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Abstract 

The Non-Equivalent groups with Anchor Test equating (NEAT) design is a widely used 

equating design in large scale testing that involves two groups that do not have to be of equal 

ability. One group P gets form X and a group of items A and the other group Q gets form Y and 

the same group of items A. One of the most commonly used equating methods in the NEAT 

design is the Levine Observed Score method for linear equating. The purpose of this study was 

to compare two different assumptions for the Levine Observed Score method of linear equating 

and to establish how accurately these two assumptions recover the true equating function. 

These two assumptions were compared using simulated data at synthetic population level 

and at sample level by manipulating anchor length, differences in ability distribution for 

populations P and Q, differences in test difficulty, mixture of populations and sample size. The 

traditional assumption outperformed the alternative assumption in conditions with larger 

difference in standard deviation for the ability distribution and shorter anchor length.  
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Chapter One – Introduction 
 

Statement of the Problem 

Currently many testing programs administer several versions of a given test.  Given the 

importance of the use of results from standardized tests, it is desirable that their scores provide a 

fair and equitable measure of the students’ abilities.  The use of multiple forms ensures that no 

student has advantage for having previous knowledge about the questions in the test (Cook & 

Eignor, 1991). Test security reasons also prompt the use of different versions of a standardized 

test (Suh et al. 2009).  Although these versions are built based on the same content and statistical 

specifications, differences in test difficulty are still likely to occur (Tanguma, 2000).  

To address these differences among test forms, statistical techniques have been 

developed. These techniques, known as equating, aim to make scores from different test versions 

comparable. As stated by Dorans and Holland (2000, p. 281) “Test equating techniques are those 

statistical and psychometric methods used to adjust scores obtained on different tests measuring 

the same construct so that they are comparable.” According to Lord (1980), two test forms, X 

and Y, are considered equated if it is a matter of indifference to test takers of every level of 

ability which form they take. 

Equating techniques can be grouped in Classical Test Theory (CTT) and Item Response 

Theory (IRT) methods. This dissertation focuses on one of the techniques in CTT known as 

linear equating and therefore IRT equating methods are not discussed here.  

Before an equating technique is applied, it is necessary to have a design for collecting the 

data. A widely used design in large scale testing involves two groups that do not have to be of 

equal ability. One group P gets form X and a group of items A and the other group Q gets form 

Y and the same group of items A. In other words, A is a test of common items. The group of 
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common items measures differences in group ability (Kolen and Brennan, 2004).  Anchor test is 

another name for this group of common items and for this reason von Davier et al. (2004) called 

this design Non-Equivalent groups with Anchor Test equating (NEAT) design.  

The equating under NEAT involves the estimation of two unknown pieces of 

information:  the performance of group P on test Y and the performance of group Q on test X.  

“The different anchor equating methods are different because they make different assumptions as 

to which aspects of the statistical relationship will generalize to the target population” 

(Livingston, 2004, p. 45). 

One of the most widely used methods for such estimation is the Levine Observed Score 

method for linear equating. In the Levine Observed Score method, three assumptions are 

traditionally made so that unknown information from Test Y for group P and Test X for group Q 

can be estimated. An alternative assumption to the third of these assumptions has been recently 

proposed by Holland (2004; see also Holland & Walker, 2006). Using this alternative 

assumption the formulas for the computation of unknown pieces of information under the NEAT 

design are different.  

Only one study (Carvajal et al. 2008) has compared the performance of this third 

assumption versus the traditional Levine method. They found that although the estimation from 

the traditional assumption appeared to be closer to the actual values than the estimation from the 

alternative assumption, the differences were not of practical significance given that these 

differences are not expected to result in a change in actual reported scores. However, the only 

factor considered in that study was the mixture of populations (Braun & Holland, 1982).  The 

effects of anchor length, population ability differences for populations P and Q, test difficulty 
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differences and sample size of the groups taking X and Y were not addressed in that study and 

replications of the simulation were not conducted.  

Therefore, the current study was warranted in order to determine the degree of 

concordance or discrepancy between the estimation from the traditional assumptions in the 

Levine method and the estimation based on the alternative assumption.  Because this was a 

simulation study, the true equating function was known, so this study compared this function to 

the one obtained under the alternative assumption and the one obtained under the traditional 

assumption (in conjunction with other two traditional assumptions in each case).  

Purpose 

 The purpose of this study was to compare two different sets of assumptions in the Levine 

Observed Score method of linear equating and to establish how accurately these two sets of 

assumptions recover the true equating function. The two sets of assumptions share two 

assumptions:  

L1) X = X + eX, Y = Y + eY, and A = A + eA, along with the assumption that the error terms, eX, 

eY, and eA, are uncorrelated with their corresponding true scores, X, Y, and A, where X and Y 

are the tests to be equated and A is the anchor. Specifically, X denotes the new form, i.e. the X 

scores will be equated to Y scores.  

L2) X = a + bA, and Y = c + dA. i.e. the true scores of X and A and Y and A are linearly 

related. This is the congenericity assumption. 

 However, the two sets differ on the third assumption that they make. For the first set, the 

third assumption is  

L3) The error variances
2

/ SeX
 , 

2

/ SeY
  and 

2

/ SeA
  are the same for any S of the synthetic form                          

S = wP + (1 – w)Q, where 0 ≤ w ≤ 1 (Braun & Holland, 1982).    
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On the other hand, the third assumption for the second set is  

L3*) The ratios  
SA

SX

/

/




 and 

SA

SY

/

/




 are constant as functions of S of the synthetic form (Holland 

& Walker, 2006); that is, the ratios of the square roots of the reliabilities 
SA

SX

/

/




and  

SA

SY

/

/




 are 

population invariant. 

 

 For performing such a comparison, a simulation was designed for which a population P 

and four populations Q were combined and crossed with four test conditions: two conditions for 

anchor length and two conditions for difficulty of the test Y as well as five mixtures of 

populations. The result was 80 synthetic populations for which the three equating functions were 

computed and compared: a true equating function, an equation form the traditional assumption 

L3 and an equation from the alternative assumption L3*. A sampling design from populations P 

and Q was also implemented. This sampling design will be described in Chapter Three. The 

variables for this study are indicated next.  

Variables 

 There were several variables in this study. The dependant variable was the equating 

function of X to Y. The equating function can be computed in three ways: the true equated score 

and the equated scores obtained under the first and the second set of assumptions.  

 The independent variables included anchor length, differences in ability distribution for 

populations P and Q, differences in test difficulty, mixture of populations and sample size. 

Research Questions 

 The research questions addressed in this study were the following: 

1) What is the relative performance of L3 and L3* in recovering the true equated score 

at the synthetic population level? 
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2) What is the relative performance of L3 and L3* in recovering the true equated score 

at sample level? 

Hypotheses 

It was hypothesized that the alternative assumption of the constant square root of 

reliability ratio recovers the true equated score in a more accurate way than the traditional 

assumption of constant error variance in the Levine Observed Method of linear equating both at 

synthetic population level as well as at sample level.  
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Chapter Two - Literature Review 
 

 Currently many testing programs administer several versions of a given test.  Given the 

importance of the use of results from standardized tests, it is desirable that their scores provide a 

fair and equitable measure of the students’ abilities.  The use of multiple forms ensures that no 

student has advantage for having previous knowledge about the questions in the test (Cook & 

Eignor, 1991). Test security reasons also prompt the use of different versions of a standardized 

test (Suh et al. 2009).  Although these versions are built based on the same content and statistical 

specifications, differences in test difficulty are still likely to occur (Tanguma, 2000).  

What is Equating? 

 To address these differences among test forms, statistical techniques have been 

developed. These techniques, known as equating, aim to make scores from different test versions 

comparable. As stated by Dorans and Holland (2000, p. 281) “Test equating techniques are those 

statistical and psychometric methods used to adjust scores obtained on different tests measuring 

the same construct so that they are comparable.” According to Lord (1980), two test forms, X 

and Y, are considered equated if it is a matter of indifference to test takers of every level of 

ability which form they take. 

 It is important to emphasize that equating adjusts for differences in difficulty, not for 

differences in content. A related process to equating is linking or vertical scaling, which involves 

a comparison of scores from tests for different grade levels; however, because the content from 

these tests is different, these scores cannot be used interchangeably as in the case of equated 

scores (Kolen and Brennan, 2004). 

Dorans (1990) explains four Lord (1980) conditions that a equating of test X to test Y 

must meet as follows. The first condition is that X and Y must measure the same construct. For 
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achieving this condition, also known as equatability, the two tests need to be as parallel as 

possible from a content point of view; “…that is they should contain the same context mix of 

items.” (Dorans, 1990, p. 5).  This is precisely what distinguishes equating from scaling. The 

second condition is equity, which states that it must be a matter of indifference to the test taker 

whether he or she takes X or Y.  Although equatability is a prerequisite for equity, it does not 

imply equity because two tests that measure the same construct can differ in difficulty.  The third 

property is symmetry, which requires that the one to one relationship between scores from X and 

Y be the same regardless of whether X is equated to Y or Y is equated to X. This is why a 

regression does not work as an equating method; the regression X to Y and Y to X does not, in 

general, produce two functions that are inverse of each other. Finally the fourth property is 

population invariance, which requires that equating transformations should be unique and 

identical across subpopulations from the population.  

Dorans and Holland (2000) in addition, explain the equal reliability requirement for 

equating. They say that this concept is important because in an extreme case, a test could be 

equated to an item, which they consider incorrect. However, they indicate that in practice this 

requirement can be violated and still result on satisfactory equating. That is why they think this is 

a secondary consideration but not a fundamental requirement for test equating. They indicate that 

violations to this requirement can lead to violations of the population invariance requirement and 

that the concern about equal reliability should be complemented with the question of amount of 

reliability in the sense that more reliability is better for equating.  

 Equating techniques can be grouped in Classical Test Theory (CTT) and Item Response 

Theory (IRT) methods. This dissertation focuses on one of the techniques in CTT known as 

linear equating and therefore IRT equating methods are not discussed here. In addition, before an 
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equating technique is applied, it is necessary to have a design for collecting the data. So a 

mention of different data collections is in order before referring to the equating technique used in 

this study.  

Equating Designs 

Kolen and Brennan (2004) identify and describe three types of equating designs: random 

groups design, single group, and common-item nonequivalent groups. The technique used in this 

study corresponds to the third category, therefore the first two will only be briefly described, and 

then a more detailed description of the last category is presented. 

In the random group design the forms of the test are randomly assigned to test takers, 

which leads to comparable randomly equivalents groups that take form X and form Y and the 

difference between of performance between groups is attributed to the difference in difficulty 

between the two versions of the test (Kolen and Brennan, 2004). 

In the single group design both forms X and Y are given to the same group of examinees. 

Obviously fatigue and order effect could be disadvantages of this design so it is not used 

frequently. A variation of this design is the single group with counterbalancing in which half of 

the tests administered have form X first and then form Y and the other half have form Y and then 

form X. The tests are then assigned alternatively to the examinees so the result is that the group 

taking X form first is comparable to the group taking Y form first.  In this design, the 

relationship between the forms (X to Y for example) can be used when they are taken first. In 

addition, if the effect of taking X after taking Y is the same as taking Y after X, the equating 

relationship will be the same between the forms taken first as between the forms taken second. If 

this does not happen then there is a differential order effect and the data for the form taken 

second might not be used, which can produce instability in the equating and waste time from the 
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examinees. An obvious disadvantage of the single group design is that the testing time doubles 

(Kolen and Brennan, 2004).   

The common-item nonequivalent group is a widely used design in large scale testing. It 

involves two groups that do not have to be of equal ability. One group P gets form X and a group 

of items A and the other group Q gets form Y and the same group of items A. In other words, A 

is a test of common items. The group of common items measures differences in group ability 

(Kolen and Brennan, 2004).  Anchor test is another name for this group of common items and for 

this reason von Davier et al. (2004) called this design Non-Equivalent groups with Anchor Test 

equating (NEAT) design and this is the term that will be used throughout this study. The anchor 

test is called internal when the scores from test A contribute to the total scores for both tests X 

and Y and external if they don’t contribute to those total scores. Table 1 illustrates the NEAT 

design. 

                      Table 1  

                       Illustration of the NEAT design 

    Group P   Group Q 

Form X 

 

  
  

     
Form Y 

   

  

     
Anchor A         

 

In the NEAT design, the test A is a shorter and less reliable test that measures the same 

constructs that X and Y measure and its purpose is quantifying the difference  between the two 

groups that affect their performance in tests X and Y (Holland and Dorans, 2006).  

The object of equating techniques in the context of the NEAT design is to estimate how 

some total group S, which is a weighted combination of groups P and Q, would perform on both 

tests X and Y.  The notion of a synthetic population S was proposed by Braun and Holland 
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(1982), where S = wP + (1 – w)Q, and w is greater or equal than 0 and less or equal than 1. The 

estimation under NEAT involves the estimation of two unknown pieces of information:  the 

performance of group P on test Y and the performance of group Q on test X.  Once these 

estimates are obtained, the performance on tests X and Y can be directly compared in S and the 

two tests can be thus equated to each other (Kolen and Brennan, 2004).   

A Classification of Equating Methods 

Depending on the equating design for data collection, different equating techniques can 

be used. Following, I will focus on the CTT techniques for the NEAT design.  

There is a wide variety of CTT equating methods used under the NEAT design. 

Livingston (2004) presents a classification of NEAT design methods in a table similar to the 

following.  

Table 2 

 A Classification of Equating Methods 

    Chained equating     Conditioning on the anchor 

         Linear   

 

Chained linear 

 

  Tucker 

  

      

Levine 

  

         Equipercentile Chained equipercentile 

 

Frequency estimation  

            equipercentile method 

 

Livingston (2004) explains that there are two ways to use information from the anchor 

test, the first being chained equating and the second being conditioning on the anchor, as the 

table shows. In chained equating (CE) the scores on form X are equated to the anchor scores and 

then the anchor scores are equated to scores on form Y. So by using this chain the scores on X 

are equated to scores on Y.   

A second approach is conditioning on the anchor, which corresponds to the second 

column of the table. Livingston (2004) states that this approach is also known as 
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poststratification (PSE). The anchor in this case is used as if it were a predictor variable: for each 

score on the anchor, the distribution (or possibly just the mean and the standard deviation) of 

scores on X and on Y is estimated in the target population. Such estimates are used for the 

equating, as if they were observed in the target population.  

 The two rows in Table 2 present two commonly used types of equating: linear and 

equipercentile. First a brief description of equipercentile methods is presented and then the focus 

is set on linear methods, specifically the Levine Observed Score method which is the topic of 

this study.   

 The basic idea in equipercentile methods is that a score on form X and a score on form Y 

are equivalent in a given group if they have the same percentile rank in the group (Livingston, 

2004). In this sense, a score on form X is transformed to a score on form Y that has the same 

percentile rank in that group. Equipercentile equating will make the distribution of the adjusted 

X scores very similar to the distribution of scores on Y, and because of this the mean and the 

standard deviation on both distributions will be nearly the same (Livingston, 2004).  

 The basic concept in linear equating is that a score on X and a score on Y are equivalent 

in a group of examinees if the two scores are the same number of standard deviations above or 

below the mean for that group. This implies that in order to equate a score on X to a score on Y, 

one needs to transform the score on X to a score on Y that is the same number of standard 

deviations above or below the mean of the group (Livingston, 2004). This concept can be 

represented by the following formula: 

                              
,

)(

)(

)(

)(

XSD

XmeanX

YSD

YmeanY 




                                  (1)

 

where X and Y are two equivalent scores and the group and the mean and standard deviations are 

computed for the group of examinees.   
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The previous equation can be solved for Y to obtain:  

XadjustedXmean
XSD

YSD
YmeanX

XSD

YSD
Y 

























 )(

)(

)(
)(

)(

)(

          (2)

 

In this way, it is possible to adjust any X score (Livingston, 2004). 

 If this linear equating basic idea is used in a random group design, single-group design or 

a counterbalanced design it is assumed that the observed relationship will generalize to the target 

population. By using the observed means and standard deviations to establish an equating 

relationship the assumption is not that they are a good estimate of those means and standard 

deviations in the population but that the equating relationship observed in the samples is a good 

estimate of the equating relationship in the population (Livingston, 2004).  

 However, in the design with an anchor, the case is more complex because the information 

from the anchor is needed to adjust for the differences between the group of examinees taking X 

and Y. Any method in an anchor design assumes that “something about the statistical 

relationship between scores on the new form [X] and the anchor in the group that actually took 

the new form will generalize to the target population –and similarly for the reference form [Y]. 

The different anchor equating methods are different because they make different assumptions as 

to which aspects of the statistical relationship will generalize to the target population” 

(Livingston, 2004, p. 45).  

Evaluating the Accuracy of Equating Methods 

Holland and Dorans (2006) present some measures of statistical accuracy for equating functions.  

The standard error of equating (SEE) is defined as the standard deviation of the distribution of 

the estimated linking function at a particular score. It provides a measure of how accurately the 

equating function is estimated. The difference that matters (DTM) addresses the fact of whether 
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or not the difference between two equating functions has important consequences for reported 

scores. This is dependant of the test and its use. For example on the SAT the DTM is 5 reported-

score points because SAT scores are reported and rounded in steps of 10 points.  

They also present measures for checking the sensitivity of equating functions to the 

populations where they are estimated. Those constitute population invariance checks. For 

example, the root mean squared difference (RMSD) between the equating functions for each 

subpopulation and the function for the overall target population.    

Mekahael (2009) presents specific formulas for these measures when they are used in the 

context of a simulation study.  

The conditional standard error of equating (CSEE) is computed by  

2
^

^
( )

1
( )

y ij

i
yj ij

i

e x

CSEE e x
I I

 
 

  
 
 
 




                                      (3)

 

where I is the number of replications of the simulation study, and  )(ˆ
ijy xe is the X to Y equated 

score at score jx  estimated for a given replication i . The CSEE across all score points can be 

used to compute an overall SEE: 

         

2

j j

j

Avg SEE p CSEE 
                                    (4)

 

where jp  is the raw proportion of examinees at score jx .  

For the conditional bias the formula is: 

                 

^1
[ ( ) ( )]yj ij y j

i

CBias e x e x
I

 
                                  (5)
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where ( )y je x is the criterion equating at score jx  estimated with population data. An estimate of 

the overall bias can be obtained by summing all score points:   

                           
j

j

Bias p CBias                                           (6) 

By squaring both sides this equation an estimate of the average bias squared is obtained. The 

average bias squared is useful when calculating the average root mean squared error (RMSE). It 

provides an estimate based on combining information from systematic error (bias) and random 

error (SEE): 

                                    2 2( )j

j

RMSE p CBias SEE                         (7) 

Comparing Methods of Equating 

 Before the assumptions and details of the Levine Observed Score method - the focus of 

this study- are discussed it is important to present a brief description of previous results on 

comparing different CTT methods under the NEAT design.  

 When comparing CE and frequency estimation methods, Harris and Kolen (1990) found 

that these two methods produce different results when there are differences in ability in the 

samples for X and Y forms and they suggested the use of PSE methods because of their better 

theoretical base. However, Livingston et al. (1990) recommended the use of CE when there is a 

large ability difference in the groups taking the two forms of the test.  

 Kolen and Brenan (2004) indicate that Levine methods are more appropriate than the 

Tucker method when groups are rather dissimilar, but at the same time they indicate that if the 

populations are too dissimilar, any equating is suspect. They add that it is impossible to provide a 

strict guide as to what “too dissimilar” means but an example of too much dissimilarity are forms 

that do not share common content and statistical specifications. However they indicate that in 
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NEAT, differences between the two groups of approximately .1 or less standard deviation unit on 

the anchor appear to cause few problems for any of the methods. On the other hand, mean group 

differences of about .3 or more standard deviation unit can produce substantial differences 

among methods. Finally, ratios of group standard deviation on the anchor of less than .8 or 

greater than 1.2 are associated with substantial differences among methods.    

 Holland (2004) compared CE, Tucker and Levine and concluded that if the equating is 

performed from a more able population to a less able one, the three equating functions will lie in 

a fixed relationship to each other. Tucker will lie below chain, which will lie below Levine. If the 

equating is performed from a less able population to a more able one, the order will be reversed. 

He also concluded that the more different the populations P y Q are, regarding the mean 

performance on A, the anchor test, the more the three equating functions will differ. Finally, he 

showed that for a less reliable test, two groups will have smaller standardized mean differences 

than they will have for a more reliable test, which suggests that the less reliable the anchor test A 

is, the less different the three linear equating will be.   

Mekhael et al. (2009) compared Tucker and Levine examining the effect of two factors: 

standardized mean ability difference and anchor-total correlation. They found that the average 

bias for Tucker was greater than the average bias for Levine. Additionally, the standard error of 

equating (SES) was almost identical across ability differences.   

 Puhan (2010) compared CE, Tucker and Levine and found that Tucker performed the 

worst in terms of bias and RMSE. The Levine method had the lowest bias and RMSE was 

similar for CE and Levine. Puhan (2010) concluded that CE, Tucker or Levine may be used 

when the difference in X and Y is small and the correlation between the anchor and total test is at 
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least moderately high. On the other hand, CE appears to be preferable when the groups taking X 

and Y differ in ability since CE produce the lowest RMSE.   

The Levine Observed Score Method in NEAT 

 According to Kolen and Brennan (2004) the Levine Observed Score method relates 

observed scores on X to observed scores on Y but its assumptions pertain to true scores, which 

are assumed to be related to observed scores according to the classical test theory, whereby the 

observed score is the sum of true and error scores, the expectation of the error scores is zero and 

error scores are uncorrelated with true scores.  

In the Levine Observed Score method, three assumptions are traditionally made so that 

unknown information from test Y for group P and Test X for group Q can be estimated. 

Following Holland and Walker (2006) these three assumptions will be denoted L1, L2 and L3 

and are presented below. 

L1) X = X + eX, Y = Y + eY, and A = A + eA, along with the assumption that the error terms eX, 

eY, and eA are uncorrelated with their corresponding true scores X, Y, and A.  

L2) X = a + bA, and Y = c + dA. i.e. the true scores of X and A and Y and A are linearly 

related. This is the congenericity assumption. 

The Levine method rests on the assumption that L1 and L2 hold for any population S of 

the synthetic form 

                          S = wP + (1 – w)Q,                                                                (8) 

where 0 ≤ w ≤ 1 (Braun & Holland, 1982).   

L3) The error variances
2

/ SeX
 , 

2

/ SeY
  and 

2

/ SeA
  are the same for any S of the synthetic form. 

This assumption, along with an assumption of proportional error variances for X, Y, and A, is 
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used in the computation of Angoff’s (1971) reliability estimates. L3 will be referred to as 

Angoff’s assumption.  

 An alternative assumption to L3 has been recently proposed by Holland (2004; see also 

Holland & Walker, 2006) and it is denoted here by L3*. 

L3*) The ratios  
SA

SX

/

/




 and 

SA

SY

/

/




 are constant as functions of S of the synthetic form (Holland 

& Walker, 2006); that is, the ratios of the square roots of the reliabilities 
SA

SX

/

/




and  

SA

SY

/

/




 are 

population invariant. 

 

The idea behind this L3* assumption is that from L1 and L2 it can be shown that   

X/S = X/P
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    (Holland & Walker, 

2006). Under L3* the previous two formulas reduce to  

X/S= X/P 
PA

SA

/

/




 and Y/S = Y/Q

QA

SA

/

/




  because the value in brackets will be equal to 1.0.  

 

The next section in this dissertation presents the derivation of such formulas and other formulas 

related to the Levine method.  

Derivation of Formulas 

The following derivation of formulas is based on Holland & Walker (2006). 

 Results from L1 and L2 

 

Several simplifying consequences can be derived from assumptions L1 and L2.  

From L1 for any S, the mean of X and of X over S are the same, i.e., 

 X/S = E(X| S) = E(X| S) = SX /       (9) 

 

 Similar results hold for Y and A as well. 
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By taking expectations over T of the linear equations in L2, and by then letting w = 1 so 

that S = P, it follows that 

 a = X/S – bA/S = X/P – bA/P, 

 

by the rules of expectations of functions, and implies the following basic formula for XT in 

terms of quantities that can be estimated directly in the NEAT design plus the unknown value of 

b, 

            X/S = X/P + b(A/S – A/P).          (10) 

 

By an analogous argument a formula for Y/S  is obtained:  

 

 Y/S = Y/Q + d(A/S – A/Q).          (11) 

 

In addition, taking variances over S of the linear equations in L2, and then letting w = 1 so that  

S = P, results in  

 
2

/ SX
 =  

2

/

2

SA
b   and   

2

/ PX
 =  .2

/

2

PA
b          (12) 

 

This follows directly from the definition of the variance of a function.  Equation (12) implies the 

following formula for b and shows the sense in which it is the “effective length” of X relative to 

A, 

 b =
S

S

A

X

/

/






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= .

/

/

P

P

A

X
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
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                      (13) 

 

The notion of effective test length is expressed as the ratio of the true score standard deviations. 

By an analogous argument the corresponding formula for d, can be derived: 

 d =
S

S

A

Y

/

/








= .

/

/

Q

Q

A

Y








                                 (14) 

 

Note that L2 gets its strength as an assumption from the requirement that it holds for any 

T, and is therefore population invariant. 
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Formulas for the Variances of X and Y over S 

 

 Two ways to obtain expressions for the variances of X and Y over S are presented. The 

first assumes L1 and L2 and makes a population invariance assumption concerning the ratio of 

the reliabilities of X and A and of Y and A. In the second approach, the traditional one, also L1 

and L2 are assumed but a different population invariance assumption concerning the error 

variances is made. 

For the first approach, the usual formulas for test reliability are used to first express the 

relationship in (13) in slightly different terms. Defining the reliabilities of X and A in S, as usual, 

as 
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results 

 

 SX / = X/SX/S and SA / = A/SA/S 

 

and therefore from (6) it follows that 
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From (16) it results that 
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Analogously, from L1 and L2 it can be shown that 
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At this point the idea behind the first approach to estimating X/S  and Y/S  is to assume 

that the expressions in brackets in (17) and (18) have the value 1.0; that is, to assume that the 

ratios of the square roots of the reliabilities, 
SA

SX

/

/




and  

SA

SY

/

/




 are population invariant.  This is 

assumption L3*.  Under this assumption, the standard deviations of X and Y over S are given by 

 X/S= X/P 
PA

SA

/

/




 and Y/S = Y/Q .

/

/

QA

SA




            (19) 

 

The second approach uses the well known decomposition of observed test score variance 

into true score variance and error variance; that is, 
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The population invariance assumption is on the error variances, such that the variances
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/ SeA
  are constant for any S of the synthetic form.  This is assumption L3.  From L3 it 

results that 
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or 

      
2
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Using the equations in (5) it follows that (14) may be expressed as 
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Moreover, L3 also implies that 
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so that (15) can be written as 
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An analogous result follows for
2

/ SY , i.e., 
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2

/ SY  =  
2

/ QY  + d
2
 (

2

/ SA  - 
2

/ QA ).          (24) 

 

Note that equations (23) and (24) are similar to (10) and (11) in that they depend on the 

variances that can be directly estimated in the NEAT design as well as on the unknown values, b 

and d.  

 Therefore in order to use (10), (11), (23) and (24), the values of b and d need to be 

estimated. From (16) b can be estimated by 

 b =
PAPA

PXPX

//

//




 .                       (25) 

 

For d, the corresponding formula is 

 

 d = .
//

//

QAQA

QYQY




                        (26) 

 

Comparing L3 and L3* 

Carvajal et al. (2008) conducted a study to determine which of two assumptions - 

Angoff’s constant error variance assumption (L3) or Holland’s constant reliability ratio 

assumption (L3*) - is more viable across a range of populations S. However, that study, although 

based on simulated data, did not include replications of the simulation and did not take into 

consideration factors such as anchor length, differences in test difficulty, differences in ability 

distribution for populations P and Q and sample size of the groups taking X and Y. No other 

studies have been found that address a comparison between L3 and L3*. In consequence this 

dissertation study compared L3 and L3* by manipulating those four factors. This dissertation 

study also included the mixture of populations, which was included as a factor in the Carvajal et 

al. (2008) study.  
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Carvajal et al. (2008) used an anchor test with 50 items and tests X and Y with 100 items 

each. For the anchor test A in population P, true scores were generated under N(25, 64). In 

population Q true scores for A were generated under N(27, 81), where 64 and 81 represent 

variances, so that population Q was more able and more variable than population P.  Observed 

scores on test A were generated under L1 by using a binomial error model to generate error 

terms. Under the binomial error model the (squared) conditional standard error of measurement 

(CSEM) is determined by            

                                   
 
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| 1
A A

A

n

n
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
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                                                            (27)

 

where n is the number of items in the test (Lord & Novick, 1968). 

Once the error scores for A were generated under N (0,
2

|A ), the observed A scores were 

obtained by adding the true scores and the corresponding error scores. 

 True X scores and true Y scores were generated under L2 (X = a + bA and Y = c + dA).  

The choice of a, b, c and d was made to replicate reasonable values in practical settings, given 

the desired maximum score of 100 for both tests: a=2, b=2.1, c=4, and d=1.9.  The result was a 

test X that was somewhat easier across the majority of the score range.  Observed X and Y 

scores were generated under the binomial error model in a similar way as observed scores for A 

were generated. 

In that study, the populations P and Q were combined to produce the synthetic form 

S = wP + (1 – w)Q, (Braun & Holland, 1982) where w varies from 0 to 1. Eleven different 

weights for w where used, ranging from 0 to 1 in increments of .1. For example when w = 0, 

S= Q and when w = 1, S = P. When w = 0.1, S is the combination of a random sample of 10% 

from P and 90% from Q. 
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In the Carvajal et al. (2008) study, populations P and Q were created with 100,000 

subjects each. Every population S had 100,000 cases as well. The actual variances and 

reliabilities for X and Y were computed directly in each synthetic population S, because full 

information on X and Y was available for every case. Then the estimates of variances and 

reliabilities under the L3 and L3* assumptions were computed, using only information on X in P 

and information on Y in Q.  These estimates were then compared with the actual values.  

They found that although the estimation from the traditional assumption L3 appeared to 

be closer to the estimation from the alternative L3*, the differences were not of practical 

significance given that these differences were not expected to result in a change in actual 

reported scores. However, the only factor considered in that study was the mixture of populations 

(Braun & Holland, 1982).  The effects of anchor length, sample size, population ability 

differences for populations P and Q, and test difficulty differences were not addressed in that 

study and replications of the simulation were not conducted. 

 No other studies have been found that address such factors. Therefore, the current study 

is warranted to determine the degree of concordance or discrepancy between L3 and L3* under 

various conditions related to those factors.  

The educational implication of this dissertation resides in the evaluation of the usually 

untestable invariance assumptions inherent in NEAT equating.  This study compared the 

assumption of the constant square root of reliability ratio (L3*) to the traditional assumption of 

constant error variance (L3) in the Levine Observed Score method of linear equating.  
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Chapter Three - Methods  

General Description 

In the interest of achieving greater degree of fairness in standardized testing, equating 

methods need to be used as to adjust for unwanted differences among forms. The greater the 

knowledge about the performance of a specific equating method and its relative performance 

with other methods, the better decisions can be taken regarding its application. The methods 

described here attempt to examine the relative performance of the Levine Observed Score 

method of linear equating under two different assumptions, namely L3 and L3*.  

Because this is a simulation study, the true equating function is known, so this study 

compared this function to the one obtained under L3 and the one obtained under L3* (in 

conjunction with assumptions L1 and L2 in each case). Therefore the dependent variable is the 

equating function, which was evaluated using bias and RMSE.  

The independent variables are anchor length, differences in test difficulty, differences in 

ability distribution for populations P and Q, mixture of populations, and sample size of groups 

taking X and Y. The conditions for these independent variables or factors are described later.  

Following the data generation in Carvajal et al. (2008), this study generated true scores 

for the anchor test A in population P and in population Q. Then observed scores for test A were 

generated under L1 by using a binomial error model to generate error terms. Under the binomial 

error model the (squared) conditional standard error of measurement (CSEM) is determined by 

 
 

2

| 1
A A

A

n

n

 






 where n is the number of items in the test (Lord & Novick, 1968). 

Once the error scores for A were generated under N (0,
2

|A ), the observed A scores were 

obtained by adding the true scores and the corresponding error scores.  
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 True X scores and true Y scores were generated under L2 (X = a + bA and Y = c + dA).  

Different choices of a, b, c and d were made as described later.  This resulted in different level of 

difficulty between X and Y. Once true X scores and true Y scores were generated, observed X 

and Y scores were generated by using again  the binomial error model in a similar way as 

observed scores for A were generated. Because the way X and Y scores were generated, whereby 

errors for the observed scores are all independent of each other, the test A is considered an 

external anchor.  For an internal anchor model, the error for observed score A would be 

contained in the error for observed scores X and Y. Note however that the derivation of formulas 

derived in Chapter Two did not make use of internal or external anchor properties; therefore 

those formulas should be applicable to either case.   

Factors for the Study 

This study manipulated five factors:  ability distribution, anchor length, difference in test 

difficulty, mixture of populations and sample size of groups taking X and Y.  

Following, a description of the factors or independent variables for this study is presented.  

Ability Distribution 

Population P is the baseline so there is only one condition for it and population Q was varied to 

have more conditions.  

The condition for population P is denoted as N(50%, 15%) where the percentages are relative to 

anchor test length. For example, for an anchor test of 32 items, N(50%, 15%) means N(16, 4.8) 

where 16 is the mean and 4.8 the standard deviation of the normal distribution of true scores for  

anchor test A in population P.  

The same notation is used for population Q for which four conditions were defined: 

N(50%, 15%)    (no difference) 

N(55%, 15%)    (difference only in mean ability) 
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N(50%, 18%)    (difference only in variability) 

N(55%, 18%)    (difference in mean ability and variability) 

 

For example, for an anchor test of 32 items, N(55%, 18%) means N(17.6, 5.76) for the true 

scores of anchor A in Q.  

 Population P and the four populations Q were generated to have 100,000 subjects each. 

The data were originally generated for the conditions N(50%, 10%) for P and N(50%, 

10%), N(55%, 10%), N(50%, 15%) and N(55, 15%) for Q but this produced such low 

reliabilities that the results would not be applicable to real data situations. Therefore a decision 

was made to increase the percentage corresponding to the standard deviations to 15% and 18%. 

This is reported in more detail in Chapter Four.         

Anchor Length 

The second factor manipulated in this dissertation study was anchor length. With a fixed 

80 item test length for X and Y, two anchor length conditions were defined: 40% and 20% of test 

length. This resulted in two anchor lengths of 32 and 16.   

The corresponding distributions for P and Q under the conditions of ability distribution 

and anchor length are presented in detail in Chapter Four.  

Test Difficulty 

The third factor manipulated in this study was the difference in difficulty between tests X 

and Y. This was achieved by controlling the coefficients a, b, c, d in the equations X = a + bA, 

and Y = c + dA of assumption L2 in the following manner: 

 For test X the coefficient a equals 0. 

 For test Y the coefficient d equals the ratio number of test items to the number of 

anchor items whereas the coefficient c equals either +4% n or -4% n, where n 

corresponds to number of items of test X and Y.  Adding 4% n makes test Y 
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easier, subtracting 4% n makes test Y more difficult. Given that n is 80 across this 

study, c is either 3.2 or -3.2. 

  Coefficient b for test X was set to be equal to coefficient d for test Y.  

The corresponding distributions for P and Q under the conditions of ability distribution 

and anchor length are presented in detail in Chapter Four. 

Mixture of populations 

P and Q were combined to produce the synthetic form S = wP + (1 – w)Q (Braun & 

Holland, 1982) where w varies from 0 to 1. According to Kolen and Brennan (2004), although 

the NEAT design involves two populations, an equating function is typically viewed as being 

defined for a single population; therefore populations P and Q must be combined to obtain an 

equating relationship. According to these authors in the vast majority of real equating contexts 

the choice of w makes little practical difference; however, they indicate that many equations are 

simplified considerably by choosing w = 1 and that furthermore, setting w= 1 means that the 

synthetic group is the new population, which is often the only population that will take the new 

form X. They indicate that w= N1/(N1+N2), where N1 and N2 are the sizes of groups P and Q, is 

a common choice but that, ultimately, the choice of w is a judgment that should be based on an 

investigator’s conceptualization of the synthetic population.  

Therefore the values w = 0.25, w = 0.50, w = 0.75 and w = 1 were selected to cover the 

possible choices described by Kolen and Brennan (2004) and w = 0 was added to complete the 

range of possible values for w.  
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Sample Size 

The combination of the factors ability distribution (four conditions), anchor length (2 

conditions) and test difficulty (2 conditions) produced 16 conditions. For each of the 16 

conditions 100 samples of size 500, 1000 and 2000 from population P and 100 samples of size 

500, 1000 and 2000 from population Q were randomly extracted in a bootstrap with replacement 

fashion whereby after a subject that is selected for the sample is returned to the population so 

that he could be selected again.  This produced 300 pairs of samples P and Q for each of 16 

conditions, i.e. in total 4800 pairs of samples were generated.  

For each of these pairs of samples five equating functions were computed under the L3 

assumption and five equating functions were computed under the L3* assumption. Each of these 

five equating functions in each case was produced using a different w weight, where w: 0, 0.25, 

0.50, 0.75, and 1. The steps for the equating at sample level are described in a later section.  

Summary of Conditions 

The settings for the five factors (ability distribution, anchor length, test difficulty, mixture 

of populations, and sample size) manipulated in this study produced 4x2x2x5x3 = 240 

conditions. Table 3 summarizes the conditions for the study.  

Table 3 

Summary of Completely Crossed Conditions for the Study 

Ability 

Distribution 

(4) 

Anchor 

Length 

(2) 

Test 

Difficulty 

(2) 

Mixture of 

Populations 

(5) 

Sample Size 

(3) 

1.  P N(50%, 15%) 1. 40% 1.  + 4% 1.   0 1. 500 

 2. 20% 2.   - 4% 2.    0.25 2. 1000 

1.  Q N(50%, 15%)       3.    0.5 3. 2000 

2.  Q N(55%, 15%)       4.    0.75  

3.  Q N(50%, 18%)     5.    1  

4.  Q N(55%, 18%)         
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Data Generation and Equating at Synthetic Population Level 

The following steps describe in detail how the data were generated for each condition in the 

study and how the means, variances and equating functions were computed at synthetic 

population level. The equating at sample level will be explained later in this chapter.  

1) For population P, generate true score for A according to the corresponding distribution. 

2) By using the corresponding a and b parameters and L2 assumption determine the true 

score for X. Do the same for the true score for Y by using c and d parameters and L2.  

3) Use the binomial error model (Lord & Novick, 1968) to determine the error variances at 

each true score level for tests A, X and Y.  Generate random errors for each score in the 

population for tests A, X and Y. 

4) Compute the observed A, X, and Y scores as true score plus error (using L1). 

5) Compute observed score mean and variance, true score mean and variance, and error 

mean and variance, for X, Y and A in P. Since all the data are known such means and 

variances can be computed directly by using the mean and variance formulas.  

6) Repeat steps 1-5 for population Q. 

7) Create synthetic populations S = wP + (1 – w)Q, for chosen w weights ranging from 0 to 

1. 

8) Compute analogous means and variances to those indicated in point 5 for X, Y and A in S 

using full information. This is accomplished in similar way as indicated in point 5.  

9) Now, discard information on X from Q and information on Y from P.  Estimate the 

observed score mean and variance of X and Y in S using assumptions L3 and L3*.  Note 

that information on A does not need to be estimated, because information on A is 

available in both P and Q. 
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To accomplish point 9 is necessary to note that, according to the development of 

formulas presented in Chapter Two, the formulas for the means are common for L3 and 

L3* whereas the formulas for variances are different under L3 than under L3*.  

For the means the formulas presented in Chapter Two are 

X/S = XP + b(A/S – A/P) and           (10) 

 

 Y/S = Y/Q + d(A/S – A/Q),                      (11) 

 

            where b and d can be estimated by  

 

 b =
PAPA

PXPX

//

//




                         (25) 

 

            and  

 d = .
//

//

QAQA

QYQY




                       (26) 

 

The four reliabilities in formulas (25) and (26) for b and d can be computed using the 

ratio of true score variance to observed score variance.  

For the variance under L3 the formulas are 

           
2

/ SX  =  
2

/ PX  + b
2
 (

2

/ SA  - 
2

/ PA )  and         (23) 

  

 
2

/ SY  =  
2

/ QY  + d
2
 (

2

/ SA  - 
2

/ QA ) ,          (24) 

 

            where b and d can be estimated in the same way as indicated for the means.  

   

The variances under L3* can be computed by squaring the standard deviations, which 

formulas are 

 X/S= X/P 
PA

SA

/

/




 and Y/S = Y/Q .

/

/

QA

SA




           (19) 
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10) All the previous steps make information available in order to compute three different 

equating functions: the criterion equating function or true equating function, and the two 

equating functions corresponding to L3 and L3*.  

Specifically if   XY  denotes the equating function, α and β are computed each in 

three different ways: one for the criterion, one for L3 and one for L3* as follows.  

α is computed by the formula 
SX

SY

/

/




   .                                                        (28) 

For the criterion the standard deviations are computed from the full information in the 

synthetic population. For L3 and L3* the standard deviations are estimated using the 

corresponding formulas indicated in point 9. 

The β coefficient is computed with the formula SXSY //   .                  (29) 

For the criterion these means are computed using the full information while for L3 and 

L3* these means are estimated using the formulas indicated in point 9.   

Equating at Sample Level 

The following steps describe in detail how the equating at sample level was conducted.  

1) Each of the 4800 pairs of samples is constituted by a sample P taking X and a sample Q 

taking Y.   

2) Specify a w weight, namely 0, 0.25, 0.50, 0.75, or 1. 

3) Once the w weight is specified, the mean and variance of the anchor in the 

corresponding hypothetical synthetic population can be estimated using the following 

two properties of  a mixture distribution (Kolen and Brennan, 2004) 

SAPASA ww /// )1(      and                                                                     (30) 

 2
//

2

/

2

/

2

/ )1()1( QAPAQAPASA wwww   ,                                   (31) 
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where S = wP + (1 – w)Q and w varies from 0 to 1.  

Note that although these equations are formulated in terms of parameters, in practice 

these parameters are substituted by the sample estimates.  

4) Once the mean and variance of the anchor in S are estimated it is possible to apply the 

formulas for L3 and L3* (formulas (10), (11), (25), (26), (23), (24), (19), (28), and (29) 

presented in that order in the previous section) and the equating procedure described for 

the population level.  Note that those formulas are written with population parameters 

but they are substituted from estimates from the samples.  

5) For the samples in this study the four reliabilities in formulas (25) and (26) were 

computed using the ratio of true score variance to observed variance, which reflects 

sampling variability.   

6) Each one of the 300 pairs of samples for each of the 16 described conditions at 

population level can be associated with a synthetic population corresponding condition. 

For each pair of samples the two equating functions under L3 and L3* can be computed 

and then compared to the true equating function in the mixture of synthetic population 

corresponding to that w weight. In this manner bias and RMSE across the 100 samples 

can be computed.  

7) This produced 300 pairs of samples P and Q for each of 16 conditions i.e. in total 4800 

pairs of samples were generated.  

8) For each of these pairs of samples five equating functions were computed under the L3 

assumption and five equating functions were computed under the L3* assumption. Each 

of these five equating functions in each case was produced using a different w weight, 

where w: 0, 0.25, 0.50, 0.75, and 1.  
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9) As can be noted 4800 x 5= 24,000 equating functions were computed for L3 and 24,000 

for L3*.   Each of these 24,000 cases can be related to a true equating function in the 

corresponding synthetic population. 

10) Therefore for each of 24,000 cases it is possible to compute the bias for each of the X 

observed scores included in the sample P of the pair and then obtain a bias average over 

the sample size of that particular sample. Similarly, for each X score in P, a squared bias 

can be computed and then used to compute an RMSE for that sample over its sample 

size. These 24000 average biases and 24,000 RMSE for L3 and L3* were used to 

perform two repeated measures ANOVA whereby the within subjects factor is the type 

of assumption (this has two levels, the bias under L3 and L3* in one case, and the 

RMSE under L3 and L3* in the other case). In each case the between subjects factors are 

sample size (SS), weight (WGT), length of anchor (ANC), whether test Y is easier or 

more difficult than X (DIF), and ability distribution of the population from where the 

sample comes from (ABIL). SS has three levels: 500, 1000 and 2000, WGT has five 

levels: 0, 0.25, 0.50, 0.75, and 1. ANC has two levels: e (easier) and d (more difficult).  

ABIL has four levels: 05, 08, 55, and 58 which indicate respectively N(50%, 15%), 

N(55%, 15%), N(50%, 18%), and N(55%, 18%). 

An Illustrative Example with Real Data 

To illustrate the use of L3 and L3* equating with a real data example these methods were 

applied to two 36-item forms X and Y. The data sets were obtained from the software CIPE 

referred by Kolen and Brennan (2004). For these forms the anchor A is formed by every third 

item (items 3, 6, 9, …, 36). Since scores on A are contained in X and Y, A is an internal anchor. 
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However, according to what was indicated in Chapter Two, the formulas provided by L3 and 

L3* can be applied to either external or internal anchors.  

The application of such formulas is the same as explained for the equating at sample 

level. On the other hand, for this example there is not a true equating function available, as it is 

the case with any real data application. Therefore instead of bias and RMSE, the difference 

between the equating function produced by L3 and L3* was computed and as well as the RMSD. 

Software 

SPSS 17.0 was used to compute skewness in populations P and Q and to conduct the 

ANOVA analysis at sample size level. FORTRAN 95 was used for the data generation, data 

management, sampling, conducting the equating and computing bias and RMSE. For this 

purpose 10 FORTRAN 95 programs were written by the author of this study. Figures were built 

in Excel.  
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Chapter Four – Results  
 

The purpose of this study was to compare the equating functions resulting from the 

assumption of the constant squared root of reliability ratio (L3*) to that of the traditional 

assumption of constant error variance (L3) in the Levine Observed Score method of linear 

equating. Because this is a simulation study, it was possible to compute the true equating 

function and to compare this function to the one obtained under L3 and the one obtained under 

L3*. 

This study was conducted in the context of the NEAT design whereby population P takes 

test X and population Q takes test Y. However for the sake of computing the true equating 

function in this simulation study both X and Y were administered to both P and Q.  Then 

different assumptions were used to estimate the equating function using only information from X 

in P, Y in Q and from the anchor A in both P and Q. 

To accomplish this purpose, data for one population P and four populations Q were 

generated. Anchor test true scores were generated under different conditions as explained in 

Chapter Three.  

Descriptive Statistics of the Generated Data 

Table 4 shows the designed mean and standard deviation for the anchor test true score 

based on anchor length, test difficulty and ability distribution. The first four data rows of the 

table refer to population P. Note that there is only one condition for the ability distribution for 

population P, which is N(50%, 15%). Two anchor lengths and two conditions for test difficulty 

make up the four conditions shown for P in this table. For example, the second data row of the 

table shows that for an anchor length of 40% of test length, a more difficult test Y, and an ability 

distribution of N(50%, 15%), the anchor length is 32, the ratio test length to anchor length 
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(coefficient b) is 2.5, the difference in difficulty is -3.2 (coefficient c), and the designed mean 

and standard deviation for the anchor true score are 16 and 4.8 respectively.  

The remaining 16 rows of Table 4 show the conditions for the four populations Q. For 

example the second to last row of the table shows that for an anchor length of 20% of test length, 

an easier test Y, and an ability distribution of N(55%, 18%), the anchor length is 16, the ratio test 

length to anchor length (coefficient b) is 5, the difference in difficulty is 3.2 (coefficient c), and 

the designed mean and standard deviation for the anchor true score are 8.8 and 2.88 respectively.  

Table 4 

Designed Mean and Standard Deviation of Anchor Test True Scores 

Population 

Anchor 

Length 

% 
Test 

Difficulty 
Ability 

Distribution 

 

Anchor 

Length  

Ratio 

Test/Anchor 

Length 

(b) 

±4% 

Test 

Length 

(c) 

True 

A 

Mean 

True 

A 

SD 
 40 e 05 32 2.5 3.2 16 4.8 

P 40 d 05 32 2.5 -3.2 16 4.8 

 20 e 05 16 5 3.2 8 2.4 

 20 d 05 16 5 -3.2 8 2.4 

 40 e 05 32 2.5 3.2 16 4.8 

 40 d 05 32 2.5 -3.2 16 4.8 

 20 e 05 16 5 3.2 8 2.4 

 20 d 05 16 5 -3.2 8 2.4 

 40 e 55 32 2.5 3.2 17.6 4.8 

 40 d 55 32 2.5 -3.2 17.6 4.8 

 20 e 55 16 5 3.2 8.8 2.4 

Q 20 d 55 16 5 -3.2 8.8 2.4 

 40 e 08 32 2.5 3.2 16 5.76 

 40 d 08 32 2.5 -3.2 16 5.76 

 20 e 08 16 5 3.2 8 2.88 

 20 d 08 16 5 -3.2 8 2.88 

 40 e 58 32 2.5 3.2 17.6 5.76 

 40 d 58 32 2.5 -3.2 17.6 5.76 

 20 e 58 16 5 3.2 8.8 2.88 

 20 d 58 16 5 -3.2 8.8 2.88 
a
Ability Distribution 05: N(50%, 15%)  55: N(55%, 15%) 08: N(50%, 18%) 58:N(55%, 18%) 

b
Test Y Difficulty e: Test Y is easier d: Test Y is more difficult 

 

To give an idea of the correspondence between the designed mean and standard 

deviations for anchor test true scores and the obtained mean and standard deviations for the 
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anchor test true scores, Table 5 shows the obtained mean and standard deviation for the anchor 

test true scores based on anchor length, test difficulty and ability distribution. For the first of the 

two examples just provided for Table 4 the designed mean and variances were 16 and 4.8 and 

Table 5 shows that the corresponding obtained mean and standard deviation were 15.995 and 

4.802. For the second example the designed mean and standard deviation were 8.8 and 2.88 and 

Table 5 shows that the corresponding obtained mean and standard deviation were 8.798 and 

2.853. 

Table 5 

Actual Mean and Standard Deviation of Anchor Test True Scores 
Population Anchor Length 

% 

Test 

Difficulty 

Ability 

Distribution 

Actual A True 

Mean 

Actual A True 

SD 

 40 e 05 16.003 4.797 

P 40 d 05 15.995 4.802 

 20 e 05 7.989 2.397 

  20 d 05 8.010 2.402 

 40 e 05 16.031 4.808 

 40 d 05 16.029 4.803 

 20 e 05 8.004 2.398 

 20 d 05 8.000 2.397 

 40 e 55 17.587 4.788 

 40 d 55 17.583 4.795 

 20 e 55 8.798 2.389 

Q 20 d 55 8.802 2.395 

 40 e 08 16.008 5.739 

 40 d 08 15.996 5.732 

 20 e 08 8.005 2.870 

 20 d 08 7.997 2.861 

 40 e 58 17.578 5.740 

 40 d 58 17.586 5.734 

 20 e 58 8.798 2.853 

  20 d 58 8.793 2.868 
a
Ability Distribution 05: N(50%, 15%)  55: N(55%, 15%) 08: N(50%, 18%) 58:N(55%, 18%) 

b
Test Y Difficulty e: Test Y is easier d: Test Y is more difficult 

 

Observed scores for A, X and Y were obtained as described in Chapter Three. Table 6 

shows the mean and SD for these scores.  

 



38 

 

 

Table 6  

Actual Mean and Standard Deviation of Observed Scores of Anchor A and Test X and Y  
Population Anchor 

Length 

% 

Test 

Difficulty 

Ability 

Distribution 

A  

Obs. 

Mean 

A  

Obs. 

SD 

X  

Obs. 

Mean 

X  

Obs. 

SD 

Y  

Obs. 

Mean 

Y 

Obs. 

 SD 

 40 e 05 16.01 5.52 40.02 12.73 43.20 12.72 

P 40 d 05 16.00 5.54 39.99 12.74 36.81 12.74 

 20 e 05 7.98 3.12 39.95 12.73 43.15 12.73 

 20 d 05 8.01 3.11 40.05 12.76 36.83 12.75 

 40 e 05 16.02 5.54 40.10 12.74 43.28 12.74 

 40 d 05 16.03 5.55 40.09 12.73 36.88 12.76 

 20 e 05 8.01 3.12 40.03 12.73 43.20 12.71 

 20 d 05 8.00 3.11 40.00 12.71 36.80 12.73 

 40 e 55 17.59 5.51 43.98 12.69 47.17 12.67 

 40 d 55 17.59 5.52 43.96 12.73 40.76 12.72 

 20 e 55 8.79 3.09 43.97 12.69 47.19 12.65 

Q 20 d 55 8.80 3.10 44.00 12.71 40.81 12.72 

 40 e 08 16.01 6.34 40.04 14.95 43.22 14.92 

 40 d 08 16.00 6.32 40.01 14.94 36.78 14.90 

 20 e 08 8.00 3.47 40.03 14.95 43.21 14.92 

 20 d 08 7.99 3.45 39.98 14.91 36.78 14.89 

 40 e 58 17.56 6.32 43.96 14.93 47.12 14.87 

 40 d 58 17.59 6.31 43.96 14.93 40.79 14.95 

 20 e 58 8.79 3.42 44.00 14.87 47.17 14.78 

 20 d 58 8.79 3.45 43.96 14.93 40.78 14.95 
a
Ability Distribution 05: N(50%, 15%)  55: N(55%, 15%) 08: N(50%, 18%) 58:N(55%, 18%) 

b
Test Y Difficulty e: Test Y is easier d: Test Y is more difficult 

 

 As a check for accuracy it can be noted that the means of anchor A observed scores in 

Table 6 are very similar to the means of anchor A true scores in Table 5. For example, for the 

second data row for population P in Table 6, the mean A observed score is 16.00 and the 

corresponding mean for A true score in Table 5 is 15.995. This is due to the fact that error scores 

should have a mean of 0 and observed scores equal true scores plus error scores.  

 Another check for accuracy can be done in Table 6 by noting that when test Y is more 

difficult than test X, the mean of Y observed score should be about 3.2 lower than the mean of X 

observed score. For example, for the second data row in Table 6, the mean X observed is 39.99 

and the mean Y observed is 36.81 which is 3.18 lower than 39.99.  When test Y is easier than 
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test X, this situation should be reversed. For example, for the second to last row in Table 6, the 

mean X observed is 44.00 and the mean Y observed is 47.17 which is 3.17 higher than 44.00. 

 It is important to indicate that to make the data as close to reality as possible, A, X and Y 

scores were rounded to the closest integer and that observed scores that were out of range were 

set equal to the maximum or minimum possible score. For example a score of 81.6 in X or Y was 

rounded to 80.  

 As was noted in Chapter Three the data were originally generated for the conditions 

N (50%, 10%) for P and N (50%, 10%), N (55%, 10%), N (50%, 15%) and N (55, 15%) for Q, 

but this resulted in such low reliabilities that the results would not be applicable to real data 

situations. Therefore a decision was made to increase the standard deviations to 15% and 18% 

instead of 10% and 15%.  On the other hand, these new conditions with 15% and 18% SD tended 

to produce a larger amount of out range scores for certain conditions. This situation as well as the 

normality of the data and the approximate 3.20 unit shifting between X and Y is illustrated in 

figures 1 to 10 which contain a frequency graph for the four P conditions and the 16 Q 

conditions.  
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Figure 1. Frequency for X and Y observed scores for population P, anchor 40%, easier 

test Y and ability N(50%, 15%) (top) and population P, anchor length 40%, more difficult 

test Y and ability N(50%, 15%) (bottom).  
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Figure 2. Frequency for X and Y observed scores for population P, anchor 20%, easier 

test Y and ability N(50%, 15%) (top) and population P, anchor length 20%, more difficult 

test Y and ability N(50%, 15%) (bottom).  
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Figure 3. Frequency for X and Y observed scores for population Q, anchor 40%, easier 

test Y and ability N(50%, 15%) (top) and population Q, anchor length 40%, more 

difficult test Y and ability N(50%, 15%) (bottom).  
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Figure 4. Frequency for X and Y observed scores for population Q, anchor 20%, easier 

test Y and ability N(50%, 15%) (top) and population Q, anchor length 20%, more 

difficult test Y and ability N(50%, 15%) (bottom).  
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Figure 5. Frequency for X and Y observed scores for population Q, anchor 40%, easier 

test Y and ability N(55%, 15%) (top) and population Q, anchor length 40%, more 

difficult test Y and ability N(55%, 15%) (bottom).  
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Figure 6. Frequency for X and Y observed scores for population Q, anchor 20%, easier 

test Y and ability N(55%, 15%) (top) and population Q, anchor length 20%, more 

difficult test Y and ability N(55%, 15%) (bottom).  
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Figure 7. Frequency for X and Y observed scores for population Q, anchor 40%, easier 

test Y and ability N(50%, 18%) (top) and population Q, anchor length 40%, more 

difficult test Y and ability N(50%, 18%) (bottom).  
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Figure 8. Frequency for X and Y observed scores for population Q, anchor 20%, easier 

test Y and ability N(50%, 18%) (top) and population Q, anchor length 20%, more 

difficult test Y and ability N(50%, 18%) (bottom).  
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Figure 9. Frequency for X and Y observed scores for population Q, anchor 40%, easier 

test Y and ability N(55%, 18%) (top) and population Q, anchor length 40%, more 

difficult test Y and ability N(55%, 18%) (bottom).  
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Figure 10. Frequency for X and Y observed scores for population Q, anchor 20%, easier 

test Y and ability N(55%, 18%) (top) and population Q, anchor length 20%, more 

difficult test Y and ability N(55%, 18%) (bottom).  
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which the test Y is easier. On the other hand, the accumulation of out of range scores on the right 

side of the distribution at some extent models a ceiling effect in which very able subjects are not 

allowed to score higher than the maximum score in the test.  

To further explore the impact of this out of range scores in the shape of the distribution of 

scores, the skewness was computed for X and Y observed scores across the 20 conditions and are 

presented in Table  7. 

Table 7 

Skewness for Tests X and Y Observed Scores in Populations P and Q  
Population Anchor Length 

% 

Test 

Difficulty 

Ability 

Distribution 

Skewness 

Test X 

Skewness 

Test Y 

 40 e 05 0.0005 -0.0190 

P 40 d 05 -0.0009 0.0218 

 20 e 05 -0.0075 -0.0331 

 20 d 05 -0.0041 0.0225 

 40 e 05 -0.0046 -0.0271 

 40 d 05 -0.0048 0.0140 

 20 e 05 -0.0104 -0.0242 

 20 d 05 0.0003 0.0172 

 40 e 55 -0.0331 -0.0569 

 40 d 55 -0.0242 0.0025 

 20 e 55 -0.0270 -0.0550 

Q 20 d 55 -0.0332 -0.0103 

 40 e 08 0.0077 -0.0323 

 40 d 08 0.0025 0.0346 

 20 e 08 0.0055 -0.0286 

 20 d 08 -0.0034 0.0329 

 40 e 58 -0.0501 -0.0899 

 40 d 58 -0.0458 -0.0078 

 20 e 58 -0.0543 -0.0930 

 20 d 58 -0.0516 -0.0188 
a
Ability Distribution 05: N(50%, 15%)  55: N(55%, 15%) 08: N(50%, 18%) 58:N(55%, 18%) 

b
Test Y Difficulty e: Test Y is easier d: Test Y is more difficult 

 

The data in Table 7 confirms that the largest skewness occur within the conditions that 

include N(55%, 18%), however, the magnitude of the skewness is small. Given that the data 

generation with SD 15% and 18% produced much higher reliabilities than the data generation 

with SD 10% and 15%, that the former models to some extent the ceiling effect whereby very 
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able students are not allowed to score higher than the maximum score in the test and that the 

skewness produced by the former can be considered minor, the SD 15% and 18% were kept for 

this study.  

Table 8 

Reliability for Generated Data for Anchor A, and Tests X and Y in Populations P and Q  
Population Anchor 

Length 

% 

Test 

Difficulty 

Ability 

Distribution 

Reliability 

A 

Reliability 

X 

Reliability 

Y 

 

 40 e 05 0.76 0.89 0.89 

P 40 d 05 0.75 0.89 0.89 

 20 e 05 0.59 0.89 0.89 

 20 d 05 0.60 0.89 0.89 

 40 e 05 0.75 0.89 0.89 

 40 d 05 0.75 0.89 0.89 

 20 e 05 0.59 0.89 0.89 

 20 d 05 0.59 0.89 0.89 

 40 e 55 0.76 0.89 0.89 

 40 d 55 0.75 0.89 0.89 

 20 e 55 0.60 0.89 0.89 

Q 20 d 55 0.60 0.89 0.89 

 40 e 08 0.82 0.92 0.92 

 40 d 08 0.82 0.92 0.92 

 20 e 08 0.69 0.92 0.92 

 20 d 08 0.69 0.92 0.92 

 40 e 58 0.82 0.92 0.92 

 40 d 58 0.82 0.92 0.92 

 20 e 58 0.69 0.92 0.92 

 20 d 58 0.69 0.92 0.92 
a
Ability Distribution 05: N(50%, 15%)  55: N(55%, 15%) 08: N(50%, 18%) 58:N(55%, 18%) 

b
Test Y Difficulty e: Test Y is easier d: Test Y is more difficult 

 

As can be noted in Table 8, the highest reliabilities occur within populations with greater 

SD as is the case with conditions with 18% SD. This makes sense, as the data generated more 

variable true scores within these conditions and greater true score variance means higher 

reliability. On the other hand, the original data generation whereby the ability distributions for 

anchor true scores were N(50%, 10%) for P and N(50%, 10%), N(55%, 10%), N(50%, 15%) and 

N(55, 15%) for Q, produced reliabilities as low as 0.35 for the anchor A and therefore that 

original data generation was discarded.  
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Equating in the Synthetic Populations 

Each one of the 16 conditions for Q was matched with the corresponding condition for P. 

For example, the last condition in Table 7, which is anchor length 20%, test Y more difficult than 

test X and ability distribution N(55%, 18%) was matched with the last condition for P which is  

anchor length 20%, test Y more difficult than test X and ability distribution N(50%, 15%). Since 

for population P the ability distribution is always N(50%, 15%), each condition for P got 

matched with four conditions for Q. This matching gave origin to 16 cases for each of which five 

different mixtures of synthetic populations were created by mixing P and Q into populations S of 

the synthetic form S = wP + (1 – w)Q, where 0 ≤ w ≤ 1 (Braun & Holland, 1982).  This was 

accomplished by using 5 values for w: 0, 0.25, 0.50, 0.75, and 1. For example, when w=0.25, a 

random 25% of P and a random 75% of Q were combined to create a population S for that 

condition.   

This produced 80 different synthetic populations. For each of these 80 synthetic 

populations, a true equating function was computed as described in Chapter Three. In addition, 

for each synthetic population an equating function using the L3 assumption and another equating 

function using L3* were computed as also described in Chapter Three.  

 These triplets of equating functions were compared by using the following procedure: 

a) Recall that each Population P and Q had 100,000 subjects. Therefore each synthetic 

population S has 100,000 subjects as well. For each of the 100,000 subjects in S the 

corresponding X score were plugged into each of the equating functions (true, L3 and 

L3*). 

b) The amount of bias for each subject was computed for both L3 and L3* equating 

functions using the true Y equated score as the criterion. 
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c) An average of the amount of bias was computed across the 100,000 subjects in S.  

d) For each subject the bias was squared and then an average across the synthetic population 

was computed and the square root obtained to get the RMSE (root mean squared error).  

The resulting bias and RMSE are shown in Tables 9 and 10.   

Table 9 

Bias for the 80 Synthetic Populations for L3 and L3* 
Anchor Test       w      

length Y    L3      L3*   

% Diff  0.00 0.25 0.50 0.75 1.00  0.00 0.25 0.50 0.75 1.00 

40 e 05 0.04 0.06 0.04 0.05 0.05  0.04 0.06 0.04 0.05 0.05 

40 d 05 0.03 0.01 0.00 0.01 0.01  0.03 0.01 0.00 0.01 0.01 

20 e 05 -0.07 -0.07 -0.06 -0.08 -0.09  -0.07 -0.07 -0.06 -0.08 -0.09 

20 d 05 0.00 -0.01 -0.01 0.00 0.01  0.00 -0.01 -0.01 0.00 0.01 

40 e 55 -0.01 0.00 -0.01 0.00 0.01  -0.01 0.00 -0.01 0.00 0.01 

40 d 55 0.00 -0.02 -0.04 -0.03 -0.01  0.00 -0.02 -0.04 -0.03 -0.01 

20 e 55 0.00 0.02 0.03 0.02 0.03  0.00 0.02 0.03 0.02 0.03 

20 d 55 -0.03 -0.03 -0.02 0.00 -0.01  -0.03 -0.03 -0.02 0.00 -0.01 

40 e 08 0.00 0.00 -0.01 -0.01 0.01  0.00 0.00 -0.01 -0.01 0.01 

40 d 08 0.03 0.01 0.00 -0.01 -0.02  0.03 0.01 0.00 -0.01 -0.02 

20 e 08 -0.03 -0.02 -0.04 -0.05 -0.05  -0.03 -0.02 -0.04 -0.05 -0.05 

20 d 08 0.03 0.04 0.05 0.04 0.05  0.03 0.04 0.05 0.04 0.05 

40 e 58 0.05 0.06 0.05 0.06 0.05  0.05 0.06 0.05 0.06 0.05 

40 d 58 0.00 0.01 -0.01 0.00 0.01  0.00 0.01 -0.01 0.00 0.01 

20 e 58 -0.01 0.00 0.01 -0.01 -0.02  -0.01 0.00 0.01 -0.01 -0.02 

20 d 58 -0.03 -0.02 -0.01 -0.01 0.00  -0.03 -0.02 -0.01 -0.01 0.00 
a
Ability Distribution 05: N(50%, 15%) 55: N(55%, 15%) 08: N(50%, 18%) 58:N(55%, 18%) 

b
Test Y Diff.  e: Test Y is easier d: Test Y is more difficult. 
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Table 10 

RMSE for the 80 Synthetic Populations for L3 and L3* 
Anchor Test       w      

Length Y    L3      L3*   

% Diff  0.00 0.25 0.50 0.75 1.00  0.00 0.25 0.50 0.75 1.00 

40 e 05 0.06 0.08 0.07 0.08 0.07  0.05 0.07 0.06 0.07 0.06 

40 d 05 0.04 0.01 0.00 0.01 0.01  0.04 0.01 0.00 0.01 0.01 

20 e 05 0.07 0.07 0.06 0.08 0.09  0.07 0.07 0.06 0.08 0.09 

20 d 05 0.05 0.04 0.03 0.02 0.02  0.05 0.04 0.03 0.02 0.02 

40 e 55 0.02 0.01 0.03 0.04 0.04  0.02 0.02 0.04 0.04 0.04 

40 d 55 0.04 0.04 0.05 0.04 0.03  0.03 0.03 0.05 0.04 0.02 

20 e 55 0.16 0.15 0.14 0.12 0.11  0.10 0.09 0.08 0.06 0.06 

20 d 55 0.03 0.03 0.02 0.03 0.02  0.03 0.03 0.02 0.01 0.01 

40 e 08 0.02 0.02 0.02 0.01 0.01  0.33 0.32 0.30 0.28 0.27 

40 d 08 0.10 0.11 0.10 0.09 0.08  0.41 0.41 0.37 0.35 0.32 

20 e 08 0.17 0.16 0.15 0.16 0.17  0.87 0.82 0.77 0.75 0.72 

20 d 08 0.10 0.11 0.10 0.09 0.10  0.77 0.75 0.70 0.67 0.64 

40 e 58 0.07 0.07 0.06 0.06 0.05  0.36 0.34 0.32 0.28 0.26 

40 d 58 0.11 0.12 0.13 0.12 0.14  0.42 0.42 0.41 0.38 0.38 

20 e 58 0.34 0.32 0.32 0.31 0.29  0.97 0.92 0.88 0.82 0.75 

20 d 58 0.16 0.17 0.19 0.20 0.20  0.82 0.81 0.80 0.77 0.73 
a
Ability Distribution 05: N(50%, 15%) 55: N(55%, 15%) 08: N(50%, 18%) 58:N(55%, 18%) 

b
Test Y Diff.  e: Test Y is easier d: Test Y is more difficult 

 

Figures 11 to 26 illustrate the values of bias and RMSE for the 80 synthetic populations. 
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Figure 11. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 40%, 

easier test Y and ability N(50%, 15%). 
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Figure 12. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 40%, 

more difficult test Y and ability N(50%, 15%). 
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Figure 13. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 20%, 

easier test Y and ability N(50%, 15%). 
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Figure 14. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 20%,     

more difficult test Y and ability N(50%, 15%).  
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Figure 15. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 40%, 

easier test Y and ability N(55%, 15%). 
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Figure 16. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 40%, 

more difficult test Y and ability N(55%, 15%). 
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Figure 17. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 20%, 

easier test Y and ability N(55%, 15%).  
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Figure 18. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 20%, 

more difficult test Y and ability N(55%, 15%).  
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Figure 19. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 40%, 

easier test Y and ability N(50%, 18%). 
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Figure 20. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 40%, 

more difficult test Y and ability N(50%, 18%).  
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Figure 21. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 20%, 

easier test Y and ability N(50%, 18%).  

 

 

 

 

 

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 0.25 0.5 0.75 1

B
ia

s

Weight on P

BIASL3

BIASL3*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1

R
M

SE

Weight on P

RMSEL3

RMSEL3*



66 

 

 

 

 

Figure 22. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 20%, 

more difficult test Y and ability N(50%, 18%). 
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Figure 23. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 40%, 

easier test Y and ability N(55%, 18%).  
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Figure 24. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 40%, 

more difficult test Y and ability N(55%, 18%).  
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Figure 25. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 20%, 

easier test Y and ability N(55%, 18%).  
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Figure 26. Bias (top) and RMSE (bottom) for five synthetic populations, anchor 20%, 

more difficult test Y and ability N(55%, 18%).  
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From Table 10 and figures 15 to 18 it can be observed that RMSE is the same for all the 

synthetic populations associated with N(50%, 15%) for P and N(55%, 15%) for Q except for the 

case in which the anchor is anchor 20% and test Y is easier, in which case L3* shows a lower 

RMSE than L3.  

Figures 19 to 26 illustrate the cases in which the population Q related to the synthetic 

population has ability distribution with a standard deviation of 18%. In all these cases L3* shows 

a much larger RMSE than L3 and the RMSE is even larger for L3* for shorter anchor length 

(20%). The largest RMSE for L3* was observed for the case in which anchor length was 20%, 

the ability distribution for Q was N(55%, 18%), test Y was easier, and w=0. This value was 0.97. 

As w increased in this case, RMSE decreased to 0.75 for w=1. 

Equating in Samples 

As explained in Chapter Three, the combination of the factors ability distribution (four 

conditions), anchor length (2 conditions) and test difficulty (2 conditions) produced 16 

conditions. For each of the 16 conditions 100 samples of size 500, 1000 and 2000 from 

population P and 100 samples of size 500, 1000 and 2000 form population Q were randomly 

extracted in a bootstrap with replacement fashion whereby after a subject is selected for the 

sample, he is returned to the population so that he could be selected again.  This produced 300 

pairs of samples P and Q for each of 16 conditions i.e. in total 4800 pairs of samples were 

generated.  

For each of these pairs of samples five equating functions were computed under the L3 

assumption and five equating functions were computed under the L3* assumption. Each of these 

five equating functions in each case was produced using a different w weight, where w: 0, 0.25, 

0.50, 0.75, and 1.  
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For each of these pairs of samples five equating functions were computed under the L3 

assumption and five equating functions were computed under the L3* assumption. Each of these 

five equating functions in each case was produced using a different w weight, where w: 0, 0.25, 

0.50, 0.75, and 1.  

As can be noted 4800 x 5= 24000 equating functions were computed for L3 and 24,000 

for L3*.   Each of these 24,000 cases can be related to a true equating function in the 

corresponding synthetic population.  

 Therefore for each of 24,000 cases it is possible to compute the bias for each of the X 

observed scores included in the sample P of the pair and then obtain a bias average over the 

sample size of that particular sample. Similarly, for each X score in P, a squared bias can be 

computed and then used to compute an RMSE for that sample over its sample size. These 24,000 

average biases and 24,000 RMSE for L3 and L3* were used to perform two repeated measures 

ANOVA whereby the within subjects factor is the type of assumption (this has two levels, the 

bias under L3 and L3* in one case, and the RMSE under L3 and L3* in the other case). In each 

case the between subjects factors are sample size (SS), weight (WGT), length of anchor (ANC), 

whether test Y is easier or more difficult than X (DIF), and ability distribution of the population 

from where the sample comes (ABIL). SS has three levels: 500, 1000 and 2000, W has five 

levels: 0, 0.25, 0.50, 0.75, and 1. ANC has two levels: e (easier test Y) and d (more difficult test 

Y).  ABIL has four levels: 05, 08, 55, and 58 which indicate respectively N(50%, 15%), N(55%, 

15%), N(50%, 18%), and N(55%, 18%). 

In combination with a statistical significance at α = 0.05, Partial Eta Squared (PES) was 

used as a measure of effect size. A cut-off of PES = 0.1 was set for considering a result of 
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practical significance. It is important to use a practical significance criterion because due to large 

sample size, it is expected that most interactions and main effects are significant.  

With these criteria, it was found that sample size did not have any practical significance. 

None of the interactions in which sample size was present had practical significance.  Therefore 

sample size was dropped as a factor and two new ANOVAs were run, this time with four 

between subjects factors (ABIL, DIF, WGT, and ANC) and with only the 8000 cases for sample 

size 2000.  

Table 11 and 12 present the results for these two new ANOVAs. Table 11 presents the 

results for bias and Table 12 presents the results of the ANOVA for RMSE. Both tables are 

organized with the significant (statistically and practically) main effects or interactions first and 

then the non-significant are presented.  

Table 11 

Significance and Partial Eta Square of the Repeated Measures ANOVA for Bias for Samples 

Factor F df Sig. 
Partial Eta 

Squared 

Assumption 7953.471 (1,7920) .000 .501 

Assumption*ABIL 9446.569 (3, 7920) .000 .782 

Assumption*WGT 1012.303 (4, 7920) .000 .338 

Assumption*ANC 961.022 (1, 7920) .000 .108 

Assumption*WGT*ABIL 1231.819 (12, 7920) .000 .651 

Assumption*ANC*ABIL 1187.581 (3, 7920) .000 .310 

Assumption*WGT*ANC*ABIL 155.130 (12,7920) .000 .190 

Assumption *DIF 1.698 (1, 7920) .193 .000 

Assumption*WGT*ANC 122.021 (4, 7920) .000 .058 

Assumption *DIF*ABIL 15.606 (3, 7920) .000 .006 

Assumption*ANC*DIF 2.224 (1, 7920) .136 .000 

Assumption*WGT*DIF 0.221 (4, 7920) .927 .000 

Assumption * ANC *DIF*ABIL 14.835 (3, 7920) .000 .006 

Assumption * WGT *DIF*ABIL 2.214 (12, 7920) .009 .003 

Assumption * WGT  *  ANC  *  DIF .184 (4, 7920) .947 .000 

Assumption * WGT  *  ANC  *  

DIF* ABIL 

2.257 (12, 7920) .000 .006 

a 
df=degrees of freedom 
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Table 12 

Significance and Partial Eta Square of the Repeated Measures ANOVA for RMSE for Samples 

Factor 
F df Sig. 

Partial Eta 

Squared 

Assumption 5367.979 (1,7920) .000 .404 

Assumption*ABIL 3115.795 (3, 7920) .000 .541 

Assumption*ANC 945.805 (1, 7920) .000 .107 

Assumption*ANC*ABIL 659.966 (3, 7920) .000 .200 

Assumption*WGT 16.975 (4, 7920) .000 .009 

Assumption *DIF 0.176 (1, 7920) .675 .000 

Assumption*ANC*DIF 37.607 (1, 7920) .000 .005 

Assumption*WGT*ABIL 7.233 (12, 7920) .000 .011 

Assumption *DIF*ABIL 3.155 (3, 7920) .024 .001 

Assumption*WGT*ANC 0.582 (4, 7920) .676 .000 

Assumption*WGT*DIF 0.240 (4, 7920) .916 .000 

Assumption * ANC *DIF*ABIL 17.864 (3, 7920) .000 .007 

Assumption*WGT*ANC*ABIL 0.448 (12, 7920) .944 .001 

Assumption * WGT *DIF*ABIL 0.331 (12, 7920) .984 .001 

Assumption*WGT*ANC*DIF 0.007 (4, 7920) 1.000 .000 

Assumption * WGT  *  ANC  *  

DIF* ABIL 

0.039 (12, 7920) 1.000 .000 

a
 df=degrees of freedom 

 

As can be noted in Table 11, for bias there is a significant four way interaction: 

assumption*weight*anchor*ability, two significant three way interactions: 

assumption*anchor*ability and assumption*weight*ability. There are three two way significant 

interactions: assumption*anchor, assumption*weight and assumption*ability. These interactions 

are presented in the following graphs of the marginal means, starting with the two way 

significant interactions.  
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Figure 27. Graph of marginal means for the interaction assumption* weight for bias. 

 

 

 

Figure 28. Graph of marginal means for the interaction assumption* anchor for bias.  
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Figure 29. Graph of marginal means for the interaction assumption* ability for bias.  
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Figure 30. Graph of marginal means for the interaction assumption* weight*ability for 

bias: L3(top) and L3*(bottom). 
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Figure 31. Graph of marginal means for the interaction assumption*ability*anchor for   

bias: L3(top) and L3*(bottom). 

 

 

 

 

 

 

-0.2

-0.15

-0.1

-0.05

0

0.05

05 08 55 58

B
ia

s

Ability

20

40

-0.2

-0.15

-0.1

-0.05

0

0.05

05 08 55 58

B
ia

s

Ability

20

40



79 

 

 

 

 

            Figure 32a. Graph of marginal means for the interaction  

assumption*weight*anchor*ability for bias: N(50%, 15%) (top) and N(55%, 15%) 

(bottom).  
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Figure 32b. Graph of marginal means for the interaction  

assumption*weight*anchor*ability for bias: N(50%, 18%) (top) and N(55%, 18%) 

(bottom).  
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for the w=0 case. This bias decreases as the w weight gets closer to 1. In the other three 

conditions for this interaction, bias is closer to 0 and L3 and L3* behaves similarly.  

Figure 31 shows how assumption interacts with ability and anchor. L3* gets a higher bias 

for the condition N(55%, 18%) and shorter anchor, whereas for the other conditions L3 and L3* 

behaves similarly and bias is close to 0. 

Figure 30 shows how assumption interacts with weight and ability. For the condition 

N(55%, 18%), L3* has a larger bias for weight 0 and bias decreases as weight gets closer to 1. 

For other conditions of ability, L3 and L3* are similar and close to 0. 

Figure 29 illustrates the interaction of assumption and ability. For the condition N(55%, 

18%), L3* shows a larger bias and for the other conditions L3 and L3* behave similarly and are 

close to 0.  

Figure 28 illustrates the interaction of assumption and anchor. L3* shows a larger bias for 

anchor length 20% although the magnitude of the difference is rather small.  

Figure 27 illustrates the interaction of assumption and weight. For weight 0, L3* shows 

the largest bias and bias gets closer to that of L3 as w approaches 1. However, the magnitude of 

the difference is rather small. 

As it can be noted in Table 12, there is a significant (statistically and practically) three 

way interaction for RMSE: assumption*ability*anchor. The two way interactions assumption* 

anchor and assumption*ability are also significant. The marginal means for RMSE for these two 

interactions are presented in figures 33 to 35. 
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Figure 33. Graph of marginal means for the interaction assumption* anchor for 

RMSE.  

 

 

 

Figure34. Graph of marginal means for the interaction assumption* ability for 

RMSE.  
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Figure 35. Graph of marginal means for the interaction assumption*ability*anchor for   

RMSE: L3(top) and L3*(bottom).  

 

Figure 35 illustrates the interaction of assumption, ability, and anchor for RMSE.  For the 
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Figure 33 illustrates the interaction of assumption and anchor. For anchor length 20%, 

L3* features a higher RMSE.  

Bias and RMSE in the Samples at Score Level 

To further explore the differences between L3 and L3* in the samples, bias and RMSE 

were computed at score level. This was accomplished by applying the equating functions 

obtained from L3 and L3* to each score X level from 0 to 81, and this was done for the five 

different w weights. The obtained values can be then compared to the true values of the 

corresponding synthetic populations and a bias can be obtained at each score level for each 

sample. Each of this bias at score level was averaged across the 100 samples corresponding to 

each condition.  

 In a similar fashion, an RMSE at each score level was computed across the 100 samples.  

The following figures show the bias and RMSE at score level for each condition. These 

figures are based on samples of size 2000 given that sample size was dropped from the original 

ANOVAs and that the previously reported ANOVAs were conducted with sample size 2000. 

These figures are based on the case w=0.5. Figures for other w values are not reported because 

the results were similar.  
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Figure 36. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 40%, 

easier test Y and ability N(50%, 15%).  
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Figure 37. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 40%, 

more difficult test Y and ability N(50%, 15%).  
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Figure 38. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 20%, 

easier test Y and ability N(50%, 15%).  
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Figure 39. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 20%, 

more difficult test Y and ability N(50%, 15%).  
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Figure 40. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 40%, 

easier test Y and ability N(55%, 15%).  
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Figure 41. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 40%, 

more difficult test Y and ability N(55%, 15%).  
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Figure 42. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 20%, 

easier test Y and ability N(55%, 15%).  
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Figure 43. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 20%, 

more difficult test Y and ability N(55%, 15%).  
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Figure 44. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 40%, 

easier  test Y and ability N(50%, 18%).  
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Figure 45. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 40%, 

more difficult test Y and ability N(50%, 18%).  
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Figure 46. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 20%, 

easier test Y and ability N(50%, 18%).  
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Figure 47. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 20%, 

more difficult test Y and ability N(50%, 18%).  
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Figure 48. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 40%, 

easier test Y and ability N(55%, 18%).  
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Figure 49. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 40%, 

more difficult test Y and ability N(55%, 18%).  
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Figure 50. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 20%, 

easier test Y and ability N(55%, 18%).  
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Figure 51. Bias (top) and RMSE (bottom) at score level for 100 samples, anchor 20%, 

more difficult test Y and ability N(55%, 18%).  
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In general, figures 36 to 51 show that both L3 and L3* have a larger bias and RMSE 

towards the extremes of the score range and a smaller bias and RMSE towards the middle of the 

score range. However there are important differences among conditions.  

For conditions of equal ability distribution between P and Q, i.e. for condition N(50%, 

15%) both methods seem to perform similarly.  

For conditions in which Q has ability distribution N(55%, 15%) both methods seem to 

perform similarly except for the condition with anchor 20% and easier test Y, in which L3* 

seems to perform slightly better than L3. 

In all the remaining conditions, in which SD is 18%, L3* is outperformed by L3 in the 

extremes of the score range, especially for anchor test 20%.  

An Illustrative Example 

To illustrate the use of L3 and L3* equating with a real data example these methods were 

applied to two 36-item forms X and Y. The data sets were obtained from the software CIPE 

referred by Kolen and Brennan (2004). For these forms the anchor A is formed by every third 

item (items 3, 6, 9, …, 36). Since scores on A are contained in X and Y, A is an internal anchor. 

However, according to Chapters Three and Four, the formulas derived from L3 and L3* can be 

applied to situations with either external or internal anchors.  

Descriptive statistics for test X administered to a group P of 1,655 examinees and test Y 

administered to a group Q of 1,638 examinees are presented in Table 13.  
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Table 13 

Descriptive Statistics for a Real Data Example 

Group Test Mean SD Variance 

P X 15.8205 6.5298 42.6383 

P A 5.1063 2.3767 5.6489 

Q Y 18.6728 6.8805 47.3418 

Q A 5.8626 2.4522 6.0135 

 

Note that mean A in P is 5.1063 which is about 42.6% of anchor length, whereas mean A 

in Q is 5.8626 which is 48.86% of anchor length.  On the other hand, SD of A in P is 2.3767, 

which is 19.81% of anchor length, whereas SD A in Q is 2.4522, which is 20.44% of anchor 

length. Therefore the mean difference is about 6% and the SD difference is about 0.6%. Given 

the very small difference in SD,  if the results of this study are applicable to a shorter anchor and 

shorter tests X and Y, the equated scores form L3 and L3* would be expected to be similar.   

Reliabilities for tests A, X and Y are shown in Table 14. 

Table 14 

Reliabilities of Tests A, X and Y for a Real Data Example 

Group Test Reliability 

P X .842 

P A .609 

Q Y .860 

Q A .630 

 

After the application of an equating procedure analogous to the one described previously 

in this chapter for the equating at sample level, the equated scores from L3 and L3* were 
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computed. It is not possible to compute true equated scores for this case; therefore the difference 

between the equated scores from L3 and L3* instead of bias was computed. Similarly, an RMSE 

cannot be computed, but it is possible to compute an RMSD based on the difference between the 

equated scores from L3 and L3*.  The following two figures present the resulting difference and 

the corresponding RMSD.  These difference and RMSD were computed based on the scores of 

the 1655 examinees in group P.  

 

 

Figure 52. Difference (top) and RMSD (bottom) for L3-L3* for a real data example. 
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In addition, it is possible to compute the equated score for each score in the score range 

i.e. from 0 to 36. Table 15 shows the Y equivalent scores (equated scores) based on L3 and L3* 

for different w weights. 

 

Table 15 

Y Equivalent Scores for L3 and L3* for Five w Weights for a Real Data Example 
 w=0  w=0.25  w=0.50  w=0.75  w=1  

Score L3 L3* L3 L3* L3 L3* L3 L3* L3 L3* 

0 -0.23 -0.02 -0.23 -0.02 -0.23 -0.03 -0.23 -0.03 -0.23 -0.04 

1 0.78 1.00 0.78 1.00 0.78 0.99 0.78 0.99 0.78 0.98 

2 1.79 2.02 1.79 2.02 1.79 2.01 1.79 2.01 1.79 2.01 

3 2.80 3.04 2.80 3.04 2.80 3.03 2.80 3.03 2.80 3.03 

4 3.81 4.06 3.81 4.06 3.81 4.06 3.81 4.05 3.81 4.05 

5 4.81 5.09 4.82 5.09 4.82 5.08 4.82 5.07 4.82 5.07 

6 5.82 6.11 5.83 6.11 5.83 6.10 5.83 6.09 5.83 6.09 

7 6.83 7.13 6.84 7.13 6.84 7.12 6.84 7.12 6.84 7.11 

8 7.84 8.15 7.85 8.15 7.85 8.14 7.85 8.14 7.85 8.13 

9 8.85 9.17 8.86 9.17 8.86 9.16 8.86 9.16 8.85 9.15 

10 9.86 10.19 9.87 10.19 9.87 10.18 9.87 10.18 9.86 10.18 

11 10.87 11.21 10.88 11.21 10.88 11.20 10.88 11.20 10.87 11.20 

12 11.88 12.23 11.89 12.23 11.89 12.23 11.89 12.22 11.88 12.22 

13 12.89 13.26 12.90 13.26 12.90 13.25 12.90 13.24 12.89 13.24 

14 13.90 14.28 13.91 14.28 13.91 14.27 13.90 14.26 13.90 14.26 

15 14.91 15.30 14.91 15.30 14.92 15.29 14.91 15.29 14.91 15.28 

16 15.92 16.32 15.92 16.32 15.93 16.31 15.92 16.31 15.92 16.30 

17 16.93 17.34 16.93 17.34 16.94 17.33 16.93 17.33 16.93 17.32 

18 17.94 18.36 17.94 18.36 17.94 18.35 17.94 18.35 17.94 18.35 

19 18.95 19.38 18.95 19.38 18.95 19.38 18.95 19.37 18.95 19.37 

20 19.96 20.40 19.96 20.40 19.96 20.40 19.96 20.39 19.96 20.39 

21 20.97 21.43 20.97 21.43 20.97 21.42 20.97 21.41 20.96 21.41 

22 21.98 22.45 21.98 22.45 21.98 22.44 21.98 22.43 21.97 22.43 

23 22.99 23.47 22.99 23.47 22.99 23.46 22.99 23.46 22.98 23.45 

24 24.00 24.49 24.00 24.49 24.00 24.48 24.00 24.48 23.99 24.47 

25 25.01 25.51 25.01 25.51 25.01 25.50 25.01 25.50 25.00 25.49 

26 26.02 26.53 26.02 26.53 26.02 26.52 26.02 26.52 26.01 26.52 

27 27.03 27.55 27.03 27.55 27.03 27.55 27.03 27.54 27.02 27.54 

28 28.04 28.57 28.04 28.57 28.04 28.57 28.04 28.56 28.03 28.56 

29 29.05 29.60 29.05 29.60 29.05 29.59 29.05 29.58 29.04 29.58 

30 30.06 30.62 30.06 30.62 30.06 30.61 30.06 30.61 30.05 30.60 

31 31.07 31.64 31.07 31.64 31.07 31.63 31.07 31.63 31.06 31.62 

32 32.08 32.66 32.08 32.66 32.08 32.65 32.07 32.65 32.07 32.64 

33 33.08 33.68 33.09 33.68 33.09 33.67 33.08 33.67 33.08 33.66 

34 34.09 34.70 34.10 34.70 34.10 34.69 34.09 34.69 34.08 34.69 

35 35.10 35.72 35.11 35.72 35.11 35.72 35.10 35.71 35.09 35.71 

36 36.11 36.74 36.12 36.74 36.12 36.74 36.11 36.73 36.10 36.73 
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The following three figures illustrate the previous conversion table for three values of w: 

0, 0.5 and 1.  

 

Figure 53. Equated scores for a real data example for w=0. 

 

 

Figure 54. Equated scores for a real data example for w=0.5. 
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Figure 55. Equated scores for a real data example for w=1. 

 

 As can be noted, the expectation of obtaining very similar equated scores based in L3 and 

L3* for this example was confirmed. Given the characteristics in ability distribution of the 

groups P y Q in this real data example, this example confirms some of the results of the current 

study.  
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Chapter Five – Discussion 
 

 The administration of multiple forms is a current practice in many testing programs. 

Therefore, equating becomes a matter of necessity. Having various methods for equating is an 

advantage for test administrators since the results of such methods can be compared and 

evaluated in order to make a final decision before test scores are reported. Usually there is not a 

best method, but some methods can be better applied based on characteristics of the subjects 

taking the test and characteristics of the test itself.  

 That is why it is important to study under what conditions an equating method is likely to 

produce more accurate results and how an equating method compares to others.  

This study focused on the comparison of two different sets of assumptions for the Levine 

Observed Score method of linear equating and how accurately these two sets of assumptions 

recover the true equating function. This was attempted through the design of a simulation study 

in which five factors were manipulated: anchor length, test difficulty, ability distribution, 

mixture of populations and sample size. The data generation and the computation of the equating 

functions were developed in the context of the Non Equivalent Groups with Anchor Test design 

(NEAT) whereby population P takes test X and population Q takes test Y and both populations 

take an anchor test A. Some assumptions are needed to estimate the equating function using only 

information from X in P, Y in Q and from the anchor A in both P and Q. 

Data for a population P with 100,000 subjects and four populations Q of the same size 

were generated so that the four populations Q had the following characteristics regarding ability 

distribution: no difference, difference only in mean ability, difference only in variability and 

difference in mean ability and variability. The data generation also simulated the administration 

of two tests X and Y to those five populations. These two tests had a fixed length of 80 items but 
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varied in two characteristics: anchor length and difficulty. Two conditions for anchor length were 

manipulated: 20% and 40% of test length. In addition, two conditions for test difficulty were 

manipulated: a test Y easier than test X and a test Y more difficult than test X. This was done to 

try to replicate reasonable settings in real testing situations. By combining population P  and 

populations Q with certain chosen percentages, synthetic populations were created resulting in 

80 cases corresponding to 16 conditions. The equating was conducted for those 80 cases (true 

equating, and equating under L3 and L3*).  

Parallel to this simulation for synthetic populations, a sampling plan was implemented by 

drawing 100 pairs of samples of 500, 1000 and 2000 subjects from populations P and 

populations Q. The equating was conducted at sample level and bias and RMSE were computed. 

This sampling plan was conducted because in practice the equating does not happen at 

population level but at sample level.  

This chapter discusses the results of this study. This discussion is organized in five 

sections: equating at population level, equating at sample level and equating in the samples at 

score level; then a discussion about meeting the assumptions is presented and a final section 

discusses the limitations of the study and future research. 

Equating at Population Level 

 Although in the NEAT design two different populations take test X and test Y, the 

equating occurs in a single population (Kolen and Brennan, 2004) known as synthetic 

population.  A common way to produce this synthetic population was proposed by Braun & 

Holland (1982) whereby P and Q were combined to produce the synthetic form S = wP + (1 –

 w)Q, where w varies from 0 to 1. 
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 In this study a population P and four populations Q were combined and crossed with four 

test conditions: two conditions for anchor length and two conditions for difficulty of the test Y as 

well as five mixtures of populations. The result was 80 synthetic populations for which the three 

equating functions were computed and compared: a true equating function, an equating function 

form the traditional assumption L3 and an equating function from the alternative assumption 

L3*.  

For the conditions in which P and Q had a similar ability distribution, namely N(50%, 

15%), where those percentages refer to anchor length,  no differences were observed between the 

two assumptions. L3* slightly outperformed L3  for one of the conditions for which Q had an 

ability distribution of N(55%, 15%); specifically when test Y was easier than test X and anchor 

length was 20% of test length. For the remaining conditions associated to N(55%, 15%) the two 

methods performed similarly.  

 However, a clear difference in performance between L3 and L3* was observed for 

conditions in which the SD of population Q was 18%. In these conditions L3 outperformed L3*, 

especially when anchor length was 20% of test length.  For L3*, RMSE values as high as 0.97 

were observed for this condition for w=0 and RMSE decreased to 0.75 for w=1, whereas the 

corresponding values for L3 were 0.34 and 0.29.  

 It is important to take into consideration the concept of difference that matters (DTM), 

which addresses the fact of whether or not the difference between two equating functions has 

important consequences for reported scores.  Recall that DTM is dependant of the test and its 

use. For example on the SAT the DTM is 5 reported-score points because SAT scores are 

reported and rounded in steps of 10 points.  
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 In the case of  this study, assuming that the scores are reported in steps of 1 point, the 

DTM would be 0.5 and therefore values for RMSE such as 0.97 and 0.75 are greater than DTM 

for L3* whereas they are smaller than DTM for L3 (0.34 and 0.29 respectively).  

Equating at Sample Level 

The combination of the factors ability distribution (four conditions), anchor length (2 

conditions) and test difficulty (2 conditions) produced 16 conditions. For each of the 16 

conditions 100 samples of size 500, 1000 and 2000 from population P and 100 samples of size 

500, 1000 and 2000 from population Q were randomly extracted in a bootstrap with replacement 

fashion whereby after a subject is selected for the sample he is returned to the population so that 

he could be selected again.  This produced 300 pairs of samples P and Q for each of 16 

conditions i.e. in total 4800 pairs of samples were generated.  

For each of these pairs of samples five equating functions were computed under the L3 

assumption and five equating functions were computed under the L3* assumption. Each of these 

five equating functions in each case was produced using a different w weight, where w: 0, 0.25, 

0.50, 0.75, and 1.  

Two repeated measures ANOVAs were conducted, one for bias and another for RMSE, 

and sample size were dropped since no interactions that included sample size were significant 

(statistically and practically). For bias, the ANOVA results showed that ability distribution 

interacted with anchor length, weight and assumption (L3 or L3*) and that for the condition 

N(55%, 18%), L3* with a anchor of 20% had the largest bias for the w=0 case. This bias 

decreased as weight got closer to 1. In the other three conditions for this interaction, bias was 

closer to 0 and L3 and L3* behaved similarly. Other interactions were significant for bias and 
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confirmed how L3* was outperformed by L3 for conditions in which the SD was 18% of anchor 

length.  

The ANOVA for RMSE showed that the interaction of assumption, ability, and anchor 

was significant.  For the conditions with an 18% SD, RMSE is much higher for L3* for the 

condition anchor length 20%. Other interactions also confirmed the disadvantage of L3* for 

conditions with 18% SD and shorter anchor (20%). 

These results at sample level confirm those at population level whereby L3* appears to 

be more affected than L3 by a greater variability in populations Q and a shorter anchor test.  

Equating in the Samples at Score Level 

To further explore the differences between L3 and L3* in the samples, bias and RMSE 

were computed at score level. The computation in the samples of size 2000 of bias and RMSE at 

score level show that both L3 and L3* have a larger bias and RMSE towards the extremes of the 

score range and smaller bias and RMSE towards the middle of score range.  

For conditions of equal ability distribution between P and Q, i.e. for condition N(50%, 

15%) both methods seem to perform similarly.  

For conditions in which Q has ability distribution N(55%, 15%) both methods seem to 

perform similarly except for the condition with anchor 20% and easier test Y, in which L3* 

seems to perform slightly better than L3 

However, for all the remaining conditions, in which SD is 18%, L3* is outperformed by 

L3 in the extremes of the score range, especially for anchor test 20%.  

The results obtained with this analysis at score level appear to indicate that L3* is more 

affected than L3 in the extreme portions of the range of scores, especially for conditions in which 

SD is 18% and when anchor test is shorter.  
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Meeting the assumptions? 

Given that in this simulation study the parameters in the population are known, it is 

natural to question whether the observed differences between L3 and L3* reside on the violation 

of assumptions, assumptions that otherwise are untestable in practical situations. For this purpose 

it is valuable to explore the degree to which the L3 and L3* assumptions are met in the data for 

this study.  

Recall that the assumption that characterizes L3 is that the error variances
2

/ SeA
 , 

2

/ SeX
 , 

and 
2

/ SeY
  are the same for any S of the synthetic form. Table 16 presents the error variances for 

anchor test A and Table 17 presents the error variances for test X and test Y.  These error 

variances were known in this study because of how the data was generated but they are, of 

course, unknown in real data situations.  

It can be observed in Table 16 that the error variances corresponding to the cases where 

the original populations P and Q had equal ability distribution are very similar. For example for  

N(50%, 15%), anchor length 40% and test Y easier than test Y, which corresponds to the first 

data row of the Table 16, the error variances are 7.55, 7.53, 7.54, 7.52 and 7.51 for the w weights 

of 0, 0.25, 0.5, 0.75 and 1 respectively. On the other hand, there is a tendency of more variation 

in error variances as the mean and SD increases. For example for N(55%, 18%), anchor length 

40% and test Y easier than test Y, which corresponds to the fourth row of Table 16 from the 

bottom up, the corresponding error variances are 7.14, 7.25, 7.33, 7.41 and 7.51, so it can be 

argued that there is some violation of the assumption of equal error variances for this case.  
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Table 16 

Error Variances for Anchor Test A across 16 Conditions and Five w Weights 
Anchor 

Length 

% 

Test 

Y 

Diff Ability   w   

   0.00 0.25 0.50 0.75 1.00 

40 e 05 7.55 7.53 7.54 7.52 7.51 

40 d 05 7.58 7.56 7.58 7.53 7.46 

20 e 05 3.90 3.93 3.92 3.94 3.94 

20 d 05 3.88 3.88 3.88 3.89 3.89 

40 e 55 7.40 7.43 7.48 7.47 7.51 

40 d 55 7.42 7.41 7.46 7.47 7.46 

20 e 55 3.83 3.88 3.88 3.91 3.94 

20 d 55 3.82 3.85 3.86 3.88 3.89 

40 e 08 7.21 7.28 7.37 7.41 7.51 

40 d 08 7.17 7.23 7.29 7.39 7.46 

20 e 08 3.76 3.83 3.85 3.90 3.94 

20 d 08 3.74 3.77 3.80 3.85 3.89 

40 e 58 7.14 7.25 7.33 7.41 7.51 

40 d 58 7.10 7.19 7.30 7.42 7.46 

20 e 58 3.69 3.78 3.82 3.88 3.94 

20 d 58 3.69 3.74 3.78 3.85 3.89 
a
Ability  05: N(50%, 15%)  55: N(55%, 15%) 08: N(50%, 18%) 58:N(55%, 18%) 

b
Test Y Diff e: Test Y is easier d: Test Y is more difficult 

 

 For tests X and Y in Table 17, a similar situation occurs. For conditions with equal ability 

distribution, like those of the first four data rows of Table 17, the error variances are very close 

to each other. For example for the condition N(50%, 15%), anchor length 40% and test Y easier 

than test Y, which corresponds to the first data row of the Table 17, the error variances for Y are 

18.06, 18.07, 18.13, 18.06 and 18.01. On the other hand, for conditions with greater variability in 

Q relatively to P, greater difference in error variances are observed. For example, for N(55%, 

18%), anchor length 40% and test Y easier than test Y, which corresponds to the fourth row of 

Table 17 from the bottom up, for test Y the error variances are 16.91, 17.23, 17.54, 17.76 and 

18.01, therefore it can be argued that there is some violation of the assumption of the equal error 

variances for this case.  
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Table 17 

Error Variances for Tests X and Y across 16 Conditions and Five w Weights 
Anchor Test       w      

Length Y    X      Y   

% Diff Ability 0.00 0.25 0.50 0.75 1.00  0.00 0.25 0.50 0.75 1.00 

40 e 05 18.26 18.34 18.39 18.42 18.48  18.06 18.07 18.13 18.06 18.01 

40 d 05 18.21 18.23 18.25 18.28 18.19  18.09 18.10 18.15 18.16 18.12 

20 e 05 18.31 18.26 18.24 18.20 18.15  18.16 18.11 18.09 18.06 18.05 

20 d 05 18.27 18.25 18.26 18.12 18.13  18.29 18.29 18.24 18.17 18.06 

40 e 55 17.99 18.10 18.26 18.34 18.48  17.48 17.58 17.77 17.89 18.01 

40 d 55 17.93 18.04 18.10 18.20 18.19  18.23 18.20 18.21 18.17 18.12 

20 e 55 17.86 17.96 18.11 18.11 18.15  17.42 17.55 17.65 17.87 18.05 

20 d 55 18.12 18.08 18.14 18.08 18.13  18.27 18.30 18.25 18.15 18.06 

40 e 08 17.54 17.80 18.07 18.33 18.48  17.32 17.51 17.75 17.87 18.01 

40 d 08 17.62 17.80 17.97 18.11 18.19  17.21 17.45 17.68 17.93 18.12 

20 e 08 17.39 17.57 17.80 17.96 18.15  17.31 17.50 17.70 17.88 18.05 

20 d 08 17.39 17.53 17.68 17.86 18.13  17.44 17.66 17.86 17.93 18.06 

40 e 58 17.05 17.41 17.77 18.13 18.48  16.91 17.23 17.54 17.76 18.01 

40 d 58 17.20 17.46 17.74 17.99 18.19  17.43 17.57 17.78 17.96 18.12 

20 e 58 17.32 17.56 17.79 17.98 18.15  16.79 17.12 17.41 17.71 18.05 

20 d 58 17.24 17.43 17.64 17.81 18.13  17.34 17.57 17.78 17.89 18.06 
a
Ability 05: N(50%, 15%)  55: N(55%, 15%) 08: N(50%, 18%) 58:N(55%, 18%) 

b
Test Y Diff e: Test Y is easier d: Test Y is more difficult 

 

On the other hand, recall that the characteristic assumption for L3* is that the ratios  
SA

SX

/

/




 and 

SA

SY

/

/




 are constant as functions of S of the synthetic form (Holland & Walker, 2006); that is, the 

ratios of the square roots of the reliabilities 
SA

SX

/

/




and  

SA

SY

/

/




 are population invariant. 

 

Those ratios are shown in Table 18 for each of the five w weights.  It can be noted in 

Table 18 that there is clear difference between the first eight conditions and the second eight 

conditions. For the first 8 conditions i.e. conditions in which the ability distribution of the 

original P and Q are either equal or differ in mean ability only, the ratios of square root of 

reliabilities 
SA

SX

/

/




 are extremely similar.  Take for example the first data row of Table 18 for X  
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Table 18 

Ratios of Square Root of Reliabilities  
Anchor Test       w      

Length Y    X/A      Y/A   

% Diff Ability 0.00 0.25 0.50 0.75 1.00  0.00 0.25 0.50 0.75 1.00 

40 e 05 1.087 1.087 1.086 1.086 1.084  1.087 1.086 1.085 1.085 1.084 

40 d 05 1.089 1.088 1.089 1.090 1.087  1.086 1.087 1.089 1.089 1.087 

20 e 05 1.224 1.229 1.226 1.229 1.226  1.226 1.229 1.226 1.228 1.226 

20 d 05 1.223 1.220 1.217 1.217 1.218  1.220 1.219 1.216 1.217 1.218 

40 e 55 1.086 1.083 1.084 1.083 1.084  1.086 1.084 1.084 1.083 1.084 

40 d 55 1.085 1.083 1.084 1.086 1.087  1.087 1.085 1.085 1.086 1.087 

20 e 55 1.217 1.218 1.216 1.221 1.226  1.220 1.220 1.217 1.221 1.226 

20 d 55 1.219 1.215 1.211 1.213 1.218  1.219 1.214 1.212 1.214 1.218 

40 e 08 1.060 1.065 1.070 1.077 1.084  1.061 1.065 1.070 1.076 1.084 

40 d 08 1.058 1.062 1.070 1.078 1.087  1.059 1.064 1.071 1.078 1.087 

20 e 08 1.159 1.175 1.188 1.205 1.226  1.160 1.175 1.186 1.205 1.226 

20 d 08 1.158 1.169 1.181 1.197 1.218  1.159 1.170 1.181 1.196 1.218 

40 e 58 1.059 1.062 1.068 1.076 1.084  1.059 1.063 1.068 1.075 1.084 

40 d 58 1.057 1.061 1.068 1.079 1.087  1.058 1.062 1.069 1.078 1.087 

20 e 58 1.151 1.166 1.182 1.202 1.226  1.153 1.167 1.184 1.203 1.226 

20 d 58 1.154 1.165 1.177 1.196 1.218  1.154 1.166 1.178 1.197 1.218 
a
Ability 05: N(50%, 15%)  55: N(55%, 15%) 08: N(50%, 18%) 58:N(55%, 18%) 

b
Test Y Diff e: Test Y is easier d: Test Y is more difficult 

c
X/A: 

SA

SX

/

/




  Y/A:

SA

SY

/

/




                       

in which those ratios are 1.087, 1.087, 1.086, 1.086 and 1.084. A similar situation occurs for the 

ratios corresponding to test Y. In the same first data row of Table 18, those ratios are, 1.087, 

1.086, 1.085, 1.085 and 1.084. 

 However, for the cases with 18% SD which are the second 8 cases of Table 18, much 

greater differences are observed in such ratios, with the largest difference observed for cases 

with anchor 20%. Take for example the case N(55%, 18%), anchor length 40% and test Y easier 

than test Y, which corresponds to the second to last row of Table 18. For test X the ratios of 

square root of reliabilities are 1.151, 1.166, 1.182, 1.202, and 1.226 and for test Y such ratios are 

1.153, 1.167, 1.184, 1.203, and 1.226.  
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 Whether these departures from the assumption for L3* are “big” cannot be determined 

since there is not a classification for these departures, but it is clear that there is a different 

pattern between the first 8 cases and the second 8 cases and that the cases with 18% SD and 

especially those with anchor test 20% were where the biggest differences in the equating 

between L3 and L3* were observed through this dissertation study.  

Now, recall from Chapter Four that an accumulation of out of range scores occurred to a 

greater extent in the conditions that have an 18% SD and it was accentuated for conditions in 

which the test Y was easier and that this accumulation of out of range scores on the right side of 

the distribution at some extent modeled a ceiling effect in which very able subjects are not 

allowed to score higher than the maximum score in the test. This ceiling effect might be a 

confounding factor regarding the observed differences between the equating under L3 and L3*. 

This will be discussed in the next section.  

On the other hand, even if there was a confounding effect from the ceiling effect 

observed in the 18% SD conditions, the fact is that L3 appears to be more robust to violations of 

assumptions because L3 showed a smaller RMSE and outperformed L3* in the conditions with 

18%  SD. 

Limitations of the Study and Future Research 

This study is limited to the use of normal distributions for the scores of tests A, X and Y.  

For future research other types of distributions could be used to compare the performance of L3 

versus L3*.  

Another limitation of this study is that the reliabilities were computed as the ratio of true 

score variance to observed score variance. An area of future research should be a different data 
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generation that includes item responses, which can open the possibility to use other methods for 

the computation of reliabilities.  

A third possible limitation of this study is the ceiling effect that was observed in some 

conditions in which there was an accumulation of out of range scores, especially for conditions 

with SD 18% and mean 55%. These conditions were precisely where the largest differences 

between L3 and L3* were observed. Although on one hand the ceiling effect is something that 

occurs in reality and it was seen as a reasonable setting for the study, on the other hand it is not 

possible to determine if the observed difference between L3 and L3* for certain conditions is due 

solely to the difference in the manipulated conditions in the study or the ceiling also effect also 

an effect. Given the conditions of the study, the difference was observed but it would be valuable 

to disentangle this possible interaction between the conditions of the study and the ceiling effect.  

Therefore an area of future research is a design in which the effects of ceiling effect and the 

effects of the differences in standard deviation of ability distribution between population P and 

populations Q can be isolated.  

Another area of future research should be a variation of the values a, b, c and d for the 

data generation, in order to understand the effect of such values in the relative performance of L3 

and L3*.  
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