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ABSTRACT 

In this study, we first review the bifurcation phenomena in dynamic economic systems and point 

out the importance of bifurcations together with a summary of the common types of bifurcations 

which have been encountered in economic research. Although bifurcation analysis is a relatively 

new subject with steadily growing interest in economic literature, previous research reveals the 

potential importance of further studies on bifurcation using different dynamic models. 

 Therefore, we continue exploring the bifurcation phenomena in an open economy New 

Keynesian model developed by Gali and Monacelli (2005). We find that open economy 

framework brings about more complex dynamics, a wider variety of qualitative behaviors and 

policy responses. Introducing parameters related to the open economy structure affects the values 

of bifurcation parameters and change the location of bifurcation boundaries. Thus, the 

stratification of the confidence region, as often seen in closed economy New Keynesian models, 

is still an important risk to be considered in the context of the open economy New Keynesian 

functional structures. Econometrics and optimal policy design become more complex with an 

open economy. Dynamical inferences need to be qualified by the increased risk of bifurcation 

boundaries crossing the confidence regions and policy design needs to take into consideration 

that a drastic change in monetary policy can produce an unanticipated bifurcation, if the 

econometrics research was not adequate. 

Keywords: Stability; Bifurcation; Open Economy; New Keynesian; Determinacy; 

Macroeconomics; Dynamic Systems 
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CHAPTER I: 

BIFURCATION ANALYSIS IN DYNAMIC ECONOMIC SYSTEMS 

1.1 Introduction: 

Bifurcation analysis is a key tool for the analysis of dynamic systems in general and nonlinear 

systems in particular. When an exogenous (control) parameter of a dynamic system changes, 

qualitative behavior of the system may also change. For example, new fixed (equilibrium) points 

might emerge or current fixed points might disappear, or their stability properties (convergent vs. 

divergent, monotonic vs. damped, single periodic vs. multiperiodic, or chaotic) may change. 

These sorts of qualitative changes in a dynamic system are called bifurcations, and the values of 

the parameters at which these changes take place are called bifurcation points. 

 There exist an extensive literature on stability and bifurcation of systems in mathematics 

and engineering, despite the fact that it is a relatively new research area in economics. 

Nevertheless, interest in bifurcation analysis of dynamical economic systems has been increasing 

in order to understand the dynamic behavior of the systems and to find out possible dependence 

of the system‟s behavior on parameter values. Studying bifurcations provides information about 

the ocurrence and changes in stability of fixed points, limit cycles, and other solution paths, it 

helps model these changes and transitions from stable to unstable case or vice versa as some 

parameters change. Moreover, bifurcation analysis enables us to qualitatively estimate the 

behavior of trajectories without utilizing the solution of the underlying differential or difference 

equations. This is achieved by numerically approximating equilibrium solutions and their 

stability, even for problems that do not have analytic solutions. 
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1.2 Bifurcation Phenomena in Economics Literature: 

It has been shown that dynamical economic systems might go through various types of 

bifurcations. As Grandmont (1985) and Barnett and Duzhak (2008) points out, even simple 

dynamic economic systems may exhibit various types of dynamic behaviors within the same 

functional structure and may be stratified into bifurcation regions. In nonlinear dynamic systems, 

bifurcations may even yield a transition to chaos as the evolution to chaos is preceded by infinite 

stages of bifurcation.  

Most common types of bifurcations encountered in economic analysis include Saddle 

Node, Transcritical, Pitchfork, Flip and Hopf bifurcations. For instance, Pitchfork bifurcations in 

the tatonnement process by Scarf (1960) and Bala (1997) and in the Chamberlinian 

agglomeration model by Pflüger (2001), Transcritical and co-dimension two bifurcations in 

continuous time macroeconometric models by Barnett and He (1998, 1999a, 2002), Singularity 

bifurcations in Leeper and Sims‟ (1994) Euler equation macroeconometric model by Barnett and 

He (2006), Neimark-Sacker bifurcation in the Kaldor business cycle model by Dobrescu and 

Opris (2007) and in duopoly model by Agliari, Gardini, and Puu (2003), and Hopf bifurcations in 

growth and business cycle models by Benhabib and Nishimura (1979), Dockner and Feichtinger 

(1991), Nishimura and Shigoka (2006), Jia Xu et al. (2008), and Huang, Wang and Yi (2010) as 

well as in closed economy New Keynesian models by Barnett and Duzhak (2008, 2010) and in 

time-delayed model of asset prices by Qu and Wei (2010) are some of the bifurcation studies in 

economic literature. See also Puu (1991), Medio (1992), Lorenz (1993), Gandolfo (1996) and 

Zhang (2006) for a general treatment of nonlinear dynamics and bifurcation analysis in 

economics.  
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 Bifurcation analysis has been commonly utilized to study the dynamic behavior of a 

economic models. Analyzing bifurcation boundaries helps understand the dynamic properties of 

a system especially when the true parameter values are unknown. Barnett and He (1999a, 2002, 

2006) and Barnett and Duzhak (2008, 2010) point out that the existence of bifurcations in a 

dynamic system indicates the presence of different solutions corresponding to close parameter 

values in parameter space when these parameters are on different sides of the bifurcation 

boundary. Therefore, occurrence of bifurcation boundaries stratifies the parameter space. In this 

case, dynamic properties of the system can be quite different depending on the location of the 

parameter with respect to the boundary. As a result, robustness of inferences about dynamic 

properties of the system depends on the setting of such boundaries and the position of parameter 

values with respect to the boundaries. Bifurcation boundaries can be identified by investigating 

the eigenvalues of the Jacobian matrix and transversality conditions through numerical and 

analytical procedures, as we will do in this study. 

 Growth models and business cycles have been a popular source for bifurcation research 

in economics. Grandmont (1985) constructs a classical dynamical model based on an OLG 

model and established the conditions for coexistence of cycles over the periods and the Period 

Doubling bifurcations to occur in one-dimensional nonlinear dynamical systems. Medio and 

Negroni (1996), using a two-period overlapping generations (OLG) model, show that 

bifurcations causing cycles and chaos may happen depending on various parameters such as 

elasticities of utility functions, productivity coefficients and elasticity of substitutions between 

factors of production. Krawiec and Szydlowski (1999) apply the Hopf bifurcation theorem in the 

Kaldor-Kalecki business cycle model and they show that as the time-delay parameter is 

increased, the system bifurcates to limit cycle behavior, then to multiple periodic and aperiodic 
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cycles, and eventually tends towards chaotic behavior. Cai (2005) uses the Hopf bifurcation 

theorem to investigate the occurrence of a limit cycle bifurcation based on a time delay 

parameter in an IS-LM business cycle model. 

Barnett and He (1999a) investigate the stability of the Bergstrom, Nowman and Wymer 

(1992) continuous time macroeconometric model of the UK economy in cases of any change in 

the parameters of the model. They find both transcritical and Hopf bifurcations in the UK model 

in the parameter space of the model. Furthermore, they show that both types of bifurcations can 

coexist in the same subset of the parameter space. They also verify the presence of codimension-

two bifurcations in this model. Woodford (1989) points out that the presence of complex 

dynamics might strengthen the effectiveness of economic policy if there is an imperfection in 

markets. Knowing the location of bifurcation points is crucial to investigating policy responses 

of economic models. In fact, as Barnett and He (2002) emphasized, stabilization policies can be 

regarded as certain policy tools to move the system from an unstable state to a stable state, 

assuming that the initial situation is unstable.  

 Barnett and He (2006) use the Leeper and Sims‟ (1994) Euler equations 

macroeconometric model of the U.S. economy to see how parameter changes influence the 

dynamic behavior of the system and the economy it represents. They find a Singularity 

bifurcation within a small neighborhood of estimated values of parameters in the parameter 

space. When parameter values get close to the boundary, one eigenvalue of the linearized model 

jumps to infinity while other eigenvalues stay bounded. This implies an almost instantaneous 

reaction of some variables to variations of other variables in the system. 
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 Barnett and Duzhak (2008, 2010) analyze the bifurcation phenomenon using a closed 

economy New Keynesian model and they found both Hopf and Period Doubling bifurcations 

within the parameter space of the model. 

 As He and Barnett (2006) point out, Grandmont‟s (1985) findings indicate that the 

parameter space is stratified into bifurcation regions which involve different dynamical 

properties from monotonic stability to chaos and various forms of multiperiodic dynamics in 

between. Barnett and He (1998, 1999a, 2006), and Barnett and Duzhak (2008, 2010) confirm 

Grandmont‟s (1985) conclusions using macroeconomic models of the UK and the US 

economies, respectively. As Barnett and Duzhak (2008) indicate, Grandmont‟s views have 

important implications for macroeconometric models especially if bifurcation boundaries 

traverse the confidence regions for estimated values of parameters. The stratification of the 

confidence region into subsets separated by bifurcation boundaries affects the robustness of 

inferences about the dynamical system. 

 For the review of bifurcation analysis in macroeconomic models, the readers can also 

refer to Barnett and He (1998, 1999a,b, 2002, 2006) and Barnett and Duzhak (2008, 2010), 

which constitute the foundations upon which this study is built. Despite growing research interest 

in exploring the bifurcation phenomenon in economic systems, literature on this subject is still 

immature and needs an extensive study for a comprehensive understanding. In this study, we 

investigate the possibility of bifurcations in an open economy New Keynesian model developed 

by Gali and Monacelli (2005). It will help us extend the conclusions of Barnett and Duzhak 

(2008, 2010) and find out the differences between closed and open economy cases. 
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1.3 A Preliminary Review of Bifurcation Theory: 

Consider a discrete-time dynamic system in the following difference equation form 

 1 ,t ty f y            (1.3.1) 

with f  continuously differentiable at 
*y  where 

*y  is a solution to (1.3.1) given by 

 * *,y f y  , and   is the vector of parameters. 

An equilibrium *

1t ty y y   of the system (1.3.1) is called (Lyapunov) stable if 

0 0      such that *

0y y    implies * , 0ty y t    . An equilibrium point of the 

system (1.3.1) would be asymptotically stable if it is both stable and 0   such that 0y  with 

*

0y y   , the solution *

ty y  as t  . 

If we write the system (1.3.1) in constant-coefficient (i.e. time-invariant) linear form as 

1t ty Cy  ,         (1.3.2) 

where C  is the Jacobian matrix, then the system (1.3.2) is asymptotically stable at the 

equilibrium point if and only if 1i   for all eigenvalues i  with 1,2,...,i n . 

The fundamental question in local bifurcation analysis is what happens to the behavior of 

the dynamic system when there are some variations in a parameter  . As explained in Gandolfo 

(1996), the first step in the bifurcation analysis is to construct the Jacobian matrix of the system 

(1.3.1). The behavior of the solution of the system over time is governed by the sign and the 

absolute value of the roots. Thus, studying the stability properties of the system requires an 

investigation of the nature of the roots, even without having to compute them analytically.  

 In case of a hyperbolic equilibrium, the Jacobian matrix  *,C y   has no eigenvalues on 

the unit circle. If an equilibrium point is hyperbolic, then small perturbations in parameter values 
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do not cause any qualitative (structural) change in the system other than shifting the location of 

the equilibrium point. The qualitative structure of the system changes only if a variation in a 

parameter value causes an eigenvalue to reach the unit circle, i.e. 1i   for any i . In this case, 

the hyperbolicity disappears and a bifurcation emerges. In discrete dynamic systems, this 

instability may arise in three different forms of codimension-1 bifurcations: 

1. A real eigenvalue i  at 1i   leads to a steady-state bifurcation such as Transcritical, 

Saddle-Node or Pitchfork bifurcations. This is analogous to bifurcations which occur when 

0i   in continuous-time systems. 

2. A pair of complex-conjugate eigenvalues  ,  , crossing the unit circle with radius 

1R   (or crossing the imaginary axis of the complex plane in continuous case) gives rise to a 

Hopf (Neimark-Sacker) bifurcation. 

3. A real eigenvalue i  at 1i    leads to a Period Doubling (Flip) bifurcation. This form 

does not have an analog in continuous-time systems. 

 A Saddle-Node (Fold) bifurcation is known as the mechanism by which two fixed points 

of a dynamic system collide and then disappear. Lorenz (1993) presents an example of a Saddle-

Node bifurcation in a labor market model assuming a parameterized labor demand function and a 

backward bending labor supply function. Bosi and Magris (2005) examine fluctuations and fiscal 

policy in a monetary model of growth. They show that the stationary rate of growth can be 

uncertain for a broad range of elasticities of intertemporal substitution in consumption. They note 

that this range of the elasticity is bounded from below by a value that encounters a Saddle-Node 

bifurcation and eventually both multiple stationary rates of growth and cycles may emerge in the 

model. Chian et al. (2006), using a forced oscillator model of business cycles, examine the 
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behaviors of unstable periodic orbits and chaotic saddles which end up with a Saddle-Node 

bifurcation. Chiarella et al. (2004) analyze the financial market dynamics resulting from the 

actions of market players engaged in moving average rules and they establish the conditions for 

the occurrence of Saddle-Node bifurcations as well as for other types of bifurcations through 

changes in the reaction coefficient of some market players. 

In case of a Transcritical bifurcation, the only change happens in the stability feature of 

the fixed point 
*y  as the parameter   crosses over the bifurcation value 0  . Unlike the 

Saddle-Node bifurcation, the two fixed points do not vanish following the bifurcation event, but 

exchange their stability. Barnett and He (1998, 2002) find both Hopf and Transcritical 

bifurcations in Bergstom, Nowman and Wymer‟s (1992) continuous time macroeconometric 

model of the UK economy. Antinolfi et al. (2001) examine the dependence of an endogenous 

growth model on a parameter representing the degree of returns to scale and find that constant 

returns to reproducible factors of production is a Transcritical bifurcation point. Lorenz (1993) 

shows an example of a Transcritical bifurcation in a one-dimensional dynamical system based on 

neoclassical growth theory. 

In case of a Pitchfork bifurcation, as the parameter   traverses the bifurcation value 

0   at the fixed point 
*y , two additional equilibria appear, which are unstable if x* is stable 

and stable if x* is unstable. In the first case, it is said that the system goes through a subcritical 

pitchfork bifurcation at x*. In the second case, it is called a supercritical bifurcation. There are 

various studies which find Pitchfork bifurcations in economic dynamics. Bala (1997), for 

instance, find a Pitchfork bifurcation in the tatonement process of a two-agent, two-commodity 

exchange economy. Azariadis and Guesnerie (1986) find a Pitchfork bifurcation in sunspots of 

order two. They also find that sunspots of higher order may have more complex bifurcations. 
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In a Period Doubling (Flip) bifurcation, the system switches to a different behavior with 

twice the period (the time it takes for the recurrence of solution path) of the original motion once 

the bifurcation parameter is altered. For example, a period-2 cycle bifurcates from the fixed point 

or the period of a current limit cycle doubles up. This is considered a transition to chaos in 

nonlinear dynamic systems as a series of Period Doubling bifurcations drive the system to 

chaotic motion. Period Doubling bifurcation has no counterpart in continuous time systems. To 

detect possible Period Doubling bifurcations in the open economy functional structure, we use 

the algorithm developed by Yuri A. Kuznetsov et al., which is known as CL_MatContM. 

Assuming that certain conditions are satisfied, a Hopf (Neimark-Sacker) bifurcation 

emerges when a pair of complex conjugate eigenvalues goes over the unit circle (or the real part 

of the complex conjugate eigenvalues change sign by passing through zero in continuous time) 

upon a change in the control parameter. A limit cycle emerges from a fixed point while the fixed 

point changes stability. The bifurcation can be supercritical or subcritical depending on whether 

the emerging limit cycle is stable or unstable, respectively. This can be detected by performing a 

numerical experiment by increasing the value of the parameter after reaching the bifurcation 

value. If, for example, the limit cycle grows as we continue increasing the parameter value, it is 

called a supercritical Hop bifurcation. Hopf bifurcation, which causes a transition between 

stability and instability, is usually associated with oscillator behavor in the system. Hopf 

bifurcation can also be a trigger of the route to chaos. Since it was first introduced to economic 

literature by Torre (1977) for an IS-LM model, Hopf bifurcations have become a common 

subject for research and the Hopf bifurcation theorem has been widely used in the analysis of 

dynamic systems in economics literature. Foley (1989) examines the stability properties of 

closed orbits in a macroeconomic model that goes through endogenous financial-production 
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cycles. Feichtinger (1992) examines a two-state advertising diffusion model and shows that, 

under certain assumptions, the model exhibits persistent fluctuations in sales and advertising 

over time and undergo a Hopf bifurcation. Economic interpretation of the Hopf bifurcation 

depends on the specific model and parameters which are under investigation. As Kind (1999) 

points out, the stable closed orbits in the supercritical Hopf bifurcations might be attributed to the 

stylized business or growth cycles, while the subcritical Hopf bifurcation can be interpreted 

within the notion of Leijonhufvud‟s (1973) corridor stability. Benhabib and Nishimura (1979) 

and Medio (1986) establish the conditions for the occurrence of closed orbits in optimal growth 

models. Using the Hopf bifurcation theorem, Semmler (1986), considering a Minskyan 

macroeconomic model, shows that introducing external financial perturbation terms has 

destabilizing effects on the real variables and change the characteristics of limit cycles. Diamond 

and Fudenberg (1989) examine the rational expectations equilibrium paths of Diamond‟s “search 

and barter model” and they show that the model can exhibit a Hopf bifurcation, so that cycles 

occur for some parameter values. For some other studies on Hopf bifurcation in economics, see 

also Dockner and Feichtinger (1991, 1993), Feichtinger, Novak and Wirl (1994), Feichtinger and 

Sorger (1986), Zhang (1988, 1990), Franke (1992), Krawiec and Szydlowski (1999), 

Guckenheimer, Myers and Sturmfels (1997), Asada and Yoshida (2001) and Cai (2005). 

The readers who are seeking more detailed introduction on stability and bifurcation 

analysis can refer to Lorenz (1993), Strogatz (1994), Gandolfo (1996), Kuznetsov (1998), Elaydi 

(2005) and Zhang (2006), which were the main sources of this section. 
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CHAPTER II: 

OPEN ECONOMY NEW KEYNESIAN MODELS 

2.1 Introduction: 

New Keynesian models have been used to analyze the macroeconomic consequences of 

monetary policy rules in a variety and to investigate various policy issues. These models have a 

dynamic stochastic general equilibrium structure, and are incorporated with nominal rigidities, 

usually through staggered price and/or wage settings, as well as imperfect competition and 

various forms of market frictions. In such models, monopolistically competitive firms produce 

differentiated goods whose prices are set under Calvo-type price stickiness constraint. Monetary 

policy has non-trivial effects on real variables, which appears as both a stabilization tool and 

another source of instability for the economy. 

A standard New Keynesian model contains two behavioral equations, IS curve and New 

Keynesian (NK) Philips curve. The IS curve equation, which characterizes the demand side of 

the economy, formulates the the influences of the future output gap, and the real interest rate on 

the current output gap. The NK Philips curve equation describes the supply side of the economy 

and relates the current rate of inflation to the next period‟s expected rate of inflation and the 

current output gap. Both equations are derived from the optimization problems of economic 

agents, based on microeconomic foundations. The IS curve is derived from the Euler equation 

for the representative household‟s utility maximization problem and the NK Philips curve is 

derived from the pricing decision of a representative firm. Coefficients of these two equations 

are the functions of the deep parameters of the corresponding value functions. These two 

structural equations are accompanied by a monetary policy rule which formulates the setting of 

the nominal interest rate as a policy instrument whose value is determined based on the 
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movements in the inflation rate and the output gap away from their pre-specified target levels. 

Most central banks today employ the short term interest rate as the main policy instrument for 

the monetary policy. 

In recent years, there have been many studies extending the simple closed economy 

models to the open economy environment. Some contributions in the open economy literature 

include Ball (1998), Batini and Haldane (1999), Gali and Monacelli (1999), Svensson (2000), 

Obstfeld and Rogoff (2000), Corsetti and Pesenti (2000), McCallum and Nelson (2000), Clarida, 

Gali and Gertler (2001), Benigno and Benigno (2002), Batini, Harrison and Millard (2003), 

Laxton and Pesenti (2003), Smets and Wouters (2003), and Gali and Monacelli (2005). See also 

Lane (2001) and Walsh (2003) for a survey of open economy macroeconomic models. Regarding 

the review of and discussions about the New Keynesian models and the monetary policy rules, 

Walsh (2003) and Gali (2008) were the main sources being referred in this section. 

2.2 Model: 

In this study, we use Gali and Monacelli‟s (2005) model of a small open economy in New 

Keynesian tradition, which has been considered one of the mainstays of the New Keynesian 

literature in open economy environment. 

Gali and Monacelli (1999) develop a two-country version of the open economy model, 

which is also used as a baseline by Clarida, Gali and Gertler (2001, 2002). Unlike Gali and 

Monacelli (1999), Gali and Monacelli (2005) define the small open economy as “one among a 

continuum of infinitesimally small economies making up the world economy”, represented by 

the unit interval. Thus, domestic policy applications do not affect the other countries and the 

world economy. Each economy is assumed to have identical preferences as well well the same 

technology and market structure, although they might encounter different but imperfectly 
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correlated productivity shocks. Our bifurcation and determinacy analyses are built upon Gali and 

Monacelli‟s (2005) model. In this section, we shortly summarize some of the basic 

characteristics of the model and consider the linearized version of the model referring to Gali and 

Monacelli (2005) for derivations and the other details. For comparison with the closed economy 

case, we will consider the results from Barnett and Duzhak (2008, 2010), which utilize a 

standard New Keynesian model of closed economy based on Walsh (2003). 

Gali and Monacelli (2005) design a stylized model of the behaviors of consumers, firms 

and a policy maker. Both consumers and firms behave optimally so that consumers maximize the 

expected present value of their utility while firms maximize their profits. 

A representative consumer supplies labor and purchases consumption goods in the small 

open economy and maximizes 

 0 0
,t

t tt
E U C N



  

where tN  denotes hours of labor, and tC  is a composite consumption index defined by 

 
1 1 1 11

, ,1t H t F tC C C


  
  

 

   
   
  

. In the last expression,  
1 11

, ,
0

H t H tC C j dj


 


  
  
 
 denotes an 

index of consumption of domestic goods with  0,1j  representing the variety of goods and 

1 1
1

, ,
0

F t i tC C di


 


  
  
 
 
  is an index of imported goods with  

1 11

, ,
0

i t i tC C j dj


 


  
  
 
  being an index 

of the quantity of goods imported from country i . The parameter 1   denotes the elasticity of 

substitution between varieties produced within country i . The parameter  0,1   is inversely 

related to the degree of home-bias in preferences, hence represents a natural index of openness. 

As Gali and Monacelli (2005) states, the parameter   corresponds to the share of imports in 
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domestic consumption since price indices for domestic and imported goods are equal in steady 

state. Ried (2009) sets the boundaries of this parameter to 0 and 0.9, where the upper boundary 

implies a bias towards foreign goods. The larger   is, the smaller is the share of home-produced 

goods in domestic consumption. While 0.5   implies no home bias, 0.5   indicates a bias 

towards foreign goods. The parameter 0   denotes the elasticity of substitution between 

domestic and foreign goods, while   measures the substitutability between goods produced in 

different foreign countries. 

 Maximization of the consumer‟s objective function is subject to the following sequence 

of budget constraints: 

         
1 1 1

, , , , , 1 1
0 0 0

H t H t i t i t t t t t t t t tP j C j dj P j C j djdi E Q D D W N T         

for 0, 1, 2,...t  , where  ,i tP j is the price of variety j imported from country i. 1tD  is the 

nominal pay-off in period 1t   of the portfolio held at the end of period t (which includes shares 

in firms), tW  is the nominal wage, and tT  denotes lump-sum transfers/taxes. 
, 1t tQ 

 is the 

stochastic discount factor for one-period ahead nominal pay-offs received by domestic 

households. As described in detail by Gali and Monacelli (2005), the utility maximization 

problem yields the following dynamic (intertemporal) IS curve equation which is a log-linear 

approximation to the Euler equation: 

 
 1 1

1 1
t t t t t t tx E x r E r

 



 

 
    ,      (2.2.1) 

where tx  is the gap between actual output and flexible-price equilibrium output, 

   
 

 *

1

11
1 1t a t t tr a E y



 

 

 
    

   


   
         

    
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is the small open economy‟s natural rate of interest,  
1

1   


    and 

  1 1        are composite parameters. The lowercase letters denote the logs of the 

respective variables, 
1 1     denotes the time discount rate, and logt ta A  is the log of 

average product of labor. The negative coefficient on the interest rate in the IS relationship 

(2.2.1) reveals intertemporal substitution effects on consumption. As Woodford (2008) points 

out, the monetary policy decisions have impacts on the aggregate expenditure through the 

changes in the intertemporal substitution between expenditure in periods t  and 1t  . Note that 

there is no demand disturbance such as a taste shock in equation (2.2.1). Nevertheless, the 

absence of disturbance terms do not change the bifurcation analysis in our case since we only 

consider the Jacobian matrix of the endogenous variables, i.e. the output gap and the inflation 

rate. 

Gali and Monacelli (2005) note that the fundamental difference between closed and open 

economy versions of the IS relationship is the fact that the elasticity of demand with respect to 

the real interest rate is no longer equal to the elasticity of intertemporal substitution, 1   in the 

open economy framework. Instead, it equals to  1 11       , which depends on the 

openness of the economy through   as well as 0   and   through the definition of  . 

Defining 
1

real

t t t tr r E    as the one-period real interest rate and then recursively solving 

the equation (2.2.1) forward gives 

 0 0

1 real

t t t i t t ii i
x E r E r



 

  
    .     (2.2.2) 

This expression shows that the current and future values of the real interest rate and natural rate 

determine the current output level. 
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The representative firm hires labor and produces differentiated goods under monopolistic 

competition. Firms set prices in a staggered way so that each period only a fraction 1   of 

randomly selected firms are permitted to change their prices. This price stickiness is due to Calvo 

(1983).   is a measure of the degree of price rigidity. When 0  , all firms are able to adjust 

their prices according to the conditions in every period. The larger the parameter  , the fewer 

the firms are able to adjust their prices each period and the longer the time period between price 

adjustments for the representative firm. The problem of the representative firm j  while resetting 

the price in period t  is to maximize the expected present value of its dividend stream contingent 

on the new price, that is 

  
,

, ,0
max

H t

k n

t t t k t k H t t kP k
E Q Y P MC



  
 
   

subject to the following demand constraint that firm j  faces 

     
1

,

, , ,
0

,

H t i d

t k H t k H t k t k H t

H t k

P
Y j C C di Y P

P



   



 
    
 

 , 

where    t t tY j A N j  is the linear production function with constant returns to scale and ,H tP  

denotes the newly set domestic prices. 
 1 tn

t

t

W
MC

A


  is the nominal marginal cost with   

being the constant employment subsidy which counterbalances the distortions due to the firms‟ 

market power and the monetary authority by influencing the terms of trade in favor of domestic 

consumers, in order to make the flexible price equilibrium allocation efficient. 

 This maximization problem of the representative firm yields, after some algebra, the 

aggregate supply curve, often called the New Keynesian (NK) Philips curve equation in log-

linearized form: 
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 
1

1 1
t t t tE x


    

 


 
      

      (2.2.3) 

where 
  1 1 




 
 , and   1 1       . 

By definition, the composite parameter         where 
 1






 


 
, i.e. 

the impact of the output gap on the inflation rate, depends on the structural parameters 

, , ,     and  . A decrease in  , or   results in a decrease in  , hence inflation becomes 

less sensitive to the output gap.  

The New Keynesian Philips curve implies that the current inflation rate is a function of 

the output gap (or the real marginal cost) and the next period‟s expected inflation. As can be seen 

from equation (2.2.3), in open economy framework, the degree of openness, the substitutability 

between domestic and foreign goods, the terms of trade and world output are the factors that 

influence the rate of inflation.
1
 

Solving equation (2.2.3) forward, we obtain, 

0

i

t t t ii
E x  




           (2.2.4) 

which says that the current inflation is the present discounted sum of future deviations in the 

output level from the flexible price level. According to (2.2.4), the real driving force of inflation 

dynamics appears to be the output gap. The output gap can be related to the domestic real 

marginal cost according to  t tmc x   . As Gali and Monacelli (2005) states, in open 

                                                 
1
 Note that we do not consider any policy tradeoff between pursuing a stabilized inflation (which is 

reflected as a zero inflation in the steady state) and stabilized output (which is reflected as a zero output gap) in our 

study. That would require adding a disturbance term into to the NK Philips curve equation. For a detailed discussion 

of the subject, see, for example, Gali (2008) or Walsh (2003). 
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economy framework, its influences on employment (captured by  ), and the terms of trade 

(captured by  ) are the main channels that the domestic output affects the marginal cost. Notice 

that the composite parameter   is also a function of the deep parameters, the degree of 

openness and the substitutability between domestic and foreign goods. The parameter   denotes 

the elasticity of labor supply. The higher  , the lower the elasticity. In a particular case, 0   

and/or 1      implies    and 1  . In this case, the domestic real marginal cost is 

not affected by the movements in foreign output, and the economy reaches balanced trade (i.e. 

0tnx  ). Then, the slope coefficient is given by      as in the closed economy New 

Keynesian Philips curve. 

As pointed out by Gali and Monacelli (2005), the degree of openness   has effects on 

the dynamic behaviors of domestic inflation through its impact on the the slope of the New 

Keynesian Phillips curve which measures the reaction of the inflation to any change in the output 

gap.  

Although the structure of the open economy model, consisting of equations (2.2.1) and 

(2.2.3), is isomorphic to the closed economy version, both models differ in the functional 

construction of parameters. The parameters of the open economy model in Gali and Monacelli 

(2005) depend on factors which are exclusive to the open economy such as the degree of 

openness, the terms of trade, the substitutability among goods of different origin and the world 

output that is exogenously determined. 

The model is closed by adding a simple (i.e. non-optimized) monetary policy rule 

conducted by the monetary authority: 

t t t x tr r x              (2.2.5) 
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where the coefficients 0x   and 0   measure the sensitivity of the nominal interest rate to 

changes in output gap and inflation rate, respectively. Bullard and Mitra (2002) suggest 

0 4x   and 0 10   for policy analysis. The third equation prevents the indeterminacy 

problem and allows for having a unique optimum equilibrium. In its particular form, the policy 

rule (2.2.5) is called the Taylor rule (Taylor 1993). Various variations of the Taylor rule are often 

employed to design the monetary policy in empirical DSGE models. 

 According to equation (2.2.5), the central bank utilizes the nominal interest rate as policy 

tool in order to implement the necessary monetary policy to encounter the variations in inflation 

and/or output gap with respect to their target levels.  

Equations (2.2.1) and (2.2.2), in combination with a monetary policy rule such as (2.2.5) 

constitute a small open economy model in New Keynesian tradition. Like the closed economy 

counterpart, a standard open economy approach assumes long run neutrality, meaning that due to 

nominal rigidities monetary policy may have real effects on output, exchange rate and interest 

rate in the short run, while as the adjustment of wages and prices take place, the long run effect 

falls on the prices creating a nominal affect in the long run. 

Complete financial markets (no frictions), constant, exogenous world interest rate, fully 

flexible exchange rates, complete exchange rate pass-through of nominal exchange rate changes 

to import prices, and law of one price are some of the assumptions made by Gali and Monacelli 

(2005) regarding the construction of the model. They also assume that in steady state purchasing 

power parity holds, real interest rate differential reverts to zero mean, trade is balanced, and 

nominal interest rate equals to the natural rate of interest. 

Galí and Monacelli (2005) use Canadian data for their numerical analysis as it is 

considered an ideal “prototype small open economy" because of its relative size and proximity to 
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the U.S. as well as its close economic ties with this country. Numerical values for the parameters 

in our study were chosen in line with those of the Gali and Monacelli (2005). Given that one 

period in the model corresponds to one quarter of a year, the (quarterly) discount factor is set at 

0.99  , which implies a steady state interest rate of 4 % per annum in the quarterly model. 

Empirically, the values of   between 0.90 and 1 are considered reasonable. The elasticity of 

substitution between domestic and foreign goods,  , typically takes values close to unity, as in 

Gali and Monacelli (2005) but some authors suggest values as high as 20, such as Obstfeld and 

Rogoff (2000b). Ried (2009) suggest   being between 1 and 12. 1   implies trade balance 

while an elasticity higher than unity means that home and foreign goods are highly substitutable. 

Engel (2000) argues that international substitutability must be lower than intranational 

substitutability. For the risk aversion parameter,  , which is also the inverse of the intertemporal 

rate of substitution, Gali and Monacelli (2005) use 1  , although in the literature, it is allowed 

to be between 0 and 2 and as much as 10 as pointed out by Ried (2009). Gali and Monacelli 

(2005) choose the import share   equal to 0.4 which corresponds roughly to the Canadian 

import/GDP ratio. A degree of openness parameter close to zero is consistent with the small 

economy assumption. The Calvo sticky price parameter   is assumed to be identical across 

countries and is set to 0.75 which implies a price duration of four quarters,  1 1 4  , on 

average. The composite parameter   is taken as 0.34 approximately by Gali and Monacelli 

(2005). The labor supply parameter,  , equals 3 which implies a Frisch labor supply elasticity of 

1/ 3. Gali and Monacelli (2005) assume zero trade cost. In order to show the implications of the 

open economy environment through the deep parameters, we use the explicit expressions of the 

composite structural parameters of the model. 



21 

 

CHAPTER III: 

 STABILITY AND BIFURCATION ANALYSIS 

As Gandolfo (1996) elaborately explains, the existence of a bifurcation around a fixed point *y  

of a dynamic system such as (1.3.1) can be pinned down by checking the eigenvalues of the 

Jacobian matrix  *,C y   computed at the fixed point. For a map, a bifurcation will occur when 

there are eigenvalues  *,C y   on the unit circle. For a flow, it will occur when there are 

eigenvalues on the imaginary axis. The next problem is to identify the type of the bifurcation 

emerged in the system due to perturbations of the coefficients. This is done by checking the 

transversality conditions. 

In order to determine if a Hopf bifurcation exists in the Gali and Monacelli Model, our 

methodology is that of Gandolfo (1996) and Barnett and Duzhak (2008, 2010). We first evaluate 

the Jacobian of the system at the equilibrium point 0t tx    for all 1,2,...t  , and then check if 

the conditions of the Hopf Bifurcation Theorem are satisfied. For two dimensional systems, we 

apply the existence part of the Hopf Bifurcation Theorem given in Gandolfo (1996, page 492): 

Theorem 1: Consider a two-dimesional map  ,y f y  , 
2y ,   . Assume that for 

each  , there exist a local fixed point  * *y y   in the relevant interval at which the 

eigenvalues of the Jacobian matrix evaluated at   * ,y    are complex conjugates 
1,2 a ib    

and satisfy the following properties: 

i) 
2 2

1 2 1a b      , with 1i   for 1,2i  .    (3.1) 

where i  is the modulus of the eigenvalue i . 
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ii) 
 

0

0
d

d
 

 




 ,         (3.2) 

Then, the system has a periodic solutions and a Hopf bifurcation occurs at 0  .
2
 

The first condition says that the eigenvalue should actually step on the unit circle while 

crossing over it. The second condition (transversality condition) implies that the eigenvalue 

crosses the unit circle with nonzero speed with respect to the bifurcation parameter, that is it 

should be a smooth crossing over the unit circle with no jump or disconnection. Theorem 1 is 

valid only for two dimensional systems. It is not applicable for the dynamic systems in higher 

dimensions. In fact, presence of a Hopf bifurcation in a three dimensional system, for example, 

requires a pair of complex conjugate eigenvalues on the unit circle and one real-valued 

eigenvalue lying outside the unit circle. The following theorem from Wen, Xu and Han (2002) 

states the conditions for the existence of a Hopf bifurcation in a three dimensional dynamic 

system. 

Theorem 2: Consider a 3x3 matrix C having a third order characteristic polynomial in the 

following form: 

3 2

2 1 0 0a a a      . 

The matrix C has a real negative root outside the unit circle and a pair of complex 

conjugate eigenvalues on the unit circle if and only if the transversality condition 

 

*

0

j j

i

j
 

 








         (3.3) 

holds and the following conditions are satisfied: 

i) 0 1,a            (3.4) 

                                                 
2 See Lorenz (1993) for an alternative but still straightforward version of the Hopf Bifurcation Theorem. 
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ii) 0 2 21a a a   ,         (3.5) 

ii) 2

1 0 2 01a a a a   .         (3.6) 

The expressions (3.4)-(3.6) are the conditions for the pair of complex conjugate 

eigenvalues to lie on the unit circle at  0*,y  , while (3.3) states that the pair of complex 

conjugate eigenvalues should cross the unit circle at a nonzero speed. We use Theorem 2 for 

analyzing the Gali and Monacelli Model in three dimension. The same theorems were employed 

by Barnett and Duzhak (2008, 2010) for the closed economy New Keynesian models. We follow 

Barnett and Duzhak (2008, 2010) to derive the conditions for the existence of Hopf bifurcation 

and to construct and interpret the bifurcation boundary diagrams. 

For the numerical analysis, we follow the methodology developed by Govaerts et al. 

(2008). Consider the iteration      : ...i if y f y f f f y   that gives rise to a sequence of 

points 1 2 3 1, , ,..., iy y y y y  , in which  1 1

i

iy f y  . Given the i
th 

iterate of the equilibrium point, 

  0if y y  , in order to identify bifurcations, we look at the eigenvalues of the Jacobian 

matrix    , ,yC y f y   along the equilibrium curve  , 0f y    with 
ny  and    and 

through CL_MatcontM software, we check the following test functions according to Govaerts et 

al. (2008): 

1.    ( ) ( )

1 , det i i

mg y C C I   , 

where  1 2m n n  , ( )iC  is the Jacobian matrix of iterated map 
if  and  is the bialternate 

matrix product. 

2.    ( )

2 , det i

ng y C I   . 

3.  3 1, ng y v  . 
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where v  is the tangent vector to the equilibrium curve in the  ,y  -space. 

4.  4 , det
Y

T

F
g y

v


 
  

 
, 

where  ,i

YF f y y  . 

Then, using the test functions, we can detect the codimension-1 bifurcations and 

branching points located as regular zeros of the above test functions, namely for Hopf, 3 0g  ; 

for Period Doubling, 2 0g  ; for Limit Point, 1 0g   and 4 0g  ; for branching point, 4 0g  . 

In this section, we consider varying the timing of the monetary policy rule and we run 

determinacy and bifurcation analyses for each case, following Barnett and Duzhak (2008, 2010). 

We will consider contemporaneous, forward and backward looking policy rules as well as their 

hybrid combinations. We derive analytical results and present numerical simulations for each 

case. 

3.1 Gali and Monacelli Model Under Current Looking Policy Rules: 

3.1.1 Under Current Looking Taylor Rule: 

Following Barnett and Duzhak (2008, 2010), we start with a standard contemporaneous 

specification. Consider the following model in which the first two equations describe the 

economy while the third equation is the monetary policy rule followed by the central bank: 

 
1

1 1
t t t tE x


    

 


 
      

      (3.1.1) 

 
 1 1

1 1
t t t t t t tx E x r E r

 



 

 
          (3.1.2) 

t t t x tr r x              (3.1.3) 
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where tx  denotes the output gap, t  is the inflation rate, and tr is the nominal interest rate. tE is 

the expectation operator. Equation (3.1.3) describes the policy rule as a current looking Taylor 

rule in which the interest rate is set according to the current inflation rate and the current output 

gap. The policy parameters   and x  measure the central bank‟s response to changes in 

inflation and output gap, respectively. As mentioned before, there is no exogenous shock.  

In order to avoid singularity, we substitute (3.1.3) into (3.1.2) for t tr r , and we obtain a 

first order stochastic system of two difference equations in terms of the domestic inflation and 

the output gap: 

 
1

1 1
t t t tE x


    

 


 
           

 (3.1.4)

 

 

 
 1 1

1 1
t t t t x t t tx E x x E

 
   


 

 
         

 Note that the structure of system (3.1.4) is identical to the standard New Keynesian model 

of a closed economy. Clearly, 0t tx    for all t constitutes an equilibrium solution to the 

system (3.1.4). Hence, at the equilibrium, inflation rate is zero since the price level is not 

changing, that is 
*

1

1t

t

P

P

 , and the output gap is zero since equilibrium output level will be at the 

flexible price level. 

Rearranging the terms, the system can be written in the form 1t t tE y Cy  , 

  
    

 

1

1

1 1 1
1 1 1

1

1 1

x

t t t

t t t

E x x

E

    
 

  

  


   





    
     

     
    

            

 (3.1.5) 
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The system in (3.1.5) is in normal form in the sense that each equation has only one 

unknown variable evaluated at time 1t  . Conditional upon the nonsingularity of the matrix C, 

the dynamic behavior of the system is governed by the eigenvalues of the coefficient matrix 

1C A B  in (3.1.5). The characteristic equation of the coefficient matrix is given by: 

  2

1 0 0p a a              

where, 

   
0

1 1 1x
a

 
    

 

   
   and, 

 
  1

1
1 1

x
a

   
 

 

  
      (3.1.6) 

Eigenvalues of the Jacobian matrix of the system (3.1.5) are the roots of the characteristic 

polynomial, given as 

2

1,2 1 1 4x x x      

  

         


  

          
         
     

  

where 
 1 1




  

 

 
     

, and 
 1 1






 


 
. 

In order to make sure that 0t tx  
 
is the only solution, we need to check the 

determinacy properties of the model (3.1.5). For the uniqueness and the stability of the 

equilibrium, both eigenvalues must be outside the unit circle. Note that there are two non-

predetermined (endogeneous) variables: The inflation rate, t , and the output gap, tx . There is 

no predetermined variables. Following Blanchard and Kahn (1980), the system has a unique, 

stationary equilibrium solution for inflation and output gap if and only if the number of 

eigenvalues of the 2x2 matrix C that lie outside the unit circle is equal to the number of forward 

looking (non-predetermined) variables which is two ( 1t tE x   and 1t tE   ). If, however, the 

number of eigenvalues outside the unit circle is less than the number of non-predetermined 
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variables, then the equilibrium is called locally indeterminate. Hence, determinacy requires that 

both eigenvalues of the coefficient matrix C are outside the unit circle (i.e. eigenvalues have 

modulus greater than one). Following Bullard and Mitra (2002), Proposition (3.1.1) establishes 

the necessary and sufficient conditions for the coefficcient matrix C to have both eigenvalues 

outside the unt circle, which implies a unique equilibrium solution.  

Proposition 3.1.1. Given the monetary policy based on the current looking Taylor rule, the open 

economy New Keynesian model (3.1.5) has a unique stationary equilibrium if and only if 

 

   

1

1 1 1 1
x 

  
   

   

 
         

     (3.1.7) 

and 

   
 

1 1 0
1 1

x 


    

 

 
        

.     (3.1.8) 

Proof: Following the procedure suggested by J.P. Lasalle (1986, p.28) and Bullard and Mitra 

(2002), both eigenvalues would be outside the unit circle if and only if 

0 1a    or 01 0a           (3.1.9) 

1 01a a   or 1 01 0a a           (3.1.10) 

We need to show that the inequalities (3.1.9) and (3.1.10) are satisfied. Condition (3.1.9) 

implies the inequality (3.1.7). Condition (3.1.10), on the other hand, implies the inequality 

(3.1.8).            

First note that if 0  , then the determinacy conditions of the model (3.1.5) reduces to 

the condition for the closed economy counterpart. Condition (3.1.7) is trivially satisfied since 

 0,1  . Notice that 0x   and 1   satisfy the condition (3.1.8) and is sufficient (although 

not necessary) for the system to have a unique equilibrium. So, the determinacy of the system 
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depends upon the policy parameters x  and   both. Since , 0x     by assumption , the 

determinacy condition (3.1.8) holds if 1  , although the condition 1   can be relaxed a 

little if x  is large enough. Hence, a unique, stationary equilibrium can be achieved through an 

active interest rate policy satisfying the Taylor Principle so called by Woodford (2001, 2003b) 

and Bullard and Mitra (2002). Taylor Principle requires that the nominal interest rate must be 

raised more than the increase in inflation rate so that the real interest rate increases. As a result, 

open economy framework has no impact on determinacy condition under current looking Taylor 

rule. For any value of   and  , following an active monetary policy is sufficient for the 

equilibrium determinacy. 

The uniqueness of the equilibrium solution can be checked by computing the eigenvalues 

of the Jacobian matrix. For the baseline values of the parameters, the Jacobian matrix of the 

system (3.1.5) is 

1.4684 0.4899

-0.3434 1.0101
C

 
  
 

 

with eigenvalues 1 1.2393 + 0.3402i   and 2 1.2393 - 0.3402i  , and with modulus 

   
2 2

1.2393 0.3 1.2852 140R    .
3
 Note that the system has a pair of complex conjugate 

eigenvalues with modulus greater than one. Since the number of eigenvalues outside the unit 

circle is equal to the number of forward looking variables, there exists a unique solution of the 

system. Figure (3.1.1) illustrates the regions of the determinate and indeterminate equilibria in 

                                                 
3
 The equilibrium at the origin is a stable spiral point (focus), and is asymptotically stable. Since the complex eigenvalues are 

greater than one in modulus (R > 1), the amplitude of the sinusoids decays at the rate 
jR  as j  . Then, dynamic 

multiplier follows a pattern of decreasing oscillation whose frequency is defined by  
1.2393

cos 0.9644
1.2851

a

R
     or 

   1 1cos cos 1.2393/1.2851 15.3426a R     . Hence, the cycles associated with the dynamic multiplier function have a 

period of 2 2*3.14159
0.409524

15.3426




  , which are the peaks in the pattern appear about a half period apart. 
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 ,t tx  -space as implied by the condition (3.1.8). Geometrically, as shown in Figure (3.1.1), the 

determinacy region is characterized by an upper bound and a lower bound for   as a function of 

x  as formulized by Proposition (3.1.1). 

Figure 3.1.1: Determinacy region under the current looking Taylor rule. 

 

At the point where    
 

1 1 0
1 1

x 


    

 

 
        

, the system has a 

branching point that can be investigated by varying   freely as shown by Barnett and Duzhak 

(2008). Using the calibration values of the parameters given in Gali and Monacelli (2005), we 

can solve the equation for   
which gives 0.985437  . Thus, the system will have a 

branching point at the value 0.985437  , which is just another way of saying that a 

bifurcation occurs here, but may not be one of the standard types of which we usually encounter 
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in economic models. Some authors, however, distinguish both terms and prefer “bifurcation” for 

cases where branching is induced by varying external parameters.
4
 

In order to examine the nature of the eigenvalues, we need to check the sign of the 

discriminant 2

1 04a a   . If the discriminant of the quadratic equation is strictly negative, that 

is if 

2

1 0

2

4

1 4 0x x

a a

    

 

      

 

  

      
      
        

(3.1.11)

 

where 
 1 1




  

 

 
     

, and 
 1 1






 


 
, then the roots are complex conjugate 

numbers in the form 
1,2 a ib   , with ,a b , 0b   is the real part, while 1i     is the 

imaginary unit. 

Regarding the model (3.1.5), it is algebraically quite cumbursome to identify the sign of 

the modulus of the eigenvalues. Using the baseline values of the parameters, however, it is easy 

to verify that the discriminant   is strictly negative. Therefore, the eigenvalues of the system 

(3.1.5) are complex conjugate, 
1,2 a ib    , 

where 

1 1 1
1

2 2 2 2

x xa
a    

 

     

 

      
       

   
    (3.1.12) 

and  

2

1
4 1

2 2

x xb     

 

      

 

       
      

   
    (3.1.13) 

                                                 
4 See, for example, Buono, Lamb, and Roberts (2008). 
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with 
 1 1




  

 

 
     

, and 
 1 1






 


 
. 

In order to verify the existence of a Hopf bifurcation, we need to apply Theorem 1. Using 

Theorem 1, the conditions for the existence of the Hopf bifurcation in the system (3.1.5) is 

presented in the following Proposition. 

Proposition 3.1.2: The system (3.1.5) undergoes a Hopf bifurcation if and only if 0   and 

 

   
*

1

1 1 1 1
x 

  
   

   

 
        

.      (3.1.14) 

Proof: Suppose the system (3.1.5) goes through a Hopf bifurcation at  **, xy  , where 

 * *, *y x  . Then we need to show that 0   and 
 

   
*

1

1 1 1 1
x 

  
   

   

 
        

. 

The existence of a Hopf bifurcation, by definition, requires a pair of complex conjugate 

eigenvalues on the unit circle. For the eigenvalues to be complex conjugate, the discriminant 

must be strictly negative, that is 0  .  

For the second part, note that the existence of a Hopf bifurcation requires 

    2 2

1 2mod mod 1a b       by the first condition of Theorem 1. Rewriting the 

condition explicitly by substituting (3.1.12) and (3.1.13) into it, taking the square of both sides 

and then solving for x , we obtain the critical value of the parameter as in (3.1.14). Therefore, 

the first condition of Theorem 1 holds only if
 

 

   

1

1 1 1 1
x 

  
   

   

 
        

. 

From the other side, suppose 0   and 
 

   

1

1 1 1 1
x 

  
   

   

 
        

. 

Substituting for 
*

x  
into 2 2a b  yields    1 2mod mod 1   , which is the first condition in 
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Theorem 1. In order to show that the critical value of the parameter x  is actually a Hopf 

bifurcation parameter, we check the second condition in Theorem 1, which gives 

 
   

**

2 2
1 1

0
2

x xx x

i x

x x

d d
a b

d d
  

   

  


 
     for 1,2i  . 

Thus, both conditions of Theorem 1 are satisfied and we have
 

 

   
*

1

1 1 1 1
x 

  
   

   

 
        

 .      

Proposition (3.1.2) shows that taking the parameter x  free to vary and keeping the other 

parameters constant, the system (3.1.5) is likely to undergo a Hopf bifurcation at *

x . In the 

closed economy case, the corresponding value of the bifurcation parameter is 

 * 1x        as given by Barnett and Duzhak (2008). Note that, for 0  , Proposition 

(3.1.2) gives the same result as the closed economy counterpart. As pointed out in Gali and 

Monacelli (2005), while “the closed economy model is nested in the small open economy model 

as a limiting case”, both versions differ basically in two aspects: First of all, some coefficients of 

the open economy model depends on the parameters that are exclusive to the open economy 

framework such as the degree of openness, terms of trade and substitutability between domestic 

and foreign goods. The degree of openness affects the inflation dynamics via its impact on the 

slope coefficient of the New Keynesian Philips curve equation which measures the inflation 

response to the changes in the output gap. For 0  , the coefficient of the output gap in the 

Philips curve equation becomes        as in the closed economy form of the Philips 

curve equation. Openness also affects the responsiveness of the output gap to the changes in 

interest rate through the dynamic IS equation. Secondly, the natural levels of output and interest 
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rate depend upon both domestic and foreign disturbances in addition to openness and terms of 

trade. 

Figure 3.1.2: Phase diagrams indicating a Hopf bifurcation 
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 Furthermore, we numerically examine the Jacobian matrix of the system (3.1.5), keeping 

the structural parameters and the policy parameter   
constant at their baseline values while 

varying x  over a certain range. Although the parameter x is assumed to be non-negative, it is 

worth mentioning what happens for negative values of it. For -0.52 0x  , the Jacobian matrix 

has complex eigenvalues with radius greater than one, hence the equilibrium is a stable spiral. At 

0.52x   , complex conjugate eigenvalues has radius 1 implying a limit cycle that occurs at the 

bifurcation point. When an orbit gets inside the limit cycle it then settles to the stable equilibrium 

point. For 1.154 < -0.52x  , the Jacobian matrix has complex conjugate eigenvalues with 

radius smaller than unity, which implies that the equilibrium is an unstable spiral. So, 0.52x    

is a Hopf bifurcation parameter, which is not in the feasible subset of parameter space of x . 

Hence, the limit cycle and periodic behaviors can only be encountered through parameter values 

that are not feasible. Figure (3.1.2) illustrates different phase plots for the system (3.1.5). In the first 

plot, the solution path is an unstable spiral which happens for x = -0.50 and higher values. The 
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system is still unstable at x =0.2 and diverges very quickly from the initial point for x = 0.2. 

There exists a divergent path for larger values of x  up to x =12. The second diagram illustrates 

a limit cycle at x = -0.52, while the third one shows a stable spiral at x = -0.70. 

Our numerical analysis also indicates the existence of a Period Doubling bifurcation at 

2.427x   , given the benchmark values of the parameters as given in Gali and Monacelli 

(2005). For 2.4271 1.154x    , both eigenvalues are real and inside the unit circle. At 

2.4271x   , we have 1 1    and 20 1  . Thus, 2.4271x    is a Period Doubling 

bifurcation parameter value. For 2.4271x   , we have 1 1    and 20 1  . This implies 

multiple equilibria as the number of of eigenvalues outside the unit circle is less than the number 

of non-predetermined variables.
5
 

As a result, we numerically find a Period Doubling bifurcation at 2.43x    and a Hopf 

bifurcation at 0.52x   . Decreasing the value of   results in a higher value of bifurcation 

parameter value in absolute value, except when 0   at which changes in   does not make any 

difference. On the other hand, decreasing the value of   results in a lower value of bifurcation 

parameter value in absolute value, except when 1   at which changes in   does not make any 

difference.  

Numerical computations indicate that the monetary policy rule (3.1.3) should have 

* 0x   for a Hopf or Period Doubling bifurcation to occur. This means that the feasible subset of 

the parameter space does not have a risk of bifurcation. The negative coefficient for (y-y*) 

indicates a procyclical monetary policy, i.e., rising interest rates when the output gap is negative 

                                                 
5 See Blanchard and Kahn (1980). Assuming that 

1 2
,   lie in the complex plane, one eigenvalue is inside and the other one is 

outside the unit circle if and only if  
1 2 1 2

1      . For the calibrated values of the parameters this condition is met.  
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or vice versa. Schettkat and Sun (2009) state that various situations such as exchange rate 

stabilization or an underestimation of the potential output level may explain such a result, but 

otherwise it is difficult to rationalize a negative policy parameter. There is a large volume of 

literature trying to explain procyclicality in monetary policy. Demirel (2010), for example, 

shows that the existence of country spread may help explain how optimal fiscal and monetary 

policies can be procyclical. Schettkat and Sun (2009) claim that the Bundesbank responds to the 

changes in output gap asymmetrically in different economic situations. In some cases, the Bank 

did not pursue active policies against recessions. Leith, Moldovan and Rossi (2009) argue that in 

case of superficial habits and under the benchmark value of θ = 0.65 of the degree of habit 

formation, the optimal simple rule implies a negative response to the output gap and a perverse 

policy response to output gap and inflation induce an instability in the model. 

Figure 3.1.3: Phase diagram indicating a Hopf bifurcation under the current looking Taylor 

Rule
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 Inner trajectory for x = -0.70, limit cycle for x = -0.52 , outer trajectory x = -0.45 
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Phase diagram in Figure (3.1.3) illustrate a Hopf bifurcation under the current looking 

Taylor Rule. Notice that there is only one periodic solution and other solutions diverge from the 

periodic solution as t→∞. In this case, the periodic solution is called an unstable limit cycle. 

Based on our findings, under current looking Taylor rule, we can say that procyclical 

monetary policy gives rise to bifurcations which stratify the confidence region in the parameter 

space of x . Counter-cyclical monetary policy would be bifurcation-free and would yield a more 

robust confidence region for the paramater space.  

On the other hand, we may obtain similar analytic results for the parameter   being a 

potential source of bifurcation as formulized by the following Proposition. 

Proposition 3.1.3: The system (3.1.5) undergoes a Hopf bifurcation if and only if 0   and 

    
  

*
1 1 1

1 1

x



    

   


   

  
 .       (3.1.15) 

Proof: Suppose the system (3.1.5) goes through a Hopf bifurcation at  **,y  , where 

 * *, *y x  . Then we need to show that 0  and 
    

  
*

1 1 1

1 1

x



    

   


   

  
 . The 

existence of a Hopf bifurcation, by definition, requires a pair of complex conjugate eigenvalues 

on the unit circle. For the eigenvalues to be complex conjugate, the discriminant must be strictly 

negative, that is 0  .  

For the second part, note that the existence of a Hopf bifurcation requires 

    2 2

1 2mod mod 1a b       by the first condition of Theorem 1. Rewriting the 

condition explicitly by substituting (3.1.12) and (3.1.13) into it, taking the square of both sides 
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and solving for  , we have the critical value of the parameter   
as in (3.1.15). Therefore, the 

first condition of the Theorem 1 holds only if 
    

  

1 1 1
.

1 1

x



    

   


   

  
  

From the other side, suppose 0   and 
    

  

1 1 1

1 1

x



    

   


   

  
 . Substituting 

for 
*

  
into 2 2a b  yields    1 2mod mod 1   , which is the first condition in Theorem 1. 

In order to show that the critical value of the parameter   is actually a Hopf bifurcation 

parameter, we check the second condition in Theorem 1, which yields, 

 
 

  
**

2 2
1 1

0
2

id d
a b

d d
  



    

     


  


   
    

 
 

 for 1,2i  .  

Thus, both conditions of Theorem 1 are satisfied and we have 

    
  

*
1 1 1

1 1

x



    

   


   

  
 .          

Proposition (3.1.3) shows that taking the parameter   free to vary and keeping the other 

parameters constant, the system (3.1.5) is likely to undergo a Hopf bifurcation at *

 . We also 

numerically find a Period Doubling bifurcation at 13.3   , which is not in the feasible subset 

of parameter space for *

 . Decreasing the value of   causes a higher value of the bifurcation 

parameter in absolute value, except when 0   at which changes in   does not make any 

difference. On the other hand, decreasing the value of   results in a lower value of the 

bifurcation parameter in absolute value, except when 1   at which changes in   does not 

make any difference. 
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In conclusion, when we consider   as the bifurcation parameter, we numerically find 

that a bifurcation can be possible only for negative values of  . This implies that assuming 

0x   and 0  , Gali and Monacelli Model under current looking Taylor rule does not nest a 

risk of a bifurcation for the feasible parameter space even though it is theoretically possible 

within the functional structure of the system (3.1.5).  

As Rotemberg and Woodford (1999) and Leith, Moldovan and Rossi (2009) argue, 

failure to satisfy the Taylor rule with 1   implies that inflation can be driven by self-fulfilling 

expectations which are validated by passive or even perverse monetary policies. If, in addition, 

the output gap response is negative, both destabilizing elements in the policy rule may compel 

the system to a saddle path from which any deviation will result in an explosive path for 

inflation. 

3.1.2 Under Pure Current Looking Inflation Targeting Rule: 

Consider the following model in which the first two equations describe the economy while the 

third equation represents the monetary policy rule followed by the central bank: 

 
1

1 1
t t t tE x


    

 


 
      

      (3.1.1) 

 
 1 1

1 1
t t t t t t tx E x r E r

 



 

 
          (3.1.2) 

t t tr r              (3.1.16) 

The last equation describes the policy rule based on pure current looking inflation 

targeting where   is the policy parameter that represents the sensitivity of the central bank‟s 

policy rate to current inflation. Equation (3.1.16) states that the nominal interest rate is 
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determined according to the changes in current inflation rate. Monetary policy rule (3.1.16) does 

not include an interest rate response to the output gap unlike the standard Taylor rule. Corsetti, 

Meier and Muller (2010) use this version of the policy rule in a way that the nominal interest 

rate, tr , responds to current deviations of the inflation rate, t , from target level by a factor of 

1.5, that is  1.5t t t tr r     .
7
 On the other hand, Ball (1998) argues that pure inflation 

targeting brings some risks in an open economy environment since it gives rise to large 

fluctuations in exchange rate and output, and he suggests following long-run inflation targeting 

to avoid such problems. 

Substituting (3.1.16) into (3.1.2) for t tr r , we have a two-equation first order stochastic 

difference equation system in terms of domestic inflation and output gap: 

 
1

1 1
t t t tE x


    

 


 
      

      (3.1.17) 

 
 1 1

1 1
t t t t t tx E x E

 
  


 

 
    

Rearranging the terms, the system can be written in the form 1t t tE y Cy  , 

   
 

 

1

1

1 1 1 1
1

1

1
1 1

t t t

t t t

E x x

E



   
   

 

  
 

 





     
     

     
    

            

  (3.1.18) 

The eigenvalues of the coefficient matrix C, 1  and 2 , are computed by setting 

 det 0C I   which gives a second-order characteristic polynomial in  : 

  2

1 0 0p a a               

                                                 
7 Here, a bar over a variable refers to its steady-state value. 
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where, 

  
1

1 1 1
a

    

 

   
   and 

 
0

1 11
1a 

 
  

 

   
     

  
. 

The solutions to the characteristic polynomial are given by the following eigenvalues: 

2

1,2 1 1 4      

  

     

  




  
   

     
     



    

 

where 
 1 1




  

 

 
     

, and 
 1 1






 


 
. 

Notice that there are two endogeneous variables: Inflation rate, t , and output gap, tx . 

There is no predetermined variable in the model. Following Blanchard and Kahn (1980), the 

system (3.1.18) has a unique equilibrium solution for the inflation rate and the output gap if and 

only if the number of eigenvalues of the 2x2 matrix C that are outside the unit circle is equal to 

the number of forward looking (non-predetermined) variables, which is two ( 1t tE x   and 1t tE   ) 

in this case. Then, following Bullard and Mitra (2002), Proposition (3.1.4) characterizes the 

necessary and sufficient conditions for the determinacy. 

Proposition 3.1.4: Given the monetary policy based on pure current looking inflation targeting, 

the open economy New Keynesian model (3.1.18) has a unique stationary equilibrium if and 

only if 

 

  
1

1 .
1 1



 


   


 

  
       (3.1.19) 

Proof: In order to check if the system (3.1.18) has a unique stable equilibrium, we follow the 

procedure suggested by J.P. Lasalle (1986, p.28) and Bullard and Mitra (2002). Then, both 

eigenvalues would be outside the unit circle if and only if 
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0 1a              

1 01a a             

From the first condition we obtain the upper boundary, we obtain 

 

  
1

1 1


 


   




  
 . From the second condition we obtain the lower boundary, we 

obtain 1  . Combining them, we have the determinacy condition (3.1.19).
 8
    

Figure 3.1.4: Determinacy region under pure current looking inflation targeting 
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Regarding determinacy, the condition 1 
 
requires an active monetary policy so that 

the central bank adjusts nominal interest rates more than one-for-one in response to a deviation 

in inflation rate from its target level. On the other hand, Minford and Srinivasan (2010) argue 

that with 1  , explosive solutions are also possible within the model, just as multiple solutions 

                                                 
8 Gali (2008, ch.4) argue that for uniqueness it is necessary and sufficient to have 1


  without any upper bound. 
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are possible with 1  . But the upper boundary implies that the policy should not be too 

reactionary which would also lead to indeterminacy. Thus, the upper boundary prevents the 

overreaction of the monetary authority to changes in inflation which might result in explosive 

solutions. However, as the degree of openness (captured by  ) increases the upper bound gets 

lower and the determinacy region shrinks. 

As illustrated in Figure (3.1.4), the pure current looking inflation targeting based 

monetary policy yields a unique equilibrium for a feasible set of parameter values. Given the 

baseline values of the parameters, the Jacobian matrix of the system is 

1.3434 0.5051

-0.3434 1.0101
C

 
  
 

 

with complex conjugate eigenvalues 1 1.1768 + 0.3817i   and 2 1.1768 - 0.3817i  , having 

modulus 2 21.1768 0.3 1.2377 281R   . Having a radius greater than unity, both eigenvalues 

are outside the unit circle.
9
 Since the number of eigenvalues outside the unit circle and the 

number of forward looking variables are equal, the system (3.1.18) has a unique, stationary 

equilibrium solution. 

As shown in Gandolfo (1996), in order to examine the nature of the eigenvalues we need 

to check the sign of the discriminant 2

1 04a a   . If the discriminant of the quadratic equation is 

strictly negative, that is if  

                                                 
9 Given the parameter values, the equilibrium is a stable spiral. Since the complex eigenvalues are greater than one in modulus (R 

> 1), the amplitude of the sinusoids decay at the rate 
jR  as j  . Then, dynamic multiplier follows a pattern of decreasing 

oscillation whose frequency is defined by  
1.1768

cos 0.9512
1.2372

a

R
     or    1 1

cos cos 1.1768 1.2372 17.9771a R
 

    in 

degrees. Hence, the cycles associated with the dynamic multiplier function have a period of 2 2 * 3.14159
0.3495

17.9771




  , which 

means the peaks in the pattern appear about 0.35 periods apart. 
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2

2

1 04 1 4 0x xa a     

 

      

 

      
         

   

 

where 
 1 1




  

 

 
     

, and 
 1 1






 


 
, then the roots are complex conjugate 

numbers in the form 
1,2 a ib   , with ,a b , 0b   as the real part, while 1i     is the 

imaginary unit. Figure (3.1.5) shows a phase diagram of the model (3.1.2).

 Figure 3.1.5: Phase diagram for Model (3.1.2) with 1.5   
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Although it is algebraically quite cumbursome to determine the sign of the modulus of the 

eigenvalues, using the baseline values of the parameters, we can verify that the inside of the 

square roots in both eigenvalues is negative. Hence the discriminant   is strictly negative. 

Therefore, the eigenvalues of the system (3.1.18) are complex conjugate, 
1,2 a ib   , where  

1 1 1
1

2 2 2 2

a
a    

 

   

 

    
       

   
      (3.1.20) 

and  
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2

1
4 1

2 2
b     

 

    

 

     
      

   
     (3.1.21) 

with 
 1 1




  

 

 
     

, and 
 1 1






 


 
. 

With the presence of complex conjugate eigenvalues, we may expect to see a Hopf 

bifurcation if certain conditions are satisfied. The only possible source for a bifurcation is the 

policy parameter  . Using Theorem 1, the conditions for the existence of a Hopf bifurcation is 

stated in the following Proposition. 

Proposition 3.1.5: The system (3.1.18) undergoes a Hopf bifurcation if and only if 0   and 

 

  
*

1

1 1


 


   




  
.       (3.1.22) 

Proof: Suppose the system (3.1.18) goes through a Hopf bifurcation at  **,y  , where 

 * *, *y x  . Then, we need to show that 0   and 
 

  
*

1

1 1


 


   




  
. The 

existence of a Hopf bifurcation, by definition, requires a pair of complex conjugate eigenvalues 

on the unit circle. For the eigenvalues to be complex conjugate, the discriminant must be strictly 

negative  i.e. 0  . 

For the second part, note that the existence of a Hopf bifurcation requires 

    2 2

1 2mod mod 1a b       by the first condition of Theorem 1. Rewriting the 

condition explicitly by substituting (3.1.20) and (3.1.21) into it, taking the square of both sides, 

and then solving for  , we obtain the critical value of the parameter as in (3.1.22). Therefore, 

the first condition of Theorem 1 holds only if 
 

  
1

1 1


 

   





  
. 
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Conversely, suppose 0  and 
 

  
1

1 1


 

   





  
. Substituting for *

  
into 

2 2a b  yields    1 2mod mod 1   , which is the first condition in Theorem 1. In order to 

show that the critical value of the parameter   is actually a Hopf bifurcation parameter, we 

check the second condition of Theorem 1, which gives 

 
 

  
*

*

2 2
1 1

0
2

id d
a b

d d
 

 



    

     

  


  
     for 1,2i  . 

Thus, both conditions of Theorem 1 are satisfied and we have 
 

  
*

1
.

1 1


 


   




     
 

Proposition (3.1.5) shows formally that taking the parameter   free to vary and keeping 

the other parameters constant, the system (3.1.18) is likely to undergo a Hopf bifurcation at *

 . 

Numerical analysis also indicates a Period Doubling bifurcation at = -12.59  and a Limit Point 

(Fold) bifurcation (which is also a branching point) at 1  . Increasing the value of   reduces 

the bifurcation parameter   
in absolute value, except when 0   at which changes in   does 

not make any difference. On the other hand, decreasing the value of   causes a lower value of 

the bifurcation parameter   
in absolute value, except when 1   at which changes in   does 

not make any difference. 

3.1.3 With Credibility Gap under the Current Looking Inflation Targeting: 

We now modify the policy rule to evaluate the effects of a credibility gap which shows to what 

extend agents discount the central bank‟s decisions as described in Galí (2008). As before, we 

assume that the economy is described by equations (3.1.1) and (3.1.2) while the central bank 

follows the pure current looking inflation targeting rule (3.1.23). 
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 
1

1 1
t t t tE x


    

 


 
      

      (3.1.1) 

 
 1 1

1 1
t t t t t t tx E x r E r

 



 

 
          (3.1.2) 

t t tr r              (3.1.23) 

Suppose that the public, on the other hand, believe that the monetary policy rule is given 

by 

 1t t tr r               (3.1.24) 

where 1   and    measures the credibility gap. Hence, we consider the system consisting 

of the equations (3.1.1), (3.1.2) and (3.1.24). 

We first substitute (3.1.24) for t tr r  into equation (3.1.2). Then, we obtain the reduced 

form of the model in terms of inflation and output gap as follows: 

 1
1 1

t t t tE x


    
 



 
      

       

 
  1 1

1 1
1t t t t t tx E x E

 
   


 

 
          

Then, rearranging the terms, the system can be written in the form 1t t tE y Cy   as follows 

 
  

 

 

1

1

1 1 1 1
1 1

1

1
1 1

t t t

t t t

E x x

E



   
    

 

  
 

 





     
      

     
    

            

. (3.1.25) 

The eigenvalues of the Jacobian matrix C, i.e. 1  and 2 , are computed by setting 

 det 0C I   which gives a second-order characteristic polynomial, 
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  2

1 0 0p a a              

where 

  
1

1 1 1
a

    

 

   
   and 

      
0

1 1 1 1 1
a

 
      

 

    
  . 

The solution to the characteristic polynomial is given by the following eigenvalues 

 
2

1,2

1
1 1 4

     

  

     


  

   
   
     

     
     

 

with 
 1 1




  

 

 
     

, and 
 1 1






 


 
. 

The proposition below characterizes the necessary and sufficient conditions for the 

determinacy of the system (3.1.25), following Bullard and Mitra (2002). 

Proposition 3.1.6: Given the monetary policy based on current looking inflation targeting with 

credibility gap, the open economy New Keynesian model (3.1.25) has a unique stationary 

equilibrium if and only if 

 
 

  
1

1 1
1 1



 
 

   


  

  
.       (3.1.26) 

Proof: Determinacy requires that both eigenvalues are outside the unit circle which happens if 

and only if 

0 1a    and 

1 01a a  . 

 From the first condition we obtain the upper boundary, 

 

  
 

1
1

1 1


 
 

   


 

  
.        



48 

 

 From the second condition we obtain the lower boundary 

 1 1   . 

Combining them, we have the determinacy condition (3.1.26). Thus, following Bullard 

and Mitra (2002), and assuming 0   and  0,1  , both eigenvalues will be outside the unit 

circle if and only if  

 
 

  
1

1 1
1 1



 
 

   


  

  
.        

Note that, since 0   by assumption, the lower boundary of the determinacy condition 

(3.1.26) equivalently holds if 
1

1






. This resembles the Taylor rule, with the exception of 

the credibility gap. As the credibility gap rises the determinacy region shrinks which gives rise to 

a smaller room for the existence of a unique solution. When 0  , it collapses to the model 

(3.1.2). Therefore, in case of credibility gap, the monetary policy authority has to compensate the 

lack of credibility by pursuing a more aggressive policy which involves raising the nominal 

interest rate much more than the deviation of the inflation rate from its target level and this 

results in a larger increase in the real interest rate. Figure (3.1.6) illustrates the determinacy 

region as a function of the credibility parameter  . As we can see clearly on the figure, 

credibility gap dramatically narrows the region of unique equilibrium. 
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Figure 3.1.6: Determinacy diagram under current looking inflation targeting with credibility gap 
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 

, the system (3.1.25) has a 

branching point. Using the baseline values of the parameters given by Gali and Monacelli 

(2005), and by Gali (2008) and solving the equation for   we obtain 2  . Thus, the 

branching point occurs at 2  . This implies that in the open economy framework, the 

occurrence of a branching point requires that the monetary policy instrument responds to 

changes in inflation rate, t , twice as much in the presence of a credibility gap. 

As shown in Gandolfo (1996), in order to examine the nature of the eigenvalues we need 

to check the sign of the discriminant 2

1 04a a   . If the discriminant of the characteristic 

equation is strictly negative, that is if 
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 

2

1 0

2

4

1
1 4 0,

a a

   

 

    

 

  

    
      
   

 

then the roots of the 2x2 matrix C will be complex conjugate numbers in the form  
1,2 a ib   , 

,a b , 0b   as the real part, while 1i     is the imaginary unit. 

It is algebraically quite cumbursome to identify the sign of the modulus of the 

eigenvalues. So, we assume that the eigenvalues of the system (3.1.25) are complex conjugate, 

1,2 a ib   , where  

1 1 1
1

2 2 2 2

a
a    

 

   

 

    
       

   
,      (3.1.27) 

and 

 
2

11
4 1

2 2
b

    

 

     

 

     
      

   
,    (3.1.28) 

with 
 1 1




  

 

 
     

, and 
 1 1






 


 
. 

With the presence of a pair of complex conjugate eigenvalues, we may expect to see a 

Hopf bifurcation if certain conditions are satisfied. The only possible source for a bifurcation is 

the monetary policy parameter  . Applying Theorem 1 with respect to the parameter  , the 

conditions for the existence of a Hopf bifurcation is derived in the following Proposition.  

Proposition 3.1.7: The system (3.1.25) undergoes a Hopf bifurcation if and only if 0  and 

   

  

1

*
1 1

1 1


  


   


 


  

.       (3.1.29) 
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Proof: Suppose the system (3.1.25) goes through a Hopf bifurcation at  **,y  , where 

 * *, *y x  . Then we need to show that 0  and 
   

  

1

*
1 1

1 1


  


   


 


  

. The existence 

of a Hopf bifurcation, by definition, requires a pair of complex conjugate eigenvalues on the unit 

circle. For the eigenvalues to be complex conjugate, the discriminant must be strictly negative, 

that is 0  .  

For the second part, notice that the existence of a Hopf bifurcation requires 

    2 2

1 2mod mod 1a b       from the first condition of Theorem 1. Rewriting the 

condition explicitly by substituting (3.1.27) and (3.1.28) into it, taking the square of both sides, 

and then solving for  , we obtain the critical value of the parameter   as in (3.1.22). 

Therefore, the first condition of Theorem 1 holds only if 
 

  
1 1

1 1 1


 

    





   
. 

Conversely, suppose 0  and 
 

  
1 1

1 1 1


 

    





   
. Substituting for *

  

into 2 2a b  yields    1 2mod mod 1   , which is the first condition in Theorem 1. In order 

to show that the critical value of the parameter   is actually a Hopf bifurcation parameter, we 

check the second condition of Theorem 1, which yields 

 
 

  
 

**

2 2
1 1

1 0
2

id d
a b

d d
  



    

     


  


  
      for 1,2i  .  

Thus, both conditions of Theorem 1 are satisfied and we have
   

  

1

*
1 1

1 1


  


   


 


  

.    
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Proposition (3.1.7) shows formally that taking the parameter   free to vary and keeping 

the other parameters constant at their baseline values, the system (3.1.25) is likely to undergo a 

Hopf bifurcation at *

 . 

Futhermore, we numerically determine a Period Doubling bifurcation at = -25.4 , 

which is not a feasible value and is far from the bifurcation point occured in the case without a 

credibility gap. We also numerically find a Limit Point bifurcation and a branching point at 

2  . The equilibrium is a stable node for 2   with both eigenvalues outside the unit circle. 

The equilibrium point is a saddle point for 2  . The saddle point is unstable as there are 

trajectories diverging from    * *, 0,0x   even though they begin arbitrarily close to 

   * *, 0,0x  . Figure (3.1.7) illustrates two phase plots constructed for different values of the 

parameter  . 

Figure 3.1.7: Phase diagram for various values of   for Model (3.1.3) 
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The Period Doubling bifurcation dissappears for lower values of  . On the other hand, 

decreasing the value of   reduces the bifurcation parameter   in absolute value, except when 

1   at which changes in   does not make any difference. 

3.1.4 Under Current Looking Taylor Rule with Interest Rate Smoothing: 

It has been empirically shown that the lagged interest rate usually receives a statistically 

significant coefficient estimate when interest rate is regressed on inflation and output gap. Some 

authors claim that it reflects the inertial behavior while others argue that it is due to the gradual 

adjustment policy conducted by the monetary authority. Parameter uncertainty, imperfect 

information, pursuing financial stability are considered as some of the motivations which leads 

the policy maker to pursue such a precautinary policy. See, for example, Sack (2000), Rudebusch 

(2005) and Walsh (2003) for further discussion of the subject. 

Consider the following model in which the first two equations describe the economy 

while the third equation is the interest rate rule followed by the central bank in order to conduct 

the monetary policy: 

 1
1 1

t t t tE x


    
 



 
      

      (3.1.1) 

 1 1

1
t t t t t t tx E x r E r

 



 

 
          (3.1.2) 

1t t t x t r tr r x r                (3.1.30) 

where r  is the degree of interest rate smoothing,  and x  are the central bank‟s relative policy 

weights assigned to the inflation rate and the output gap, respectively. Equation (3.1.30) states 

that the nominal interest rate is assigned according to the current values of the inflation rate and 

the output gap as well as the policy rate in the previous period. 
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 Woodford (2003a) finds the interest rate inertia coefficient r  equal to 0.46 which implies 

that interest rates should be adjusted roughly half of the way toward the target level within a 

quarter. 

 Moving the equation (3.1.30) one period forward and adding expectations, then 

rearranging the terms and defining  , ,t t t ty x r  , we can write the system of equations in the 

form 1t t tE y Cy D   : 

1

1

1
1

1

0

1

t
t t t

t t t

t t t
t t x t

r
E x x

E C

E r r
E r r

 



 

 











  
    

    
      

           
 

      (3.1.31) 

where 

 

1 1 1
1 1

1
0

1 1

1 1 1 1 1
1

x x x r x

C

 

      


   

 


   

        
       

     

     
  

  
 

       
     

  
   

 
  
  
  

     
     
     

. 

 It is the coefficient matrix C that is relevant for determinacy and bifurcation analysis. Its 

characteristic polynomial is given by 

   3

3 2

2 1 0

det

0

p C I

a a a

 

  

 

    
 

where 

 
 2

1 1 1
1 1r xa

  
  

  

   
        

  
,    (3.1.32) 

1

1 1 1 1 1 1 1
1r xa 

     
      

      

          
              

     

,  (3.1.33) 
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and 
0

ra



  .          (3.1.34) 

Note that there are three endogeneous variables; the rate of inflation, t , the output gap, 

tx , and the nominal interest rate, tr . Then, following Blanchard and Kahn (1980), the system 

(3.1.31) has a unique, stationary equilibrium solution if and only if the number of eigenvalues of 

the 3x3 coefficient matrix C outside the unit circle is equal to the number of forward looking 

(non-predetermined) variables which is three ( 1t tE x  , 1t tE    and 1t tE r  ). Consequently, we 

should have all the eigenvalues to be outside the unit circle for uniqueness. 

Proposition 3.1.8: Given the monetary policy based on current looking Taylor rule with interest 

rate smoothing, the open economy New Keynesian model (3.1.31) leads to indeterminacy. 

Proof: Following the methodology employed by Bullard and Mitra (2001), the number of the 

roots with negative and/or positive signs can be determined by Descartes‟ rule of signs theorem 

as follows. Looking at the polynomial in the positive case without changing the signs of  , we 

count the number of sign changes, which is one (from positive to negative after the first term) in 

this case. Hence the maximum number of positive roots for the characteristic polynomial is one: 

  3 2

2 1 0p a a a         

 In the negative case by having changed the sign on  , we look at  p  : 

  3 2

2 1 0p a a a          

There are two sign changes in this "negative" case, so there are at most two negative 

roots. Therefore, by Descartes‟ rule of signs, the characteristic polynomial has two negative roots 

as well as having one positive root. 
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We can also evaluate  p x  at 1x   for the roots with positive sign and at 1x    for the 

roots with negative sign to see whether the negative and positive roots lie outside (or inside) the 

unit circle. Note that for 0  , we have  0 0rp



   . 

 For 1   ,  1 0p    yields 

   
2

1 1
1 1

x r 

 
    

   

 
      

    
 

for the given values of the parameters in Gali and Monacelli (2005) and for 0.5r  . 

 For 1  , 

 
 

 
1 1 1

1 1 1 1

1 1 1 1 1 1 1
1 0

r x

r

r x

p



  
  

  

     
      

       

   
        

  

          
               

     

 

for the given values of the parameters in Gali and Monacelli (2005).    

We can numerically verify whether Proposition (3.1.8) holds for the given values of the 

parameters in Gali and Monacelli (2005) whose Jacobian matrix is 

1.3434 -1.0101 1

-0.3434 1.0101 0

-0.3472 1.3889 0.6250

C

 
 


 
  

 

with eigenvalues 1   1.3743 + 0.5546i  , 2 1.3743 - 0.5546i  , 3 0.23  . Note that one 

solution is real, positive and inside the unique circle while the other two solutions are complex 

conjugate with radius greater than one. Since the number of eigenvalues outside the unit circle 

(which is two) is less than the number of forward looking variables (which is three), there is no 

unique solution to the system. The indeterminacy result suggests that there are other stationary 
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equilibrium solutions to the model (3.1.31) under the current looking Taylor rule with interest 

rate smoothing. Figure (3.1.8) shows a phase plot of the system (3.1.31). 

 Having a pair of complex conjugate eigenvalues and a real-valued eigenvalue outside the 

unit circle, the following Proposition states the conditions for the system (3.1.31) to undergo a 

Hopf bifurcation: 

Proposition 3.1.9: The system (3.1.31) undergoes a Hopf bifurcation if and only if the following 

transversality condition  

 

*

0

j j

i

j
 

 








 holds and  

i) 0r   ,          (3.1.35) 

ii) 
 

 
 

 
2 2 2

1 1 0
1 1 1 1

r x 

    
      

     

   
                   

, (3.1.36) 

iii)  2

4 3 2 1 0 1r r x r x                  .     (3.1.37) 

Proof: For the necessary part of the proof, we use Theorem 2. From the condition (i) in Theorem 

2, we have 
0 1r ra

 

 
    , which implies 1r


 . 

 From the condition (ii) in Theorem 2, we have 0 2 11a a a   , which implies 

    
 

 2 2 2
1 0

1 1 1 1
r x 

     
     

     

  
      

     

 
 
 

. 

But this condition requires negative values for the parameters thus, it cannot be satisfied for the 

feasible set of values of the parameters. 

 Finally, from the condition (iii) in Theorem 2, we obtain 

2

1 0 2 01a a a a   , 
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which implies 

 2

4 3 2 1 0 1r r x r x                   

where 

0

1



 , 

1

1  
 

 

 
  , 

2

1  




 
 , 

3

1 1 1
1 1

  
 

   

   
      
  

, 

and 
4

1 1
1

 

 
  

 
. 

For the sufficient part, assume the conditions (i)-(iii) hold true. Then, we need to show 

that the transversality condition holds which can easily be verified numerically.   

Since the condition (3.1.36) in Proposition (3.1.9) does not hold, it is not theoretically 

possible for a Hopf bifurcation to occur in the Gali and Monacelli Model under the current 

looking Taylor rule with interest rate smoothing setting. 

Figure 3.1.8: A phase diagram of Model (3.1.4) given the baseline values
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Furthermore, we analyze the system (3.1.31) for the existence of a Period Doubling 

bifurcation. Keeping the structural parameters and policy parameters  , r  constant at their 
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baseline values while varying the policy parameter x  over a certain range, we numerically find 

Period Doubling bifurcation at 0.83x  . Within the closed economy framework under the same 

policy rule, Barnett and Duzhak (2010) report a Period Doubling bifurcation close to 2x  . 

Comparing the results from Barnett and Duzhak (2010) with the open economy case, however, 

does not give us a clear statement about whether or not the openness makes the New Keynesian 

model more sensitive to bifurcations since Gali and Monacelli Model incorporates a wider set of 

parameters including some deep parameters relevant to the open economy. Furthermore, both 

studies use different set of benchmark values for the parameters. Hence, a direct comparison 

becomes even harder.  

Airaudo and Zanna (2005), using a money-in-utility function and assuming non-

separability, show that cyclical and chaotic dynamics are more likely the more open the economy 

and the higher the exchange rate pass-through into import prices. They also show that the 

existence of cyclical and chaotic dynamics depend on some open economy features and is in 

general robust to different timings in the policy rule. Analyzing the effects of a change in the 

parameters   and   in the Gali and Monacelli Model, on the other hand, does not seem to be 

indicative for more sensitivity in open economy environment. Lowering   and raising   

increase the value of the bifurcation parameter. There is no bifurcation in any type at 

   , 0, 1   . 
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Figure 3.1.9: Period Doubling bifurcation boundary at 0.827x   for Model (3.1.4) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7


x




 

Figure (3.1.9) illustrates the Period Doubling bifurcation boundary for the parameter x . 

Note that along the bifurcation boundary which is the set of bifurcation points of the same type, 

the values of the bifurcation parameter x  lie between 0 and 0.83. As the magnitude of the 

reaction of central bank to inflation, that is  , increases, even the smaller values of parameter 

x  
would be sufficient to cause a Period Doubling bifurcation. Crossing the boundary causes the 

bifurcation. 

When we consider   as the bifurcation parameter, we numerically find a Period 

Doubling bifurcation at 5.57   and a branching point at 1.5   . For   being the 

bifurcation parameter, lowering   and raising   increase the value of the bifurcation parameter. 

Furthermore, there is no bifurcation in any type at    , 0, 1   . 
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Figure 3.1.10: Period Doubling bifurcation boundary at 5.57   for Model (3.1.4) 
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Figure (3.1.10) illustrates the bifurcation boundary for the parameter  . In this case, 

along the bifurcation boundary, the values of bifurcation parameter   lie between 5.5 and 6.3, 

which is a relatively small interval for the bifurcation to emerge. As the magnitude of the 

reaction of central bank to output gap, that is
 x , increases, lower values of the parameter   

would be sufficient to cause a Period Doubling bifurcation. 

3.2 Gali and Monacelli Model with Forward Looking Interest Rate Rule: 

3.2.1 Under Forward Looking Taylor Rule: 

Rational expectations based policy rules have been studied by many economists such as Evans 

and Honkapohja (2003a, b) and Branch and McGough (2009, 2010). Evans and Honkapohja 

(2003a) argue that expectations based rules can give rise to determinate and stable equilibrium 

under learning. McCallum (1999) criticizes the contemporaneous policy rules as being 

unrealistic in practice since the policy makers do not have complete information about the 
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current situation. As Bullard and Mitra (2002) point out, together with backward looking policy 

rules, forward looking rules have been considered as an alternative to account for McCallum‟s 

(1999) critics. Batini and Haldane (1999) argue that inflation forecast based rules perform well in 

comparison with other simple rules. Forward looking approach lets the policy makers comprise 

the time lag between performing a certain policy and receiving its impacts on economy while. 

evaluating the future conditions of the economy in a more realistic setting based on the available 

information set. 

Consider the following model in which the first two equations describe the economy 

while the third equation represents the monetary policy rule followed by the central bank: 

 1
1 1

t t t tE x


    
 



 
      

      (3.2.1) 

 
 1 1

1 1
t t t t t t tx E x r E r

 



 

 
          (3.2.2) 

1 1t t t t x t tr r E E x              (3.2.3) 

where tx  denotes the output gap, t  is the inflation rate, and tr  is the nominal interest rate. tE  is 

the expectation operator. The policy parameters   and x  represent the magnitude of the central 

bank‟s responses to the next period‟s expected inflation rate and expected output gap, 

respectively. As before, there is no exogenous shock. 

Note that the policy rule (3.2.3) nests the standard Taylor rule as a special case. In this 

specification, the actual infation and output gap are replaced by the expected inflation and the 

expected output gap. The policy maker, however, looks only one quarter ahead while adjusting 

the nominal interest rate. Clarida, Gali and Gertler (2000) employ this approach in order to 

estimate a reaction function of the Federal Reserve Bank for the postwar US economy. 



63 

 

Substituting (3.2.3) into (3.2.2) for t tr r , we have a system of first order stochastic 

difference equations in terms of expected inflation and expected output gap, as follows: 

 1
1 1

t t t tE x


    
 



 
      

, 

   
 1 1

1 1 1 1
1 1t x t t t tx E x E

   
  

 
 

    
    
 

. 

As in the previous cases, 0t tx    for all t  is an equilibrium solution to the reduced 

system. Rearranging the terms, we have the reduced system in normal form 1t t tE y Cy  : 

    

  

    

  

  

 

1

1

1 1 1 1 1 1

1 1 1 1

1 1 1

1

x xt t t

t t t

E x x

E

 
        

       

    

   





       

     


  


 

 
 

   
 

   
    
 
 

. (3.2.4) 

Then, the characteristic polynomial of the Jacobian matrix is  

    2

1 0det 0p C I a a         , 

where 

    

  1

1 1 1 1

1 1x

a
     

    

    
 

  
 and 

  0
1 1x

a


   


  
, 

which yields 

    

  

    

     

1,2

2

1 1 1 1

1 1

1 1 1 1
4 .

1 1 1 1

x

x x





     


    

      

        

     
  
   
 

       
      

         
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As before, we begin our analysis by examining the determinacy conditions of the system 

(3.2.4). Note that there exist two free endogenous variables, tx  and t . Then, following 

Blanchard and Kahn (1980), the equilibrium solution would be unique if and only if both 

eigenvalues are outside the unit circle. The following Proposition characterizes the necessary and 

sufficient conditions for the determinacy of the system (3.2.4). 

Proposition 3.2.1: Under the monetary policy based on forward looking interest rate rule, the 

open economy New Keynesian model (3.2.4) has a unique stationary equilibrium if and only if 

 
 

11

1 1
x

 


 




 
,         (3.2.5) 

 
 

 1 1 0
1 1

x 


    

 

 
        

,     (3.2.6) 

and 

 
 

 
 

 

2 1
1 1

1 1 1 1
x 

 
    

   

  
          

.    (3.2.7) 

Proof: Following J.P. Lasalle (1986, p.28) and Bullard and Mitra (2002), both  eigenvalues of 

the Jacobian matrix are outside the unit circle if and only if the following conditions are satisfied: 

0 1a    and 

1 01a a  . 

 The first inequality implies the condition (3.2.5). The second inequality, on the other 

hand, leads to the conditions (3.2.6) and (3.2.7).       

The conditions (3.2.6) and (3.2.7) provide lower and upper boundaries, respectively, for 

the monetary policy to yield a unique stationary equilibrium. Therefore, conditions (3.2.6) and 

(3.2.7) are the necessary and sufficient condition for the Jacobian matrix C to have both 
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eigenvalues outside the unit circle. For the baseline values of the parameters, this upper bound 

requires  
 

 1 1 2.99
1 1

x 


    

 

 
        

 in order to generate indeterminacy. At 

the point where  
 

 1 1 0
1 1

x 


    

 

 
        

, the system has a branching point 

that can be investigated by changing   freely within a range as shown in Barnett and Duzhak 

(2008). We note that the range of determinacy varies as the degree of openness changes. The 

higher the parameters   and  , the the lower the upper boundary. Consequently, the range of 

determinacy is smaller in the open economy framework and it gets smaller the larger the values 

of the parameters   and  . It appears that, indeterminacy is more likely to occur in the open 

economy framework and becomes a more serious problem as the degree of openness increases. 

McKnight (2007) finds similar results for an open economy model with timing of money in 

consideration and points out that the range of indeterminacy is potentially greater the higher the 

degree of openness under forward looking monetary policy rules.  

Using the calibration values of the parameters given in Gali and Monacelli (2005) and 

solving the equation  
 

 1 1 0
1 1

x 


    

 

 
        

 for  , we found 1  , 

approximately. That means that the system (3.2.4) will have a branching point at around 1  . 

Therefore, we can say that in open economy framework the monetary policy instrument, which is 

the short term interest rate, should be slightly more reactionary in response to changes in 

expected inflation rate, accompanied by a small but positive response to the expected output gap. 
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Figure 3.2.1: Determinacy and indeterminacy regions under forward looking Taylor rule. 
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Figure (3.2.1) depicts the regions of determinacy and indeterminacy in  ,x   -space 

given the baseline values of the parameters. As it can be seen on Figure (3.2.1), high values of 

  and/or x  cause the indeterminacy problem. Contrary to the current looking policy rule case, 

uniqueness of the equilibrium under the forward looking policy rule requires a mild response of 

the monetary authority to changes in inflation and/or in the output gap. Thus, the monetary 

authority should react neither "too strongly" nor "too weakly" to changes in the expected 

inflation and/or the expected output gap. Rules with 1   accompanied by a moderate reaction 

to expected output gap would be enough to acquire a unique equilibrium. 

If the discriminant of the quadratic equation is strictly negative, that is if 

2

1 04 0a a    , 

then, the roots of the Jacobian matrix C will be complex conjugate in the form, 
1,2 a ib   , 

where ,a b , 0b   is the real part, while 1i     is the imaginary unit. Using the baseline 
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values of the parameters, it is easy to verify that the inside of the square roots in both eigenvalues 

is negative, hence the discriminant   is strictly negative. Therefore, the eigenvalues of the 

system (3.2.4) are complex conjugate, 
1,2 a ib   , 

where 

    

  
1

1 1 11 1

2 2 1 1x

a
a

     

   

     
   
   
 

,    (3.2.8) 

and 

  

    

  

2

1 1 11 4 1

2 2 1 1 1 1
x x

b


     

        

    
   

     

 
 
 

. (3.2.9) 

 In fact, for the benchmark values of the parameters, the Jacobian matrix is 

0.9466 0.5772

-0.3434 1.0101
C

 
  
 

 

having eigenvalues 1 0.9784 + 0.4441i   and 2 0.9784 - 0.4441i   with radius R=1.0745. 

Figure (3.2.2) illustrates three trajectories constructed for different parameter settings. 
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Figure 3.2.2: Phase diagram of the system (3.2.4) for the baseline values of the parameters 
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Having a pair of complex conjugate eigenvalues, we may expect to see a Hopf bifurcation 

if certain conditions are satisfied. Using Theorem 1, the conditions for the existence of a Hopf 

bifurcation is presented in the following Proposition. 

Proposition 3.2.2: The system (3.2.4) undergoes a Hopf bifurcation if and only if 0  and 

 

 
*

1

1 1
x

 


  




 
.        (3.2.10) 

Proof: Suppose the system (3.2.4) goes through a Hopf bifurcation at  **, xy  , where 

 * *, *y x  . Then, we need to show that 0   and 
 

 
*

1

1 1
x

 


  




 
. 

 The existence of a Hopf bifurcation, by definition, requires a pair of complex conjugate 

eigenvalues on the unit circle. For the eigenvalues to be complex conjugate, the discriminant 

must be strictly negative, that is 0  . 
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 For the second part, note that the existence of a Hopf bifurcation requires 

    2 2

1 2mod mod 1a b       from the first condition of Theorem 1. Re-writing the 

condition explicitly by substituting (3.2.8) and (3.2.9) into it, taking the square of both sides and 

solving for x , we obtain the critical value of the parameter x  as in (3.2.10). Therefore, the first 

condition of Theorem 1 holds only if 
 

 

1

1 1
x

 


  




 
. 

 From the other side, suppose 0   and 
 

 

1

1 1
x

 


  




 
. Substituting for 

*

x  

into 2 2a b  yields    1 2mod mod 1   , which is the first condition in Theorem 1. In order 

to show that the critical value of the parameter x  is actually a Hopf bifurcation parameter, we 

check the second condition in Theorem 1, which gives 

 
 

  
*

*

2 2
1 1

0
2

x x
x x

i x

x x

d d
a b

d d
  

    

  


 
     for 1,2i  . 

Thus, both conditions of Theorem 1 are satisfied and we have
 

 
*

1

1 1
x

 


  




 
.        

 Proposition (3.2.2) shows that taking the parameter x  free to vary and keeping the other 

parameters constant, the system (3.2.4) is likely to undergo a Hopf bifurcation at *

x . Therefore, 

theoccurrence of a Hopf bifurcation is theoretically possible as shown in Proposition (3.2.2). 

Figures (3.2.2) and (3.2.3) illustrate several phase diagrams which indicate theoccurrence of a 

Hopf bifurcation in Model (3.2.1). 
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Figure 3.2.3: Phase diagrams showing a Hopf bifurcation in Model (3.2.1) 
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Diverging trajectory at 2.8   

and 0.4x   
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Limit cycle at 2.8   and 

0x   
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Converging trajectory at 2.8   

and 0.4x    

  

 Numerical analysis indicates a Period Doubling bifurcation at 1.913x   and a Hopf 

bifurcation at 0.01x   . Given the baseline values of the parameters, Hopf bifurcation occurs 

outside the feasible set of parameter values. Decreasing the value of   results in a higher value 

of bifurcation parameter in absolute value, except when 0   at which changes in   does not 

make any difference. On the other hand, decreasing the value of   results in a lower value of 

bifurcation parameter in absolute value, except when 1   at which changes in   does not 

make any difference. Moreover, all bifurcations dissappear when 1   and 0  .  

Barnett and Duzhak (2010) report a Period Doubling bifurcation at 2.994x   under 

forward looking Taylor rule for the closed economy structure. Comparing the results from 

Barnett and Duzhak (2010) with the open economy case, however, does not give us a clear 

statement about whether or not the openness makes the New Keynesian model more sensitive to 

bifurcations since Gali and Monacelli Model incorporates a wider set of parameters including 

some deep parameters relevant to the open economy. The fact that both studies use different set 

of benchmark values for the parameters makes a direct comparison even harder. Airaudo and 

Zanna (2005), using a money-in-utility function and assuming non-separability, show that 

cyclical and chaotic dynamics are more likely the more open the economy and the higher the 
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exchange rate pass-through into import prices. They also show that the existence of cyclical and 

chaotic dynamics depend on some open economy features and is in general robust to different 

timings in the policy rule. Analyzing the effects of a change in the parameters   and   in the 

Gali and Monacelli Model, on the other hand, does not seem to be indicative for more sensitivity 

in open economy environment. 

Figure 3.2.4: Period Doubling bifurcation boundary for x  in Model (3.2.1) 
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Figure (3.2.4) illustrates the boundaries of Period Doubling bifurcation under forward 

looking Taylor rule. Note that along the bifurcation boundary, the values of the bifurcation 

parameter x  lie between 0 and 2.8. As the weight of the reaction of central bank to expected 

inflation, that is  , increases, the smaller values of parameter x  would be sufficient to cause a 

Period Doubling bifurcation. 
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Figure 3.2.5: Phase diagrams showing a periodic solution using two different number of 

iterations at 2.8   and 0x   in Model (3.2.1) 
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Figure (3.2.5) illustrates the phase diagrams constructed for two different number of 

iterations at 2.8   and 0x  . The system has a periodic solution at these parameter values. 

The origin is a stable spiral point. Any solution that starts around the origin in the phase plane 

will spiral toward the origin. Since the trajectories spiral inward, the origin is a stable sink. 

3.2.2 Under Pure Forward Looking Inflation Targeting: 

Most countries have been pursuing inflation targeting, with or without accompanied by an output 

gap variable, so as to reduce the high and volatile inflation risk. Therefore, in recent years, it is 

not surprising to see that the rules that set the policy rate in response to the expected/forecasted 

rate of inflation has been widely used by many central banks to practice “inflation-averse” 

monetary policies. Such policy rules have been favored from the perspective of policy 

effectiveness, historical and econometric evidence as well as central bank‟s performance about 

dealing with the observed time delay and driving private sector's inflation expectations.
10

  

                                                 
10 See, among others, Huang and Meng (2007), Svensson (1997), Bernanke and Woodford (1997), Batini and Haldane (1999), 

Levin, Wieland, and Williams (2003), Orphanides and Williams (2005), and Bernanke and Woodford, eds. (2005). 
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Consider the following model in which the first two equations describe the economy 

while the third equation represents the monetary policy rule followed by the central bank: 

 1
1 1

t t t tE x


    
 



 
      

,      (3.2.1) 

 
 1 1

1 1
t t t t t t tx E x r E r

 



 

 
    ,      (3.2.2) 

1t t t tr r E    ,         (3.2.11) 

where tx  denotes the output gap, t  is the inflation rate, and tr  is the nominal interest rate. tE is 

the expectation operator. Equation (3.2.11) describes a pure forward looking interest rate rule 

where the policy parameter   measures the extent of the policy rate‟s response to the next 

period‟s expected inflation. That said, nominal interest rate is determined by looking at the 

changes in the next period‟s expected inflation. As before, there is no exogenous shock. 

Substituting (3.2.11) into (3.2.2) for t tr r , we have a two-equation first order stochastic 

difference equation system in terms of the expected inflation rate and the expected output gap: 

 1
1 1

t t t tE x


    
 



 
      

 

 
 1 1

1 1
1t t t t tx E x E

 
 


 

 
           

 As in the previous cases, 0t tx    for all t is an equilibrium solution to the reduced 

system. Rearranging the terms, we have the following reduced system in normal form 

1t t tE y Cy  : 
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  
 

    

 

1

1

1 1 1 1 1
1 1

1

1 1

t t t

t t t

E x x

E





     


  

  


   





      
    

      
     

     
       

 (3.2.12) 

Then, the characteristic polynomial of the Jacobian matrix is  

    2

1 0det 0p C I a a          

where, 

    
1

1 1 1
1a

      



    
   and 

0

1
a


 . 

The solution of the characteristic polynimal is given by 

         
2

1,2

1 1 1
1 4

1 1 1 1
1

       




      

 

    
   

         
     
     

.  
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Figure 3.2.6: Phase space plot for 1   and 8   in Model (3.2.2) 
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Figure (3.2.6) illustrates a solution path for 1   and 8  . The solution path is 

periodic which oscillates around the origin without converging or diverging. The origin is a 

stable (but not asymptotically) center. 

Note that there exist two free endogenous variables tx  and t . Then, following 

Blanchard and Kahn (1980), the equilibrium solution would be unique if and only if both 

eigenvalues are outside the unit circle. The following Proposition characterizes the necessary and 

sufficient conditions for having a determinate equilibrium solution to the system (3.2.12). 
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Proposition 3.2.3: Under the pure forward looking inflation targeting rule, the open economy 

New Keynesian model, specified in (3.2.12) has a unique stationary equilibrium if and only if 

1             (3.2.13) 

and 

 
 1 0

1 1



  

 

 
      

.       (3.2.14) 

Proof: Following Lasalle (1986) and Bullard and Mitra (2002), both eigenvalues of the Jacobian 

matrix are outside the unit circle if and only if 0 1a  , and 1 01a a  . From the first 

inequality, we derive (3.2.13). From the second inequality, we derive (3.2.14).    

 Notice that the condition (3.2.13) is not satisfied since  0,1  . Hence, for the given 

parameter values in Gali and Monacelli Model, the system does not guarantee the uniqueness of 

the equilibrium solution path. If the monetary policy is irresponsive to output, that is, if 0x  , 

then controlling the parameter value of inflation has an insufficient effect on the determinacy. In 

this case, no value of 

 can ensure a determinate equilibrium unless 1  . A discount factor   

greater than unity is required to fix the indeterminacy problem, but this would be quite 

questionable from an empirical prespective. As we also verified numerically, 1   is a 

branching point separating a unique equilibrium and multiple equilibria. 

One major drawback of pure forward-looking inflation targeting is that it often causes 

equilibrium indeterminacy. One way to prevent such policy-induced instability problem, some 

authors suggest that while setting the nominal interest rate, some other endogenous variables 

such as output gap need to be considered, beside the expected inflation. For instance, De Fiore 

and Liu (2005), and Carlstrom and Fuerst (2006) argue that the New Keynesian model with a 

pure forward-looking inflation targeting rule usually brings the equilibrium to instability. The 
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failure of pure inflation targeting emphasizes the significance of policy response to output. They 

also claim that, under nominal rigidities, equilibrium indeterminacy problem cannot be solved 

just by having the nominal rate respond to both inflation and output gap. Huang and Meng 

(2007) show that interest rate policy rules that are unresponsive to output usually give rise to 

equilibrium indeterminacy. They argue that increasing the degree of price stickiness or allowing 

for policy response to current output render the determinacy of equilibrium solution. But the first 

method has a quantitatively negligible effect, while the second method‟s success is sensitive to 

the elasticity of labor supply and the degree of stickiness. 

As the determinacy condition does not hold, there is a multiplicity of stable equilibria. 

Theoretically, any of these solution paths could be realized. In such cases, as Cochrane (2009) 

argues, the New Keynesian model has nothing to say about inflation, other than saying that 

anything can happen. That is why the non-uniqueness problem is important in modeling. 

Bernanke and Woodford (1997) argue that forecasted inflation targeting is inconsistent with a 

rational expectation equilibrium and prone to indeterminacy. They suggest that monetary 

authority should develop a structural model and monitor some other variables besides the 

inflation target. Batini and Haldane (1999) argue that even though the forward looking 

dimension makes the policy rule perform better than the standard Taylor rule, longer forecast 

horizons (longer than 3-6 quarters) risk macroeconomic stability. Giannoni (2000) argues that 

the presence of indeterminacy in a sticky price model under inflation targeting is possible for a 

reasonable subset of parameter values. He also shows that the indeterminacy vanishes when the 

central bank targets a price path. Dittmar and Gavin‟s (2004) findings support this argument in a 

flexible-price model and point out that the determinacy can be ensured once the central bank 

targets a path for the price level instead of inflation rate. 
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As we also checked numerically, one of the two real eigenvalues of the Jacobian matrix 

lies inside the unit circle, while the other one is outside. Given that both tx  and t  are non-

predetermined, the existence of an eigenvalue inside the unit circle implies the existence of 

multiple equilibria. Hence, there is no guarante that 0t tx    will be the equilibrium solution.  

Gali (2008), on the other hand, states that the following condition 

 2 1
1 1







 





   ,        (3.2.15) 

would be necessary and sufficient for determinacy. This condition suggests that, besides 

satisfying the Taylor principle ( 1  ), the monetary authority should not adjust the nominal 

interest rate too aggressively in reaction to a change in expected inflation. When 1  , a 

smooth and non-converging sunspot equilibrium emerges. When 
 2 1

1






 





  , on the 

other hand, a cyclical and non-converging sunspot equilibrium appears. Nakagawa (2009) 

supports the same argument and states that an aggressive response to expected inflation would 

lead to equilibrium indeterminacy making the current economy fluctuate even though it stabilizes 

the expectations for the future economy.  

 Given the values of the parameters by Gali (2008), 1  , 1  , 0.1275   and 

32.2157  , Nakagawa (2009) finds sunspot equilibrium dynamics such that sunspot equilibria 

under 32.2   are oscillatory convergent. The sunspot equilibria under 1   smoothly 

approach to the steady state. If 1   or 32.2  , sunspot dynamics stop converging.  

 If the discriminant of the quadratic equation is strictly negative, that is if 

2

1 04 0a a    , then the roots of the 2x2 matrix C will be complex conjugate numbers in the 
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form 
1,2 a ib   , with ,a b , 0b   is the real part, while 1i     is the imaginary unit. 

Using the aforementioned numerical values of the parameters, it is easy to verify that, for a 

feasible set of parameter values, the inside of the square root in eigenvalues is negative, hence 

the discriminant   is strictly negative. Therefore, the eigenvalues of the system (3.2.12) are 

complex conjugate in the form 
1,2 a ib   , 

where 

    
1

1 1 11
1

2 2 2

a
a

      



     
    
 
 

    (3.2.16) 

and  

    
2

1 1 11 1
4 1

2 2
b

      

 

      
     
    

.  (3.2.17) 

 Using the baseline values of the parameters, we can write the eigenvalues as follows: 

2

1

11523 6 15844 146893 34

198 198

 
 


 

   

and 

2

2

11523 6 15844 146893 34

198 198

 
 


 

  . 

Then, 

i. If 21156 15844 14689 0     , then the discriminant is 0  , and the system has 

two real and equal roots. Hence, the system (3.2.12) has one solution. Solving for  , we have 

1.0001   and 12.7   that gives the multiple roots with multiplicity two. 
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ii. If 21156 15844 14689 0     , then the system (3.2.12) has complex conjugate 

eigenvalues. Any value of the parameter   between 1 12.7   yields the complexity. 

iii. If 21156 15844 14689 0     , then the system (3.2.12) has two real and distinct 

eigenvalues. Any value of the parameter   that is less than one and/or greater than 12.7 yields 

that result. 

Thus, keeping the discount factor constant at 0.99   and varying the policy parameter 

  over a feasible range, we find that the Jacobian of the system (3.2.12) has complex conjugate 

eigenvalues for 1 12.7   with radius greater than unity implying stability. For 12.71  , 

eigenvalues turn out to be real valued, one inside the unit circle and the other one outside the unit 

circle in absolute value making the equilibrium a saddle. 

 With the presence of a pair of complex conjugate eigenvalues, we may expect to see a 

Hopf bifurcation if the transversality conditions are satisfied. Using Theorem 1, the conditions 

for the existence of a Hopf bifurcation is presented in the following Proposition. 

Proposition 3.2.4: The system (3.2.12) undergoes a Hopf bifurcation if and only if 0  and 

* 1  .         (3.2.18) 

Proof: Suppose the system (3.2.12) goes through a Hopf bifurcation at  **,y  , where 

 * *, *y x  . Then we need to show that 0   and 
* 1  .  

The existence of a Hopf bifurcation, by definition, requires a pair of complex conjugate 

eigenvalues on the unit circle. For the eigenvalues to be complex conjugate, the discriminant 

must be strictly negative, that is 0  . For the second part, note that the existence of a Hopf 

bifurcation requires     2 2

1 2mod mod 1a b       from the first part of Theorem 1. 
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Rewriting the condition explicitly by substituting (3.2.16) and (3.2.17) into it, and taking the 

square of both sides we obtain the critical value of the parameter as in (3.2.18). Therefore, the 

first condition of Theorem 1 holds only if 1  . 

 Conversely, suppose the system (3.2.12) possess‟ 0   and 1  . Substituting for 

1   into 2 2a b  yields    1 2mod mod 1   , which is the first condition in Theorem 1. 

In order to show that 1   gives rise to a Hopf bifurcation, we check the second condition in 

Theorem 1, which yields 

 
 

*
*

2 2

11

1
0

2

id d
a b

d d


 

 


      for 1,2i  . 

Thus, both conditions of Theorem 1 are satisfied and we have 
* 1  .       

Proposition (3.2.4) shows that the occurrence of a Hopf bifurcation is theoretically 

possible within the functional structure of Model (3.2.2). 
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Figure 3.2.7: Phase plots for various values of the parameter   in  ,x  -space in Model 

(3.2.2)
11
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Phase plots in Figure (3.2.7) show an evidence of Hopf bifurcation in the system. Here, 

there is only one periodic solution and other solutions diverge from the periodic solution as t→∞. 

In this case, the periodic solution is called an unstable limit cycle. 

This result shows that setting the discount factor equal to 1 puts the system on the Hopf 

bifurcation boundary and creates instability. The result is in line with the findings of Barnett and 

Duzhak (2008) for the closed economy case. We also numerically find a Period Doubling 

bifurcation at 0.91   , which is not in the feasible subset of parameter space. Note that, Gali 

and Monacelli (2005) assumes 0.99  . For the baseline values of the parameters and 

0.99  , the Jacobian matrix is 

0.8283 0.5051

-0.3434 1.0101
C

 
  
 

 

                                                 
11

 The outer trajectory is for 0.9   and 1.5  , limit cycle is for 1   and 1.5  , and the inner trajectory is 

for 1.1   and 1.5  . 
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having eigenvalues 1 0.9192 + 0.4064i   and 2 0.9192 - 0.4064i   with radius R=1.0050. 

For 1  , the system has complex conjugate eigenvalues with radius of 1. For 1  , the 

radius is greater than unity implying stability, while for 1  , it is less than unity indicating an 

unstable equilibrium. Hence, 1   is the Hopf bifurcation value. Furthermore, Hopf bifurcation 

appears at 1   independent of the values of   and  . Bifurcation analysis in open economy 

framework yields the same result as in the closed economy case under pure forward looking 

inflation targeting rule. Barnett and Duzhak (2010) report a Hopf bifurcation at 1   for the 

closed economy case. 

Recall that the parameter   is the discount factor which appears in the IS curve equation 

and comes from the optimization problem. Although it could be in a range between 0 and 1, 

Rumler (2007) states that, reasonable estimates of the discount factor   are found to be in the 

range between 0.9 and 1, while values of   much closer to 1 are theoretically more reasonable 

since it suggests the quarterly subjective discount rate. For the sake of simplicity, some authors 

assume a discount factor   equal to one.
12

 As Barnett and Duzhak (2008, 2010) point out, 

however, setting the discount factor equal to 1 can put Model (3.2.12) directly on the Hopf 

bifurcation boundary, and therefore can induce instability. That said, setting the discount factor 

at 1 is not an appropriate approach within the New Keynesian modeling whether it is an open or 

closed economy case. 

 

 

 

                                                 
12 See, for example, Roberts (1995), Gali and Gertler (1999). Bjornland et al. (2010) empirically find an annual 

discount rate of 1.6% which implies a discount factor greater than one. 
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Figure 3.2.8: Hopf bifurcation in phase space of Model (3.2.2) 
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0.9   and 1.5   
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1.1   and 1.5   

 

Figure (3.2.8) illustrates different phase plots for the Model (3.2.2). In the first plot, the 

origin is a spiral sink (asym. stable), in the second plot it is a stable center while in the third one 

it is a spiral source. 

If we vary the policy parameter   while taking 1   and keeping the other parameters 

constant at their baseline values, we numerically find a Hopf bifurcation at 1.0176  , a Period 

Doubling bifurcation at 12.76  , as well as a branching point at 1.   The phase space plot 

in Figure (3.2.9) illustrates the trajectory for 1   and 12.764706   at which a Period 

Doubling bifurcation occurs. 
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Figure 3.2.9: Phase space plot for 1   and 12.764706   
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Decreasing the value of   results in a higher value of the Period Doubling bifurcation 

parameter   in absolute value, except when 0   at which changes in   does not make any 

difference. On the other hand, decreasing the value of   results in a lower value of the 

bifurcation parameter   in absolute value, except when 1   at which changes in   does not 

make any difference. Furthermore, Hopf bifurcation appears at 1   independent of the values 

of   and  . 
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Figure 3.2.10: Phase space plots for various values of   
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Figure (3.2.10) illustrates several phase plots constructed for different values of the 

parameter   while taking 1  . 

3.3 Gali and Monacelli Model under Backward Looking Policy Rules: 

3.3.1 Under Backward Looking Taylor Rule: 

A backward looking approach enables monetary policy makers to consider the lagged 

information on output gap and inflation which can be obtained from the previous period while 

determining the current period‟s policy rate. This has been considered a more realistic 

assumption than making decisions based on contemporaneous information. Carlstrom and Fuerst 

(2000) argue that following a backward looking policy rule would help the central bank reach a 
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unique stationary equilibrium. See, for example, McCallum (1999) and Bullard and Mitra (2002) 

for a discussion of employing lagged data in monetary policy rules. 

Consider the following model in which the first two equations describe the economy 

while the third equation the instrument rule employed by the central bank for the monetary 

policy: 

 
1

1 1
t t t tE x


    

 


 
      

      (3.3.1) 

 
 1 1

1 1
t t t t t t tx E x r E r

 



 

 
          (3.3.2) 

1 1t t t x tr r x              (3.3.3) 

Moving equation (3.3.3) one period forward, adding expectations, and rearranging the 

terms, and defining  , ,t t t ty x r   we can write the system in the standard form 1t t tE y Cy  : 

 

1

1

1 1

0

t

t t t t

t t

r

E y Cy

E r

 







  
 
 

   
 
 
  

       (3.3.4) 

where 

      

 

1 1 1 1 1 1
1 1

1
0

1 1

0x

C



      

   

 


   

 

       
    

   
 

  
        
 
 
 
 

. 

The Jacobian matrix C has a third order characteristic polynomial, 

    3 2

3 2 1 0det 0p C I a a a            
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where, 

   
0

1 1 1 1 1
x

a


   
   

  

   
 

 
  

 
,      (3.3.5) 

 
1

1 11
xa

 


 

 
  ,         (3.3.6) 

and 
 

2

1 11
1 1a

 


  

   
       

  
.      (3.3.7) 

We begin our analysis by examining the determinacy conditions of the system (3.3.4). 

Note that there are three endogeneous variables; the rate of inflation, t , the output gap, tx , and 

the nominal interest rate, tr ; and two predetermined variables; 1tx   and 1t  . Following 

Blanchard and Kahn (1980), the system (3.3.4) has a unique, stationary equilibrium solution if 

and only if the number of eigenvalues outside the unit circle is equal to the number of forward 

looking (non-predetermined) variables, which is two ( 1t tE x   and 1t tE   ). Accordingly, two of 

the eigenvalues need to be outside the unit circle for uniqueness. 

With the backward looking Taylor rule, the following Proposition characterizes the 

necessary and sufficient conditions to ensure that the economy described by the system (3.3.4) 

has a unique stationary equilibrium. 

Proposition 3.3.1: Under the backward looking Taylor rule, the open economy New Keynesian 

model specified in (3.3.4) has a unique stationary equilibrium if and only if 

 
   1 1 0

1 1
x


    

 

 
        

,      (3.3.8) 

and 

 
   

 

 

2 1
1 1

1 1 1 1
x

 
    

   

  
          

.    (3.3.9) 
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Proof: Following Bullard and Mitra (2002), the number of the roots with the same sign can be 

confirmed by Descartes‟ rule of signs theorem as follows. In the positive case, we keep the signs 

on   unchanged and count the sign changes in the characteristic polynomial, which is two: 

  3 2

2 1 0p a a a         

Hence the maximum number of roots with positive sign is two, which might be real or complex 

conjugate. 

In the negative case, by having changed the sign on  , we look at  p  : 

  3 2

2 1 0p a a a          

Notice that in this case we have only one sign change in the characteristic polynomial. This 

implies that the polynomial has at most one negative root, and therefore exactly one. Thus, by 

Descartes‟ rule of signs, the characteristic polynomial has one negative root besides having either 

two positive roots or a pair of complex conjugate roots. 

We can also evaluate  p x  at 1x   for the roots with positive sign and at 1x    for the 

roots with negative sign to see whether the negative and positive roots lie outside (or inside) the 

unit circle. Note that for 0  , we have  

 
   1 1 1 11

0 0xp 

   
   

  

    
    

 
, 

which is trivially satisfied as all the parameters here are assumed to be positive. 

 For 1   , after some manupilations, we have 

 
 

   
 2 1

1 1 1
1 1 1

xp 

 
    

   

  
            

. 

 For 1  , after some manupilations, we have 
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 
 

   1 1 1 0
1 1

xp 


    

 

 
         

 

for the given values of the parameters in Gali and Monacelli (2005).
13

     

Conditions (3.3.8) and (3.3.9) together imply that a sufficiently active policy rule with 

1   accompanied by a small response to the output gap is sufficient to lead to a unique 

equilibrium. Eusepi (2005) argues that contrary to the forecast-based Taylor rules, the backward 

looking Taylor rule stabilizes the economy by leading to a uniquely learnable equilibrium. Figure 

(3.3.1) illustrates the regions of unique and multiple solutions. 

Figure 3.3.1: Determinacy diagram for the backward looking Taylor rule  

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10


x




Uniqueness

 

Using the calibration values of the parameters given by Gali and Monacelli (2005), 

determinacy of the equilibrium can be checked by computing the eigenvalues of the Jacobian 

matrix, that is: 

                                                 
13 See also Bullard and Mitra (2001) for an alternative version of proof. 
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1.3434 -1.0101 1

-0.3434 1.0101 0

0.1250 1.5 0

C

 
 


 
  

  

with the eigenvalues 1   1.3518 + 0.0658i  , 2 1.3518 - 0.0658i  , 3 -0.3502  . Note that one 

solution is real and inside the unit circle in absolute value, while the radius of the two complex 

conjugate solutions is greater than one with 1.3534R  . The number of eigenvalues outside the 

unit circle is equal to the number of forward looking variables, which is two. Hence, there exists 

a unique solution of the system. 

In order for a 3-dimensional system to exhibit a Hopf bifurcation, it should have a real 

root and a pair of complex conjugate roots on the unit circle. The following Proposition states the 

conditions for the system (3.3.4) to exhibit a Hopf bifurcation. 

Proposition 3.3.2: The system (3.3.4) undergoes a Hopf bifurcation if and only if the following 

transversality condition  

 

*

0

j j

i

j
 

 








 holds and the following conditions are satisfied: 

i) 
   

0
1 1 1 1

x 

 
   

   

 
         

,      (3.3.10) 

ii)  
 

 1 1 0
1 1

x 


    

 

 
        

,      (3.3.11) 

iii) 
   

2

1 2 3
1 1 1 1

x x x 

 
           

   

      
                           

. (3.3.12) 

Proof: For the necessary part of the proof, we apply Theorem 2 to derive the conditions of the 

Proposition (3.3.2). From the condition (i) in Theorem 2, we obtain 
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   
0

1 1 1 1 1
1

x
a



   
   

  

   
 

 
  

 
. 

Using the definition of absolute value, we have either 

   
0

1 1 1 1
x 

 
   

   

 
         

 

if 
   1 1 1 11

0x 

   
   

  

    
   

 
, or 

   
0

1 1 1 1
x 

 
   

   

 
         

 

if 
   1 1 1 11

0x 

   
   

  

    
   

 
. 

Since the parameters are assumed to be positive the second case is redundant and hence we only 

consider the first case as binding condition. 

 Using the condition (ii) in Theorem 2, we obtain 

   
 

 1 1
1 1 1 1 1 11 1

1 1 1x x

     
     

    

 
      

        
 

 

Again, by definition of absolute value, we have either 

 
 

 
 

2
1 1 0

1 1 1 1
x 

 
    

   

   
                 

 

if 
   

 1 1
1 1 1 1 1

1 1 0x 

   
    

  

 
    

      
 

, or 

 
   1 1 0

1 1
x


    

 

 
        
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if 
   

   
1 1 1 1

1 1 1 0x 

   
    

 

    
      

 
. 

Note that from the first part of the proof we have 

   
0

1 1 1 1
x 

 
   

   

 
         

.  

Then, 

   
   

1 1 1 1
1 1 1 0x 

   
    

 

    
      

 
  

since we assume positive parameters. Thus the first case drops and we only consider the second 

case as binding condition. 

 Finally, using the condition (iii) in Theorem 2, we obtain (3.3.12): 

   

2

1 2 3
1 1 1 1

x x x 

 
           

   

      
      

      
      

      
   

, 

where 
 

1
1 1 1 1

  
 

     
   

     

   
   
   

 , 
2

2
1

 

 


 
  and 

2 2

3
1 1

 
 

   

   
    

      
.      (3.3.13) 

For the sufficient part, assume the conditions (i)-(iii) hold true. Then, we need to show 

that the transversality condition holds which can be verified numerically.   

Therefore, the existence of a Hopf bifurcation in the New Keynesian model under 

backward looking Taylor rule (3.3.4) is theoretically possible in an open economy environment 

as shown in Proposition (3.3.2). 

Furthermore, we numerically detect a Period Doubling bifurcation at 1.91x  . Over the 

interval 0.1464 1.9145x  , one eigenvalue is inside the unit circle while the other two are 
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outside the unit circle. At 1.9145x  , one eigenvalue is on the unit circle while the other two 

are outside the unit circle. For 1.9145 x , all eigenvalues are outside the unit circle, one of 

them is in absolute value. Starting from the point 1.91x  , we construct the Period Doubling 

bifurcation boundary by varying x  and   simultaneously, as shown in Figure (3.3.2).
 
Note that 

along the bifurcation boundary, the positive values of the bifurcation parameter x  lie between 0 

and around 13. As the magnitude of the reaction of central bank to inflation, that is  , increases, 

even the smaller values of parameter x  
would be sufficient to cause Period Doubling 

bifurcation under backward looking Taylor rule. 

Figure 3.3.2: Period Doubling bifurcation boundary for x  in Model (3.3.1). 
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At this second round, while varying both parameters x  and   simultaneously, our 

numerical analysis detect a codimension-2 Fold-Flip bifurcation at    , 0.94, 2.01x     and a 

Flip-Hopf bifurcation at    , -6.98, 3.36x    . 
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Decreasing the value of   results in a higher value of the Period Doubling bifurcation 

parameter, except when 0   at which changes in   does not make any difference. On the 

other hand, decreasing the value of   results in a lower value of the bifurcation parameter in 

absolute value, except when 1   at which changes in   does not make any difference. Hence 

lowering   and raising   increase the value of the bifurcation parameter. Figure (3.3.3) 

illustrates three phase plots for different set of parameter values in Model (3.3.1). 

Figure 3.3.3: Phase diagrams for various values of parameters in Model (3.3.1) 
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 On the other hand, considering the policy parameter   as the potential source of 

bifurcation while keeping the other parameters constant at their benchmark values, our numerical 

analysis indicates a Period Doubling bifurcation at 11.87  . We find Period Doubling 

bifurcation at relatively larger values of the parameter  , but still close to the feasible subset of 

parameter space according to Bullard and Mitra (2002). Lowering   and raising   increase the 

value of the bifurcation parameter  . 

3.3.2 Under Pure Backward Looking Inflation Targeting Rule: 

Consider the following model in which the first two equations describe the economy while the 

third equation is the instrument rule employed by the central bank for the monetary policy: 
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 
1

1 1
t t t tE x


    

 


 
      

      (3.3.1) 

 1 1

1
t t t t t t tx E x r E r

 



 

 
          (3.3.2) 

1t t tr r               (3.3.14) 

Equation (3.3.14) formulates the policy rule as a pure backward looking inflation 

targeting in which the nominal interest rate is set according to the inflation rate realized in period 

1t  . Moving the equation (3.3.14) one period forward, adding expectations, rearranging the 

terms, and then defining  , ,t t t ty x r  , we can write the system in normal form 1t t tE y Cy  , 

 

1

1

1 1

0

t

t t t t

t t

r

E y Cy

E r

 







  
 
 

   
 
 
  

       (3.3.15) 

where 

     

 

1 1 1 1 1 11
1

1
0

1 1

0 0

C



     
 

   

 


   



       
    

  
 

 
        
 
 
 
 

. 

 It is the Jacobian matrix C that is relevant for determinacy and bifurcation analysis. The 

characteristic polynomial of the Jacobian matrix C is, 

    3 2

3 2 1 0detp C I a a a           

where 
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 
0

1 1
1a 

  


 

  
  

 
,       (3.3.16) 

1

1
a


 ,          (3.3.17) 

and 
 

2

1 11
1 1a

 


  

   
       

  
.      (3.3.18) 

As usual, we begin our analysis by examining the determinacy conditions of the system 

(3.3.15). Note that there are three endogeneous variables (the rate of inflation, t , the output gap, 

tx , and the nominal interest rate, tr ) and one pre-determined variable ( 1t  ). Following 

Blanchard and Kahn (1980), the system has a unique, stationary equilibrium solution if and only 

if the number of eigenvalues outside the unit circle is equal to the number of forward looking 

(non-predetermined) variables, which is two ( 1t tE x   and 1t tE   ) in our case. Proposition (3.3.3) 

characterizes the necessary and sufficient conditions for the determinacy. 

Proposition 3.3.3: Under pure backward looking inflation targeting rule, the open economy New 

Keynesian model (3.3.15) has a unique stationary equilibrium if and only if 

 
 1 0

1 1



  

 

 
      

,       (3.3.19) 

and 

 
 

 2 1
1

1 1 1


 
  

   

  
        

.      (3.3.20) 

Proof: Following Bullard and Mitra (2002), the number of the roots with the same sign can be 

checked by Descartes‟ rule of signs theorem. In the positive case, we keep the signs on   

unchanged and count the sign changes in the characteristic polynomial from one term to the next, 

which is two: 
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  3 2

2 1 0p a a a         

Hence the maximum number of positive roots for the characteristic polynomial is two, which 

might be complex conjugate.  

 In the negative case, by changing the sign on  , we look at  p   which gives, 

  3 2

2 1 0p a a a         . 

Notice that we have only one sign change in the negative case, which implies that there is at 

most one negative root, and therefore exactly one. 

 Thus, by Descartes‟ rule of signs, the characteristic polynomial has a negative root 

besides having either two positive roots or a pair of complex conjugate roots. 

 We can also evaluate  p x  at 1x   for the roots with positive sign and at 1x    for the 

roots with negative sign to see whether the negative and positive roots lie outside (or inside) the 

unit circle. Note that for 0  , we have  

 
 1 1

0 1 0p 
  


 

  
   

 
, 

which is trivially satisfied since all the parameters are assumed to be positive. 

 For 1   , we have 

   
 

1 1
1 2 1 1 0

1 1
p 

  
  

   

    
               

, 

for the given values of the parameters in Gali and Monacelli (2005). 

For 1  , we have 

 
 

 
1 11

1 1 0p 

 
  

 

  
    

 
, 
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for the given values of the parameters in Gali and Monacelli (2005). Hence, 

 
 1 0

1 1



  

 

 
      

.        

 Conditions (3.3.19) and (3.3.20) show that a sufficiently active policy rule with 1   

leads to a determinate equilibrium. We can numerically verify whether Proposition (3.3.3) holds 

for the given values of the parameters in Gali and Monacelli Model. The uniqueness of a solution 

can be easily checked by computing the Jacobian matrix, which is 

1.3434 -1.0101 1

-0.3434 1.0101 0

0 1.5 0

C

 
 


 
  

 

with eigenvalues 1   1.3217 + 0.1720i  , 2 1.3217 - 0.1720i   and 3 -0.2900  . Note that one 

solution is real and inside the unique circle in absolute value, while the radius of the two 

complex conjugate solutions are outside the unit circle with 1.3534R  . Recalling Blanchard 

and Kahn (1980), since the number of eigenvalues outside the unit circle is equal to the number 

of forward looking variables, the system (3.3.15) has a unique, stationary equilibrium solution. 

In order for a 3-dimensional system to exhibit a Hopf bifurcation, it should have a real 

root and a pair of complex conjugate roots on the unit circle. Using Theorem 2, with respect to 

the parameter  , the conditions for the existence of a Hopf bifurcation is presented in the 

following Proposition. 

Proposition 3.3.4: The system (3.3.15) exhibits a Hopf bifurcation if and only if the following 

transversality condition  

 

*

0

j j

i

j
 

 








 holds and the following conditions are satisfied: 
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i) 
   

0
1 1 1 1



 
  

   

 
        

,     (3.3.21) 

ii) 
 

 1 0
1 1




  

 

 
      

,       (3.3.22) 

iii) 2

0 1 2       .         (3.3.23) 

Proof: For the necessary part of the proof, we apply the conditions in Theorem 2. Using the 

condition (i) in Theorem 2, we obtain 

 
0

1 1
1 1a 

  


 

  
   

 
. 

Using the definition of absolute value, we have either 

   
0

1 1 1 1


 
  

   

 
        

 

if 
 1 1

1 0
  


 

  
  

 
, or 

   
0

1 1 1 1


 
  

   

 
        

 

if 
 1 1

1 0
  


 

  
  

 
. 

Since the parameters are assumed to be positive the second case is redundant and we only 

consider the first case as a binding condition. 

 Using the condition (ii) in Theorem 2, we obtain 

0 2 11a a a   . 

Again, by definition of absolute value, we have either 
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 
 

 

 

2 1
1 0

1 1 1 1


 
  

   

  
         

 

if 
   1 1 1 11

1 1 1 0
     

 
    

       
          

    

, or 

 
 1 0

1 1



  

 

 
      

 

if 
   1 1 1 11

1 1 1 0
     

 
    

       
          

    

. 

Note that from the first part of the proof we have 
   

0
1 1 1 1



 
  

   

 
        

. 

Hence 
   1 1 1 11

1 1 1 0
     

 
    

       
          

    

 since we assume positive 

values for the parameters. Thus the first case is redundant and we only consider the second case 

as a binding condition. 

 Finally, using the condition (iii) in Theorem 2, we obtain 

2

1 0 2 01a a a a   , 

which yields 

2

0 1 2        

where 

     

2

2

0 1
,

1 1 1 1 1 1
 

  
         

     
      

     

      
      

      
 and 

2 2

2

2
1 1

 
  

   
 

   

   
   
   

. 



102 

 

 For the sufficient part, assume that the conditions (i)-(iii) hold true for the parameter *

 . 

Then, we need to show that the transversality condition also holds at *

   , which can be 

verified numerically.          

Therefore, the existence of a Hopf bifurcation in the New Keynesian model under pure 

backward looking inflation targeting rule (3.3.14) is theoretically possible in an open economy 

environment, as shown in Proposition (3.3.4). 

For the numerical analysis, we examine the Jacobian matrix C while keeping the 

structural parameters constant at their baseline values and altering the policy parameter   over a 

certain range. Our numerical analysis indicates a Period Doubling bifurcation at 12.7   and a 

branching point at 1   given the benchmark values of the parameters. We also numerically 

detected a series of Limit Point bifurcations emerging for different values of inflation at 1   

as illustrated in Figure (3.3.4). 

Figure 3.3.4: Period Doubling and Limit Point bifurcations in Model (3.3.2) 
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On the other hand, lowering   and raising   increase the value of the bifurcation 

parameter  . But, lowering   while  = 1 makes bifurcations dissapear. We also found that 

there is no bifurcation in any type at    , 0, 1   . 

3.3.3 Under Backward Looking Taylor Rule with Interest Rate Smoothing: 

Consider the following model in which the first two equations describe the economy while the 

third equation is the instrument rule followed by the central bank for the monetary policy: 

 1
1 1

t t t tE x


    
 



 
      

      (3.3.1) 

 1 1

1
t t t t t t tx E x r E r

 



 

 
          (3.3.2) 

1 1 1t t t x t r tr r x r                (3.3.24) 

Equation (3.3.24) describes the policy rule as a backward looking policy rule in which the 

nominal interest rate is set according to the previous period‟s inflation rate, output gap and policy 

rate. Moving the equation (3.3.24) one period forward, adding expectations, rearranging the 

terms, and then defining  , ,t t t ty x r  , the system can be written in the form 1t t tE y Cy  , 

1

1

1

0

t

t t t

t t

r

E y Cy

E r

 







  
 
 

   
 
 
 

,       (3.3.25) 
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where 

1 1 1 1
1

1 1
1 0

x r

C



     
 

   

 
 

 

  

       
    

  
   

    
  

 
 
  

. 

 It is the coefficient matrix C that is relevant for determinacy and bifurcation analysis. The 

characteristic polynomial for the system (3.3.25) is in the following form: 

    3 2

3 2 1 0det 0p C I a a a                  

where 

0

1 1 1 1
x ra 

   
    

   

    
    

 
, 

1

1 1 1 1
1r xa

    
  

   

     
     

 
, 

and 
2

1 1
1ra

  
 

 

   
     

 
. 

Following Farebrother (1973) and Gandolfo (1996), a third order dynamical system 

whose characteristic polynomial is 

3 2

2 1 0 0a a a      , 

where ia   for all 1,2,3i   is stable if and only if 

2 1 0

2 1 0

2

1 2 0 0

1 0,

1 0,

1 0.

a a a

a a a

a a a a

   

   

   
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Using the baseline values of the parameters given in Gali and Monacelli (2005), as it could be 

checked numerically, the system (3.3.25) is found to be stable if the third condition satisfies 

2.7795r  . Otherwise, the system (3.3.25) is not stable given the baseline values of parameters. 

Based on Theorem 2, the following Proposition states the conditions for the system 

(3.3.25) to exhibit a Hopf bifurcation. 

Proposition 3.3.5: The system (3.3.25) undergoes a Hopf bifurcation if and only if the 

transversality condition 
 

*

0

j j

i

j
 

 








 holds and the following conditions are satisfied: 

i)
 1 1 1

1

1

x r 

 
   

   



 

 
        



 

, 

 1. 
2 3

1
x r 


    

 
  

 
, 

 2. 2 1r x         , 

ii) 

1 1 1 1 1 1 1 1 1 1
1 1 1

x r r r x

           
         

         

           
            

     
     
     

 

1.  2 1 01 0x r         , 

2.  3 4 1 0x r        , 



106 

 

iii) 

2

1 1 1 1 1 1 1 1 1
1 1

1 1 1
1 .

r x x r r

x r





            
        

         

    
   

   

           
          

   
    

     
     
     

  
  
  

Proof: For the necessary part, we apply Theorem 2. 

 By the condition (i) in Theorem 2, we obtain 

0

1 1 1 1
1x ra 

   
    

   

    
     

 
. 

Using the definition of absolute value, we have either 

1. 
 1 1 1 1

x r 

  
   

     

 
           

 

if 
1 1 1 1

0x r 

   
    

   

    
    

 
, or 

2. 
1 1

r x 

   
     

 

    
    

 
 

if 
1 1 1 1

0x r 

   
    

   

    
    

 
. 

 From the condition (ii) in Theorem 2, we obtain 

0 2 11a a a   . 

Then, by the definition of absolute value, we have either 

1.  
 

 
 2 2

1 1 0
1 1 1

x r

  
     

   

    
               

 

if 
1 1 1 1 1

1 1 0x r 

       
    

     

           
            

     
, or  
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2.  
 

 1 1 0
1 1

x r


    

 

 
         

 

if 
1 1 1 1 1

1 1 0x r 

       
    

     

           
            

     
. 

 Finally, by the condition (iii) in Theorem 2, we have 

2

1 0 2 01a a a a   , 

which implies 

2

1 1 1 1 1 1 1 1 1 1
1 1

1 1 1
1 .

r x x r r

x r





           
         

         

    
   

   

           
          

   
    

     
     
     

  
  
  

 For the sufficient part, assume the conditions (i)-(iii) hold true. Then, we need to show 

that the transversality condition holds which can be verified numerically.    

 Proposition (3.3.5) proves that the Gali and Monacelli Model under the backward looking 

Taylor rule with interest rate smoothing is likely to undergo a Hopf bifurcation. In order to 

determine numerically whether there are parameter values such that a bifurcation is possible, we 

examine the Jacobian matrix C. Given the benchmark values of the parameters and taking 

0.5r  , a Period Doubling bifurcation is detected numerically at 3x  . When 1r  , on the 

other hand, the Period Doubling bifurcation occurs at 4.09x  .  

For the closed economy case under the same policy rule, Barnett and Duzhak (2010) 

report a Period Doubling bifurcation at 5.7x  , assuming 0.9r  . Comparing the results from 

Barnett and Duzhak (2010) with the open economy case, however, does not give us a clear 

statement about whether or not the openness makes the New Keynesian model more sensitive to 

bifurcations since Gali and Monacelli Model incorporates a wider set of parameters including 
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some deep parameters relevant to the open economy. The fact that both studies use different set 

of calibration values for the parameters makes a direct comparison even harder. Airaudo and 

Zanna (2005), using a money-in-utility function and assuming non-separability, show that 

cyclical and chaotic dynamics are more likely the more open the economy and the higher the 

exchange rate pass-through into import prices. They also show that the existence of cyclical and 

chaotic dynamics depend on some open economy features and is in general robust to different 

timings in the policy rule. Examining the effects of a change in the parameters   and   in the 

Gali and Monacelli Model, on the other hand, does not support that argument in our model. 

Starting from this bifurcation point, we construct the bifurcation boundary by varying x  

and  , and then x  and r  simultaneously as shown in Figure (3.3.5). Note that in  ,x   -

space, the bifurcation boundary lies between 3x   and 3.25x  , which implies that Period 

Doubling bifurcation occurs for a very limited set of values of parameter x  no matter what 

value parameter   takes. This is not the case in  ,r x  -space, as shown in the second part of 

the Figure (3.3.5). Bifurcation parameter x  varies more elastically in response to changes in 

parameter r  to give rise to a Period Doubling bifurcation. 
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Figure 3.3.5: Period Doubling bifurcation boundary diagrams for x  in  ,r x   and  ,x   -

spaces in Model (3.3.3) 
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 At this second step, while varying two parameters x  and   or r  simultaneously, our 

numerical analysis indicates codimension-2 Fold-Flip bifurcations at    , 0.41, 3.19x     and 

at    , 0.78, 0.52x r     as well as Flip-Hopf bifurcations at    , -10.44, 5.04x     and 

   , -0.74, -1.23x r   . For x  being the bifurcation parameter, lowering   and raising   

increase the value of the bifurcation parameter. The bifurcation dissapears at    , 1, 0   . 

 When we take the parameter   into consideration as a potential source of bifurcation, 

we find a branching point at 0.47   and a Period Doubling bifurcation at 18.3  . 

Empirically, this is not a feasible value for a bifurcation. It requires an extreme response of the 

Central Bank to changes in inflation rate which is beyond any convention. The bifurcation 

boundary diagram for the parameter   is shown in Figure (3.3.6). Notice that in  ,r   -space, 

as shown in the first part of the Figure (3.3.6), bifurcation parameter   varies in the same 

direction in response to changes in parameter r  to generate a Period Doubling bifurcation. The 
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positive relationship between   and r  is different than our previous findings. In  ,x   -

space, the bifurcation boundary shows a negative relationship between the parameters   and 

x , implying that for higher values of x  even the smaller values of the parameter   would be 

sufficient to yield a Period Doubling bifurcation. 

Figure 3.3.6: Period Doubling bifurcation boundary for   in  ,r    and  ,x   -spaces in 

Model (3.3.3) 
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Again, at the second step, while varying both parameters r  and   simultaneously in 

order to construct the bifurcation boundary diagram, our numerical analysis indicates a 

codimension-2 Fold-Flip bifurcation at    , 1.797, 0.8r      and a Flip-Hopf bifurcation at 

   , 0.296, 0.966r      . 

Varying x  and   simultaneously, on the other hand, indicates a codimension-2 Fold-

Flip bifurcation at    , 0.4,3.19x     as well as a Flip-Hopf bifurcation at 

   , 10.44, 5.04x      . Lowering   and raising   increase the value of the bifurcation 

parameter  . 
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3.4 Gali and Monacelli Model under Hybrid Policy Rules: 

3.4.1 Under Hybrid Taylor Rule: 

In this specification, the current rate of inflation variable in the standard Taylor rule is replaced 

by the next period‟s forecasted/expected rate of inflation. Barnett and Duzhak (2008, 2010) 

examine this rule in the bifurcation analysis of closed economy New Keynesian models. Clarida, 

Gali and Gertler (2000) employ this version of the policy rule, among others, in order to analyze 

the pre-Volcker and Volcker-Greenspan era. Thurston (2010), however, claims that this 

modification has only minor effects through an additional condition on uniqueness and lifting the 

loci of optimizing  , which ensure an intercept on the   axis greater than unity. Bofinger and 

Mayer (2006), on the other hand, argue that the hybrid Taylor rule lacks the simplicity of simple 

policy rules and should be refused for practical reasons. 

Consider the following model in which the first two equations describe the economy 

while the third equation represents the monetary policy rule followed by the central bank: 

 
1

1 1
t t t tE x


    

 


 
      

      (3.4.1) 

 
 1 1

1 1
t t t t t t tx E x r E r

 



 

 
          (3.4.2) 

1t t t t x tr r E x             (3.4.3) 

Equation (3.4.3) describes the policy rule in a way that the nominal interest rate is set 

according to the expected inflation rate and the current output gap. Substituting (3.4.3) for t tr r  

into (3.4.2), we obtain a reduced system of first order difference equations in terms of inflation 

and output gap, which could be written in normal form 1t t tE y Cy  , as follows: 
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1

1

t t t

t t t

E x x
C

E 





   
   

   
         (3.4.4) 

where  

 
 

 

    

 

1
1 1 1 1 1

1

1 1

1

1 1

x

C






   

    

 

 

 


   

  
            

 
 

  
 

 
        

. 

Clearly, 0t tx    for all t constitutes an equilibrium solution to the system (3.4.4).  

The eigenvalues of the coefficient matrix C, which is also the Jacobian matrix of the 

system (3.4.4), are the roots of the characteristic polynomial 

    2

1 0det 0p C I a a         , 

where 

 
0

1 1x
a

  

 

 
  , 

and 
  

1

11
1

x
a


     

 

    
   , 

which yields 

  

    

1,2

2

11
1

1 11 1
1 4 .

x

x x





     


 

        

   

     
   
 

         
       

   

 

The following Proposition characterizes the necessary and sufficient conditions for the 

determinacy, following Bullard and Mitra (2002). 
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Proposition 3.4.1: Under the Hybrid Taylor Rule as specified in (3.4.3), the open economy New 

Keynesian model (3.4.4) has a unique stationary equilibrium if and only if 

 

 

1

1 1
x

 


 




 
         (3.4.5) 

and 

 
 

 1 1 0
1 1

x 


    

 

 
        

     (3.4.6) 

Proof: Following the methodology suggested by Bullard and Mitra (2002), both eigenvalues are 

outside the unit circle if and only if 

0 1a    and 

1 01a a  . 

From the first inequality, we derive  

 

 

1 1
1 0,

1 1

x




 



 

 
  

  
 
   

 

which gives 

 

 

1

1 1
x

 


 




 
. 

From the second inequality, we have 

1 01 0a a   , 

which implies 

 
 

 1 1 0
1 1

x 


    

 

 
        

.      
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The Proposition (3.4.1) suggests that the policy maker is able to reach the uniquely 

determined stationary equilibrium by choosing feasible values for the policy parameters. Since 

 0,1  , the condition (3.4.5) can be easily satisfied for positive values of the parameter x , 

which makes it redundant. Hence, the condition (3.4.6) is the critical one regarding determinacy. 

Any value of the inflation parameter greater than unity, that is 1  , accompanied by a non-

negative output parameter x  would be sufficient to satisfy the condition (3.4.6). Nevertheless, 

as Thurston (2010) points out, a negative x  may sometimes be consistent with uniqueness and 

optimality, even though a negative value is not necessary for that purpose. Figure (3.4.1) is 

constructed based on the condition (3.4.6) and shows the regions of unique and multiple 

equilibria. 

Figure 3.4.1: Determinacy diagram for the Hybrid Taylor rule 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
-70

-60

-50

-40

-30

-20

-10

0

10

Uniqueness





x

 

As the condition (3.4.6) is the critical one regarding determinacy, both eigenvalues will 

be outside the unit circle if and only if    
 

1 1 0
1 1

x 


    

 

 
        

. Note that, 



115 

 

since , 0x     by assumption, 1   would be sufficient for the condition (3.4.6) to hold. This 

implies the Taylor rule. If the central bank raises the nominal interest rate up more than one-for-

one when inflation rises, the real interest rate also increases and that would be sufficient to 

achieve a uniquely determined stationary equilibrium. 

 As shown in Gandolfo (1996), in order to examine the nature of the eigenvalues we first 

check the sign of the discriminant 2

1 04a a   . If the discriminant of the quadratic equation is 

strictly negative, that is if 

    
2

2

1 0

1 11 1
4 04 x xa a 

         

   

       
   

   
       

   
, 

then the roots of the Jacobian matrix C will be complex conjugate in the form 
1,2 a ib   , with 

,a b , 0b   is the real part, and 1i     is the imaginary unit. 

It is algebraically quite cumbursome to identify the sign of the modulus of the 

eigenvalues. Using the baseline values of the parameters, however, we can numerically verify 

that the inside of the square roots in both eigenvalues is negative, hence the discriminant   is 

strictly negative. Therefore, the eigenvalues of the system (3.4.4) are complex conjugates, 

1,2 a ib   , 

where 

  1
11 1

2 2

xa
a


      

 

      
   

 
   (3.4.7) 

and 
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 

  
2

11
4

1

2 2 11

x

x

b



  

 

      

 

  
 

 
 

      
  
 

.  (3.4.8) 

In fact, for the benchmark values of the parameters, we numerically obtain the Jacobian 

matrix as 

0.9533 0.5051

-0.3434 1.0101
C

 
  
 

 

having eigenvalues 1 0.9817 + 0.4155i   and 2 0.9817 - 0.4155i  , and with modulus 

   
2 2

0.9817 0.4 1.0665 015R    . The Jacobian matrix C has complex conjugate 

eigenvalues with a radius greater than unity, implying that the system (3.4.4) has a unique, 

stationary equilibrium. Figure (3.4.2) illustrates various phase plots for different values of the 

parameter x . 

Figure 3.4.2: Phase diagrams for various values of x  
in Model (3.4.1) 
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Divergent spiral trajectory 
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0.01x    

Limit cycle 
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0.1x    

Convergent spiral trajectory which 

starts at (2,-2) and ends at (0,0). 
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Having a pair of complex conjugate eigenvalues, we may expect to see a Hopf bifurcation 

if certain conditions are satisfied. Using Theorem 1, with respect to the policy parameter x , the 

conditions for the existence of a Hopf bifurcation is stated in the following Proposition. 

Proposition 3.4.2: The system (3.4.4) exhibits a Hopf bifurcation if and only if 0   and 

 

 
*

1

1 1
x

 


 




 
.         (3.4.9) 

Proof: Suppose the system (3.4.4) undergoes a Hopf bifurcation at  **, xy  , where 

 * *, *y x  . Then, we need to show that 0  and 
 

 
*

1

1 1
x

 


 




 
. The existence of a Hopf 

bifurcation, by definition, requires a pair of complex conjugate eigenvalues on the unit circle. 

For the eigenvalues to be complex conjugates, the discriminant must be strictly negative, that is 

0  . Note also that the existence of a Hopf bifurcation requires 

    2 2

1 2mod mod 1a b       by the first condition of Theorem 1. Rewriting the 

condition explicitly by substituting (3.4.7) and (3.4.8) into it, taking the square of both sides, and 

then solving for x , we obtain the critical value of the parameter x  as in (3.4.9). Therefore, the 

first condition of Theorem 1 holds only if 
 1

1
x

 


 




 
. 

From the other side, suppose 0   and 
 1

1
x

 


 




 
. Substituting for 

*

x  
into 

2 2a b  yields    1 2mod mod 1   , which is the first condition in Theorem 1. In order to 

show that the critical value of the parameter x  is actually a Hopf bifurcation parameter, we 

check the second condition in Theorem 1, which yields, 
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 
   

*
*

2 2
1 1

0
2

x x
x x

i x

x x

d d
a b

d d
  

   

  


 
     for 1,2i  .  

Thus, both conditions of Theorem 1 are satisfied and we have 
 

 
*

1

1 1
x

 


 




 
.   

Proposition (3.4.2) shows formally that taking the policy parameter x  free to vary while 

keeping the other parameters constant at their baseline values, the system (3.4.4) is likely to go 

through a Hopf bifurcation. Therefore, the occurrence of a Hopf bifurcation is theoretically 

possible as shown in Proposition (3.4.2). 

For the numerical analysis, we need to examine the Jacobian matrix C keeping the 

structural parameters constant at their baseline values while altering the policy parameter x  over 

a certain range. Our numerical analysis indicates a Period Doubling bifurcation at 1.92x    as 

well as a Hopf bifurcation at 0.01x   , given the benchmark values of the system parameters.
 

Under the hybrid Taylor rule, values of the bifurcation parameters are outside the feasible region 

of parameter space as we assume positive values for policy parameters. This also implies that the 

feasible set of parameter values for x  does not have a risk of bifurcation. 
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Figure 3.4.3: Period Doubling bifurcation boundary for x  in Model (3.4.1) 
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Figure (3.4.3) illustrates the combinations of parameters x  and   that form the 

bifurcation boundary. Notice that, in  , x  -space, bifurcation parameter x  varies in the same 

direction in response to changes in parameter   to produce a Period Doubling bifurcation. As 

the policy maker‟s choice for   increases, the higher values of x  are required to yield a Period 

Doubling bifurcation.  

Recall that the transition from a static spiral fixed point to a periodic equilibrium or limit 

cycle as a parameter is smoothly varied is known as a Hopf bifurcation. At 0.01x   , while the 

system still have complex conjugate eigenvalues, 1 0.9142 + 0.4053i   and 

2 0.9142 - 0.4053i  , radius reaches unity, that is    
2 2

0.9142 0.4053 1R    . For 

0.01x   , the system has complex conjugate eigenvalues with 1R  , implying an unstable 

spiral. For 0.01x   , the system has complex conjugate eigenvalues with 1R  , implying a 

stable spiral. Thus, at 0.01x    the system switches from a stable steady state to an unstable 

one. 



120 

 

Decreasing the value of   results in a higher value of the Period Doubling bifurcation 

parameter in absolute value, except when 0   at which changes in   does not make any 

difference. On the other hand, decreasing the value of   results in a lower value of the 

bifurcation parameter in absolute value, except when 1   at which changes in   does not 

make any difference. Figure (3.4.4) illustrates different solution paths with different stability 

properties indicating a Hopf bifurcation. The inner spiral trajectory is converging to the 

equilibrium point, while the outer spiral is diverging. The limit cycle, thus, is unstable (non-

attractive). 

Figure 3.4.4: Phase diagram indicating a Hopf bifurcation under the hybrid Taylor rule.14 
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3.4.2 Under Hybrid Monetary Policy Rule and Interest Rate Smoothing: 

Based on empirical studies, there is a general consensus that the monetary policy rule which 

takes the lagged nominal interest rate into account performs better in estimating the actual policy 

                                                 
14 Limit cycle for 1.5   and 0.01x   , inner spiral for 1.5   and 0.1x   , outer spiral for 1.5   and 0.1x  . 
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rate employed by the central bank. In fact, when regressing the nominal interest rate on inflation 

and output gap, the lagged nominal interest rate variable is found statistically significant with 

large coefficients. This suggests that the monetary policy authority adjusts the policy rate 

gradually to changes in the output gap and the inflation rate. On the other hand, Taylor (1999) 

claims that policy rules with lagged interest rate work most poorly in models without rational 

expectations. For a discussion of the significance of lagged interest rate in the estimation of the 

monetary policy rules, see for example, English, Nelson and Sack (2003). 

Consider the following model in which the first two equations describe the economy 

while the third equation represents the monetary policy rule followed by the central bank: 

 1
1 1

t t t tE x


    
 



 
      

      (3.4.1) 

 1 1

1
t t t t t t tx E x r E r

 



 

 
          (3.4.2) 

  1 11t t r t x t r tr r x r                (3.4.10) 

Equation (3.4.10) describes the policy rule as a hybrid version of the Taylor rule in which 

the nominal interest rate is set according to the expected inflation rate, the current output gap, 

and the previous period‟s nominal interest rate. Rearranging the terms, and defining 

 , ,t t t ty x r  , we can write the system in normal form 1t t tE y Cy  , 

1

1

1

0

0

1

t t t

t t t t

t t t

E x x

E C r

E r r

 







     
     

 
     
          

        (3.4.11) 
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where 
 

  
 

 

1 1 1
1 1

1
0

1 1

1
1

1 1

r

r x r

C





      


   

 


   

  
    

   

           
  
 

          
   

         

. 

The Jacobian matrix C has a third order characteristic polynomial, 

    3 2

3 2 1 0det 0p C I a a a            

where, 

0

x r r xa 



    




 
, 

  
 

1

1 1
1

x r r
r r ra 



 

  
   

  

 
      , 

and 
2

1
1 ra 






 

 
     

 
, 

with 
1






 


 
 and  

 1 1
 


     

 

 
       

. 

Following Farebrother (1973) and Gandolfo (1996), a third order dynamical system 

whose characteristic polynomial is 

3 2

2 1 0 0a a a      , 

where ia   for all 1,2,3i   is stable if and only if 

2 1 0

2 1 0

2

1 2 0 0

1 0,

1 0,

1 0.

a a a

a a a

a a a a

   

   

   
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Using the benchmark values of the parameters given in Gali and Monacelli (2005) and 

taking 0.5r  , it can be seen that the third condition is not satisfied. On the other hand, taking 

1r   leads to the first condition to fail. Thus, for the given values of the parameters, the system 

(3.4.11) is found unstable. 

The following Proposition states the conditions for the system (3.4.11) to undergo a Hopf 

bifurcation: 

Proposition 3.4.3: The system (3.4.11) undergoes a Hopf bifurcation if and only if the 

transversality condition 
 

*

0

j j

i

j
 

 








 holds and the following conditions are satisfied: 

i)  
1 1

1x r x r

 
   

 

 
   , 

 1.    1 0
1

x r r


   

 
   

 
, 

 2. 0r   , 

ii)  

 

    

1 1
1

1 1 1 1
1 1 1 ,

r
x r x r

r
r r x r r

   
    

 

    
       

   

   
    

     
         

 

  

 1. 

 
   

 

1 1 1 1 1
1 2 1 1

1 1
1 0,

r
r x r x r

r



      
       

    

 
  

 

          
            

    

  
    

 
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2. 

      
1 1 1 1

1 1 0r x x r r x r





     
           

   

      
          

 
, 

iii) 

      

 
2

1 1 1 1 1 1 1 1
1 1 1

1 1
1 .

r

r r x r r x r x r r

x r x r



         
             

       

 
   

 

         
          

 
 

    
     

    

 
  

 

Proof: For the necessary part, we apply Theorem 2. From the condition (i) in Theorem 2, we 

have 

0a   
1 1

1x r x r

 
   

 

 
   . 

Then, using the definition of absolute value, we have either    1 0
1

x r r


   

 
   

 
, 

or 0r   . Note that the first expression always holds as the parameters r  and   are 

assumed to be positive. Hence the second condition is the binding one for the existence of a Hopf 

bifurcation. 

 From the condition (ii) in Theorem 2, we obtain 

0 2 11a a a   ,  

which yields 

      
1 1 1 1 1 1

1 1 1 1 .r r

x r x r r r x r r

        
            

     

        
             

 
 
 

Then, by the definition of absolute value, we have either 

     
11 1 1 1 1 1

1 2 1 1 1 0r

r x r x r r

       
          

      

       
           

      
      

      

or 
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      
1 1 1 1

1 1 0r x x r r x r





     
           

   

      
          

 

. 

 Finally, from the condition (iii) in Theorem 2, we have 

2

1 0 2 01a a a a   , 

which yields 

      

 
2

1 1 1 1 1 1 1 1
1 1 1

1 1
1 .

r

r r x r r x r x r r

x r x r



         
             

       

 
   

 

         
          

 
 

    
     

    

 
  

 

 For the sufficient part, suppose the conditions (i)-(iii) hold true. Once the conditions (i)-

(iii) are satisfied, a pair of complex conjugate eigenvalues lie on the unit circle while a real-

valued eigenvalue lies outside the unit circle. 

Finally, we need to show that the transversality condition holds for the bifurcation 

parameter which can be verified numerically.      

 Proposition (3.4.3) proves that the Gali and Monacelli Model under the monetary policy 

rule specified in (3.4.10) is likely to experience a Hopf bifurcation. In order to determine 

numerically whether there are parameter values such that a bifurcation is possible, we examine 

the Jacobian matrix C keeping the structural parameters and the policy parameters x and r  

constant while varying   over a certain range. We numerically find a Period Doubling 

bifurcation at 12.38   and a branching point at 0.98  . 

Starting at this bifurcation point, we construct the bifurcation boundary diagram in 

 , x   space by changing   and x  simultaneously while holding the other parameters 

constant. The bifurcation boundary diagram in  , x   space is shown in Figure (3.4.5). At this 

stage, we also find a codimension-2 type Fold-Flip bifurcation at    , 0.8,6.1x   . 



126 

 

Figure 3.4.5: Period Doubling bifurcation boundary for 12.38   in the  , x   space in 

Model (3.4.2) 
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Starting again from the Period Doubling bifurcation point 12.38  , but this time 

varying   and r  simultaneously and holding the other parameters constant, we construct the 

bifurcation boundary diagram in the  , r  -space which is shown in Figure (3.4.6). Once 

simultaneously varying parameters   and r , we find a codimension-2 type Fold-Flip 

bifurcation at    , 0.98, 0.55r    and a Flip-Hopf bifurcation at    , 0.16, 0.96r     . 
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Figure 3.4.6: Period Doubling bifurcation boundary for 12.38   in the  , r  -space in 

Model (3.4.2) 
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Decreasing the value of   results in a higher value of the bifurcation parameter in 

absolute value. On the other hand, decreasing the value of   results in a lower value of the 

bifurcation parameter in absolute value, except when 1   at which changes in   does not 

make any difference. The Period Doubling bifurcation dissappears when 1   and 0  . 

Secondly, we consider x  as the bifurcation parameter and keep the other parameters 

constant at their baseline values. We then numerically find a Period Doubling bifurcation at 

5.74x  . For the close economy case, Barnett and Duzhak (2010) report a Period Doubling 

bifurcation at 0.2831x  . Under hybrid Taylor rule with interest rate smoothing we came across 

a higher value for Period Doubling bifurcation in open economy case. Comparing the results 

from Barnett and Duzhak (2010) with the open economy case, however, does not give us a clear 

statement about whether or not the openness makes the New Keynesian model more sensitive or 

resilient to bifurcations since Gali and Monacelli Model incorporates a wider set of parameters 

including some deep parameters relevant to the open economy. Furthermore, both studies use 
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different set of benchmark values for the parameters. Hence, a direct comparison becomes even 

harder.  

Starting from the Period Doubling bifurcation point 5.74x  , we construct the 

bifurcation boundary diagram in the  , x  -space by varying   and x  simultaneously while 

holding the other parameters constant. At this stage, we find a codimension-2 type Fold-Flip 

bifurcation at    , 0.8,6.09x   . 

Figure (3.4.7) illustrates the Period Doubling bifurcation boundary for 5.74x   in 

 , x  -space. Note that along the bifurcation boundary, the values of the bifurcation parameter 

x  lie between 1.2x   and 6.8x 
 
approximately. As the magnitude of the reaction of central 

bank to inflation, that is  , increases, the smaller values of parameter x  
would be sufficient to 

cause Period Doubling bifurcation. 

Figure 3.4.7: Period Doubling bifurcation boundary for 5.74x   in the  , x   space in Model 

(3.4.2) 
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Starting again from the Period Doubling bifurcation point 5.74x  , we construct the 

bifurcation boundary diagram in the  ,x r  -space by holding the other parameters constant 

while varying x  and r  simultaneously. At this stage, we find a codimension-2 type Flip-Hopf 

bifurcation at    , 1.26, 1.57x r     , which is outside the feasible parameter space. 

Figure (3.4.8) illustrates the Period Doubling bifurcation boundary for 5.74x   in the 

 ,x r  -space. Notice that values of the parameter 0r   do not play a significant role in 

determining the bifurcation value of the parameter x . Bifurcation boundary becomes almost 

horizontal at 0r  . 

Figure 3.4.8: Period Doubling bifurcation boundary for 5.74x   in the  ,x r  -space in Model 

(3.4.2) 
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Decreasing the value of   results in a higher value of the bifurcation parameter in 

absolute value. On the other hand, decreasing the value of   results in a lower value of the 
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bifurcation parameter in absolute value, except when 1   at which changes in   does not 

make any difference. All bifurcation points dissappear when 1   and 0  . 

We run a similar analysis for the last policy parameter r  and find a Hopf bifurcation at 

1.36r   and a Period Doubling bifurcation at 0.41r    as well as a branching point at 1r  . 

3.5 Gali and Monacelli Model with AR(1) Policy Rule: 

Consider the following model in which the first two equations describe the economy while the 

third equation represents the monetary policy rule followed by the central bank: 

 1
1 1

t t t tE x


    
 



 
      

      (3.5.1) 

 1 1

1
t t t t t t tx E x r E r

 



 

 
          (3.5.2) 

1t t r tr r r             (3.5.3) 

 In this specification, the nominal interest rate is an exogenous AR(1) process. The current 

policy rate is set according to the previous policy rate, independent of the endogenous variables, 

output gap and inflation, that is 0x   . 

Defining  , ,t t t ty x r  , we can write the system in normal form 1t t tE y Cy  , as 

1

1

1

1

0

1

t t t

t t t t

t t

E x x

E A r

r r

 



 







  
    
    

      
         
 

,       (3.5.4) 
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where 
 

1 1 1
1

1
0

1 1

0 0 r

C

      


   

 


   



       
    

  
  
        
 
 
 
 

. 

Following Blanchard and Kahn (1980), the system (3.5.4) has a unique, stationary 

equilibrium solution if and only if the number of eigenvalues outside the unit circle is equal to 

the number of forward looking (non-predetermined) variables, which is two ( 1t tE x   and 1t tE   ). 

One eigenvalue is r  that is inside the unit circle since  0,1r   by assumption. Thus, in a 

similar way to the closed economy case as shown in Walsh (2003, p.246), stability and 

uniqueness could be achieved if both eigenvalues of the matrix 

 

1 1
1

1

1 1

    


  

 


   

     
    

  
  
        

 

are outside the unit circle which does not hold since the smaller eigenvalue of this matrix lies 

inside the unit circle. As Walsh (2003) points out, this implies the existence of multiple 

equilibria and the possibility of stationary sunspot equilibria. Thus, an exogenous policy rule that 

is independent of the endogenous variables of the system (3.5.4), inflation and output gap, might 

give rise to multiple equilibria. 

Keeping the parameters constant at their baseline values while varying r , our numerical 

analysis indicates a branching point at 1r   and a Period Doubling bifurcation at 1r    as 

illustrated in Figure (3.5.1). 
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Figure 3.5.1: Period Doubling bifurcation and branching point under the AR(1) policy rule 
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At the second step, while varying two parameters, r  and one of the structural parameters 

, or     simultaneously in order to construct the bifurcation boundary diagram, our 

numerical analysis indicates codimension-2 Fold-Flip and Flip-Hopf bifurcations. But, in each 

case, we obtain a bifurcation boundary that is parallel to the horizontal line implying that the 

bifurcation parameter is not affected by the changes in the structural parameters. That means, 

varying   and   does not affect the value of the bifurcation parameter, unlike the previous 

cases. 

3.6 An Extension: Clarida, Gali and Gertler (2002) Model: 

Clarida, Gali and Gertler (2002) developed a two-country version of small open economy model 

which is basically based on Clarida, Gali and Gertler (2001) and Gali and Monacelli (1999). 

Following Walsh (2003, pages 539, 540), the model of Clarida, Gali and Gertler (2002) can be 

rewritten in the reduced form as follows: 
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1
1

h h

t t t tE x
w


     

  
        

      (3.6.1) 

 1 1

1 h

t t t t t t t

w
x E x r E r


 

 
    

 
       (3.6.2) 

h

t t t x tr r x              (3.6.3) 

where   1 1        ,   is the probability that a firm holds its price unchanged in a 

given period of time, while  1   is the probability that a firm resets its price. The parameter w  

denotes the growth rate of nominal wages and   denotes the population size in the foreign 

country, with 1   being the population size of the home country. Wealth effect is captured by 

the term  . 

 Equation (3.6.1) is an inflation adjustment equation for the aggregate price of 

domestically produced goods. Equation (3.6.2) is the dynamic IS curve which is derived from the 

Euler condition of the consumers‟ optimization problem. The monetary policy rule (3.6.3) is a 

domestic inflation based current looking Taylor rule and completes the model. 

 Substituting (3.6.3) for t tr r  into the equation (3.6.2), we can reduce the system to a first 

order dynamic system in two equations for domestic inflation and output gap, given by: 

1
1

h h

t t t tE x
w


     

  
      

  
,     

 1 1

1 h h

t t t t x t t t

w
x E x x E   


 

 
    

 
.       

 Clearly, 0t tx    for all t  constitutes a solution (equilibrium) to the system. We can 

write the system in the standard form 1t t tAE y By   as follows: 
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1

t t t
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t t t

E x x
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E  





   
   

   
,         (3.6.4) 

where 
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 
 
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1
1

1 1
1

x

w
B

w w 


  

 

 

   
        
  
 
 

. 

Then, premultiplying the terms on the right hand side by the inverse of the matrix A, the 

system can be reduced to the form 1t t tE y Cy  , where 1C A B , 

1

1

t t t

h h

t t t

E x x
C

E  





   
   

   
         (3.6.5) 

where 

 
 

   1 1 11
1 1

1

1 1

1

xw w w
w

w
C

w

 
  

   


  

 

     
        

   
   
      

    

. 

 The system (3.6.5) is in normal form in the sense that each equation has only one 

unknown variable evaluated at time 1t  . Note that there were no disturbance term included in 

the model, hence 0t  . For the uniqueness and stability of the equilibrium, both eigenvalues 

must be outside the unit circle. 

 The characteristic polynomial of the coefficient matrix C is given by 

    2

1 0det 0p C I a a         , 

where 

     0

1 1
1 1 1xa w v w     

 
       , 

and 
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     1

1 1
1 1 1 1xa w v w   

 
        , 

which yields 

     

           

1,2

1
2 2

1 1
1 1 1 1

1 1 1 1
1 1 1 1 4 1 1 1 .

x

x x

w v w

w v w w v w 

    
 

        
   

 
        
 

    
                        

 

 As shown in Gandolfo (1996), in order to examine the nature of the eigenvalues we need 

to check the sign of the discriminant 2

1 04a a   . If the discriminant of the quadratic equation is 

strictly negative, that is if 

           
2

2

1 0

1 1 1 1
4 1 1 1 1 4 1 1 1 0x xa a w v w w v w         

   

   
                     

   

 

then, the roots of the coefficient matrix C will be complex conjugate numbers in the form 

1,2 a ib   , with ,a b , 0b   is the real part, and 1i     is the imaginary unit. 

 Regarding the system (3.6.5), it is algebraically quite cumbursome to identify the sign of 

the discriminant. Therefore, we simply assume that the eigenvalues of the system (3.6.5) are 

complex conjugates, 
1,2 a ib   , 

where 

     1 1 1 1
1 1 1

2 2 2 2
x

a
a w v w   

 

 
         

 
   (3.6.6) 

and 

           
2

1 1 1 1 1
4 1 1 1 1 1 1 1

22
x x

w v w w v wb
 

        
   

             
    

     
   

. (3.6.7) 
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 With the assumption of a pair of complex conjugate eigenvalues, we may expect to see a 

Hopf bifurcation if the transversality conditions are satisfied. Using Theorem 1, the conditions 

for the existence of a Hopf bifurcation is stated in the following Proposition. 

Proposition 3.6: The system (3.6.5) undergoes a Hopf bifurcation if and only if 0  and 

 *
11

1 1
x

v w

w w



  

  
   

  
.      (3.6.8) 

Proof: Suppose the system (3.6.5) goes through a Hopf bifurcation at  **, xy  , where 

 * *, *y x  . Then, we need to show that 0  and 
 *
11

1 1
x

v w

w w



  

  
   

  
. 

The existence of a Hopf bifurcation, by the definition, requires a pair of complex conjugate 

eigenvalues on the unit circle. For the eigenvalues to be complex conjugate, the discriminant 

must be strictly negative, that is 0  . 

 For the second part, note that the existence of a Hopf bifurcation requires 

    2 2

1 2mod mod 1a b       by the first condition of Theorem 1. Rewriting the 

condition explicitly by substituting (3.6.6) and (3.6.7) into it, taking the square of both sides and 

solving for x , we obtain (3.6.8). Therefore, the first condition of Theorem (1) holds only if 

 11

1 1
x

v w

w w



  

  
   

  
. 

 From the other side, suppose 0   and 
 11

1 1
x

v w

w w



  

  
   

  
. 

Substituting for 
*

x  
into 2 2a b  yields    1 2mod mod 1   , which is the first condition in 

Theorem 1. In order to show that the critical value of the parameter x  is actually a Hopf 

bifurcation parameter, we check the second condition in Theorem 1, which yields 
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 
 

*
*

2 2 1
0

2
x x

x x

i x

x x

d d w
a b

d d
  

 

  



     for 1,2i  . 

Thus, both conditions of Theorem 1 are satisfied and we have 

 *
11

1 1
x

v w

w w



  

  
   

  
.        

 Proposition (3.6) shows formally that taking the parameter x  free to vary and keeping 

the other parameters constant, the model of Clarida, Gali and Gertler (2002) is likely to undergo 

a Hopf bifurcation at *

x . 

Note that, the model of Clarida, Gali and Gertler (2002) differs from the Gali and 

Monacelli Model in several aspects. Additional paramaters exist in the former one. Parameters 

w , v , and   play a role in determining the critical value of the bifurcation parameter. To what 

extend both models differ depends on the parameter settings. 
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CHAPTER IV: 

CONCLUSION 

In this study, we first reviewed the bifurcation phenomenon in dynamic economic systems and 

pointed out the significance of bifurcations in dynamic systems. We then briefly mentioned 

bifurcation studies in economics literature in conjuction with a summary of the common types of 

bifurcations that have been encountered in dynamical economic systems. Bifurcation analysis 

has been widely used to examine and classify the dynamic behavior of a wide variety of 

economic models in economic literature. We restricted our attention to local, codimension-1 

bifurcations which require variations in only one control paramater in a small neighourhood of a 

fixed point. 

Despite the growing research interest in exploring the bifurcation phenomena in 

economic systems, literature on this subject is still sparse. In this study, we run bifurcation and 

determinacy analyses on an open economy New Keynesian model developed by Gali and 

Monacelli (2005). We have shown that in a broad class of open economy New Keynesian 

models, the degree of openness has a significant role in equilibrium determinacy and emergence 

of bifurcations under various form and timing of monetary policy rules. We found that the open 

economy framework brings about more complex dynamics, a wider variety of qualitative 

behaviors and policy responses. The conditions for the uniqueness and local stability of the 

equilibrium points are established for each model and were evaluated using the numerical 

analysis results. Even though some of the models that we considered here were analysed before 

by other authors in terms of determinacy, we reestablished the determinacy conditions in the 

open economy framework and for the sake of completeness of our study. Determinacy diagrams 

are also constructed to show the regions of unique and multiple equilibria. We then established 
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the conditions of a Hopf bifurcation for each model, based on the Hopf Bifurcation Theorem. 

Numerical analyses are performed to confirm the theoretical results. The numerical simulations 

showed that limit cycles and periodic behaviors are possible but in some cases only for 

unrealistic parameter values. Our numerical analyses also indicate the existence of the Period 

Doubling bifurcations in the models we examined. We then numerically constructed, for each 

circumstance, the corresponding bifurcation boundary diagram. 

The most important finding of this study is about the effects of the openness of economy 

on the value of bifurcation parameter. Under the monetary policy rules we studied, degree of 

openness in New Keynesian models changes the value of bifurcation parameter and makes the 

stratification of the confidence region by bifurcations still a serious issue. This suggests that the 

central bank should react to changes in the rate of inflation and the output gap cautiously. Thus, 

the stratification of the confidence region, as often seen in closed economy New Keynesian 

models examined by Barnett and Duzhak (2008, 2010), is still an important risk to be considered 

in the context of the open economy New Keynesian functional structures.  

Comparing the results from Barnett and Duzhak‟s (2010) closed economy analysis with 

the open economy case, however, does not give us a clear statement about whether or not the 

openness makes the New Keynesian model more sensitive to bifurcations. One reason is the fact 

that the Gali and Monacelli Model incorporates a wider set of parameters including some deep 

parameters relevant to the open economy. The fact that both studies use different set of 

benchmark values for the parameters makes a direct comparison even harder. Analyzing the 

effects of a change in the parameters   and   in the Gali and Monacelli Model, on the other 

hand, does not seem to be indicative for more sensitivity in open economy environment. 
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Lowering the composite parameter   and raising the parameter   usually increase the value of 

the bifurcation parameter. 

Notice that our analysis is restricted to certain special cases within the framework of open 

economy New Keynesian structure which closely follows Gali and Monacelli (2005). Therefore, 

we must be cautious when applying our conclusions to a more general environment. 

Econometrics and optimal policy design become more complex with an open economy. 

Dynamical inferences need to be qualified by the increased risk of bifurcation boundaries 

crossing the confidence regions and policy design needs to take into consideration that a drastic 

change in monetary policy can produce an unanticipated bifurcation, if the econometrics research 

was not adequate. However, generalizing our results to real economies would be an 

overstatement and we must be cautious when applying our findings to a more general 

environment. Notice also that our research is not about endogenous bifurcations and our model's 

parameters are fixed and do not move on their own. 

While simultaneously varying the policy parameters in order to construct bifurcation 

boundaries, we also encountered codimension-2 type Fold-Flip and Flip-Hopf bifurcations. In 

discrete-time dynamical systems, various types of codimension-2 bifurcations are possible. 

Detection of codimension-2 equilibrium bifurcations in a dynamic system allows us to predict 

the global behavior of the dynamic system by means of algebraic and numerical computations 

which could lead us to more complex dynamic behaviors and even to chaos. We left the analysis 

of codimension-2 bifurcations in New Keynesian models as a subject of future research.  
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In this study, we acquired a sense of quantitative importance of bifurcation phenomenon 

in open economy structure based on Gali and Monacelli (2005) Model through analytical and 

numerical investigations. It would be interesting to extend this study by testing our findings 

using real time data from various countries, which would give us important information about 

the existence and implications of bifurcations and provide us with empirical evidence regarding 

bifurcation phenomena in the real economy. This can be an insightful subject for future research. 
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