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Abstract

In this dissertation, I investigate two types of stochastic differential equations driven by
fractional Brownian motion and backward stochastic differential equations. Malliavin
calculus is a powerful tool in developing the main results in this dissertation.

This dissertation is organized as follows.

In Chapter 1, I introduce some notations and preliminaries on Malliavin Calculus
for both Brownian motion and fractional Brownian motion.

In Chapter 2, I study backward stochastic differential equations with general ter-
minal value and general random generator. In particular, the terminal value has not
necessary to be given by a forward diffusion equation. The randomness of the genera-
tor does not need to be from a forward equation neither. Motivated from applications to
numerical simulations, first the LP-Holder continuity of the solution is obtained. Then,
several numerical approximation schemes for backward stochastic differential equa-
tions are proposed and the rate of convergence of the schemes is established based on
the obtained L”-Holder continuity results.

Chapter 3 is concerned with a singular stochastic differential equation driven by
an additive one-dimensional fractional Brownian motion with Hurst parameter H > %
Under some assumptions on the drift, we show that there is a unique solution, which
has moments of all orders. We also apply the techniques of Malliavin calculus to prove

that the solution has an absolutely continuous law at any time ¢ > 0.



In Chapter 4, I am interested in some approximation solutions of a type of stochas-
tic differential equations driven by multi-dimensional fractional Brownian motion B
with Hurst parameter H > % In order to obtain an optimal rate of convergence, some
techniques are developed in the deterministic case. Some work in progress is contained
in this chapter.

The results obtained in Chapter 2 are accepted by the Annals of Applied Probability,
and the material contained in Chapter 3 has been published in Statistics and Probability

Letters 78 (2008) 2075-2085.
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Chapter 1

Introduction

1.1 Notations and preliminaries

1.1.1 Notations and preliminaries Malliavin calculus for Brownian

motion

Let W = {W,; }o<;<1 be a one-dimensional standard Brownian motion defined on some
complete filtered probability space (Q, .7, P, {-% }o<i<r). We assume that {.%; }o<;<T
is the filtration generated by the Brownian motion and the P-null sets, and . = Z7.
We denote by Z the progressive o-field on the product space [0,7] X Q.

For any p > 1 we consider the following classes of processes.

e M>?, for any p > 2, denotes the class of square integrable random variables F

with a stochastic integral representation of the form
T
F = ]EF + / utth,
0

where u is a progressively measurable process satisfying supy, 7 E|u;|? < oo.



° H’;-([O, T]) denotes the Banach space of all progressively measurable processes

¢: (0,T]xQ, Z)— (R, %) with norm

T g >
HrpHHp=<E(/O |<pz\2dt>> < 0.

e $7.([0,T]) denotes the Banach space of all the RCLL (right continuous with left

limits) adapted processes ¢ : ([0,7] x Q, &) — (R, %) with norm

1

»
lollsr = (E sup !(Pr!”) <o,
0<t<T

Next, we present some preliminaries on Malliavin calculus for the Brownian motion
W and we refer the reader to the book by Nualart [31] for more details.

Let H=L?([0, T]) be the separable Hilbert space of all square integrable real-valued
functions on the interval [0, 7| with scalar product denoted by (-,-)g. The norm of an
element i € H will be denoted by ||/2||gz. For any i € H we put W (k) = [ h(1)dW,.

We denote by C;(R") the set of all infinitely continuously differentiable functions
g : R" — R such that g and all of its partial derivatives have polynomial growth. We
make use of the notation d;g = g—i whenever g € C!(R").

Let . denote the class of smooth random variables such that a random variable
F € . has the form

F=gW(h),...,W(hy)), (1.1.1)

where g belongs to C;(R”), hi,....,hpareinH,andn > 1.
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The Malliavin derivative of a smooth random variable F' of the form (1.1.1) is the

H-valued random variable given by
n
DiF =Y 0ig(W(h1),...,W (hn))hi(t).
i=1

For any p > 1 we will denote the domain of D in L”(Q) by D!'?, meaning that D! is

the closure of the class of smooth random variables . with respect to the norm

<=

IF|h.p = (E[F|” +E|DF||g)? .

We can define the iteration of the operator D in such a way that for a smooth random
variable F, the iterated derivative DFF is a random variable with values in H®*. Then
for every p > 1 and any natural number k£ > 1 we introduce the seminorm on .# defined

by

1

k p
1Flk.p = <E|F!”+ ZEHDJFIIfI@,,-) :
j=1

We will denote by D*? the completion of the family of smooth random variables .7
with respect to the norm || - || .

Let 1 be the Lebesgue measure on [0, T]. For any k > 1 and F € D*?, the derivative
D'F={D}  F.t€[0,T],i=1,... .k},

is a measurable function on the product space [0, 7] x Q, which is defined a.e. with
respect to the measure ,uk X P.
We use ]L},’p to denote the set of real-valued progressively measurable processes

u = {u; }g<;<7 such that

(1) For almost all ¢ € [0,T], u; € D',

11
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2

@ E ((foT juPae)” + (J5 5 1Dow[*d0a) g) <ol

Notice that we can choose a progressively measurable version of the H-valued process

{Du; }o<i<T-

1.1.2 Notations and preliminaries on Malliavin calculus for frac-

tional Brownian motion

For any a < b and any B € (0,1), CP([a,b];R?) denotes the space of R?-valued B-
Holder continuous functions, and C([a, b];Rd ) denotes the Banach space of R?-valued
continuous functions equipped with the supremum norm on the interval [a, b]. We will
make use of the notations

x(r) —x(0)]
x = sup ———— "
¥las.p a§9<€)’§b r—op

if x : [a,b] — R is in CP([a,b];RY), and

X la.p.00 = sup |x(r)];

a<r<b

if x : [a,b] — R? is in C([a, b]; RY).

If d = 1, then denote CP ([a,b]) = CP([a,b];R).

Let BY = {BH},5( be a fractional Brownian motion with Hurst parameter H €
(1/2,1), defined on a complete probability space (Q,.%,P). Namely, B is a mean

zero Gaussian process with covariance

E(BYBY) = Ry (5,1) = = (7 + 52 — |t —sH) . (1.1.2)

N | =
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Notice that for any B € (0,H), T > 0, the fractional Brownian motion {B }o<,<7 €
CB([0,T]) as.

Next, we make some preliminaries on the Malliavin calculus for the fractional
Brownian motion, and we refer to Decreusefond and Ustiinel [10], Nualart [31] and
Saussereau and Nualart [36] for a more complete treatment of this topic.

Fix a time interval [0, T]. Denote by & the set of real valued step functions on [0, 7’|
and let .77 be the Hilbert space defined as the closure of & with respect to the scalar
product (1o, 1j0,5)) 2 = Ru(t,s), where Ry is the covariance function of the fBm,

given in (1.1.2). We know that

t N
Ry(t,s) = aH// \r — u*" dudr
0Jo

tAS
= [ Kutt.)K(s.r)ar
0

where Ky (t,5) = cs?H [! (u —s)H_%uH_%dul{K,} withep = /5 HRH-D) _ and B

(2—2H,H-%)
denotes the Beta function, and oy = H(2H — 1). In general, for any @, y € & we have

T T
(‘P,IVML”:OCH/O /0 |l’—u|2H_2(prI//ududr.

The mapping 11— B! can be extended to an isometry between .77 and the Gaussian
space 7 spanned by B. We denote this isometry by ¢ — B ().

We consider the operator K}; : & — L*(0,T) defined by

(K50)(5)= [ o) 22 1. 5)ar (1.13)
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Notice that (K7 (1j0,))(s) = Ku(,5)1)9,(s). For any @,y € & we have

(@.v)r = (K9, Ki9)20.7) = E(B" (9)B" (9)), (1.1.4)

and Ky, provides an isometry between the Hilbert space .7 and a closed subspace of
L?([0,T]). We denote Ky : L*>([0,T]) — 43 := Kx(L*([0,T])) the operator defined by
(Kuh)(t) := [5 Ku(t,s)h(s)ds. The space # is the fractional version of the Cameron-
Martin space. Finally, we denote by Ry = Ky o Kj; : 5 — 7y the operator Ry ¢ =

JoKu(-,5)(Kj;9)(s)ds. For any ¢ € 7, Ry ¢ is Holder continuous of order H. In fact,

Ruo(t) = (Kylp. K 9)0 = E(BB" (9)),

which implies

[RH@(t) — R (s)| < [|@|llt —s|™.

If we assume that Q is the canonical probability space Cy([0,7]), equipped with
the Borel o-field and the probability P is the law of the fBm. Then, the injection
Ry : 7 —Q embeds .7 densely into Q and (R, 5, P) is an abstract Wiener space in
the sense of Gross ([16] and [21]). In the sequel we will make this assumption on the
underlying probability space.

Let . be the space of smooth and cylindrical random variables of the form

F=fBq),...,B%(¢,)), (1.1.5)

where f € C;°(R") (f and all its partial derivatives are bounded). For a random variable

F of the form (1.1.5) we define its Malliavin derivative as the .7#-valued random
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variable

pF=Y LB ... B @)

i=1
We denote by D'-? the Sobolev space defined as the completion of the class .#, with

respect to the norm

17l = [E@) +E (10F1%,)] .

Since we shall deal with Brownian motion and fractional Brownian motion in sep-
arate chapters, it is not confusing if the same D is used to denote the corresponding

Malliavin derivatives.

1.2 Introduction to main results

This dissertation is mainly based on three papers joint with Yaozhong Hu and David
Nualart.

Chapter 2 is mainly from the paper “ Malliavin calculus for backward stochastic
differential equations and application to numerical solutions”, which is accepted by
the Annals of Applied Probability.

In this chapter, we are concerned with the following backward stochastic differential

equation (BSDE, for short):
T T
V=&t [ fnz)dr— [ ZdW, 0<e<T, (1:26)
t 1t

where W = {W, }o<;<r is a standard Brownian motion, the generator f is a measurable
function f: ([0,T] x QX RXR, Z @ B AB) — (R, A), and the terminal value & is

an .#7-measurable random variable.

15



Definition 1.2.1. A solution to the BSDE (1.2.6) is a pair of progressively measurable

processes (Y,Z) such that: [} |Z;?dt < oo, [ |f(2,Y;,Z,)|dt < o, a.5., and
T T
vi=¢ +/ f(r,Yr,Zr)dr—/ ZdW,, 0<1<T.
t t

The most important result in this chapter is the L”-Holder continuity of the process
Z. Here we emphasize that the main difficulty in constructing a numerical scheme for
BSDEs is usually the approximation of the process Z. It is necessary to obtain some
regularity properties for the trajectories of this process Z. The Malliavin calculus turns
out to be a suitable tool to handle these problems because the random variable Z; can
be expressed in terms of the trace of the Malliavin derivative of Y;, namely, Z; = D;Y;.
This relationship was proved in the paper by El Karoui, Peng and Quenez [13] and used
by these authors to obtain estimates for the moments of Z;. We shall further exploit
this identity to obtain the L”-Holder continuity of the process Z, which is the critical

ingredient for the rate estimate of our numerical schemes.
. . ﬁ
Assumption 1.2.1. Fix2 < p < 3.

(A3) & € D24, and there exists L > 0, such that for all 6, 0’ € [0,T],

E|Do& —Dor§|P < L|6—6'%, (1.2.7)
sup E|Dg&|? < oo, (1.2.8)
0<0<T
and
sup sup E|D,Dgé&|? < oo. (1.2.9)
0<O<T 0<u<T

(A4) The generator f(t,y,z) has continuous and uniformly bounded first and second

order partial derivatives with respect to 'y and z, and f(-,0,0) € H%.([0,T]).

16



(A5) Assume that & and f satisfy the above conditions (A3) and (A4). Let (Y,Z) be the
unique solution to Equation (1.2.6) with terminal value & and generator f. For
each (y,z) € RxR, f(-,,2), of(-,,2), and d.f(-,y,z) belong to LYY, and the

Malliavin derivatives Df (-,y,z), Doy f(-,¥,2), and DI f(-,y,z) satisfy

T i
sup ]E(/ |D9f(t,Y,,Z,)|2dt) < oo, (1.2.10)
0<0<T 0
T i
sup ]E(/ |D98yf(t,Y,,Z,)|2dt> < oo, 1.2.11)
0<6<T 0
T g
sup E(/ M@@f&J@ZN%ﬁ) < oo, (1.2.12)
0<0<T 0

and there exists L > 0 such that for any t € (0,T|, and forany0< 6,0’ <t <T

T 5
E(/ \Dgf(r,Yr,Z,)—De/f(r,Yr,Z,)|2dr> <L|6—0'. (1.2.13)
t

For each 0 € [0,T), and each pair of (y,2), Do f(-,y,z) € L&' and it has continu-
ous partial derivatives with respect to y, z, which are denoted by d,Dg f (t,y,z)and

0.Dg f(t,y,z), and the Malliavin derivative D,Dg f (t,y,z) satisfies

T ]
sup  sup ]E( / DDy f(t,Y,,z,)|2dz> < oo, (1.2.14)
0

0<O0<T 0<u<T Vu

Under the above integrability conditions, we can obtain the regularity of Z in the L?

sense in the following theorem.
Theorem 1.2.2. Let Assumpaion 1.2.1 be satisfied.

(a) There exists a unique solution pair {(Y;,Z;) }o<i<r to the BSDE (1.2.6), and Y, Z

are in ]Lcl,’q. A version of the Malliavin derivatives {(DgY;, DoZ;)}0<o,i<T Of the

17



solution pair satisfies the following linear BSDE:

T
DoY, = Dot + / [0uf (1Y, Z,) DYy + 0o f (1, Yy, Z,) Do Z,
t

T
—|—D9f(r,Yr,Zr)]dr—/ DGZrdWr, 0 S 9 S t S T,
t
(1.2.15)

DY, = 0,D9Z, =0,0<t<6<T. (1.2.16)

Moreover, {D,Y, }o<i<r defined by (1.2.15) gives a version of {Z; }o<;<1, namely,
uxPa.e.
Zy = DyYy. (1.2.17)

(b) There exists a constant K > 0, such that, for all s, t € [0,T],

E|Z, —Z,|’ < K]t —s|*. (1.2.18)

Our first numerical scheme has been inspired by the paper of Zhang [40], where the
author considers a class of BSDEs whose terminal value & takes the form g(X.), where
g satisfies a Lipschitz condition with respect to the L* or L' norms (similar assumptions

for f), and X is a forward diffusion of the following form
t t
X, = Xo + / b(r,X,)dr+ / (1 X,)dW, .
0 0

Let 1 ={0=19 <1t <---<t, =T} be any partition of the interval [0,7] and

|7'L'| = maXOSignfl(tH»l —l‘i). Denote A; =t;+1 —t,i=0,1,...,n—1.

18



The discretization scheme in [40] is based on the regularity of the process Z in the

following mean square sense
n—l lit1 ’ 2
ZE/ 1z -z, + |z, - z,,,|?] dt <K|=|, (1.2.19)
i=0 /i

where K is a constant independent of the partition . Moreover, the following rate of
convergence is proved in [40] for this approximation scheme

T
max E|Y, —Y;f|2+E/ 7, — 77t < K|x]. (1.2.20)
0<i<n ! 0

We consider the case of a general terminal value £ which is twice differentiable
in the sense of Malliavin calculus and the first and second derivatives satisfy some
integrability conditions and we also made similar assumptions for the generator f (see
Assumption 1.2.1). In this sense our framework extends that of [40] and is also natural.

In this framework, we are able to obtain an estimate of the form
E|Z —Z|P <Kl|t—s|*, (1.2.21)

where K is a constant independent of s and 7. Clearly, (1.2.21) with p = 2 implies
(1.2.19). Moreover, (1.2.21) implies the existence of a y-Holder continuous version of
the process Z for any ¥y < % — 117. Notice that, up to now the path regularity of Z has
been studied only when the terminal value and the generator are functional of a forward

diffusion.
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After establishing the regularity of Z, we consider different types of numerical

schemes. First we analyze a scheme similar to the one proposed in [40]:

:§ﬂ7 ZZ::07

T _ 1 tit2 . _
Y l+1+f tl+17Yt+l7E Al+1 /IA-H Zrdl’|¢/,i+1 Al

tit1
—/ ZFdW, .t € [ti,tip1),i=n—1,n—2,...,0,  (1.2.22)
t

where, by convention, E (A 1 fé’“ Z”dr\,ftﬂ) =0 wheni=n—1, and £7 is an ap-
proximation of the terminal value &.

In this case we can improve Zhang’s work in [40] to be of the following form.

Theorem 1.2.3. Consider the approximation scheme (1.2.22). Let Assumption 1.2.1
be satisfied, and let the partition T satisfy maxo<ij<p,—1Ai/Aiy1 < Li, where Ly is a

constant. Assume that a constant L, > 0 exists such that

1
‘f(t%yaz)_f(tl:y?Z)’ SL2|l‘2_t1|§7 (1223)

forallt),t, € [0,T], and y, z € R. Then there are positive constants K and §, indepen-

dent of the partition T, such that, if || < 8, then

E sup |Y;— Y”|2+E/ —ZPPdr <K (|n| + E|E — E7?) . (1.2.24)
0<t<T

We also propose and study an “implicit” numerical scheme of the following form:

Yo o= &%,

lit1
Yl‘n- = t+1 +f(tl+l7 tl+17 / Zﬂdr) Al—/ Z:.tdWr,
L t

t€ltitiv1),i=n—1,n-2,...,0, (1.2.25)

20



where £7 is an approximation of the terminal value £. For this scheme we obtain a

much better result on the rate of convergence.

Theorem 1.2.4. Let Assumption 1.2.1 be satisfied, and let T be any partition. Assume

that E™ € LP(Q) and there exists a constant Ly > 0 such that, for all t,,t; € [0,T],

1
‘f(tz,y,Z) _f(thy?Z)l < Ll’t2_t1’2'

Then, there are two positive constants 8 and K independent of the partition T, such

that, when || < 8, we have

T 5
B sup 11478 ([ - zrPar) <k (1alf +Eig - 7).
0

0<t<T

In both schemes, the integral of the process Z is used in each iteration, and for this
reason they are not completely discrete schemes. In order to implement the scheme
on computers, one must replace an integral of the form j;f”l ZTds by discrete sums,
and then the convergence of the obtained scheme is hardly guaranteed. To avoid this
discretization we propose a truly discrete numerical scheme using our representation of
Z; as the trace of the Malliavin derivative of Y;:

57 ZtZ:DTgv
E

yff)?

n—1
Z;ir =k (ptjz‘r+17an’i§ + Z pt?+17tk+1Dtif(tk+1’Yflir+1’Zl?lfﬂ)Ak

()]tjil + [t Yffﬂ ’Ztiitﬂ JA;

Zi |
k=i

i=n—1,n—2,...,0, (1.2.26)

21



where p;’, = 1,i=0,1,...,n,and for 0 <i < j <n,

x Tk+1 I
Pz = ©€Xp Z/ o-f(rY,5,Z;)adw,
C et T T 1 T ]
+Z/; W (Y5, Z) = S0 f (n Y 7 N2 )dry. (1.2.27)
k=i 'k

We make the following assumptions:
(B1) f(t,y,z) is deterministic, which implies Dg f(¢,y,z) = 0.

(B2) f(t,y,z) is linear with respect to y and z, namely, there are three functions g(z),

h(t) and f(t) such that

f(tayvz) :g(t)y+h(t)z+fl(t) :

Assume that g, & are bounded and f; € L?([0,T]). Moreover, there exists a con-

stant L, > 0, such that, for all 71, 1, € [0,T],
1
g(t2) —g(t1)| + |h(r2) — h(t1) + | fi(22) — fi(t1)| < Llta — 112

(B3) [Esupyg<r |Do&|" < oo, forall r> 1.

For this new scheme, we obtain a rate of convergence result of the form

pP_
E max {|¥, ~ 7|7+ |2, Z|"} < Kl ¢,

for any € > 0. In fact, we have a slightly better rate of convergence

Theorem 1.2.5. Let Assumption 1.2.1 (A3) and assumptions (BI)-(B3) be satisfied.

Then there are positive constants K and & independent of the partition T, such that,
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when || < & we have

iS]

p Y L
27 Jloe L 1 \?2
E max {|Y;, = Y|’ +|Z, - Z|’} <K|~| 208 (log—) _

0<i<n ||

Chapter 3 is based on the paper “A singular stochastic differential equation driven
by fractional Brownian motion”. Statistics and Probability Letters 78 (2008), 2075-
2085.

In this chapter, we are interested in the following stochastic differential equation
driven by an additive fractional Brownian motion (fBm) B with Hurst parameter H >
1/2

X, = xo+ /0 t f(s,X,)ds+BH | (1.2.28)
where xp > 0 is a constant and f(s,x) has a singularity at x = 0 of the form x~% with

1
a>ﬁ—1

The study of this type of singular equations is partially motivated by the equation

satisfied by the d-dimensional fractional Bessel process R, = |[B|, d > 2 (see Guerra

and Nualart [17], and Hu and Nualart [18]):

t S2H—1

R,:Yt—l—H(d—l)/ ds,

0 Rs

where the process Y; is equal to a divergence integral, ¥; = fé Zflzl %SBf’i. Except in
the case H = % the process Y is not a one-dimensional fractional Brownian motion (see
Eisenbaum and Tudor [11] and Hu and Nualart [18] for some results in this direction),
although it shares with the fBm similar properties of scaling and Il{—variation. Notice

that here the initial condition is zero.
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The aim of this chapter is to consider the case where xp > 0 and the drift f(z,x) is

o

nonnegative and it has a singularity at x = 0 of the form x~ %, where o > Il{ — 1, and

xo > 0. We impose some conditions on f as follows.

(i) f:[0,00) x (0,00) — [0,00) is a nonnegative, continuous function which has a contin-

uous partial derivative with respect to x such that d, f(¢,x) < 0forallz > 0, x > 0.

(ii) There exists x; > 0 and o > % — 1 such that f(¢,x) > g(¢)x~%, for all # > 0 and
x € (0,x1), where g(¢) is a nonnegative continuous function with g(¢) > 0 for all

t>0.

(iii) f(r,x) < h(r) (1+ %) for all + > 0 and x > 0, where h(t) is a certain nonnegative

locally bounded function.

Using arguments based on fractional calculus inspired by the estimates obtained by Hu
and Nualart in [19] and under the above conditions (i)-(iii), we can show that there

exists a unique global solution which has an estimate of this form

Y
Xlore < Cuppartbol + Dexp{ Coppr (141871055 ) | 0229

1

where 8 is a constant in (5,H) and T > 0. If we choose ¥ such that y > Zi then

p-1°
Wy—l) < 2, and by Fernique’s theorem (see [14], Theorem 1.3.2, p. 11), we obtain

H ) B(y=1)
E(eE lors ) < oo, (1.2.30)

for all C > 0, which implies that E(||X||5 ;. ..) < e forall p > 1.

Furthermore, we can obtain the absolute continuity of the law of the solution.
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Theorem 1.2.6. Suppose that f satisfies the assumptions (i)-(iii). Let X; be the solution
to Equation (1.2.28). Then for anyt > 0, X, € DY2. Furthermore, for anyt > 0 the law

of X; is absolutely continuous with respect to the Lebesgue measure on R.

In the particular case f(¢,x) = Kx~!, if ¢ is small enough, we are able to show
show the existence of negative moments for the solution. We will also show that the
solution has an absolutely continuous law with respect to the Lebesgue measure, using
the techniques of Malliavin calculus for the fractional Brownian motion.

Chapter 4 is part of my current project “Approximation schemes of the solution of
a stochastic differential equation driven by fractional Brownian motion”, which is in
progress.

In this chapter, we consider approximation solutions of multidimensional stochastic

differential equations of the form
:X5+Z/ G (X )dB i=1,....d, (1.2.31)

where the integral is a pathwise Riemann-Stieltjes integral.
Fix n, and set & = & for k = 0,...,n. Set i,(r) = AL if L < ;< BEUT
0,...,n. We will also set § = % The aim of the this project is to establish an optimal

rate of convergence of the Euler scheme of the form

_X0—|—Z/ GHI(X) B i=1,....d,
or equivalently,
(i _ (i N~ iy ) N pH.J _ pH.
X=X T A 0 () (B = By
J:
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forany <t<(k+l) ,k=0,...,n

The numerical solution of stochastic differential equations (SDEs, for short) driven
by Brownian motion is essentially based on the method of time discretization and has a
long history. Difficulties appear in constructing numerical solutions of SDEs driven by
fractional Brownian motion, because the fraction Brownian motion B” is not a semi-
martingale. Numerical schemes for SDEs driven by fractional Brownian motion are
studies only in few works, see [29] and the references therein. The authors in [30] gave
an exact rate of convergence of the Euler scheme in one-dimensional case by using a
specific representation for the solution. However, new techniques are required in multi-
dimensional case. In our work, we are searching for optimal estimates of the errors
of Euler Scheme and Milstein scheme by using some different techniques such as the
variation property of the fractional Brownian motion.

First, we investigate the following differential equation driven by a Holder continu-

: ) .
ous function g : [0, 7] — R"™ of order 8 > 5:
. m t .. .
= Xg+ Z/ o' (X,)dgl,i=1,....d, (1.2.32)
j=1"9

where ¢ : RY — R?*™ is a continuously differentiable function whose partial deriva-
tives are bounded and Holder continuous of order y > [13 -1

The Euler scheme is given by
(i _ i N gid (™) (of _ o
o ) 1, J J
X"t =X )+j2216 T X )&l =81 ) (1.2.33)

forany <t<(k+1) ,k=0,...,n.
We summarize the conditions on ¢ as follows.

(H1) |o(x)| <Li(1+]x]|), for some positive constant L.
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(H2) |o(x) — o ()| < La|x—y|, Vx,y € R4, for some positive constant Ly.

(H3) |0y, (x) — 0x,(y)| < M|x—y|",¥x,y € R i=1,...,d, for some positive constant

M.

Theorem 1.2.7. Suppose G satisfies the conditions (HI) - (H3). Let X and X") be the
solutions to equations (1.2.32) and (1.2.33) respectively. Then there exist two positive

constants &y and K such that

sup Xt—X,(n) < K§'72%

0<t<T

forall 6 < &.

This project has not been completed yet, and it requires our further investigation.

27



Chapter 2

Malliavin calculus for backward stochastic differential

equations and application to numerical solutions

2.1 Introduction

The backward stochastic differential equation (BSDE, for short) we shall consider in

this chapter takes the following form:
T T
Yt:§+/ f(r,Yr,Zr)dr—/ ZdW,, 0<t<T, (2.1.1)
t t

where W = {W, }o<;<7 is a standard Brownian motion, & is the given terminal value,
and f is the given (random) generator. To solve this equation is to find a pair of adapted
processes Y = {Y; }o<;<7 and Z = {Z; }p<;<r satisfying the above equation (2.1.1).
Linear backward stochastic differential equations were first studied by Bismut [3]
in an attempt to solve some optimal stochastic control problem through the method of
maximum principle. The general nonlinear backward stochastic differential equations
were first studied by Pardoux and Peng [34]. Since then there have been extensive

studies of this equation. We refer to the review paper El Karoui, Peng and Quenez
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[13], and to the books of El Karoui and Mazliak [12] and of Ma and Yong [25] and the
references therein for more comprehensive presentation of the theory.

A current important topic in the applications of BSDEs is the numerical approxi-
mation schemes. In most work on numerical simulations, a certain forward stochastic

differential equation of the following form
t t
X =Xo+ / b(r,X,,Y,)dr+ / o(r,X,)dW, (2.1.2)
0 0

is needed. Usually it is assumed that the generator f in (2.1.1) depends on X, at the time
r: f(n,Y,,Z,) = f(r,X,,Y,,Z,), where f(r,x,y,z) is a deterministic function of (r,x,y,z),
and f is global Lipschitz in (x,y,z). If in addition the terminal value & is of the form
& = h(Xr), where h is a deterministic function, a so-called four step numerical scheme
has been developed by Ma, Protter and Yong in [23]. A basic ingredient in this chapter
is that the solution {Y; }o<;<7 to the BSDE is of the form ¥; = u(z,X;), where u(t,x) is
determined by a quasi-linear partial differential equation of parabolic type. Recently,
Bouchard and Touzi [4] propose a Monte-Carlo approach which may be more suitable
for high-dimensional problems. Again in this forward-backward setting, if the genera-
tor f has a quadratic growth in Z, a numerical approximation is developed by Imkeller
and Dos Reis [20] in which a truncation procedure is applied.

In the case where the terminal value & is a functional of the path of the forward
diffusion X, namely, & = g(X.), different approaches to construct numerical methods
have been proposed. We refer to Bally [1] for a scheme with a random time partition.
In the work by Zhang [40], the L?-regularity of Z is obtained, which allows the use of
deterministic time partitions as well as to obtain the rate estimate (see Bender and Denk

[2], Gobet, Lemor and Warin [15] and Zhang [40] for different algorithms). We should
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also mention the works by Briand, Delyon and Mémin [7] and Ma, Protter, San Martin
and Torres [24], where the Brownian motion is replaced by a scaled random walk.

The purpose of the present chapter is to construct numerical schemes for the gen-
eral BSDE (2.1.1), without assuming any particular form for the terminal value & and
generator f. This means that & can be an arbitrary random variable and f(r,y,z) can be
arbitrary .%,-measurable random variable (see Assumption 2.2.2 in Section 2.2 for pre-
cise conditions on £ and f). The natural tool that we shall use is the Malliavin calculus.
We emphasize that the main difficulty in constructing a numerical scheme for BSDEs
is usually the approximation of the process Z. It is necessary to obtain some regularity
properties for the trajectories of this process Z. The Malliavin calculus turns out to be a
suitable tool to handle these problems because the random variable Z; can be expressed
in terms of the trace of the Malliavin derivative of Y;, namely, Z; = D,Y;. This relation-
ship was proved in the paper by El Karoui, Peng and Quenez [13] and used by these
authors to obtain estimates for the moments of Z,. We shall further exploit this identity
to obtain the LP-Holder continuity of the process Z, which is the critical ingredient for
the rate estimate of our numerical schemes.

Our first numerical scheme has been inspired by the paper of Zhang [40], where the
author considers a class of BSDEs whose terminal value & takes the form g(X.), where
X is a forward diffusion of the form (2.1.2), and g satisfies a Lipschitz condition with
respect to the L or L' norms (similar assumptions for f). The discretization scheme
is based on the regularity of the process Z in the mean square sense, that is, for any

partition T = {0 =1y <1} < --- <t, = T}, one obtains
n—l lit1 ’ ’
Z]E/ 12 — z,)” + 2 — Z,,, "] dt <K|x|, (2.1.3)
i=0 Vi

where || = maxo<j<,—1(#i+1 — ;) and K is a constant independent of the partition 7.
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We consider the case of a general terminal value £ which is twice differentiable
in the sense of Malliavin calculus and the first and second derivatives satisfy some
integrability conditions and we also made similar assumptions for the generator f (see
Assumption 2.2.2 in Section 2.2 for details). In this sense our framework extends that
of [40] and is also natural. In this framework, we are able to obtain an estimate of the
form

E|Z — Z|P <Kt —s]2, (2.1.4)

where K is a constant independent of s and ¢. Clearly, (2.1.4) with p =2 implies (2.1.3).
Moreover, (2.1.4) implies the existence of a y-Holder continuous version of the process
Z for any y < % — 117 Notice that, up to now the path regularity of Z has been studied
only when the terminal value and the generator are functional of a forward diffusion.
After establishing the regularity of Z, we consider different types of numerical

schemes. First we analyze a scheme similar to the one proposed in [40] (see (2.3.2)).

In this case we obtain a rate of convergence of the following type

T
E sup !n—n”|2+/0 E|Z, —Z]|*dt <K (7| +E|E — &™) .

0<t<T

Notice that this result is stronger than that in [40] which can be stated as (when { = &)

T
sup E|Yt—l/,’”\2+/ E|z, — Z"%dt < K|x].
0

0<t<T

We also propose and study an “implicit” numerical scheme (see (2.4.1) in Section
2.4 for the details). For this scheme we obtain a much better result on the rate of

convergence

T 5
E sup |n—n”|P+E</ |z,—zzf|2dr) <k (|xf +ElE-£7P),
0

0<t<T
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where p > 1 depends on the assumptions imposed on the terminal value and the coeffi-
cients.

In both schemes, the integral of the process Z is used in each iteration, and for this
reason they are not completely discrete schemes. In order to implement the scheme
on computers, one must replace an integral of the form ft?“ ZTds by discrete sums,
and then the convergence of the obtained scheme is hardly guaranteed. To avoid this
discretization we propose a truly discrete numerical scheme using our representation
of Z; as the trace of the Malliavin derivative of ¥; (see Section 2.5 for details). For this
new scheme, we obtain a rate of convergence result of the form

E max {[¥, ~Y7? + |2, ~ ZF|"} < K|m|s ¢,

0<i<n

for any € > 0. In fact, we have a slightly better rate of convergence (see Theorem 2.5.2)

4 P P
27 5loe L 1 2
E max {|¥, ~ Y|+ |2, - Z;1"} <Kla| (logm) |

0<i<n

However, this type of result on the rate of convergence applies only to some classes of
BSDE:s and thus this scheme remains to be further investigated.

In the computer realization of our schemes or any other schemes, an extremely
important procedure is to compute the conditional expectation of form E(Y|.%;,). In
this chapter we shall not discuss this issue but only mention the papers [2], [4] and
[15].

This chapter is organized as follows. In Section 2.2 we obtain a representation of the
martingale integrand Z in terms of the trace of the Malliavin derivative of Y. And then
we get the LP-Holder continuity of Z by using this representation. The conditions that

we assume on the terminal value & and the generator f are also specified in this section.
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Some examples of application are presented to explain the validity of the conditions.
Section 2.3 is devoted to the analysis of the approximation scheme similar to the one
introduced in [40]. Under some differentiability and integrability conditions in the
sense of Malliavin calculus on & and the nonlinear coefficient f, we establish a better
rate of convergence for this scheme. In Section 2.4, we introduce an “implicit” scheme
and obtain the rate of convergence in the L” norm. A completely discrete scheme is
proposed and analyzed in Section 2.5.

Throughout this chapter for simplicity we consider only scalar BSDEs. The results

obtained in this chapter can be easily extended to multi-dimensional BSDEs.

2.2 The Malliavin calculus for BSDEs

2.2.1 Estimates on the solutions of BSDEs

The generator f in the BSDE (2.1.1) is a measurable function f: ([0,7] x Q x R x
R, Z® B AB)— (R, A), and the terminal value & is an .#r-measurable random

variable.

Definition 2.2.1. A solution to the BSDE (2.1.1) is a pair of progressively measurable

processes (Y,Z) such that: [ |Z,|*dt < oo, [J |f(t,Y;,Z,)|dt < o, a.s., and
T T
=g+ [ fv.z)ar— [ zaw, o<i<T.
t t

The next lemma provides a useful estimate on the solution to the BSDE (2.1.1).

Lemma 2.2.2. Fix g > 2. Suppose that & € L1(Q), f(1,0,0) € HL.([0,T]), and f is

uniformly Lipschitz in (y,z), namely, there exists a positive number L such that i x P
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|f(t,y1,21) — f(t,y2,22)| < L(|y1 —y2| + |21 — 22]) s

for all y1,y» € R and 71,20 € R. Then, there exists a unique solution pair (Y,Z) €
§7:([0,T]) x H%.([0,T}]) to Equation (2.1.1). Moreover, we have the following estimate

for the solution

T ] T ]
E sup |Y,|q+E(/ |Z,|2dt) §K<E|5|q+E(/ |f(t,0,0)|2dt) ) 2.2.1)
0<t<T 0 0

where K is a constant depending onlyon L, gand T.

Proof. The proof of the existence and uniqueness of the solution (Y,Z) can be found
in [13, Theorem 5.1] with the local martingale M = 0, since the filtration here is the
filtration generated by the Brownian motion W. The estimate (2.2.1) can be easily

obtained from Proposition 5.1 in [13] with (f!,€') = (f,&) and (f2,&2) = (0,0). O

As we will see later, for a given BSDE the process Z will be expressed in terms
of the Malliavin derivative of the solution Y, which will satisfy a linear BSDE with
random coefficients. To study the properties of Z we need to analyze a class of linear
BSDEs.

Let {04 }o<;<7 and { B }o<;<7 be two progressively measurable processes. We will

make use of the following integrability conditions.

Assumption 2.2.1. (Al) For any A > 0,

T
C, :=E exp (l/o (|OC,|—|—[3,2) dt> < oo,
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(A2) Forany p > 1,

Ky := sup E(|oy|P +[B|P) < eo.
0<t<T

Under condition (A1), we denote by {p; }o<;<7 the solution of the linear stochastic

differential equation

dpl - atp[dt + Bl‘pldma O S t S T
(2.2.2)

po=1.

The following theorem is a critical tool for the proof of the main theorem in this

section, and it has also its own interest.

Theorem 2.2.3. Let g > p > 2 and let & € L1(Q) and f € HL([0,T]). Assume that
{04 }o<i<T and { B }o<i<T are two progressively measurable processes satisfying con-
ditions (A1) and (A2) in Assumption 2.2.1. Suppose that the random variables Epr and
& pifidt belong to M>4, where {p; }o<i<1 is the solution to Equation (2.2.2). Then,

the following linear BSDE
T T
Y,=¢& +/ [Oc,Y,+B,Z,+fr]dr—/ ZdW,, 0<t<T (2.2.3)
t t
has a unique solution pair (Y,Z) and there is a constant K > 0 such that
E|Y, — Y|P <Kt —s|%, (2.2.4)
foralls,t €10,T].

We need the following lemma to prove the above result.
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Lemma 2.2.4. Let {04 }o<;<1 and {B:}o<i<1 be two progressively measurable pro-
cesses satisfying condition (Al) in Assumption 2.2.1, and {p; }o<;<T be the solution of

Equation (2.2.2). Then, for any r € R we have

E sup p; <eoo. (2.2.5)
0<t<T

Proof. Lett € [0,T]. The solution to Equation (2.2.2) can be written as

p,:exp{/ot (ocs—%sz) ds+/0t[5deS} .

For any real number r, we have

t 2 t
E sup p/ = E sup exp{/ r(ocs—B—s) ds—i—r/ Bdes}
0<1<T 0<t<T 0 2 0
T 1 o [T a2
< & (o]l [ lalas 3 r1+) [ Bas

t 2ot
X sup exp{r/ ﬁdeS——/ﬁfa’s} .
0<t<T 0 2 Jo

Then, fixing any p > 1 and using Holder’s inequality, we obtain

=

t 2t
E sup p/ <C (E sup exp{rp/ ﬁdes—%/ des}) , (2.2.6)
0 0

0<t<T 0<t<T

where

Q=

T q T
C= (E exp{q|r|/0 |as|ds+§(\r]+r2)/0 ﬁszds}) )

1 1 _
and;—l—a—l.
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Set M; = exp {rfé BsdW; — éfé Bszds}. Then, {M;}y,<7 is a martingale due to

(A1). We can rewrite (2.2.6) into

1
P
E sup pf <C|E sup M/ | . (2.2.7)
0<1<T 0<1<T
By Doob’s maximal inequality, we have
E sup M/ <c,EMF, (2.2.8)

0<t<T

for some constant ¢, > 0 depending only on p. Finally, choosing any ¥ > 1, 4 > 1 such

that 71/ + % =1 and applying again the Holder inequality yield

T ¥ T
EME = E(exp{rp/o ,Bdes—iper/O ﬁszds}
_ T
xexp{}/’%l prz/ ﬁszds})
0
d 1o 2o [Tho 7
< | Eexp rp}// Bdes—E}/Zpr/ Bids
0 0
1
_ T x
x(Eexp{—)’(yp D prz/ [)’sza’s}))l
2 0
1
_ T x
= (Eexp{@pﬂ/ ﬁszds})k<oo.
0

Combining this inequality with (2.2.7) and (2.2.8) we conclude the proof. 0

Proof of Theorem 2.2.3. The existence and uniqueness is well-known. We are going
to prove (2.2.4). Letr € [0,T]. Denote 3 = p, !, where {p; }o<;<7 is the solution to

Equation (2.2.2). Then {7} }o<;<r satisfies the following linear stochastic differential
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equation:

dy, = (—o4+ B udt — BvdW,, 0<t<T

=1
For any 0 <s <t < T and any positive number r > 1, we have, using (A2), the Holder
inequality, the Burkholder-Davis-Gundy inequality and Lemma 2.2.4 applied to the

process {¥ }o<i<7>

r

t t
/(_O‘u+ﬁz42)7ud”_/ B Y dW,

Ely-%" = E

< 27U E +C,E

[ Coussima sce| [ sl |

C(t—s)2, (2.2.9)

IA

where C; 1s a constant depending only on r and C is a constant depending on 7', r, and
the constants appearing in conditions (A1) and (A2).

From (2.2.3), (2.2.2), and by It6’s formula, we obtain

d(Yip:) = —pifedt + (BipsYy + piZ; ) dW; .

As a consequence,

T T
Y, =p 'E (épr + /t prfrdr\%) =E (épz; + /t pt,rfrdr!%> , (2.2.10)

where we write p; , = pt_lpr =vypforany 0 <r<r<T.
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Now, fix 0 <s <fr <T. We have

p

T T
E|Yt _Ys|p = E ‘E (épt,T +/ pt,rfrdr‘ca/\t) —E (gps,T +/ ps,rfrdr|gzs)
t N

!

< or-l {E‘E@Ptﬂﬁt) —E(gpsvT‘ﬁs)‘p

T T
E (/ pt.,rfrdr‘ﬁt> —E (/ psmfrdrlys)
t N

= 2‘0_1(]1 —I—Iz).

+E

First we estimate /;. We have

I = E[E(Ep.r| ) —E (Epsr|F)|"
= E|E(Epr| %) —E(Epor| F) +E (Epsr|F) —E (Epsr| F)|
< 2 [E[E(Epr|F) —E(Epsr|F)|"+EIE (§psr|Fi) —E (§psr|F) ']
< 27N [EE(pir —psr)’ +E[E (Epir|Fi) —E (Epsr| )]

= 2p71<13 —I—I4).

Using the Holder inequality, Lemma 2.2.4, and the estimate (2.2.9) with r = %, the

term /3 can be estimated as follows

qa-p

L4\ g
<]E’P17T —Ps,7|4 1’)

2

o< (E[§|7)

2pq

oL 2pq \ “2q°
121 (Bln—nl?) (2o ) 7 <clr-sf,

IA

where C is a constant depending only on p,q,T, E|&

9, and the constants appearing in

conditions (A1) and (A2).
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In order to estimate the term 5 we will make use of the condition & pr € M>4. This

condition implies that

T
Epr = E(Epr) + /0 urdW,,

where u is a progressively measurable process satisfying supg«, <7 E|u;|? < co. There-

fore, by the Burkholder-Davis-Gundy inequality, we have

t q
E|E(Epr|7:) — E(Epr| Fy)|! =E / wdW,

t 3 o2 1
/ uydr| <Cy(t—s) 2 E (/ |ur|qdr)
S N

< C (t—s)? sup Elu.
0<t<T

IN

C,E

As a consequence, from the definition of I, we have

Ly = E|R[E(pr|F)—E(Epr|F)]|P

q—p

- (E}/) " (BIEEpr|F)) —E(Epr| F)|)

P
q

SC|l‘_s|g7

where C is a constant depending on p,q,T, supy,<7 E|u,|? < oo, and the constants

appearing in conditions (A1) and (A2).
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The term /> can be decomposed as follows

T T
L = E‘E( / pt,,frdr@)—E( / ps,rfrdr@s)
t S

< 3p-1

p

T
E ‘E ( pt,rfrdrlﬁt

= 3 NI+ Is+1).

Let us first estimate the term /5. Suppose that p < p’ < g. Then, using (2.2.9) and the

Holder inequality, we can write

T T
5 = E 'E (/ pt7rfrdr|c%) —E (/ ps,rfrdr’%)
t t

T p T
E'/t (pnr_ps,r)frdr :EQ%_’YSW/I prfrdr

e pl,,;/” T v
< {EI%—%IP’P} E'/ prfrdr
t

plg—p")

T 72(’:"/) r'a T i
< Clt—s|® E(/ pZdr) " E(/ ,zdr>
t t

= P
< Cle=sP>1f Iz,

p

IN

)

P
q

where C is a constant depending on p, p’, ¢, T, and the constants appearing in conditions

(A1) and (A2).
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Now we estimate 5. Suppose that p < p’ < g. We have, as in the estimate of the

term s,

p

T T
le = ]E’E </ ps,rfrdr|gt) _]E</ ps.,rfrdrlf%)
t s
t p t 14
/ psfrdr| =E <psp / prfrdr )
RN N\ 2
o 7 )/
N2
t 128w
= C{E / prfrdr }
plg=p')

L s re -~ i
Cle=s]> E sup p" 1 llFzg = Cle —s]2,

0<r<

IN

E

IN

t
/ prfrdr

IN

where C is a constant depending on p, p’, ¢, T, and the constants appearing in conditions
(A1) and (A2).

The fact that fOT p,f+dr belongs to M>4 implies that

T T T
/ pofodr =T / prfodr+ / v, dW,,
0 0 0

where {v; }o<;<7 is a progressively measurable process satisfying supg, <7 E|v¢|? < eo.

Then, by the Burkholder-Davis-Gundy inequality we have

el ([ o) -5 [ o)
T T
= E E(/O prfrdr|%) _E(/O prfrdr"g.s>

t q
= E / v, dW,
S

q

q

<C,(t—5)% sup E|v]|.
0<t<T
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Finally, we estimate 17 as follows

T T

L = E‘E (/ ps,rfrdr|§t> _E</ ps,rfrdr|ﬁs)
T A T

Ps_l (]E </ prfrd’"L%) _E(/ p,f,dr|ffs>)

p

p
= E

_g 5 T T ay &
< {Eps qp} {E‘E (/ Prfrdr\t%> _E(/ prfrdr‘g[s) }
T T 9 g
< C@EE(/mem%)—E</me¢%) }
< Clt—s|?, (2.2.11)

where C is a constant depending on p, g, T, supy<,<7 E[v|?, and the constants appear-
ing in conditions (A1) and (A2).

As a consequence, we obtain for all s,z € [0, T]
ElY, - Y|P <Kl —s|7,
where K is a constant independent of s and ¢. [

2.2.2 The Malliavin calculus for BSDEs

We return to the study of Equation (2.1.1). The main assumptions we make on the

terminal value & and generator f are the following.
Assumption 2.2.2. Fix2 < p < 4.

(A3) & € D*4, and there exists L > 0, such that for all 6, 8’ € [0,T],

E|Do& —Dg&|P <L|6—6'|%, (2.2.12)

43



sup E[Dg&|? < oo, (2.2.13)
0<o<T

and

sup sup E|D,Dg&|? < oo. (2.2.14)
0<0<T 0<u<T

(A4) The generator f(t,y,z) has continuous and uniformly bounded first and second

order partial derivatives with respect to y and z, and f(-,0,0) € H%.(0,T]).

(A5) Assume that & and f satisfy the above conditions (A3) and (A4). Let (Y,Z) be the
unique solution to Equation (2.1.1) with terminal value & and generator f. For
each (y,z) € RxR, f(-,,2), of(-,y,2), and d.f(-,y,z) belong to L&Y, and the

Malliavin derivatives Df(-,y,z), Doy f(-,y,z), and DO, f (-, y,z) satisfy

T ]
sup E(/)thﬁjgzﬂ%h) < oo, (2.2.15)
0<6<T 0
T 3
sup E(/ \Dgc?yf(t,I/,,Zt)]Zdt) < oo, (2.2.16)
0<0<T 0
T ]
sup E(/‘Mm@fOJLZH%h) < oo, (2.2.17)
0<6<T 0

and there exists L > 0 such that for any t € (0,T), and forany0< 6,0’ <t <T

T 5
E (/ Do f(r,Y,,Z,) — D £ (r, Y,,Z,)]%h) <L|6—0'. (2.2.18)
t

For each 6 € [0,T], and each pair of (y,z), Do f(-,y,2) € Ly and it has continu-
ous partial derivatives with respect to y,z, which are denoted by d,Dg f (t,y,z)and

0.Dg f(t,y,z), and the Malliavin derivative D,Dgy f (t,y,z) satisfies

T §
sup  sup ]E( / ID.Dg f(t,Y,,Z,)]zdt> < oo, (2.2.19)
0<O<T 0<u<T OVu
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The following property is easy to check and we omit the proof.

Remark 2.2.5. Conditions (2.2.16) and (2.2.17) imply

and

T 3
sup = ( [ 10.00f0.5.2Far) <,
0

0<o<T

T 3
swp £( [ 00as(01.2)Far) <,
0

0<o<T

respectively.

The following is the main result of this section.

Theorem 2.2.6. Let Assumption 2.2.2 be satisfied.

(a) There exists a unique solution pair {(Y;,Z;) Yo<;<r to the BSDE (2.1.1), and Y, Z

are in IL.Lll’q. A version of the Malliavin derivatives {(DgY;, DoZ;)} 0<o,i<1 Of the

solution pair satisfies the following linear BSDE:

T
DeY, = De& + / 0yf (.Y, Z,)DoY; + 0. f (1,Yy, Z;) Do Z;
t
T
+Dof (1Y, Z)|dr — / DoZodW, 0< 0 <t <T:
t

(2.2.20)

DgY, = 0,D9Z, =0,0<t<6<T. (2.2.21)

Moreover, {D;Y; }o<;<T defined by (2.2.20) gives a version of {Z; }o<i<T, namely,
uxPa.e.
Z, =DJY,. (2.2.22)
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(b) There exists a constant K > 0, such that, for all s, t € [0,T],

E|Z, —Z,|? < K]t —s|*. (2.2.23)

Proof. Part (a): The proof of the existence and uniqueness of the solution (Y,Z),
and Y, Z € ]L},’2 is similar to that of Proposition 5.3 in [13], and also the fact that
(DgY;,DgZ;) is given by (2.2.20) and (2.2.21). In Proposition 5.3 in [13] the expo-

nent ¢ is equal to 4, and one assumes that ] ||[Dgf(-,Y,Z)||%,d6 < oo, which is a

[
consequence of (2.2.15) and the factthat Y, Z € ]Lcl,’z.
Furthermore, from conditions (2.2.13) and (2.2.15) and the estimate in Lemma

2.2.2, we obtain

q
T 3
sup < E sup |D3Y,|‘1—|—]E</ |DQZ,\2dt) < oo, (2.2.24)
0<6<T | 6<i<T 0

Hence, by Proposition 1.5.5 in [31], Y and Z belong to L}l’q.

Part (b): Let 0 < s <t < T. In this proof, C > 0 will be a constant independent of s
and ¢, and may vary from line to line.

By the representation (2.2.22) we have

Zy —Zs = DiYy — DYy = (DtYl - DSYZ) + (DsYt - DSYS)' (2.2.25)
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From Lemma 2.2.2 and Equation (2.2.20) for 6 = s and 6’ = 1 respectively, we obtain,

using conditions (2.2.12) and (2.2.18),

p
T 2
E|D;Y; — DY;|P +E (/ \D.Z, —Dszryzdr)
1

IN

C

E‘Dté _Dsé ’p +E </T |th(r7 YraZr) _Dsf(r, Yr7Zr)|2dr) 2]

< Clt—s|2. (2.2.26)

Denote o, = 9y f(u,Yy,Z,) and B, = 9. f(u,Y,,Z,) for all u € [0, T]. Then, by Assump-
tion 2.2.2 (A4), the processes o and [ satisfy conditions (A1) and (A2) in Assumption
2.2.1, and from (2.2.20) we have for r € [s,T|

DY, = Dsg + frT[aMDSYM + ﬁMDSZM +Dsf(u,Yu,Zu)]du o frT DSZMdWM‘

Next, we are going to use Theorem 2.2.3 to estimate E|D,Y; — D,Ys|P. Fix p’ with

p < p' <% (notice that p’ < % is equivalent to qf /p, < 1). From conditions (2.2.13)
and (2.2.15), it is obvious that D& € L4(Q) C L (Q) and D,f(-,Y,Z) € H([0,T]) C
H”'([0,T]) for any s € [0, T]. We are going to show that, for any s € [0,T], prDs& and

j;T puDsf(u,Y,,Z,)du are elements in M?P' where

pr =eXp{/0rl3uqu+/0r (au— %Bf) du}-
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Forany 0 < 0 <r <T, let us compute

Dgp, = Pr{/e[ayzf(%YuvZu)DGYu+azzf(“7YuaZu>DBZu

+D982f<u7Yuazu)]dW/Lt + aZf(Ga YG;ZQ)
+ /9 (O (1, s Z4) — Do f (1, Y Z) B) Do Yodt
r
+ /9 (e (1, Yo Za) — D f (1, Yis Zu) Bu) D Zodl
+ /9 (Dodyf (14, Y, Zu) — BuDo: f(u,Yu,Zu))du}.
By the boundedness of the first and second order partial derivatives of f with respect

to y and z, (2.2.16), (2.2.17), (2.2.24), Lemma 2.2.4, the Holder inequality and the

Burkholder-Davis-Gundy inequality, it is easy to show that for any p” < g,

sup E sup |D9pr|p”<oo. (2.2.27)
0<0<T O<r<T

By the Clark-Ocone-Haussman formula, we have

prDE = BlorDE)+ [ BDo(prD&)| o)Wy
= E(prDs%) +/OTE(D9PTDs§ +prDe D& | Fg)dWy

T
— E(prD,&E)+ /0 wydWe,
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and

T
| DS, Z,)dr
’ T T T
= E/ prDsf<r;Yr7Zr)dV‘|‘/ E <D9/ prDsf(r7Yr7Zr)dr|JOZG) dWO
s 0 s
T
= E/ prDsf<r;Yr7Zr)dV
ST T
+ [ E( [ DopDLF (171,22 + pid\D (1Y, Z)Do Y,

+p,0:Dsf (1,Y;,Z,) Do Z, 4 p, Do Dy f (1, Yryzr)]dr‘ye)dWQ

T T
= IE/ prDsf(r, Y,,Z,)dr—f—/ vgdWy.
s 0
We claim that supy g7 ]E|u39|p/ < oo and Supy<g<r E|vf,|p/ < oo, In fact,

Eluy|? = E[E(DeprDsE + prDeDyE|Fo)|”

< 271 (EIDoprD,EV +ElprDoDE|" )

q—p

q-r

- Ha\ T ’ 2g\ /
< 2 E|Dgpr|a-r (E[DsS|?) 7 + | Epy (E[DgDsc|?) 7

By (2.2.13)-(2.2.14), (2.2.27), and Lemma 2.2.4, we have sup) -7 supy<g<7 E|uj |7 <

oo, On the other hand,

, T
Elvgl” = E‘E(/ [Dop,Dsf(1,Yr,Z)) + proyDsf (1, Yy, Z;) Do,
N

/

p
+pr0;Ds f (1Y, Z)DoZ, 4 prDo Dy f (1, Yryzr)} dr|99)

< 4”/_1[J1 +h+J3+ 4],
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where
/

p

T
Ji=E / DGPrDsf(rayr7Zr)dr )
s

T
5 =E / 0, ,Ds f(1,Yr, Z,)DoY,dr|

T
h=F / 0, 0.Dsf (1Y, Z,)DeZ,dr| .
)

and
/

p

T
J4=]E/ pngDSf(r,Yr,Zr)dr
s

For J;, we have

/ T p/
Ji1 < E( sup \Depr!p / Dsf(r7Yr>Zr)dr )
0<r<T s
AN r N
< (E sup |Dep,|i7 (E / Dyf(r.Y,.Z,)dr )
0<r<T s
a=r 7
<

o g q T ) % 4
T2 (E sup |[Dgpy|lsr E (/ |Dsf(r, Y, Z,)| a’r> :
0<r<T 0
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For J,, we have

b

and

< E| sup

DY, |”'

0<r<T

< | E sup
o<r<T

< | E sup
0<r<T

X <E (KTWYDSf("’YthHdr)q) q

0<r<T

|D9Yr|q>
q p’q/ Tq
DY, |? E sup p/ "
0<r<T

<s

/

T p
up pr/ ‘astf(nYr,Zr)‘dr)

0<r<T

p/

q

]7/

< T7 <E sup |D9Yr|q>

T q—p'
E( sup p, / 10,Dsf(1,Y,. Z,)|dr

0<r<T

q-2p'

~

p

4 q-2p

q ra_ q
E sup p?
0<r<T

T 0T
X(E( /0 |8yDSf(r,Yr,Zr)|2dr>> .

Using a similar techniques as before, we obtain that

el Fiogrea)t) AN
J3; < T?2(E / |DQZr| dr E sup pPr
0 0<r<T

/ q=2p

Pq

/

/

T AN
X<E</O |82Dsf(r7YraZr)|2dr)> )

Jy < TZ(

E sup p

0<r<T

q—p

,> ’ (IE (/OT |D9Dsf(r’Yr7Zr)’2dr>

r

Pq

q-p'
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By (2.2.15), (2.2.16)-(2.2.19), (2.2.27), and Lemma 2.2.4, we obtain that

/
sup sup Elvg|? < co.
0<s<T 0<O<T

Therefore, pr& and fOT PuDs f (1, Yy, Z)du belong to MV,
Thus by Theorem 2.2.3 with p < p/, there is a constant C(s) > 0, such that

E|D,Y, — D,Y;|P < C(s)|t — 5|7,

for all t € [s,T]. Furthermore, taking into account the proof of the estimates I; (k =
3,4,---,7) in the proof of Theorem 2.2.3, we can show that supy,.7C(s) =: C < oo.
Thus we have

E|D,Y; — DY|? < Clt —s|?, (2.2.28)

for all s, ¢ € [0, T]. Combining (2.2.28) with (2.2.25) and (2.2.26), we obtain that there

is a constant K > 0 independent of s and ¢, such that,
p
E|Z — Z|P < K|t —s|2,

forall s,7 € [0,7T]. O

Corollary 2.2.7. Under the assumptions in Theorem 2.2.2, let (Y,Z) € $%.(0,T]) x
HZ([0,T]) be the unique solution pair to Equation (2.1.1). If supyc,<7E|Z|? < eo,

then there exists a constant C, such that, for any s,t € [0,T],

ElY, Y| <Cl|t —s|?. (2.2.29)
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Proof. Without loss of generality we assume 0 < s <t < 7. C > 0 is a constant inde-

pendent of s and ¢, which may vary from line to line. Since

t t
YS = Yt +/ f(r, Yr;Zr)dr_/ ZrdWr7
N N

we have, by the Lipschitz condition on f,

t t q
Ely, — Y1 — E/f(r,Y,,Z,)dr—/Z,dW,
N N
t q t q
< oo (E / F(nY,Z)dr| +E / Z.dW, )
N N . .
q t 2 2 t 2 2
< ¢ <|r—s|zE( [1r6x.zopar) 5 ( [ iz far) )
N N
q q
q t 2 2 t 2 2
< C{|t—s|2[E(/ v, a’r) +E(/ 7] dr)
t N % N
+E (/ \f(r,0,0)|2dr> }+|t—s!g sup IE|Z,|‘1}
s 0<r<T
< C|t—s|%.
The proof is completed. [

Remark 2.2.8. From Theorem 2.2.6 we know that {(DgY;,DoZ;)}o<e<i<T satisfies
Equation (2.2.20) and Z; = D;Y;, U X P a.e. Moreover, since (2.2.13) and (2.2.15)
hold, we can apply the estimate (2.2.1) in Lemma 2.2.2 to the linear BSDE (2.2.20)
and deduce supy.,7 E|Z;|? < co. Therefore, by Lemma 2.2.7, the process Y satisfies
the inequality (2.2.29). By Kolmogorov’s continuity criterion this implies that Y has
Holder continuous trajectories of order Y for any y < % — é.
2.2.3 Examples

In this section we discuss three particular examples where Assumption 2.2.2 is satisfied.
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Example 2.2.9. Consider Equation (2.1.1). Assume that:

(al) f(t,y,z) : [0,T] x R xR — R is a deterministic function that has uniformly

bounded first and second order partial derivatives with respect to y and z, and

Jo £(2,0,0)%dt < eo.

(a2) The terminal value & is a multiple stochastic integral of the form

= gty .ta)dW,, ...dW,, (2.2.30)
[O,T]"
where n > 2 is an integer and g(t1,. .. ,t,) is a symmetric function in L*([0,T]"),
such that,
sup g(tl,...,tn,l,u)zdtl codty ) < oo,
0<u<T /[0,T]"!
2
sup gty .ty u,v)=dty ...dt,_p < oo,

0<u,v<T J[0,T]"2

and, there exists a constant L > 0 such that for any u,v € [0,T]
/[O et 0000 =011 0) Pty < L.
From (2.2.30), we know that

Duﬁzn/ g(l‘l,...,tn_l,u)dVth...dVV,nil.
0,71

The above assumption implies Assumption 2.2.2, and therefore, Z satisfies the Holder

continuity property (2.2.23).

Example 2.2.10. Ler Q = Cy([0,1]) equipped with the Borel 6-field and Wiener mea-

sure. Then, Q is a Banach space with supremum norm || - ||« and W; = o(t) is the
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canonical Wiener process. Consider Equation (2.1.1) on the interval [0,1]. Assume

that:

(gl) f(t,y,2):]0,1] x Rx R — R is a deterministic function that has uniformly bounded

first and second order partial derivatives with respect to 'y and z, and fol £(,0,0)%dt <

oo,

(g2) & = @(W), where @ : Q — R is twice Fréchet differentiable and the first and

second order Fréchet derivatives 8¢ and 8% ¢ satisfy

()] +|3p()||+]|6%¢(w)| < Crexp{C2]| @I},

for all ® € Q and some constants C; >0, C; > 0 and 0 < r < 2, where || - ||

denotes the operator norm (total variation norm).

(g3) If A denotes the signed measure on [0, 1] associated with 6@, there exists a con-

stant L > 0 such that for all 0 < 0 < 6’ < 1,
E[A((6.6")|P <L|6— 6|2,

for some p > 2.

It is easy to show that Dg& = A((0,1]) and D,Dg& = v((0,1] X (u,1]), where v de-
notes the signed measure on [0,1] x [0, 1] associated with 5*@. From the above assump-

tions and Fernique’s theorem, we can get Assumption 2.2.2, and therefore, the Holder

continuity property (2.2.23) of Z.
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Example 2.2.11. Consider the following forward-backward stochastic differential equa-

tion (FBSDE for short)

X, = Xo+ [{ b(r,X,)dr + [ o(r, X,)dW,,
(2.2.31)

=0 <f0TXr2dr> +ftT f(nX, Y Z)dr — ftTZ,dWr,

where b, 6, ¢ and f are deterministic functions, and Xy € R.

We make the following assumptions.

(hl) b and o has uniformly bounded first and second order partial derivatives with

respect to x, and there is a constant L > 0, such that, for any s, t € [0,T], x € R,
1
|o(t,x) = o(s,x)| < L|r —s|.

(hZ) SupOStST{|b(I70)| + |G(l70)|} < oo

(h3) @ is twice differentiable, and there exist a constant C > 0 and a positive integer

n such that

T T T
‘(p( /O X,zdt) o’ ( /0 Xﬁlt) +‘q)” ( /0 X,zdt)

where ||x||ee = sup{|x(z)|,0 <t < T} for any x € C([0,T)).

+ <C(1+IX]l)",

(h4) f(t,x,y,z) has continuous and uniformly bounded first and second order partial

derivatives with respect to x, y and z, and fOTf(t, 0,0,0)%dt < oo.

Notice that in this example, ®(X) = ¢ ( fOT det) is not necessarily globally Lipschitz

in X and the results of [40] cannot be applied directly.
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Under the above assumptions (hl) and (h4), Equation (2.2.31) has a unique solution
triple (X,Y,Z), and we have the following classical results: for any real number r > 0,

there exists a constant C > 0 such that

E sup X" <o, E[X,—X,|" <Clt—s]|2,
0<t<T

foranyt,s €[0,T]. Forany fixed (y,z) € RxR, we have Do f (t,X;,y,2) = i f (t,Xt,y,2) Do X;.

Then, under all the assumptions in this example, by Theorem 2.2.1 and Lemma 2.2.2 in
[31] and the results listed above, we can verify Assumption 2.2.2. Therefore, Z has the
Holder continuity property (2.2.23).

Note that in the multidimensional case we do not require the matrix 66! to be

invertible.

2.3 An explicit scheme for BSDEs

In the remaining part of this chapter, we let 1 = {0 =1ty <t;, <---<t,=T} be a
partition of the interval [0, 7] and || = maxo<j<p—1 |ti+1 —ti|. Denote A; =t;11 —1;, 0 <
i<n-—1.

From equation (2.1.1), we know that, when 7 € [t;, t;11],

tit1

V=Y, + | f(nY,.2, dr—/ Z,.dwW,. 2.3.1)
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Comparing with the numerical schemes for forward stochastic differential equations,

we could introduce a numerical scheme of the form

1,7 T
v~ = &%
lit1 tip1 )iyl

1. 1.7 1,7 51,7 fivt 4
A AL +f<t,~+1,Y’ 7" )A,-— Z%aw,
t

t € titiy1),i=n—1,n—2,...,0,

where £7 € L2(Q) is an approximation of the terminal condition &. This leads to a

1

. 7Sl 1
backward recursive formula for the sequence {Y,, ’ﬂ,Zti’”}ogign. In fact, once ¥,.”" and

lit1

Zttj are defined, then we can find Ytilﬁ by

1 1 L 1
Y, " =E (Y,iflr +f <Ii+17Yz,-+’7f,Zt,-ﬁ> Ai‘c%i)

and {Zr1 Y <r<i;,, is determined by the stochastic integral representation of the random
variable

lit1 tip1 7% lig1

Ytil,ﬂ_Yl,ﬂ:_f(tHhYI,n: Zl,n:) A

Although {Zr1 ’n},i§,<,i ., can be expressed explicitly by Clark-Ocone-Haussman for-
mula, its computation is a hard problem in practice. On the other hand, there are diffi-
culties to study the convergence of the above scheme.

An alternative scheme is introduced in [40], where the approximating pairs (Y”,Z")

are defined recursively by

Yr=¢t, z;=0,

1 tit2
Yl‘ﬂ:Ytﬁl+f<ti+l’Yt;il,E(A. / Zfd”'%iﬁ-l))Ai
i+1 Jtiyg

tiv1
R aw, e i) i=n—1n—2,...,0,  (232)

t
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where, by convention, E ( A ftfl“ Zrdr| %, +1) =0 when i = n— 1. In [40] the fol-
lowing rate of convergence is proved for this approximation scheme, assuming that the

terminal value & and the generator f are functionals of a forward diffusion associated

with the BSDE,
max EJY, - 1”F+E/ _772d < K7 (2.33)

The main result of this section is the following, which on one hand improves the
above rate of convergence and on the other hand extends terminal value £ and generator

f to more general situation.

Theorem 2.3.1. Consider the approximation scheme (2.3.2). Let Assumption 2.2.2
be satisfied, and let the partition T satisfy maxo<ij<p—1Ai/Aiy1 < Li, where Ly is a

constant. Assume that a constant Ly > 0 exists such that

1
|f(t2,y,Z) _f(t17y7z>| < L2|t2_t1|2 ’ (234)

forallty, t; € [0,T], and y, z € R. Then there are positive constants K and J, indepen-

dent of the partition T, such that, if |x| < 8, then

T
E sup \Y,—Y,”|2+IE/O 2, — 772t < K (|z| + E|E — E72) | (2.3.5)

0<t<T

Proof. In this proof, C > 0 will denote a constant independent of the partition 7, which
may vary from line to line. The inequality (2.2.23) in Theorem 2.2.6(b) yields the

following estimate (Theorem 3.1 in [40]) with p =2

n—l1 lit1 ) ’
ZE/ (12— Z,|" + |z — z,,,,7)dt < C|m|.
= li
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Using this estimate and following the same argument as the proof of Theorem 5.3 in

[40], we can obtain the following result

T
max E|Y, —YtﬂerE/O 1Z,— ZFPdt < C (|x| + EJE — E72) .

0<i<n

Denote
0 ifi =mn;
E(AL, tiH—lzzrdr’gti) ifi=n—1,n-2,...,0.

Ify;, <t <tiy1,i=n—1,n—2,...,0, then, by iteration, we have

~ tit1
Y = Yti”H +f<’i+17thr+th7,-r+1)Ai_/t ZFdw,

i T
= &'+ ) f(tk7Yt;7(rvzz7,f)Ak—l—/t ZEdW, .
k=i+1

Therefore,

n
Ytﬂ:]E (5754_ Z f<Zk7Yz,7faZt7:> AVERT

k=i+1

We rewrite the BSDE (2.1.1) as follows

T T
Y, = §—|—/ f(r,Yr,Zr)dr—/ Z.dW,
t t

1 T
= é—i— Z f(t/ﬁYtkaZlk)Ak—l _/ Z,:dW, —|—R;r,
k=i+1 t
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where

T n
|Rl7‘t| - / f(l",Y”Zr)dl’— Z f(tkuytkuztk)Ak—l
! k=i+1
n 1 t
= Z / [f(r7Yr,Zr)—f<tk,Y;jk,Ztk>]dr— f(r7Yrazr)dr
k=i+171k—1 i
L Ik tiv1
S Z / |f(raYr7Zr)_f(tk7YI‘k7Zl‘k)|dr+ ‘f(rvyﬁzr)‘dr‘
k=i+1" -1 i

By Lemma 2.2.2 and the Lipschitz condition on f, we have

L

T 5
]E(/ |f(r,y,,z,)|2dr) < oo,
0

and hence,

i P T 5
E max (/ h ]f(r,Yr,Z,)]dr> gyn|5E(/ yf(r,Yr,z,)yzdr> . (23.10)
t; 0

0<i<n—1

Define a function {#(r) }o<,<7 by

T ifr="T,
t(r) =

tit1 ift,-<r<t,-+1,i:n—l,...,0.
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By the Holder inequality, the boundedness of the first order partial derivatives of f,

(2.3.4), (2.2.23), Remark 2.2.8 and (2.3.10), it is easy to see that

T p
E sup |RF|P < 277! []E </ ‘f(”,Yr,Zr)_f(t(”)7Yt(r)th(r))|dr)
0<I<T 0
tit1 p
+E0§1}1§a’§71 (/t |f(r,Yr,Zr)|dr> }
T
< (2T)p_1E/0 ‘f(r’yhzr)—f(t(r),Y,(r),Zt(r))}pdr
4
» T 2
v tfafte ([ 170, 20 ar)
0
< C|n|?, (2.3.11)

where, by convention, R7 = 0. In particular, we obtain

E sup |[RF|* <C|x|. (2.3.12)

0<t<T

To simplify the notation we denote
oY =Y, -Y*, &6zF=27-27F foralltel0,T],

and

7l =7,-27F, fori=nn—1,...,0.

Then, when #; <t < t;41, by (2.3.8) and (2.3.9) we can write

n - T
§Y7 = X [flti )~ Fl0Y P 20| Ar = [ SZEaW, +RF + 68,
k=i+1 !
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where 6E™ = & — E™. Therefore, we obtain

n
5an=E< Y [f(tkaYtkyztk)_f<tk»Yz,7fth7D] A1 +RT+ 6887
k=it 1

%) . (23.13)

Denote fgf = f(te, Yy, Zs,) —f(tk,Y,f,Z’]f). From the equality (2.3.13) for ; <t <tjq,

where i < j <n— 1, and taking into account that Y7 = 8Y;" = 6&”™, we obtain

The above conditional expectation is a martingale if it is considered as a process indexed

ol

t;<t<T 4;<t<T k=i+1

wp 1977 < sup E( $ 1o+ s 43

byt € [t;, T]. Thus, using Doob’s maximal inequality, we obtain

E sup |8Y]> < E sup

1;<t<T 1;<t<T

k=i+1

n ~
E( Y /T A1+ sup |[RF|+|8ET
k=i+1 0<r<T

T
Iy

2
Ar_1+ sup |RF|+ |5§”|>
0<r<T

T
Iy

2
Akl) +E sup |RT|”+E|SE"?

0<r<T

k=i+1

From (2.3.12), we deduce

2
n o~
E sup |8YF)? < C E( Y Ak—l) +E[8E™* + ||
k

G<I<T Syl
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Using the Lipschitz condition on f, we obtain

2
E sup |8Y|> < C{(T—4)’E sup [8Y|+E Z 1Z] | Akt
5<t<T i+1§k<n k=i+1
+E|Z, A2 1}+C(E|35”|2+|7r|). (2.3.14)
Notice that
2 2
n—1 n—1 1 tit 1
IE( Z \ZZ:|Ak1) = E( Z Z,k—A—/ E(Z}|%:,)du Ak1>
k=i+1 k=i+1 k 1y
n—1 Ak 1 n 2
< E —‘/ E (|2, 27| 7, ) du
ke A i
| 2
2 n— Tk+1 -
< I’E Z/ E (|7, - 27| 7, ) du
k=i+17
2
f+
< ZL%{ (Z/ |Ztk ) )
k=i+1
1

3 2
+E< y /tHlIE(\ZM—Zﬂ %k)du> }
k=i+1" "

= 2031 + D). (2.3.15)

Now the Minkowsk and the Holder inequalities yield

2

n—1 tr 1 2 1/2
L < E( y {/+ <E<|Z,k— , o~>> du} A}(/z)
ke=i+1 LT
n—_1 +l 2
< _tz Z / |Ztk Zu| t%k>> du
k=i+1
n—1
< (T-1) Z/ E|Z;, — Z,|*du
k= l-l—l
Tk+1
< C(T-1) Z / Ite — u|du < C|x|. (2.3.16)
k=i+1
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In a similar way and by (2.3.6), we obtain

n—1 1y

1
L < (T-t) Y [ E|z,—2Pdu
k=i+1"%
T
= (T—t) | E[6ZF*du<C]n|. (2.3.17)
it1
On the other hand,
7 2 2 2 2
E<Z£An71> = E[Z, |"|Ap1|” < Clz|”. (2.3.18)

From (2.3.14)-(2.3.18), we have

E sup [8Y?<C(T—4)’E sup |8YFP+C(E[SE™P+(xn[).  (2.3.19)
ti<t<T i+1<k<n
where C; and C, are two positive constants independent of the partition 7.

We can find a constant § > 0 independent of the partition 7, such that, C;(38)? < %
and T > 26. Denote [ = [%] ([x] means the greatest integer no larger than x). Then/ > 1
is an integer independent of the partition 7. If || < &, then for the partition 7 we can
choose n—1>1i;>ip>--->i;>0,suchthat, T —28 € (t;,_1,t;,], T — 468 € (ti,—1,1i,],
..., T =281 €10,1;] (witht_; =0).

For simplicity, we denote t;, = T and #;,,, = 0. Each interval [t;,,,#;;], j=0,1,...,1,

has length less than 36, that s, |t;; —1;;, | < 36. Oneachinterval [t;,,,%;,], j=0,1,...,1,

tij+1 Y

we consider the recursive formula (2.3.2), and (2.3.19) becomes

E sup [8%7 <Ci(t;—1i,,)’E  sup .\SY,flerCz(E](SYtﬂzﬂn\).
z,-jﬂgzgz,-j lj+1+1§k§lj J

(2.3.20)
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Using (2.3.20), we can obtain inductively

E sup |8V

tij g St

IN

Ciltyy ~ 1, )’E sup |8V +Co (EISYT P +|x)

i.j+1+1§k§ij

C(ty =ty )2+ Co (1 — 1,1 EISY 2+ G (EISY P + | )

—lijy

IN

X <1 +C(ty; — iy, )+ C(ti; — i) Cr(ti; — i +1)°

‘|—"'+C1(t,’j —l‘iHl)zCl(tij —l‘,'j+1+1)2...C1(l‘,'j —tij_1)2>

(C1(38)%)7 " E|8Y

IN

+C, (E|5Y,Z|2 + |7r]> <1 +C1(38)*+(C1(38)2)> +-- -+ (Cl(35)2)ij—ij+1)

_ 6
1—C1(35)?

E|SY P +2C; (EISY P +|x)
J J

VAN

E|SY + (E18%7 2+ x|
J J

IA

= (2G4 DE|SY > +2C|n|. (2.3.21)
J
By recurrence, we obtain

E sup [8Y|
tij+1 Stgtij

QG+ 1) TESE™ P+ Colm| (14 (2C2 + 1) + -+ (2C2 + 1)7)

IN

< 20+ 1)HESETP 1ol (1+(2cz+1)+---+(2cz+1)l>

3(2C, + 1)1

5 (E|SE™* +|x)). (2.3.22)

3(2Cy+1)*!
2

Therefore, taking C = , We obtain

E sup |5Yt”|2§0maXlE sup  |8Y|* < C(|m|+E|E —ET)?).
<is<

0<t<T l‘,’J.+1 Stﬁt,’j
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Combining the above estimate with (2.3.6), we know that there exists a constant K > 0

independent of the partition 7, such that,

T
E sup |n—n”\2+E/O |2, —Z[ |Pdt < K (|n| +E|E — E7|?).

0<t<T
[

Remark 2.3.2. The numerical scheme introduced before, as other similar schemes, in-
volves the computation of conditional expectations with respect to the o-field F;,,,. To
implement this scheme in practice we need to approximate these conditional expecta-

tions. Some work has been done to solve this problem, and we refer the reader to the

references [2], [4] and [15].

2.4 An implicit scheme for BSDEs

In this section, we propose an implicit numerical scheme for the BSDE (2.1.1). Define

the approximating pairs (Y”,Z") recursively by

vr o= &7,
- - - 1 tit1 - lit1 T
Yt = Yl‘i+l+‘f l‘H_],YtiJrl?Ki/r Zr dr Al_/t ZrdWr,
t € titiv1),i=n—1,n—2,...,0, 2.4.1)
where the partition 7 and A;, i =n—1,...,0 are defined in Section 2.3, and £” is an

approximation of the terminal value £. In this recursive formula (2.4.1), on each subin-
terval [t;,t;41),i =n—1,...,0, the nonlinear “generator” f contains the information of
Z”" on the same interval. In this sense, this formula is different from formula (2.3.2),

and (2.4.1) is an equation for {(Y*,Z[)};<i<s;,,- When |x| is sufficiently small, the
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existence and uniqueness of the solution to the above equation can be established. In

fact, Equation (2.4.1) is of the following form:
b b
,=E8+g (/ Zrdr) —/ ZdW,, t€fa,b] and 0<a<b<T (2.4.2)
a t

For the BSDE (2.4.2), we have the following theorem.

Theorem 2.4.1. Let0<a<b<T and p > 2. Let & be F)-measurable and & € LP(Q).

If there exists a constant L > 0 such that g : (Q X R,. %), ® B) — (R, B) satisfies

g(z1) — g(z2)| < L|z1 — 22|,

forallz;,zp € R, and g(0) € LP(Q), then there is a constant 8 (p,L) > 0, such that, when

b—a < 8(p,L), Equation (2.4.2) has a unique solution (Y,Z) € S7([a,b]) x H%.(|a, b]).

Proof. We shall use the fixed point theorem for the mapping from H%.([a,b]) into

H".([a,b]) which maps z to Z, where (Y,Z) is the solution of the following BSDE

b b
Y =8+g (/ zrdr) —/t Z,dW,, t € [a,b]. (2.4.3)

In fact, by the martingale representation theorem, there exist a progressively measurable

process Z = {Z;} ,<;<p such that Eff Z2dt < o0 and

€+g(/abzrdr) =E <é§+g(/abzrdr> ,%) +/abz,dw,.

By the integrability properties of &, g(0) and z, one can show that Z € H.([a,b]).

Define ¥; = E (5 +g (ffz,dr) |3ﬂ> ,t € [a,D]. Then (Y,Z) satisfies Equation (2.4.3).
Notice that Y is a martingale. Then by the Lipschitz condition on g, the integrability of

&, g(0) and z, and Doob’s maximal inequality, we can prove that ¥ € $7.([a, b]).
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Let z!, 7% be two elements in the Banach space H, ([a,b]), and let (Y, Z1), (Y2,Z?)

be the associated solutions, i.e,

. b b .
Kl:€+g(/ erdl’)—/ Z;dWr7t€[a7b],l:1,2
a t

Denote

Then

b b b
=g ( / zldr) -8 ( / z%dr) ~ | Zaw,, (2.4.4)
a a t

for all ¢ € [a,b]. So

ﬁzE(g<AZhﬁ)—g([fﬁm>L%),

for all t € [a,b]. Thus by Doob’s maximal inequality, we have

b b p
E sup |V;]? = E sup E(g (/ zidr) —g</ z%dr) L%)
a<t<b a<t<b a a
b b P
< CE g(/ zidr) —g(/ z%a’r)
a a
b b P
< CE / z;dr—/ Z2dr
a a
, b 5
< C@—apE(/'um> : (2.4.5)
a

where C > 0 is a generic constant depending on L and p, which may vary from line to

line. From Equation (2.4.4), it is easy to see

t
¥, =T+ / Z,dw,.
a

69



for all t € [a,b]. Therefore, by the Burkholder-Davis-Gundy inequality and (2.4.5), we

have
b _ 5 t_ P
E(/ ]Zr|2dr) < CE sup /ZrdWr
a a<t<b|Ja
< C|EI+E sup 77
a<t<b
, b 5
< C(b—a)ZIE(/ |Zr|2dr) , (2.4.6)
a
that is,

— 1.
1Z]lze < Ci(b—a)z 2]l v,

where C is a positive constant depending only on L and p.
Take §(p,L) = 1/C3. It is obvious that the mapping is a contraction when b —a <
8(p, L), and hence there exists a unique solution (Y, Z) € $7-([a,b]) x H,([a,b]) to the

BSDE (2.4.2). O
Now we begin to study the convergence of the scheme (2.4.1).

Theorem 2.4.2. Let Assumption 2.2.2 be satisfied, and let & be any partition. Assume

that E™ € LP(Q) and there exists a constant Ly > 0 such that, for all 1), t; € [0,T],

1
|f(t2,y,2) = f(t1,y,2)| < Li|ta —11]2.

Then, there are two positive constants & and K independent of the partition &, such
that, when || < 8, we have
P

T 2
B swp (57 +B( [ -2 Par) <k (inff +EiE - 7).
0

0<t<T
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Proof. If |mt| < 8(p,L), where 8(p,L) is the constant in Theorem 2.4.1, then Theorem
2.4.1 guarantees the existence and uniqueness of (Y”*,Z"). Denote, fori=n—1,n—

2,...,0,

~ 1 tit1
7T - / Zrdr.
T i =ty Jy

Notice that {Z’f, Yien—1,n—2,... 0 here is different from that in Section 2.3. Then

fit1
Yﬂ t+1+f<tl+l7Yz+1aZt+1>A —/t ZFdW,i=n—1,n—2,...,0.

Recursively, we obtain
n T
=&+ Z f (tk,Ytk ,Zﬂ) A4 —/ ZFdW, i=n—1,n—2,...,0.
k=i+1 li

Denote
6ET =&, SV =Y, Y, 8Zf=7-7ZF, 1€[0,T],

and

7t =7, —

l

—ZFi=n—1,...,0.

1

Ift € [titir1), i=n—1,n—2,...,0, then by iteration, we have

Y7 — 5§ﬂ+ki1[f(tk,Y,k,Z,k)—f(tk,Ytk,Z )]A,H
=it

T
— | 8ZFdW,+RF, (2.4.7)

17

where R is exactly the same as that in Section 2.3.
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Denote f;f =f(te, Y, Z,) — f (16, Y,F

™, ZM). Thenfort € [t;,ti+1),i=n—1,n—2,....,0,

we have

SY*=FE <6§”+ Y fTA1+RF

k=i+1

%) , (2.4.8)

From the equality (2.4.8) for#; <t <t;;1, where i < j < n—1, and taking into account

The above conditional expectation is a martingale if it is considered as a process in-

that 8Y" = 8" = 8&7, we obtain

o
Ty

Ak—1+ sup |RT|+[6E7|
0<r<T

;i<t<T ;i <t<T k=i+1

n
sup [6Y| < sup E( )

dexed by 7 for ¢ € [t;, T]. Using Doob’s maximal inequality, (2.3.11), and the Lipschitz

condition on f, we have

E sup |8Y"|7
t;<t<T
no p
< E sup E( Y /7 A1+ sup |RT|+|6E7] %)]
Li<t<T k=i+1 0<r<T
n p
< CE( Y fF| A1+ sup |Rﬂ+’5§ﬂ’>
k=i+1 0<r<T
n p
< CSE( Y [fF|A-1] +E sup [RF[P+E[8E7|7
k=i+1 0<r<T
= 14
< C{E( ) }SKf\Ak_1> -HE( Y \ZF Ak_1> +|n|z+E|6e;-”|P}
k=i+1 k=i+1
n p
< CO(T—6)’E sup [SYFP+E( Y |ZF| Ay | +]7l2 +E[SET) 5
i+1<k<n k=i+1

where and in the following C > 0 denotes a generic constant independent of the partition

7 and may vary from line to line. On the other hand, we have, by the Holder continuity
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of Z given by (2.2.23),

n R p n 1 tk p
E( Y |ZF| A = E| ) ztk——A Z%dr| Ay
k=i+1 k=i+1 k—1 Ji—
n t n t p
< E Z/ Z, —Z,Jdr+ Z/ 2, — Z7|dr
k=i+1"71k-1 k=it+17 -1
» T p
< C|7r|2+2”_1E( |Z,—Zf|dr)
t
T P
g -1 5 T2 :
< Clm|2 427 (T—ti)ZE(/ |Zr—Z,|dr>
I

L -1 2 T T2 :
_ )t +27 (T —1)5E / 877 Pdr
t
Hence, we obtain

T 5
E sup |6Y|P < Cl{(T—ti)pE sup |5Y,k|p+(T—t,-)12)E(/ |5Zf|2dr)
t

i<t<T i+1<k<n

+yn|’z’+]E\5g”\P}, (2.4.9)

where C is a constant independent of the partition 7. By the Burkholder-Davis-Gundy

inequality, we have

T 5 T P
IE( |5z;f|2dr) <c,E / 8ZFdw, (2.4.10)
t; t
From (2.4.7), we obtain
T no _
/t SZFdW, = 8E™+ Y fTA | +RF — Y. (2.4.11)

i k=i+1
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Thus, from (2.4.10) and (2.4.11), we obtain

T 5
E(/ |52f|2dr) <C,{E
ti

As in the proof of (2.4.9), we have

" p
L e

k=i+1

+E|6§”|p+E}R{f\p+E}6Y,ﬂp}.

S|

T g ) T 5
E(/ |<Sz;f|2dr) < Cz{(T—ti)P]E sup |5Y,k|p+(T—t,~)12E(/ |52;f|2dr)
15

i+1<k<n li

+rn|5+E|65“|”}7

where (; is a constant independent of the partition 7.

If Co(T — t,-)% < %, then we have

T g
E(/ |52f|2dr) <AOT—)E sup |87, [ +20, (|m)f +E|5E77).
i it1<k<n

(2.4.12)
Substituting (2.4.12) into (2.4.9), we have

E sup |8YFP < C (1+2c2(T—z,~>%) (T —H)PE sup |8, |

4i<t<T i+1<k<n

+C1 (14262(T = 1)) (m)8 + E|6E™ ")

< 20T —1)’E sup |8Y, |7 +2C (|n|§+E|5§”|P()z.4.13)

i+1<k<n

We can find a positive constant § < d(p,L) independent of the partition 7, such that,

C:(38)2 < =, (2.4.14)

| =

2C,(38)" < =, (2.4.15)

N =
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and T > 26. Denote [ = [%] Then / > 1 is an integer independent of the partition 7.
If || < &, then for the partition 7 we can choose n— 1 > ij > ip > --- > i; > 0, such
that, T —20 € (t;j,—1,t;,), T —40 € (ti)—1,t;,)> ..., T —281 € [0,1;] (with z_; = 0). For
simplicity, we denote #;, = T and #;, | = 0. Each interval [t;,,,#;], j = 0,1,...,[, has
length less than 36, that is, |t;, — ;| <30. On [t; 1], we consider the recursive

formula (2.4.1). Then (2.4.13)-(2.4.15) yield

E sup [SYFP < 2Ci(t;,—f;,,)’E  sup |6nk|P+2c1(|n|%+E|anjé|P>
' J

lij g SISt ij1+1<k<i;

< 2G(38)E  sup [8%,[7+2C; (|xlf +EISY )
i1 +1<k<i; K

1
< - swp ]5Ytk]p+2cl(\n\ngE](Sth]”). (2.4.16)
J

ij+1+l§k§ij

As in the proof of (2.3.21) and (2.3.22), we have

E sup [8Y|P < (4C, +1)E|SY|P +4Cy|n|?,
J

linSlSlij

and

3(4C) + 1)1
E sup ’5nﬂ‘p§(l+)(

tijp1 Slﬁlij

E|SE™2 + |]%).

Therefore, we obtain

3(4Cy + 1)1
E sup [8Y P < max E sup |8Y|P < 3+ )™ (
0<t<T 0<j<i fij, SISh; 2

E\agﬂ\uw%).

(2.4.17)
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On [tij e tij], Jj=0,1,...,1, based on the recursive formula (2.4.1) and (2.4.17), inequal-

ity (2.4.12) becomes

[SpS1

1.
E(/ |62f|2dr> < 2C5(ti;,—1i;,,)’E  sup |6Ek|”+2cz(|7r|%+E|5€”!”)

tij+l ij+1+1§k§l'j

IN

20,(36)’E  sup |5nk|P+zc2(|n|%+E|5gﬂ|P)

IN

1 )
“E sup yank|P+zc2(\n|‘f+E15§ﬂ|P)
L1 +1<k<i;
3(4Cy + 1)1
(%ch) (18 +EI8E™7)

Thus

P
T £ L 2
IE(/ |52f|2dt) = E(Z/’ \szmzdz)
0 =071
t;.
/ ’ |62,”|2dt)
1,

l
< <l+1)5‘IZE<
ij+l

j=0

[S1aS]

[+1
(+1)% (M —|—2C2) (|n\% +E\5§”|(12)4.18)

IN

Combining (2.4.17) and (2.4.18), we know that there exists a constant

3(4 1l+1
[(:(1+1)% (&

AC
2 + 2)

independent of the partition 7, such that

T g
B sup 1V 4B ( [ 1227 far) <k (nff +Big - £71).
0

0<t<T

Remark 2.4.3. The advantages of this implicit numerical scheme are:
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(i) we can obtain the rate of convergence in LP sense;

(ii) the partition T can be arbitrary (|7t| should be small enough) without assuming

maxo<j<n—1Ai/Aiy1 < Ly

2.5 A New Discrete Scheme

For all the numerical schemes considered in Sections 2.3 and 2.4, one needs to evaluate
processes {Z] }o<;<r with continuous index 7. In this section, we use the representation
of Z in terms of the Malliavin derivative of Y to derive a completely discrete scheme.

From Equation (2.2.20), {DgY; }o<e</<7 can be represented as

T
DGYI =K (pLTDeé +/t pt,rDGf(’?Yr»Zr)dr JOZI) ) (251)

where

P = exp{ | Bawt [ (as - %ﬁf) ds} (2.5.2)

with o = 0, f(s,Y, Zs) and By = 0 f (s, Y, Zy).
Using that Z, = D;Y;, u x P a.e., from Equations (2.1.1), (2.5.1) and (2.5.2), we

propose the following numerical scheme. We define recursively

th = 57 Z;::DT§7

YT = E(’CZHLJC(’M,Y&,,Z” A

lit1

LO%-sl‘i)?
1

n—
ZZ;C = E (p;iilJnD[fg + Z pt?+latk+lDtif(tk+l’Ytl?+l’ZZIE+I)Ak ﬁhﬁ) )
k=i

i=n—1,n—2,...,0, (2.5.3)
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where p;’, = 1,i=0,1,...,n,and for 0 <i < j <n,

x Tk+1 I
Prs; = ©€Xp Z/ o, f(nY,,Z)dwW,
— Tie+1 1
+Z/ (ayf nYT.Zl) — S0 (r YF,Z])] >dr}. (2.5.4)
k=i '

An alternative expression for p;° 1 is given by the following formula

p,’ﬁ,j = CXP{ Zazf I, Y, zkv )(W/tk+1 vvfk)

+E (a0 - Yoz ). ess)

However, we will only consider the scheme (2.5.3) with Ptff,tj given by (2.5.4).

We make the following assumptions:

(B1) f(t,y,z) is deterministic, which implies Dg f(¢,y,z) = 0.

(B2) f(t,y,z) is linear with respect to y and z, namely, there are three functions g(z),

h(t) and f(t) such that

f(t,y.2) = g(0)y+h(t)z+ fi(r).

Assume that g, & are bounded and f; € L?([0,T]). Moreover, there exists a con-

stant L, > 0, such that, for all #1, t, € [0,T],
1
|g(t2) —g(t1)| + |h(r2) — h(t1) + | fi(22) — fi(t1)| < Llta — 112

(B3) [Esupyg<7|Do&|" < oo, forall r> 1.
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Notice that (B1)-(B2) imply (A4)-(AS) in Assumption 2.2.2.

Remark 2.5.1. We propose condition (B1) in order to simplify {Zt’f}i:n,17..,,0 in for-
mula (2.5.3). In fact, there are some difficulties in generalizing the conditions (B)’s,
especially (Bl), to a forward-backward stochastic differential equation (FBSDE, for
short) case

If we consider a FBSDE

X, =Xo+ [{ b(r,X,)dr + [5 0(r, X,)dW,,

Y, =&+ [T f(rX. Y. Z)dr — [T Z.dW,,

where Xy € R, and the functions b, &, f are deterministic, then under some appropriate

conditions (for instance, (hl)-(h4) in Example 2.2.11) thfor i=n—1,...,0in (2.5.3)

gf,‘)?

where (X™, Y™ Z%) is a certain numerical scheme for (X,Y,Z). It is hard to guarantee

is of the form

1

n—

T __ T T /4 /4 T 3

Z, = g (ptHlJnD[ig + Z p[i+1vtk+laxf(tk+l’Xlk+l’Y[k+1 7ka+1)Dtith+1Ak
k=i

the existence and the convergence of Malliavin derivative of X", and therefore, the

convergence of Z” is difficult to derive.

Theorem 2.5.2. Let Assumption 2.2.2 (A3) and assumptions (B1)-(B3) be satisfied.
Then there are positive constants K and & independent of the partition 7, such that,

when |1t| < 8 we have

P )4 £
27 S0 L 1\?2

E Y, —Y®P 4|z, —ZFPL\ < K e (Jog— ) .

max {|%, —Y 71" +12, ~Z7|"} < K|x| o2
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Proof. In the proof, C > 0 will denote a constant independent of the partition 7, which

may vary from line to line. Under the assumption (B1), we can see that
Z[ =E (p,’f%,nDtié '%) Ji=n—1,n-2,...,0. (2.5.6)
Denote, fori=n—1,n—2,...,0,
07f =7, -7, oV =Y, -1 .

Since |[¢* —e¥| < (¢ +€)|x—y

, we deduce, foralli=n—1,n—2,...,0,

527 = 'E (pz,-,anr,-é \ﬁ) _E (p;:l,tnaié \f) ’

<
T

T
< E(|Dt,-&|(pt,-,t,,+pa1,tn)‘ | hwaw+ [ g(yar

1

IDz,-él‘%)

T
Pristn = Priyy

1 T n—1 1 n—1 t
—— h(r)zdr— Z /k+lh(r)dWr— Z /ng(r)dr
Ik

2y k=i+1"% k=i+1
I
4= Z / h(r)zdr L%l.)

2 k=i+1"k
[ tit1
/ h(r)dW,

t

S ]E (|Dlt§’ (ptialn + plir_._hln)

lit1
+ [ lerar

1 [tin

3/,

h(r)2dr1
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From (B2), we have

h(r)dW, + Z / [T h(r)zdr}

lit1 k=i+1

< G ( sup |D9§|) ( sup exp{/ h(r)dW,}),
0<06<T 0<t<T t

where C1 > 0 is a constant independent of the partition 7.

IDElps . < |Dti§|exp{

In the same way, we obtain

T
1D:&1p1s, < Ci ( sup |De§|) ( sup CXP{/ h(r)dWr}>~
0<0<T 0<1<T ¢

Thus fori=n—1,n—2,...,0,

T
677 < 2011@(( sup IDeél) ( sup exp{ / h(r)dwr})[
0<0<T 0<t<T t

h(r)zdr] 9})
T
< 2CE sup |Dg&| sup exp{/ h(r)dW,} sup
0<0<LT 0<t<T t 0<k<n—1

The right-hand side of the above inequality is a martingale as a process indexed by

lit1
/ h(r)dW,
I

lit1 1 [l
+ lg(r)|dr+ =
t 2

Tk+1
/ h(r)dW,
Tk

Tk+1 fk+1 2
+ sup lg ()|dr+— sup / dr
0<k<n—1/1 2 0<k<n—1/4

i=n—1,n-2,...,0.
Let 1, = exp{— [y h(u)dW,}. Then, n, satisfies the following linear stochastic

differential equation

dn, = —h(t)n,dw, + %h(r)zn,dz,

Mo = 1.
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By (B1), (B2), the Holder inequality and Lemma 2.2.4, it is easy to show that, for any

r>0,

r

(gm0 { [V}
_E (exp{/()Th(u)qu}ozltlgTexP{—/Oth(”)dwu}>r

(seoo [ s )' (2 0 { o )

1
T 2
= exp{r2 / h(u)zdr} (E sup nf’) < oo, (2.5.7)
0 0<t<T

IN
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For any p’ € (p, ) by Doob’s maximal inequality and the Holder inequality, (B3) and

(2.5.7), we have

IN

IN

IA

E sup |6Z]|F

0<i<n

CE(( sup |D9§|> (sup exp{/ h(r dW}) [ sup
0<6<T 0<t<T 0<k<n—1

Tk+1 1 Ti+1 ) P
+ sup lg(r)|dr+ = sup h(r)“dr

0<k<n—1Y1 0<k<n—1Y1

Tk+1
/ h(r)dW,
I

B /

7or T 7o\ |
C|E sup |Dgé]| sup exp{/ h(r)dWr}
0<6<T 0<t<T t

Tkt 1
x |E[ sup / h(r)
0<k<n—1 |/ 0<k<n—1'1
/ P

tk+l v
—|—— sup /
2 0<k<n—1/t

- o 1%

2 7| 26/=p) 2pp/ 20/ —p)

r—p T r-p
C|E| sup |Dgé] E( sup exp{/ h(r)dWr}
0<6<T 0<I<T t

r / /

Tkt p Tkt p
/ h(rdW,| +E sup ( / |g(r)ydr>
i Tk 0<k<n—1 Tk

, P
Tkt1 ) p
+E sup / h(r)-dr
0<k<n—1 \/1

ya
C[Il +1 +I3]P'

sup |g(r)ldr

X |E sup
0<k<n—1

p/
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For any r > 1, by the Holder inequality we can obtain

1

v let1 Py
L = E sup <<E sup / h(r)dW,
0<k<n—1 0<k<n—1 |/

n—1 p'r %
< {2 }
k=0

For any centered Gaussian variable X, and any v > 1, we know that

Tkt 1
/ h(r)dW,

178

Tkt 1
/ h(r)dW,

I

Y
2
’

EX|" < C7y3 (E|X|?)

where C is a constant independent of . Thus, we can see that

N =

~ =

- /. n—1 tir1 % / /
re.l.\5 2 L B —
n<|errpnt (/ h(r) dr) <criim|t .

2log L .
Take r = T‘”'. Assume | 7| is small enough, then we have

/ /

e 1
L <Cln|” = (10g|_7r])

P
2

It is easy to see that
/

Tkl p ,
L = E sup (/ yg(r>ydr> <l

0<k<n-—-1 I

and
/

tkt1 5 p ,
L = E sup / h(r)=dr | <C|r|P.

0<k<n—1 Tk
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Consequently, we obtain

T %_210£L 1 %
E sup |6Z7]7 < Clnx| Il logm . (2.5.8)

0<i<n

Applying recursively the scheme given by (2.5.3), we obtain

k=i+1

n
=E (é + Z f(lk,th,Zﬂ:)Ak_”ﬂti) ,i:n— 1,]’1—2,...,0.

Therefore, fori=n—1,n—2,...,0,

n
|8Y/7| gE( Y Y. Z) — f (Y Z)) }Ak1+|RZI+\6€”\I%i> :

k=i+1

where R is exactly the same as in Section 2.3, and 6™ = & — & = 0. In fact, we keep
the term 6£7 to indicate the role it plays as the terminal value .

For j=n—1,n—2,...,i, we have

n
|5Ytﬂ§E( Y Y Zy) — f (Y Z7) | ke + S |Rn\+’5<§ !Vt,)-

k=i+1

By Doob’s maximal inequality and (2.5.8), we obtain

i+1<k<n

E sup |8Y7|”
i<j<n !
p
P
< E( Y, |f Y Zy) — f (. YT Z7) ‘Ak—1> +C<|7T|2+E|55n|p>
k=i+1
< ofe( £ vt ) 2 ( £ a-zian) |
k=i+1 k=i+1
+C (Inl® +El3E™)")
%— pl 1 %
< Q(T-4)’E sup |¥, —¥F|"+C3 (lnl ST <1°g|?|) +E\5§”|f’>,
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where C, and C3 are constants independent of the partition 7.
We can obtain the estimate for Emaxo<;<, |V;, — ¥;*|” by using similar arguments to

analyze (2.4.13) in Theorem 2.4.2 to get the estimate for Esupy, <7 |¥; — Y/"|. O

86



Chapter 3

A singular stochastic differential equation driven by

fractional Brownian motion

3.1 Introduction

Consider the following stochastic differential equation, driven by an additive fractional

Brownian motion (fBm) B with Hurst parameter H
t
X, :xo+/ f(s,Xs)ds + B . (3.1.1)
0

The existence of weak and strong solutions for this type of equation has been proved
under different hypotheses on the function f. In [32], using a Girsanov transformation
for the fBm, Nualart and Ouknine proved the existence of a unique strong solution
assuming that f(s,x) satisfies the linear growth condition | f(s,x)| < C(1+|x|) if H < 3,
and that f(s,x) is Holder continuous of order & > 1 — 5 in x and of order y > H — }
in s if H > % This result was extended by Boufoussi and Ouknine in [5] to the case

where we add to the drift a bounded non-decreasing left-(or right-) continuous function,

in the case H > % The existence of weak solutions assuming that the drift might have
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some jump-discontinuities was derived also in the paper by Mishura and Nualart [28],
assuming H € (%,Ho), for some Hy > %, by means of Girsanov theorem.

The aim of this chapter is to consider the case where H > %, xg > 0, and the drift
f(t,x) is nonnegative and it has a singularity at x = 0 of the form x~%, where & > % -1,
and xo > 0. This singular drift cannot be covered by the above previous results and
requires new techniques.

The study of this type of singular equations is partially motivated by the equation
satisfied by the d-dimensional fractional Bessel process R; = |B|, d > 2 (see Guerra

and Nualart [17], and Hu and Nualart [18]):

t SZHfl

&:E+HM—U/ ds,

0 s
where the process Y; is equal to a divergence integral, ¥; = fé Zle %SB?’i. Except in
the case H = %, the process Y is not a one-dimensional fractional Brownian motion (see
Eisenbaum and Tudor [11] and Hu and Nualart [18] for some results in this direction),
although it shares with the fBm similar properties of scaling and Il{—variation. Notice
that here the initial condition is zero.

Using arguments based on fractional calculus inspired by the estimates obtained by
Hu and Nualart in [19], we will show that there exists a unique global solution which
has moments of all orders, and even negative moments, in the particular case f(z,x) =
Kx~!, if ¢ is small enough. We will also show that the solution has an absolutely
continuous law with respect to the Lebesgue measure, using the techniques of Malliavin
calculus for the fractional Brownian motion. As an application we obtain the existence
of a unique solution with moments of all orders for a fractional version of the CIR
model in mathematical finance ([9]), which is a singular stochastic differential equation

driven by fractional Brownian motion with the diffusion coefficient being 4/x.
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This chapter is organized as follows. In Section 3.2 we will consider the case of
a deterministic differential equation driven by a Holder continuous function, and with

singular drift. The case of the fractional Brownian motion is developed in Section 3.3.

3.2 Singular equations driven by rough paths

Fix B € (1/2,1). Suppose that ¢ : Ry — R is a function such that ¢(0) = 0, and
@ € CP(]0,T]) for all T > 0. Consider the following deterministic differential equation

driven by the rough path ¢

X :x0+/()tf(s,xs)ds+ o(t), (3.2.1)

where xg > 0 is a constant. We are going to impose the following assumptions on the

coefficient f:

(i) f:[0,00) x (0,00) — [0,00) is a nonnegative, continuous function which has a contin-

uous partial derivative with respect to x such that d, f(¢,x) <0 forallz > 0, x > 0.

(ii) There exists x; > 0 and o > % — 1 such that f(¢,x) > g(t)x~ %, for all #+ > 0 and
x € (0,x1), where g(¢) is a nonnegative continuous function with g(¢) > 0 for all

t>0.

(i) f(t,x) <h(t) (141) forall # > 0 and x > 0, where A(¢) is a certain nonnegative

locally bounded function.

Theorem 3.2.1. Under the assumptions (i)-(ii), there exists a unique solution x; to

Equation (3.2.1) such that x; > 0 on (0,00).

Proof. Assume first that xo > 0. It is easy to see that there exists a continuous local

solution x; to Equation (3.2.1) on some interval [0,7), where T satisfies T = inf{r > 0:
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x; = 0}. Then it suffices to show that T = c. Suppose that T < oo. Then, then x, — 0,
ast 1 T. Since @ € CP([0,T]), there exists a constant C > 0, such that [@(r) — @(s)| <
Clt —s|B, for all s,t € [0,T]. Since x, satisfies Equation (3.2.1), for all 7 € [0,T] we
have

T
O:xT:xﬁ—/t f(s,x5)ds+@(T)— o(t).

Since f(s,x;) is positive, for all # € [0, 7] we have

X le—i—/tTf(s,xs)ds = (1) —(T) <C(T —1)P.

From the assumption (ii), there exists 7y € (0,7) and a constant K > 0, such that g(¢) >
K and x5 € (0,x;) for all 7 € [tp, T). Then, for all 7 € [tp, T) we have
(t) _ K K
o

> > > —
fltx) = x% T x% T ca (T—l‘)a[3

Consequently, for all # € [fy,T) we obtain

K(T—t)l—aﬁ_ T K - ﬁ
W_/t wdsﬁft f(s,x5)ds < C(T —1)P,

which is a contradiction because 1 — a8 — 3 < 0 and ¢ can be arbitrarily close to T'.
Therefore, T = co. This proves the existence of the solution for all 7.

To handle the case xo = 0, let us denote by x}' the solution to Equation (3.2.1) with
initial condition xp = % The sequence (x/',n > 1) is non increasing and positive, so it
has a limit, denoted by x;. By the monotone convergence theorem (putting f(z,0) =

+c0) we obtain

X = /Otf(s,xs)ds+ o(r).
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Hence, f(,x;) < oo for almost all # > 0, and this implies that x; > 0 for almost all > 0.
By the previous arguments, if x; > 0, then x; > 0 for all s > ¢. As a consequence, x; > 0
for allt > 0.

Now we show the uniqueness. If x1 , and x;, are two positive solutions to Equation

(3.2.1), then
xu—ijAU@mﬂ—f@mQW&

Because d, f(z,x) <0 forall > 0, x > 0, we deduce

(mfﬁmfZgg@m—nﬁvmmﬁ—ﬂ&mM%SO

So X1t = X2t
Thus we conclude that there exists a unique solution x; to Equation (3.2.1) such that

x> 0on (0,00). O

Remark 3.2.2. From the continuity of x; and f(t,x) and the Holder continuity of ¢(t),

we obtain that for any T > 0, x € CB(]0, T)).

The next result provides an estimate on the supremum norm of the solution in terms

of the Holder norm of the driving function ¢.

Theorem 3.2.3. Let the assumptions (i)-(iii) be satisfied. If x; is the solution to Equa-

tion(3.2.1), then for any y > 2, and for any T > 0,

Y
[[x[l0,7,00 < C1 5,8,7(1X0] + 1) exp {szﬁj (1 + ||‘P||£,(},_l3l>) } ’ (322)

where C, ,, g 7 and C, ,, g 7 are constants depending on J3,7, hllo70andT.
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Proof. Fix a time interval [0,T]. Let y, = x/. Then the chain rule applied to x/ yields

t 1

1 q_1
yt—x0+y/ f(s,y))ys Tds+y Oys "do(s). (3.2.3)

The second integral in (3.2.3) is a Riemann-Stieltjes integral (see Young [38]). From

Assumption (iii), we have

’}’t _)’S| =

t 1ot tog_1
(u,yi)yu "du+ [ yu "do(u)
)

2 1 to_1
< KTY/ {yu "y 7} dut+y| | yu "d(u)|, (3.2.4)
N
where K7 = sup, o 7] i(t). Since ¥ > 2, we have
12 1—2 -1
[T |k bl 6=, (325)

Since a > %— 1, we have ¢ > aff > 1 — 3. Thus 1 — a < 3. From Remark 1.1, we

know that y € CP([0,T]), for any T > 0. A fractional integration by parts formula (see
Zihle [39]) yields

-
/ T do(u / D yh D%, (u)du, (3.2.6)

where @ (u) = ¢(u) — ¢(t), and D% and D;=% denote the left and right-sided frac-

tional derivatives of orders & and 1 — ¢, respectively (see [35]), defined by
_71/ 1—1 1—1

1_7 1 Yu “Yu Y_Yr ’
D%y T = a/ Yu = ) 307
s+ Ti—o) | u—s)@ " %), w=nort® (3.2.7)
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and

o —1)l-a u) —
D)= <p,_(u):(r()a) <(’Zt(_)u)l 4 /‘pr_uz ’ r>. (3.2.8)

From (3.2.7), and using the Holder continuity of y we obtain

1-1 1—1
“Jyu T —yr y|

o (u—r)et dr

_1 1—1
|D5+yu T < CIDllsab(u—s)"%+

< (Hyum wsy ot [ ’HM )
< (b= @byl [(went P ar)
< o9+ Hyng(u—s)ﬁ“‘v)‘“> C G629)

where and in what follows, C denotes a generic constant depending on &, 8 and 7. On

the other hand, from (3.2.8) we have
D}~ %@, (uw)| < Cll@llo,rp(t —u)*P1. (3.2.10)

Substituting (3.2.9) and (3.2.10) into (3.2.6) yields

t 1= - 1= Ly
¢ [ (blhdte=s) e+ il fu—s 0 )
: (t—u)*P1au

t -1

yu Tdo(u)

IA

IN

“

_1 1—1 1
PR N (Al BCER DY
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Substituting (3.2.11) and (3.2.5) into (3.2.4) we obtain

1
yo—yy| < KTy[nyns,ounyn 4 (t—)+CYlollors

1-1 11 N
(Il =99 + Il e -2,

1 .
Consequently, using the estimate x'77 < 14xforall x > 0, we obtain

1
Tl 4( — B Yl ollors

W)=Y,

Wlp < m[

(i

+(

which implies

-

ple—)P7]

x(r=s)"

1
g < [||y||”;+|ryum]

(Hyn” r—@‘““”) .

Y

< < 1 )ﬁ(7—1> (32.12)
“\crlolors) =

Then for all s,¢ € [0,T], s <t, such thatt —s < A, we have

Suppose that A satisfies

1-1

Il p < 2Kw[uy||m+ ||y|rs,w] (1—s)1-
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and this implies

B

&Lﬁ(t__s)

1=2 1-1
< Iyl +2K77 {nyns,z,ou ||y||s,t;} (t—s)

[V[lsr00 < |ysl+ 1y

1

1—1
+2CY@llo.r pl¥lls (= 5)P + (1 )P

Using again the inequality x* < 1 +x for all x > 0 and & € (0, 1), we have

Vst < sl +4Kry (14 [[Y]ls0) (£ =5)

sie0) (1 _S)ﬁ +(t _S)ﬁ,

+2Cvllello,rp (1+ly

which can be written as

900 (1= 2CH1@l0 7 ¢ — )P — 4Kry(s =)

< |yl +H4Kry(r —s) +2(t —s)P. (3.2.13)

Now we choose A such that

1

A_( 1 )minA( 1 >A< 1 )ﬁ G210
2Cyllello.rp 16K7y 8Crlellorp/) o

Then, for all s,z € [0,T], s < ¢, such that r — s < A, the inequality (3.2.13) implies

[¥lls000 < 20ysl+Cyp.rs (3.2.15)

where Cy g 7 = 8KryT +4TB. Take n = [£]++1 (where [a] denotes the largest integer

bounded by a). Divide the interval [0, 7] into n subintervals. Applying the inequality
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(3.2.15) for s =0 and t = A, we have for all t € [0,A]

[¥ll0.00 < 2[y0l +Cypr - (3.2.16)

Applying the inequality (3.2.16) on the intervals [A,2A],...,[(n —2)A, (n—1)A],[(n—

1)A, T] recursively, we obtain

Ilore < 2'yol+2" 'Cypr+-+Cypr
T
< 2l (ol +-¢cypr)
_r 1
< ZT(2Cy\|<p||O,T,ﬁ)ﬁ<V*‘>V(IGKTY)V(SCYIWHOM)B+1(|y0|+C B.r)-

Therefore, we obtain

Y
Iilore < Cupr(il + Desp{ o (1410155 ) |

which concludes the proof of the theorem. 0

3.3 Singular equations driven by fBm

Let B = {B},~( be a fractional Brownian motion with Hurst parameter H € (1/2,1).We

are interested in the following singular stochastic differential equation
t
X, :x0+/ f(s,Xs)ds+BH | (3.3.1)
0

where xp > 0, and the function f(s,x) has a singularity at x = 0 and satisfies the as-
sumptions (i) to (iii). As an immediate consequence of Theorem 3.2.3 we have the

following result.
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Theorem 3.3.1. Under the assumptions (i)-(iii), there is a unique pathwise solution
X = (X;,t > 0) to Equation (3.3.1), such that X; > 0 on (0,00) and for any T > 0,

1X1|0,7,00 € LP (L), for all p > 0.

Proof. Fix B € (%,H )and T > 0. Applying Theorem 3.2.3, we obtain that there is a
unique pathwise solution X = (X;,¢ > 0) to Equation (3.3.1), such that X; > 0 on (0, )

and

Y
1X 10,700 < Cl’%lg’T(]xo| +1)exp {CZJ,’[;,T (1 + HBHHg,(;,_ﬁ])) } ) (3.3.2)
If we choose 7 such that y > 2;6 7> then ﬁ(yy—l) < 2, and by Fernique’s theorem (see

[14], Theorem 1.3.2, p. 11), we obtain

Y
H B(y—1)
B lors "y < oo, (3.3.3)

for all C > 0, which implies that E(||X||5 ;- ..) < e forall p > 1. O

Note that in the case f(s,x) = )1? and xo = 0, the solution to Equation (3.3.1) is
positive for any ¢ > 0, as in the case of the standard Brownian motion.
Theorem 3.3.1 implies the existence of a unique solution to the following stochastic

differential equation with non Lipschitz diffusion coefficient:

t 1
Y, = yo+ /0 Fls,Y)ds + /0 JYidB!, (33.4)

where yq is a nonnegative constant and f is a nonnegative continuous function satisfying

the following conditions:

(i’) There exists x; > 0 such that f(z,x) > g(¢) for all > 0 and x € (0,x;), where g is

a continuous function such that g(¢) > 0ifz > 0.
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(ii”) f(z,x) > xdyf(t,x) forall z > 0 and x > 0.

(iii”) f(t,x) < h(t)(x+1) for all r > 0 and x > 0, where % is a nonnegative locally

bounded function.

The stochastic integral in Equation (3.3.4) is a path-wise Riemann-Stieltjes integral,
which exists by the results of Young [38]. The term +/Y; appears in a fractional version
of the CIR process in financial mathematics (see [9]) and cannot be treated directly by
the approaches in Lyons [22], Nualart and Réscanu [33], since function g(x) = /x does
not satisfy the usual Lipschitz conditions commonly imposed. We make the change of
variables X; = 2./Y;. Then, from the chain rule for the Young integral, it follows that a
positive stochastic process Y = (Y;,# > 0) satisfies (3.3.4) if and only if X; satisfies the

following equation:

2 f(s,X
X, = 2./50+ /0 %dw}gﬁ. (3.3.5)
)

Let fi(t,x) = 2f(¢,x)x"'. Then fi(¢,x) satisfies all assumptions (i)-(iii), and hence
from Theorem 3.3.1, we know that there exists a unique positive solution X; to Equation
(3.3.5) with all positive moments. So Y; = X,2 /4 is the unique positive solution to

Equation (3.3.4), and it has finite moments of all orders.

The next result states the scaling property of the solution to Equation (3.3.1), when

the coefficient f(s,x) satisfies some homogeneity condition on the variable x.

Proposition 3.3.2. (Scaling Property) We denote by Eq(xo, f) Equation (3.3.1). Sup-
pose that xy > 0, and f(t,x) satisfies assumptions (i)-(iii), and f(t,x) is homogeneous,
that is, f(st,yx)=s"y"f(t,x) for some constants m,n. Then, the process (aHX 0> O)

has the same law as the solution to the Equation Eq(axy,a?—"H~m=1 1),
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Proof. For each a > 0, we know that {a~# B + > 0} is a fractional Brownian motion.

We denote X, the solution to the following equation:
! HpH
Xar = X0+ /0 f(s,XmS)ds +a " B,.
So (X;,t > 0) (the solution to Eq(xy, f)) has the same distribution as (X,;,# > 0). Then

i
aHXa = aHxO—i—/a aHf(s,Xays)ds—k Bfl
’ 0

1
= aon+/ aH_l_m_"Hf(r,aHXag)dr—k B,
O a

which implies the result. ]

As an example, we can consider the function f(z,x) = s"x~%, where o > % —1,

and y > 0. Then, if (X;,7 > 0) is the solution to Equation
t
X =x0+ / sYX %ds+ B
0
(3.3.1), then <aHXL,t > 0) has the same law as the solution to the Equation

t
X :aHx0+aH_aH_y_]/ sYX %ds+ B,
0

3.3.1 Absolute continuity of the law of the solution

In this subsection we will apply the Malliavin calculus to the solution to Equation
(3.3.1) in order to study the absolute continuity of the law of the solution at a fixed
time r > 0. The basic criterion for the existence of densities (see Bouleau and Hirsch

[6]), says that if F € D'2, and |DF||,, > 0 almost surely, then the law of F has a
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density with respect to the Lebesgue measure on the real line. Using this criterion we

can show the following result.

Theorem 3.3.3. Suppose that f satisfies the assumptions (i)-(iii). Let X; be the solution
to Equation (3.3.1). Then for any t > 0, X; € D2, Furthermore, for anyt > 0 the law

of X; is absolutely continuous with respect to the Lebesgue measure on R.

Proof. Fix atimeinterval [0,T], and let § € (3,H). We want to compute the directional
derivative (DX;, ®) ,,, for some ¢ € # . The function & = Ry ¢ belongs to CP([0,T])
and hy = 0. Taking into account the embedding given by Ry : ¢ —€Q mentioned
before, we will have

dAXE

<DXI7(p>% = de ’8207 (336)

where X£ is the solution to the following equation
t
X¥¢ :xo+/ f(s,X8)ds+ B +eh,, (3.3.7)
0

t €10,T], where € € [0,1].
From the estimate (3.3.2) replacing B by B +eh it follows that there is a constant

C independent of € such that

E| sup |X|P | <C <o,
0<t<T

for all p > 1. From Equations (3.3.1) and (3.3.7), we deduce

t
xf—xt:/o (F(5,XE) — f(s,X,))ds + ehy. (33.8)
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By using Taylor expansion, Equation (3.3.8) becomes:
t
XE X, = / O, (XE — X, )ds+ ehy (33.9)
0

where @5 = d, f(s,X; + 6;(Xf — X;)) for some 6F between 0 and 1. By using (1.1.3)

the solution to Equation (3.3.9) is given by

XE—X, = S/OZeXp </st®rdr) d(Ry0)(s)
_ S/OICXp (/:G)rdr) (/OSW(K};(;))(MMO ds
— ¢ /O ’ ( / "exp ( / l @,dr) aK’g—(Ss’”)ds> (K 0) (u)du

Using (1.1.3) and (1.1.4) we can write

xt-x = e [ ko) (& (exp ([ 0r) ) ) (a

- <(p,exp (/t®rdr)>
— eoy /0 /0 o(s)exp ( / @rdr) s — w2 duds

Since d,f(t,x) is continuous and d,f(t,x) < 0 for all + > 0 and x > 0, we have

exp ( flﬁ @,dr) < 1. Asaconsequence,

XF—-X
lim L= OCH// exp(/ o f(r, dr) s —u* 2 duds
£—0 &

= (e ([ asrxar) 10, ) .
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where the limit holds almost surely and in L?(). Then, taking into account (3.3.6), by

the results of Sugita [37], we have X; € D!, and

t
DX; = exp (/ 8xf(r,X,)dr> Lo - (3.3.10)

Finally,

IDFIE = an [ [ e ( / ’axf<r,xr>dr)

t
X exp < / ocf (r,Xr)dr> s — u|?2duds > 0.

]

In the next proposition we will show the existence of negative moments for the
solution to Equation (3.3.1). The proof is based again on the techniques of Malliavin

calculus.

Proposition 3.3.4. Let (X;,t > 0) be the solution to Equation (3.3.1), where f satisfies
conditions (i)-(iii), and xo > 0. Suppose that f(s,x)x > (p+1)Hs*~for some p > 1

and any s € [0,t] and x > 0. Then

E(X, ") < x,”. (3.3.11)

1
In particular, for the function f(t,x) = %, we obtain that (3.3.11) holds ift < (ﬁ) e

Proof. For any fixed p > 1, we construct the family of functions ¢g(x) = W, x>0.

Then @¢ T x77, as € | 0. For each € > 0, ¢, is a bounded continuously differentiable

function and all its derivatives are bounded.
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By the chain rule we obtain,

! t
0eX) = pelxo) + | «pg(ng(s,xs)m " gl
_ t 1 -
= #elw) p/ 8+X p+1 P/O (£+XS)P+1dBS (3.3.12)

Then, Proposition 5.3.2 in [31] implies that

t 1 1
/o—<e+xs>p+1"35' - 5(m1wﬂ<~‘>>—@“>%

// 8+X p+2 |s—r?"2drds,  (3.3.13)

where 6 is the divergence operator with respect to fractional Brownian motion. Using

Equation (3.3.10) we obtain

H—]
2H-2
// g-|—X [7+2 |S—r’ d}"dS<H/ md (3314)

From (3.3.14), (3.3.13), and (3.3.12) we get

wex) < octo)—p [ a6 (erton®)

(e + X, )PH1 e+ X,)pt1 104]
2H-1
1)H —d
TP tl) / (€ + X;)P+2
/st —(p+1)Hs*H !
ds
(€ +X;)Pt?

0 (WW )
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Fix some 7, such that f(s,x)x > (p+ 1)Hs?~! for all s € [0,7] and x > 0. Taking

expectation on above inequality, we have

E(@e(X:)) < @e(x0) < x,°.

Let € tends to 0. Applying monotone convergence theorem we obtain

E(Xtip) < x()pa

which completes the proof of the proposition. 0
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Chapter 4

Approximation schemes of the solution of a stochastic
differential equation driven by fractional Brownian

motion

4.1 Introduction

Let BY = {(B"! BI? ... ,Bfi’m)},e[oﬂ be an m-dimensional fractional Brownian mo-
tion with Hurst parameter H € (1/2,1).
In this chapter we are interested in approximation solutions of multidimensional

stochastic differential equations of the form
t

X, :X0+/ o (X,)dBY, (4.1.1)
0

or

. . m t .. .
X,’:X6+Z/ " (Xs)dB i=1,....d, (4.1.2)
=170

where the integral is a pathwise Riemann-Stieltjes integral.

(SRV

Fix n, and set 1, = ’% for k=0,...,n. Set k,(t) = ’% if kn—T <t <

0,...,n. We will also set § = % The aim of the this project is to establish an optimal
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rate of convergence of the Euler scheme of the form
. . n ro.. .
X" =X Y [ oM aBi= 1,
j=170 "

The numerical solution of stochastic differential equations (SDEs, for short) driven
by Brownian motion is essentially based on the method of time discretization and has a
long history. Difficulties appear in constructing numerical solutions of SDEs driven by
fractional Brownian motion, because the fraction Brownian motion B is not a semi-
martingale. Numerical schemes for SDEs driven by fractional Brownian motion are
studies only in few works, see [29] and the references therein. The authors in [30] gave
an exact rate of convergence of the Euler scheme in one-dimensional case by using a
specific representation for the solution. However, new techniques are required in multi-
dimensional case. One result for the rate of convergence can be found in Mishura’s
book [27]. In our work, we are searching for optimal estimates of the errors of Euler
Scheme and Milstein scheme by using some different techniques such as the variation
property of the fractional Brownian motion.

Throughout this chapter for simplicity we consider one-dimensional fractional Brow-
nian motion BY. The results obtained in this chapter can be easily extended to multi-

dimensional case.
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4.2 Fractional integrals and derivatives

Let a,b € R with a < b. Denote by L”(a,b), p > 1, the usual space of Lebesgue mea-

surable functions f : [a,b] — R for which || f||zr < oo, where

» (21rwwar)” e < p<os
L=

esssup{|f(¢)|: t € [a, ]}, if p =oo.
Let f € L' (a,b) and o > 0. The left-sided and right-sided fractional Riemann-Liouville
integrals of f of order o are defined for almost all x € (a,b) by

BS0) = gy [ =9 )

and

(-1~
I'a)

=5k [0t ras

respectively, where (—1)"% = ¢7"* and ['(a) = [5°r* le™"dr is the Euler gamma

function. Let I, (L?) (resp. I (L”)) be the image of L”(a, b) by the operator I, (resp.
IX). If fel? (LP) (resp. f €I (L7))and 0 < o < 1 then the Weyl derivatives are

defined as

D% f(t) = ! ( 0o /;Mds> La) (1) 4.2.1)

Fl—a)\(—a)” (t—s)**!

and

Dy _f(t)= r((Il_)a) <(bf —(tt))“ +o /t ’ %w) L(a) (1) (4.2.2)
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for almost all 7 € (a,b) (the convergence of the integrals at the singularity s = ¢ holds

point-wise for almost all 7 € (a,b) if p = 1 and moreover in LP-sense if 1 < p < ).

Recall from [35] that we have:

1 __D
° Ifa<13andq— —ap then

I (L) = I (L) C L?(a,Db).

° Ifa>%then

1% (LP) UIZ (LP) © C* 77 (a,b).

The following inversion formulas hold:

I (DG f) = f, VPR (L)

L (Dy_f) = f,  VfERL(L)

and

DY, (I&.f)=f, Dy (Ff)=f, VfeL'(ab).

On the other hand, for any f,g € L'(a,b) we have

b

b
[ s = (=0 [ f0r s

and for f € I, (L?) and g € I (L?) we have

b b
| D pwsod = (<1 [ s g
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4.3 Generalized Lebesgue-Stieltjes integration

Following [39] we can give the definition of the generalized (fractional) Lebesgue-
Stieltjes integral of f with respectto g. Let f(a+) =limg_, f(a+€), g(b—) =limg_0g(b—

€) (supposing that the limits exist and are finite) and define

Jar (1) = (F(1) = fa+)) Lap) (1),

gr-(1) = (8(t) =g(b=))1(ap)(1)-

Definition 4.3.1. (Generalized (fractional) Lebesgue-Stieltjes Integral). Suppose that
f and g are functions such that f(a+), g(a+) and g(b—)exist, f,4 € 1% (LP) and
8p— € Ibl:a(Lq)for some p,q>1,1/p+1/q<1,0< o < 1. Then the integral of f

with respect to g is defined by

[/ s = (0% [ D, o (0D} ey (0t 1) a10-) —glat)). @31

Remark 4.3.2. If ap < 1, then we have f, € I$ (LP) if and only if f € I, (L?). In

this case, under the assumptions of the preceding definition (4.3.1) can be rewritten as

b b
| fag=(=1)" | D2 0D} (1)t (43.2)

Remark 4.3.3. Suppose that f € C’l([a,b]) and g € CH([a,b]) with A+ u > 1. Then,
from the classical paper by Young [38], the Riemann-Stieltjes integral | f fdg exists. It
is also proved in [39] that the conditions of the above definition and remark are fulfilled
and we may choose p =q = o and o < A, 1 —a < W. Moreover, the generalized

Lebesgue-Stieltjes integral | f fdg coincides with the Riemann-Stieltjes integral.
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The linear spaces I, (L”) are Banach spaces with respect to the norms

1£ e, oy = I fllr + DG, fllers

and the same is true for /¥ (L?). If 0 < & < 1/p, then the norms of the spaces I, (L”)
and I¥ (L?) are equivalent, and for a < ¢ < d < b the restriction of f € I, (L?(a,b))
to (c,d) belongs to 1% (LP(c,d)) and the continuation of f € I% (LP(c,d)) by zero
beyond (c,d) belongs to I% (L”(a,b)). As a consequence, if f € I% (L”(a,b)) and
g € I, _*(L9(a,b)) then the integral ff 1(c,a)fdg exists in the sense of (4.3.2) for any

a < c¢ <d<band we have

d b
/ fdg = / e fdg,

whenever the left-hand side is determined in the sense of (4.3.2).
For a matrix A = (a"/) 44, and a vector y = (y')4xq denote |[A| = /¥, ;|a’/|? and
y=VLily? Forfixed 0 <o <1, yF(t) = [f(0)| + Jo |f(t) = f(s)I(t =)~ "ds.

Consider the following functional spaces. Let W& (0,7;R?) be the space of R?-valued

measurable functions f : [0,T] — R? such that

17

00 = sup Y7(t) <eo.
0<t<T

Let W*(0,T;R?) be the space of R?-valued measurable functions f : [0,7] — R?

such that

=, sup (D=L, IO <o

0<s<t<T (t
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and W (0, T;R?) be the space of R?-valued measurable functions f : [0,T] — R such

/’f dt+//’f (x+1 ds<

Note that the spaces W,%(0, T;R?),i = 0,2 are Banach spaces with respect to the

that

corresponding norms, and || f||1 ¢ is not a norm in the usual sense. Moreover, for any

O<e<ao
C*"(0,T;RY) c W2(0,T;R?) c C*¢(0,T:R%),i=0, 1,

and

CoT(0,T;RY) € W (0,T;RY).

Therefore, the trajectories of a d-dimensional fBm B foraa. weQ, any T >0
and any 0 < B < H belong to Wlﬁ (0,T;RY).

If d = 1, then denote W*(0,7) = W,*(0,T;R),i=0, 1, 2.

Let f € W¥(0,T). Then its restriction to [0,¢] C [0,7] belongs to I* (L*(0,1)) for

all r and define

Ao(f) = 0<Sl<1£)<T|Df‘—ft—(S)’ < M—a)

If f € WE(0,T;R?), then define Ag(f) =max;—;__4Aa(f?), and Ag(f) < 1 %) 1 fll1,a <

The restriction of f € WY(0,T) to [s,#] C [0, T] belongs to I% (L' (s,t)) for all s, .
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Notice that if f is a function in the space W,;*(0,7T'), and g belongs to the space

WII_O‘(O, T), then by (4.3.2) the integral [! fdg exists for all 0 < s < ¢ < T and we have

/stfdg' = ‘(_1)05 OtD;er ()}~ %g,_(u)du
< sup [0 ) [/ [DE )] du
Aia(g) (" (_1f(w) “1f () = f(r)|
B F<1—a>/s (<u—s>a+°‘ : Wt”) du. (433)

If f € W(0,T;RY) and g € W/ ~*(0,T;R?), we have the following generalization of

the above inequality

dg

t
fdg‘ =
N

< Ai—a(g)c /sl ((Lf_(

where ¢; > 0 is a constant depending only on & and d.

IO G
ot [ Tear) an

4.3.4)

4.4 Deterministic differential equations

Consider the following differential equation driven by a Holder continuous function

g:[0,7] — R™ of order § > 1:
X = Xo+/ X;)dgs, 4.4.1)

or

X0+Z / o (Xy)dgl,i=1,....d, (4.4.2)

where ¢ : R? — R?*™ is a continuously differentiable function whose partial deriva-

tives are bounded and Holder continuous of order y > % -1

112



We summarize the conditions on o as follows:
(H1) |o(x)| < Li(1+ |x|), for some positive constant L.
(H2) |o(x) — o ()| < La|x—y|, Vx, y € R4, for some positive constant Ly.

(H3) |0y, (x) — 65,(y)| < M|x—y|",¥x,y € RY i =1,...,d, for some positive constant

M.

Notice that condition (H2) implies condition (H1) since ¢ is a deterministic func-
tion. However, we still list them for distinguishing the two constants L; and L,.

Fix o < , such that o > 1 — 8 and ¥ > Z;. By Theorem 5.1 in [33], there exists
a unique solution X € W ([0, T];R?) to equation (4.4.1), and moreover, the solution is

(1 — a)-Holder continuous..

Fix n, and set 7, = kT for k=0,...,n. Set k,(t) = ]% if ]% <r< (Hnl)T,k =

0,...,n. We will also set 6 = ;. Consider the Euler approximation scheme defined by

X0+/ dgs, (4.4.3)

or equivalently,

X" =X+ (X)) (8~ &) (4.4.4)

forany <t<(k+1) ,k=0,...,n.
Given a multidmensional stochastic process {Y;,7 € [0,7T]}, we will make use of

the following notation

Y' = sup |Yi,
0<s<t

N el
A(Y) = /Omd&

W,(Y) = ¥ +A(®Y).
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Lemma 7.6 in [33] gives the following version of the Gronwall lemma.

Lemma 4.4.1. Fixv € [0,1),A, B> 0. Let x: [0,00) — [0,00) be a continuous function

such that for each t € [0,0)
1
x <A +Btv/ xs(t—s)"Vs Vds.
0

Then

< Ady exp{cvtBﬁ s

where cy and d are positive constants depending only on v.

Theorem 4.4.2. Suppose © satisfies the conditions (HI) - (H3). Let X and X" be
the solutions to equations (4.4.1) and (4.4.3) respectively. Then there exist two positive

constants &y and K such that

X, — x| < ks,

sup
0<t<T

forall 6 < &.

Proof. We will prove the theorem in three steps.

Step 1 Define the following modification of the above seminorm:

x® _x
(n) (n) () | Ka(r) |
V=X + _—
t t /0 (1 —5)ot1 ds,

where X,(n) "= SUPo<s<; |Xs(")| By means of a suitable generalization of Gronwall’s

(n)

lemma we will show that ¥, is uniformly bounded by a constant. To do this we need

(n)

some estimates on X,(n) ’ and on the increments ‘X Kalt) Xs(") ‘ First we have, using the
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estimate (4.3.4) for Riemann-Stieltjes integrals,

Xt(n)

IA

t
(n)
ol | [ ox, s
< [Xo| +A1-a(g)c1
t ()
s_ads-l-//
0 JO

()

The linear growth and Lipschitz properties of ¢ imply that

I(X,1y)

Kn Kn(u)

Xl( n)

< [ Xol+Ai—alg)ct
LT t
X L
( 1~ a + 1/0
t ()
+L2// (
0 Jo

By the definition of the Euler scheme (4.4.3)

s %ds

Xs(n),*

K (1)

() y(n)
XKn(s) Xy

_|_

) (s— u)_“_ldua(sﬂf>4.5)

(n) _ y(n) (n)
Xu XK,, (u) XKn (u)

) (= ()P
(4.4.6)

= o)) (80— gw)| < 1 g (1+

As a consequence,

X'(sz”) D (u—ta(u))P (s —u)~*'duds

rrKa(s)
/0/0 <1+

t rKa(s)
< (l +Xt(n)’*>/o ; (1 — K (u))P (s — )~ 'duds

(VAN
/X
p—
_I_
2
S
*
N——— N———
O\N
—
©
|
L
—
(4
N—
N—r
Q
QU
[

IA
|
=
_I_
2<

©

VAN
S
(o7]
=
/N
p—
_I_
<
S
%
N———
/\_
o,
|
L
—~
i
SN—
N—
Q
QU
[

= o (14x"7). (4.4.7)
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Substituting (4.4.7) into (4.4.5) yields

: - pels) [ty — X"
X" <o rox Pt o / X s ds 4y / / g duds,
0 o Jo (S_u)oH—l
(4.4.8)
with
Tlf(x T1+ﬁ7a
| Xol +Ai-alg)erily | 7o + z!\g\lﬁa(l_a) )
€ = Aa@alillely
2 = M-al8)C1lil2 gﬁa(l—(x)’

Cz = Aj_q(g)cily,

Cy = Ai_qlg)cils.
On the other hand, for s < k;,(¢), using (4.3.4) we have

(n) (n)
XKn(t) — X

) ) o
< A-a(g)e </ G(XK',,(V)) (v—s)"%v
Ka(t) rKn(v)
[ o)
_ - Kn(t)
< Ar-alg)er (h% +L1/ Xv(n)’*(v—s)_adv

(n) (n)
XZ - XKn (Z)

K. (1)  rxu(v)
A A

(n) (n)
X () X;

_|_

) (v— z)_o‘_ldzdv>4.4.9)
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Using again the estimate (4.4.6) we obtain

/K‘n(t)/l('n(v)
< L1H8||ﬁ/ / (1

_|_
Kn(l) Kn (V)
< L1H8||[35ﬁ <1+X() )/S i (v—2)"% dzdv
1
o

< Liflgllp8® (14x"7)

Klt) ()
< C5(Kn(t)—s)l_a-|—C6/ X% (0 — )%y

Kn(t) rKn(v
‘G / /

Kt
+C3 1+X Sﬁ/ (v—1,(v)) " %dv,

(n)

Az

(v—2)"% dzdv

where

1
G = Al—a(g)clLll_aa
Co = Ai_q(g)cily,
Cr = Ai_a(g)cily,

1
Cs = A_g(g)ciliLy ngﬁ p

(4.4.10)

(4.4.11)

Now we multiply each of the terms on the right-hand side of (4.4.11) by (t —s)~ %!

and integrate in s over the interval [0, k,(7)]. In this way we can obtain the following

estimates.
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Kn(t) K (2) 712
/ (t—s5) % K, (r) —5) " %ds < / (t—s)"2%ds < . (44.12)
0 0 1-2x
The second estimate is as follows
K (t) K, (1)
/ (t—s) ¢! (/ Xv(n)7*(v—s)_adv> ds
0 s
K (1) v
= / X" (/ () I (T s)_ads) dv
0 0
Kn (1) (n) 5
< c/ Xy (t—v) “dy, 4.4.13)
0

where ¢ = [7°x~%*(1+x)~% !dx. Then the third estimate is

[ ‘“//
L e
5/0" (z—vra/o”

n) (v—z)"% Ydzdvds

(v - z)_a_l (t —s5)"* Ydsdzdv

x"— x ) (v—2)"% ' dzdv. 4.4.14)
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For the fourth estimate, let k;,(¢) = k0 for some 0 < k < n. Then, the interval [0, k;,(¢)]

can be decomposed as [0, (k—1)8) U [(k—1)8, (k— $)8) U [(k— 3,k8] and we have

ai:O 1) o J(k—-1)6
1 ko o o
+a (ki%)s(t—v) (v—15,(v)) %dv
= " +5"+1"). (4.4.15)
- k=2 (i+1)8
1" < Z(t—(i+l)6)“/5 (v— Ka(v)) " %dv
i=0 l
L A
e l
1 1—()6/(k_1)6 —OC
< _
< 1 g A (t—v) %dv
1 l—oapl—a
< . 4.
< (1_a)25 T (4.4.16)
-0 (k=18 1 S 1-2a
w_ (8 /‘ 2o P L
L < (2) s (v—15,(v)) %dv o l2 (4.4.17)
-0 kS —o l1-a
() 0 / ) %y < — o 38
1, _(2) (k_%)ﬁ(t V) fdv< (3 : (4.4.18)
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Therefore, taking Co = mTz—a + a(lla) (%) =2 ria ﬁ (%) =23 1api-a
we obtain the fourth estimate
K (1) )
5P / (1 —s)~ ! / (v — Ka(v))~%dvds < CoP—. (4.4.19)
0 K

From (4.4.11)-(4.4.19), we get

(n) (n)
50 P %] (1) 5B 50 w32
/0 (t—s)ot! ds < Cio+CnX""8P a+C12/O X" (r—v) " %dy

e [ e [V st X dzdt44.20
+13/0 (t—v) /0 WZ@‘}-- )

where

1-2a p
C = C CCyTP ¢
10 ST og T84 :
Cii = Gy,
Cnn = Cec,

1
Cs = —C.

o

Finally, adding (4.4.20) and (4.4.8) yields

1
e < OO TSP O / P (5% 4 (1 —5)"2%) ds, (4.4.21)
0
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where

Cis = Ci+C,
Cis = G+Cyy,

Cie = (C3 -|-C4Ta +Cip -|—C13Ta.

Note that all constants C’s are independent of . Thus, we can choose a &y such that

C156(€3_a < % then for all 6 < &y, we have

t
w < c<1+/\P§") (s—“+(t—s)—2°‘)ds)
0

t
< C <1 —I—tza/ \PE”)s—Z“(r —s)_zads) :
0

where C is a generic constant independent of . Therefore, by Lemma 4.4.1

sup sup ‘Pt(n) < Kj. (4.4.22)
n 0<t<T
Step 2 We will obtain the Holder continuity of X (”), that is, there exists a positive
constant K3 such that

x" x| <Kyt —s)' 2, (4.4.23)

forall 0 <s<¢<T.

First, we give the following inequalities

y—a) " —(x—a)" < (y—-x)""% Vy>x>a>0, (4.4.24)
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and for any integer n > 1

x{_a +x;_a + +x,ll_a <n*(x;+x3+--- +xn)1_a, Vxi,...x, € R. (4.4.25)

Using the above inequalities, we get for any 0 < s < k,(¢) <t < T

5[3/,(” v— adV
Ko (5)+-8
— 8B V— Xy B V— v)) " %dv
_ 5 Kn(m( (1)) d+5/s (v Ka(v))d
= op (BZRIZ) SR O e o)
B—o
< T () (s~ )+ 1 (kals) 6"
B—aro
< T ) s ) () 45 9)'
TB l—a l1-o
< 7o L) = k() = 8)' 7+ (ku(s) + 8 —5)' 7]
< 2T e -9 44.26)

Therefore, (4.4.11), (4.4.22) and (4.4.26) imply that for any 0 < s < k,(¢) <t < T we

have

(K, (1) —5)' 7%, (4.4.27)

where K> = C5—|-C6Kl +C7K|Ta—|-Cg(l—|—K1)2 TB

Forany 0 <s <t <T,ifs > K,(t), then it is easy to obtain Xt(") —XS(") <

(1=

s)1 =% for some constant K3 > 0. If 0 < s < k,(¢t) <t < T, then by (4.4.6), (4.4.22) and

(4.4.27), we deduce that there exists a positive constant K3 such that

< |Xt(n)—X,(<:2t)\+ Xy, - x| <

o) (t—s) 7% (4.4.28)
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Step 3 'We will complete our proof in this step. We denote the error in the Euler

approximation by Z") = X, — X" and define

Zt(}’l)7*: Sup Z§")’
0<s<t
Then
72" < sup | [ o(%) — o) deu| + swp | [ [o(") ~o(x0),)] ds.
o<s<t |Jo 0<s<t /0
_ J[(n)+Rt(n)' (4.4.29)

The term R,(n) is a residual term and it will provide the order of the error. In fact, this

term can be estimated as follows

t
Rt(n) < Al_a(g)c (/0

Kngu)) (s—u) ! duds)

_ gl +G> (4.4.30)

The estimate (4.4.6) implies
" < g, 8P, 4.4.31)
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o

with Ky = A1—a(g)c1LaLy [[g]lg (1 + Ki )g In order to estimate G( , by (4.4.6),
(4.4.7) and (4.4.28) we write

o(X;")—o(X
0 J0
trKa(s) (n)
Lo
0 JO
tops
+// o(x™) -
0 JKu(s)
trKa(s)
oy
tops
o e
Kn(s

< KSSﬁ/ / —u)" %" 1duds+L2K3/ / 2O‘duds
KsT 5 g LyK;T -y
< — o
- a(l-oa) Jr(1—205)(2 2a)
< KSTﬁ—HZ 12 LyK3T 1—2a
- a(l-oa) (1-2a)(2—-2a)
< K¢b'72¢, (4.4.32)

because § —a > 1 —2a, where Ks = 2L, L, [|g||g (1+ K1) and K¢ = (Tm) + (1—2Lo25§((32T—2a)'

The term Jt(") can be estimated as follows

Jt(n) < Aralg)c 1(/t

o(X,) — o(X")| s %ds

) —o(x") + G(XLE”))‘ (s—u)~*"! duds)

= J +J (4.4.33)

Clearly,
t
TN < Ag(9)e1Ls / zZM ey, (4.4.34)
0
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It is easy to check via the Taylor formula that the function o satisfying the conditions

(H2) and (H3) admits the following bound: for all x1, x2, x3, x4 € RY,

|G(X1) —G(XZ) — G(X3) —|—G(X4)’ <L, ’x] — X2 — X3 +X4H-M|X1 —X3’ (|X1 —xz‘y—i- |X3 —X4|7).
(4.4.35)

The above inequality yields

\c<xs>—o<xu>—o<x§">>+o<xé”)>\

Hence,
2L j
VRS W/ (4.4.36)
i=3
where
t S
K = Aat@als [ — x4 x| (s — )~V duds,
0 Jo
t S

Jt(n)’4 = Ai-a(g) (S_“)_a_ldud57

x™ - x|

Jt<n)’5 = Aj_q(g) (s—u)" % 'duds.

n Y
We know from (4.4.28) in Step 2 that Xs( )—ngn) < Kg(s — u)Y(l_O‘), and also

X — X, |" < KY(s— 1)1~ for some constant K7 > 0 by Theorem 5.1 in [33]. There-

fore,
JHL I < A a(g)eiM (K +KY) /Z / (s —u) @ 1109 gy, g
A M KY—FKY y(1—a)—
< Aalg)er ( / z (4.4.37)
yl-a)-«a
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because y >

-

The term J,(n)’3 involves an increment of the error process {X; —

XS(") }o<s<7, and it requires a further analysis. Define

Zt(n) o Z,,(,n)

M (7 — /’
A" (Z) = du.
Then,
t t
Az < [ (o06) - o)) e (t—w " du
0 u
t t
(n)y _ () A
[ (ot = o)) de| =) du
4
< Zet(n)t’ (4.4.38)
i=1
where
Ot(n%l = Ai_q(g)ct r(n)) (r—u)~%(t—u)~* "drdu
et(n),Z = Ar_a(g)er (X1(<: r)) (r—u)™%(t—u)"* " drdu
0™ — Ay u(e)er // o(Xy) — o (X" — 5(X,) + (X"
X (s—r)"% 1 u) % drdsdu
60 — Ao Cl/// o(x{") —o(x") )~ o (x") + o(x"))

It is clear that

Gt(n)a

X (s—r) %t —u)"* drdsdu.

< Aj_g(g)eils /t \Zﬁ")| (/Or(r—u)“ (t—u) %! du) dr

Kg / 1z )%,

IN

(4.4.39)
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where Kg = Aj_q(g)c1Ly [57x *(1 +x)~%"1dx. On the other hand, by (4.4.6) we have
0" < KySP, (4.4.40)

with Ko = A1 (g)e1LiLa [|gll (1+ K1) supoc, <7 fo fi(r—u) =% (t —u) ™% drdu.

For 0 < u < k,(t) <t < T we have the following estimate by (4.4.24) and (4.4.25)

58 / (s — Ky (s))~%ds
1)

K (u)+ Kn (1) t
= &P (s — Kn(s)) %ds + 8P (s — Kn(s)) %ds + 8P (s — Ku(s)) " %ds
u Kn(u)+5 Kn(t)
5P 5P (1) — K (1) — O
_ m [(Kn(u)—l—S—Kn(u))lia—(u—Kn(u))lia} 4 — <K (t) g(”) )5105
B
+16T(t—1<n(t))]_a
513 l-a aﬁfaToc l-o 6'8 l-o
< TR+ 8 —u) T 4 = (1) — K () = 6) T+ o (r — K1)
3OCT(X6B_(X 11—
= Tia T
and, for 0 < k(1) <u <t < T we get by (4.4.24)
t B 5B B B Tagh—a B
5 [ (5= rls)) s = 1o [0 a0 o (1)' %] < (! @

Therefore, for any 0 < u <t < T, the following estimate holds

3aTeagh-o

5P /l(s—Kn(s))“dsg (=)',
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(n),4

Then, using the above inequality, the term 6, " can be estimated as follows by using

the same techniques in handling (4.4.32)

IN

tpt pk(s)
Gt(n)’4 Ala(g)cle(Sﬁ/ / / (s—r) 't —uw)* Vdrdsdu
0 Ju Ju

1 t N
+A1-a(g)c1L2K3 / / / (s—r) 2% (t—u)"* Ydrdsdu
0 Ju JKyu(s)

A _ K t t
< Aeal®efagn 11 (5 e dsd
A1-a(g)c1LlaK3 )i-2a —a-1
T // Kals () s
A Ks3¢T¢%
< 1 Ot( )Cl 53 5[3—0(/ (t—u)_zadsdu
o(l—a) 0
A LK !
4 1 O!(g)cl 2 351_2“/(t—u)_adsdu
1-2«a 0
- Al_a(g)clK53aT1_a5ﬁ,a Ail—a(g)ci L KT ™% | 5,
- a(l-o)(l1-2a) (I1—a)(1-2a)
< Kjo8'7%, (4.4.41)

B -
where K9 = A&—(c{z&%‘)’l(fi?) + Al_(of(;ggtc)l(lfi%;) ® because B—a>1-2a.
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Next, let us estimate Gt(")’3. By (4.4.35) we can obtain

t t S
et(n)’3 < Al—a(g)Cle/O//
t rtops
HALa(g)eiM /0 / /
t uz us
+A1_a(g)c1M/0//
! S r
Aloc(g)CILz/// Zs(n)—Zﬁn) (S—r)_a_l(t—u)_a_]dudrds
0o JOo JO
t ot ops
+A1_a(g)clMK;//0/u/u
t ptops
+A1a(g)C1MK§//O//

Ai—q(g)c1Ly /t/s
o 0 Jo

A—a(g)cetM(KY+KY) 1t
T i—a e I/

Zs(") . Zr(") (s— ,ﬂ)*afl (t— u)*‘x*ldrdsdu

X, — XX = X, |7 (s — 1) "% (0 — ) drdsdu

Y

X, — x| |xM - x ™ (s—r)"* Yt —u)"* drdsdu

IN

X, — x" (s—r)Y1=9== 1 )= grdsdu

X, —x" (s —r)"I=®== 1 )=l grdsdy

z" — 7" (s—r) % Yt —r)"%drds

IN

7"

(s —u) =@~ (1 — )=l gsqy

Asa consequence,

t
Gt(")’?’ < Ala((f)ClLZ/(t_s)—aAgn)(Z)ds
0

Al—a(g)eiM(K) + KT)T7(1-%)= /f /’
0 Ju

(n)
y(1—a)—« Zs

(t—u)"* 'dsdu

t
_ Al—a(g)ClLZ (I—S)iaAh(qn)(Z)dS
(04 0

Ai—qa(g)eiM (K] +K) TV @)~ /’ /
yl-oa)—a 0 Jo

t
—Al‘“((f)cle / (t— )" A" (2)ds
0

Ao (g)ciM (K] +KY)T11-%)~-¢ /;
a(y(l1-a)-a) 0

IN

Z| (1 —s5)"%ds.  (4.4.42)
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Define ©,(Z) = """ + A" (Z). Then from (4.4.29)-(4.4.42) we obtain

0:(2)

IN

C <512a + /Ot Os(Z) [s~ %+ (1 — s)*za} ds)

< C <51—2a 412 /Ot 0O,(2) [s_za(t —s)_za} ds) ,

where C > 0 is a generic constants independent of §.

Therefore, by Lemma 4.4.1 we can show that

sup Xt—Xt(") < K§'72¢,

0<t<T

where K > 0 is a constant independent of O.
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