
Compressed Index for Dictionary Matching ∗

Wing-Kai Hon
National Tsing Hua University, Taiwan

wkhon@cs.nthu.edu.tw

Tak-Wah Lam
University of Hong Kong, Hong Kong

twlam@cs.hku.hk

Rahul Shah
Louisiana State University, LA, USA

rahul@csc.lsu.edu

Siu-Lung Tam
University of Hong Kong, Hong Kong

sltam@cs.hku.hk

Jeffrey Scott Vitter
Purdue University, IN, USA

jsv@cs.purdue.edu

Abstract

The past few years have witnessed several exciting results on compressed represen-
tation of a string T that supports efficient pattern matching, and the space complexity
has been reduced to |T |Hk(T)+ o(|T | log σ) bits [8,10], where Hk(T) denotes the kth-
order empirical entropy of T , and σ is the size of the alphabet. In this paper we study
compressed representation for another classical problem of string indexing, which is
called dictionary matching in the literature. Precisely, a collection D of strings (called
patterns) of total length n is to be indexed so that given a text T , the occurrences of the
patterns in T can be found efficiently. In this paper we show how to exploit a sampling
technique to compress the existing O(n)-word index to an (nHk(D) + o(n log σ))-bit
index with only a small sacrifice in search time.

1 Introduction

The past few years have witnessed several exciting results on compressed represen-
tation of a string (or strings) to allow efficient pattern matching. That is, we want
an index of a string T so that given any pattern P , we can locate the occurrences
of P in T efficiently. Suppose that characters in T are chosen from an alphabet of
size σ. An index of T is said to be succinct if it requires space proportional to the
worst-case space complexity of T (i.e., |T | log σ bits);1 furthermore, it is said to be a
compressed index if it requires space proportional to the space of a compressed rep-
resentation of T , measured by its zeroth-order entropy or even its kth-order entropy.
The two entropy terms are denoted by H0(T) and Hk(T), respectively, and it follows

∗This work is supported in part by Taiwan NSC Grant 96-2221-E-007-082-MY3 (W. Hon), Hong Kong
RGC Grant HKU 7140/06E (T. Lam), and US NSF Grant CCF–0621457 (R. Shah and J. S. Vitter).

1The base of the logarithm is 2 unless specified.

that Hk(T) ≤ H0(T) ≤ log σ. Grossi and Vitter [11] and Ferragina and Manzini [7]
are the pioneers in the research of compressed indexes for efficient pattern match-
ing. Since then, their results have been further improved by themselves and others
(e.g., [8, 10, 16]; see [15] for a survey). It is now possible to index a string T using
|T |Hk(T) + o(|T | log σ) bits, while supporting pattern matching in O(|P | log σ) time.
Note that these compressed indexes are also self-indexes in the sense that they can
function without the original string T , and they can indeed reproduce T efficiently.
It is also worth-mentioning that these indexes are sound practically; when used to
index a human genome (abut 3 billion characters), these indexes occupy less than 2
gigabytes [13].

In this paper we consider another classical string matching problem called the dic-
tionary matching problem [1,3,4], which is defined as follows. LetD = {P1, P2, . . . , Pd}
be a set of strings (called patterns below) over an alphabet of size σ. We want to
build an index for D so that given any input text T , the occurrences of each pattern
of D in T can be located efficiently. This problem arises naturally in the process of
matching with a gene bank or a database of computer virus. Aho and Corasick [1]
are the first to give an index using O(n) words that supports the dictionary matching
query in O(|T |+ occ) time, where n is the total number of characters in D, and occ
is the total number of occurrences. Over the past decade, research on dictionary
matching has focused on the extension to the dynamic setting [2–4, 17]; the space
complexity has not been improved until the recent work of Chan et al. [5], which
assumes σ is a constant and gives an O(n)-bit index that can search a text T in
O(|T | log2 n + occ log2 n) time.

In this paper we make use of a sampling technique to compress an O(n)-word,
suffix-tree-based index to an O(n log σ)-bit index that can can search a text T in
O(|T | log log n+occ) time, or an (o(n log σ)+O(d log n))-bit index that can search in
O(|T |(logε n + log d) + occ) time, where ε > 0 is any constant. Note that the suffix-
tree-based index as well as the new indexes all require the presence of the original
patterns; thus we need to add n log σ bits to the space complexity in the worst
case. Nevertheless, there exist compressed representations of a string which allow
constant time retrieval of any of its character (precisely, constant time retrieval of
any O(logσ n) consecutive characters). Ferragina and Venturini [9] have provided one
such representation. Thus, if we concatenate the patterns into a string P1P2 · · ·Pd

and represent it using such a compressed scheme, the overall space is reduced to
nHk(D) + o(n log σ) + O(d log n), where Hk(D) = Hk(P1P2 · · ·Pd). A summary of
the dictionary matching results is shown below.

Space (bits) Search Time Reference
O(n log n) O(|T |+ occ) Aho-Corasick [1]

O(n) [assume σ = O(1)] O(|T | log2 n + occ log2 n) Chan et al. [5]
O(n log σ) O(|T | log log n + occ) this paper

n log σ + o(n log σ) + O(d log n) O(|T |(logε n + log d) + occ) this paper
nHk + o(n log σ) + O(d log n) O(|T |(logε n + log d) + occ) this paper

Organization of the paper: Section 2 gives the preliminaries and defines use-
ful notations. In Section 3, we introduce a crucial problem called prefix matching,
whose solution helps us obtain an efficient index for the original dictionary matching
problem. Section 4 describes our main results. We conclude in Section 5.

2 Preliminaries

2.1 Locus of a String

Let ∆ = {S1, S2, . . . , Sr} be a set of r strings over an alphabet Σ of size σ. Let $
and # be two characters not in Σ, whose alphabetic orders are, respectively, smaller
than and larger than any character in Σ. Let C be a compact trie of the strings
{S1$, S1#, S2$, S2#, . . . , Sr$, Sr#}.2 Then, each string Si$ or Si# corresponds to
a distinct leaf in C, and each Si corresponds to an internal node in C. Also, each
edge is labeled by a sequence of characters, such that for each leaf representing some
string Si$ (or Si#), the concatenation of the edge labels along the root-to-leaf path
is exactly Si$ (or Si#). For each node v, we use path(v) to denote the concatenation
of edge labels along the path from root to v.

Definition 1. For any string Q, the locus of Q in C is defined to be the lowest node
v (i.e., farthest from the root) such that path(v) is a prefix of Q.

For simplicity, we refer C to be the compact trie for ∆, despite its constituent
strings are constructed by appending a special character to each string in ∆.

2.2 Suffix Tree and Dictionary Matching

The suffix tree [14,18] for a set of strings {S1, S2, . . . , Sr} is a compact trie storing
all suffixes of each Si. For each internal node v in the suffix tree, it is shown that
there exists a unique internal node u in the tree, such that path(u) is equal to the
string obtained from removing the first character of path(v). Usually, a pointer is
stored from v to such a u; this pointer is known as the suffix link of v.

Given a set of patterns D = {P1, P2, . . . , Pd}, suppose that we store the correspond-
ing suffix tree. Then, inside the suffix tree we mark each node v with path(v) = Pi

for some i; after that, each node stores a pointer to its nearest marked ancestor.
Let T be any input text, and T (j) be the suffix of T starting at the jth character.
Immediately, we have the following:

Lemma 1. Suppose that the locus of T (j) in the suffix tree of D is found. Then, we
can report all occ patterns which appear at position j in T using O(1 + occ) time.

Proof. A pattern Pi appears at position j of T if and only if it is a prefix of T (j). Let
u be the locus of T in the trie. Then, Pi is a prefix of T if and only if u has a marked
ancestor v with path(v) = Pi. Thus, reporting all patterns which appear at position

2In fact, we can simply use the compact trie for {S1, S2, . . . , Sr}; the modifications on the strings here
are for the ease of later discussion.

j of T is equivalent to reporting all marked ancestors of u. The latter is done by
repeatedly tracing pointers of the nearest marked ancestor, starting from u.

By utilizing the suffix links, Amir et al [4] showed that the locus of T (j) for all j can
be found in O(|T |) time, based on a traversal in the suffix tree. Thus, we can apply
Lemma 1 to answer the dictionary matching query in O(|T |+occ) time. Nevertheless,
the space for storing the suffix tree is O(n log n) bits.

2.3 String B-tree

String B-tree [6] is an external-memory index for a set of strings that supports
various string matching functionalities. It assumes an external memory model that
we can read or write a disk page of B words in one I/O operation. By setting
B = Θ(1), string B-tree can be readily applied in the internal memory model.

Let {P1, P2, . . . , Pr} be a set of strings over an alphabet of size σ, where P1 ≤ P2 ≤
· · · ≤ Pr lexicographically. Suppose that each string has length at most `, and their
total length is n. The following lemma is an immediate result from Theorem 1 in [6]:

Lemma 2. Assume that the strings are stored separately. We can construct an index
of size O(r log n) bits such that on any input T , we can find the largest i such that
Pi ≤ T lexicographically, using O(`/ logσ n + log r) time.

2.4 Computation Model

We assume the standard word RAM with word-size Θ(log n) bits as our compu-
tation model, where n is the input size of our problem. In this model, standard
arithmetic or bitwise boolean operations on word-sized operands, and reading or
writing O(log n) consecutively stored bits, can each be performed in constant time.

3 Prefix Matching for Patterns

Given a set of r patterns P1, P2, . . . , Pr over an alphabet of size σ, with the length
of each pattern at most `. Let n be the total length of these r patterns. Without
loss of generality, we assume that P1 ≤ P2 ≤ · · · ≤ Pr lexicographically. The prefix
matching problem is to construct an index for the patterns, so that when we are
given an input text T , we can report efficiently all patterns which are a prefix of T .
Solving this problem can help us solve the original dictionary matching problem. In
the following, we propose two such indexes. The first index works for the general case
where ` can be arbitrarily large. The second index targets for the case ` ≤ logσ n
with improved matching time.

Later, in Section 4, we will explain how to reduce (part of) the original dictionary
matching problem into a prefix matching problem. The first index can be applied to
obtain a compressed nHk-bit index for the dictionary matching problem, while the
second index can be applied to speed up the query time when slightly more space
(O(n log σ) bits) is allowed.

3.1 Index for General Patterns

The first index consists of three data structures, namely a compact trie, a string
B-tree, and an LCP array. We store a compact trie C comprising the r patterns.
Inside the compact trie, we mark each node v with path(v) = Pi for some i; after
that, each node stores a pointer to its nearest marked ancestor. Based on the same
argument as we prove Lemma 1, we have the following:

Lemma 3. Suppose that the locus of a string T in the compact trie C is found. Then,
we can report all occ patterns which are prefix of T using O(1 + occ) time.

To facilitate finding the locus of T in the compact trie, we store a string B-tree for
the r patterns. In addition, we store an LCP array which is defined as follows: Let
πi denote the longest common prefix of Pi and Pi+1, and let wi be the node in the
compact trie with path(wi) = πi. The LCP array is an array L such that L[i] stores
the length of the longest common prefix |πi| = |path(wi)| and a pointer to wi. By
using the string B-tree only, we obtain the following result.

Lemma 4. Among all r patterns, we can find one which shares the longest com-
mon prefix with T , and report the length of such a longest common prefix, using
O(`/ logσ n + log r) time.

Proof. By Lemma 2 we can find the largest i such that Pi is at most T lexicographi-
cally, using O(`/ logσ n + log r) time. Then, either Pi or Pi+1 must be a string which
shares the longest common prefix with T . Checking which string is the desired an-
swer, and finding the length of the longest common prefix, can be done by comparing
T with Pi and Pi+1 in a straightforward manner. This requires an extra O(`/ logσ n)
time.

Let Pi be the string reported in the above lemma which shares the longest common
prefix with T . Let m be the length of such a longest common prefix. Then, the locus
of T in the compact trie must be one of the following three cases:

Case 1: The node v that corresponds to Pi (i.e., path(v) = Pi);

Case 2: The node wi−1, which corresponds to the longest common prefix of Pi−1

and Pi;

Case 3: The node wi, which corresponds to the longest common prefix of Pi and Pi+1.

To see why the above case division is correct, let u be the locus of T in the compact
trie. By the choice of Pi, either one of the following cases happen: (i) Pi ≤ T < Pi+1,
or (ii) Pi−1 ≤ T < Pi, lexicographically. If it is the former case, then u must either
be v or wi. If it is the latter case, then u must either be v or wi−1.

Now, to distinguish which is the case, we compare m with |Pi|, |πi−1|, and |πi|. If
m = |Pi|, then it is Case 1. Else, we consider |πi−1| and |πi|, and select one which is
at most m (if both are at most m, select the larger one). If |πi−1| is selected, then it
is Case 2. Otherwise, it is Case 3.

Thus, by using the string B-tree and the LCP array, we have:

Lemma 5. We can find the locus of T in the compact trie in O(`/ logσ n + log r)
time.

Suppose that the patterns are stored separately so that we can retrieve any con-
secutive t characters of any pattern in O(1 + t/ logσ n) time, for any t. Then, the
space of the compact trie, the string B-tree, and the LCP array each takes O(r log n)
bits. This gives the following theorem.

Theorem 1. Given r patterns of total length n, with the length of each pattern at
most `. Suppose the patterns are stored separately. We can construct an O(r log n)-
bit index such that we can report every pattern which is a prefix of any input T in
O(`/ logσ n + log r + occ) time.

3.2 Index for Very Short Patterns

When ` is at most logσ n, Theorem 1 implies that prefix matching can be done in
O(1 + log r + occ) time. Here, we give an alternative index so that the time becomes
O(log log n + occ). The time is better when r is moderately large (say, r =

√
n).

Firstly, we observe that the bottleneck O(log r)-term in the previous time bound
comes from searching the string B-tree. The main purpose of this searching is to find
out the largest pattern Pi which is at most T lexicographically. Now, by padding
each Pi with sufficient $ characters to make its length logσ n, we can consider each
padded pattern as a bit string of length logσ n× log σ = log n, which can in turn be
considered as an integer of log n bits.3 In this way, we have converted the r patterns
into r integers. To search for the desired Pi, we extract the first logσ n characters of
T and consider it as an integer. (If |T | < logσ n, we pad sufficient $ characters to
make it logσ n-char long.) Then, the desired Pi is exactly the largest of the r integers
whose value is at most T (this Pi is known as the predecessor of T).

Willard [19] has devised a y-fast trie data structure which takes O(r log n) bits
of space and supports O(log log n)-time predecessor query. Combining this with the
compact trie and LCP array in the previous subsection, we obtain the following
theorem.

Theorem 2. Given r patterns of total length n, with the length of each pattern
at most logσ n. Suppose the patterns are stored separately. We can construct an
O(r log n)-bit index such that we can report every pattern which is a prefix of any
input T in O(log log n + occ) time.

4 Compressed Indexes for Dictionary Matching

Now we show how to make use of the prefix matching index to build a compressed
dictionary matching index. Let α be a sampling factor to be fixed later. We intend
to build a suffix tree with only one node per α suffixes so that we can save space.

3Here, we assume implicitly that log σ, logσ n and log n are integers. This assumption can be removed
easily with minor modifications, without affecting the main results.

The missing suffixes will be covered by more intensive searching with the help of
Theorems 1 and 2.

For a string S[1..s], we call every substring S[1+iα .. s] (where 0 ≤ iα < s) an α-
sampled suffix of S. Let D = {P1, P2, . . . , Pd} be the set of patterns in the dictionary
matching problem. The core of our compressed index for D is the compact trie C
storing all α-sampled suffixes of each pattern. In addition, we define the following
for the compact trie:

• For an internal node v, if the length |path(v)| is a multiple of α, then v is called
a regular node. Otherwise, v is called an irregular node.

• Each node is associated with the nearest ancestor which is regular.

• Nodes which correspond to occurrence of a pattern (d nodes in total) are
marked. Each node in C stores a pointer to its nearest marked ancestor.

• For each regular node v, it is easy to show that there is a unique node u with
path(u) equal to the string obtained from removing the first α characters of
path(v). We store a pointer from v to u, called the regular link of v.

For any string Q, we define the regular locus of Q in the compact trie C to be the
lowest regular node v such that path(v) is a prefix of Q. For each pattern Pi with
|Pi| = x (mod α) for some x between 1 and α− 1, the residue of Pi is defined to be
its last x characters. Based on the above definitions, we have:

Lemma 6. Let v be the regular locus of T (j) in C. Let φ be the length of path(v).
Then, a pattern Pi appears at position j of T if and only if one of the following cases
occurs:

• the locus of Pi (i.e., the node u with path(u) = Pi) is v;

• the locus of Pi is a marked ancestor of v;

• v is the regular locus of Pi, and the residue of Pi is a prefix of T (j + φ).

Note that in the third case, the locus of Pi in C must be an irregular marked node
associated with u. Thus, the occurrence of all patterns appearing at position j can
be found as follows:

1. Find the regular locus u of T (j) in C.

2. Report u if it is marked.

3. Report all marked ancestors of u by tracing pointers.

4. Report all irregular marked nodes associated with u, whose corresponding
residue is a prefix of T (j + φ).

Consider α = logσ n. For Step 2 and Step 3, reporting the occurrences can be
done in O(1 + occj) time, where occj denotes the number of patterns which appear
at position j of T . For Step 4, it can be solved by storing a separate data structure
of Theorem 2 for each regular node that is associated with irregular marked nodes.
It remains to show how to find the regular locus of T (j) efficiently.

Let us consider the rooted tree formed by linking each regular node in C to its
associated regular nodes. Essentially, the tree formed is equivalent to a suffix tree for

the original patterns, except that every α characters in the pattern are ‘merged’ into
one big character. Then, finding regular locus of T (j) in C can be directly reduced
to finding locus of T (j) in this suffix tree.

In addition, the regular links in C are equivalent to the suffix links in the suffix
tree. As a result, we can utilize the regular links and apply Amir et al [4] traversal
algorithm to find the regular locus of T (j) for all j = x (mod α), for a particular x,
together in O(|T |/α) time.4 Thus, the regular locus of T (j) for all j can be found
applying the traversal algorithm α times, taking a total of O(|T |) time.

In summary, we obtain the following lemma.

Lemma 7. Let {P1, P2, . . . , Pd} be d patterns over an alphabet of size σ, with total
length n. Suppose the patterns are stored separately in n log σ bits. We can construct
an index taking O(n log σ) + O(d log n) bits such that we can answer the dictionary
matching query for any input T in O(|T | log log n + occ) time.

Proof. The searching of the regular locus uj of T (j) takes O(|T |) time in total, for
all j. For a particular j, we report part of the occurrences of patterns (that appear at
position j of T) by tracing pointers, starting from uj. Also, we report the remaining
occurrences from the data structure of Theorem 2 for uj. The total time for reporting
is O(|T | log log n + occ).

For the space complexity, the compact trie takes O
(∑d

i=1(|Pi|/α + 1) log n
)

bits,

which is O(n log σ +d log n) bits. For the data structures of Theorem 2 in the regular
nodes (which have associated irregular marked nodes), they require O(d log n) bits
in total. Thus, the total space is O(n log σ) + O(d log n) bits.

Notice that for patterns whose length is at most 0.5 logσ n, we can just store them
together using an ordinary suffix tree. The number of such (distinct) patterns is at
most O(

√
n log n), and their total length is at most O(

√
n log2 n). Thus, the suffix tree

occupies O(
√

n log3 n) = o(n) bits of space, while support dictionary matching of T
in O(|T |+occ) time. For the remaining patterns, there are at most d′ = O(n/ logσ n)
of them; these patterns can be stored using our core index in Lemma 7, taking
O(n log σ) + O(d′ log n) = O(n log σ) bits. Thus, we can restate the above lemma as
follows:

Theorem 3. Let {P1, P2, . . . , Pd} be d patterns over an alphabet of size σ, with total
length n. Suppose the patterns are stored separately in n log σ bits. We can construct
an index taking O(n log σ) bits such that we can answer the dictionary matching query
for any input T in O(|T | log log n + occ) time.

Now, let us increase the sampling factor α from logσ n to log1+ε n/ log σ. We store
similar data structures as before, except we replace each data structure of Theorem 2

4One minor technical point arises: Amir et al’s traversal algorithm requires that when we have traversed
to some node in the suffix tree, we can select in constant time which child node to be traversed next. For
our case, we can do so by storing a perfect hashing table [12] in each regular node when α = logσ n. Later,
when α is set to log1+ε n/ log σ, we replace the hashing table by a modified Patricia tree (adapted from
Section 4.1 in [11]), where the length of all edges are a multiple of logσ n. As a result, the selection takes
O(logε n) time instead. Both schemes do not affect the overall space. Details are deferred to the full paper.

by a data structure of Theorem 1 for each regular node (with associated irregular
marked nodes). Consequently, we can modify Lemma 7 and obtain the following
theorem:

Theorem 4. Let {P1, P2, . . . , Pd} be d patterns over an alphabet of size σ, with total
length n. Suppose the patterns are stored separately in n log σ bits. We can construct
an index taking o(n log σ) + O(d log n) bits such that we can answer the dictionary
matching query for any input T in O(|T |(logε n + log d) + occ) time.

Proof. Finding the locus of all T (j) is done in O(|T | logε n) time. Reporting oc-
currences is done in O(|T |(logε n + log d) + occ) time. For the space, the compact

trie takes O(
∑d

i=1(|Pi|/α + 1) log n) bits, which is o(n log σ) + O(d log n) bits for
α = log1+ε n/ log σ. For the data structures of Theorem 1 in the regular nodes
(which have associated irregular marked nodes), they require O(d log n) bits in total.
Thus, the total space is o(n log σ) + O(d log n) bits.

Finally, for the patterns which are originally stored separately in its raw form (i.e.,
using n log σ bits), it can be stored in nHk + o(n log σ) bits for k = o(logσ n) using
the scheme proposed by Ferragina and Venturini [9], without affecting the time of
retrieving characters from any pattern. This gives the following corollary.

Corollary 5. For k = o(logσ n), the space occupied by the patterns and the index in
Theorem 4 is nHk + o(n log σ) + O(d log n) bits.

5 Concluding Remarks

We have applied a simple sampling technique to compress the existing suffix-tree-
based index for static dictionary matching, giving the first index whose space is
measured in terms of the kth-order entropy of the indexed patterns. An interesting
open problem will be: Can we extend the sampling technique to obtain a compressed
index for the dynamic dictionary matching problem? Specifically, can the space of
such index be measured in terms of nHk(D)?

References

[1] A. Aho and M. Corasick. Efficient String Matching: An Aid to Bibliographic
Search. Communications of the ACM, 18(6):333–340, 1975.

[2] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked Ancestor Problems. Technical
Report RS-98-16, Basic Research in Computer Science (BRICS), 1998. Extended
abstract appears in FOCS’98, pages 534–543.

[3] A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park. Dynamic Dictionary
Matching. Journal of Computer and System Sciences, 49(2):208–222, 1994.

[4] A. Amir, M. Farach, R. Idury, A. La Poutre, and A. Schaffer. Improved Dynamic
Dictionary Matching. Information and Computation, 119(2):258–282, 1995.

[5] H. L. Chan, W. K. Hon, T. W. Lam, and K. Sadakane. Compressed Indexes for
Dynamic Text Collections. ACM Transactions on Algorithms, 3(2), 2007.

[6] P. Ferragina and R. Grossi. Optimal On-Line Search and Sublinear Time Update
in String Matching. SIAM Journal on Computing, 27(3):713–736, 1998.

[7] P. Ferragina and G. Manzini. Indexing Compressed Text. Journal of the ACM,
52(4):552–581, 2005. A preliminary version appears in FOCS’00.

[8] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed Represen-
tations of Sequences and Full-Text Indexes. ACM Transactions on Algorithms,
3(2), 2007.

[9] P. Ferragina and R. Venturini. A simple storage scheme for strings achieving
entropy bounds. In Proceedings of Symposium on Discrete Algorithms, pages
690–696, 2007.

[10] R. Grossi, A. Gupta, and J. S. Vitter. High-Order Entropy-Compressed Text
Indexes. In Proceedings of Symposium on Discrete Algorithms, pages 841–850,
2003.

[11] R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with Ap-
plications to Text Indexing and String Matching. SIAM Journal on Computing,
35(2):378–407, 2005. A preliminary version appears in STOC’00.

[12] T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic Dictionaries. Journal
on Algorithms, 41(1):69–85, 2001.

[13] W. K. Hon, T. W. Lam, W. K. Sung, W. L. Tse, C. K. Wong, and S. M.
Yiu. Practical Aspects of Compressed Suffix Arrays and FM-index in Searching
DNA Sequences. In Proceedings of Workshop on Algorithm Engineering and
Experiments, pages 31–38, 2004.

[14] E. M. McCreight. A Space-economical Suffix Tree Construction Algorithm. Jour-
nal of the ACM, 23(2):262–272, 1976.

[15] G. Navarro and V. Mäkinen. Compressed Full-Text Indexes. ACM Computing
Surveys, 39(1), 2007.

[16] K. Sadakane. New text indexing functionalities of the compressed suffix arrays.
Journal of Algorithms, 48(2):294–313, 2003. A preliminary version appears in
ISAAC 2000.

[17] S. C. Sahinalp and U. Vishkin. Efficient Approximate and Dynamic Match-
ing of Patterns Using a Labeling Paradigm. In Proceedings of Symposium on
Foundations of Computer Science, pages 320–328, 1996.

[18] P. Weiner. Linear Pattern Matching Algorithms. In Proceedings of Symposium
on Switching and Automata Theory, pages 1–11, 1973.

[19] D. E. Willard. Log-Logarithmic Worst-Case Range Queries are Possible in Space
Θ(N). Information Processing Letters, 17(2):81–84, 1983.

