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SUMMARY 
 
 Chlamydia infections have an immense impact on public health and are associated with 

diverse disease manifestations including atherosclerosis, blindness, and sterility. The chlamydial 

developmental cycle is intrinsically linked with the ability of the organism to cause disease. The 

mechanisms that regulate the developmental cycle are poorly understood; however, transcription 

appears to play a governing role. An OmpR/PhoB subfamily response regulator termed ChxR 

exhibits expression patterns that indicate an important role during the developmental cycle. 

Previously, ChxR was demonstrated to interact with its own promoter and facilitate the 

transcriptional activation of the chxR gene. To begin to understand the functional role of ChxR, I 

identified the DNA sequence recognized by ChxR to identify its gene targets. Primarily using gel 

mobility shift assays, I determined that ChxR interacts with, and has differential affinity for six 

binding sites in the chxR promoter region. Using the DNA sequences from these binding sites, I 

elucidated the ChxR cis-acting recognition sequence.  

 Additionally, I was interested in elucidating the ChxR mechanism of transcriptional 

activation. Usually as a result of phosphorylation, OmpR/PhoB response regulators form 

homodimers through a receiver domain as an integral step in transcriptional activation. Dimer 

formation facilitates an interaction of the effector domain interaction with DNA and 

transcriptional machinery to regulate transcription. ChxR is an atypical OmpR/PhoB response 

regulator because it is active in the absence of phosphorylation. We hypothesized that the intra- 

and intermolecular interactions involved in forming a transcriptionally competent ChxR protein 

are distinct from the canonical phosphorylation (activation) paradigm in the OmpR/PhoB 

response regulator subfamily. Using biochemical techniques, I demonstrated that ChxR forms 

homodimers through the receiver domain and the effector domain interacts with DNA similar to 
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phosphorylation-induced and transcriptionally active OmpR/PhoB response regulators. 

Additionally, the structures of the two domains were solved to direct functional studies to 

identify the residues important in homodimer formation, interaction with DNA, and interaction 

with RNA polymerase machinery. Both structures had unique features that are not found in other 

OmpR/PhoB subfamily members. The combination of these results suggests that ChxR is a 

member of the OmpR/PhoB subfamily, although many of the characteristics of the subfamily are 

not shared in ChxR. 
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Chapter I 

Health Impact of Chlamydia 

 

Chlamydiae are obligate intracellular bacteria that proliferate through a phylum-defining 

biphasic developmental cycle. Phylogenetic analysis indicates that chlamydiae diverged from 

other bacteria approximately two billion years ago and became obligate intracellular pathogens 

approximately 700 million years ago (Horn, Collingro et al. 2004). When chlamydiae first began 

to infect humans is unknown, but references to the symptoms of infection were recorded over 

4,800 years ago (al-Rifai 1988). Chlamydia spp. of today (C. pneumoniae and C. trachomatis) 

have immense and distinct impacts on public health.  

The diverse and chronic diseases correlated with C. pneumoniae infection are a result of 

the immune response to the organism. C. pneumoniae is primarily associated with an acute upper 

respiratory tract infection resulting in an estimated 10% of community-acquired pneumoniae and 

5% of bronchitis cases (Grayston 2000; Blasi 2004). C. pneumoniae infections have also been 

correlated with multiple diseases including atherosclerosis, Alzheimer’s disease, and arthritis 

(Yucesan and Sriram 2001; Villareal, Whittum-Hudson et al. 2002; Campbell and Kuo 2004; 

Itzhaki, Wozniak et al. 2004). The initial infection by the bacteria occurs primarily in lung 

epithelial cells, which promotes a proinflammatory response from the host (Rasmussen, 

Eckmann et al. 1997). Cytokine production and secretion recruit macrophages to the site of 

infection. Macrophages have been shown to be susceptible to infection by C. pneumoniae and 

are proposed to be the transport mechanisms in the dissemination of the bacteria (Gaydos, 

Summersgill et al. 1996). Disseminated C. pneumoniae has been detected in a variety of cells 

including aortic smooth muscle cells and neurons (Campbell and Kuo 2004; Appelt, Roupas et 
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al. 2008). The immune response to the organism in these tissues is thought to accelerate the 

development of the aforementioned diseases. For example, C. pneumoniae-infected macrophages 

secrete matrix metalloproteinases and express tissue factors, which promote platelet and fibrin 

aggregation (thrombosis) and can lead to atherosclerosis.     

C. trachomatis is the leading cause of preventable blindness in the world. The World 

Health Organization considers trachoma to be endemic in tropical and subtropical countries 

(Thylefors, Negrel et al. 1995; Polack, Brooker et al. 2005). These countries are primarily 

located in Africa and the Middle East in poor living and hygienic conditions. The organism is 

primarily transmitted from the ocular secretions of an infected person to a new host through flies 

or direct person-person contact (Thomson, Holden et al. 2008). Following exposure, the 

organism propagates within the conjunctival epithelium. The symptoms associated with an acute 

infection are usually limited to conjunctivitis. Repeat infections, however, can lead to corneal 

scarring and blindness if left untreated. The estimated 41 million people that have trachoma and 

1-3 million people that are blind as a result of C. trachomatis infection demonstrate the critical 

need to improve sanitary conditions and public awareness within endemic areas (Resnikoff, 

Pascolini et al. 2004; Haddad 2010).      

In addition to an ocular infection, C. trachomatis is the most commonly reported sexually 

transmitted bacterial infection in the world. 89 million cases are reported worldwide annually 

(Gerbase, Rowley et al. 1998), with 1.2 million of these cases originating in the U.S. (CDC 

2010). However, the number of cases is likely much higher due to undiagnosed infections and a 

high (~90%) asymptomatic rate (Stevens-Simon and Sheeder 2005). C. trachomatis infection of 

the genital tract can result in a variety of conditions, including pelvic inflammatory disease in 

women, which can lead to sterility and ectopic pregnancy (Stephens 2003; Bebear and de 
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Barbeyrac 2009). The costs of detecting, treating, and preventing C. trachomatis infection has 

been estimated at $1.5 billion annually in the U.S., further exacerbating the impact of the 

organism (Gaydos, Cartwright et al. 2010).  

Similar to C. pneumoniae, the pathology associated with C. trachomatis infection is 

primarily immune mediated. The adaptive and innate immune systems respond to the organism 

at the site of infection (epithelial layer of the eye or genital tract) by producing and secreting 

proinflammatory cytokines (Roan and Starnbach 2008). The chronic secretion of these cytokines 

can lead to the diverse pathologies associated with C. trachomatis infection (Burton, Rajak et al. 

2011).  

 

The Chlamydial Developmental Cycle 

 

The pathogenic mechanisms utilized by Chlamydia are still undefined. However, the 

growth of this obligate intracellular bacteria and its ability to maintain the characteristic biphasic 

developmental cycle are intrinsically linked with the immune-mediated pathology associated 

with Chlamydia infections (Stephens 2003). Unlike other pathogenic bacteria, invasion by 

Chlamydia does not elicit an immediate immune response (Eckmann, Kagnoff et al. 1993; 

Rasmussen, Eckmann et al. 1997). Only after the early stages of the developmental cycle (>20 

hours post infection (hpi)), does the infected cell begin to produce and secrete proinflammatory 

chemokines and cytokines, with maximal secretion occurring 48-72 hpi. The direct correlation 

between the progression of the chlamydial developmental cycle and the initiation and 

amplification of the immune response indicates a critical need to elucidate the steps of the cycle 

and develop therapies that would prevent its progression.   
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The biphasic developmental cycle in Chlamydia consists of two morphologically and 

phenotypically distinct forms of the organism: the elementary body (EB) and the reticulate body 

(RB) (Fig. 1.1). EBs are the metabolically inert, infectious form of Chlamydia. EBs are relatively 

small (0.2-0.3 µm) and have cystine-rich proteins (OmpA, OmcA, and OmcB) in their outer 

membrane that result in a highly crosslinked outer surface (Hatch, Allan et al. 1984). This 

structural rigidity facilitates survival in the extracellular environment. 

EBs begin the developmental cycle by attaching to and then invading eukaryotic host 

cells (Hatch 1999). Upon entry, EBs are internalized within a membrane-bound parasitophorous 

vacuole, termed an inclusion. The bacteria actively modulate the inclusion to prevent fusion with 

lysosomes and late endosomes. Depending on the serovar of C. trachomatis, approximately 2-8 

hours post infection (hpi) EBs differentiate into RBs. RBs are larger than EBs (0.5-1.6 µm) and 

are the non-infectious, metabolically active form of the organism. The RBs then reproduce 

through binary fission. Through poorly defined mechanisms and unknown signals, secondary 

differentiation begins and RBs asynchronously convert into EBs (~18-24 hpi). The bacteria are 

then released from the cell, either through host cell lysis or extrusion (~48-72 hpi) (Hybiske and 

Stephens 2007). The timing of these events in the developmental cycle of C. pneumoniae are 

extended compared to C. trachomatis, as the bacteria do not begin to replicate until ~19 hpi or 

exit the host cell until 72-96 hpi (Vandahl, Birkelund et al. 2004; Mukhopadhyay, Good et al. 

2006).  

 An important deviation to the developmental cycle is the formation of enlarged, 

pleomorphic RBs, which are associated with a persistent infection (Hogan, Mathews et al. 2004).  
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FIG. 1.1 Chlamydia proliferate through a biphasic developmental cycle. The chlamydial 

developmental cycle consists of a primarily extracellular, metabolically inactive, and infectious 

form termed elementary body (EB) converting intracellularly (~2-8 hpi) into the metabolically 

active, replicative, and non-infectious form called a reticulate body (RB). After numerous rounds 

of RB replication, asynchronous reciprocal conversion (RB into EB) occurs (~18-24 hpi), and 

EBs are released to infect new cells (~48-72 hpi). Nutrient starvation or the presence of 

antibiotics during the developmental cycle causes Chlamydia to enter a persistent state, which is 

reversible when the stress is removed. 



 

 6 

 

!"#$%"&

'()*+),(
-+./%0&1+.

,()*+)'(
-+./%0&1+.

,%2$1#3*1+.

'()'.*04

5+&*)-%$$
64&1&

7**3#89%.*

821

:;<

<;=

>=;<?

?=;@<

5+&*
-%$$

A.#$"&1+.

'(

,(

B%0&1&*%.#%



 

 7 

Chlamydial persistence is described as a viable but non-replicating growth phase of the organism 

that has a long-term relationship with the host (Beatty, Morrison et al. 1994), and is achieved 

through nutrient deprivation or the presence of antibiotics but is reversible when the stress is 

removed (Roan and Starnbach 2008). Persistence during an infection elicits a sustained 

inflammatory response from the immune system, which is thought to be a key factor in the 

Chlamydia-induced pathology (Rasmussen, Eckmann et al. 1997).  

 

Mechanisms of Transcriptional Regulation in Chlamydia 

 

Due to the current absence of a developed system for specific genetic manipulation in 

Chlamydia, relatively little is known regarding the signals and components that regulate the 

chlamydial developmental cycle. However, transcriptional regulation has a governing role in the 

developmental cycle (Belland, Zhong et al. 2003; Nicholson, Olinger et al. 2003; Abdelrahman 

and Belland 2005). Two independent microarray analyses have been performed at multiple time 

points during the developmental cycle of C. trachomatis, which identified many temporally 

expressed genes (Belland, Zhong et al. 2003; Nicholson, Olinger et al. 2003). The Nicholson et 

al. analysis indicated that approximately 71% of the open reading frames (612 in C. trachomatis) 

are initially transcribed during the EB to RB conversion, and are constitutively expressed 

throughout the developmental cycle. Genes within this group are associated with basic cellular 

functions that facilitate growth. The microarray analysis also determined that multiple temporal 

gene clusters comprise the middle (~18 hpi) and late (~24-36 hpi) stages of the developmental 

cycle and account for approximately 20% of the open reading frames (186 in C. trachomatis) in 

the chlamydial genome. Gene products of the middle cluster are involved in a variety of cellular 
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processes including membrane maintenance, energy metabolism, and protein folding. In contrast, 

gene products of the late cluster are involved in chromosome condensation, arming the bacteria 

for the next round of infection, and allowing the bacteria to survive in the extracellular 

environment upon exiting the host cell (Hefty and Stephens 2007).  

The temporal gene expression observed throughout the developmental cycle is not a 

result of alternative sigma factors in Chlamydia. Three sigma factors are encoded in the 

chlamydial genome: σ54, σ28, and σ66. In other bacteria, σ54 is involved in nitrogen assimilation, 

however, only two genes (CT652.1 and CT683), which encode hypothetical proteins, have been 

linked with this alternative sigma factor in Chlamydia (Mathews and Timms 2000). Similarly, 

the other alternative sigma factor in Chlamydia, σ28, has been shown to transcribe a small 

number of genes (hctB, tsp, tlyC_1, dnaK, pgk, and bioY) (Yu, Kibler et al. 2006). These genes 

encode proteins that are involved in a variety of cellular processes including protein folding 

(DnaK) and glycolysis (PgK). Importantly, HctB is the only gene product from these six genes 

that has been shown to directly influence transcription of other genes (Brickman, Barry et al. 

1993). hctB is one of the last genes to be expressed during the developmental cycle and is one of 

the two genes (with hctA) that encode histone-like proteins. HctA and HctB are associated with 

DNA condensation and transcriptional silencing during the final events of the RB-to-EB 

conversion (Belland, Zhong et al. 2003).  

The primary sigma factor in Chlamydia, σ66, is homologous to the general housekeeping 

sigma factor in E. coli (σ70), and is responsible for the expression of most of the constitutively 

expressed genes (Fahr, Douglas et al. 1995; Hatch 1999; Hefty and Stephens 2007; Niehus, 

Cheng et al. 2008).  Notably, most of the middle and late stage genes are preceded by σ66 

promoter elements. The association of σ66 with many of the temporally expressed middle and late 
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gene clusters, and the absence of evidence linking the two alternative sigma factors with the 

expression of these gene clusters, provides strong evidence that additional factors, such as 

transcriptional activators and repressors, are necessary to regulate their expression. Identifying 

these factors is critical to our understanding of the mechanisms that generate infectious 

Chlamydia. Furthermore, therapies could be developed that would inhibit the function of these 

factors, potentially preventing the bacteria from becoming infectious and preventing or limiting 

the diseases associated with a chlamydial infection. 

Recent studies have begun to identify and characterize diverse mechanisms of 

transcriptional regulation in Chlamydia. Non-coding RNAs and DNA topology have been shown 

to influence transcription; although, only three genes have been demonstrated to be directly 

regulated through these two mechanisms (Niehus, Cheng et al. 2008; Abdelrahman, Rose et al. 

2010). Transcription factors have also been identified in Chlamydia, but have only been 

associated with a small number of genes. Two species-specific transcription factors are 

associated with amino acid uptake or biosynthesis. ArgR from C. pneumoniae is an arginine-

dependent repressor that is predicted to control arginine uptake during the developmental cycle 

by regulating the glnPQ operon (Schaumburg and Tan 2006). TrpR is a tryptophan biosynthesis 

repressor from C. trachomatis that is associated with the transcriptional regulation of the trpRBA 

operon (Akers and Tan 2006).  

In contrast to these two species-specific transcriptional regulators, a two-component 

signal transduction system has been identified in both species of Chlamydia. The two-component 

system consists of a sensor kinase (CtcB) and a cognate transcription factor (CtcC) (Koo and 

Stephens 2003). CtcC shares primary sequence homology to the NtrC/DctD subfamily of 

response regulators, which interact with σ54 to regulate the expression of genes involved in 
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nitrogen assimilation. Currently, no genes have been directly linked with this two-component 

system but as CtcC is presumed to interact with σ54, the two genes (CT652.1 and CT683) that 

have been linked with σ54 could also be targets for this two-component system.  

In combination, alternative sigma factors, non-coding RNA, DNA topology, and the 

currently identified transcription factors do not account for the expression of most of the 186 

genes comprising the middle and late gene clusters. ChxR, a transcription factor present in all 

species of Chlamydia, interacts with many of the middle and late gene protomers and is therefore 

an important factor in the progression of the developmental cycle (Koo, Walthers et al. 2006; 

Spedding 2009). ChxR shares homology to the OmpR/PhoB subfamily of response regulators, 

however many of the characteristics of these proteins are not conserved in ChxR. The focus of 

this research is to define the mechanism of ChxR transcriptional regulation.  

  

Two-Component Signal Transduction Systems 

 

Two-component signal transduction systems provide important mechanisms for the 

modification of many physiological functions within an organism, generally through an 

alteration of gene expression. Two-component systems are abundant in bacteria but are absent in 

mammals (Hoch 2000). These systems modulate many different processes in bacteria including 

sporulation, chemotaxis, and differentiation (Stock, Robinson et al. 2000). These systems have 

also been shown to regulate the expression of virulence factors within pathogenic bacteria and 

are essential for their growth (Gooderham and Hancock 2008; Gotoh, Eguchi et al. 2010). 

Therefore, current research is aimed at identifying and characterizing the components of these 
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systems. A primary goal of this research is to develop novel antimicrobial agents that inhibit the 

function of two-component systems and consequently, the expression of their gene targets.  

The prototypical two-component system consists of a membrane-bound sensor histidine 

kinase and a cognate response regulator (Fig. 1.2). Upon sensing stimuli, the sensor kinase 

undergoes an autophosphorylation event at a conserved histidine in its cytosolic domain. This 

phosphoryl group is then transferred to a conserved aspartate in the cognate response regulator. 

Phosphorylation stabilizes the active conformation of the response regulator, which enhances its 

functional activity. The functions of response regulators are diverse, with some of these proteins 

modulating intracellular processes through protein-protein interactions or through enzymatic 

reactions; however the majority of response regulators contain a DNA-binding domain that alters 

gene expression in response to phosphorylation (Gao and Stock 2009).  

Response regulators that contain a DNA-binding domain are generally classified into 

three subfamilies depending upon how the protein interacts with DNA. Each subfamily is named 

after its two archetypes and includes NarL/FixJ, NtrC/DctD, and OmpR/PhoB. The DNA 

binding domain of the NarL/FixJ subfamily contains four-helices and interacts with DNA 

through a helix-turn-helix motif (Maris, Sawaya et al. 2002). The NtrC/DctD subfamily also 

interacts with DNA through a helix-turn-helix motif, but requires an ATPase domain to 

hydrolyze ATP in order to activate transcription (Wedel and Kustu 1995). The OmpR/PhoB 

subfamily is the largest subfamily and comprises ~48% of all identified DNA-binding response 

regulators (Martinez-Hackert and Stock 1997; Galperin 2006). Members of this subfamily are 

composed of a receiver domain that contains the site of phosphorylation and is involved in 

homodimerization, and an effector domain that interacts with DNA through a subfamily-defining 

winged helix-turn-helix motif.        
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FIG. 1.2 A prototypical two-component signal transduction system. Upon sensing stimuli, the 

histidine kinase (HK) transfers a phosphoryl group to a conserved Asp in the receiver domain of 

a cognate response regulator (RR). Phosphorylation generally promotes dimerization and 

facilitates the effector domain to bind DNA and interact with RNA polymerase machinery. 

(Figure adapted from (Gao and Stock 2009)) 
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Extensive research on members of the OmpR/PhoB subfamily has elucidated the 

conserved events that occur upon phosphorylation and result in their transcriptional regulatory 

activity (Gao and Stock 2009; Bourret 2010). Upon sensing stimuli, the cognate sensor kinase 

transfers the phosphoryl group to a conserved phospho-accepting Asp in the receiver domain of 

the response regulator. An essential Mg2+ ion and a conserved Lys assist in the transfer and 

retention of the phosphoryl group (Sola, Gomis-Ruth et al. 1999; Bachhawat, Swapna et al. 

2005). The activation signal is then transduced to the dimer interface through the reorientation of 

two conformational switch residues (Thr or Ser and Tyr or Phe) towards the site of 

phosphorylation. The reorientation of these two residues dramatically enhances homodimer 

formation by properly aligning residues involved in ionic and hydrophobic interactions between 

protomers. Homodimer formation through the receiver domain enhances the ability of the 

effector domain to bind to DNA and regulate transcription (Mack, Gao et al. 2009).  

Numerous structural studies with members of the OmpR/PhoB subfamily have 

determined the essential structural components and interfaces necessary for their activity. The 

structures of the receiver domain of 20 OmpR/PhoB subfamily members have been 

experimentally determined, among which four have been structurally characterized in their 

inactive (unphosphorylated) and active (phosphorylated) state (Sola, Gomis-Ruth et al. 1999; 

Bachhawat, Swapna et al. 2005; Toro-Roman, Mack et al. 2005; Toro-Roman, Wu et al. 2005; 

Bachhawat and Stock 2007). All 20 structures are very similar and share a common β1-α1-β2-

α2-β3-α3-β4-α4-β5-α5 molecular topology (Fig. 1.3A). Additionally, the dimerization interface 

is generally conserved and consists of the α4-β5-α5 region of the receiver domain.  
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FIG. 1.3. Ribbon diagrams of a typical OmpR/PhoB receiver and effector domain. A) Receiver 

domains have a β1-α1-β2-α2-β3-α3-β4-α4-β5-α5 topology and form dimers through the α4-β5-

α5 region (red). B) OmpR/PhoB effector domains share a common β6-β7-β8-β9-α6-α7-α8-β10-

β11 topology. α8 and the β10-β11 loop (red) interact with DNA while the transactivation loop 

(blue) interacts with RNA polymerase. The PhoB receiver domain (PDB ID: 1ZES; (Bachhawat, 

Swapna et al. 2005)) and effector domain (PDB ID: 1GXP; (Blanco, Sola et al. 2002)) were used 

to generate this figure.  
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Similar to the large number of receiver domain structures available, the structures of the 

effector domain of 16 OmpR/PhoB subfamily members have been elucidated. These effector 

domains consist of a β6-β7-β8-β9-α6-α7-α8-β10-β11 molecular topology (Fig. 1.3B). The typical 

effector domain is comprised of an N-terminal β-sheet (β6-β7-β8-β9), a winged helix-turn-helix 

DNA-binding motif (α7-α8), and a C-terminal β-sheet (β10-β11) (Kenney 2002). The α-helix 8 

interacts with the major groove of DNA, while the wing (the loop region between β10-β11) 

interacts with the adjacent minor groove of the DNA. The loop between α7-α8 is the site of 

interaction with the σ factor or the α-subunit of RNA polymerase (Kondo, Nakagawa et al. 1997; 

Blanco, Sola et al. 2002). 

 

Atypical Response Regulators 

 

An increasing number of response regulators have been identified that do not appear to 

incorporate the canonical phosphorylation mechanism of activation and are termed atypical 

response regulators (Bourret 2010). Currently, six atypical response regulators from the 

OmpR/PhoB subfamily have been identified and shown to be functionally active in the absence 

of phosphorylation. The atypical regulators within the OmpR/PhoB subfamily consist of: ChxR 

from Chlamydia trachomatis, JadR1 from Streptomyces venezuelae, NblR from Synechococcus 

elongates, HP1021 and HP1043 from Helicobacter pylori, and FrzS from Myxococcus xanthus 

(Schar, Sickmann et al. 2005; Koo, Walthers et al. 2006; Fraser, Merlie et al. 2007; Ruiz, Salinas 

et al. 2008; Wang, Tian et al. 2009). These proteins are important factors in many different 

cellular processes including the general stress response, antibiotic-production, and cell motility 

(Schar, Sickmann et al. 2005; Fraser, Merlie et al. 2007; Ruiz, Salinas et al. 2008). Additionally, 
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deletions of the genes encoding two atypical response regulators result in severe growth defects, 

supporting their importance in their respective organisms (Schar, Sickmann et al. 2005; Salinas, 

Ruiz et al. 2007). 

How these atypical transcription factors regulate gene expression in the absence of 

phosphorylation is poorly understood due to the paucity of structural and functional studies of 

these proteins. From the data currently available, these proteins are maintained in a constitutively 

active state that appears to mimic the phosphorylated (active) state of OmpR/PhoB response 

regulators. Atypical response regulators do not retain many of the residues critical to the 

canonical phosphorylation (activation) process. At least two of the six highly conserved residues 

critical to this process in phosphorylation-dependent OmpR/PhoB response regulators are absent 

in atypical subfamily members (Fig. 1.4).  

The limited number of structures of atypical OmpR/PhoB response regulators has 

revealed that the overall structural compositions of the receiver and effector domain of the 

OmpR/PhoB subfamily are retained in these phosphorylation-independent response regulators. 

The receiver domains of HP1043 and FrzS have been experimentally determined and are 

composed of five α/β-folds, similar to other members of the OmpR/PhoB subfamily (Fraser, 

Merlie et al. 2007; Hong, Lee et al. 2007). Additionally, the effector domain of HP1043 has been 

solved and contains the subfamily-defining winged helix-turn-helix DNA-binding motif (Hong, 

Lee et al. 2007). Despite the structures of these proteins currently available, the intra- and 

intermolecular interactions that maintain the phosphorylation-independent activity of atypical 

OmpR/PhoB response regulators remain poorly understood. 
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FIG. 1.4. Primary sequence comparison of atypical and typical OmpR/PhoB response regulators. 

The primary sequence of the receiver domains of two typical OmpR/PhoB response regulators 

(OmpR and PhoB) and the currently identified atypical OmpR/PhoB response regulators (JadR1, 

NblR, HP1043, FrzS, HP1021, and ChxR) were aligned using the multiple sequence alignment 

program ClustalW (Larkin, Blackshields et al. 2007). The red box denotes the phospho-accepting 

Asp in typical OmpR/PhoB subfamily members. The black boxes represent the residues involved 

in coordinating the Mg2+ ion and the phosphoryl group. The blue boxes represent the two 

conformational switch residues. The secondary sequence elements correspond to PhoB (PDB ID: 

IZES). The proteins used for the primary sequence alignment are OmpR (E. coli; GenBank: 

CAQ33726.1), PhoB (E. coli; PDB ID: 1ZES), JadR1 (S. venezuelae; AAB36584.2), NblR (S. 

elongates; GenBank: AAC33849.1), HP1043 (H. pylori; PDB: 2PLN), FrzS (M. xanthus; 

GenBank: AAC98490.1), HP1021 (H. pylori; NP_207811.1), and ChxR (C. trachomatis; 

UniProt: B0B8K5).   
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Identification and Initial Characterization of ChxR 

 

Transcriptional analysis indicates that chxR, a gene encoding the transcription factor 

ChxR, is upregulated during the middle and late stages of the developmental cycle (Fig. 1.5). 

Using a heterologous system (E. coli), ChxR was shown to regulate the expression of multiple 

genes from Chlamydia, including: the omcAB operon (outer membrane protein A and B) tufA 

(translation elongation factor), infA (translation initiation factor), oppA  (oligopeptide transport 

protein) and CT084 (hypothetical protein) (Koo, Walthers et al. 2006). Additional gene targets 

for ChxR were identified through a chromosomal-immunoprecipitation coupled with PCR 

(ChIP-PCR) analysis in which endogenous ChxR was found to be associated with the promoters 

of many chlamydial genes (CT630, CT480, CT091, CT557, CT559, CT576, CT444, CT619/620, 

and CT733/734) (Spedding 2009). CT630 and CT480 encode ChxR and OppA, respectively, 

which supports the previous finding that ChxR was found to be associated with these genes by 

ChIP-PCR. CT091, CT557, CT559, and CT576 are the first genes of four operons (17 genes in 

total) encoding components of the chlamydial type III secretion system (Hefty and Stephens 

2007). CT444 is the first gene of the omcAB operon, which encodes the cystine-rich outer 

membrane proteins OmcA and OmcB. A limitation of the assay was that ChxR could not be 

directly linked with the CT619 or CT620 and CT733 or CT734 promoters, as the promoters of 

these genes overlap. CT619, CT620, CT733, and CT734 encode hypothetical proteins. Additional 

experiments are clearly needed to confirm that ChxR regulates the expression of these genes but 

these findings, in combination with the previous study, demonstrate that ChxR is associated with  
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FIG. 1.5. chxR transcripts increase during the middle and late stages of the developmental cycle. 

RNA was isolated from C. trachomatis L2 infected L929 cells at 6 hour increments. gyrB and 

hctB were included for controls. gyrB is constitutively expressed while hctB is differentially 

expressed and has been previously demonstrated to be associated with events in the later stages 

of the conversion from RBs to EBs (Yu and Tan 2003). chxR is differentially expressed with 

increased transcription during 12 to 24 hpi, which overlaps with the conversion from RBs to 

EBs. The transcript ratio is of each transcript level (chxR, gyrB, or hctB) relative to the 

constitutively expressed secY transcript. (Figure courtesy of Scott Hefty) 
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many (26) genes in Chlamydia and indicate that ChxR is an important transcription factor in 

Chlamydia. 

ChxR was annotated as a transcription factor as it shares primary sequence homology to 

the OmpR/PhoB subfamily of transcriptional regulators (Stephens, Kalman et al. 1998; Koo, 

Walthers et al. 2006). Despite primary sequence homology, some of the important characteristics 

of the OmpR/PhoB subfamily are not shared in ChxR. A cognate sensor kinase is not apparent in 

the chlamydial genome and a conserved phospho-accepting Asp, which is an important factor in 

controlling the functional activity of most OmpR/PhoB transcription factors, is absent in ChxR. 

Furthermore, ChxR has been shown to regulate transcription in the absence of phosphorylation in 

vitro and within a heterologous system (E. coli) (Koo, Walthers et al. 2006). The mechanism of 

ChxR transcriptional regulation is currently poorly understood, but defining this mechanism is 

important given the connection between ChxR and factors (i.e. components of the type III 

secretion system and outer membrane) that are critical for the progression of the developmental 

cycle and consequently pathogenesis. 

The central hypothesis for this research is that the intra- and intermolecular interactions 

involved in forming a transcriptionally competent ChxR are distinct from the canonical 

phosphorylation (activation) paradigm in the OmpR/PhoB response regulator subfamily. The 

goal of this work is to identify the structural and functional characteristics of ChxR that are 

important for its ability to regulate transcription. Characterizing the ChxR mechanism of 

transcriptional regulation will likely facilitate the rational design of small molecule compounds 

that inhibit the function of ChxR and potentially prevent the bacteria from becoming infectious. 

Additionally, elucidating the ChxR cis-acting element could be used to identify additional gene 

targets and define the role of ChxR in Chlamydia.  
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Chapter II  

Introduction 

 

Response regulators are essential regulatory factors of two-component signal 

transduction systems. They predominantly function as phosphorylation-activated switches to 

control gene expression at the transcriptional level (Galperin 2005). The largest subfamily of 

response regulators is the OmpR/PhoB subfamily, in which the vast majority of homologs share 

a conserved phosphorylation-dependent transcriptional regulation mechanism (Galperin 2005; 

Gao, Mack et al. 2007). This subfamily of response regulators is structurally very similar and 

composed of two domains: a receiver domain and an effector domain (Stock, Robinson et al. 

2000; West and Stock 2001; Gao, Mack et al. 2007; Gao and Stock 2009). Phosphorylation at an 

Asp within a highly conserved binding site in the receiver domain causes reorientation of two 

conformational-switch residues and relatively subtle overall changes to the receiver domain (Gao 

and Stock 2009). These changes promote homodimer formation between receiver domains, 

which allows the effector domain to bind to DNA and regulate transcription.  

The effector domain of response regulators binds to either tandem, or more infrequently, 

inverted repeats of DNA through a subfamily-defining winged helix-turn-helix DNA binding 

motif to regulate transcription. The DNA recognition site generally ranges from 18–23 bp 

containing two 6–10-bp DNA-binding site separated by 2–5 bp of intervening sequence 

(Harlocker, Bergstrom et al. 1995; Blanco, Sola et al. 2002; Kenney 2002). The target promoters 

of OmpR/PhoB subfamily members often contain multiple binding sites that vary in their 

nucleotide sequence, promoter position, and relative binding affinities (Kenney 2002; Schaaf and 
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Bott 2007). As a result, cooperativity and differential binding are commonly incorporated as an 

important component of transcriptional regulation by OmpR/PhoB response regulators. 

Atypical response regulators have recently been identified and described in 

phylogenetically diverse organisms, including Chlamydia, Helicobacter, Myxococcus, 

Streptomyces, and Synechococcus (Ainsa, Parry et al. 1999; Delany, Spohn et al. 2002; Schar, 

Sickmann et al. 2005; Koo, Walthers et al. 2006; Rotter, Muhlbacher et al. 2006; Fraser, Merlie 

et al. 2007; Kato, Chibazakura et al. 2008; Mittal and Kroos 2009). These atypical response 

regulators do not require phosphorylation to function as transcriptional regulators. In concert 

with these observations, the receiver domain binding site, frequently including the typically 

phosphorylated Asp, is not conserved. This and other observations support the finding that 

phosphorylation-dependent activation mechanisms are not utilized by atypical response 

regulators (Ainsa, Parry et al. 1999; Kato, Chibazakura et al. 2008; Ruiz, Salinas et al. 2008; 

Mittal and Kroos 2009). Highlighting the biological importance of these atypical response 

regulators to their respective organism, gene disruptions of many of these transcription factors 

cause severe phenotypic defects or are requisite for growth (Chater 1972; Beier and Frank 2000; 

Schar, Sickmann et al. 2005). 

Despite the apparent importance of atypical response regulators, relatively little 

information exists regarding the transcriptional regulation mechanisms utilized by these 

regulators. Structural analysis of the atypical response regulator homolog HP1043 from H. pylori 

revealed that the two residues in the same position as the conformational-switch residues in a 

typical OmpR/PhoB subfamily member were oriented similar to those in the canonical 

phosphorylated (active) orientation (Hong, Lee et al. 2007). This study also reported that 

recombinant HP1043 forms stable homodimers and recognizes an inverted repeat of DNA 
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sequences. In contrast, analyses of the atypical response regulator homolog NblR in 

Synechococcus demonstrated that, unlike phosphorylated (active) response regulators, this 

essential regulator existed as a monomer both in vitro and in vivo (Ruiz, Salinas et al. 2008). 

These observations suggest that atypical OmpR/PhoB response regulator mechanisms (e.g., 

homodimerization) are most likely similar to, but distinct from, the canonical mechanisms.  

 Chlamydia are phylogenetically distant from other bacteria and encode an atypical 

response regulator named ChxR (Stephens, Kalman et al. 1998; Stephens 2002). ChxR is 

homologous to the OmpR/PhoB subfamily of response regulators; however, none of the binding 

site residues and only one of the conformational switch residues is conserved relative to other 

typical OmpR/PhoB subfamily members. Similar to other atypical response regulators, previous 

studies demonstrated that ChxR activated transcription both in vitro and within a heterologous in 

vivo system (E. coli) in the absence of phosphorylation (Koo, Walthers et al. 2006). These 

analyses also revealed that ChxR has a direct autoregulatory role because it recognizes multiple 

sites within its own promoter region and activates transcription, as do many other atypical 

response regulators (Ainsa, Parry et al. 1999; Delany, Spohn et al. 2002). 

Chlamydia infections have an immense impact on public health and are associated with 

diverse disease manifestations including atherosclerosis, blindness, and sterility (Schachter 

1999). The pathogenic mechanisms utilized by Chlamydia are still undefined; however, growth 

of these obligate intracellular bacteria and their ability to maintain the characteristic biphasic 

developmental cycle are intrinsically linked with the immune-mediated pathology associated 

with Chlamydia infections (Stephens 2003). Largely due to the current absence of a system for 

specific genetic manipulation in Chlamydia, relatively little is known regarding the signals and 

components that regulate the chlamydial developmental cycle; however, transcriptional 
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regulation has a governing role in the developmental cycle (Belland, Zhong et al. 2003; 

Nicholson, Olinger et al. 2003; Abdelrahman and Belland 2005).  

ChxR is hypothesized to play an important role in regulating the chlamydial 

developmental cycle and incorporates mechanisms and exhibits properties similar to, but distinct 

from, the OmpR/PhoB response regulator subfamily. This study was designed to begin defining 

the fundamental mechanisms employed by and properties of ChxR. Included is the 

characterization of the cis-acting element recognized by ChxR, which is expected to facilitate the 

identification of additional ChxR gene targets and eventual assignment of a specific role for 

ChxR in the developmental cycle. 
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Chapter II 

Methods and Materials 

 

Purification of ChxR- chxR was PCR amplified using Chlamydia trachomatis LGV 

(L2/484/Bu) genomic DNA and primers specific for chxR (Table 2.1) (Integrated DNA 

Technologies, Coralville, IA). The resulting amplicon was digested with NdeI/XhoI, ligated into 

pET28b (Novagen, San Diego, CA), and transformed into E. coli TOP1 cells (Invitrogen, 

Carlsbad, CA). After sequence confirmation (DNA Sequencing Laboratory, University of 

Kansas, Lawrence, KS), the plasmids were transformed into E. coli BL21 (DE3) (Invitrogen) and 

grown to an OD600 of 0.7 in Luria broth containing 50 µg/mL kanamycin. Isopropyl-β-D-

thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM, and the cells were 

harvested by centrifugation after overnight incubation at 15°C. The ChxR-expressing E. coli 

cells were resuspended in 50 mM Tris (pH 7.0) and 400 mM NaCl, disrupted by sonication, and 

subjected to centrifugation (30 min at 14,000 × g; 4°C). Residual cell debris was removed by 

passing the supernatant through a 0.22-µm filter before protein purification. ChxR was purified 

by Co2+-affinity chromatography (Clontech, Mountain View, CA). The hexahistidine-tagged 

proteins bound to the metal resin were washed with 5 mM imidazole, 50 mM Tris (pH 7.0), and 

400 mM NaCl before elution from the resin with the wash buffer that contained 250 mM 

imidazole.  

Elution fractions containing ChxR were pooled and applied to a Sephacryl S-200 16/60 

size exclusion column (GE Healthcare, Pittsburgh, PA) equilibrated with 50 mM Tris (pH 7.0) 

and 400 mM NaCl. Fractions containing ChxR were pooled, and the protein was determined to 

be >95% pure, as determined by Coomassie staining after sodium dodecyl sulfate- 
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Table 2.1. Oligonucleotides used in this study 

Name Sequence1, 2 
chxR Forward 5’-GGAATTCCATATGCAGGGCCTAAACATGTG-3’ 
chxR Reverse 5’-CCGCTCGAGCTAAGAAAGCTTTGTATCTTGTT-3’ 

chxR Promoter Forward 5’-CGATATCAACGGCTATAGAAG-3’ 
chxR Promoter Reverse 5’-TAG ATTACCTAATACAACAAAAATAG-3’ 

CT863 Promoter Forward 5’-GCGGCAATAGGTTAATCGTCT-3’ 
CT863 Promoter Reverse 5’-GCGCCTTAAGAGAAGCGTTT-3’ 

DR1 (-100-70)   5’-CACAGAACAAGTGTAGTCTAAACTTGAAAAA-3’ 
DR2 (-145-117) 5’-ATTTTTCGATCAAAAACTAGATAAAGCAG-3’ 
DR3 (-188-158) 5’-TCTGACGATGTTGTTATCAATTAACGTTTTC-3’ 
DR4 (-218-183) 5’-GTTTTAGAAATATTTTTGAATCTGAC-3’ 
DR5 (-241-215) 5’-TTAACTTGAAAATTAACGAAAATACCC-3’ 
DR6 (-286-255) 5’-AACGGCTATAGAAGCTGTAAAGGAAGCCCC-3’ 

NC (-120-95) 5’-GCAGAGAATGAGCTTTTATCACAG-3’ 
DR2-2 Mutant 5’-TCTCAAATTTTTCCCCCAAAAACTAGATAAAGCAG-3’ 
DR2-1 Mutant 5’-TCTCAAATTTTTCGATCAAAAACTACCCAAAGCAG-3’ 

DR2-1/2 
 Double Mutant 

5’-TCTCAAATTTTTCCCCCAAAAACTACCCAAAGCAG-3’ 

140 G 5’-CAAATTTTGCGATCAAAAACTAGATAAAG-3’ 
139 A 5’-CAAATTTTTAGATCAAAAACTAGATAAAG-3’ 
138 T 5’-CAAATTTTTCTATCAAAAACTAGATAAAG-3’ 
137 C 5’-CAAATTTTTCGCTCAAAAACTAGATAAAG-3’ 
136 G 5’-CAAATTTTTCGAGCAAAAACTAGATAAAG-3’ 
135 A 5’-CAAATTTTTCGATAAAAAACTAGATAAAG-3’ 
134 C 5’-CAAATTTTTCGATCCAAAACTAGATAAAG-3’ 
133 C 5’-CAAATTTTTCGATCACAAACTAGATAAAG-3’ 
132 C 5’-CAAATTTTTCGATCAACAACTAGATAAAG-3’ 
131 C 5’-CAAATTTTTCGATCAAACACTAGATAAAG-3’ 
130 C 5’-CAAATTTTTCGATCAAAACCTAGATAAAG-3’ 
129A 5’-CAAATTTTTCGATCAAAAAATAGATAAAG-3’ 
128 G 5’-CAAATTTTTCGATCAAAAACGAGATAAAG-3’ 
127 C 5’-CAAATTTTTCGATCAAAAACTCGATAAAG-3’ 
126 T 5’-CAAATTTTTCGATCAAAAACTATATAAAG-3’ 
125 C 5’-CAAATTTTTCGATCAAAAACTAGCTAAAG-3’ 
124 G 5’-CAAATTTTTCGATCAAAAACTAGAGAAAG-3’ 
123 C 5’-CAAATTTTTCGATCAAAAACTAGATCAAG-3’ 
122 C 5’-CAAATTTTTCGATCAAAAACTAGATACAG-3’ 
121 C 5’-CAAATTTTTCGATCAAAAACTAGATAACG-3’ 
120 T 5’-CAAATTTTTCGATCAAAAACTAGATAAAT-3’ 

 

1 All nucleotide numbers are relative to the transcriptional start site. 
2 Mutated nucleotides are in bold. 
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polyacrylamide gel electrophoresis (SDS-PAGE).  

Analytical size exclusion chromatography- Fractions containing purified ChxR were 

concentrated to 100 µM using an Amicon Ultra centrifugal filter (3,000 MWCO, Millipore). 

Equal volumes of protein samples at 100 µM, 10 µM, or 1 µM were applied to a Superdex 75 

10/300 GL analytical size exclusion column (GE Healthcare) equilibrated with 50 mM Tris-HCl 

(pH 7.5), 100 mM NaCl, and 250 mM KCl. In the same buffer, a protein standard containing 

bovine serum albumin (66 kDa), chicken ovalbumin (44 kDa), and horse myoglobin (17 kDa) 

(BIO-RAD, Hercules, CA) was used to generate a standard curve.  

In vitro chemical crosslinking- Purified ChxR-His6 was dialyzed in crosslinking buffer 

(30 mM sodium phosphate (pH 7.0) and 300 mM NaCl). ChxR was exposed to the primary 

amine chemical crosslinker disuccinimidyl suberate (DSS) (Pierce, Rockford, IL) at 500 µM. 

The reactions were incubated at 25°C for 2 min and quenched with 1 M Tris (pH 8.0). The 

samples were heat denatured in Laemmli buffer, separated by SDS-PAGE, and visualized by 

Coomassie staining.  

Time course of expression of ChxR- Mouse L929 fibroblast cells (8 × 105 cells/ml) were 

propagated in RPMI medium (Mediatech, Manassas, VA) supplemented with 5% fetal bovine 

serum (Hyclone, Logan, UT) and 50 µg/mL vancomycin (MP Biomedicals, Solon, OH) as 

previously described (Scidmore 2005). L929 cells were infected with C. trachomatis LGV 

(L2/434/Bu) at a dilution that resulted in approximately 80% of the cells infected as visualized 

by immunofluorescence microscopy at 24 hours post-infection (hpi) (Microtrak, Trinity Biotech, 

Berkeley Heights, NJ). At 12, 24, and 36 hpi, 1 L, 500 mL, and 350 mL of cells, respectively, 

were harvested by centrifugation (10 min at 1,400 × g; 15°C). The resulting pellets were washed 
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twice with and resuspended in Hanks’ Balanced Salt Solution (Mediatech) before transferring to 

40-mL Oakridge tubes. C. trachomatis specimens were liberated from the host cells by gentle 

sonication. The lysate was layered over 30% renografin (Bracco Diagnostics, NJ) and subjected 

to ultracentrifugation (10 min at 16,000 × g; 15°C). The resulting chlamydial pellet was 

resuspended in PBS. The samples were subjected to SDS-PAGE, and an immunoblot assay was 

performed using monospecific-polyclonal antibodies against ChxR (Proteintech, Chicago, IL).   

In vivo chemical crosslinking- Reticulate body (RB)-enriched pellets were resuspended 

in PBS and exposed to 10 mM DSS (Pierce). After 20 min incubation at 25°C, the reaction was 

quenched with the addition of 50 mM Tris (pH 8.0). The samples were subjected to SDS-PAGE, 

and immunoblot assays were performed using monospecific-polyclonal antibodies against ChxR.  

  Immunoprecipitation of ChxR- RB-enriched fractions from 36 hpi cells were obtained as 

described above. RBs were crosslinked with 1% formaldehyde, and the reaction quenched with 

250 µM glycine. After crosslinking, cells were incubated in RIPA buffer (10 mM Tris-Cl (pH 

8.0), 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 140 mM NaCl, 

and 5 mM DTT) with 15 µL of AEBSF (Thermofisher Scientific) for 45 min on ice. Samples 

were sonicated to shear DNA and centrifuged (14,000 × g, 15 min, 24°C), and supernatants were 

removed. For immunoprecipitation, protein G dynabeads (Invitrogen) were washed three times 

and resuspended in RIPA buffer. Ten micrograms of affinity-purified anti-ChxR polyclonal 

antibodies were added to beads and incubated at 4°C for 24 h with rotating. Beads were 

subsequently washed twice with RIPA buffer, and supernatants were added to the beads. 

Samples were incubated at 4°C for 24 h with rotating. Beads were washed twice with RIPA 

buffer before resuspension in RIPA buffer and incubated at 25°C for 2 h with rotating. Beads 

were again washed five times with RIPA buffer prior to 30 µL of TE (10 mM Tris-Cl (pH 7.4), 1 
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mM EDTA) being added. Samples were boiled 5 min to reverse the crosslinks and centrifuged 

(13,000 × g, 3 min, 25°C), and supernatants were collected. PCR was performed on supernatants 

by using primers to the chxR promoter region or the CT863 promoter region (Table 2.1). PCR 

products were separated by agarose gel electrophoresis and detected by ethidium bromide 

staining.  

Electrophoretic gel mobility shift assays (EMSAs) and quantitative binding analysis- 

Oligonucleotides were designed to contain each of the putative ChxR binding sites (direct repeat 

(DR) 1-6) and at least 3 bp of the flanking sequence (Table 2.1). Three or more base pairs of 

flanking sequence were shown to result in equal maximal binding (data not shown). IR800-

labeled (Eurofins MWG Operon, Huntsville, AL) or unlabeled (Integrated DNA Technologies) 

oligonucleotides were hybridized prior to use in EMSAs. Binding reactions (20 µL) contained 

DNA and ChxR at their respective concentrations as listed in the results section and were 

performed in triplicate. EMSAs were performed as previously described (Koo, Walthers et al. 

2006), except the reactions were incubated at 25°C for 20 min. After native PAGE, unlabeled-

hybridized DNA fragments were visualized by SYBR Green (Invitrogen) staining by using an 

excitation wavelength of 488 nm and an emission filter of 520 nm on a Typhoon Trio imager 

(GE Healthcare). IR800-labeled DNA fragments were visualized using the Odyssey Infrared 

Imaging System (LI-COR Biosciences, Lincoln, NE). DNA was quantified using the software 

program ImageQuant (GE Healthcare). Percent DNA shifted was determined by the amount of 

photons emitted for the shifted DNA band relative to the total amount of photons emitted 

between the shifted and non-shifted DNA bands. To measure the ChxR binding affinity with the 

six DR sites, EMSAs were performed with 1 nM DR1-DR6 and increasing concentrations of 

ChxR (5 nM–5 µM). Dissociation constants (Kd) were calculated using non-linear regression 
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with GraphPad Prism software (GraphPad Software Inc., San Diego, CA). The dissociation 

constant is the calculated protein concentration that resulted in 50% ChxR-DNA interaction.  

For the analysis of single site mutations in DR2 (Fig. 7), each individual gel included a 

ChxR binding reaction and wild-type DR2. Overall, the wild-type DR2 DNA sequence averaged 

67% of ChxR shifted DNA through 18 independent reactions. Student’s two-tailed t-test was 

used for statistical analysis of triplicate data sets. 

ChxRE49D site-directed mutagenesis- PCR was performed using the QuickChange II XL 

site-directed mutagenesis kit (Stratagene, Cedar Creek, TX) by following the manufacturer’s 

instructions. The wild-type Glu at residue 49 of ChxR (E49) was replaced with an Asp by using 

chxR plasmid as the reaction template. ChxRE49D was expressed and purified as described above 

for ChxR. 
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Chapter II 

Results 

 

ChxR forms homodimers in vitro and in vivo. 

In response to phosphorylation, homodimer formation has been shown to be critical for 

OmpR/PhoB subfamily response regulators to bind cognate DNA and activate transcription 

(Gao, Mack et al. 2007). Only two studies have evaluated the ability of atypical OmpR/PhoB 

response regulators to form homodimers, and the observations were discordant (Hong, Lee et al. 

2007; Ruiz, Salinas et al. 2008). Prior data indicated that ChxR is an atypical OmpR/PhoB 

response regulator, although the ability to form homodimers was not evaluated (Koo, Walthers et 

al. 2006). To begin understanding the mechanisms important for ChxR to activate transcription, 

studies were designed to determine if ChxR forms homodimers and mimics that of the active 

conformation of OmpR/PhoB subfamily response regulators.  

During purification of recombinant ChxR protein, size exclusion chromatography 

indicated that ChxR forms stable homodimers. When a relatively high concentration of ChxR (~ 

100 µM) was applied to the column, a single peak of protein eluted at the size expected (45 kDa) 

for a ChxR homodimer (Fig. 2.1). While the in vivo concentration of ChxR is unknown, OmpR 

in E. coli has been measured to be present at concentrations around 1–3 µM (Cai and Inouye 

2002). To address the possibility that ChxR forms homodimers only at high concentrations and 

not at potentially physiologic concentrations, dilutions of ChxR were applied to size exclusion 

chromatography. As Fig. 2.1 demonstrates, when the lowest concentration (1 µM) of ChxR was  
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FIG. 2.1. Recombinant ChxR purifies as a stable homodimer. Purified recombinant ChxR at 1 

μM, 10 μM, or 100 μM was subjected to analytical size exclusion chromatography to determine 

the in vitro oligomeric state of the protein. A molecular weight standard curve was generated 

using bovine serum albumin (66 kDa), chicken ovalbumin (44 kDa), and horse myoglobin (17 

kDa). 
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applied to the column, protein was only detected at the expected size of the ChxR homodimer. 

These data support that ChxR forms stable homodimers and that the molecular interactions 

between the two protomers form a relatively strong association, albeit within the testing 

conditions described. 

While the previous data supported that recombinant ChxR forms stable homodimers in 

the absence of phosphorylation, it was unknown whether ChxR homodimerization occurs in vivo. 

Given the inability to perform directed genetic studies in Chlamydia, membrane-permeant 

chemical crosslinkers were employed to obtain the most biologically relevant observations. 

Chemical crosslinkers have previously been utilized to capture homodimer formation by 

activated OmpR/PhoB subfamily response regulators, even if only within in vitro conditions 

(Delany, Spohn et al. 2002; Maris, Walthers et al. 2005). DSS is a crosslinker that was 

previously employed on the atypical response regulator HP1043 (Delany, Spohn et al. 2002). 

DSS is a membrane-permeant, primary amine homobifunctional crosslinker with a short spacer 

arm (11.4 Å). ChxR has 17 lysines in addition to the amino terminus (primary amines) that 

would be expected to serve as targets for DSS and form covalent intermolecular, as well as 

intramolecular, bonds.  

The ability to capture ChxR homodimers through the use of DSS was first tested in vitro. 

After incubating recombinant ChxR with DSS, two bands of protein were evident following 

SDS-PAGE analysis (Fig. 2.2A). One band migrated at the expected size of a ChxR monomer 

(~26 kDa), and another migrated at a molecular mass of an expected ChxR homodimer (~50 

kDa). To address the possibility that the detected protein dimerization was due to non-specific 

protein interactions, concentrations of ChxR were increased prior to adding DSS. While small 

amounts of higher-order species were present, after increasing the concentration of ChxR, the   
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FIG. 2.2. ChxR forms homodimers in vivo. Recombinant ChxR forms homodimers in vitro; 

however the in vivo oligomeric state of ChxR was unknown. (A) To determine if the primary 

amine chemical crosslinker DSS could capture ChxR homodimers, increasing concentrations 

(2.2 µM, 3.5 µM, 7 µM, 14 µM, 21 µM) of purified, recombinant ChxR was incubated with 500 

µM DSS. As a control, 21 µM ChxR was not incubated with DSS. Denatured samples were 

separated by SDS-PAGE and observed by Coomassie staining. (B) At 12, 24, and 36 hpi, C. 

trachomatis were enriched from infected L929 cells and the relative amount of ChxR present 

was assayed by an immunoblot with polyclonal-monospecific antibodies against ChxR (αChxR). 

The alpha subunit of RNA polymerase (αRpoA) was used to normalize the amount of 

chlamydial protein (ChxR) each time point. (C) To test dimer formation in vivo, 10 mM DSS 

was added to uninfected host cells (Mock) or C. trachomatis enriched lysates at 30 hpi 

(Infected). The samples were separated by SDS-PAGE and an immunoblot was performed using 

antibodies against ChxR. 
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predominant species were still homodimers (Fig. 2.2A). As an additional control for protein-

protein interaction specificity, increasing concentrations of a typically monomeric protein, 

bovine serum albumin, were incubated with DSS. Appreciable formation of higher complexes 

was not observed (data not shown). These data suggest that the primary amine chemical 

crosslinker DSS can capture ChxR homodimers in vitro. 

Prior to applying DSS to Chlamydia-infected cells to determine if ChxR forms 

homodimers in vivo, it was necessary to determine when ChxR is present during the 

developmental cycle of Chlamydia. Simply described, the biphasic developmental cycle consists 

of a primarily extracellular, metabolically inactive, and infectious form termed elementary body 

(EB) converting intracellularly into the metabolically active, replicative, and non-infectious form 

RB. After numerous rounds of RB replication, asynchronous reciprocal conversion (RB into EB) 

occurs, and EBs are released to infect new cells (Hybiske and Stephens 2007).  

Prior RT-PCR data indicate that chxR is expressed at 12 hpi and upregulated through 48 

hpi (Koo, Walthers et al. 2006); however, protein expression has not been determined. To 

ascertain if the protein expression pattern complements these findings, the expression profile of 

ChxR in an RB-enriched fraction of infected cell lysates from 12, 24, and 36 hpi was determined. 

At 12 hpi, EBs have fully converted to RBs, and the RBs are replicating. At 18–24 hpi, some 

RBs have begun to convert to EBs. At 36 hpi, the inclusion occupies most of the host cell and is 

composed of RBs and EBs. Immunoblot analysis of these lysates indicated that no ChxR protein 

was detected at 12 hpi but that ChxR is evident at 24 hpi, and the protein levels dramatically 

increase by 36 hpi (Fig. 2.2B). In addition to providing the key times during the developmental 

cycle to apply DSS, these observations also support that ChxR is most likely exerting its 
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functional activity during the middle (~24 hpi) and late (>36 hpi) stages of the chlamydial 

developmental cycle.  

Expression data indicated that studies designed to determine the homodimerization 

capability of ChxR should be performed after 24 hpi. A fraction of C. trachomatis-infected cells 

enriched for RBs was isolated at 30 hpi and incubated with DSS. Immunoblot analyses of lysates 

from RB-enriched fractions treated with DSS (Fig. 2.2C) revealed a protein profile very similar 

to that in the in vitro experiment (Fig. 2.2A). Immunoreactive bands were detected near the 

molecular mass of a ChxR monomer (26 kDa) and homodimer (~50 kDa). These data support the 

in vitro observations and indicate that ChxR is forming homodimers in vivo.  

    

ChxR recognizes its own promoter in vivo. 

Prior in vitro analyses have demonstrated that ChxR is a transcriptional activator and 

recognizes its own promoter (Koo, Walthers et al. 2006). To provide evidence that ChxR is 

transcriptionally active in vivo, a commonly utilized immunoprecipitation approach combined 

with PCR was enlisted (Wade, Struhl et al. 2007). RB-enriched fractions were treated with 

formaldehyde to crosslink ChxR to DNA targets. Following immunoprecipitation with anti-

ChxR antibodies and extensive washing, DNA was eluted and used in PCR reactions to 

determine if chxR promoter DNA was associated with ChxR. As Fig. 2.3 indicates, PCR analysis 

revealed that chxR promoter DNA was specifically associated with ChxR. The specificity of the 

immunoprecipitation reaction was indicated by the presence of chxR promoter amplicons only 

when anti-ChxR antibody and crosslinker were applied (Fig. 2.3).  

To provide further support for the specificity of ChxR-chxR promoter DNA capture, the 

association of ChxR with the promoter region of the open reading frame 863 (CT863) was  
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FIG. 2.3. ChxR is associated with its own promoter in vivo. To determine if ChxR recognizes the 

chxR promoter during a chlamydial infection, ChxR was crosslinked to DNA using 

formaldehyde at 36 hpi and immunoprecipitated from the lysates using antibodies that recognize 

ChxR (αChxR). PCR was then performed using primers specific for the chxR promoter. The lack 

of a PCR product with primers to the CT863 promoter supports that ChxR specifically 

recognizes the chxR promoter in vivo. The presence (+) or absence (-) of C. trachomatis genomic 

DNA (DNA) was used as PCR controls for both promoters. The presence (+) or absence (-) of 

αChxR was used as controls for the immunoprecipitation of ChxR. 
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similarly analyzed. CT863 is a gene transcribed at 6 hpi, and transcription levels are 

constitutively maintained throughout the developmental cycle (Nicholson, Olinger et al. 2003; 

Hefty and Stephens 2007); (Belland, Zhong et al. 2003). Based on the expression patterns of 

ChxR (Fig. 2.2), it would not be expected that ChxR plays a role in regulating a constitutively 

expressed CT863. Using primers for this promoter region, a PCR product representative of 

CT863 promoter was not detected in any of the immunoprecipitated ChxR-DNA samples (Fig. 

2.3). While these are negative observations (lack of CT863 promoter amplification) from a 

limited sample size, these observations provide additional support to the specificity of chxR 

promoter amplification from the immunoprecipitation samples. In combination, these data 

support that ChxR recognizes its own promoter in vivo and likely plays a key role in regulating 

its own expression.  

 

Identification of a conserved direct-repeat DNA sequence in each of the ChxR binding sites.  

Homodimers of OmpR/PhoB subfamily response regulators generally recognize a region 

of DNA that ranges from 18–23 bp and contains a direct repeat (DR) of DNA sequences that are 

critical for binding (Harlocker, Bergstrom et al. 1995; Blanco, Sola et al. 2002; Kenney 2002). 

Alternatively, examples of DNA binding motifs that consist of inverted repeats have been 

identified, including the atypical OmpR/PhoB response regulator HP1043 in Helicobacter pylori 

(Hong, Lee et al. 2007; Wang, Engohang-Ndong et al. 2007). Observations within this study 

support that ChxR exists as a homodimer and would be expected to bind to a similar DNA repeat 

motif; however, the critical DNA sequences and configuration are undetermined.  
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Previously, DNase protection assays indicated that ChxR binds to five regions within the 

chxR promoter, although a consensus recognition sequence was not reported (Koo, Walthers et 

al. 2006). To identify a shared DNA sequence and/or motif, the DNA sequences within these five 

ChxR binding sites were visually inspected. Within each of the five binding sites, direct repeat 

(DR) sequences (5′-T/A-T/A/C-G-A-T/A-N-T/A/C-3′) separated by 3–5 bp were identified 

(DR1–5; Fig. 2.4B), albeit with various degrees of conservation. Using this DNA sequence and 

arrangement as a guide, an additional sixth site (DR6) was identified upstream of DR5 (Fig. 2.4A 

and 2.4B) and was demonstrated to bind to this site (Fig. 2.5). A multiple sequence alignment of 

all 12 individual binding sites was used to establish a consensus ChxR recognition sequence. The 

frequency of nucleotides at each position in the DNA recognition sites was calculated, and the 

computational program Weblogo (Crooks, Hon et al. 2004) was utilized to generate a graphic 

that reflects the nucleotide frequencies (Fig. 2.4C). Using the nucleotide frequencies at each 

position, orientation of repeat DNA sequence, and the spacer distance, a ChxR DNA recognition 

motif was determined (Fig. 2.4D).   

 

ChxR binds to and exhibits differential affinity for the six individual DR sites in the chxR 

promoter. 

Differential affinity between individual binding sites within a single promoter has been 

observed for members of the OmpR/PhoB subfamily and is often a central component in the 

mechanism of regulation (Bergstrom, Qin et al. 1998; Barnard, Wolfe et al. 2004; Yoshida, Qin 

et al. 2006). Furthermore, it has been reported that binding of a transcription factor to one site 

can dramatically affect the capability of a neighboring site to become occupied (i.e., 

cooperativity) (Harlocker, Bergstrom et al. 1995). To determine the ability of ChxR to bind to  
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FIG. 2.4. chxR promoter region and putative ChxR binding motif. (A) The five putative binding 

sites (underlined and identified as DR5, DR4, DR3, DR2, and DR1) were derived from a 

previously reported DNase protection assay (Koo, Walthers et al. 2006). A sixth recognition site 

(DR6) was later identified within the chxR promoter. The arrows denote the orientation of each 

recognition site. Transcriptional start site and σ66 holoenzyme promoter element are indicated by 

+1 and -35/-10, respectively (Koo, Walthers et al. 2006) (B) Visual inspection of the six binding 

sites in the chxR promoter suggested a conserved direct repeat sequence. The two recognition 

motifs and intervening sequence within the six DR sites were aligned. (C) A consensus sequence 

was generated using Weblogo (Crooks, Hon et al. 2004) with each half site from the sequences 

in Fig. 4B. (D) The recognition sequence and linker length is listed (W=A/T, H=C/A/T, 

N=G/C/A/T). 
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FIG. 2.5.  Binding of ChxR to individual DR sites.  (A) To determine if ChxR interacts with the 

six recognition sites within the chxR promoter individually, EMSAs were performed with 100 

nM of each IR800-labeled binding site (DR1-DR6) with (+) or without (-) 1 µM ChxR. A DNA 

sequence corresponding to the -120 to -95 region of the chxR promoter was used as a nonspecific 

DNA control (NC). The Kd for each binding site is given in Table 2.2.  
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each of the DR sites independently and whether a potential binding hierarchy exists, the binding 

capability of ChxR to each of the six DNA binding sites was analyzed and measured 

independently. EMSAs were performed with DNA representative to each of the binding sites and 

ChxR (Fig. 2.5A and Table 2.1). ChxR was able to interact with each site independently. In 

support of the specificity of ChxR to these binding sequences, ChxR did not interact with an 

oligonucleotide that did not contain a ChxR binding sequence (Fig. 2.5A; NC). The ability of 

ChxR to interact with DR6 affirms that the visually derived consensus sequence (Fig. 2.4D) is 

indeed recognized by ChxR. In addition, by using a static concentration of protein and DNA, it 

appeared that ChxR has a differential affinity for the individual DR sites.  

To measure the differential affinity for the six DR sites, EMSAs were performed with 

each recognition site and increasing concentrations of ChxR (data not shown). Kd was then 

calculated for each site (Table 2.2). The Kd values listed are for a ChxR:DNA stoichiometric 

ratio of 2:1 given that recombinant ChxR is a homodimer in vitro. The quantitative analysis 

revealed that ChxR had the highest affinity (Kd = 44 ± 4 nM) for DR2 and the lowest affinity (Kd 

= 1500 ± 300 nM) for DR6. The affinity for DR2 is more than 33-fold higher than that for DR6. 

This suggests that there is a hierarchy of binding in the chxR promoter and that the order of 

binding is DR2>DR1-DR3>DR4-DR5>DR6.  

 

Three highly conserved bases within the ChxR binding motif are critical to recognition. 

As described previously, visual inspection of the six DR sites revealed a conserved 

recognition sequence (Fig. 2.4C). Based upon the nucleotide frequency in the deduced 

recognition site, it is expected that the nucleotides are critical for DNA binding. To the 

hypothesis that ChxR requires the conserved GAW nucleotides for binding, EMSAs were  



 

 52 

 c entral GAW test  

!"#$%$&#
"'#$%$&#

"!#$%$&#
!!$%$!

!(#$%$)#
"*##$%$&##



 

 53 

performed with wild-type or mutated DNA constructs from the site (DR2) in the chxR promoter 

that exhibited the highest affinity for ChxR (Fig. 2.6A). Increasing concentrations of ChxR were 

incubated with DR2 DNA containing triple cytosine mutations at either GAW position (DR2-2; 

−138 to −136 or DR2-1; −126 to −124) or the same mutations at both sites (DR2-1/2). Triple 

mutations at either GAW site dramatically reduced the ability of ChxR to bind to the DNA 

fragment relative to the wild-type sequence (Fig. 2.6B). Mutations in DR2-2 had dramatic 

negative effects on ChxR binding, although an interaction was still observed at the highest two 

concentrations of ChxR (25:1 and 100:1). Similarly, mutations in DR2-1 dramatically reduced 

the interaction between ChxR and the DNA (Fig. 2.6B). Mutations at both ChxR monomer-

binding sites eliminated any observable ChxR-DNA interaction (Fig. 2.6B). These data support 

the hypothesis that the central GAW nucleotides in both sites are important to ChxR binding. 

  

Single base pair contribution to ChxR binding to the DR2 sequence.  

The prior analysis supports the conclusion that the central GAW in the DR2 sequence is 

critical to ChxR binding. It is expected that additional ChxR-nucleotide interactions are integral 

to stabilizing the ChxR-DNA complex. To identify these individual bases and measure the effect 

on ChxR binding, single transversion mutations that would result in a base pair change (A or 

T⇔C or G, respectively) were introduced throughout the DR2 binding site and the intervening 

sequence. The DR2 site was chosen for single base pair contribution analysis because it is the 

highest affinity binding site in the chxR promoter. The base pair transversions were expected to 

disrupt both major and minor groove interactions. As described previously in this report, EMSAs 

were performed with each of the mutated DR2 DNA sequences in triplicate, and the percent of 

DR2 DNA relative to wild-type DNA bound by ChxR was determined (Fig. 2.7).  
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FIG. 2.6. Mutations within the DNA recognition motif significantly reduce ChxR-DNA 

interaction. (A) The DR2 nucleotide sequence from the chxR promoter is shown. The two 

consensus recognition sequences are underlined and the bolded nucleotides indicate the sites of 

triple-cytosine mutations. EMSAs were performed with increasing concentrations of ChxR (39 

nM-3.9 µM) and 39 nM of each DNA construct: (B) wild-type sequence (WT), DR2-2 mutant, 

DR2-1 mutant, and DR2-1/2 double mutant. 
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FIG. 2.7. Single base pair contributions to ChxR-DNA interactions within the DR2 binding site. 

EMSAs were performed with 5 µM ChxR and 50 nM DNA containing transversion mutations. 

The target DNA used in the experiment was the DR2 sequence from the chxR promoter, 

comprising the DR2 half sites (underlined). The percent of DNA shifted with each transversion 

mutation (n = 3) are shown in the graph relative to the DNA shifted with the wild-type sequence 

(n = 18). The amount of DNA shifted, was quantified using the photon emission of the SYBR 

Green at 520 nm. The mutations that resulted in a significant (p < 0.05) reduction of DNA-

interaction are denoted by an asterisk. 
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Nine of the single base pair mutations resulted in a statistically significant decrease of 

percent DNA shifted relative to wild-type DR2 DNA. Out of the nine single base pair mutations 

that had a statistically significant decrease in DNA shifted, four mutations had dramatically 

(>20%) less DNA shifted than wild-type DR2 DNA. The most dramatic decrease in DNA 

shifting occurred when a transversion was introduced at position −134. Position −134 is located  

at the 3′ end of the DR2-2 ChxR binding site and resulted in a 70% reduction in DNA shifted 

relative to wild-type DR2 sequence. Within the predicted spacer region, at the base immediately 

3′ of the DR2-2 site, a transversion caused an approximately 50% reduction of DNA binding by 

ChxR. In contrast to DR2-2, transversions at four separate locations in DR2-1 (−124, −125, 

−127, and −128) resulted in a statistically significant decrease in ChxR binding; however, only 

the mutations in the central GAW positions (−124 and −125) resulted in more than a 20% 

reduction in the percent of DNA shifted. Together, these data support that single base 

transversions can have a negative effect on ChxR binding to the DR2 region; however, no single 

mutation eliminated ChxR binding.  

 

ChxRE49D retains dimerization and DNA binding activity. 

Typically, members of the OmpR/PhoB response regulator subfamily are phosphorylated 

through a highly conserved Asp residue in the receiver domain of these proteins (Friedland, 

Mack et al. 2007). This phosphorylation facilitates the reorientation of two switch residues and 

promotes homodimerization, DNA binding, and transcriptional regulation. ChxR is uncommon 

in this respect because the amino acid in the predicted position of the conserved Asp is a Glu 

residue (E49) (Koo, Walthers et al. 2006). Many transcription factors that are activated by a 
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phosphorylated Asp can be converted into a phosphoryl-independent constitutively active state 

via substitution with Glu (Klose, Weiss et al. 1993; Siam and Marczynski 2003; Gao, 

Mukhopadhyay et al. 2006; Arribas-Bosacoma, Kim et al. 2007). Based upon these observations, 

it was hypothesized that Glu 49 is critical to DNA binding and transcriptional activity of ChxR 

and that conversion to an Asp could render the molecule inactive. To begin testing this 

hypothesis, Glu 49 was substituted with an Asp (E49D), and the modified ChxRE49D was assayed 

for homodimerization and DNA binding capability.  

Similar to wild-type ChxR, recombinant ChxRE49D migrated via size exclusion 

chromatography at a size expected for a homodimer (data not shown), indicating that this 

modification had a minimal effect on monomer-monomer interactions. To further test the 

capability of ChxRE49D to dimerize, unmodified ChxR or ChxRE49D was exposed to a chemical 

crosslinker (DSS) to capture homodimers prior to separation via SDS-PAGE. The resulting 

observations also support that ChxRE49D retained the ability to form homodimers (Fig. 2.8A). 

The ability of ChxRE49D to bind to DNA was tested via EMSA by using the DR2 site from the 

chxR promoter (Fig. 2.8B). The percent of DNA shifted with ChxRE49D was quantified and found 

to be very similar to that with wild-type ChxR. These data indicate the Glu residue (E49) in the 

position of the conserved Asp in other OmpR family members does not solely account for the 

constitutive transcriptional activity of ChxR. 
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FIG. 2.8. ChxRE49D retains homodimer formation and DNA binding activity. (A) To test 

homodimerization, 5 µM ChxR or 6 µM ChxRE49D was incubated with 500 µM DSS. Proteins 

were separated by SDS-PAGE and visualized by Coomassie staining. (B) To determine the DNA 

binding activity of ChxRE49D, EMSAs were performed in triplicate with 1.25 µM ChxR or 1.25 

µM ChxRE49D and 50 nM DNA from the DR2 site. The percent of DNA shifted was quantified 

and normalized as described previously. 
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Chapter II 

Discussion 

 

Homodimer formation, predominantly in response to phosphorylation, is a governing step 

for the regulation of transcription by a large majority of the OmpR/PhoB subfamily of response 

regulators (Bourret 2010). Homodimerization orients and stabilizes individual protomers that 

promote DNA binding and subsequent transcriptional regulation (Mack, Gao et al. 2009). While 

prior studies on atypical response regulators support phosphorylation-independent transcriptional 

activation, the importance of homodimer formation is still uncertain (Beier and Frank 2000; 

Ruiz, Salinas et al. 2008). Data presented here demonstrated that ChxR, in the absence of 

phosphorylation, forms stable homodimers in vitro at concentrations (1 µM) that are likely to be 

physiologically relevant (Figs. 2.1 and 2.2). This conclusion is further supported by the utility of 

the membrane-permeant crosslinker DSS, which allowed us to demonstrate that ChxR forms 

homodimers in vivo (Fig. 2.2). While it is possible that ChxR has an alternate site of 

phosphorylation or undetermined modification that promotes homodimerization within 

Chlamydia, prior analyses showed that unmodified ChxR activated transcription at its own 

promoter in vitro and within a heterologous E. coli system (Koo, Walthers et al. 2006). As such, 

it is unlikely that this unknown mechanism for phosphorylation at an alternate site or 

undetermined mechanism is present in E. coli. These observations and those described herein 

support that wild-type ChxR protein is in a conformation that likely mimics the phosphoryl-

activated OmpR/PhoB response regulators, including homodimerization.  

While the conformation of ChxR may mimic that of phosphorylated OmpR/PhoB 

members, ChxR exhibits unique characteristics. Substitution of the phosphorylated Asp with Glu 
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can render response regulators constitutively active (Klose, Weiss et al. 1993; Siam and 

Marczynski 2003; Gao, Mukhopadhyay et al. 2006; Arribas-Bosacoma, Kim et al. 2007). 

However, the ability of ChxR to maintain a homodimer conformation and interact with DNA is 

not the result of this single substitution (D49E). Supporting this result was the retention of the 

homodimer formation and DNA binding capability of ChxR after a Glu to Asp substitution 

(ChxRE49D; Fig. 2.8). These data suggest that those residues (Ser/Thr in β4 and Phe/Tyr in β5) 

that are typically reoriented in response to Asp phosphorylation might be stabilized in an ‘active’ 

orientation in unphosphorylated ChxR. Notably, ChxR does not encode a Ser or Thr in the 

expected β4 strand but does encode a Tyr (Y90) in the predicted β5 strand. Structural studies on 

the receiver domain would be useful to identify the molecular orientations, such as that of Tyr90, 

and interactions that may be critical to forming stable homodimers and eventual transcriptional 

regulation by this atypical OmpR/PhoB response regulator. 

Alternatively, it is possible that phosphorylation of recombinant ChxRE49D in E. coli 

facilitated the formation of an active ChxR molecule. This appears unlikely based upon a number 

of observations. First, the rate of unaided dephosphorylation in OmpR/PhoB subfamily response 

regulators typically occurs within seconds to an hour (Stock, Ninfa et al. 1989), which would 

suggest that the phosphoryl group would not have been retained throughout the purification 

process and storage of the protein before the assays were conducted. Secondly, a cognate sensor 

kinase that could phosphorylate ChxR is likely not present given the phylogenetic distance 

between Chlamydia and E. coli. Response regulator phosphorylation by cognate sensor kinases is 

relatively specific, and crosstalk between sensor kinases and response regulators is limited, even 

within bacteria of the same species. Thirdly, the three-dimensional structure of the ChxR 
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response regulator has been solved (manuscript in preparation), and structural analysis does not 

indicate the presence of a phosphoryl group. 

The affinities for ChxR to each of the six DR sites are lower than those of typical 

OmpR/PhoB subfamily response regulators. Studies with phosphorylated OmpR have 

determined that, of the protein-DNA interactions measured, the DNA affinity ranged from ~7–

300 nM (Head, Tardy et al. 1998). Furthermore, DNA interaction is greatly enhanced when 

multiple repeat sequences are present. In the current study, the affinity for ChxR with the 

individual six DR sites was measured and ranged from ~44 nM–1.5 µM (Table 2.2), which is 

about 5-fold lower than that of OmpR. It may be possible that cooperativity plays a key role in 

enhancing affinity to the promoter region. As such, it is currently unclear how the presence of 

multiple binding sites influences the affinity of ChxR for DNA but is a focus of ongoing studies.  

Several individual base pair mutations were demonstrated to have significant effects on 

ChxR binding to the DR2 DNA binding site (Fig. 2.7). Interestingly, only one of these mutations 

(−134) resulted in a greater than 50% reduction in ChxR binding to DNA. The overall tolerance 

to single base transversions is likely indicative of relatively strong ChxR affinity to this 

particular binding site. This is supported by the observation that ChxR has the highest binding to 

a DR2 DNA fragment as compared to the other five sites (Table 2.2). Furthermore, no single 

mutation completely eliminated ChxR binding to the DR2 DNA sequence. This is in contrast to 

the triple base pair mutation introduced into either conserved ChxR binding sequence that had a 

large impact on all DNA binding by ChxR (Fig. 2.6). Moreover, no single mutation caused a 

significant increase in ChxR binding efficiency. 

Single base mutations appeared to have more negative influence on DR2-1 ChxR binding 

site than DR2-2. Four base mutations (−128, −127, −125, and −124) all caused statistically 
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significant reductions in ChxR binding to DR2-1. In contrast, only a mutation at −134 caused a 

decline in DR2-2 binding, albeit the largest effect by a single mutation. These observations 

indicate that affinity of ChxR to the DR2-1 wild-type sequence is weaker, as individual base 

changes are not tolerated well. This is in congruence with the apparent requirement for both 

ChxR recognition sites for a stable protein-DNA interaction (Fig. 2.6). Furthermore, the dramatic 

negative affect at −134 also supports that, in the context of the surrounding sequencing, this 

residue is critical for ChxR binding. Interestingly, single mutations that resulted in a negative 

effect were not constrained to the seven bases within a conserved binding site. Three intervening 

base mutations (−133, −131, and −130) resulted in significant reductions in ChxR binding. This 

suggests that protein contacts are likely occurring within this region and playing a role in the 

affinity of ChxR to DNA. Of note, the wing of the OmpR/PhoB subfamily winged-helix motif 

typically interacts with an adjacent DNA minor groove in a non-base-specific fashion. 

Additionally, these mutations could be affecting the topology of the relatively small fragment of 

DNA and disrupting ChxR interactions in the conserved sequences. A comparison of the 

intervening sequence between binding sites does not reveal any conserved nucleotide 

frequencies, which suggests that the latter (DNA topology) is more likely; however, sequence-

specific interactions may be involved in only a few of the binding sites, such as DR2. Along 

these lines, a recent report has emphasized the role of DNA topology on gene regulation in 

Chlamydia (Case, Peterson et al.).  

Based upon the ChxR DNA binding sequence (WHGAWNH; Fig. 2.4), it may be 

expected that ChxR has a relatively low level of DNA binding specificity. This may be insightful 

in regards to the overall role of ChxR in Chlamydia. Bacterial transcription factors that exhibit 

relatively low levels of specificity are consistently global regulators which are transcription 
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factors that regulate relatively large number of genes and incorporate different response 

conditions, co-regulators, or different sigma factors (Lozada-Chavez, Angarica et al. 2008). For 

example, OmpR has been reported to regulate the transcription of at least 125 genes (Rhee, 

Sheng et al. 2008). In contrast, local regulators, transcription factors that regulate a relatively 

small number of genes associated with a specific stimulus/physiologic response, have high levels 

of specificity. The ChxR direct repeat binding sequence with a 3–5 base spacer occurs at 3203 

and 3303 sites in the C. trachomatis serovar D and serovar L2 genomes, respectively (data not 

shown). However, when the two genomes are searched with a consensus sequence 

(WHGAWNW) from the three highest affinity sites (DR1-3), the number of binding sites 

decreased to 1826 and 1902 for the D and L2 genomes, respectively. Further analyses are clearly 

needed to correlate the ability of ChxR to recognize any of these sites for transcriptional 

regulation. Characterizing other ChxR binding sites may refine the ChxR recognition motif. 

However, the low nucleotide conservation in the binding sequence supports the hypothesis that 

ChxR is a global regulator in Chlamydia, in contrast to a local, more restricted transcriptional 

regulator.   

The presence of chxR transcripts during the early stages of the developmental cycle, 

albeit at a relatively low level, indicates that the previously determined σ66 promoter (Koo, 

Walthers et al. 2006) is active but weakly initiating transcription or that post-transcriptional 

repression mechanisms are employed. Based upon the ability of ChxR to bind to the six sites 

present in the chxR promoter, we speculate that full expression of chxR may rely on a threshold 

of ChxR molecules being attained. This threshold would require occupancy of 12 ChxR proteins 

(6 homodimers) to all six binding sites within the chxR promoter. This potential mechanism is 

intriguing, as the signal for the asynchronous conversion of RB to EB is unknown. As RBs 
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replicate, it may be expected that the cytosolic contents, including ChxR, are diluted and 

distributed randomly to the daughter cells. This possibility, combined with differential 

replication rates of individual organisms, could permit ChxR to accumulate and reach a threshold 

for full chxR expression in subpopulations of Chlamydia. Many other factors are expected to 

play a role in the stability of ChxR that would also affect this proposed mechanism. While this 

mechanism is largely speculative, future studies regarding the mechanism of ChxR activation 

and identifying global ChxR gene targets are expected to address the validity of the proposed 

model. 
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Chapter III 

Introduction 

 

Two-component signal transduction systems are important mechanisms that mediate many 

physiological functions within an organism. The output response of these systems is generally an 

alteration of gene expression (Stock, Robinson et al. 2000; Wang, Engohang-Ndong et al. 2007). 

The prototypical two-component system consists of a membrane bound sensor histidine kinase 

that transfers a phosphoryl group to a cognate response regulator (For review (Gao and Stock 

2009)). Phosphorylation of the response regulator induces relatively subtle conformational 

changes within the protein that promote oligomerization through a receiver domain. 

Oligomerization facilitates an effector domain to interact with DNA and the transcriptional 

machinery.  

While the genes regulated by these transcription factors vary, a highly conserved protein 

architecture and residue composition (i.e. structure and sequence) appear to be critical for a 

canonical mechanism of activation. Currently, ~200 receiver domain structures have been 

elucidated for response regulators and almost all share a common β1-α1-β2-α2-β3-α3-β4-α4-β5-

α5 topology (Gao and Stock 2009; Bourret 2010). Within these 200 structures, 20 belong to the 

OmpR/PhoB subfamily, which is the largest subfamily of response regulators (Galperin 2006). 

Members of this subfamily are composed of a receiver domain that contains the site of 

phosphorylation and is involved in homodimerization, and an effector domain that interacts with 

DNA through a subfamily-defining winged helix-turn-helix motif.  

In addition to the conserved domain architecture of the OmpR/PhoB subfamily, current 

understanding of the mechanism of activation within these proteins is derived from comparisons 
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of multiple structures of these proteins in both the inactive (unphosphorylated) and active 

(phosphorylated) state (Sola, Gomis-Ruth et al. 1999; Bachhawat, Swapna et al. 2005; Toro-

Roman, Mack et al. 2005; Toro-Roman, Wu et al. 2005; Bachhawat and Stock 2007). The 

cognate sensor kinase transfers a phosphoryl group to a conserved phospho-accepting Asp in the 

receiver domain of the response regulator. An essential Mg2+ ion and a Lys residue assist in the 

transfer and retention of the phosphoryl group within the binding site (Sola, Gomis-Ruth et al. 

1999; Bachhawat, Swapna et al. 2005). The activation signal is then transduced to the dimer 

interface (α4-β5-α5) through the reorientation of two conformational switch residues (Thr/Ser 

and Tyr/Phe) towards the phosphoryl group. The reorientation of these two residues dramatically 

enhances homodimer formation by properly aligning residues within the dimer interface that are 

involved in ionic and hydrophobic interactions between protomers. Homodimer formation 

through the receiver domain enhances the ability of the effector domain to bind to DNA and 

regulate transcription (Mack, Gao et al. 2009).  

An increasing number of response regulators have been identified that appear to not rely on a 

sensor kinase or a phosphorylation event for activation. These atypical response regulators do not 

retain many of the residues critical to the canonical phosphorylation (activation) process (Bourret 

2010). For example, HP1043, from Helicobacter pylori, lacks the phospho-accepting Asp but is 

still capable of forming homodimers and interacting with DNA in the absence of 

phosphorylation (Delany, Spohn et al. 2002; Schar, Sickmann et al. 2005; Hong, Lee et al. 2007). 

Two experimentally determined structures of atypical receiver domains have shown that the 

conserved structural topology of the OmpR/PhoB subfamily is largely retained in these atypical 

response regulators (Fraser, Merlie et al. 2007; Hong, Lee et al. 2007). Functional studies of 

these proteins, albeit limited, have determined that the propensity to form homodimers is also 
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generally retained (O'Connor and Nodwell 2005; Fraser, Merlie et al. 2007; Hong, Lee et al. 

2007; Hickey, Weldon et al. 2011). The structural elements that maintain their phosphorylation-

independent activity, however, are poorly understood due to the paucity of functional and 

structural studies of these proteins.  

The medically important bacteria Chlamydia encodes an atypical transcriptional regulator 

termed ChxR. Transcriptional regulation has been determined to be a key factor in the 

development and pathogenesis of Chlamydia (Belland, Zhong et al. 2003; Nicholson, Olinger et 

al. 2003). ChxR was identified from primary sequence homology to be a member of the 

OmpR/PhoB subfamily of response regulators (Stephens, Kalman et al. 1998). Computational 

analysis indicated that ChxR lacks the phospho-accepting Asp and a cognate sensor kinase was 

not identified within the chlamydial genome, suggesting that the function of ChxR is not directly 

controlled by phosphorylation (Koo, Walthers et al. 2006). Functional studies have reported that 

ChxR exists as a stable homodimer and could activate transcription in the absence of 

phosphorylation (Koo, Walthers et al. 2006; Hickey, Weldon et al. 2011 (Chapter 2)). While 

these results support the conclusion that ChxR is an atypical OmpR/PhoB transcriptional 

regulator, the critical structural features that permit the protein to be maintained in an active 

state, and thereby mimic the mechanism of phosphorylated response regulators, have yet to be 

identified. We hypothesize that the intra- and intermolecular interactions involved in activation 

and dimerization of ChxR are distinct from the canonical phosphorylation (activation) paradigm 

in the OmpR/PhoB response regulator subfamily. To test this hypothesis, structural and 

functional studies were performed with the receiver domain of ChxR to identify the residues and 

structural features necessary for dimerization. 
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Chapter III 

Methods 

 

Cloning, Expression, and Purification of ChxRRec. DNA encoding the receiver domain of 

ChxR (ChxRRec, residues 2-113) was PCR amplified using Chlamydia trachomatis LGV 

(L2/434/Bu) genomic DNA and primers for ChxRRec (5’-

GGAATTCCATATGCAGGGCCTAAACATGTG-3’ and 5’-

CCGCTCGAGATGTAGCGAATGCTGAGAAAG-3’) (Integrated DNA Technologies, 

Coralville, IA). The PCR product was digested with NdeI/XhoI and inserted into the N-terminal 

polyhistidine tag encoding pET28b vector (Novagen, San Diego, CA). ChxRRec was expressed 

and purified as described for full-length ChxR (ChxRFL) (Hickey, Weldon et al. 2011 (Chapter 

2)). Briefly, the protein was initially purified using Co2+ affinity chromatography (Clontech, 

MountainView, CA) equilibrated with 50 mM Tris-HCl pH 8.0, 400 mM NaCl. ChxRRec was 

further purified by size exclusion chromatography using a Sephacryl S-200 16/60 column (GE 

Healthcare Biosciences, Pittsburg, PA) equilibrated with 50 mM Tris-HCl pH 8.0, 400 mM 

NaCl.  

Crystallization of ChxRRec. Purified ChxRRec, concentrated to 10 mg/ml in 20 mM 

NaH2PO4/K2HPO4 pH 7.0, 400 mM NaCl, was screened for crystallization in Compact Jr. 

(Emerald BioSystems, Bainbridge Island, WA) sitting drop vapor diffusion plates by mixing 1 

µL of protein and 1 µL of crystallization solution equilibrated against 100 µL of the latter.  

Prismatic ChxRRec crystals were obtained from two crystallization conditions. ChxRRec crystals, 

belonging to a C-centered monoclinic lattice (space group C2) grew in approximately 2 days at 

4°C from the Wizard 3 screen (Emerald Biosystems) condition #10 (20% (w/v) PEG 3350, 0.2 
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M sodium thiocyanate). A tetragonal crystal form (space group I41) grew in approximately 2 

days at 4°C from the Precipitant Synergy screen (Emerald Biosystems) condition #7 and pHat 

screen (Emerald Biosystems) condition #42 (4 M NaCl, 5% Isopropanol, and 100 mM 

NaH2PO4/K2HPO4 pH 7.0). Single crystals were transferred to a cryoprotectant solution 

containing 80% crystallization solution and 20% ethylene glycol before flash cooling in liquid 

nitrogen for data collection.  For SIRAS phasing, a crystal belonging to the C2 form was soaked 

for 5 minutes in 50 mM 5-Amino-2,4,6-triiodoisophthalic acid (I3C, Hampton Research, Aliso 

Viejo, CA) (Beck, Krasauskas et al. 2008) dissolved in crystallization solution prior to the 

transfer to the cryoprotectant solution.   

Data Collection and Processing. Diffraction data for structure solution using the SIRAS 

phasing method were collected at 93 K at the University of Kansas Protein Structure Laboratory 

using a Rigaku RU-H3R rotating anode generator (Cu-Kα) equipped with an R-axis IV++ image 

plate detector and osmic blue focusing mirrors. The exposure time for each 1° oscillation image 

was 8 minutes at a detector distance of 150 mm. Intensities were integrated and scaled using the 

HKL2000 package (Otwinowski and Minor 1997). Structure solution was carried out using the 

SIRAS phasing method with the SHELX C/D/E software package (Sheldrick 2008) via the CCP4 

interface (1994).  Iodine positions corresponding to three I3C sites were identified using 

SHELXC and SHELXD that yielded correlation coefficient all/weak of 38.80/27.17. Calculation 

of initial phase angles and density modification were conducted with SHELXE and yielded a 

pseudo-free correlation coefficient of 69.28% and an estimated mean figure of merit of 0.653 for 

the inverted substructure. BUCCANNER (Cowtan 2006) was used to generate a Cα trace of the 

model for future molecular replacement against the high-resolution native data. High-resolution 

native ChxRRec (C2 space group) data were collected at 100K at the IMCA-CAT beamline 17BM 
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at the Advanced Photon Source using an ADSC Quantum 210r CCD detector at a wavelength of 

1.0 Å. The exposure time for each 1° oscillation image was 5 seconds. Intensities were integrated 

and scaled using D*TREK (Pflugrath 1999). High-resolution native ChxRRec (I41 space group) 

data were collected at 100K at Stanford Synchrotron Radiation Laboratory (SSRL) beamline 9-2 

using an MAR325 detector at a distance of 170 mm, wavelength of 1.54 Å, an exposure time of 

5 seconds, and a 1° oscillation per image. Intensities were integrated and scaled using MOSFLM 

and SCALA (Evans 2006), respectively. The model obtained from SIRAS phasing was used as 

the search model for molecular replacement with PHASER (McCoy, Grosse-Kunstleve et al. 

2007) against the high-resolution synchrotron data. Initial automated model building was carried 

out using ARP/wARP (Langer, Cohen et al. 2008). Anisotropic atomic displacement parameters 

were modeled by TLS refinement 7 groups as generated by the TLSMD server (http:// 

skuld.bmsc.washington.edu/~tlsmd/)(Painter and Merritt 2006). Final model building and 

structure refinement were performed with COOT (Emsley and Cowtan 2004) and PHENIX 

(Adams, Afonine et al. 2010) respectively. Data collection and processing statistics are listed in 

Table 3.1. Figures were created using CCP4 Molecular Graphics Program 

(http://www.ysbl.york.ac.uk/~ccp4mg/) (Potterton, McNicholas et al. 2004). 

For the 1.6 Å resolution model, monomer A comprises residues 2-111 and monomer B 

comprises residues 4-37, 43-60, and 68-110. The model contained two ethylene glycol molecules 

and 106 water molecules. For the 2.15 Å resolution model, monomer A comprises residues 4-54 

and 66-110, and monomer B comprises residues 4-60 and 67-109. The model contained two 

sodium ions and 39 water molecules. For the 2.1 Å resolution structure, monomer A comprises 

residues 3-111 and monomer B comprises residues 4-37, 43-60, and 68-109. The model 

contained three I3C molecules and 75 water molecules. A Ramachandran plot with PHENIX 
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(Adams, Afonine et al. 2010) determined that 99.5% of the residues for all three models were in 

a favored position and 0.5% of the residues in the 1.6 Å and 2.15 Å resolution models were in an 

allowed position. Residue 55 (Arg55) of monomer B of the 2.1 Å resolution model was in a 

disallowed position due to poor electron density in the region of the amide.   

Far-UV CD Spectroscopy. CD analysis was performed with a Chirascan-plus Circular 

Dichroism spectrometer equipped with a Peltier temperature controller and a 4-position cuvette 

holder (Applied Photophysics Ltd, Leatherhead UK). Far UV spectra of YycF and ChxR at 0.1 

mg/ml in CD buffer (20 mM NaH2PO4 pH 7.5, 20 mM NaCl) were collected in the range of 190-

260 nm using a 0.1 cm path length cuvette sealed with a Teflon stopper. A sampling time-per-

point of 2 s and a bandwidth of 1 nm were used. The secondary structure components were 

estimated by the CDNN CD spectra deconvolution software (Bohm, Muhr et al. 1992). CDNN is 

a neural networks method based program, which can be used to analyze data to determine the 

content of α-helix, parallel and anti-parallel β-structure, turns and random coil. The results from 

the CDNN analysis were sorted automatically in five regions (190-260nm, 195-260nm, 200-

260nm, 205-260nm and 210-260nm) for each secondary structure component. For each 

secondary component, results of five regions were averaged and standard deviations were 

calculated.  

Site-Directed Mutagenesis. Mutations were introduced into the ChxRFL plasmid using the 

QuikChange II XL Site-Directed Mutagenesis kit and following the manufacturers protocol 

(Agilent Technologies, La Jolla, CA).  All clones were verified by DNA sequencing analysis 

(ACGT, Inc., Wheeling, Il). The proteins were over-expressed in pET28b and purified as 

described previously (Hickey, Weldon et al. 2011 (Chapter 2)).  
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Analytical Size Exclusion Chromatography. Following purification, ChxRRec, 

ChxRRec
W89E, ChxRFL, and ChxRFL

W89E were concentrated to 100 µM using an Amicon Ultra 

centrifugal filter (Millipore, Billerica, MA). ChxRRec was then diluted to 10 µM and 1 µM in 50 

mM Tris-HCl pH 8.0, 400 mM NaCl. The proteins were applied to a Superdex 75 10/300 GL 

analytical size exclusion column (GE Healthcare Biosciences) equilibrated with 50 mM Tris-HCl 

pH 8.0, 400 mM NaCl for ChxRRec and ChxRRec
W89E, and 50 mM Tris-HCl pH 7.5, 100 mM 

NaCl, and 250 mM KCl for ChxRFL and ChxRFL
W89E. A protein standard solution containing 

bovine serum albumin (66kDa), chicken ovalbumin (44kDa), horse myoglobin (17kDa), and 

vitamin B12 (1.35kDa) (BIO-RAD, Hercules, CA) was used to generate a standard curve.  

Electrophoretic Mobility Shift Assay. An electrophoretic mobility shift assay to test DNA 

binding by ChxR was performed as previously described (Hickey, Weldon et al. 2011 (Chapter 

2)) with IR800-labeled DNA corresponding to the high-affinity (DR2) binding site within the 

chxR promoter. The binding reactions contained 1 nM DNA and either 44 nM wild-type or 

variant ChxRFL. The DNA was visualized and quantified using an Odyssey Infrared Imaging 

System (LI-COR Biosciences, Lincoln, NE). The effector domain of ChxR (ChxREff) used in this 

assay was purified as described previously (Hickey, Hefty et al. 2009 (Chapter 4)). 
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Chapter III 

Results 

 

Primary sequence comparison of ChxR and other OmpR/PhoB subfamily members.  

 Prior studies have reported that ChxR can activate transcription despite the absence of a 

phospho-accepting Asp (Koo, Walthers et al. 2006; Hickey, Weldon et al. 2011 (Chapter 2)); 

however, a comprehensive analysis of residues that may be important to its function has not been 

performed. Six conserved residues within the receiver domain of phospho-accepting 

OmpR/PhoB subfamily members have been demonstrated to be important for activation. Three 

carboxyl-containing residues (Glu9, Asp10, and Asp53; using PhoB numeration (PBD ID: 

1ZES)) are involved in the binding of the essential Mg2+ ion (Fig. 1). The Mg2+ ion and two 

residues (Asp53 and Lys105) interact with the phosphoryl group (Sola, Gomis-Ruth et al. 1999; 

Bachhawat, Swapna et al. 2005). Following the phosphoryl-transfer, the two conformational 

switch residues (Thr83 and Tyr102) reorient towards the site of phosphorylation, which 

dramatically enhances the interaction between protomers. To determine if these six residues are 

conserved in ChxR, the primary sequence of ChxRRec from C. trachomatis L2/434/Bu was 

aligned with an atypical (HP1043) and three well characterized phospho-accepting (PhoB, 

OmpR, and YycF) subfamily members using the multiple sequence alignment program ClustalW 

(Fig. 3.1)(Larkin, Blackshields et al. 2007). Only one (Tyr90) of the six highly conserved 

residues important for activation in phosphorylation-dependent homologs is retained in ChxR. 

This suggests that the six conserved residues found in other OmpR/PhoB subfamily members 

may not contribute to the function of ChxR in Chlamydia.  
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FIG. 3.1. Primary sequence alignment of ChxR and other OmpR/PhoB subfamily members. The 

primary sequence of ChxRRec was aligned with an atypical OmpR/PhoB subfamily member 

(HP1043) and three well-characterized phosphorylation-dependent OmpR/PhoB subfamily 

members (YycF, OmpR, and PhoB). The secondary structure elements correspond to PhoB 

(PDB ID: 1ZES). The catalytic and conformational switch residues important for activation are 

highlighted in blue and orange, respectively. The percent sequence identity and similarity for 

ChxRRec with each homolog is listed. The proteins used for the primary sequence alignment are 

ChxR from C. trachomatis (UniProt: B0B8K5), HP1043 from H. pylori (PDB ID: 2PLN), YycF 

from B. subtilis (PDB ID: 3F6P), OmpR from E. coli (GenBank: CAQ33726.1), and PhoB from 

E. coli (PDB ID: 1ZES).  
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 Another observation from this comparison was that 13 residues are absent in ChxR in two 

regions corresponding to α2 and part of α3 in other OmpR/PhoB subfamily members (Fig. 3.1). 

Additionally, a primary sequence comparison using ChxRRec from other serovars of C. 

trachomatis (A and D) and another species of Chlamydia (C. pneumoniae) with the OmpR/PhoB  

subfamily members listed above gave similar results (data not shown). The absence of these 13 

residues in ChxR may have a large impact on number and length of secondary structure elements 

in ChxRRec. Interestingly, a previous sequence alignment with HP1043 and typical OmpR/PhoB 

subfamily members indicated a 4-residue deletion in the β3-α3 loop, which was supported by the 

structure of HP1043 (Hong, Lee et al. 2007). This finding provides further support for the 

conclusion that the secondary structure of ChxR may be unique within the OmpR/PhoB 

subfamily. 

 

Secondary Structure Analysis.  

 The absence of the 13 residues in ChxR relative to other OmpR/PhoB subfamily 

members could affect the number and length of secondary structure elements in ChxRRec. 

Therefore CD was employed to determine the relative secondary structure content of ChxRRec 

(Fig. 3.2). The receiver domain of YycF, an OmpR/PhoB homolog from Bacillus subtilis, was 

used as a reference protein for the analysis since its structure has been determined and is very 

similar to the 5 α/β-fold topology of the OmpR/PhoB subfamily (Zhao, Heroux et al. 2009). 

YycF is also one of the closest homologs of ChxR based upon primary sequence homology (Fig. 

1). The CD analysis using the CDDN software indicated that a majority (37.6%) of ChxRRec is  
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FIG. 3.2. Comparative CD spectra of ChxRRec and a closely related response regulator (YycF). 

An estimation of the secondary structure elements was determined from a CD analysis of 

ChxRRec (solid line). The receiver domain of YycF (YycFRec), one of the closest homologs of 

ChxRRec based upon primary sequence comparison, was used as a reference protein (dotted line).  
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random coil and that 26.4%, 23.0%, and 18.2% of the protein is α-helical, β-sheet, and β-turn, 

respectively.  In contrast, CD analysis of YycF indicated that the protein is 32.1% random coil, 

32.5% α-helical, 16.9% β-sheet, and 16.6% β-turn. Comparing the relative estimated percentages 

of the secondary structures in the two proteins indicates that the α-helical content of ChxRRec is 

reduced relative to YycF.  

 

ChxRRec is a stable homodimer.  

 The physiological concentrations of some members of the OmpR/PhoB subfamily have 

been reported to be ~1-15 µM (Cai and Inouye 2002; Lejona, Castelli et al. 2004). While we do 

not know the physiological concentration of ChxR in Chlamydia, our prior studies with full-

length ChxR indicated that it is a stable homodimer at 1 µM (Hickey, Weldon et al. 2011 

(Chapter 2)). Since dimerization occurs through the receiver domain, we determined the 

oligomeric state of the ChxR receiver domain at a relatively high concentration (100 µM) and at 

two concentrations (10 µM and 1 µM) within the reported physiological concentrations of 

OmpR/PhoB subfamily members (Fig. 3.3). The calculated molecular weight of a monomer of 

ChxRRec is 13.8 kDa. ChxRRec eluted from the analytical size exclusion column as a single 

population with an approximate molecular weight of 21 kDa, independent of concentration, 

corresponding to a compact homodimer. These results indicate that ChxRRec is a stable 

homodimer, even at the physiological concentrations of other members of the OmpR/PhoB 

subfamily.    

 

 

 



 

 83 

 

 

 

 

 

 

 

 

FIG. 3.3. Influence of protein concentration on the stability of ChxRRec. To determine the 

oligomeric state of the receiver domain of ChxR, recombinant ChxRRec was subjected to 

analytical size exclusion chromatography at 100 µM, 10 µM, and 1 µM. The calculated 

molecular weight of monomeric and dimeric ChxR is 13.8 kDa and 27.6 kDa, respectively. 

Chicken ovalbumin (44 kDa), horse myoglobin (17 kDa), and vitamin B12 (1.35kDa) were used 

to generate the standard curve.  
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ChxRRec structure.  

 Structural studies were performed with ChxRRec to elucidate the residues and structural 

elements that contribute to the protein’s constitutive activity. Crystallization screening with 

recombinant ChxRRec and commercially available sparse matrix screens resulted in multiple 

crystal forms from which two high-resolution data sets were obtained (Table 3.1). The space 

groups of these two crystals were monoclinic C2 and tetragonal I41. Molecular replacement with 

the current collection of known receiver domain structures of OmpR/PhoB subfamily members 

was unsuccessful. Therefore, the structure of ChxRRec was solved using SIRAS phasing with the 

recently developed compound 5-Amino-2,4,6-triiodoisophthalic acid (I3C). I3C has proven to be 

a remarkable compound for phasing because it gives a strong anomalous signal using in-house 

X-ray instrumentation (Cu-Kα) from its three iodine atoms, and its carboxylic acid and amino 

groups facilitate hydrogen bonding with a protein (Beck, Krasauskas et al. 2008; Sippel, Robbins 

et al. 2008). Protein crystals were soaked in the crystallant supplemented with I3C. Using the 

I3C for initial phasing, the final ChxRRec models of the two crystal forms were refined using data 

to 2.15Å and 1.6Å resolution for the I41 and C2 crystal forms, respectively.  

The molecular topology of the two ChxRRec models is β1-α1-β2-β3-β4-α2-β5-α3 with 

two large random coils between β2-β3 and β3-β4 (Fig. 3.4). The r.m.s. deviations between the Cα 

of the two models was 0.95Å, indicating a high degree of structural similarity. The asymmetric 

unit of both crystal lattices consisted of two ChxRRec monomers, which formed a dimer with a 

similar interface (α2-β5-α3). The dimer interface surface area of each protomer is approximately 

1095 Å2. 
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Table 3.1 

Data Collection and Refinement Statistics 

1 Values in parenthesis are for the highest resolution shell. 
2 Rmerge = ΣhklΣi |Ii(hkl) - <I(hkl)>| / ΣhklΣi Ii(hkl), where Ii(hkl) is the intensity measured for the ith reflection and 
<I(hkl)> is the average intensity of all reflections with indices hkl. 
3 Rfactor = Σhkl ||Fobs (hkl) | - |Fcalc (hkl) || / Σhkl |Fobs (hkl)|; Rfree is calculated in an identical manner using 5% of 
randomly selected reflections that were not included in the refinement 
 

 

 

 

 Apo SIRAS (I3C) Apo 
Data Collection    

Unit-cell parameters 
(Å, o) 

a = 149.9 b =41.3  
c = 45.2, 

α = γ = 90    β = 105.5 

 a = 149.8 b = 41.1  
c = 45.1, 

α = γ = 90    β = 106.1 

a = 53.7 b = 53.7  
c = 190.1, 
α = β = γ =90  

Space group C2 C2 I41 
Resolution (Å)1 23.66-1.6 (1.66-1.6) 30.0-2.1 (2.18-2.1) 30.0-2.15 (2.27-2.15) 
Wavelength (Å) 1.0 1.54 1.54 
Observed reflections 128193 52247 54653 
Unique reflections 35320 15613 14580 
<I/σI>1 13.5 (3.1) 13.1 (2.9) 9.5 (2.7) 
Completeness (%)1 99.8 (100) 98.8 (96.2) 99.9 (100) 
Redundancy1 3.63 (3.63) 3.3 (3.2) 3.7 (3.7) 
Rmerge (%)1, 2 3.9 (29.6) 12.2 (46.7) 8.1 (45.6) 

Refinement    
Resolution (Å) 23.66-1.60 28.14-2.09 29.67-2.15 
Rfactor / Rfree (%)3 18.83/21.02 19.60/25.51 20.50/24.69 
No. of atoms (protein / 
water) 

1802/108 1700/77 1631/41 

Model Quality    
R.m.s deviations     

Bond lengths (Å) 0.015 0.018 0.008 
Bond angles (o) 1.513 1.698 1.079 

Average B factor (Å2)    
Protein  29.5 37.6 40.1 
Water 30.9 35.6 39.4 
I3C - 43.4 - 
Coordinate error based 
on Maximum 
Likelihood (Å) 

0.21 0.30 0.25 

Ramachandran Plot     
Favored (%) 99.5 99.5 99.5 
Allowed (%) 0.5 0.0 0.5 
Disallowed (%) 0.0 0.5 0.0 

PDB ID 3Q7R 3Q7S 3Q7T 
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FIG. 3.4. Stereoviews of ribbon diagrams of ChxRRec. ChxRRec crystallized in two distinct crystal 

forms. High-resolution data sets from each crystal form were refined to 2.15Å (I41 space group) 

and 1.6Å (C2 space group). The asymmetric unit of both crystals contained a dimer. A) The two 

monomers from the C2 data set are shown in yellow and blue, respectively. The molecular 

topology of each monomer is β1-α1-β2-β3-β4-α2-β5-α3. The dimer interface is comprised of the 

α2-β5-α3 region within each monomer. B) A side view of the two molecules from the C2 data 

set. 
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Structural comparison of ChxRRec with other OmpR/PhoB subfamily members.  

The structure of ChxRRec is distinct from other subfamily members. Based on primary 

sequence, one of the closest homologs to ChxRRec with a known structure is YycF (Fig. 3.1). A 

superimposition of the receiver domains of ChxR and YycF indicated that the r.m.s. deviations 

between the Cα of 94 residues in each structure was 2.05Å (Fig. 3.5A). Despite the overall 

structural conservation, the α2 and α3 of YycF correspond to random coils in ChxRRec (Fig. 

3.5B). The absence of these helices in the ChxRRec structure may suggest that these two regions 

are random coils in endogenous ChxR.  

 In addition to the distinct molecular topology of ChxRRec, the structure also revealed that 

the architecture and residue composition of canonical site of phosphorylation is unique. As 

mentioned previously (Fig. 3.1), none of the residues that coordinate the divalent cation and 

phosphoryl group in phospho-accepting homologs are retained in ChxR. In ChxRRec, Glu49 and 

Arg93 replace the phospho-accepting Asp and coordinating Lys, respectively (Fig. 3.5C). 

Interestingly, Arg93 forms a salt bridge with Glu49, therefore these residues mimic the positions 

of the Asp and Lys in phosphorylated OmpR/PhoB homologs. This interaction could be 

important in maintaining ChxR in a constitutively active state.  

 The rotomeric state of the two conformational switch residues reflects the activation state 

of OmpR/PhoB response regulators (Gao and Stock 2009). In unphosphorylated OmpR/PhoB 

subfamily members, the Ser/Thr in β4 and the Phe/Tyr in β5 are oriented away from the site of 

phosphorylation (Bachhawat and Stock 2007). Phosphorylation induces a conformational change 

of these two conserved residues to reorient them towards the site of phosphorylation, which 

results in minor structural reorientations that dramatically enhance dimerization.  



94 

 

 

 

 

FIG. 3.5. Comparison of ChxRRec structural features to other OmpR/PhoB subfamily members. 

A) A stereoview of the structure of ChxRRec (yellow) superimposed on the receiver domain of 

the OmpR/PhoB subfamily member YycF (red) (PDB: 3F6P). Two α-helices that are present in 

YycF are absent in ChxRRec (black circles). B) An electron density map (blue) of the two random 

coil regions (residues 35-43 and 53-64 (green)) contoured at 1σ. C) The conserved phospho-

accepting Asp and coordinating Lys in other OmpR/PhoB subfamily members is a Glu (Glu49) 

and Arg (Arg93), respectively, in ChxR. Arg93 forms a salt bridge with Glu49 and Asp73. D) 

Two key conformational switch residues, typically a Ser/Thr and Phe/Tyr, reorient towards the 

site of phosphorylation following phosphoryl transfer from the cognate sensor kinase (blue; PhoP 

(PDB ID: 2PL1)). These two residues in an atypical OmpR/PhoB homolog (green; HP1043 

(PDB ID: 2PLN)) have a similar orientation as an activated subfamily member. E) The 

conformational switch residues in ChxRRec (red; Leu72 and Tyr90) are oriented similar to an 

inactive homolog (grey; PhoP (PDB ID: 2PKX)).  
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As indicated in Fig. 3.1, Leu72 and Tyr90 in ChxR correspond to the two conformation 

switch residues in other subfamily members. Because recombinant ChxRRec was shown to exist 

as a stable homodimer (Fig. 3.3), we hypothesized that the orientation of Leu72 and Tyr90 would 

be in a similar conformation to that of an activated homolog (i.e. towards the site of 

phosphorylation) (Fig. 3.5D). In fact, the ChxR receiver domain structure revealed the exact 

opposite. These two residues had similar orientations to those in inactive subfamily members 

(Fig. 3.5E). This suggests that these two residues possibly contribute to the oligomeric state of 

ChxR in a different fashion than they do in other subfamily members.  

 

ChxRRec Dimer Interface.  

The structure of ChxRRec revealed that hydrophobic and ionic interactions appear to be 

the primary forces of interaction between ChxRRec monomers. Based on a sequence alignment of 

residues comprising the dimer interface of ChxR, HP1043, and PhoB (Fig. 3.6A), two out of the 

three hydrophobic residues in PhoB (Val91, Leu94, and Ala112) are retained in ChxR (Val81 

and Leu84). Additionally, four of the residues involved in hydrophobic interaction in an HP1043 

dimer are retained in ChxR (Val81, Leu84, Iso99, and Leu106). The structure of ChxRRec also 

revealed that Phe75 and Trp89 contribute to the hydrophobic core of the interface (Fig. 3.6B).  

 In contrast to the relative conservation of hydrophobic residues between ChxR and other 

subfamily members, the locations of the residues involved in ionic interactions between the two 

ChxR receiver domains are distinct from the subfamily. The residues involved in these ionic 

interactions in other subfamily members are positioned within the interior and periphery of the 

dimer interface (Fig. 3.6C). However, the structure of ChxRRec revealed only two salt bridges, 

which occur through Glu78 and Arg98 of each monomer. These residues are located within the  
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FIG. 3.6. Comparison of the hydrophobic and charged residues at the dimer interface of 

OmpR/PhoB subfamily members. A) Sequence alignment of the residues comprising the dimer 

interface of ChxR, HP1043 (atypical; PDB ID: 2PLN), and PhoB (typical; PDB ID: 1ZES). The 

secondary structures of ChxRRec and PhoB are indicated above and below the alignment, 

respectively. Blue and orange highlights represent residues involved in hydrophobic and ionic 

interactions, respectively. B) Hydrophobic interaction between ChxRRec protomers occurs 

through Phe75, Val81, Leu84, Trp89, Ile99, and Leu106 in each monomer, while ionic 

interactions occur through Glu78 and Arg98, and potentially through Asp85 and Lys101 between 

each monomer. C) The electrostatic potential surface of the dimer interface of ChxR, HP1043, 

and PhoB. 
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α2 and α3, respectively (Fig 3.6B). The ChxRRec structure also suggested a potential second 

intermolecular salt bridge between Lys101 and Asp85 (Fig. 3.6B). These two residues are ~5Å 

apart in the crystal structure. While the distance between the two residues is slightly outside the 

limit of a salt bridge (4Å) (Jelesarov and Karshikoff 2008), the position of these two residues 

could be closer in solution. Unlike homologous structures, no salt bridges appeared to be located 

within the interior of the interface in ChxRRec, suggesting that hydrophobic interactions are the 

primary source of dimer stability in ChxRRec.  

 A comparison of the surface area and the residue composition of the dimer interface from 

many members of the OmpR/PhoB subfamily support that the dimer interface of ChxR is unique 

within the subfamily. As Table 3.2 indicates, the interface surface area of activated or inactivated 

phosphorylation-dependent OmpR/PhoB response regulators generally ranges from 1090-807 

Å2. Furthermore, the residues that comprise their intermolecular interface are 27-39% non-polar, 

8-32% polar, and 36-56% charged. Despite the activity of HP1043 in the absence of 

phosphorylation, the dimer interface surface area and the residue composition of the protein are 

similar to typical OmpR/PhoB response regulators. In contrast, the intermolecular surface area of 

ChxR (1095Å2) and the percentage of non-polar (52%), polar (26%), and charged residues 

(22%). The relatively large surface area and percentage of hydrophobic residues within the 

interface of ChxR provide further support that intermolecular interactions between ChxR 

monomers are distinct from both typical and atypical OmpR/PhoB response regulators. 
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1 The dimer interface surface area and residue composition were calculated using PROTORP (Reynolds, Damerell 

et al. 2009) 
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FIG. 3.7. Dimerization analysis of the W89E substitution. Analytical size exclusion 

chromatography was utilized to determine the oligomeric state of the W89E substitution. A) The 

calculated molecular weight of a ChxRFL monomer or dimer is 25.8 kDa or 51.6 kDa, 

respectively. Wild-type ChxRFL (solid line) eluted from a size exclusion column as a dimer with 

an approximate molecular weight of 45 kDa, while ChxRFL
W89E (dashed line) eluted from the 

column as a compact monomer with an approximate molecular weight of 16 kDa. B) The 

calculated molecular weight of a ChxRRec monomer or dimer is 13.8 kDa or 27.6 kDa, 

respectively. Wild-type ChxRRec (solid line) eluted from a size exclusion column as a dimer with 

an approximate molecular weight of 21 kDa, while ChxRRec
W89E (dashed line) eluted from the 

column as a compact monomer with an approximate molecular weight of 9.8 kDa. 
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(Chen, Birck et al. 2003). We therefore hypothesized that the monomeric ChxRFL protein 

(W89E) would have a reduced affinity for its target DNA. To test this hypothesis, electrophoretic 

mobility shift assays (EMSAs) were performed with W89E and the previously reported high-

affinity binding site (DR2) in the chxR promoter (Fig. 3.8)(Hickey, Weldon et al. 2011 (Chapter 

2)). Although the other substitutions (W89A, E49A, D73A, E49A/D73A, E78A, K101A, and 

E78A/K101A) did not affect dimer stability, their ability to interact with DNA was also 

quantified to determine if they influence overall protein conformation and/or an interaction 

between the receiver and effector domain. The assays were performed at a protein concentration 

of 44 nM, which is the approximate dissociation constant for this binding site and would thus 

permit maximal variation in the amount of DNA bound with the substitutions (Hickey, Weldon 

et al. 2011 (Chapter 2)). The effector domain of ChxR (ChxREff) was included in the assay as a 

control for DNA interaction in the absence of the receiver domain.  

As evident in Fig. 3.8, disrupting the hydrophobic interaction within the dimer interface 

had a significant impact on ChxR-DNA interaction. The amount of DNA shifted by the dimer 

mutants W89A, E49A, D73A, and E49A/D73A was found to not be statistically significant from 

wild-type ChxR. Similarly, the substitutions of potential residues involved in salt bridging 

between monomers (dimer mutants E78A, K101A, E78A/K101A) did not significantly effect 

DNA interaction. Interestingly, the W89E substitution, which was determined to exist as a 

monomer in solution (Fig. 3.7), had the lowest affinity (3%) for DNA, relative to wild-type 

ChxRFL from ChxREff. The dramatic reduction in DNA affinity with the W89E substitution 

suggests that dimerization through the receiver domain is critical for stable ChxR-DNA 

interaction, albeit within the given in vitro experimental conditions. 
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FIG. 3.8. DNA binding analysis of canonical phosphoryl-coordinating and dimer interface 

residue substitutions in ChxR. To determine the effect of the substitutions on the proteins ability 

to bind DNA, EMSAs were performed with 1 nM of the high-affinity DR2 site from the chxR 

promoter and 44 nM of each protein. The percent of DNA shifted was calculated for each 

substitution relative to wild-type ChxRFL. Substitutions that had a significant (P < 0.001) effect 

on DNA interaction are denoted by an asterisk (***). Error bars represent the standard deviation 

from triplicate experiments. 
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Chapter III 

Discussion 

 

The propagation of a activation signal from the site of phosphorylation to the dimer interface 

of response regulators is becoming better understood through numerous structural and functional 

studies (Appleby and Bourret 1998; Toro-Roman, Mack et al. 2005; Bachhawat and Stock 2007). 

The residues involved in this process have been identified and are highly conserved. However, 

atypical response regulators diverge from this canonical activation mechanism. These proteins do 

not retain all of the residues critical to this process, particularly those residues comprising the 

canonical site of phosphorylation, but do generally retain overall structural topology and a 

propensity to form homodimers. The structure of the receiver domain of ChxR revealed that this 

atypical transcriptional regulator does not share many of the conserved structural characteristics 

of either the phosphorylation-dependent and -independent OmpR/PhoB response regulators.  

Structural studies of the receiver domain of ChxR revealed numerous contrasting features to both 

the typical and atypical OmpR/PhoB response regulators including: the absence of two helices 

(α2/α3), the unique architecture and composition of the canonical site of phosphorylation, the 

inactive orientation of the conformational switch residues, and the relatively large number of 

hydrophobic residues at the dimer interface. Because of these unique features, the receiver 

domain of ChxR exists as a very stable homodimer, which is essential for DNA interaction.   

The structure of ChxRRec supported our hypothesis that the intra- and intermolecular 

interactions in ChxR are distinct from its phosphorylation-dependent homologs. The ChxRRec 

structure revealed that the canonical site of phosphorylation is comprised of three resides (Glu49, 

Asp73, and Arg93; Fig. 3.5C). When Glu49 was substituted to an Ala, the protein was still able 



 

 103 

to form a homodimer and the amount of DNA electrophoretically shifted with this substitution 

was not statistically significant from that of wild-type ChxR (Fig. 3.8). Similar to the Glu49 

substitution, the Asp73 and Glu49/Asp73 substitutions resulted in proteins that formed 

homodimers and interacted with DNA in a manner similar to wild-type ChxR. These results were 

expected since the two conformational switch residues in ChxR are oriented away from the 

canonical site of phosphorylation (Fig. 3.5E) and therefore, modifications to this region would 

likely not be transduced to the dimer interface.  These results also indicate that the residues in 

ChxR in the same positions as the residues critical to the coordination of the phosphoryl group in 

other OmpR/PhoB subfamily members do not significantly influence overall protein stability, 

homodimerization, or interaction with DNA.  

Receiver domains from phosphorylation-dependent OmpR/PhoB subfamily members 

primarily exist in a monomeric state in the absence of phosphorylation (Toro-Roman, Mack et al. 

2005; Bachhawat and Stock 2007). Analytical size exclusion chromatography indicated that 

ChxRRec is a dimer, even at a concentration (1 µM; Fig. 3.3) similar to the physiological 

concentration of other OmpR/PhoB subfamily members (Lejona, Castelli et al. 2004). This 

observation implies that ChxR receiver domains have a higher propensity to form dimers than 

typical OmpR/PhoB subfamily members. The structure of the receiver domain supports this 

observation since six residues appear to contribute to the hydrophobic interaction between 

protomers. This is twice the number of hydrophobic residues found in the dimer interface of 

homologs (Toro-Roman, Mack et al. 2005). Furthermore, the surface area of the ChxR dimer 

interface is larger than other OmpR/PhoB response regulators (Table 3.2), and is composed 

primarily of hydrophobic residues, which is distinct from other subfamily members. 

Additionally, the only substitution that rendered ChxR monomeric was to a residue (W89E) 
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within this hydrophobic region of the dimer interface (Fig. 3.7A & 3.7B). In combination, these 

results strongly support the conclusion that ChxR is a stable homodimer in solution and that this 

interaction is accomplished largely through hydrophobic interactions.   

 Dimerization through the receiver domain of ChxR is essential for stable interaction with 

DNA. ChxR was previously reported to interact with tandem repeat sequences but mutations to 

either recognition site greatly reduced ChxR-DNA interaction (Hickey, Weldon et al. 2011 

(Chapter 2)). These results suggested that optimal ChxR-DNA interaction requires that ChxR 

bind to DNA as a homodimer. EMSAs with a dimer deficient ChxR support this observation 

since the amount of DNA shifted with the W89E substitution was reduced >95% compared to 

wild-type ChxR (Fig. 3.8). In support of this observation, the effector domain of ChxR alone 

binds to DNA with approximately 10-fold less affinity than full-length ChxR (Chapter 4). 

Currently, it is unknown whether the ChxR receiver domain is responsible for positioning the 

effector domain for optimal interaction with DNA through a direct interaction but these data 

strongly support that dimerization increases DNA affinity by binding cooperatively to adjacent 

binding sites.   

Interestingly, the significant reduction in DNA-binding by monomeric ChxR is in stark 

contrast to other atypical OmpR/PhoB response regulators, which may be a result of the DNA 

sequences recognized by these proteins. NblR was reported to exist as a monomer in vivo and 

likely binds to DNA as a monomer (Ruiz, Salinas et al. 2008). A dimer deficient HP1043 protein 

was reported to bind to DNA with an apparent similar affinity as dimeric HP1043 (Hong, Lee et 

al. 2007). This suggests that dimerization of these atypical response regulators is not essential for 

DNA interaction. These differing DNA-binding characteristics between ChxR, HP1043, and 

NblR are likely a result of their affinity and specificity for DNA. While the DNA sequence 
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recognized by NblR is currently unknown, HP1043 was determined to bind to relatively 

conserved DNA sequence (Delany, Spohn et al. 2002). In contrast, the nucleotide frequency in 

the DNA sequence recognized by ChxR is relatively low (Hickey, Weldon et al. 2011 (Chapter 

2)). This suggests that HP1043 forms dimers primarily to increase DNA specificity while ChxR 

forms dimers to increase both DNA affinity and specificity.  

The molecular topology of ChxRRec is very unique within the OmpR/PhoB subfamily. The 20 

receiver domains of both phosphorylation-dependent and -independent OmpR/PhoB response 

regulators are very similar and are comprised of 5 α/β-folds (Kenney 2002; Bourret 2010). The 

structure of ChxRRec is distinct from these 20 structures since the α2 and α3 helices found in 

homologous structures are random coils in ChxRRec (Fig. 3.5A). The CD analysis supports that 

these two regions are random coils and that this is not due to crystal packing since the α-helical 

content of ChxR is reduced compared to other OmpR/PhoB subfamily members (Fig. 3.2). The 

purpose of these random coils is not directly apparent since this region in other OmpR/PhoB 

response regulators is not known to be directly involved in the function of the protein. These two 

helices, however, probably provide structural support for optimal conformations of the residues 

that coordinate the phosphoryl group. The presence of these two helices in ChxRRec would not be 

necessary for orienting these residues, because the residues comprising the canonical site of 

phosphorylation of ChxR were found to not have a significant influence on dimerization or 

interaction with DNA. 

Recent studies have begun to identify potential mechanisms that regulate atypical 

response regulators, which include ligand and protein-protein interaction based mechanisms. 

NarB, a nitrogen reductase from Synechococcus elongatus PCC 7942, has been shown to interact 

with NblR and possibly inhibit its transcriptional regulatory activity (Kato, Chibazakura et al. 
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2008). Additionally, a recent study reported that the DNA binding activity of an atypical 

response regulator, JadR1 from Streptomyces venezuelae, is severely reduced in the presence of a 

compound (Jadomycin B), which led the authors to speculate that small ligands might regulate 

the activity of many atypical response regulators (Wang, Tian et al. 2009). Our structural and 

functional studies argue that ChxR exists in a constitutively active state; however these 

alternative mechanisms of regulation in atypical response regulators provide the possibility that 

the function of ChxR is regulated post-translationally in Chlamydia. 
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Chapter IV 

Introduction 

 

 Bacteria use two-component signal transduction systems as a primary means of responding 

to stimuli within their environment and adjusting gene expression accordingly (Hoch 2000). 

These systems regulate a wide variety of processes, including bacterial development, virulence 

and physiology (Stock, Robinson et al. 2000; Jones 2005). Two-component signal transduction 

systems are predominantly comprised of a membrane-bound histidine (sensor) kinase and an 

associated response regulator. Frequently, the sensor kinase undergoes an autophosphorylation 

event in response to environmental stimuli. The phosphate group is then transferred to a highly 

conserved site within a cognate response regulator. Phosphorylation of the response regulator 

controls the activity of the response regulator, which is frequently transcriptional regulation. 

OmpR/PhoB is one of the largest subfamilies of response regulators (Baikalov, Schroder 

et al. 1996). The function of the OmpR/PhoB subfamily of response regulators appears to be 

controlled by interactions between the two domains: the receiver domain and the effector 

domain. The receiver domain typically becomes phosphorylated at a highly conserved site that 

promotes homodimerization through a conserved receiver-domain interface. As a result of the 

receiver domain becoming phosphorylated, the affinity of the effector domain for DNA becomes 

enhanced (Kenney 2002). It is the winged helix–turn–helix motif in the effector domain that 

largely defines the OmpR/PhoB subfamily of response regulators (Brennan 1993).  

Despite a relatively conserved three-dimensional structure of the OmpR/PhoB effector 

domain, the residues involved in interaction with DNA vary due to the distinct DNA sequences 

recognized by these transcription factors (Martinez-Hackert and Stock 1997). Currently, 16 



 

 108 

effector domain structures from members of the subfamily have been experimentally determined 

and all share a common tertiary structure. The typical OmpR/PhoB effector domain is comprised 

of an N-terminal β-sheet (β1-β4), a winged helix-turn-helix DNA-binding motif (α1-α2), and a 

C-terminal β-hairpin (β5-β6) (Kenney 2002). Residues in the α2 and α3 helices interact with the 

major groove of DNA, while residues in the wing (the loop region between β5-β6) interact with 

the adjacent minor groove of the DNA. The loop between α2-α3 is the site of interaction with the 

σ factor or the α-subunit of RNA polymerase.  

Chlamydia is a medically important obligate intracellular bacterial pathogen that encodes 

an OmpR/PhoB-subfamily homolog termed ChxR. It has previously been demonstrated that 

ChxR is an atypical OmpR/PhoB response regulator that does not require phosphorylation for 

transcriptional activity (Koo, Walthers et al. 2006). Despite this fundamental difference from 

OmpR/PhoB response regulators, we hypothesize that the DNA-binding effector domain of 

ChxR (ChxREff) is in a structural conformation similar to the effector domains of other 

OmpR/PhoB response regulators. This is similar to the results of a structural analysis of another 

atypical response regulator, HP1043 (Hong, Lee et al. 2007). In addition to demonstrating 

overall structural similarity, determination of the three-dimensional structure of ChxREff is 

expected to reveal the residues within and the orientation of the functional regions (β5–β6 loop, 

α3 DNA binding helix, and!α2–α3 transactivation loop). In this study, we report a crystal and 

NMR structure of ChxREff, which were not structurally similar. Through a chemical shift 

mapping experiment and electrophoretic mobility shift assays, we identified residues in the 

functional regions of ChxR that interact with DNA. Additionally, ChxR was shown to interact 

with the α-subunit of RNA polymerase. 

 



 

 109 

Chapter IV 

Methods and Materials 

 

Cloning, Expression, and Purification of ChxREff  

The coding region for ChxREff, residues 115-227, was PCR amplified using genomic 

DNA from Chlamydia trachomatis serovar L2/434/Bu. The primers used for amplification were 

5’-GGAATTCCATATGCATTCTGTTCCGGAAAGTT-3’ (forward, containing the 5’ NdeI 

site) and 5’-CCGCTCGAGCTAAGAAAGCTTTGTATCTTGTTG-3’ (reverse, containing the 

XhoI site) (Integrated DNA Technologies). The PCR product was digested with NdeI/XhoI and 

ligated into a similarly digested pET29b vector (Novagen). The resultant plasmid encodes 

ChxREff with a C-terminal histidine tag. The chxREff plasmid was transformed into E. coli 

BL21(DE3) (Invitrogen). Protein was expressed in cells grown in LB medium containing 50 µg 

ml-1 kanamycin at 37°C with shaking at 250 rpm. Protein expression was induced by the addition 

isopropyl-β-D-thiogalactopyranoside to a final concentration of 1 mM at an optical density of 

0.7. The cells were harvested by centrifugation (4,000 x g, 20 min, 4°C) after an overnight 

incubation at 15° C and 250 rpm. 

E. coli cells were resuspended in 50 mM Tris pH 7, 400 mM NaCl, disrupted by 

sonication, and subjected to centrifugation (14,000 x g, 30 min, 4°C) to remove cell debris. The 

lysate was further clarified by passing the supernatant through a 0.22-µm filter before protein 

purification. The cell extract was applied to Talon Metal (Co2+) Affinity Column (Clontech) 

according to the manufacturer’s instructions. The column was washed with 5 mM imidazole, 50 

mM Tris pH 7, 400 mM NaCl. ChxREff was eluted with the above buffer supplemented with 250 

mM imidazole.   



 

 110 

Peak fractions were pooled and further purified by gel filtration chromatography. The 

pooled protein mixture was applied to a Sephacryl S-300 16/60 gel filtration column (GE 

Healthcare) pre-equilibrated in 50 mM Tris pH 7, 400 mM NaCl. Fractions containing ChxREff 

were pooled and concentrated, using an Amicon (Millipore) 3,000 molecular weight cut-off 

centrifugal filtration devise, to 8.4 mg ml-1. The purified protein was determined to be >95% 

pure by Coomassie staining after SDS-PAGE.  

 

Crystallization of ChxREff  

Crystallization was carried out at room temperature by the hanging-drop vapor-diffusion 

method with 1 µl of 8.4 mg ml-1 ChxREff mixed with 1 µl of commercially available sparse 

matrix screens (Hampton Research). The protein crystallized in a variety of conditions with 

multiple morphologies after approximately three months incubation. One of the crystallization 

conditions was optimized and consisted of 0.2M Ammonium Sulfate, 0.1M Bis-Tris pH 6.5, 25% 

w/v PEG3350. ChxREff apo crystals were soaked for approximately 20 s in mother liquor 

supplemented with 10% ethylene glycol, and flash cooled by immersion in liquid nitrogen.  

To obtain a heavy atom data set, purified ChxREff was concentrated to 8 mg/mL in 400 

mM NaCl, 10 mM Tris-HCl pH 7. Crystals were obtained in 2 days at 20oC in sitting drop vapor 

diffusion plates (Emerald biosystems) using 1uL of crystallization solution (0.1 M Hepes pH 7.5, 

1 M KCl, 1 M ammonium sulfate) and 1 uL of protein equilibrated against 100uL of reservoir 

solution. Single crystals were transferred to a solution containing 30% Glycerol, 0.1 M Hepes pH 

7.5, 0.5 M KBr, 1 M ammonium sulfate for 1 minute before flash cooling in liquid nitrogen for 

data collection. 
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Data Collection, Structure Solution, and Refinement  

For the ChxREff apo crystal, data collection was carried out at 100K at Stanford 

Synchrotron Radiation Laboratory (SSRL) beamline 9-2. The exposure time for each 0.5° 

oscillation image was 5 s using an MAR325 detector and a wavelength of 0.1 nm. The resulting 

data sets were processed and scaled using MOSFLM and SCALA from the CCP4 suite 

(Collaborative Computational Project 1994). The data collection statistics are summarized in 

Table 4.1.  

For ChxREff Br soaked crystal, data were collected at 100K at the Advanced Photon 

Source (APS) IMCA-CAT, sector 17BM using an ADSC Quantum 210 CCD detector and a 

wavelength of 0.91983 Å. The exposure time for each 1° oscillation image was 15 s at a detector 

distance of 170 mm. Intensities were integrated and scaled using the HKL2000 package (Z. 

Otwinowski and Minor 1997).  Structure solution was carried out using the SAD phasing method 

with the SHELX C/D/E software package (Sheldrick 2008) via the CCP4 interface (Collaborative 

Computational Project 1994). Bromine positions were identified using SHELXC and SHELXD, 

which yielded correlation coefficient all/weak of 47.63 / 29.34. Calculation of initial phase 

angles and density modification were conducted with SHELXE. The highest correlation 

coefficient (77.2%) and electron density map quality was observed for the original enantiomorph 

in the space group P43212. Automated model building was carried out using the fast build feature 

in BUCCANEER (Cowtan 2006) which produced a nearly complete Ca trace for the expected 

non-crystallographic dimer and refined to an initial Rfactor of 38.8%. Side chains were excluded 

from the model and the dimer was used for molecular replacement search model against higher 

resolution native data using PHASER (McCoy, Grosse-Kunstleve et al. 2007). The solution was 

refined with REFMAC (Murshudov, Vagin et al. 1997) and the model improved using automated 
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model building with ARP/WARP. Initial refinement of the resulting model converged at R = 

27.5%, Rfree = 30.1%. The final model was obtained from iterative rounds of manual model 

building and refinement with COOT (Emsley and Cowtan 2004) and REFMAC (Murshudov, 

Vagin et al. 1997) respectively. Relevant crystallographic data are listed in Table 4.1.          

 Monomer A comprises residues 118-213 and monomer B comprises residues 117-213. 

The model includes 28 waters and two sulfate ions. A Ramachandran plot with PHENIX 

(Adams, Afonine et al. 2010) determined that 96.3% of the residues were in a favored position 

and 3.7% of the residues were in an allowed position.    

 

Analytical Size Exclusion Chromatography 

ChxREff was expressed and purified as described above. During size exclusion 

chromatography, the protein was exchanged into buffer comprised of 20 mM Na2HPO4, 20 mM 

KH2PO4 pH 7, 400 mM NaCl, and 1 mM DTT. The purified protein was concentrated to 27 

mg/ml using an Amicon (Millipore) 3,000 molecular weight cut-off centrifugal devise. The 

protein was then diluted to 1 mM, 100 µM, 10 µM, and 1 µM with the buffer listed above and 

subjected to analytical size exclusion chromatography using a Superdex 75 10/300 GL gel 

filtration column (GE Healthcare). A protein standard solution containing bovine serum albumin 

(66 kDa), chicken ovalbumin (44 kDa), horse myoglobin (17 kDa), and vitamin B12 (1.35 kDa) 

(BIO-RAD, Hercules, CA) was used to generate a standard curve. 

The fractions containing each oligomer population were applied to a Bio-Dot 

microfiltration apparatus (Bio-Rad) as per the manufacturers instructions. The subsequent 

nitrocellulose membrane was initially probed with rabbit anti-ChxR antibodies, followed by 

IR700 goat anti-rabbit antibodies. 
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Table 4.1 

Data Collection and Refinement Statistics 

 Apo SAD (Br) 
Data Collection   

Unit-cell parameters (Å) a = b = 109.3 c = 95.7  a = b = 109.9 c = 95.2 
Space group P43212 P43212 
Resolution (Å)1 45.0-2.5 (2.56-2.50) 50.0-3.5 (3.63-3.50) 
Wavelength (Å) 1.0 0.919 
Observed reflections 164342 162330 
Unique reflections 20605 14015 
<I/σI>1 22.2 (4.2) 13.3 (5.3) 
Completeness (%)1 98.1 (99.3) 99.8 (100.0) 
Redundancy1 8.1 (8.2) 11.6 (11.7) 
Rmerge (%)1, 2 38.0 (40.0) 19.9 (42.6) 

Refinement   
Resolution (Å) 43.5-2.5 - 
Rfactor / Rfree (%)3 25.9 / 30.5 - 
No. of atoms (protein / 
water) 

1515 / 27 - 

Model Quality   
R.m.s deviations    

Bond lengths (Å) 0.011 - 
Bond angles (o) 1.33 - 

Average B factor (Å2)   
Protein  41.7 - 
Water 33.9 - 
Coordinate error based on 
Maximum Likelihood (Å) 

0.177 - 

Ramachandran Plot    
Favored (%) 96.3 - 
Allowed (%) 3.7 - 
Disallowed (%) 0.0 - 

1 Values in parenthesis are for the highest resolution shell. 
2 Rmerge = ΣhklΣi |Ii(hkl) - <I(hkl)>| / ΣhklΣi Ii(hkl), where Ii(hkl) is the intensity measured for the ith reflection and 
<I(hkl)> is the average intensity of all reflections with indices hkl. 
3 Rfactor = Σhkl ||Fobs (hkl) | - |Fcalc (hkl) || / Σhkl |Fobs (hkl)|; Rfree is calculated in an identical manner using 5% of 
randomly selected reflections that were not included in the refinement 
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Electrophoretic Mobility Shift Assay 

 Electrophoretic mobility shift assays were performed as described for ChxR with DNA 

corresponding to the high-affinity (DR2) binding site within the chxR promoter (Hickey, Weldon 

et al. 2011 (Chapter 2)). The binding reactions contained 1 nM DNA and 50 nM, 100 nM, 500 

nM, 1 µM, 5 µM, 10 µM, or 50 µM ChxREff. The assay was performed in triplicate and the 

amount of DNA shifted was visualized and quantified using the Odyssey Infrared Imaging 

System (LI-COR Biosciences, Lincoln, NE).   

 

NMR Spectroscopy 

ChxREff was overexpressed E. coli BL21(DE3) cells and 13C/15N labeled using a 

previously established method (Marley, Lu et al. 2001). Following overexpression, ChxREff was 

purified as described above. The purified protein was equilibrated in 20 mM Na2HPO4 pH 6.5, 

20 mM KH2PO4, 400 mM NaCl, and 1 mM DTT and then concentrated to ~1.5 mM using an 

Amicon (Millipore) 3,000 molecular weight cut-off centrifugal device.  

The sample for NMR spectroscopy experiments was comprised of ~1.5 mM ChxREff in 

20 mM Na2HPO4 pH 6.5, 20 mM KH2PO4, 400 mM NaCl, 1 mM DTT, and 10% D2O. All NMR 

spectra were recorded on Varian Inova 600 MHz NMR instrument equipped with room 

temperature triple resonance probe with XYZ pulse field gradients. All NMR experiments were 

recorded at 25°C. The backbone resonance assignments of 1H, 13C, and 15N for 13C/15N labeled 

ChxREff were completed from the suites of heteronuclear 2D and 3D- triple resonance 

experiments: 2D-1H-15N-HSQC, HNCA, HNCO, HNCACB, CBCA (CO) NH, HBHA 

(CBCACO) NH, HCCH-COSY, HCCH-TOCSY, 1H-13C-HSQC, 15N and 13C edited NOESY. 
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All NMR spectra were processed using NMRDraw and NMRPipe (Delaglio, Grzesiek et al. 

1995) and analyzed with SPARKY (Goddard & Kneller). 

For the ChxREff-DNA chemical shift titration experiment, ChxREff was 15N labeled and 

purified as described above. After an initial 2D-1H-15N-HSQC was taken of the native protein, 

double-stranded DNA corresponding to the DR2 binding site in the chxR promoter (5’-

CTTATCTAGTTTTTGATCGAAAAATTTC) was titrated into the protein sample. 2D-1H-15N-

HSQCs were taken at DNA concentrations of 0.13 mM, 0.26 mM, 0.52 mM, and 1.04 mM.  

 

Co-Immunoprecipitation  

 Samples containing 12.5µl bed volume of Dynabead Protein G beads (Invitrogen) were 

incubated overnight at 4°C with 1µg polyclonal rabbit anti-ChxR antibodies in binding buffer 

(100 mM Na2HPO4, 0.01% TWEEN-20 pH 8.2). Beads were separated on a magnetic rack and 

washed 3X with blocking buffer (PBS, 0.1% TWEEN-20, 10% BSA), and incubated overnight at 

4°C. The samples were washed 3X with NP-40 buffer (1% NP-40 substitute, 150 mM NaCl, 50 

mM Tris pH 7.0), and incubated with 4µg ChxR at 25°C for 2 hours. Once washed 3X with NP-

40 buffer, 4µg of αCTD was added and the samples were incubated at RT for 1 hour. The 

samples were washed with 3X NP-40 buffer and subjected to SDS-PAGE and an immunoblot 

assay was performed using anti-ChxR or anti-RNA polymerase antibodies.  
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Chapter IV 

Results and Discussion 

 

ChxREff forms homodimers 

 During recombinant protein purification, size exclusion chromatography indicated that 

ChxREff was a mixed population of monomers and dimers (data not shown). To determine if this 

observation was a result of a high concentration (~1 mM) of protein during purification, ChxREff 

was subjected to analytical size exclusion chromatography at 1 mM, 100 µM, 10 µM, or 1 µM. 

The calculated molecular weight of a ChxREff monomer or dimer is 13.5 kDa or 27 kDa, 

respectively. At 1 mM, 100 µM, or 10 µM, ChxREff eluted as both a monomer and a dimer (Fig. 

4.1A). The absorbance of 1 µM ChxREff was too low to detect, therefore we performed a dot blot 

using the fractions corresponding the elution of the ChxREff monomer (14.1 kDa) and dimer 

(29.9 kDa) from the higher protein concentrations (Fig. 4.1B). The amount of monomer and 

dimer from each protein concentration was quantified from the dot blot and indicated that the 

oligomeric state of recombinant ChxREff is approximately 30% dimer and 70% monomer (Fig. 

4.1C). The detection of the ChxREff dimer at 1 µM suggests that the higher oligomeric state of 

the protein was not a result of a high concentration of protein. Furthermore, the ChxREff dimer 

does not appear to be an artifact of protein misfolding as size exclusion fractions containing 

monomeric or dimeric ChxREff each eluted as ~30% dimer and ~70% monomer when subjected 

again to size exclusion chromatography (data not shown), indicating that the ChxREff dimer is 

not a result of protein misfolding. 

Intermolecular interactions between effector domains have been detected, albeit in 

relatively small amounts, in other OmpR/PhoB response regulators. Dimers of the PhoP effector  
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FIG 4.1. Concentration-dependent stability of ChxREff. A) To determine the oligomeric state of 

recombinant ChxREff, the protein was subjected to analytical size exclusion chromatography at 1 

mM, 100 µM, and 10 µM. ChxREff eluted from the column as a mixed population of ~30% dimer 

(29.9 kDa) and ~70% monomer (14.1 kDa). B) The 280 nm absorbance at 1 µM was too weak to 

detect. Therefore, a dot blot was performed with each 0.5 ml elution fractions comprising the 

dimer/monomer molecular weight range and antibodies against ChxR. C) The amounts of 

dimeric and monomeric ChxREff were quantified using the photon emission of an IR700-labeled 

secondary antibody.  
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domain have been observed but are only detected at a high protein concentration (>10 mg/ml) 

(Wang, Engohang-Ndong et al. 2007). Additionally, dimers of both OmpR and PhoB effector 

domains have been detected in the presence of DNA (Blanco, Sola et al. 2002; Rhee, Sheng et al. 

2008), although, the interactions between these effector domains are weak and do not appear to 

contribute to DNA-binding. In contrast to these previous observations, the effector domain of 

ChxR was shown to form a homodimer at a relatively low concentration (1 µM), although, this 

interaction may not occur in the context of the full-length protein due to conformational 

restraints imposed by the receiver domain, as we have previously shown that the receiver domain 

forms a very stable homodimer (Fig. 3.3).  

 

ChxREff can bind DNA 

 We have previously shown that full-length ChxR interacts with DNA corresponding to 

the DR2 binding site in the chxR promoter with a dissociation constant (Kd) of approximately 44 

nM (Hickey, Weldon et al. 2011 (Chapter 2)). To determine if ChxREff alone can to bind to 

DNA, an electrophoretic mobility shift assay was performed with the DR2 DNA sequence. As 

figure 4.2 demonstrates, ChxREff can bind to DNA; although its affinity for DNA appeared to be 

less than that of full-length ChxR dimers. Therefore, the amount of DNA shifted with increasing 

concentrations of ChxREff (50 nM-50 µM) was quantified and a Kd was calculated (446 ± 74.7 

nM). The calculated Kd assumes that two ChxREff molecules are bound to the DNA as the DR2 

DNA sequence contains two binding sites. The approximate 10-fold decrease in DNA affinity for 

ChxREff relative to full-length ChxR indicates that the interaction between ChxREff and DNA is 

relatively weak and stable DNA interaction requires dimerization through the receiver domain. 

Furthermore, in addition to increasing DNA affinity by binding cooperatively to adjacent binding  
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FIG 4.2. DNA-binding analysis of ChxREff. To determine if ChxREff can interact with DNA in 

the absence of the receiver domain, EMSAs were performed with IR800-labeled DNA 

corresponding to the DR2 site from the chxR promoter and increasing concentrations (50 nM, 

100 nM, 500 nM, 1 µM, 5 µM, or 10 µM) of recombinant ChxREff. The first lane (left) contains 

DNA in the absence of ChxREff.   
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sites through the protein-protein interaction of the receiver domain, the receiver domain may also 

properly orient the effector domain onto DNA.    

 

Crystal structure of ChxREff 

A structure of ChxREff was experimentally determined to help elucidate the regions and 

residues that may be important for interaction with DNA and RNA polymerase machinery. A 

high-resolution data set was obtained from a ChxREff crystal. The space group of the crystal was 

P43212 with 2 molecules comprising the asymmetric unit. Using SAD phasing, the final model of 

ChxREff was refined to 2.5Å (Fig. 4.3A). ChxREff is composed of a four-stranded antiparallel β-

sheet (β1-β2-β3-β4, residues 119-122, 125-128, 133-136, and 139-142, respectively), followed 

by an α-helix (α1, residues 145-157), a short β-strand (β5, residues 162-163), two α-helices (α2-

α3, residues 164-181 and 184-194, respectively), and a β-hairpin (β6-β7, residues 201-204 and 

208-211, respectively). The overall topology of ChxREff is β1-β2-β3-β4-α1-β5-α2-α3-β6-β7 (Fig. 

4.3B).  

  This crystal structure of ChxREff is unique within the OmpR/PhoB subfamily. All other 

OmpR/PhoB effector domain structures are monomers that share a highly conserved tertiary 

structure. In contrast, ChxREff crystallized as a sub-domain swap dimer. The β1-β2-β3-β4-α1-β5-

α2 region of monomer A and the α3-β6-β7 region of monomer B reconstitute the typical effector 

domain tertiary structure (Fig. 4.4). Domain and sub-domain swapping has been observed in 

many other proteins (Liu and Eisenberg 2002), including a member of the OmpR/PhoB 

subfamily. The full-length structure of RegX3 from Mycobacterium tuberculosis crystallized as a 

dimer in which the receiver domains were swapped (King-Scott, Nowak et al. 2007). Despite the 

observation of domain or sub-domain swapping in proteins, it is currently  
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FIG 4.3. Crystal structure of ChxREff. A) A Stereo representation of the electron density map 

(blue) of residues 125-131 (green) of monomer A. The electron density map is contoured at 1σ. 

B) Stereoviews of a ribbon diagram of ChxREff. Monomer A and monomer B are colored yellow 

and blue, respectively. The molecular topology of each monomer is β1-β2-β3-β4-α1-β5-α2-α3-

β6-β7.  
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FIG. 4.4. ChxREff crystallized as a sub-domain swap dimer. Stereoviews of a superimposition of 

ChxREff and the effector domain of YycF from B. subtilis (red; PDB ID: 2D1V). The β1-β2-β3-

β4-α1-β5-α2 region of YycF superimposes with one ChxREff monomer (blue), while α3-β6-β7 of 

YycF aligns with the second ChxREff monomer (yellow). 
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unknown how this swapping affects the functional activity of a protein but is thought to increase 

binding surfaces, introduce new active sites at domain/sub-domain interfaces, and allow for 

allosteric control (Liu and Eisenberg 2002).  

For ChxREff, sub-domain swapping could be a mechanism to control DNA interaction. 

Similar to previous studies with effector domain structures from other OmpR/PhoB subfamily 

members, we attempted to model the ChxREff dimer onto DNA (Wang, Engohang-Ndong et al. 

2007; Gupta, Borin et al. 2009). Using the structure of PhoB from E. coli in a complex with 

DNA as a starting model (PDB ID: 1GXP)(Blanco, Sola et al. 2002), we superimposed the 

ChxREff dimer onto PhoB such that the α3 of ChxREff is in a similar position within the major 

groove of the DNA. However, the dimer structure could not be modeled onto the DNA without 

steric hindrance from either the β6-β7 loop or the extended α2, indicating that the ChxREff dimer 

cannot interact with the DNA in a similar manner as other OmpR/PhoB response regulators but 

this does not preclude the dimer from interacting with DNA in an alternative manner.  

It is currently unclear if the ChxREff dimer structure is biologically relevant. The ChxREff 

dimer could represent an inactive state of the protein in which DNA interaction is inhibited 

possibly through an interaction with another protein or ligand. Such inactive states have been 

reported for other OmpR/PhoB subfamily members (Kato, Chibazakura et al. 2008; Wang, Tian 

et al. 2009). Alternatively, the ChxREff dimer could be an artifact of crystal packing, although our 

analytical size exclusion studies support the conclusion that ChxREff can form homodimers in 

solution at a relatively low (1 µM) concentration.  

 

NMR Secondary structure of ChxREff 
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 The model of ChxREff obtained through crystallography is of a ChxREff sub-domain 

swapped dimer but the predominant oligomeric species of recombinant ChxREff was monomeric. 

Since the NMR resonance signal is proportional to the molar concentration of the sample, the 

more abundant ChxREff monomer should be more intense than the dimer and therefore NMR was 

used to elucidate the secondary structure of the monomer (Fig. 4.5).  

As figure 4.6 indicates, the secondary structure of ChxREff determined through NMR is 

similar to, but distinct from the crystal structure. The topology of the ChxREff NMR structure is 

β1-β2-β3-β4-α1-α2-α3-α4-β6-β7. The positions of the four-stranded antiparallel β-sheet and the 

β-hairpin are similar to the crystal structure. The positions of the α-helices, however, are 

different from the crystal structure. α1 and α2 are 5 and 12 residues shorter in the NMR 

structure, respectively. The start of α3 is 6 residues before the α3 in the crystal structure, and is 4 

residues longer.  

This comparison indicates that the ChxREff secondary structure determined through NMR 

is different from the crystal structure, potentially indicating that the tertiary structure is also 

different.  The secondary structure of the monomeric form of ChxREff appears to resemble the 

typical OmpR/PhoB subfamily effector domain structure. While the primary sequence similarity 

between effector domains of the OmpR/PhoB subfamily varies from 20-65% (Martinez-

Hackert and Stock 1997), the secondary and tertiary structure of this domain is highly conserved 

throughout the subfamily. Likewise, the primary sequence similarity between ChxREff and 

OmpR or PhoB is 41% or 30%, respectively, and the secondary structure of ChxREff determined 

through NMR is similar to OmpR and PhoB (Fig. 4.6). The biggest regions of dissimilarity 

between ChxREff and OmpR or PhoB are in the lengths of the helices, which was not unexpected 

as the lengths of these secondary structural elements vary between OmpR/PhoB effector domains  
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FIG. 4.5. 1H-15N HSQC spectrum of ChxREff. To begin to determine the structure of ChxREff, an 

initial 1H-15N Heteronuclear Single Quantum Coherence (HSQC) was performed. The amide 

resonance signals for 100 residues are present in the HSQC. The spectrum is well dispersed on 

both dimensions indicating a well-folded protein.  
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FIG 4.6. Sequence and secondary structure alignment of ChxREff and other OmpR/PhoB 

subfamily members. The primary sequences of ChxREff (UniProt ID: B0B8K5), OmpR (PDB ID: 

2JPB), and PhoB (PDB ID: 1GXP) were aligned using the multiple sequence alignment program 

ClustalW (Larkin, Blackshields et al. 2007). The secondary structures of each protein are 

displayed above their respective primary sequence. The secondary structure of ChxREff 

determined through crystallography or NMR is colored cyan or green, respectively. The 

secondary structures of OmpR and PhoB are colored yellow. 
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(Kenney 2002; Gupta, Borin et al. 2009). The similarity between the ChxREff NMR secondary 

structure and other OmpR/PhoB subfamily members and the dissimilarity to the crystal structure 

leads us to speculate that the tertiary structure of monomeric ChxREff is homologous to the 

typical OmpR/PhoB effector domain structure. 

 

Asn182, His186, and Lys192 in ChxR interact with DNA  

 NMR chemical shift titration was used to facilitate the identification of residues involved 

in interaction with DNA. A 28-bp fragment of double-stranded DNA corresponding to the DR2 

binding site from the chxR promoter was titrated into a solution of 15N-labeled ChxREff (Fig. 

4.7A). A comparison of the HSQC spectra of ChxREff in the absence and at each concentration of 

DNA indicated that 20 residues were perturbed in the presence of DNA (Fig. 4.7B). Many of 

these residues reside in the regions known to interact with DNA in homologous effector domains 

(Gupta, Borin et al. 2009) and include the putative recognition helix (α3; Asn182, Asp184, 

His186, Ile187, Lys192) and minor groove-interacting wing (β5-β6 loop; Val207).  

To begin to determine which of the perturbed residues might interact with DNA, Ala 

substitutions were generated in the full-length protein in the perturbed residues in α3 and the β5-

β6 loop. The ability of each protein to bind DNA was tested through EMSAs. The amount of 

DNA shifted with each substitution was quantified and compared to wild-type ChxR (Fig. 4.7C).  

Substitutions in three (Asn182, His186, and Lys192) of the six residues significantly reduced 

DNA interaction. These three residues are located in α3 in ChxREff, supporting that this helix is a 

region in ChxR that interacts with DNA.  

 We have previously determined a consensus DNA sequence recognized by ChxR 

(WHGAWNW) for which the central GAW nucleotides are critical for DNA binding  
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FIG 4.7. Identifying and testing DNA-binding residues. A) Chemical shift mapping of residues 

perturbed in the presence of DNA. To identify potential residues involved in interaction with 

DNA, increasing concentrations of cognate DNA were added to 15N-labeled ChxREff. The black, 

red, and blue peaks represent 15N-labeled ChxREff at a concentration of 0.52 mM in the absence 

of DNA, in the presence of 0.52 mM DNA, and in the presence of 1.04 mM DNA, respectively. 

B) 20 residues (grey) were perturbed in the presence of DNA. Many of these residues are in the 

regions (α3 and the β5-β6 loop) known to interact with DNA in other effector domains from the 

OmpR/PhoP subfamily. C) The ability of the perturbed resides within α3 and the β5-β6 loop to 

bind DNA was quantified through a gel shift assay. The amount of DNA shifted from 3 of the 6 

substitutions was significantly (p < 0.001 (***)) reduced relative to wild-type ChxR. 
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(Hickey, Weldon et al. 2011 (Chapter 2)). Since substituting Asn182 or His186 essentially 

abolished DNA interaction, we speculate that these two residues specifically interact with the 

conserved adenine and guanine nucleotide, respectively. Asn or His is known to have the highest 

specificity for an adenine or guanine base, respectively (Suzuki 1994; Luscombe and Thornton 

2002). For Asn182, the carboxamide side-chain could interact with both the phosphate backbone 

and the guanine base, providing two sites of interaction with the DNA, which could explain why 

substituting this residue had such a dramatic effect on DNA interaction. Additionally, 

substituting Lys192 reduced DNA interaction by ~45% but was not as dramatic as substitutions 

to Asn182 or His186, potentially suggesting that this residue is not making base-specific contact 

with the DNA, rather Lys192 may interact with the phosphate backbone of the variable 

nucleotide at positions 5 or 6 of the consensus sequence.   

 

ChxREff interacts with the C-terminal domain of the α-subunit of RNA polymerase  

 To activate transcription, members of the OmpR/PhoB subfamily interact with either the 

σ factor or the α-subunit of RNA polymerase (Chen, Abdel-Fattah et al. 2004). Since our 

previous studies with ChxR indicated that the closest DNA binding site in the chxR promoter is 

81 nucleotides upstream of the transcriptional start site (Hickey, Weldon et al. 2011 (Chapter 2)), 

we hypothesized that ChxR interacts with the C-terminal domain of the α-subunit of RNA 

polymerase (αCTD). To test this hypothesis, a co-immunoprecipitation was performed from a 

solution containing ChxR and αCTD (Fig. 4.8). In the absence of ChxR, a small amount of 

αCTD was detected, which was likely due to minor non-specific interactions between the αCTD 

and the antibodies or beads. In the presence of ChxR, a relatively large amount of αCTD was 

detected, which suggests that these two proteins interact. Given that both OmpR and PhoB have  
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FIG. 4.8. ChxR interacts with the αCTD. To determine of ChxR interacts with the αCTD, 

recombinant ChxR was immunoprecipitated in the presence (+) or absence (-) of αCTD using 

anti-ChxR antibodies (αChxR). The samples were subjected to SDS-PAGE and an immunoblot 

was performed using anti-ChxR and anti-RNA polymerase antibodies. 
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been determined to interact with RNA polymerase machinery through their respective 

transactivation loops, we speculate that the residues that comprise the putative transactivation 

loop in ChxR (α2-α3) interact with the αCTD. 
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Chapter V 

Discussion 

  

OmpR/PhoB homologs activate transcription through a conserved mechanism (Stock, 

Robinson et al. 2000). Phosphorylation generally stabilizes the active conformation of the 

receiver domain, which promotes dimerization (Bachhawat and Stock 2007). This interaction 

allows the effector domain to bind to DNA and recruit RNA polymerase to activate transcription 

(Mack, Gao et al. 2009). ChxR was previously demonstrated to interact with its own promoter 

and activate the transcription of the chxR gene in the absence of phosphorylation (Koo, Walthers 

et al. 2006). The central hypothesis for this research was that the intra- and intermolecular 

interactions involved in forming a transcriptionally competent ChxR are distinct from the 

canonical phosphorylation (activation) paradigm in the OmpR/PhoB response regulator 

subfamily. The central aim of this work was to characterize each of the steps of activation 

(dimerization, DNA binding, and interaction with RNA polymerase) in order to begin to 

delineate the mechanism of ChxR transcriptional activation. This study expands upon a previous 

investigation into the ChxR-driven mechanism of transcriptional activation (Koo, Walthers et al. 

2006) and facilitates the development of a working model of this mechanism (Fig. 5.1).  The 

analysis of the structure-function relationships of ChxR are likely to aid in the rational design of 

small molecule compounds that inhibit the function of ChxR. Furthermore, the identification of 

the canonical DNA sequence recognized by ChxR could be used to identify potential binding 

sites within the promoters of its gene targets. The canonical sequence may also be used to 

identify additional gene targets, which will advance our knowledge of the functional role of 

ChxR in Chlamydia.  
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FIG. 5.1. A working model of ChxR interacting with DNA to activate transcription. A) ChxR 

forms a relatively stable homodimer through the α2-β5-α3 region of the receiver domain. The 

effector domain interacts with a direct repeat DNA sequence (WHGAWNH-N3-5-WHGAWNH) 

in a head-to-tail fashion.  B) Three residues (Asn182, His186, and Lys192; red) are proposed to 

make direct contact with DNA. C) ChxR potentially recruits RNA polymerase to the promoter 

through an interaction between the α7-α8 loop (red) and the αCTD. D) An overall model of a 

ChxR homodimer interacting with RNA to activate the transcription of a gene. The effector 

domains and DNA depicted within this figure are the PhoB effector domain bound to DNA 

(PDB ID 1GXP; (Blanco, Sola et al. 2002)). 
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A working model of the mechanism of ChxR transcriptional activation 

  

The results from this study, in conjunction with the findings of an earlier investigation 

(Koo, Walthers et al. 2006), have begun the process of elucidating the mechanism of ChxR 

transcriptional activation. Figure 5.1 depicts a working model of this mechanism, in which ChxR 

forms a stable homodimer through the receiver domain, binds to a direct repeat DNA sequence 

through specific residues within the recognition helix, and recruits the αCTD of RNA 

polymerase to the promoter in order to activate transcription. The mechanism of ChxR 

transcriptional regulation is likely much more complex than depicted in this simple model, given 

that ChxR recognizes six sites within the chxR promoter. Given the number and separation of 

these six binding sites, DNA bending and cooperative binding between dimers may also 

contribute to this mechanism. DNA bending and cooperative binding have been observed in 

other OmpR/PhoB response regulators that bind to multiple sites within a promoter (Makino, 

Amemura et al. 1996; Spencer, Siam et al. 2009). Future experiments will be designed to 

determine the contribution of each binding site to this process.  

 

Functionally important regions in ChxR 

 

ChxR forms stable homodimers primarily through hydrophobic interactions. Full-length 

ChxR was determined to form homodimers in vivo and in vitro through the use of a chemical 

crosslinker (Fig. 2.2). Additionally, ChxR was determined to form homodimers at concentrations 

from 100µM-1µM through analytical size exclusion chromatography (Fig. 3.3), which indicates 

that ChxR protomers form a stable complex. This stability originates from the relatively large 
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number of hydrophobic residues at the dimer interface. Hydrophobic interactions have been 

proposed to be the primary stabilizing force of protein-protein interactions (Tsai, Lin et al. 1997; 

Moreira, Fernandes et al. 2007). The observation that ChxR forms dimers primarily through 

hydrophobic interactions was further supported by subjecting proteins with residue substitutions 

within the receiver domain to size exclusion chromatography. The only substitution that 

abolished dimer formation was to a residue (W89E) within the hydrophobic core of the dimer 

interface (Fig. 3.7). Additionally, the ability of the W89E monomeric protein to bind DNA was 

significantly reduced compared to wild-type ChxR (Fig. 3.8). In combination, these results 

indicate that ChxR forms a stable dimer, which is critical to the functional activity of this 

transcription factor.  

Interestingly, these findings are in stark contrast to other OmpR/PhoB response 

regulators. Phosphorylation-dependent OmpR/PhoB response regulators primarily interact 

through a highly conserved network of salt bridges and oligomerization is predominantly 

regulated through phosphorylation (Toro-Roman, Mack et al. 2005). In contrast, the oligomeric 

states of atypical OmpR/PhoB subfamily members and the interactions between these response 

regulators are not as well conserved. As stated above, ChxR forms stable homodimers through 

hydrophobic interactions. HP1043 (Helicobacter pylori) forms dimers through both hydrophobic 

interactions and salt bridges; although, the stability of this dimer has not been determined (Hong, 

Lee et al. 2007). In contrast to ChxR and HP1043, NblR (Synechococcus elongates) is 

monomeric in solution and does not appear to form dimers (Ruiz, Salinas et al. 2008). The 

oligomeric state of the three other atypical OmpR/PhoB homologs (JadR1 (Streptomyces 

venezuelae), HP1021 (Helicobacter pylori), and FrzS (Myxococcus xanthus)) has not been 

reported. These differing characteristics between ChxR, HP1043, and NblR are likely a result of 
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their affinity and specificity for DNA. Disrupting dimerization in HP1043 did not affect DNA 

binding (Hong, Lee et al. 2007); however, disrupting this protein-protein interaction in ChxR 

significantly reduced DNA binding (Fig. 3.8). This suggests that HP1043 forms dimers primarily 

to increase DNA specificity while ChxR forms dimers to increase both DNA affinity and 

specificity.   

 In contrast to the uncommon characteristics of the ChxR receiver domain, the effector 

domain appears to interact with DNA in a similar fashion to phosphorylation-induced and 

transcriptionally active OmpR/PhoB response regulators. For other OmpR/PhoB response 

regulators, the process of DNA binding is accomplished through the winged helix-turn-helix 

motif within the effector domain. The secondary structure of the ChxR effector domain was 

determined through NMR and contains a winged helix-turn-helix motif, similar to the typical 

OmpR/PhoB effector domain structure (Fig. 4.6). An NMR chemical shift titration experiment 

identified putative DNA-binding residues, many of which reside within the putative DNA 

binding winged helix-turn-helix motif (Fig. 4.7B). To determine which of the residues interact 

with DNA, Ala substitutions were generated for each putative DNA binding residue and the 

ability of each protein to bind DNA was tested through an electrophoretic mobility shift assay 

(Fig. 4.7C). Substitutions of three residues (Asn182, His186, and Lys192) significantly reduced 

DNA binding and suggest that these residues may interact with DNA (Fig. 5.1B). These results 

also support the conclusion that ChxR interacts with DNA in a similar manner to other 

OmpR/PhoB response regulators.  

Additional support for this conclusion comes from the direct repeat DNA sequence 

recognized by ChxR. OmpR/PhoB response regulators generally recognizes a direct or inverted 

repeat DNA sequence, which ranges from 18–23 bp, containing two 6–10 bp DNA-binding sites 
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and is separated by 2–5 bp of intervening sequence (Harlocker, Bergstrom et al. 1995; Blanco, 

Sola et al. 2002; Kenney 2002). ChxR was found to bind to a direct repeat sequence, which 

consists of two 7 bp binding sites separated by 3-5 bp (Fig. 2.4). The length of each binding site 

and intervening sequence are analogous with other OmpR/PhoB homologs. Additionally, the 

direct repeat binding sequence indicates that the effector domain of ChxR binds the DNA in a 

head-to-tail fashion.  

  Once bound to DNA, members of the OmpR/PhoB subfamily have been reported to 

interact with either the σ factor or the α-subunit of RNA polymerase to activate transcription 

(Chen, Abdel-Fattah et al. 2004). ChxR was hypothesized to interact with the C-terminal domain 

of the α–subunit of RNA polymerase, given the location of the DR1 binding site within the chxR 

promoter. The detection of the αCTD from a co-immunoprecipitation with recombinant ChxR 

supports the hypothesis that these two proteins interact (Fig. 4.8). This finding also suggests that 

ChxR recruits the αCTD of RNA polymerase to the chxR promoter in order to activate 

transcription (Fig. 5.1D).  

 

A potential regulatory mechanism 

 

Recent studies of two atypical response regulators (JadR1 and NblR) have reported that 

their functional activity is regulated through an interaction with a small molecule ligand or 

another protein (Ruiz, Salinas et al. 2008; Wang, Tian et al. 2009). Similar to JadR1 and NblR, 

all of the data currently available indicates that the functional activity of ChxR is not regulated 

through phosphorylation. Therefore, ChxR could potentially be regulated through protein-ligand 

or protein-protein interactions.  
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If ChxR is regulated though either of these mechanisms, the two random coils in the 

receiver domain may serve as the site of this interaction. Many studies have reported that random 

coils in proteins can undergo conformational transitions into more rigid structures in the presence 

of binding partners (Sandhu and Dash 2007). RecA is an example of one of these proteins, as the 

helical content of the protein increases in the presence of DNA (Kumar, Mahalakshmi et al. 

1993). The most commonly observed random coil-to-structured transition occurs in short (8-12 

residues), hydrophilic regions that form a helix upon binding. Similarly, the two random coils in 

the ChxR receiver domain are short (8 and 11, residues respectively) and contain few 

hydrophobic residues (1 and 2, respectively). If ChxR is post-transcriptionally regulated, these 

similarities suggest that the two random coils in the receiver domain may participate in the 

regulation.  

Post-translational regulation of ChxR would likely occur during chlamydial persistence. 

Persistent Chlamydia are non-replicating and do not convert into EB. Additionally, the 

expression of late stage genes decreases during persistence. A transcriptome analysis of 

persistent C. trachomatis at 12, 24, and 48 hpi revealed that the transcript levels of chxR are not 

altered relative to chxR transcript levels during a normal developmental cycle (Belland, Nelson et 

al. 2003). During normal growth, chxR transcripts are relatively low during the early stages of 

the developmental cycle but increase dramatically from 18-to-24 hpi and are sustained at an 

increased level throughout the rest of the developmental cycle (Fig. 1.5). The translational profile 

correlates with this observation, as ChxR is not detected until 24 hpi and increases in 

concentration at 36 hpi (Fig. 2.2). If the concentration of ChxR protein is unchanged during 

persistence, the activity of ChxR may be regulated through post-translational mechanisms given 
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that some of the late stage gene promoters’ immunoprecipitated with ChxR and are therefore 

potential gene targets (Spedding 2009).  

 

ChxR as a novel drug target 

 

Due to the association between ChxR, and middle and late stage genes, which are likely 

essential for chlamydial viability, ChxR is an attractive target for the development of novel 

antimicrobial therapies. ChxR contains multiple regions that appear to be critical to its function, 

including the dimer interface and the DNA binding motif. Given the structural similarity of the 

ChxR effector domain and other OmpR/PhoB subfamily members, a compound that would 

inhibit either the DNA binding or RNA polymerase interaction activity of the ChxR effector 

domain may also be effective in inhibiting the activity of OmpR/PhoB response regulators in 

other pathogenic bacteria. In contrast, a compound that would inhibit the formation of ChxR 

dimers would likely be specific to this response regulator since the ChxR receiver domain has 

many unique features not found in many other OmpR/PhoB response regulators. The ample 

number of OmpR/PhoB effector domain structures currently available and the experimentally 

determined structure of the ChxR receiver domain described within this study will likely 

facilitate the rational design of these inhibitory compounds.  

 Currently, research on other OmpR/PhoB transcriptional regulators in pathogenic 

bacteria has identified a promising binding site for an inhibitory compound. The effector domain 

of WalR, an essential transcription factor in Staphylococcus aureus, was recently experimentally 

determined (Doi, Okajima et al. 2010). A cavity near the DNA recognition helix was discovered 

that is conserved in the WalR orthologs from Bacillus subtilis and Enterococcus faecalis. 
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Furthermore, the residues surrounding this cavity are highly conserved among pathogenic 

bacteria and are required for interaction with DNA. Interestingly, many of these residues are 

shared in ChxR and include: Asp184, Ile187A, Arg191, and Tyr209. Additionally, a residue 

(Lys192) in ChxR that is not shared but is in the same position as one of the conserved residues 

in WalR was determined to be important for ChxR-DNA interaction (Fig. 4.7C). These findings 

could indicate that this cavity is present in ChxR and a compound that would inhibit DNA 

interaction in ChxR would be effective at inhibiting the activity of WalR and other OmpR/PhoB 

homologs in pathogenic bacteria.  

 

Identifying putative ChxR binding sites within the promoters of additional gene targets  

 

Extensive analysis of the association between ChxR and the chxR promoter revealed that 

ChxR recognizes six binding sites within the promoter. These six DNA sequences were used to 

generate a consensus recognition sequence (WHGAWNW-N3-5-WHGAWNW), which occurs at 

3303 sites within the chlamydial genome (C. trachomatis L2/434/Bu). The GA nucleotides are 

generally conserved in all of the recognition sites and triple mutations to the central GAW 

dramatically reduce ChxR-DNA interaction, suggesting that these two nucleotides are critical for 

recognition. As stated in Chapter I, ChxR could be immunoprecipitated with promoter regions 

for many chlamydial genes (chxR, CT084, CT091, CT322, CT323, CT444, CT480, CT557, 

CT559, CT576, CT619/620, and CT733/734). The ChxR recognition sequence was used to 

search the 300bp upstream regions of these genes to identify putative ChxR binding sites. As 

Table 5.1 demonstrates, putative ChxR binding sites were identified within the promoters of 

these genes. The distances of the putative binding sites relative to their transcriptional start sites 

(-172 to -71 bp) suggest that ChxR might activate the expression of these genes by interacting 
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with the αCTD of RNA polymerase. It is expected that additional gene targets of ChxR will be 

identified using this consensus sequence in combination with ChIP-PCR and other experimental 

analyses.  

ChxR was found to be associated with the predicted promoter regions of two diverging 

genes (CT619 and CT620) through a ChIP-PCR assay (Spedding 2009). However, the overlap of 

these two promoters prevents a direct linkage of ChxR with either of these genes. As a result, the 

only conclusion that could be drawn from this analysis is that ChxR binds to DNA between these 

two genes. Interestingly, no ChxR binding sites were identifiable in the 300bp upstream region 

of CT620 but two putative binding sites were identified for the CT619 upstream region. This 

suggests that CT619 is the gene target of ChxR from this region but experimental evidence is 

clearly needed to correlate ChxR with the promoter of CT619.  
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Table 5.1 Putative ChxR recognition sites 

Open Reading 
Frame 

Binding 
Site1 

Binding 
Site2 

Sequence3 

CT084 -154 to -136 
-123 to -105 

-269 to -251 
-238 to -220 

CTGAATG-N4-ATGAAAC 
AGGAAGT-N4-CTGATGA 

CT091 -162 to -144 
-151 to -134 

-194 to -176 
-183 to -166 

AAGAAAT-N4-AAGAAAA 
AAGAAAA-N3-AAGATTA 

CT322 ND 
ND 

-199 to -183 
-162 to -147 

GAGAAAA-N3-TTGAGGC 
GGGAAAG-N3-CCGATGC 

CT323 -126 to -108 -236 to -218 TTGAGTC-N5-AGGACAA 
CT444 -128 to -112 -219 to -203 CGGATTC-N3-GAGATAA 
CT480 -174 to -158 

-119 to -102 
-266 to -250 
-211 to -194 

GAGATCC-N3-TCGATAG 
GAGAATC-N4-AAGAAAA 

CT557 -162 to -145 
-103 to -86 

-290 to -273 
-231 to -214 

TAGATGT-N4-GCGATTC 
TCGAATG-N4-GGGAGAG 

CT559 -248 to -231 
-157 to -138 

-266 to -249 
-175 to -156 

TCGAAAG-N4-GGGAGAC 
CGGATTC-N5-TTGAAGC 

CT576 -197 to -181 
-173 to -158 

-237 to -221 
-213 to -198 

GAGACAG-N3-GAGAGAA 
GCGAAAG-N3-TGGACTT 

CT619 -202 to -186 
-107 to -89 

-226 to -210 
-131 to -113 

TTGATTC-N3-CAGAAAG 
GAGATGT-N5-ATGAACA 

CT733 -87 to -71 -279 to -263 AGGATAG-N3-GGGATTG 
CT734 -188 to -172 -215 to -199 TGGATTC-N3-GAGAGAT 

 
1 Binding site relative to the transcriptional start site (Albrecht, Sharma et al. 2010) 
2 Binding site relative to the translational start site (Thomson, Holden et al. 2008) 
3 DNA sequences from C. trachomatis L2/434/Bu genome 
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Evolution of ChxR 

  

The structure of the ChxR receiver domain revealed many contrasting features to both the 

typical and atypical OmpR/PhoB response regulators. Features distinct to ChxR include: the 

unique residue composition of the canonical site of phosphorylation, the “inactive” orientation of 

the conformational switch residues, the relatively large number of hydrophobic residues at the 

dimer interface, and the absence of two α-helices present in all other OmpR/PhoB response 

regulators (Fig. 3.5). The atypical characteristics of ChxR relative to other OmpR/PhoB response 

regulators could be a result of the evolutionary divergence of pathogenic chlamydiae.  

As stated in Chapter I, chlamydiae diverged from other bacteria approximately two 

billion years ago and became obligate intracellular pathogens approximately 700 million years 

ago (Horn, Collingro et al. 2004). Genomes of pathogenic chlamydiae, which are approximately 

1-1.2 Mbp, are half as large and highly reorganized compared to environmental chlamydiae 

(Stephens, Kalman et al. 1998; Horn, Collingro et al. 2004). ChxR is conserved among all 

pathogenic chlamydiae but absent in environmental chlamydiae (Parachlamydia acanthamoebae 

and Protochlamydia amoebophila). Interestingly, these environmental chlamydiae encode a 

OmpR/PhoB response regulator that appears to be regulated through phosphorylation, as both the 

phospho-accepting Asp and a cognate sensor kinase are present in their genomes. Given these 

findings, a possible theory for the atypical nature of ChxR is that it originated from a typical, 

phospho-accepting OmpR/PhoB response regulator that was present in a common chlamydial 

ancestor. As the ancestor evolved into the pathogenic chlamydiae of today, the stimuli sensed by 

a ChxR cognate sensor kinase may not have been present or was present but at a static 

concentration, which would essentially abolish the transcriptional response of the two-
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component system. Therefore, as the organism evolved, the sensor kinase was lost and the 

response regulator was modulated into the atypical OmpR/PhoB transcriptional regulator in 

present-day Chlamydia.  

This theory that ChxR evolved from a phospho-accepting OmpR/PhoB ancestor is 

supported through the evolution of pathogenic chlamydiae. Very little evidence exists of lateral 

gene transfer events in pathogenic chlamydiae (Horn, Collingro et al. 2004), indicating that after 

their separation from environmental chlamydiae ~700 million years ago, the organisms evolved 

through vertical gene transfer. This suggests that ChxR was not acquired from another organism; 

rather, ChxR arose from chlamydiae adapting to their animal hosts. This is exemplified in the 

genetic variation of ChxR in C. trachomatis and C. pneumoniae in which phylogenetic analysis 

indicates that the two species of Chlamydia diverged approximately 60-100 million years ago 

(Stephens, Myers et al. 2009).  ChxR from C. trachomatis (L2/434/Bu) is 48.5% identical and 

64.3% similar to ChxR from C. pneumoniae (AR39), demonstrating that chxR has undergone 

extensive mutagenesis from a common ancestor.  
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