeneous,

that is, f (st,yx) = smyn f (t,x) for some constants m,n. Then, the process
(

aHX t
a
, t ≥ 0

)
has the same law as the solution to the Equation Eq(aHx0,aH−nH−m−1 f ).
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Proof. For each a > 0, we know that {a−HBH
at , t ≥ 0} is a fractional Brownian motion.

We denote Xa,t the solution to the following equation:

Xa,t = x0 +
∫ t

0
f (s,Xa,s)ds+a−HBH

at .

So (Xt , t ≥ 0) (the solution to Eq(x0, f )) has the same distribution as (Xa,t , t ≥ 0). Then

aHXa, t
a

= aHx0 +
∫ t

a

0
aH f (s,Xa,s)ds+ BH

t

= aHx0 +
∫ t

0
aH−1−m−nH f (r,aHXa, r

a
)dr+ BH

t ,

which implies the result.

As an example, we can consider the function f (t,x) = sγx−α , where α > 1
H − 1,

and γ > 0. Then, if (Xt , t ≥ 0) is the solution to Equation

Xt = x0 +
∫ t

0
sγX−α

s ds+BH
t

(3.3.1), then
(

aHX t
a
, t ≥ 0

)
has the same law as the solution to the Equation

Xt = aHx0 +aH−αH−γ−1
∫ t

0
sγX−α

s ds+BH
t .

3.3.1 Absolute continuity of the law of the solution

In this subsection we will apply the Malliavin calculus to the solution to Equation

(3.3.1) in order to study the absolute continuity of the law of the solution at a fixed

time t > 0. The basic criterion for the existence of densities (see Bouleau and Hirsch

[6]), says that if F ∈ D1,2, and ‖DF‖H > 0 almost surely, then the law of F has a
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density with respect to the Lebesgue measure on the real line. Using this criterion we

can show the following result.

Theorem 3.3.3. Suppose that f satisfies the assumptions (i)-(iii). Let Xt be the solution

to Equation (3.3.1). Then for any t ≥ 0, Xt ∈ D1,2. Furthermore, for any t > 0 the law

of Xt is absolutely continuous with respect to the Lebesgue measure on R.

Proof. Fix a time interval [0,T ], and let β ∈ (1
2 ,H). We want to compute the directional

derivative 〈DXt ,ϕ〉H , for some ϕ ∈H . The function h = RHϕ belongs to Cβ ([0,T ])

and h0 = 0. Taking into account the embedding given by RH : H →Ω mentioned

before, we will have

〈DXt ,ϕ〉H =
dXε

t
dε
|ε=0, (3.3.6)

where Xε
t is the solution to the following equation

Xε
t = x0 +

∫ t

0
f (s,Xε

s )ds+BH
t + εht , (3.3.7)

t ∈ [0,T ], where ε ∈ [0,1].

From the estimate (3.3.2) replacing BH by BH +εh it follows that there is a constant

C independent of ε such that

E

(
sup

0≤t≤T
|Xε |pt

)
≤C < ∞ ,

for all p≥ 1. From Equations (3.3.1) and (3.3.7), we deduce

Xε
t −Xt =

∫ t

0
( f (s,Xε

s )− f (s,Xs))ds+ εht . (3.3.8)
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By using Taylor expansion, Equation (3.3.8) becomes:

Xε
t −Xt =

∫ t

0
Θs(Xε

s −Xs)ds+ εht , (3.3.9)

where Θs = ∂x f (s,Xs + θs(Xε
s −Xs)) for some θ ε

s between 0 and 1. By using (1.1.3)

the solution to Equation (3.3.9) is given by

Xε
t −Xt = ε

∫ t

0
exp
(∫ t

s
Θrdr

)
d(RHϕ)(s)

= ε

∫ t

0
exp
(∫ t

s
Θrdr

)(∫ s

0

∂KH(s,u)
∂ s

(K∗Hϕ)(u)du
)

ds

= ε

∫ t

0

(∫ t

u
exp
(∫ t

s
Θrdr

)
∂KH(s,u)

∂ s
ds
)
(K∗Hϕ)(u)du.

Using (1.1.3) and (1.1.4) we can write

Xε
t −Xt = ε

∫ t

0
(K∗Hϕ)(u)

(
K∗H

(
exp
(∫ t

·
Θrdr

)))
(u)du

= ε

〈
ϕ,exp

(∫ t

·
Θrdr

)〉
H

= εαH

∫ t

0

∫ t

0
ϕ(s)exp

(∫ t

u
Θrdr

)
|s−u|2H−2duds

Since ∂x f (t,x) is continuous and ∂x f (t,x) ≤ 0 for all t > 0 and x > 0, we have

exp
(∫ t

u Θrdr
)
≤ 1. As a consequence,

lim
ε→0

Xε
t −Xt

ε
= αH

∫ t

0

∫ t

0
ϕ(s)exp

(∫ t

u
∂x f (r,Xr)dr

)
|s−u|2H−2duds

=

〈
ϕ,exp

(∫ t

·
∂x f (r,Xr)dr

)
1[0,t]

〉
H

,
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where the limit holds almost surely and in L2(Ω). Then, taking into account (3.3.6), by

the results of Sugita [37], we have Xt ∈ D1,2, and

DXt = exp
(∫ t

·
∂x f (r,Xr)dr

)
1[0,t]. (3.3.10)

Finally,

‖DF‖2
H = αH

∫ t

0

∫ t

0
exp
(∫ t

s
∂x f (r,Xr)dr

)
×exp

(∫ t

u
∂x f (r,Xr)dr

)
|s−u|2H−2duds > 0.

In the next proposition we will show the existence of negative moments for the

solution to Equation (3.3.1). The proof is based again on the techniques of Malliavin

calculus.

Proposition 3.3.4. Let (Xt , t ≥ 0) be the solution to Equation (3.3.1), where f satisfies

conditions (i)-(iii), and x0 > 0. Suppose that f (s,x)x ≥ (p+1)Hs2H−1for some p ≥ 1

and any s ∈ [0, t] and x > 0. Then

E(X−p
t )≤ x−p

0 . (3.3.11)

In particular, for the function f (t,x)= K
x , we obtain that (3.3.11) holds if t ≤

(
K

(p+1)H

) 1
2H−1

.

Proof. For any fixed p≥ 1, we construct the family of functions ϕε(x) = 1
(ε+x)p , x > 0.

Then ϕε ↑ x−p, as ε ↓ 0. For each ε > 0, ϕε is a bounded continuously differentiable

function and all its derivatives are bounded.
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By the chain rule we obtain,

ϕε(Xt) = ϕε(x0)+
∫ t

0
ϕ
′
ε(Xs) f (s,Xs)ds+

∫ t

0
ϕ
′
ε(Xs)dBH

s

= ϕε(x0)− p
∫ t

0

f (s,Xs)

(ε +Xs)p+1 − p
∫ t

0

1
(ε +Xs)p+1 dBH

s (3.3.12)

Then, Proposition 5.3.2 in [31] implies that

∫ t

0

1
(ε +Xs)p+1 dBH

s = δ

(
1

(ε +Xs)p+1 1[0,t](s)
)
− (p+1)αH

×
∫ t

0

∫ t

0

DrXs

(ε +Xs)p+2 |s− r|2H−2drds, (3.3.13)

where δ is the divergence operator with respect to fractional Brownian motion. Using

Equation (3.3.10) we obtain

αH

∫ t

0

∫ t

0

DrXs

(ε +Xs)p+2 |s− r|2H−2drds≤ H
∫ t

0

s2H−1

(ε +Xs)p+2 ds. (3.3.14)

From (3.3.14), (3.3.13), and (3.3.12) we get

ϕε(Xt) ≤ ϕε(x0)− p
∫ t

0

f (s,Xs)

(ε +Xs)p+1 ds− pδ

(
1

(ε +Xs)p+1 1[0,t](s)
)

+p(p+1)H
∫ t

0

s2H−1

(ε +Xs)p+2 ds

≤ ϕε(x0)− p
∫ t

0

f (s,Xs)Xs− (p+1)Hs2H−1

(ε +Xs)p+2 ds

−pδ

(
1

(ε +Xs)p+1 1[0,t](s)
)
.
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Fix some t, such that f (s,x)x ≥ (p+ 1)Hs2H−1 for all s ∈ [0, t] and x > 0. Taking

expectation on above inequality, we have

E(ϕε(Xt))≤ ϕε(x0)≤ x−p
0 .

Let ε tends to 0. Applying monotone convergence theorem we obtain

E(X−p
t )≤ x−p

0 ,

which completes the proof of the proposition.
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Chapter 4

Approximation schemes of the solution of a stochastic

differential equation driven by fractional Brownian

motion

4.1 Introduction

Let BH = {(BH,1
t ,BH,2

t , · · · ,BH,m
t )}t∈[0,T ] be an m-dimensional fractional Brownian mo-

tion with Hurst parameter H ∈ (1/2,1).

In this chapter we are interested in approximation solutions of multidimensional

stochastic differential equations of the form

Xt = X0 +
∫ t

0
σ(Xs)dBH

s , (4.1.1)

or

X i
t = X i

0 +
m

∑
j=1

∫ t

0
σ

i, j(Xs)dBH, j
s , i = 1, . . . ,d, (4.1.2)

where the integral is a pathwise Riemann-Stieltjes integral.

Fix n, and set τk =
kT
n for k = 0, . . . ,n. Set κn(t) = kT

n if kT
n ≤ t < (k+1)T

n , k =

0, . . . ,n. We will also set δ = T
n . The aim of the this project is to establish an optimal
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rate of convergence of the Euler scheme of the form

X (n),i
t = X i

0 +
m

∑
j=1

∫ t

0
σ

i, j(X (n)
κn(s)

)dBH, j
s , i = 1, . . . ,d.

The numerical solution of stochastic differential equations (SDEs, for short) driven

by Brownian motion is essentially based on the method of time discretization and has a

long history. Difficulties appear in constructing numerical solutions of SDEs driven by

fractional Brownian motion, because the fraction Brownian motion BH is not a semi-

martingale. Numerical schemes for SDEs driven by fractional Brownian motion are

studies only in few works, see [29] and the references therein. The authors in [30] gave

an exact rate of convergence of the Euler scheme in one-dimensional case by using a

specific representation for the solution. However, new techniques are required in multi-

dimensional case. One result for the rate of convergence can be found in Mishura’s

book [27]. In our work, we are searching for optimal estimates of the errors of Euler

Scheme and Milstein scheme by using some different techniques such as the variation

property of the fractional Brownian motion.

Throughout this chapter for simplicity we consider one-dimensional fractional Brow-

nian motion BH . The results obtained in this chapter can be easily extended to multi-

dimensional case.
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4.2 Fractional integrals and derivatives

Let a,b ∈ R with a < b. Denote by Lp(a,b), p ≥ 1, the usual space of Lebesgue mea-

surable functions f : [a,b]→ R for which ‖ f‖Lp < ∞, where

‖ f‖Lp =


(∫ b

a | f (t)|pdt
)1/p

, if 1≤ p < ∞

esssup{| f (t)| : t ∈ [a,b]}, if p = ∞.

Let f ∈ L1 (a,b) and α > 0. The left-sided and right-sided fractional Riemann-Liouville

integrals of f of order α are defined for almost all x ∈ (a,b) by

Iα
a+ f (t) =

1
Γ(α)

∫ t

a
(t− s)α−1 f (s)ds

and

Iα
b− f (t) =

(−1)−α

Γ(α)

∫ b

t
(s− t)α−1 f (s)ds,

respectively, where (−1)−α = e−iπα and Γ(α) =
∫

∞

0 rα−1e−rdr is the Euler gamma

function. Let Iα
a+(L

p) (resp. Iα
b−(L

p)) be the image of Lp(a,b) by the operator Iα
a+ (resp.

Iα
b−). If f ∈ Iα

a+ (Lp) (resp. f ∈ Iα
b− (L

p)) and 0 < α < 1 then the Weyl derivatives are

defined as

Dα
a+ f (t) =

1
Γ(1−α)

(
f (t)

(t−a)α +α

∫ t

a

f (t)− f (s)

(t− s)α+1 ds

)
1(a,b)(t) (4.2.1)

and

Dα
b− f (t) =

(−1)α

Γ(1−α)

(
f (t)

(b− t)α +α

∫ b

t

f (t)− f (s)

(s− t)α+1 ds

)
1(a,b)(t) (4.2.2)
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for almost all t ∈ (a,b) (the convergence of the integrals at the singularity s = t holds

point-wise for almost all t ∈ (a,b) if p = 1 and moreover in Lp-sense if 1 < p < ∞).

Recall from [35] that we have:

• If α < 1
p and q = p

1−α p then

Iα
a+ (Lp) = Iα

b− (L
p)⊂ Lq (a,b) .

• If α > 1
p then

Iα
a+ (Lp) ∪ Iα

b− (L
p)⊂Cα− 1

p (a,b) .

The following inversion formulas hold:

Iα
a+
(
Dα

a+ f
)

= f , ∀ f ∈ Iα
a+ (Lp) (4.2.3)

Iα
b−
(
Dα

b− f
)

= f , ∀ f ∈ Iα
b− (L

p) (4.2.4)

and

Dα
a+
(
Iα
a+ f
)
= f , Dα

b−
(
Iα
b− f
)
= f , ∀ f ∈ L1 (a,b) . (4.2.5)

On the other hand, for any f ,g ∈ L1(a,b) we have

∫ b

a
Iα
a+ f (t)g(t)dt = (−1)α

∫ b

a
f (t)Iα

b−g(t)dt , (4.2.6)

and for f ∈ Iα
a+ (Lp) and g ∈ Iα

b− (L
p) we have

∫ b

a
Dα

a+ f (t)g(t)dt = (−1)−α

∫ b

a
f (t)Dα

b−g(t)dt. (4.2.7)
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4.3 Generalized Lebesgue-Stieltjes integration

Following [39] we can give the definition of the generalized (fractional) Lebesgue-

Stieltjes integral of f with respect to g. Let f (a+)= limε→0 f (a+ε), g(b−)= limε→0 g(b−

ε) (supposing that the limits exist and are finite) and define

fa+(t) = ( f (t)− f (a+))1(a,b)(t),

gb−(t) = (g(t)−g(b−))1(a,b)(t).

Definition 4.3.1. (Generalized (fractional) Lebesgue-Stieltjes Integral). Suppose that

f and g are functions such that f (a+), g(a+) and g(b−)exist, fa+ ∈ Iα
a+(L

p) and

gb− ∈ I1−α

b− (Lq) for some p, q ≥ 1, 1/p+ 1/q ≤ 1, 0 < α < 1. Then the integral of f

with respect to g is defined by

∫ b

a
f dg = (−1)α

∫ b

a
Dα

a+ fa+(t)D1−α

b− gb−(t)dt + f (a+)(g(b−)−g(a+)). (4.3.1)

Remark 4.3.2. If α p < 1, then we have fa+ ∈ Iα
a+(L

p) if and only if f ∈ Iα
a+(L

p). In

this case, under the assumptions of the preceding definition (4.3.1) can be rewritten as

∫ b

a
f dg = (−1)α

∫ b

a
Dα

a+ f (t)D1−α

b− gb−(t)dt. (4.3.2)

Remark 4.3.3. Suppose that f ∈Cλ ([a,b]) and g ∈Cµ([a,b]) with λ + µ > 1. Then,

from the classical paper by Young [38], the Riemann-Stieltjes integral
∫ b

a f dg exists. It

is also proved in [39] that the conditions of the above definition and remark are fulfilled

and we may choose p = q = ∞ and α < λ , 1−α < µ . Moreover, the generalized

Lebesgue-Stieltjes integral
∫ b

a f dg coincides with the Riemann-Stieltjes integral.
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The linear spaces Iα
a+(L

p) are Banach spaces with respect to the norms

‖ f‖Iα
a+(Lp) = ‖ f‖Lp +‖Dα

a+ f‖Lp,

and the same is true for Iα
b−(L

p). If 0 < α < 1/p, then the norms of the spaces Iα
a+(L

p)

and Iα
b−(L

p) are equivalent, and for a ≤ c < d ≤ b the restriction of f ∈ Iα
a+(L

p(a,b))

to (c,d) belongs to Iα
c+(L

p(c,d)) and the continuation of f ∈ Iα
c+(L

p(c,d)) by zero

beyond (c,d) belongs to Iα
a+(L

p(a,b)). As a consequence, if f ∈ Iα
a+(L

p(a,b)) and

gb− ∈ I1−α

b− (Lq(a,b)) then the integral
∫ b

a 1(c,d) f dg exists in the sense of (4.3.2) for any

a≤ c < d ≤ b and we have

∫ d

c
f dg =

∫ b

a
1(c,d) f dg,

whenever the left-hand side is determined in the sense of (4.3.2).

For a matrix A = (ai, j)d×m and a vector y = (yi)d×a denote |A| =
√

∑i, j |ai, j|2 and

y =
√

∑i |yi|2. For fixed 0 < α < 1, ψα
f (t) = | f (t)|+

∫ t
0 | f (t)− f (s)|(t − s)−α−1ds.

Consider the following functional spaces. Let W α
0 (0,T ;Rd) be the space of Rd-valued

measurable functions f : [0,T ]→ Rd such that

‖ f‖0,α = sup
0≤t≤T

ψ
α
f (t)< ∞.

Let W α
1 (0,T ;Rd) be the space of Rd-valued measurable functions f : [0,T ]→ Rd

such that

‖ f‖1,α = sup
0≤s<t≤T

(
| f (t)− f (s)|
(t− s)α

+
∫ t

s

| f (u)− f (s)|
(u− s)α+1 du

)
< ∞,
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and W α
2 (0,T ;Rd) be the space of Rd-valued measurable functions f : [0,T ]→Rd such

that

‖ f‖2,α =
∫ T

0

| f (t)|
tα

dt +
∫ T

0

∫ t

0

| f (t)− f (s)|
(t− s)α+1 ds < ∞.

Note that the spaces W α
i (0,T ;Rd), i = 0,2 are Banach spaces with respect to the

corresponding norms, and ‖ f‖1,α is not a norm in the usual sense. Moreover, for any

0 < ε < α

Cα+ε(0,T ;Rd)⊂W α
i (0,T ;Rd)⊂Cα−ε(0,T ;Rd), i = 0, 1,

and

Cα+ε(0,T ;Rd)⊂W α
2 (0,T ;Rd).

Therefore, the trajectories of a d-dimensional fBm BH for a.a. ω ∈ Ω, any T > 0

and any 0 < β < H belong to W β

1 (0,T ;Rd).

If d = 1, then denote W α
i (0,T ) =W α

i (0,T ;R), i = 0, 1, 2.

Let f ∈W α
1 (0,T ). Then its restriction to [0, t] ⊂ [0,T ] belongs to Iα

t−(L
∞(0, t)) for

all t and define

Λα( f ) = sup
0≤s<t≤T

|Dα
t− ft−(s)| ≤

1
Γ(1−α)

‖ f‖1,α < ∞.

If f ∈W α
1 (0,T ;Rd), then define Λα( f )=maxi=1,...,d Λα( f i), and Λα( f )≤ 1

Γ(1−α)‖ f‖1,α <

∞.

The restriction of f ∈W α
2 (0,T ) to [s, t]⊂ [0,T ] belongs to Iα

s+(L
1(s, t)) for all s, t.
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Notice that if f is a function in the space W α
2 (0,T ), and g belongs to the space

W 1−α

1 (0,T ), then by (4.3.2) the integral
∫ t

s f dg exists for all 0≤ s < t ≤ T and we have

∣∣∣∣∫ t

s
f dg
∣∣∣∣ =

∣∣∣∣(−1)α

∫ t

0
Dα

s+ f (u)D1−α
t− gt−(u)du

∣∣∣∣
≤ sup

0≤u≤t

∣∣D1−α
t− gt−(u)

∣∣∫ t

s

∣∣Dα
s+ f (u)

∣∣du

≤ Λ1−α(g)
Γ(1−α)

∫ t

s

(
| f (u)|
(u− s)α

+α

∫ u

s

| f (u)− f (r)|
(u− r)α+1 dr

)
du. (4.3.3)

If f ∈W α
2 (0,T ;Rd) and g ∈W 1−α

1 (0,T ;Rd), we have the following generalization of

the above inequality

∣∣∣∣∫ t

s
f dg
∣∣∣∣=
∣∣∣∣∣ d

∑
i=1

∫ t

s
f idgi

∣∣∣∣∣≤ Λ1−α(g)c1

∫ t

s

(
| f (u)|
(u− s)α

+
∫ u

s

| f (u)− f (r)|
(u− r)α+1 dr

)
du,

(4.3.4)

where c1 > 0 is a constant depending only on α and d.

4.4 Deterministic differential equations

Consider the following differential equation driven by a Hölder continuous function

g : [0,T ]→ Rm of order β > 1
2 :

Xt = X0 +
∫ t

0
σ(Xs)dgs, (4.4.1)

or

X i
t = X i

0 +
m

∑
j=1

∫ t

0
σ

i, j(Xs)dg j
s , i = 1, . . . ,d, (4.4.2)

where σ : Rd → Rd×m is a continuously differentiable function whose partial deriva-

tives are bounded and Hölder continuous of order γ > 1
β
−1.
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We summarize the conditions on σ as follows:

(H1) |σ(x)| ≤ L1(1+ |x|), for some positive constant L1.

(H2) |σ(x)−σ(y)| ≤ L2|x− y|, ∀x, y ∈ Rd , for some positive constant L2.

(H3) |σxi(x)−σxi(y)| ≤M|x− y|γ , ∀x, y ∈ Rd, i = 1, . . . ,d, for some positive constant

M.

Notice that condition (H2) implies condition (H1) since σ is a deterministic func-

tion. However, we still list them for distinguishing the two constants L1 and L2.

Fix α < 1
2 , such that α > 1−β and γ > α

1−α
. By Theorem 5.1 in [33], there exists

a unique solution X ∈W α
0 ([0,T ];Rd) to equation (4.4.1), and moreover, the solution is

(1−α)-Hölder continuous..

Fix n, and set τk =
kT
n for k = 0, . . . ,n. Set κn(t) = kT

n if kT
n ≤ t < (k+1)T

n , k =

0, . . . ,n. We will also set δ = T
n . Consider the Euler approximation scheme defined by

X (n)
t = X0 +

∫ t

0
σ(X (n)

κn(s)
)dgs, (4.4.3)

or equivalently,

X (n)
t = X (n)

κn(t)
+σ(X (n)

κn(t)
)(gt−gκn(t)), (4.4.4)

for any kT
n < t ≤ (k+1)T

n , k = 0, . . . ,n.

Given a multidmensional stochastic process {Yt , t ∈ [0,T ]}, we will make use of

the following notation

Y ∗t = sup
0≤s≤t

|Ys|,

∆t(Y ) =
∫ t

0

|Yt−Ys|
(t− s)α+1 ds,

Ψt(Y ) = Y ∗t +∆t(Y ).
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Lemma 7.6 in [33] gives the following version of the Gronwall lemma.

Lemma 4.4.1. Fix ν ∈ [0,1), A, B≥ 0. Let x : [0,∞)→ [0,∞) be a continuous function

such that for each t ∈ [0,∞)

xt ≤ A+Btν

∫ t

0
xs(t− s)−νs−νds.

Then

xt ≤ AΓ(1−ν)
∞

∑
n=0

(BΓ(1−ν)t1−ν)n

Γ((n+1)(1−ν))
≤ Adν exp{cνtB

1
1−ν },

where cν and dν are positive constants depending only on ν .

Theorem 4.4.2. Suppose σ satisfies the conditions (H1) - (H3). Let X and X (n) be

the solutions to equations (4.4.1) and (4.4.3) respectively. Then there exist two positive

constants δ0 and K such that

sup
0≤t≤T

∣∣∣Xt−X (n)
t

∣∣∣≤ Kδ
1−2α ,

for all δ ≤ δ0.

Proof. We will prove the theorem in three steps.

Step 1 Define the following modification of the above seminorm:

Ψ
(n)
t = X (n),∗

t +
∫

κn(t)

0

|X (n)
κn(t)
−X (n)

s |
(t− s)α+1 ds,

where X (n),∗
t = sup0≤s≤t |X

(n)
s |. By means of a suitable generalization of Gronwall’s

lemma we will show that Ψ
(n)
t is uniformly bounded by a constant. To do this we need

some estimates on
∣∣∣X (n)

t

∣∣∣ and on the increments
∣∣∣X (n)

κn(t)
−X (n)

s

∣∣∣. First we have, using the
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estimate (4.3.4) for Riemann-Stieltjes integrals,

∣∣∣X (n)
t

∣∣∣ ≤ |X0|+
∣∣∣∣∫ t

0
σ(X (n)

κn(s)
)dgs

∣∣∣∣
≤ |X0|+Λ1−α(g)c1

×
(∫ t

0

∣∣∣σ(X (n)
κn(s)

)
∣∣∣s−αds+

∫ t

0

∫
κn(s)

0

∣∣∣σ(X (n)
κn(s)

)−σ(X (n)
κn(u)

)
∣∣∣(s−u)−α−1duds

)
.

The linear growth and Lipschitz properties of σ imply that

∣∣∣X (n)
t

∣∣∣ ≤ |X0|+Λ1−α(g)c1

×
(

L1T 1−α

1−α
+L1

∫ t

0

∣∣∣X (n),∗
s

∣∣∣s−αds

+L2

∫ t

0

∫
κn(s)

0

(∣∣∣X (n)
κn(s)
−X (n)

u

∣∣∣+ ∣∣∣X (n)
u −X (n)

κn(u)

∣∣∣)(s−u)−α−1duds
)
.(4.4.5)

By the definition of the Euler scheme (4.4.3)

∣∣∣X (n)
u −X (n)

κn(u)

∣∣∣= ∣∣∣σ(X (n)
κn(u)

)
(
gu−gκn(u)

)∣∣∣≤ L1 ‖g‖β

(
1+
∣∣∣X (n)

κn(u)

∣∣∣)(u−κn(u))β .

(4.4.6)

As a consequence,

∫ t

0

∫
κn(s)

0

(
1+
∣∣∣X (n)

κn(u)

∣∣∣)(u−κn(u))β (s−u)−α−1duds

≤
(

1+X (n),∗
t

)∫ t

0

∫
κn(s)

0
(u−κn(u))β (s−u)−α−1duds

≤ δ β

α

(
1+X (n),∗

t

)∫ t

0
(s−κn(s))

−α ds

≤ δ β

α

(
1+X (n),∗

t

)∫ T

0
(s−κn(s))

−α ds

≤ nδ β

α

(
1+X (n),∗

t

)∫ t1

0
(s−κn(s))

−α ds

=
T δ β−α

α(1−α)

(
1+X (n),∗

t

)
. (4.4.7)
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Substituting (4.4.7) into (4.4.5) yields

X (n),∗
t ≤C1 +C2X (n),∗

t δ
β−α +C3

∫ t

0
X (n),∗

s s−αds+C4

∫ t

0

∫
κn(s)

0

∣∣∣X (n)
κn(s)
−X (n)

u

∣∣∣
(s−u)α+1 duds,

(4.4.8)

with

C1 = |X0|+Λ1−α(g)c1L1

(
T 1−α

1−α
+L2 ‖g‖β

T 1+β−α

α(1−α)

)
,

C2 = Λ1−α(g)c1L1L2 ‖g‖β

T
α(1−α)

,

C3 = Λ1−α(g)c1L1,

C4 = Λ1−α(g)c1L2.

On the other hand, for s≤ κn(t), using (4.3.4) we have

∣∣∣X (n)
κn(t)
−X (n)

s

∣∣∣
≤ Λ1−α(g)c1

(∫
κn(t)

s

∣∣∣σ(X (n)
κn(v)

)
∣∣∣(v− s)−αdv

+
∫

κn(t)

s

∫
κn(v)

s

∣∣∣σ(X (n)
κn(v)

)−σ(X (n)
κn(z)

)
∣∣∣(v− z)−α−1dzdv

)
≤ Λ1−α(g)c1

(
L1

(κn(t)− s)1−α

1−α
+L1

∫
κn(t)

s
X (n),∗

v (v− s)−αdv

+L2

∫
κn(t)

s

∫
κn(v)

s

(∣∣∣X (n)
κn(v)
−X (n)

z

∣∣∣+ ∣∣∣X (n)
z −X (n)

κn(z)

∣∣∣)(v− z)−α−1dzdv
)
.(4.4.9)
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Using again the estimate (4.4.6) we obtain

∫
κn(t)

s

∫
κn(v)

s

∣∣∣X (n)
z −X (n)

κn(z)

∣∣∣(v− z)−α−1dzdv

≤ L1 ‖g‖β

∫
κn(t)

s

∫
κn(v)

s

(
1+
∣∣∣X (n)

κn(z)

∣∣∣)(z−κn(z))β (v− z)−α−1dzdv

≤ L1 ‖g‖β
δ

β

(
1+X (n),∗

t

)∫ κn(t)

s

∫
κn(v)

s
(v− z)−α−1dzdv

≤ L1 ‖g‖β
δ

β

(
1+X (n),∗

t

) 1
α

∫
κn(t)

s
(v−κn(v))−αdv. (4.4.10)

Substituting (4.4.10) into (4.4.9) yields

∣∣∣X (n)
κn(t)
−X (n)

s

∣∣∣
≤ C5(κn(t)− s)1−α +C6

∫
κn(t)

s
X (n),∗

v (v− s)−αdv

+C7

∫
κn(t)

s

∫
κn(v)

s

∣∣∣X (n)
κn(v)
−X (n)

z

∣∣∣(v− z)−α−1dzdv

+C8

(
1+X (n),∗

t

)
δ

β

∫
κn(t)

s
(v−κn(v))−αdv, (4.4.11)

where

C5 = Λ1−α(g)c1L1
1

1−α
,

C6 = Λ1−α(g)c1L1,

C7 = Λ1−α(g)c1L2,

C8 = Λ1−α(g)c1L1L2 ‖g‖β

1
α
.

Now we multiply each of the terms on the right-hand side of (4.4.11) by (t− s)−α−1

and integrate in s over the interval [0,κn(t)]. In this way we can obtain the following

estimates.
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∫
κn(t)

0
(t− s)−α−1 (κn(t)− s)1−αds≤

∫
κn(t)

0
(t− s)−2αds≤ T 1−2α

1−2α
. (4.4.12)

The second estimate is as follows

∫
κn(t)

0
(t− s)−α−1

(∫
κn(t)

s
X (n),∗

v (v− s)−αdv
)

ds

=
∫

κn(t)

0
X (n),∗

v

(∫ v

0
(t− s)−α−1 (v− s)−αds

)
dv

≤ c
∫

κn(t)

0
X (n),∗

v (t− v)−2αdv, (4.4.13)

where c =
∫

∞

0 x−α(1+ x)−α−1dx. Then the third estimate is

∫
κn(t)

0
(t− s)−α−1

∫
κn(t)

s

∫
κn(v)

s

∣∣∣X (n)
κn(v)
−X (n)

z

∣∣∣(v− z)−α−1dzdvds

=
∫

κn(t)

0

∫
κn(v)

0

∫ z∧v

0

∣∣∣X (n)
κn(v)
−X (n)

z

∣∣∣(v− z)−α−1(t− s)−α−1 dsdzdv

≤ 1
α

∫
κn(t)

0
(t− v)−α

∫
κn(v)

0

∣∣∣X (n)
κn(v)
−X (n)

z

∣∣∣(v− z)−α−1dzdv. (4.4.14)
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For the fourth estimate, let κn(t) = kδ for some 0 < k ≤ n. Then, the interval [0,κn(t)]

can be decomposed as [0,(k−1)δ )∪
[
(k−1)δ ,(k− 1

2)δ
)
∪
[
(k− 1

2 ,kδ
]

and we have

∫
κn(t)

0
(t− s)−α−1

∫
κn(t)

s
(v−κn(v))−αdvds

=
∫

κn(t)

0
(v−κn(v))−α

∫ v

0
(t− s)−α−1 dsdv

≤ 1
α

∫
κn(t)

0
(t− v)−α(v−κn(v))−αdv

=
1
α

k−2

∑
i=0

∫ (i+1)δ

iδ
(t− v)−α(v−κn(v))−αdv+

1
α

∫ (k− 1
2 )δ

(k−1)δ
(t− v)−α(v−κn(v))−αdv

+
1
α

∫ kδ

(k− 1
2 )δ

(t− v)−α(v−κn(v))−αdv

=
1
α
(I(n)1 + I(n)2 + I(n)3 ). (4.4.15)

I(n)1 ≤
k−2

∑
i=0

(t− (i+1)δ )−α

∫ (i+1)δ

iδ
(v−κn(v))−αdv

=
1

1−α

k−2

∑
i=0

(t− (i+1)δ )−α
δ

1−α

≤ 1
1−α

δ
1−α

∫ (k−1)δ

0
(t− v)−αdv

≤ 1
(1−α)2 δ

1−αT 1−α . (4.4.16)

I(n)2 ≤
(

δ

2

)−α ∫ (k− 1
2 )δ

(k−1)δ
(v−κn(v))−αdv =

1
1−α

(
δ

2

)1−2α

. (4.4.17)

I(n)3 ≤
(

δ

2

)−α ∫ kδ

(k− 1
2 )δ

(t− v)−αdv≤ 1
1−α

(
δ

2

)−α(3δ

2

)1−α

. (4.4.18)
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Therefore, taking C9 =
1

α(1−α)2 T 2−α + 1
α(1−α)

(1
2

)1−2α
T 1−α + 1

α(1−α)

(1
2

)1−2α
31−αT 1−α ,

we obtain the fourth estimate

δ
β

∫
κn(t)

0
(t− s)−α−1

∫
κn(t)

s
(v−κn(v))−αdvds≤C9δ

β−α . (4.4.19)

From (4.4.11)-(4.4.19), we get

∫
κn(t)

0

∣∣∣X (n)
κn(t)
−X (n)

s

∣∣∣
(t− s)α+1 ds ≤ C10 +C11X (n),∗

t δ
β−α +C12

∫
κn(t)

0
X (n),∗

v (t− v)−2αdv

+C13

∫
κn(t)

0
(t− v)−α

∫
κn(v)

0

∣∣∣X (n)
κn(v)
−X (n)

z

∣∣∣
(v− z)α+1 dzdv,(4.4.20)

where

C10 = C5
T 1−2α

1−2α
+C8C9T β−α ,

C11 = C8C9,

C12 = C6c,

C13 =
1
α

C7.

Finally, adding (4.4.20) and (4.4.8) yields

Ψ
(n)
t ≤ C14 +C15X (n),∗

t δ
β−α +C16

∫ t

0
Ψ

(n)
s
(
s−α +(t− s)−2α

)
ds, (4.4.21)

120



where

C14 = C1 +C10,

C15 = C2 +C11,

C16 = C3 +C4T α +C12 +C13T α .

Note that all constants C’s are independent of δ . Thus, we can choose a δ0 such that

C15δ
β−α

0 ≤ 1
2 , then for all δ ≤ δ0, we have

Ψ
(n)
t ≤ C

(
1+

∫ t

0
Ψ

(n)
s
(
s−α +(t− s)−2α

)
ds
)

≤ C
(

1+ t2α

∫ t

0
Ψ

(n)
s s−2α(t− s)−2αds

)
,

where C is a generic constant independent of δ . Therefore, by Lemma 4.4.1

sup
n

sup
0≤t≤T

Ψ
(n)
t < K1. (4.4.22)

Step 2 We will obtain the Hölder continuity of X (n), that is, there exists a positive

constant K3 such that ∣∣∣X (n)
t −X (n)

s

∣∣∣≤ K3(t− s)1−α , (4.4.23)

for all 0≤ s≤ t ≤ T .

First, we give the following inequalities

(y−a)1−α − (x−a)1−α ≤ (y− x)1−α , ∀y≥ x≥ a≥ 0, (4.4.24)
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and for any integer n≥ 1

x1−α

1 + x1−α

2 + · · ·+ x1−α
n ≤ nα(x1 + x2 + · · ·+ xn)

1−α , ∀x1, . . .xn ∈ R. (4.4.25)

Using the above inequalities, we get for any 0 < s < κn(t)≤ t ≤ T

δ
β

∫
κn(t)

s
(v−κn(v))−αdv

= δ
β

∫
κn(t)

κn(s)+δ

(v−κn(v))−αdv+δ
β

∫
κn(s)+δ

s
(v−κn(v))−αdv

= δ
β

(
κn(t)−κn(s)−δ

δ

)
δ 1−α

1−α
+

δ β

1−α

(
δ

1−α − (s−κn(s))1−α
)

≤ δ β−α

1−α
(κn(t)−κn(s)−δ )+

δ β

1−α
(κn(s)+δ − s)1−α

≤ δ β−αT α

1−α
(κn(t)−κn(s)−δ )1−α +

δ β

1−α
(κn(s)+δ − s)1−α

≤ T β

1−α

[
(κn(t)−κn(s)−δ )1−α +(κn(s)+δ − s)1−α

]
≤ 2αT β

1−α
(κn(t)− s)1−α . (4.4.26)

Therefore, (4.4.11), (4.4.22) and (4.4.26) imply that for any 0 < s < κn(t)≤ t ≤ T we

have ∣∣∣X (n)
κn(t)
−X (n)

s

∣∣∣≤ K2(κn(t)− s)1−α , (4.4.27)

where K2 =C5 +
C6K1
1−α

+C7K1T α +C8(1+K1)
2α T β

1−α
.

For any 0≤ s≤ t ≤ T , if s≥ κn(t), then it is easy to obtain
∣∣∣X (n)

t −X (n)
s

∣∣∣≤ K3(t−

s)1−α for some constant K3 > 0. If 0≤ s < κn(t)≤ t ≤ T , then by (4.4.6), (4.4.22) and

(4.4.27), we deduce that there exists a positive constant K3 such that

∣∣∣X (n)
t −X (n)

s

∣∣∣≤ |X (n)
t −X (n)

κn(t)
|+
∣∣∣X (n)

κn(t)
−X (n)

s

∣∣∣≤ K3(t− s)1−α . (4.4.28)
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Step 3 We will complete our proof in this step. We denote the error in the Euler

approximation by Z(n)
t = Xt−X (n)

t and define

Z(n),∗
t = sup

0≤s≤t

∣∣∣Z(n)
s

∣∣∣ .
Then,

Z(n),∗
t ≤ sup

0≤s≤t

∣∣∣∣∫ s

0

[
σ(Xu)−σ(X (n)

u )
]

dgu

∣∣∣∣+ sup
0≤s≤t

∣∣∣∣∫ s

0

[
σ(X (n)

u )−σ(X (n)
κn(u)

)
]

dgu

∣∣∣∣
= J(n)t +R(n)

t . (4.4.29)

The term R(n)
t is a residual term and it will provide the order of the error. In fact, this

term can be estimated as follows

R(n)
t ≤ Λ1−α(g)c1

(∫ t

0

∣∣∣σ(X (n)
s )−σ(X (n)

κn(s)
)
∣∣∣s−αds

+
∫ t

0

∫ s

0

∣∣∣σ(X (n)
s )−σ(X (n)

u )−σ(X (n)
κn(s)

)+σ(X (n)
κn(u)

)
∣∣∣(s−u)−α−1 duds

)
= G(n),1

t +G(n),2
t . (4.4.30)

The estimate (4.4.6) implies

G(n),1
t ≤ K4δ

β , (4.4.31)
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with K4 = Λ1−α(g)c1L2L1 ‖g‖β
(1+K1)

T 1−α

1−α
. In order to estimate G(n),2

t , by (4.4.6),

(4.4.7) and (4.4.28) we write

∫ t

0

∫ s

0

∣∣∣σ(X (n)
s )−σ(X (n)

u )−σ(X (n)
κn(s)

)+σ(X (n)
κn(u)

)
∣∣∣(s−u)−α−1 duds

=
∫ t

0

∫
κn(s)

0

∣∣∣σ(X (n)
s )−σ(X (n)

u )−σ(X (n)
κn(s)

)+σ(X (n)
κn(u)

)
∣∣∣(s−u)−α−1 duds

+
∫ t

0

∫ s

κn(s)

∣∣∣σ(X (n)
s )−σ(X (n)

u )−σ(X (n)
κn(s)

)+σ(X (n)
κn(u)

)
∣∣∣(s−u)−α−1 duds

=
∫ t

0

∫
κn(s)

0

∣∣∣(σ(X (n)
s )−σ(X (n)

κn(s)
)
)
−
(

σ(X (n)
u )−σ(X (n)

κn(u)
)
)∣∣∣(s−u)−α−1 duds

+
∫ t

0

∫ s

κn(s)

∣∣∣σ(X (n)
s )−σ(X (n)

u )
∣∣∣(s−u)−α−1 duds

≤ K5δ
β

∫ t

0

∫
κn(s)

0
(s−u)−α−1 duds+L2K3

∫ t

0

∫ s

κn(s)
(s−u)−2α duds

≤ K5T
α(1−α)

δ
β−α +

L2K3T
(1−2α)(2−2α)

δ
1−2α

≤ K5T β+α

α(1−α)
δ

1−2α +
L2K3T

(1−2α)(2−2α)
δ

1−2α

≤ K6δ
1−2α , (4.4.32)

because β−α > 1−2α , where K5 = 2L1L2 ‖g‖β
(1+K1) and K6 =

K5T β+α

α(1−α)+
L2K3T

(1−2α)(2−2α) .

The term J(n)t can be estimated as follows

J(n)t ≤ Λ1−α(g)c1

(∫ t

0

∣∣∣σ(Xs)−σ(X (n)
s )
∣∣∣s−αds

+
∫ t

0

∫ s

0

∣∣∣σ(Xs)−σ(Xu)−σ(X (n)
s )+σ(X (n)

u )
∣∣∣(s−u)−α−1 duds

)
= J(n),1t + J(n),2t . (4.4.33)

Clearly,

J(n),1t ≤ Λ1−α(g)c1L2

∫ t

0
Z(n),∗

s s−αds. (4.4.34)
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It is easy to check via the Taylor formula that the function σ satisfying the conditions

(H2) and (H3) admits the following bound: for all x1, x2, x3, x4 ∈ Rd ,

|σ(x1)−σ(x2)−σ(x3)+σ(x4)| ≤L2 |x1− x2− x3 + x4|+M |x1− x3|(|x1− x2|γ + |x3− x4|γ) .

(4.4.35)

The above inequality yields

∣∣∣σ(Xs)−σ(Xu)−σ(X (n)
s )+σ(X (n)

u )
∣∣∣

≤ L2

∣∣∣Xs−Xu−X (n)
s +X (n)

u

∣∣∣+M
∣∣∣Xs−X (n)

s

∣∣∣(|Xs−Xu|γ +
∣∣∣X (n)

s −X (n)
u

∣∣∣γ) .
Hence,

J(n),2t ≤
5

∑
i=3

J(n),it , (4.4.36)

where

J(n),3t = Λ1−α(g)c1L2

∫ t

0

∫ s

0

∣∣∣Xs−Xu−X (n)
s +X (n)

u

∣∣∣(s−u)−α−1 duds,

J(n),4t = Λ1−α(g)c1M
∫ t

0

∫ s

0

∣∣∣Xs−X (n)
s

∣∣∣ |Xs−Xu|γ (s−u)−α−1 duds,

J(n),5t = Λ1−α(g)c1M
∫ t

0

∫ s

0

∣∣∣Xs−X (n)
s

∣∣∣ ∣∣∣X (n)
s −X (n)

u

∣∣∣γ (s−u)−α−1 duds.

We know from (4.4.28) in Step 2 that
∣∣∣X (n)

s −X (n)
u

∣∣∣γ ≤ Kγ

3 (s− u)γ(1−α), and also

|Xs−Xu|γ ≤ Kγ

7 (s−u)γ(1−α) for some constant K7 > 0 by Theorem 5.1 in [33]. There-

fore,

J(n),4t + J(n),5t ≤ Λ1−α(g)c1M
(
Kγ

3 +Kγ

7
)∫ t

0
Z(n),∗

s

∫ s

0
(s−u)−α−1+γ(1−α) duds

≤
Λ1−α(g)c1M

(
Kγ

3 +Kγ

7
)

T γ(1−α)−α

γ(1−α)−α

∫ t

0
Z(n),∗

s ds, (4.4.37)
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because γ > α

1−α
. The term J(n),3t involves an increment of the error process {Xs−

X (n)
s }0≤s≤T , and it requires a further analysis. Define

∆
(n)
t (Z) =

∫ t

0

∣∣∣Z(n)
t −Z(n)

u

∣∣∣
(t−u)α+1 du.

Then,

∆
(n)
t (Z) ≤

∫ t

0

∣∣∣∣∫ t

u

(
σ(Xr)−σ(X (n)

r )
)

dgr

∣∣∣∣(t−u)−α−1 du

+
∫ t

0

∣∣∣∣∫ t

u

(
σ(X (n)

r )−σ(X (n)
κn(r)

)
)

dgr

∣∣∣∣(t−u)−α−1 du

≤
4

∑
i=1

θ
(n),i
t , (4.4.38)

where

θ
(n),1
t = Λ1−α(g)c1

∫ t

0

∫ t

u

∣∣∣σ(Xr)−σ(X (n)
r )
∣∣∣(r−u)−α (t−u)−α−1 drdu,

θ
(n),2
t = Λ1−α(g)c1

∫ t

0

∫ t

u

∣∣∣σ(X (n)
r )−σ(X (n)

κn(r)
)
∣∣∣(r−u)−α (t−u)−α−1 drdu,

θ
(n),3
t = Λ1−α(g)c1

∫ t

0

∫ t

u

∫ s

u

∣∣∣σ(Xs)−σ(X (n)
s )−σ(Xr)+σ(X (n)

r )
∣∣∣

×(s− r)−α−1 (t−u)−α−1 drdsdu,

θ
(n),4
t = Λ1−α(g)c1

∫ t

0

∫ t

u

∫ s

u

∣∣∣σ(X (n)
s )−σ(X (n)

κn(s)
)−σ(X (n)

r )+σ(X (n)
κn(r)

)
∣∣∣

×(s− r)−α−1 (t−u)−α−1 drdsdu.

It is clear that

θ
(n),1
t ≤ Λ1−α(g)c1L2

∫ t

0
|Z(n)

r |
(∫ r

0
(r−u)−α (t−u)−α−1 du

)
dr

≤ K8

∫ t

0
|Z(n)

r |(t− r)−2αdr, (4.4.39)

126



where K8 =Λ1−α(g)c1L2
∫

∞

0 x−α(1+x)−α−1dx. On the other hand, by (4.4.6) we have

θ
(n),2
t ≤ K9δ

β , (4.4.40)

with K9 = Λ1−α(g)c1L1L2 ‖g‖β
(1+K1)sup0≤t≤T

∫ t
0
∫ t

u(r−u)−α (t−u)−α−1 drdu.

For 0≤ u < κn(t)≤ t < T we have the following estimate by (4.4.24) and (4.4.25)

δ
β

∫ t

u
(s−κn(s))−αds

= δ
β

∫
κn(u)+δ

u
(s−κn(s))−αds+δ

β

∫
κn(t)

κn(u)+δ

(s−κn(s))−αds+δ
β

∫ t

κn(t)
(s−κn(s))−αds

=
δ β

1−α

[
(κn(u)+δ −κn(u))1−α − (u−κn(u))1−α

]
+

δ β

1−α

(
κn(t)−κn(u)−δ

δ

)
δ

1−α

+
δ β

1−α
(t−κn(t))1−α

≤ δ β

1−α
(κn(u)+δ −u)1−α +

δ β−αT α

1−α
(κn(t)−κn(u)−δ )1−α +

δ β

1−α
(t−κn(t))1−α

≤ 3αT αδ β−α

1−α
(t−u)1−α ,

and, for 0≤ κn(t)≤ u≤ t ≤ T we get by (4.4.24)

δ
β

∫ t

u
(s−κn(s))−αds=

δ β

1−α

[
(t−κn(t))1−α − (u−κn(t))1−α

]
≤ T αδ β−α

1−α
(t−u)1−α .

Therefore, for any 0≤ u≤ t ≤ T , the following estimate holds

δ
β

∫ t

u
(s−κn(s))−αds≤ 3αT αδ β−α

1−α
(t−u)1−α .
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Then, using the above inequality, the term θ
(n),4
t can be estimated as follows by using

the same techniques in handling (4.4.32)

θ
(n),4
t ≤ Λ1−α(g)c1K5δ

β

∫ t

0

∫ t

u

∫
κn(s)

u
(s− r)−α−1 (t−u)−α−1 drdsdu

+Λ1−α(g)c1L2K3

∫ t

0

∫ t

u

∫ s

κn(s)
(s− r)−2α (t−u)−α−1 drdsdu

≤ Λ1−α(g)c1K5

α
δ

β

∫ t

0

∫ t

u
(s−κn(s))−α(t−u)−α−1dsdu

+
Λ1−α(g)c1L2K3

1−2α

∫ t

0

∫ t

u
(s−κn(s))1−2α(t−u)−α−1dsdu

≤ Λ1−α(g)c1K53αT α

α(1−α)
δ

β−α

∫ t

0
(t−u)−2αdsdu

+
Λ1−α(g)c1L2K3

1−2α
δ

1−2α

∫ t

0
(t−u)−αdsdu

≤ Λ1−α(g)c1K53αT 1−α

α(1−α)(1−2α)
δ

β−α +
Λ1−α(g)c1L2K3T 1−α

(1−α)(1−2α)
δ

1−2α

≤ K10δ
1−2α , (4.4.41)

where K10 =
Λ1−α (g)c1K53α T β

α(1−α)(1−2α) + Λ1−α (g)c1L2K3T 1−α

(1−α)(1−2α) , because β −α > 1−2α .
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Next, let us estimate θ
(n),3
t . By (4.4.35) we can obtain

θ
(n),3
t ≤ Λ1−α(g)c1L2

∫ t

0

∫ t

u

∫ s

u

∣∣∣Z(n)
s −Z(n)

r

∣∣∣(s− r)−α−1(t−u)−α−1drdsdu

+Λ1−α(g)c1M
∫ t

0

∫ t

u

∫ s

u

∣∣∣Xs−X (n)
s

∣∣∣ |Xs−Xr|γ (s− r)−α−1(t−u)−α−1drdsdu

+Λ1−α(g)c1M
∫ t

0

∫ t

u

∫ s

u

∣∣∣Xs−X (n)
s

∣∣∣ ∣∣∣X (n)
s −X (n)

r

∣∣∣γ (s− r)−α−1(t−u)−α−1drdsdu

≤ Λ1−α(g)c1L2

∫ t

0

∫ s

0

∫ r

0

∣∣∣Z(n)
s −Z(n)

r

∣∣∣(s− r)−α−1(t−u)−α−1dudrds

+Λ1−α(g)c1MKγ

7

∫ t

0

∫ t

u

∫ s

u

∣∣∣Xs−X (n)
s

∣∣∣(s− r)γ(1−α)−α−1(t−u)−α−1drdsdu

+Λ1−α(g)c1MKγ

3

∫ t

0

∫ t

u

∫ s

u

∣∣∣Xs−X (n)
s

∣∣∣(s− r)γ(1−α)−α−1(t−u)−α−1drdsdu

≤ Λ1−α(g)c1L2

α

∫ t

0

∫ s

0

∣∣∣Z(n)
s −Z(n)

r

∣∣∣(s− r)−α−1(t− r)−αdrds

+
Λ1−α(g)c1M(Kγ

3 +Kγ

7 )

γ(1−α)−α

∫ t

0

∫ t

u

∣∣∣Z(n)
s

∣∣∣(s−u)γ(1−α)−α(t−u)−α−1dsdu

As a consequence,

θ
(n),3
t ≤ Λ1−α(g)c1L2

α

∫ t

0
(t− s)−α

∆
(n)
s (Z)ds

+
Λ1−α(g)c1M(Kγ

3 +Kγ

7 )T
γ(1−α)−α

γ(1−α)−α

∫ t

0

∫ t

u

∣∣∣Z(n)
s

∣∣∣(t−u)−α−1dsdu

=
Λ1−α(g)c1L2

α

∫ t

0
(t− s)−α

∆
(n)
s (Z)ds

+
Λ1−α(g)c1M(Kγ

3 +Kγ

7 )T
γ(1−α)−α

γ(1−α)−α

∫ t

0

∫ s

0

∣∣∣Z(n)
s

∣∣∣(t−u)−α−1duds

≤ Λ1−α(g)c1L2

α

∫ t

0
(t− s)−α

∆
(n)
s (Z)ds

+
Λ1−α(g)c1M(Kγ

3 +Kγ

7 )T
γ(1−α)−α

α(γ(1−α)−α)

∫ t

0

∣∣∣Z(n)
s

∣∣∣(t− s)−αds. (4.4.42)
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Define Θt(Z) = Z(n),∗
t +∆

(n)
t (Z). Then from (4.4.29)-(4.4.42) we obtain

Θt(Z) ≤ C
(

δ
1−2α +

∫ t

0
Θs(Z)

[
s−α +(t− s)−2α

]
ds
)

≤ C
(

δ
1−2α + t2α

∫ t

0
Θs(Z)

[
s−2α(t− s)−2α

]
ds
)
,

where C > 0 is a generic constants independent of δ .

Therefore, by Lemma 4.4.1 we can show that

sup
0≤t≤T

∣∣∣Xt−X (n)
t

∣∣∣≤ Kδ
1−2α ,

where K > 0 is a constant independent of δ .
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