
A Hardware Implementation of a Coherent
SOQPSK-TG Demodulator for FEC

Applications

by

Gino Pedro Enrique Rea Zanabria

Submitted to the graduate degree program in Electrical
Engineering and Computer Science and the Graduate Faculty

of the University of Kansas in partial fulfillment of the
requirements for the degree of Master of Science.

Thesis Committee:

Dr. Erik Perrins: Chairperson

Dr. Andrew Gill

Dr. Shannon Blunt

Date Defended

The Thesis Committee for Gino P.E. Rea Zanabria certifies
that this is the approved version of the following thesis:

A Hardware Implementation of a Coherent SOQPSK-TG
Demodulator for FEC Applications

Committee:

Chairperson

Date Approved

ii

Acknowledgements

First of all, I would like to thank my family for always supporting and en-
couraging me throughout this incredible journey. They have been there when I
most needed them, and I know that without their love and guidance, none of
this would have been possible. I would also like to thank Dr. Erik Perrins, my
academic advisor, for giving me the opportunity to be part of his research team.
His experience and knowledge in the field of wireless communications have been
a source of inspiration throughout these years, and without a doubt, he will be a
role model to follow in my professional life. Next, I would like to thank Dr. An-
drew Gill and Dr. Shannon Blunt for taking the time to serve on my committee.
I have a great respect for their work and, I am honored by having them on my
committee. And last but not least, I would like to thank all the friends I made at
KU for making this journey more fun, less stressful, and surely one I will never
forget.

iii

Abstract

This thesis presents a hardware design of a coherent demodulator for shaped
offset quadrature phase shift keying, telemetry group version (SOQPSK-TG) for
use in forward error correction (FEC) applications. Implementation details for
data sequence detection, symbol timing synchronization, carrier phase synchro-
nization, and block recovery are described. This decision-directed demodulator
is based on maximum likelihood principles, and is efficiently implemented by the
soft output Viterbi algorithm (SOVA). The design is intended for use in a field-
programmable gate array (FPGA). Simulation results of the demodulator’s perfor-
mance in the additive white Gaussian noise channel are compared with a Matlab
reference model that is known to be correct. In addition, hardware-specific pa-
rameters are presented. Finally, suggestions for future work and improvements
are discussed.

iv

Contents

Acceptance Page ii

Acknowledgements iii

Abstract iv

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 2
1.3 Organization . 3

2 Description of SOQPSK 4
2.1 CPM Signal Model . 4
2.2 Frequency Pulse Truncation for SOQPSK-TG 7
2.3 SOQPSK Precoders . 8

2.3.1 Standard Precoder . 8
2.3.2 Recursive Precoder . 9

2.4 Trellis Representation . 10

3 Coded SOQPSK Iterative Decoders 12
3.1 Serially Concatenated Convolutional Code Decoder 12
3.2 Low Density Parity Check Decoder 14

4 Sequence Detection for SOQPSK 16
4.1 Maximum Likelihood Sequence Detection 17
4.2 SOVA Implementation . 19

v

5 Symbol Timing Synchronization 24
5.1 Timing Error Detector . 26
5.2 Loop Filter . 27
5.3 Interpolation . 28
5.4 Interpolation Control . 29

6 Carrier Phase Synchronization 32
6.1 Phase Error Detector . 33
6.2 Loop Filter . 35
6.3 Voltage-Controlled Oscillator . 35
6.4 Phase Ambiguity Resolution . 36

7 Hardware Implementation 37
7.1 Design Overview . 37

7.1.1 Inputs and Outputs . 37
7.1.2 Sampling and Downconversion 40
7.1.3 Demodulator Structure . 42

7.2 Interpolator . 45
7.3 Timing Estimator . 47

7.3.1 Timing Loop Filter . 47
7.3.2 Modulo-1 Decrementing Counter 48

7.4 Phase Corrector . 51
7.5 Phase Estimator . 54

7.5.1 Phase Loop Filter . 54
7.5.2 Voltage Controlled Oscillator 55

7.6 MFs Bank . 57
7.7 SOVA . 62

7.7.1 Branch Increment Calculator 65
7.7.2 Metric Manager . 67
7.7.3 Hard-Decision Traceback Unit 71
7.7.4 Reliability Traceback Unit 74
7.7.5 Output Calculator . 77

7.8 TED . 79
7.9 PED . 85

vi

7.10 Soft-Decision Correlator . 91

8 Performance Results 95
8.1 BER Performance . 95
8.2 Hardware Performance . 100

9 Conclusion 101
9.1 Interpretation of Results . 101
9.2 Future Work . 102

References 103

vii

List of Figures

2.1 Length-8T frequency pulse and corresponding phase pulse for SOQPSK-
TG. 6

2.2 Signal model for uncoded SOQPSK. 8
2.3 Four-state time-varying trellis. The labels above each branch are for

the standard precoder in (2.8), while the labels below each branch
are for the recursive precoder in (2.10). The branch labels indicate
the input-bit/output-symbol pair uk/αk. 10

2.4 Mapping between the trellis state variable pairs Sk and the CPM
phase states θk. 11

3.1 Block diagram of a serially concatenated convolutional code decoder. 13
3.2 Block diagram of a concatenated low density parity check decoder. 14

4.1 Discrete-time approach to MLSD for SOQPSK. 18
4.2 Block diagram of the soft output Viterbi algorithm. 19
4.3 Illustration of the metric update process. 21

5.1 Eye diagram showing the optimum sampling instant for the MF
outputs. 24

5.2 A discrete-time approach to symbol timing synchronization for SO-
QPSK. 25

5.3 A block diagram of the simple gain loop filter F (s). 27
5.4 Illustration of the interpolation operation to achieve optimum sam-

pling instants. Available samples before interpolation are repre-
sented with a triangle, while available samples after interpolation
are represented with a circle. 28

viii

5.5 A block diagram of the timing synchronizer with the modulo-1
decrementing counter used for interpolation control. 30

5.6 Illustration of the modulo-1 decrementing counter underflowing ev-
ery N samples. In this example, N assumes the value of 4. 31

6.1 A discrete-time approach to phase synchronization for SOQPSK. . 33
6.2 A block diagram of the simple gain loop filter F (s). 35
6.3 A block diagram representation of the voltage-controlled oscillator

(VCO). 35
6.4 Block diagram representation of phase ambiguity resolution for SO-

QPSK. 36

7.1 A black box view of the full version of the SOQPSK-TG demodulator. 38
7.2 A black box view of the simple version of the SOQPSK-TG demod-

ulator. 39
7.3 Block diagram representation of signal sampling and I/Q downcon-

version. 40
7.4 Internal structure of the demodulator. 42
7.5 Internal structure of the demodulator core. 43
7.6 Hardware representation of the interpolator. 46
7.7 Block diagram of the timing estimator. 47
7.8 Hardware representation of the timing loop filter. 48
7.9 Hardware representation of the mod-1 decrementing counter. . . . 50
7.10 Hardware representation of the phase corrector. 52
7.11 Hardware representation of the complex multiplier. 53
7.12 Block diagram of the phase estimator. 54
7.13 Hardware representation of the phase loop filter. 55
7.14 Hardware representation of the voltage-controlled oscillator. . . . 56
7.15 Hardware representation of the matched-filters bank. 58
7.16 Hardware representation of the MFs LUT control system. 59
7.17 Hardware representation of the MFs complex multiplier. 60
7.18 Hardware representation of the MFs accumulator. 61
7.19 Hardware representation of the MFs output control system. 61
7.20 Hardware representation of the SOVA decoder. 63
7.21 Hardware representation of the branch increment calculator. . . . 66

ix

7.22 Hardware representation of the metric manager. 68
7.23 Hardware representation of the metric calculator. 69
7.24 Hardware representation of the metric registers update unit. . . . 71
7.25 Hardware representation of the hard-decision traceback unit. . . . 72
7.26 Hardware representation of the reliability traceback unit. 75
7.27 Hardware representation of the reliability update unit. 77
7.28 Hardware representation of the output calculator. 78
7.29 Block diagram of the timing error detector. 80
7.30 Hardware representation of the TED input selector. 81
7.31 Hardware representation of the TED error calculator. 83
7.32 Block diagram of the phase error detector. 86
7.33 Hardware representation of the PED input selector. 87
7.34 Hardware representation of the PED error calculator. 88
7.35 Hardware representation of the soft-decision correlator. 92
7.36 Hardware representation of the phase ambiguity selector. 93

8.1 BER performance of VHDL model in ModelSim. 96
8.2 Block diagram representation of the hardware test setting. 97
8.3 BER performance of VHDL model in hardware. 98

x

List of Tables

4.1 Branch data lookup table for the standard precoder. 20
4.2 Branch data lookup table for the recursive precoder. 20

7.1 I/Q downconversion mixers. 41
7.2 Mapping of branch increments according to TI. 67
7.3 Mapping of branch metric candidates according to TI. 70
7.4 Mapping of merging path-decision vectors according to TI. 73
7.5 Mapping of merging reliability arrays according to TI. 76
7.6 Mapping of subtraction operands according to TI. 82
7.7 Mapping of first traceback operation according to TI and w1-w4. 84
7.8 Mapping of second traceback operation according to TI and w1-w4. 84
7.9 Mapping of phase-error estimates according to TI. 88
7.10 Mapping of first traceback operation according to TI and w1-w4. 90
7.11 Mapping of second traceback operation according to TI and w1-w4. 90

8.1 Average BER performance loss. 99
8.2 Hardware performance results of the VHDL model. 100

xi

Chapter 1

Introduction

1.1 Background

In aeronautical telemetry, vital information about an aeronautical vehicle is

remotely measured and sent to a distant location for analysis. The operations

that aeronautical telemetry perform are numerous and complex, and some of them

include new aircraft testing, systems monitoring, missile tracking and positioning,

and area surveillance. The success of an aeronautical telemetry mission is highly

dependent on the robustness of the communication link between the aeronautical

vehicle and the ground station. Due to the inherent cost of each flight test,

the receiver must be able to recover the transmitted information from the noisy

received signal, and avoid costly retransmissions.

In an effort to upgrade its current communication methods, the aeronautical

telemetry community has taken part in a migration to forward error correction

(FEC) codes in the recent years. By introducing meaningful redundancy into the

stream of data, FEC codes allow the receiver to detect and correct errors, up to

some limit, without the need and, more importantly, the cost of data retransmis-

1

sions. The adoption of FEC codes in aeronautical telemetry is a clear advantage.

However, migration to this technology also represents a challenge because existing

receivers must be enhanced to be FEC-compatible.

The High-Rate High-Speed Forward Error Correction Architectures for Aero-

nautical Telemetry (HFEC) project, carried out at The Information and Telecom-

munication Technology Center (ITTC) at The University of Kansas, is currently

investigating modern FEC codes with high-performance iterative decoders. The

goal of this research is to develop hardware FEC decoders that are efficient in their

use of hardware resources and implementation effort. The project focusses on two

FEC codes as design examples. These are low density parity check (LDPC) codes

and serially concatenated convolutional codes (SCCC). Both LDPC and SCCC

decoders require a demodulator that can provide soft-output, as well as recover

the symbol timing and carrier phase from the noisy received signal. The inter-

nal components and efficient hardware implementation of this demodulator is the

focus of this thesis.

1.2 Objectives

In this thesis, we present a hardware implementation of a fully-synchronized

demodulator for shaped offset quadrature phase shift keying, telemetry group ver-

sion (SOQPSK-TG) for use in FEC applications. This demodulator is attractive

for its reduced complexity and strong performance, and is efficiently implemented

by the soft output Viterbi algorithm (SOVA). The main contributions of this work

are in the implementation details of data sequence detection, symbol timing syn-

chronization, carrier phase synchronization, and block recovery. This implemen-

tation has been written in the widely-used hardware description language known

2

as VHDL, and is intended for use in a field-programmable gate array (FPGA).

1.3 Organization

This thesis is organized into 9 chapters. The information contained in these

chapters is listed below (chapters containing the novel contributions of this thesis

are marked with a *):

• Chapter 2 gives a description of the signal model for SOQPSK and the most

common precoders that are used for this modulation.

• Chapter 3 introduces the two iterative decoders considered as design exam-

ples in the HFEC project: SCCC and LDPC.

• Chapter 4 describes a reduced-complexity approach for the detection of SO-

QPSK via the soft-output Viterbi algorithm.

• Chapter 5 explains how symbol timing synchronization is achieved.

• Chapter 6 explains how carrier phase synchronization is achieved.

• *Chapter 7 gives a highly-detailed look at a hardware design of the fully-

synchronized SOQPSK-TG demodulator. This chapter contains the major-

ity of the work of this thesis, and therefore is longer.

• *Chapter 8 reveals the results of the hardware implementation of the SOQPSK-

TG demodulator in VHDL.

• *Chapter 9 gives conclusions and suggestions for future improvements.

3

Chapter 2

Description of SOQPSK

This chapter describes the signal model for SOQPSK and the most common

precoders that are used for this modulation.

2.1 CPM Signal Model

The SOQPSK signal is defined as a CPM [1] with the complex baseband

representation

s(t;α) ,

√
E

T
ejφ(t;α) (2.1)

where E is the symbol energy, and T is the symbol time. The phase is a pulse

train of the form

φ(t;α) , 2πh
k∑

i=−∞

αiq(t− iT), kT ≤ t < (k + 1)T (2.2)

where h = 1/2 is the modulation index, and αi ∈ {−1, 0, 1} is a transmitted

symbol. We use this notation to be consistent with previous work with SOQPSK;

nonetheless, it is in conflict with traditional CPM notation. In strict CPM terms,

4

we really have h = 1/4 and αi ∈ {−2, 0, 2} when the data alphabet is ternary

(M = 3). The phase pulse q(t) is defined as

q(t) ,

0, t < 0∫ t

0

f(σ) dσ, 0 ≤ t < LT

1/2, t ≥ LT

(2.3)

where f(t) is the frequency pulse, which has a duration of L symbol times and an

area of 1/2. When the frequency pulse lasts one symbol time (L = 1), it is said

to be full-response; however, when it lasts more than one symbol time (L > 1), it

is said to be partial-response. Due to the constraints on f(t) and q(t), the phase

in (2.2) may be expressed as

φ(t;α) = 2πh
k∑

i=k−L+1

αiq(t− iT)︸ ︷︷ ︸
θ(t;ck;αk)

+πh
k−L∑
i=0

αi︸ ︷︷ ︸
θk

(2.4)

with support on the interval kT ≤ t < (k + 1)T . The first term θ(t; ck;αk)

is the correlative phase and is a function of the correlative state vector ck ,

[αk−L+1, ..., αk−2, αk−1] and the current symbol αk. The correlative phase contains

the L most recent symbols being modulated by the phase pulse. The second term

θk is the phase state and is a function of the remaining symbols. Due to the

fact that h is a rational number, the phase state can only assume p = 4 distinct

values when taken modulo-2π, which are θk ∈ {0, π/2, π, 3π/2}. When this result

is applied in (2.1), it gives ejθk ∈ {±1, ±j}.

There are multiple versions of SOQPSK, which differ by their respective fre-

quency pulses. In this work, we focus on the version recently adopted in aeronau-

5

0 1 2 3 4 5 6 7 8
−0.2

0

0.2

0.4

0.6

Normalized Time (t/T)

A
m

p
li

tu
d

e

f
TG

(t), frequency pulse

q
TG

(t), phase pulse

Figure 2.1. Length-8T frequency pulse and corresponding phase
pulse for SOQPSK-TG.

tical telemetry, known as "SOQPSK-TG" [2]. It uses a partial-response frequency

pulse with L = 8, which is given by

fTG(t) , A
cos
(
πρBt
2T

)
1− 4

(
ρBt
2T

)2 × sin
(
πBt
2T

)
πBt
2T

× w(t) (2.5)

where the window is

w(t) ,

1, 0 ≤
∣∣∣∣ t2T

∣∣∣∣ < T1

1

2
+

1

2
cos

(
π

T2

(
t

2T
− T1

))
, T1 ≤

∣∣∣∣ t2T
∣∣∣∣ ≤ T1 + T2

0, T1 + T2 <

∣∣∣∣ t2T
∣∣∣∣

(2.6)

The constant A is chosen to give the pulse an area of 1/2 and T1 = 1.5, T2 = 0.5,

ρ = 0.7, and B = 1.25. The partial-response frequency pulse shown in Fig. 2.1

results in a more compact spectrum (compared to other frequency pulses) and

was selected to meet the bandwidth constraints of the aeronautical telemetry

community [2].

6

2.2 Frequency Pulse Truncation for SOQPSK-TG

The structure of the CPM phase in (2.4) is conveniently described by a phase

trellis comprised of pML−1 states. For SOQPSK-TG, this amounts to pML−1 =

512 states. An optimal detector for this version of SOQPSK would consequently

require a 512-state trellis, which is impractical and highly complex. Due to this

reason, we pursue a near-optimum approximation for SOQPSK-TG, known as

pulse truncation (PT) [3,4]. This approximation results in a simple detector that

is based on a four-state trellis with a loss in performance of only 0.2 dB [5].

The PT approximation for SOQPSK-TG is based on the fact that the fre-

quency pulse fTG(t) shown in Fig. 2.1 is near-zero for a significant portion of its

duration. Using this argument, the frequency pulse can be truncated to only in-

clude its smooth time-varying section. In other words, the truncation is centered

such that half is applied to the beginning of the pulse and half to the end. After

translating these conditions to the phase pulse we obtain the modified phase pulse

qPT(t) =

0, t < 0

q(t+ (L− 1)T/2), 0 ≤ t ≤ T

1/2, t > T

(2.7)

It is important to notice that since qPT(t) has variations only in the time interval

[0, T], it behaves like a full-response pulse (L = 1). This implies that the cor-

relative state vector ck in (2.4) is empty; and thus, it will be omitted from the

notation used in future chapters. We base the detector presented in this work on

this truncated phase pulse.

7

2.3 SOQPSK Precoders

SOQPSK is different from ordinary CPM in that it uses a precoding operation

to convert the binary sequence {uk} into a ternary sequence {αk}. The signal

model for uncoded SOQPSK is shown in Fig. 2.2. In this section, we describe two

of the most commonly used precoders for SOQPSK.

PRECODER
CPM

MODULATOR

u
k
 ∈ {0, 1} s(t;α)α

k
 ∈ {−1, 0, 1}

Figure 2.2. Signal model for uncoded SOQPSK.

2.3.1 Standard Precoder

The standard precoder converts the binary input bits {uk} into ternary data

{αk} according to the mapping [6]

αk(u) , (−1)k+1(2uk−1 − 1)(uk − uk−2) (2.8)

where uk ∈ {0, 1} and αk ∈ {−1, 0,+1}. The role of the precoder is to orient the

phase of the CPM signal in (2.4), such that it behaves like the phase of an OQPSK

signal that is driven by the bit sequence u. For convenience, in what follows we

refer to αk(u) as αk, but we stress that u is the underlying bit sequence.

8

The precoder imposes three important constraints on the ternary data [6]:

1. In any given bit interval, αk is drawn from one of two binary alphabets,

{0,+1} or {0,−1}.

2. When αk = 0, the binary alphabet for αk+1 switches from the one used for

αk, but when αk 6= 0 the binary alphabet for αk+1 does not change.

3. A value of αk = +1 cannot be followed by αk+1 = −1, and vice versa.

These constraints imply that not every possible ternary symbol pattern is a valid

SOQPSK data pattern. For example, the ternary data sequences . . . , 0,−1,+1, 0, . . .

and . . . ,−1, 0,−1, . . . violate the SOQPSK constraints.

2.3.2 Recursive Precoder

Another frequently used precoder that satisfies these constraints can be ob-

tained by differentially encoding the input bits uk at the transmitter. The differential

(recursive) nature of this precoder is essential when SOQPSK is used as the inner

code in a serially concatenated system [7]. The differentially encoded bits are

dk = uk ⊕ dk−2 (2.9)

where ⊕ is the XOR operator for binary data in the set {0, 1}. The precoder in

this case is

αk(u) = (−1)k uk d
′
k−1 d

′
k−2 (2.10)

where d′ ∈ {−1,+1} is the antipodal counterpart of dk and is given by d′k = 2dk−1.

9

0/0 (00)

(01)

(10)

(11)

0/0

0/0

0/0

1/0

0/0

1/0

0/0

0/0

0/0

1/0

0/0

0/0

0/0

1/0

0/0

1/-1

1/-1

1/1

1/1

k-even (I) k-odd (Q) Sk

Figure 2.3. Four-state time-varying trellis. The labels above each
branch are for the standard precoder in (2.8), while the labels below
each branch are for the recursive precoder in (2.10). The branch labels
indicate the input-bit/output-symbol pair uk/αk.

2.4 Trellis Representation

The precoder/CPM modulator pair shown in Fig. 2.2 can be thought of as

having a state at any time throughout the encoding process. Using uk−1, uk−2,

and k-even/k-odd from the standard precoder (2.8) as state variables, it has been

shown that eight states are required to describe the precoder/CPM system [8].

We may reduce the number of states from eight to four if we construct a time-

varying trellis, with different sections for k-even and k-odd. This four-state time-

varying trellis is shown in Fig. 2.3. The labels above each branch show the input-

bit/output-symbol pair uk/αk for the given branch using the standard precoder.

The state variable pairs Sk ∈ {00, 01, 10, 11} shown on the left side of the trellis

are ordered (uk−2, uk−1) for k-even and (uk−1, uk−2) for k-odd. When k is even,

the input bit uk replaces the leftmost bit in the pair, and when k is odd, it replaces

10

the rightmost bit. It is important to note that for any given time interval k, each

branch is identified with a unique value of the branch vector [uk, Sk] [5].

Similarly, the recursive precoder (2.10) is also described by the four-state

time-varying trellis in Fig. 2.3. The labels below each branch show the input-

bit/output-symbol pair uk/αk for the recursive precoder. In this case, the state

variables are dk−1 and dk−2, instead of uk−1 and uk−2. The state variable pairs

Sk are ordered and updated in the same way as before. Although each precoder

imposes a different input-bit/output-symbol mapping, the output-symbols are

identical in either case.

Q

I

01 11

10 00

π

2

3π

2

π 0

Trellis State

Phase State

θ
k

S
k

0

3π

2

π

00

01

10

11
π

2

Figure 2.4. Mapping between the trellis state variable pairs Sk and
the CPM phase states θk.

A key relationship between the SOQPSK precoders and the CPM modulator

is that the state variable pairs Sk and the CPM phase state θk are interchangeable

as state variables [9]. This one-to-one mapping is shown in Fig. 2.4 and is essential

to the reduced-complexity characteristic of the detector proposed herein.

11

Chapter 3

Coded SOQPSK Iterative Decoders

SOQPSK serves as the inner code in the two concatenated coded modulation

schemes investigated by the HFEC project. In order to present a framework for

the demodulator described in this work, this chapter describes the two iterative

decoders considered as design examples.

3.1 Serially Concatenated Convolutional Code Decoder

The SCCC modulation scheme under consideration is shown in Fig. 3.1. The

encoder/transmitter portion of the system consists of a convolutional code (CC)

encoder, an S-random interleaver (labeled as "Π" in the block diagram), the re-

cursive SOQPSK precoder from (2.10), and a CPM modulator. Therefore, the

CC serves as the outer code, and SOQPSK serves as the inner code in a serially

concatenated coding scheme. The recursive formulation of the precoder is neces-

sary to yield large coding gains from the concatenation of the outer CC and the

interleaver [5].

12

SOQPSK

DEMODULATOR
∏−1

CC

DECODER

∏

Map to

{0,1}

CC

ENCODER

SOQPSK

PRECODER
CPM

MODULATOR

AWGN

CHANNEL

u
k
∈ 0,1{ }

r(t)

∏

r(t)

ˆ u
k
∈ 0,1{ }

Figure 3.1. Block diagram of a serially concatenated convolutional
code decoder.

In the receiver portion of the system, an iterative decoding approach is used.

Instead of making one pass over the concatenated decoder, the iterative method

performs several. Soft decisions about the inner code are produced from the

SOQPSK demodulator, de-interleaved and fed into the CC decoder. Then, soft

decisions about the outer code are produced from the CC decoder, re-interleaved

and used as prior information in the SOQPSK demodulator. Since there is never

any prior information about the outer code, that input in the CC decoder is

assumed to be zero (shown with a “ground” symbol). The decoding operation

repeats itself for a set number of iterations, after which, a final binary output is

generated.

While Fig. 3.1 only shows one version of the SOQPSK demodulator, in reality

this iterative decoding scheme requires two versions. For the first iteration, a full-

version of the demodulator is required to recover the symbol timing and carrier

phase of the received signal, and at the same time, to estimate the transmitted

bit sequence. Ordered matched filter outputs from within the demodulator are

stored to be used as information inputs to the demodulator for the second and

13

LDPC

ENCODER

SOQPSK

PRECODER
CPM

MODULATOR

AWGN

CHANNEL

u
k
∈ 0,1{ }

r(t)

SOQPSK

DEMODULATOR
LDPC

DECODER

r(t)
ˆ u
k
∈ 0,1{ }

Figure 3.2. Block diagram of a concatenated low density parity
check decoder.

following iterations through the decoder. We refer to this ordered matched filter

outputs as branch increments in the following chapters. The branch increments

are already time-synchronized and phase-corrected; therefore, in order to process

these inputs only a simple-version of the demodulator is required.

This iterative decoding method provides a significant increase in performance

over a single iteration. In addition, the use of a soft-decision implementation for

the SOQPSK demodulator and the CC decoder provides a 1-2 dB gain in BER

performance over a hard-decision implementation [10]. Both, the demodulator

and the decoder are efficiently implemented by the soft-output Viterbi algorithm.

The use of interleavers (Π) helps the system manage bursts of errors, which the

Viterbi algorithm is very sensitive to.

3.2 Low Density Parity Check Decoder

The concatenated LDPC modulation scheme under consideration is shown in

Fig. 3.2. The encoder/transmitter portion of the system consists of an LDPC

encoder, the standard SOQPSK precoder from (2.8), and a CPM modulator. In

this case, LDPC serves as the outer code, and SOQPSK serves as the inner code.

14

In the receiver portion of the system, soft decisions about the inner code are

produced by the SOQPSK demodulator and provided as inputs to the LDCP de-

coder. Unlike the SCCC model, the concatenated LDPC scheme only performs

one pass over the decoder; therefore, it only requires the full version of the de-

modulator. The iterative nature of this concatenated decoder comes from the fact

that the LDPC decoder performs a fixed number of attempts on the input stream

to try to decode the transmitted information. The LDPC algorithm has the ad-

vantage of knowing with certainty if the decoding operation was successful, unlike

other decoding methods. Therefore, after a set number of iterations, the LDPC

decoder outputs a binary sequence if successful, or a decoding failure message,

otherwise.

15

Chapter 4

Sequence Detection for SOQPSK

Consider a signaling waveform sent through additive white Gaussian noise, the

AWGN channel. The received signal model is

r(t) =

√
E

T
ejφ(t−τ ;α)ejφ0 + w(t) (4.1)

where w(t) is a zero-mean complex-valued AWGN process with one-sided power

spectral density N0. This representation shows that the data symbols α, the

symbol timing τ , and the carrier phase φ0, are unknown to the receiver and must

be handled appropriately. A method to recover τ and φ0, based on maximum

likelihood (ML) principles, is developed in Chapters 5 and 6. In this chapter,

we describe a maximum likelihood sequence detection (MLSD) approach used to

decode the data symbols α. This approach is efficiently implemented via the soft-

output Viterbi algorithm (SOVA). In what follows, we refer to the estimated and

hypothesized values of a generic quantity a as â and ã respectively. Also, â and ã

can assume the same value of a itself.

16

4.1 Maximum Likelihood Sequence Detection

CPM signals are optimally demodulated by applying MLSD [1, Ch. 7]. Since

SOQPSK is a form of CPM, MLSD can be applied to recover the symbol sequence

α (and consequently, the underlying bit sequence u).

In order to develop this approach, the detector first assumes that the symbol

timing τ and the carrier phase φ0 are known [11]. Using the CPM model for

SOQPSK in (2.4), it was shown in [5] that the likelihood function for (4.1), given

a hypothetical bit sequence ũ over the interval 0 ≤ t ≤ T is

Λ(r|ũ) = exp

{
1

N0

√
E

T
Re
{
e−jφ0Zk(α̃k, τ)e−jθ̃k

}}
(4.2)

where Zk(·) are the matched filter (MF) outputs. The variables α̃k and θ̃k cor-

respond to hypothetical values obtained from ũ. The MF outputs Zk(α̃k, τ) are

sampled at the instant τ + (k + 1)T to produce

Zk(α̃k, τ) ,
∫ τ+(k+1)T

τ+kT

r(t)e−j2πhα̃kqPT(t−τ−kT) dt (4.3)

In order to implement (4.2), the output of three complex-valued MFs is needed.

Since the SOVA must consider all possible path histories, a MF output for each

possible value of the ternary α̃k must be computed. The complex-valued MF out-

puts for α̃k = ±1 can be constructed from the same four real-valued components

due to the identities sin(−x) = −sin(x) and cos(−x) = cos(x). The MF output

for α̃k = 0 has a value of unity for length-T , which is simply an integrate-and-

dump operation that requires no multiplications. Therefore, only four real-valued

filtering operations are required in total to implement (4.2).

17

MF Bank SOVA

r(nT
s
) {ˆ u

k
}{Z

k
}

Figure 4.1. Discrete-time approach to MLSD for SOQPSK.

A discrete-time implementation of the sequence detection process is shown in

block diagram form in Fig. 4.1. An ADC samples the received signal r(t) at a rate

Fs = 1
Ts

to produce r(nTs). Then, the samples are fed to the MF bank, whose

output forms the values in the set {Zk}. The MF outputs are then used to update

the branch metrics within the SOVA. The SOVA finds the data symbols sequence

ũ that maximizes (4.2) and outputs the estimated bit sequence û.

In standard notation, the inputs to the SOVA are real-valued probabilities

associated with the hypothetical bit sequence ũ, instead of MF outputs. These

probabilities are referred to as branch increments and are given by

Bk(τ, φ0, [ũk, S̃k]) , Re
[
e−jφ0Zk(α̃k, τ)e−jθ̃k

]
(4.4)

where ũk and S̃k are hypothetical values of the branch bit and the state vari-

able, respectively. Each branch increment is identified with a unique value of the

branch vector [ũk, S̃k]. This allows every branch increment to have a one-to-one

correspondence with a hypothetical ternary symbol α̃k and a hypothetical CPM

phase state θ̃k, as shown in Figs. 2.3 and 2.4. As a side remark, it is important

to note that multiplying by the factor e−jθ̃k ∈ {±1,±j} in (4.4) does not require

any multiplication resources in the hardware implementation.

18

SOVA P(u; I)

P(c; I)

P(u; O)

P(c; O)

Figure 4.2. Block diagram of the soft output Viterbi algorithm.

4.2 SOVA Implementation

The SOVA module under consideration is shown in Fig. 4.2. The module

accepts the sequences of a priori probability distributions P(c; I) and P(u; I) at the

input, and outputs the sequences of probability distributions P(c; O) and P(u; O).

Here, c corresponds to the sequence of coded information, and u corresponds to

the sequence of uncoded, underlying information. In this work, we are interested

in the two inputs and the u output. The description of the SOVA outlined in this

section is based on [12].

To organize the information contained in the trellis shown in Fig. 2.3, and

to aid in explaining the operations in the SOVA, we define the following tables.

Table 4.1 contains the information for the standard precoder (2.8), while table 4.2

contains the information for the recursive precoder (2.10). The branch index

e ∈ {0, 1, 2, 3, ..., 7} is a unique value that identifies each branch in the trellis.

This index is ordered from top to bottom, with the branch associated with uk = 0

labeled first than the branch associated with uk = 1 at every trellis state. Also,

each branch has an associated starting state SS(e) and an ending state ES(e),

which depends on whether k is even or odd. In addition, the branch data BD(e)

and branch symbol BS(e) which correspond to the input-bit/output-symbol pair

uk/αk are also indicated.

19

Table 4.1. Branch data lookup table for the standard precoder.

e SS(e) ES(e) BD(e) BS(e)
Sk uk αk

even odd even odd even odd
0 00 00 00 0 0 0 0
1 00 10 01 1 1 1 -1
2 01 01 00 0 0 0 1
3 01 11 01 1 1 -1 0
4 10 00 10 0 0 -1 0
5 10 10 11 1 1 0 1
6 11 01 10 0 0 1 1
7 11 11 11 1 1 0 0

Table 4.2. Branch data lookup table for the recursive precoder.

e SS(e) ES(e) BD(e) BS(e)
Sk uk αk

even odd even odd even odd
0 00 00 00 0 0 0 0
1 00 10 01 1 1 1 -1
2 01 01 01 0 0 0 0
3 01 11 00 1 1 -1 1
4 10 10 10 0 0 0 0
5 10 00 11 1 1 -1 1
6 11 11 11 0 0 0 0
7 11 01 10 1 1 1 -1

Assume that the SOVA uses K as a time index increasing from 0 to N − 1,

where N is the length of the received sequence. At each decoding step, P(c; I)

receives eight real-valued inputs (one for each branch in the trellis) corresponding

to the branch increments Bk(τ, φ0, [ũk, S̃k]) in (4.4). For simplicity, in this section

we refer to each branch increment as Bk(e), where e ∈ {0, 1, 2, 3, ..., 7} is a branch

index.

20

e
1

e
5

M
k

2
(10) = M

k−1(00) + Bk
(e
1
)

M
k

1
(10) = M

k−1(10) + Bk
(e5)

S
k
= 00

S
k
=10 M

k
(10)

Time index

k −1 k

Figure 4.3. Illustration of the metric update process.

With each transition in the binary trellis, two branches enter each trellis state.

These are referred to as competing branches, and the SOVA must determine which

one is the winning branch. For this purpose, we define the branch metric candidate

M
(i)
k (ES(e)) = Mk−1(SS(e)) +Bk(e) (4.5)

where i ∈ {1, 2} is an index to indicate the two competing branches. The value

i = 1 is typically assigned to the winning candidate, while i = 2 is assigned

to the losing candidate. The SOVA evaluates the two branch metric candidates

terminating at each trellis state Sk, and updates the cumulative metrics according

to the following comparison

Mk(Sk) = max {M (1)
k (Sk), M

(2)
k (Sk)} (4.6)

Fig. 4.3 shows an illustration of the metric update process. In this example,

branch e1 is considered to be the losing branch, and is marked with a dashed line

21

to indicate that it will be ignored by the decoder in subsequent operations.

In addition to updating the cumulative metrics, the SOVA must determine the

bit ûk associated with the winning branch at each trellis state Sk. This is possible

by using the one-to-one mapping between branches and the branch vector [uk, Sk].

The decoded bits ûk are stored in path decision vectors û(Sk), which contain the

(δ+ 1) most recent decisions {ûk−δ, ..., ûk} at each trellis state Sk. The parameter

δ represents the size of the decoding window. It has been shown in, i.e [13], that

there is a high probability that the paths at the current stage of the trellis converge

to a single surviving path after δ time steps in the decoding process. The use of

a decoding window allows the decoder to start generating an output after some

number of stages, without the need to traverse the entire received signal.

Next, the SOVA must compute the set of reliabilities L̂(Sk) = {L̂k−δ, ..., L̂k}

associated with the decoded bits in the path decision vectors û(Sk) merging at

state Sk. To this end, we define

∆k(Sk) = |M (1)
k (Sk)−M (2)

k (Sk)| (4.7)

and set L̂k = ∆k(Sk) since ∆k(Sk) represents the reliability difference between the

two most likely code-sequences terminating in state Sk = ES(e) at time step k.

Next, the remaining values L̂j, j = k− δ, ..., k− 1 of the surviving L̂(Sk) at state

Sk have to be updated. The reliabilities update process uses the same notion of

competing paths converging at the same trellis state. We refer to these two paths

as path-1 and path-2, and without loss of generality assume that path-1 is the sur-

viving path. Therefore, we have the set of reliabilities L̂
(1)

(Sk) = {L̂(1)
k−δ, ..., L̂

(1)
k−1}

for path-1, and L̂
(2)

(Sk) = {L̂(2)
k−δ, ..., L̂

(2)
k−1} for path-2. Similarly, we have the two

path decision vectors û(1)(Sk) = {û(1)k−δ, ..., û
(1)
k−1} and û(2)(Sk) = {û(2)k−δ, ..., û

(2)
k−1}

22

corresponding to path-1 and path-2, respectively. First, we consider the case when

û
(1)
j 6= û

(2)
j , for some j ∈ {k − δ, ..., k − 1}, and we update as

L̂j(Sk) = min {∆k(Sk), L̂
(1)
j } (4.8)

Next, we consider the case when û(1)j = û
(2)
j , for some j ∈ {k − δ, ..., k − 1}, and

we update as

L̂j(Sk) = min {∆k(Sk) + L̂
(2)
j , L̂

(1)
j } (4.9)

The decoding window of the SOVA applies to the reliabilities in the same way

it does to the bits. However, before the reliabilities are sent to the output, they

are assigned the sign corresponding to its associated path decision value (positive

for ûk = 1 and negative for ûk = 0. Next, the input value P(u; I) associated with

decision ûk must be subtracted from the newly-computed signed reliabilities. This

is due to the fact that the input P(u; I) is extrinsic information about the code,

and hence, it must be removed for the next decoding iteration. The P(u; I) input

is only valid for the SCCC iterative decoder shown in Fig. 3.1, and is non-zero for

all the decoding iterations after the first one.

23

Chapter 5

Symbol Timing Synchronization

Symbol timing synchronization ensures that sampling of the MF outputs is

executed at the correct instant. The optimum sampling instant corresponds to

the center of the eye diagram, as shown in Fig. 5.1. In general, a clock signal

is not transmitted for the purpose of timing synchronization because bandwidth

is a limited resource. Therefore, it must be recovered from the noisy received

waveforms that carry the data [14, Ch. 8]. In this chapter, we develop a method

based on ML principles to recover the symbol timing τ .

τ

{Z
k
}

MF Bank

r(nT
s
)

Figure 5.1. Eye diagram showing the optimum sampling instant for
the MF outputs.

Since this design is intended for use in digital hardware, the MF bank shown

in Fig. 5.1 is implemented as a discrete-time filter. Therefore, an analog-to-digital

converter (ADC) preceding the MFs is required. The ADC produces Ts-spaced

24

MF Bank INTERPOLATOR

T
s
=
T

N

r(t)
ADC

r(nT
s
)

SOVA

{Z
k
} {ˆ u

k
}

TED F(z)
INTERPOLATION

CONTROL

FIXED

CLOCK

r(kT)

Figure 5.2. A discrete-time approach to symbol timing synchroniza-
tion for SOQPSK.

samples of the received signal (4.1) at a rate N = 16 samples/symbol. Due to the

fact that the ADC runs on a fixed clock, the sample rate 1/Ts is asynchronous

with the symbol rate 1/T . This timing offset causes the MF bank to produce

outputs {Zk} that are not in the optimum sampling instant. The role of the

timing synchronizer is to compute samples in the desired time instants using the

available samples in r(nTs), so that the MF outputs are aligned with the center

of the eye diagram. This operation is performed by a linear interpolator. A block

diagram description of the timing synchronizer is shown in Fig. 5.2. The timing

error detector (TED) produces a timing error signal based on the MF outputs.

This error signal informs the loop filter F (z) about the timing difference, and is

used to produce an adjusting signal. The interpolator control block runs a modulo-

1 decrementing counter, which is updated using this adjusting signal. When the

decrementing counter underflows, it indicates the beginning of a symbol boundary,

and provides the fractional interval that the interpolator uses to compute the

desired samples.

25

5.1 Timing Error Detector

The derivation of the TED presented here is based on [11]. In order to recover

the symbol timing τ , the ML detector temporarily assumes that the data symbols

sequence α and the carrier phase φ0 are known. Using the same definitions from

Chapter 4, it was shown in [15] that the likelihood function for (4.1), given a

hypothetical timing value τ̃ over the interval 0 ≤ t ≤ T is

Λ(r|τ̃) = exp

{
1

N0

√
E

T
Re
{
e−jφ0Zk(αk, τ̃)e−jθk

}}
. (5.1)

The ML estimate τ̃ is the value of τ that maximizes the logarithm of (5.1), the

log-likelihood function. In order to find τ̃ , we need to take the partial derivative

of the log-likelihood function. Thus, we obtain

∂

∂τ̃
log(Λ(r|τ̃)) = Re

{
e−jφ0Y k(αk, τ̃)e−jθk

}
(5.2)

where Y k(·) is the partial derivative of the MF outputs Zk(·) with respect to τ̃ .

The ML estimate τ̃ is the value of τ that forces (5.2) to zero.

The value τ̃ is computed in an iterative and adaptive way. Initially, it was

assumed that α and φ0 are known, which is not the case. Therefore, two close

approximations are used to substitute these values. The true data sequence α is

replaced with the estimated decisions α̂ within the SOVA, and the true carrier

phase φ0 is replaced with the most recent phase estimate φ̂0 from the phase syn-

chronizer described in Chapter 6. These approximations become more reliable the

further we trace back along the trellis. Considering all these factors, the following

26

timing error signal is obtained as in [15]

eτ [k −D] , Re
{
e−jφ̂0[k−D]Y k−D(α̂k−D, τ̂ [k −D])e−jθ̂k−D

}
(5.3)

whereD represents the delay in computing the error, and α̂k−D and θ̂k−D are taken

from the path history of the best survivor in the SOVA. It is observed in [15] that

D = 1 produces satisfactory results.

In order to compute the derivative Y k(·), a discrete-time differentiator would

be required. However, it was shown in, e.g. [15], that this value can be approx-

imated with the difference between a late and an early MF output sample. In

the implementation of this TED, we use this proposed simplification to calculate

Y k(·).

5.2 Loop Filter

The purpose of the loop filter is to provide an adjusting value to the interpo-

lation control block based on the TED timing error signal. The transfer function

for the loop filter in consideration is F (s) = k. This is a simple gain and produces

a first-order PLL. A block diagram of the loop filter is shown in Fig. 5.3, where

Kp = 1 and K1 = −0.0026.

eτ[k −D]
Kp K1

v(n)

Figure 5.3. A block diagram of the simple gain loop filter F (s).

27

(n-2)Ts (n-1)Ts nTs (n+1)Ts (n+2)Ts (k-2)T (k-1)T kT (k+1)T (k+2)T
INTERPOLATOR

Figure 5.4. Illustration of the interpolation operation to achieve op-
timum sampling instants. Available samples before interpolation are
represented with a triangle, while available samples after interpolation
are represented with a circle.

5.3 Interpolation

The continuous-time received signal r(t) in (4.1) is sampled by the ADC at

a rate 1/Ts. This produces Ts-spaced samples, represented with a triangle in

Fig. 5.4. Because the sample clock is independent of the data clock used by the

transmitter, the sampling instants are not synchronized to the symbol periods.

This is illustrated in Fig. 5.4 by showing samples not aligned with the maximum

aperture of the eye-diagram. The interpolator uses these available samples to

compute desired samples of r(t) at the optimum sampling instances. A desired

sample at t = kT is called the k-th interpolant. When the k-th interpolant is

between samples r(nTs) and r((n + 1)Ts), the sample index n is called the k-th

basepoint index and is denoted m(k). The time instant kT is some fraction of a

sample greater than m(k)Ts. This fraction is called the k-th fractional interval

and is denoted by µ(k) [14, Ch. 8].

28

The equation for interpolation may be expressed as

r(kT) = r(nTs) + µ(k)[r((n+ 1)Ts)− r(nTs)] (5.4)

for a desired sample at t = kT . This sample corresponds to the on-time interpo-

lated sequence that will produce the aligned MF outputs {Zk}. It was mentioned

earlier that an early and a late MF outputs are also required to approximate the

derivative Y k(·). The early interpolated samples are computed by

r((k − 1)T) = r((n− 1)Ts) + µ(k)[r(nTs)− r((n− 1)Ts)] (5.5)

and the late interpolated samples are found by

r((k + 1)T) = r((n+ 1)Ts) + µ(k)[r((n+ 2)Ts)− r((n+ 1)Ts)] (5.6)

5.4 Interpolation Control

The purpose of the interpolation control block is to provide the interpolator

with the k-th basepoint index m(k) and the k-th fractional interval µ(k). For the

case of this detector, we base the interpolation control on a modulo-1 decrementing

counter. This counter is designed to underflow every N = 16 samples on average,

where the underflows are aligned with the sample times of the desired interpolant.

A block diagram of this approach is shown in Fig. 5.5.

The discrete-time samples generated by the ADC are clocked into the interpo-

lator with the same clock used to update the counter. With every clock period,

the counter decrements by 1/N on average. The loop filter output v(n) adjusts the

amount by which the counter decrements. In general, the counter value satisfies

29

MF Bank INTERPOLATOR

r(nT
s
)

SOVA

{Z
k
} {ˆ u

k
}

TED

F(z) Modulo-1 Counter + +

1

N

r(kT)

v(n)

−
+

η(n)

µ(k)underflow

r((k +1)T)

r((k −1)T)

Figure 5.5. A block diagram of the timing synchronizer with the
modulo-1 decrementing counter used for interpolation control.

the recursion

η(n+ 1) = (η(n)− 1/N − v(n)) mod 1 (5.7)

When the decrementing counter underflows, the index n is the basepoint index

m(k), as illustrated in Fig. 5.6, and the value of the counter becomes

η(m(k) + 1) = 1 + η(m(k))− 1/N − v(n) (5.8)

We notice that when the counter underflows, the values η(m(k)) and 1−η(m(k)+

1) form similar triangles, which leads to the relationship

µ(m(k))

η(m(k))
=

1− µ(m(k))

1− η(m(k) + 1)
(5.9)

Solving for µ(k), we obtain

µ(m(k)) =
η(m(k))
1
N

+ v(n)
(5.10)

30

µ (m(k − N)) µ (m(k)) µ (m(k + N))

 (n-5)Ts (n-4)Ts (n-3)Ts (n-2)Ts (n-1)Ts nTs (n+1)Ts (n+2)Ts (n+3)Ts (n+4)Ts (n+5)Ts (n+6)Ts

(k − N)T kT (k + N)T

m(k − N) m(k) m(k + N)

η(m(k))

η(m(k) + 1)

1− η(m(k) + 1)

1

0

Figure 5.6. Illustration of the modulo-1 decrementing counter un-
derflowing every N samples. In this example, N assumes the value of
4.

When in lock, v(n) is zero on average. Incorporating this consideration into (5.10)

produces the final expression for the fractional interval

µ(m(k)) = Nη(m(k)) (5.11)

31

Chapter 6

Carrier Phase Synchronization

Carrier phase synchronization is the process of forcing the local oscillators in

the detector to oscillate in both phase and frequency with the carrier oscillator

used at the transmitter. A carrier phase error causes a rotation in the signal

space projections. If the rotation is large enough, the signal space projections

for each possible symbol lie in the wrong decision region. Consequently, decision

errors occur even with perfect symbol timing synchronization and in the absence

of additive noise [14, Ch. 7].

The role of the phase synchronizer is to track any residual phase error remain-

ing in the phase after the phase shifts due to the data are removed by a PLL. A

block diagram representation of the phase synchronizer is shown in Fig. 6.1. Here,

we assume that the discrete-time sequence r(kT) contains the time-synchronized

interpolated samples of the discrete-time signal r(nTs). The complex multiplier

rotates these samples in phase by the amount of the most recent carrier phase

estimate φ̃0. Then, the time and phase-synchronized samples are fed to the MF

bank, whose output is used within the SOVA, the TED and the phase error de-

tector (PED). The PED produces a phase error signal based on the MF outputs.

32

MF Bank
Complex

Multiplier

r(kT)
SOVA

{Z
k
} {ˆ u

k
}

PED F(z) VCO

Phase

ambiguity

resolution

Figure 6.1. A discrete-time approach to phase synchronization for
SOQPSK.

This error signal is the input to the loop filter F (z) which drives the discrete-time

voltage-controlled oscillator (VCO). The VCO outputs an angle that represents

the next carrier phase estimate φ̃0. At the output of the SOVA, the detector must

resolve any phase ambiguity associated with the four possible phase shifts that the

PLL can lock on to due to the data. This is discussed at the end of the chapter.

6.1 Phase Error Detector

The implementation of the PED is similar to that of the TED. In order to

recover the carrier phase φ0, the ML detector temporarily assumes that the symbol

timing τ and the data symbols sequence α are known. Using the same definitions

from Chapter 4, the likelihood function for (4.1) given a hypothetical phase value

φ̃0 over the interval 0 ≤ t ≤ T is

Λ(r|φ̃0) = exp

{
1

N0

√
E

T
Re
{
e−jφ̃0Zk(αk, τ)e−jθk

}}
. (6.1)

The ML estimate φ̃0 is the value of φ0 that maximizes the logarithm of (6.1),

the log-likelihood function. In order to find φ̃0, we first need to take the partial

33

derivative of the log-likelihood function. Thus, we obtain

∂

∂φ̃0

log(Λ(r|φ̃0)) = Im
{
−je−jφ̃0Zk(αk, τ)e−jθk

}
(6.2)

where the ML estimate φ̃0 is the value of φ0 that forces (6.2) to zero.

Contrary to timing synchronization, in this case, the imaginary part of the MF

outputs is forced to zero. This is because of the multiplication of the −j term,

which results from the derivative of e−jφ̃0 , with the real and imaginary arguments

of Zk(·).

Similarly to timing synchronization, the value φ̃0 is computed in an iterative

and adaptive way. Initially, it was assumed that α and τ are known, which is not

the case. Therefore, two close approximations are used to substitute these values.

The true data sequence α is replaced with the estimated decisions α̂ within the

SOVA, and the true symbol timing τ is replaced with the most recent symbol

timing estimate τ̂ from the timing synchronizer described in Chapter 5. These

approximations become more reliable the further we trace back along the trellis.

Considering all these factors, the following phase error signal is obtained

eφ0 [k −D] , Im
{
−je−jφ̂0[k−D]Zk−D(α̂k−D, τ̂ [k −D])e−jθ̂k−D

}
(6.3)

where the delay in computing the error is assumed to be D = 1 to be consistent

with Chapter 5.

34

6.2 Loop Filter

The transfer function for the loop filter in consideration is F (s) = k. This is

a simple gain and produces a first-order PLL. A block diagram of the loop filter

is shown in Fig. 6.2, where Kp = 1 and K1 = 0.0026.

eφ 0 [k −D]
Kp K1

Figure 6.2. A block diagram of the simple gain loop filter F (s).

6.3 Voltage-Controlled Oscillator

The transfer function of the VCO in consideration is F (s) = K0/s, where

K0 = 1 is the VCO gain. This is a discrete-time accumulator that stores the

running sum of its input. The sum that is stored within the VCO corresponds

to the instantaneous phase of the phase error signal produced by the PED. The

output of the VCO is the angle corresponding to the next phase error estimate

φ̂0[k −D]. A block diagram representation of the VCO is shown in Fig. 6.3.

K pK1 eφ 0 [k −D]
K
0 + z-1

ˆ φ 0[k −D]

Figure 6.3. A block diagram representation of the voltage-controlled
oscillator (VCO).

35

6.4 Phase Ambiguity Resolution

Similarly to QPSKmodulation, SOQPSK exhibits a 90◦ phase ambiguity. Con-

sequently, the PLL in the phase synchronizer can lock in four different ways with

the carrier. It can lock in phase with the carrier, 90◦ out of phase with the carrier,

180◦ out of phase with the carrier, or 270◦ out of phase with the carrier [14, Ch. 6].

If the phase ambiguity is not resolved, decision errors will occur because the sym-

bols constellation will be rotated.

One way of resolving phase ambiguity is by inserting a unique pattern of known

symbols (or “attached synch marker" - ASM) in front of the binary sequence {uk}.

In the receiver, after the carrier phase has been locked, the detector searches

for the four possible ASM rotations using a correlation operation, and corrects

the phase ambiguity by inverting the appropriate bits according to the detected

ASM rotation. A block diagram representation of the phase ambiguity resolution

process is shown in Fig. 6.4.

Phase

ambiguity

correction

{ˆ u
k
}

Find

ASM(0°)

Select

phase

ambiguity

Find

ASM(90°)

Find

ASM(180°)

Find

ASM(270°)

Figure 6.4. Block diagram representation of phase ambiguity reso-
lution for SOQPSK.

36

Chapter 7

Hardware Implementation

This chapter outlines a detailed hardware implementation of the coherent

SOQPSK-TG demodulator described in Chapters 4, 5 and 6. An overview of

the proposed design is provided first, followed by a comprehensive description of

each hardware component.

7.1 Design Overview

7.1.1 Inputs and Outputs

The description of the design begins with a look at the inputs and outputs

to the demodulator. As mentioned in Chapter 3, the iterative decoding schemes

targeted by the HFEC project require the implementation of two versions of the

demodulator. The full version, which can handle timing and phase synchroniza-

tion, as well as sequence estimation, is the focus of this chapter. On the other

hand, the simple version, which only performs sequence estimation, is not de-

scribed here as it can be easily deducted from the design of the full version. An

illustration of the inputs and outputs of the full demodulator is shown in Fig. 7.1.

37

SOQPSK-TG

DEMODULATOR

FULL

CLK

RST

CE

Re_rx

Im_rx

Pu_O

Hu_O

Valid

BI_1

BI_2

BI_3

BI_4

BI_5

BI_6

BI_7

BI_8

Figure 7.1. A black box view of the full version of the SOQPSK-TG
demodulator.

The inputs to the full version of the demodulator are:

• The information inputs : Re_rx, Im_rx. These are the real and imaginary

components of the received signal. They are obtained through the processes

of sampling and downconversion explained below, and are quantized using

eight bits with four bits being fractional.

• The clock signal : CLK. This signal provides a common time reference to all

the components in the design, and it is detected on its rising edge.

• The reset signal : RST. This signal sets all registers to zero when it is ac-

tivated, unless noted otherwise in the description. It is asynchronous and

active-high.

• The clock-enable signal : CE. This signal controls the flow of information

from external components as it only enables the writing operation of all

registers when it is activated.

In the hardware descriptions presented below, the group of control signals:

CLK, RST and CE, is collectively referred to as CTRL.

38

SOQPSK-TG

DEMODULATOR

SIMPLE

CLK

RST

CE

Pu_O

Hu_O

Valid

BI_1

BI_2

BI_3

BI_4

BI_5

BI_6

BI_7

BI_8

Figure 7.2. A black box view of the simple version of the SOQPSK-
TG demodulator.

The outputs of the full version of the demodulator are:

• The information outputs : Pu_O, Hu_O. These are the soft-decisions (re-

liabilities) and hard-decisions (bits) about the inner code in the concate-

nated coding schemes described in Chapter 3. The reliabilities are fed to

a second decoder in order to estimate the transmitted bit sequence. The

hard-decisions are only used for testing purposes.

• The branch increment outputs : BI_1, ..., BI_8. These are the re-ordered

time-synchronized and phase-corrected branch increments that are com-

puted at the output of the matched-filters. They serve as information inputs

to the simple version of the demodulator in the second and subsequent it-

erations of the SCCC decoding scheme. An illustration of the inputs and

outputs of the simple demodulator is shown in Fig. 7.2.

• The output valid signal : Valid. This signal indicates the output of the

demodulator is valid when it is set to one.

39

7.1.2 Sampling and Downconversion

The processes of sampling and downconversion are key to understanding the

way we extract the information inputs from the received signal r(t). This is a

continuous-time band-pass signal centered at the intermediate frequency f0 = 70

MHz. Along with the desired information, noise is also embedded in the signal,

so a band-pass filter is first applied to avoid any aliasing effects of noise outside of

the bandwidth region. The sample rate is selected in a way that has advantages in

the subsequent I/Q downconversion operation. In a process known as band-pass

subsampling, the sample rate is selected so as to force the intermediate frequency

to alias to the quarter-sample-rate frequency [14, Ch. 8]. There are multiple

sample frequencies that achieve this effect, but for the purposes of this design, a

sample rate of Fs = 931
3
Msamples/s was selected. This sample rate allows for

a maximum usable bandwidth of 46.6667 MHz, which is well above the system’s

requirement.

BPF

x

x

cos(Ω0n)

sin(Ω0n)

Re_rx

Im_rx

r(t)
ADC

F
s
= 93

1

3
 MHz

Figure 7.3. Block diagram representation of signal sampling and
I/Q downconversion.

40

As it was mentioned above, the selected sample rate of Fs = 931
3
Msamples/s,

has the effect of aliasing the intermediate frequency spectrum of r(t) down to the

quarter-sample-rate frequency f ′0 = 1
4
Fs. When this is the case, we obtain

Ω0 =
2πf ′0
Fs

=
π

2
(7.1)

so that the I/Q downconversion mixers: cos(Ω0n) and sin(Ω0n), assume only three

trivial values:

Table 7.1. I/Q downconversion mixers.

n 0 1 2 3 4 5 ...
cos(nπ/2) 1 0 -1 0 1 0 ...
sin(nπ/2) 0 1 0 -1 0 1 ...

The fact that the I/Q downconversion mixers only assume the 0, ±1 values,

represents a considerable simplification in the hardware implementation. This is,

instead of requiring real multiplications to implement the two frequency trans-

lations in Fig. 7.3, they only require simple sign-alterations. The result of the

mixing operation is that r(t) is frequency shifted down to baseband.

In this way, the first ADC sample becomes the real input with zero being the

imaginary input. Then, the second ADC sample becomes the imaginary input

with zero being the real input. After this, the negative of the third ADC sample

becomes the real input with zero being the imaginary input. And finally, the

negative of the fourth ADC sample becomes the imaginary input with zero being

the real input. This pattern is repeated for the remainder of the ADC samples.

Any additional phase rotation introduced in the received signal as a product of

the downconversion process is measured and corrected by the phase synchronizer.

41

Soft-Decision

Correlator

CTRL

Re_rx

Im_rx

Demodulator

Core

Pu_O

Hu_O

BI_1

BI_2

BI_3

BI_4

BI_5

BI_6

BI_7

BI_8

Valid

CE

CLK

RST

Figure 7.4. Internal structure of the demodulator.

7.1.3 Demodulator Structure

A first-level view of the demodulator structure reveals two major components,

as illustrated in Fig. 7.4. These are the demodulator core and the soft-decision

correlator. As the name suggests, the demodulator core is the most extensive and

important component in the design. It encompasses all the modules responsible

for timing and phase synchronization, as well as, sequence estimation. A detailed

view of the demodulator core is given below. The soft-decision correlator serves

two essential purposes. The first one is finding the beginning of a frame in the

decoded data stream, and the second one is resolving any phase ambiguity in

the output data. It does so by performing a correlation of the soft-decisions

generated by the demodulator core and a known sequence of bits attached at the

beginning of each frame. A detailed hardware description of this module is given

in Section 7.10.

A second-level view of the demodulator reveals the internal structure of the

demodulator core, as illustrated in Fig. 7.5. Notice how the CTRL signal is not

shown directly connected to every module; instead, it is represented with a triangle

42

Re_rx

Im_rx

BI_1

BI_2

BI_3

BI_4

BI_5

BI_6

BI_7

BI_8

Pu_O

Hu_O

 Valid

Phase

Estimator

Timing

Estimator

Interpolator
Phase

Corrector

MFs Bank

Late

MFs Bank

On-Time

MFs Bank

Early
SOVA

CTRL

TED

PED

Figure 7.5. Internal structure of the demodulator core.

on their lower left corner. This is done with the purpose to make hardware

diagrams easier to read. The internal structure of the demodulator core has been

broken down into individual pieces, each one responsible for a separate task. The

components that comprise the timing synchronizer are the timing error detector

(TED), the timing estimator, and the interpolator. On the other hand, the ones

that comprise the phase synchronizer are the phase error detector (PED), the

phase estimator, and the phase corrector. And finally, the ones that make up the

sequence detector are the matched-filters (MFs) bank, and the soft-output Viterbi

algorithm (SOVA).

The information inputs are first processed by the interpolator, which generates

a sequence of samples that are aligned with the optimum sampling instances.

Also, it produces two additional sequences which represent samples at the early

and late sampling moments. The timing estimator, which is comprised by the

timing loop filter and the modulo-1 decrementing counter, uses the latest timing

error signal from the TED to generate two pieces of information. The first one is

43

the fractional interval mu, which indicates the optimum sampling instances to the

interpolator. And the second one is the underflow strobe, which signals a new

symbol boundary.

The three time-synchronized sequences produced by the interpolator are then

processed by the phase corrector, which removes any phase error according to the

phase estimator. The phase estimator, which is comprised by the phase loop filter

and the VCO, uses the latest phase error signal from the PED to generate an

instantaneous phase estimate. The phase corrector rotates the phase of its input

by this amount to produce phase-synchronized samples.

The resulting time and phase-synchronized sequences are each passed through

their corresponding MFs bank, which are triggered by the underflow strobe.

This guarantees that all samples corresponding to one symbol are filtered together.

Each MFs bank generates three complex-valued outputs, one for each possible

transmitted symbol. They also produce a signal that alternates between zero and

one with each new output, that is used as a trellis indicator. The outputs of the

on-time MFs bank are converted into branch increments within the SOVA, and are

then used to compute branch metrics, delta values and winning branch indexes.

The outputs of the other MFs banks and the winning branch indexes are used

within the TED and the PED to produce the next timing and phase error signals,

respectively. The SOVA computes the bits and reliabilities associated with the

maximum likelihood path, and outputs them after a decoding window of 16 time

steps. The branch increments are delayed throughout the decoding process to be

aligned with their corresponding hard-decisions and soft-decisions at the output.

44

7.2 Interpolator

The interpolator is the point of entry of the information inputs to the demod-

ulator. It produces a sequence of samples that are aligned with the optimum

sampling instances, as well as two sequences of samples that correspond to the

early and late sampling moments. The inputs to the interpolator are:

• Re_rx, Im_rx

• underflow

• mu

• CTRL.

And the outputs of the interpolator are:

• Re_OnTime_rx, Im_OnTime_rx

• Re_Early_rx, Im_Early_rx

• Re_Late_rx, Im_Late_rx

• underflow_out

A hardware representation of the interpolator is shown in Fig. 7.6. The inter-

polator receives new values of Re_rx and Im_rx on the rising edge of every clock

cycle. Along with these inputs, it also receives the interpolation control signals

underflow and mu, provided by the modulo-1 decrementing counter. Since we

are only interested in the value of mu when a new symbol boundary is detected,

this input has to be registered. On average, a new symbol boundary is detected

every N = 16 clock cycles, and it is indicated by the underflow strobe.

45

Im_Early_rx

Im_OnTime_rx

Im_Late_rx

Re_Early_rx

Re_OnTime_rx

Re_Late_rx

underflow_out

R

Re_rx

Rmu

underflow

Im_rx

R

R R R

R

-! x R

R

+ RR R

RR

- ! x R

R

+ RR R

CTRL

8

8

9

11

11

18

18 9

0

1

Figure 7.6. Hardware representation of the interpolator.

The information inputs Re_rx and Im_rx are interpolated as described in

Eq. (5.4). In the case of the real input channel, the interpolation begins by com-

puting the difference between the current input and the previous input. The result

is multiplied by the registered value of mu, and then added with the previous input.

The resulting value corresponds to the late interpolated sample Re_Late_rx,

while the one-time and two-times delayed versions of this value correspond to the

on-time sample Re_OnTime_rx, and the early sample Re_Early_rx, respec-

tively. The interpolation process for samples in the imaginary input Im_rx is

identical. The underflow strobe is propagated through the interpolator to later

be used in the matched-filters bank.

46

7.3 Timing Estimator

The timing estimator is comprised by the timing loop filter and the modulo-1

decrementing counter. It takes in the latest timing error signal from the TED,

and produces the interpolation control signals mu and underflow.

CTRL

T_e

Valid_in
Timing

Loop

Filter

Modulo-1

Decrementing

Counter

mu

underflow

Figure 7.7. Block diagram of the timing estimator.

7.3.1 Timing Loop Filter

The timing loop filter (TLF) is responsible for adjusting the timing error signal

T_e that is produced by the TED. Since the timing synchronizer is based on a

first-order phase-locked loop (PLL), the adjustment corresponds to a simple gain.

The inputs to the TLF are:

• T_e

• Valid_in

• CTRL.

And the outputs of the TLF are:

• TLF_out

• Valid_out

47

T_e

Valid_in Valid_out

TLF_out

x

R

T
K1

R

8

15
13

13

CTRL

0

1

Figure 7.8. Hardware representation of the timing loop filter.

A hardware representation of the TLF is shown in Fig. 7.8. The gain oper-

ation performed by the TLF is implemented with a multiplication between the

timing error signal T_e and the PLL constant TK1. The TLF output TLF_out

is updated only when the input valid signal Valid_in is set to one. Valid_in

is propagated through the TLF to later be used in the modulo-1 decrementing

counter.

The value of the PLL constant TK1 is given by

TK1 = −0.0026/π (7.2)

where the division by π is a normalizing factor required by the Sine\Cosine

block in the phase corrector. The numerator is the same one described in Sec-

tion 5.2.

7.3.2 Modulo-1 Decrementing Counter

The modulo-1 decrementing counter is responsible for providing the interpo-

lator with the control signals necessary to compute samples at the optimum in-

stances. These interpolation control signals are the fractional interval mu, and the

48

symbol boundary indicator underflow. The inputs to the decrementing counter

are:

• TLF_in

• Valid_in

• CTRL.

And the outputs of the decrementing counter are:

• underflow

• mu

A hardware representation of the modulo-1 decrementing counter is shown in

Fig. 7.9. According to Eq. (5.7), the counter’s value decrements on every clock

cycle by the net amount 1
16

+ TLF_in. The majority of the time, TLF_in

is equal to zero, so, on average, the counter’s value decrements by 1
16
. This

is represented by the subtraction on the top part of the diagram. Parallel to

this, the two subtractions below represent when the counter is also decremented

by TLF_in. The second result is selected only when Valid_in is set to one.

Although this design repeats the same subtraction operation twice, it allows us to

produce outputs on every clock cycle. This is required by the interpolator as new

data samples are clocked in at the same rate. The underflow strobe assumes

the same value as the counter’s sign bit. Therefore, when the counter’s value

becomes negative, or ‘underflows’, this signal is set to one.

The modulo-1 operation is implemented using a multiplexer indexed by the

counter’s only integer bit. When this bit is zero, it means one of two things: the

counter’s value is positive and less than one, or it is negative and smaller than -1.

49

Valid_in

“00” Append

13

CTRL

(11:0)

(12)

TLF_in
Resize

14

Modulo-1 Operation

-!

14

- !
14

1

16

-! 14

14

14

underflow

R

R

Valid_in

mu

(13)

(8:0)

0

1

0

1

0

1

Figure 7.9. Hardware representation of the mod-1 decrementing
counter.

The first case is possible, but the second one is not, because the counter is always

made positive as soon as it goes negative. Therefore, when this bit is zero, the

value of the counter is unchanged. However, when this bit is set to one, it means

that the counter’s value is greater than one, or that it has just become negative.

In either case, the counter is updated to be the complement of the previous value,

and so it becomes positive again. This complement operation is given by Eq. (5.8),

and is achieved by appending two zeros at the beginning of the fractional part

of the counter’s value. The fractional interval mu corresponds to the value of the

counter just before it becomes negative. This is represented with the lower nine

bits to take into account the multiplication by N = 16, as indicated in Eq. (5.11).

50

7.4 Phase Corrector

The phase corrector is responsible for removing any residual phase error in the

input data according to the information provided by the phase estimator. The

inputs to the phase corrector are:

• Re_OnTime_rx, Im_OnTime_rx

• Re_Early_rx, Im_Early_rx

• Re_Late_rx, Im_Late_rx

• VCO_in

• VCO_Valid_in

• underflow

• CTRL.

And the outputs of the phase corrector are:

• Re_OnTime_rx_out, Im_OnTime_rx_out

• Re_Early_rx_out, Im_Early_rx_out

• Re_Late_rx_out, Im_Late_rx_out

• underflow_out

A hardware representation of the phase corrector is shown in Fig. 7.10. The

phase corrector receives three sets of complex-valued samples corresponding to

the on-time, early and late sampling instants from the interpolator. At this point,

the on-time samples are assumed to be time-synchronized. However, all three

51

Im_OnTime_rx_out

Re_OnTime_rx_out

underflow_out

Im_Early_rx_out

Re_Early_rx_out

Im_Late_rx_out

Re_Late_rx_out

CTRL

Append “000” R

VCO_in

R

VCO_Valid_in
Sine

Cosine

Sin(VCO)

Cos(VCO)

Complex

Mult

Re_OnTime_rx

Im_OnTime_rx

Complex

Mult

Re_Early_rx

Im_Early_rx

Complex

Mult

Re_Late_rx

Im_Late_rx

underflow
RR

16

16

11

11

11

11

11

11

16

8

8

8

8

8

8

Figure 7.10. Hardware representation of the phase corrector.

sets of samples are still out of phase with the one used at the transmitter. An

instantaneous estimate of this phase error is provided by the VCO, along with an

input valid signal. The phase corrector rotates the phase of the input samples by

the amount of VCO_in in order to remove the phase error. It does so by means

of a Sine\Cosine block and three complex multipliers.

The Sine\Cosine block is used to compute the values of Sin(VCO_in) and

Cos(VCO_in) to be provided to the complex multipliers. The implementation

of this block is based on the work presented in [16], which takes advantage of

the symmetric and periodic behavior of the two functions. The two function are

approximated using piecewise polynomials, whose coefficients are used to index

two look-up tables. Although complex, this approach results in a more precise

output than one with two LUTs being directly indexed by the input angle.

A hardware representation of the complex multipliers is shown in Fig. 7.11.

Three identical copies of the complex multiplier are needed, one for each set of

52

x R

x R

x R

x R

Cos(VCO)

Sin(VCO)

Re_i

Im_i

- !

+ R

R

Re_o

Im_o

Figure 7.11. Hardware representation of the complex multiplier.

input samples. Each complex multiplier takes in four inputs to compute the phase

rotation given by

(Re_i + jIm_i) ∗ (cos(VCO_in) + j sin(VCO_in)) (7.3)

where Re_i and Im_i are the real and imaginary data samples for each sequence.

This produces the three sets of complex-valued phase-corrected outputs shown in

Fig 7.10. The underflow signal is only propagated through the design to be

aligned with the data outputs, and later be used in the matched-filters.

53

7.5 Phase Estimator

The phase estimator is comprised by the phase loop filter and the voltage-

controlled oscillator. It takes in the latest phase error signal from the PED, and

produces an instantaneous estimate of the phase error.

CTRL

P_e

Valid_in
Phase

Loop

Filter

VCO

VCO_out

Valid_out

Figure 7.12. Block diagram of the phase estimator.

7.5.1 Phase Loop Filter

The phase loop filter (PLF) is responsible for adjusting the phase error signal

P_e that is produced by the PED. Since the phase synchronizer is based on a

first-order phase-locked loop (PLL), the adjustment corresponds to a simple gain.

The inputs to the PLF are:

• P_e

• Valid_in

• CTRL.

And the outputs of the PLF are:

• PLF_out

• Valid_out

54

P_e

Valid_in Valid_out

PLF_out

x

R

P
K1

R

8

15
13

13

CTRL

0

1

Figure 7.13. Hardware representation of the phase loop filter.

A hardware representation of the PLF is shown in Fig. 7.13. The gain oper-

ation performed by the PLF is implemented with a multiplication between the

phase error signal P_e and the PLL constant PK1. The PLF output PLF_out is

updated only when the input valid signal Valid_in is set to one. Valid_in is

propagated through the PLF to later be used in the voltage-controlled oscillator.

The value of the PLL constant PK1 is given by

PK1 = 0.0026/π (7.4)

where the division by π is a normalizing factor required by the Sine\Cosine

block in the phase corrector. The numerator is the same one described in Sec-

tion 6.2.

7.5.2 Voltage Controlled Oscillator

The voltage-controlled oscillator (VCO) is responsible for computing and stor-

ing the running sum of the adjusted phase error signal provided by the PLF. The

inputs to the VCO are:

• PLF_in

55

VCO_out
R

13
13

Valid_in Valid_out
R

+
PLF_in

13

CTRL

0

1

Figure 7.14. Hardware representation of the voltage-controlled os-
cillator.

• Valid_in

• CTRL.

And the outputs of the VCO are:

• VCO_out

• Valid_out

A hardware representation of the VCO is shown in Fig. 7.14. The VCO receives

the PLF output signal PLF_in, and its associated input valid signal Valid_in,

to compute the running sum VCO_out. Since PLF_in is relatively small and

alternates between positive and negative values, there is no risk of the accumulator

overflowing. Finally, Valid_in is propagated to the output to indicate when

VCO_out has changed.

56

7.6 MFs Bank

The matched-filters bank is responsible for implementing the two matched-

filters required for values of α̃k = ±1, and the accumulator for α̃k = 0. It does so by

employing two parallel multiply-and-accumulate systems, which reduce hardware

utilization, but as a tradeoff, increase the design’s complexity. The inputs to the

MFs bank are:

• Re_rx, Im_rx

• underflow

• CTRL.

And the outputs of the MFs bank are:

• Re_+1_MFo, Im_+1_MFo

• Re_-1_MFo, Im_-1_MFo

• Re_0_MFo, Im_0_MFo

• TI_out

• Valid_out

A hardware representation of the MFs bank is shown in Fig. 7.15. The MFs

bank receives each set of complex-valued data samples from the phase corrector, as

well as the propagated underflow strobe, and generates three complex-valued

matched-filter outputs corresponding to the three possible transmitted symbols

-1, 0, and +1. There are three sets of complex-valued data samples produced by

the phase corrector: on-time, early and late; therefore, three identical copies of

57

Acc1

Re_LUT

Im_LUT Complex

Mult1

LUT

Control

Re_LUT

Im_LUT

underflow

Im_rx

Re_rx
RR

RR

Re(+1)

Im(+1)

Re(-1)

Im(-1)

Output

Control
RR

RR

Acc2
Complex

Mult2

Re(+1)

Im(+1)

Re(-1)

Im(-1) CTRL

TI_out

Valid_out

Re_+1_MFo

Im_+1_MFo

Re_-1_MFo

Im_-1_MFo

Re_0_MFo

Im_0_MFo

8

8

4

4

8

8

8

8

16

8

16

Out_Sel

Im_rx_delay2

Re_rx_delay2

cntr1

cntr2

0

1

Figure 7.15. Hardware representation of the matched-filters bank.

the MFs bank are used in the demodulator. It is important to note that Re_rx

and Im_rx are not the information inputs even though they are referred to with

the same name here.

The matched-filtering operation given by Eq. (4.3) is implemented in a sample-

by-sample basis using two parallel multiply-and-accumulate systems. The sample-

by-sample approach means that each complex-valued sample of the 16 correspond-

ing to every symbol is filtered individually. A counter generated in the LUT

Control block keeps track of the number of samples being processed. When this

counter reaches a value of 16, the filtering operation is completed for the current

symbol and restarted for the next one. However, because of small timing shifts in-

troduced by the timing synchronizer, sometimes two consecutive symbols overlap

and share up to one sample. This is when the second multiply-and-accumulate

system comes into play so that the shared sample can be used in the computation

of both symbols.

58

R

underflow

R

R Counter2

(3:0)

Counter1

(3:0)

cntr1
R

cntr2
R

0

1

Figure 7.16. Hardware representation of the MFs LUT control sys-
tem.

A hardware representation of the LUT control system is shown in Fig. 7.16.

The LUT control system is triggered by the underflow strobe. When the first

underflow occurs, it triggers Counter2, which starts counting. Even though the

trigger signal only lasts for one clock cycle, the counter is programmed to keep

increasing its value by one on every clock cycle until it overflows and becomes 0

again. At this point, the next underflow should occur and the counting operation

is now switched to Counter1. Therefore, if an overlap of two consecutive symbols

occurs, the two alternating counters can handle the situation.

Each multiply-and-accumulate system in the design consists of two look-up

tables (LUTs), a complex-multiplier, and an accumulator. The LUTs are used

to store the matched-filter coefficients e−j2πhα̃kqPT(t) for α̃k = ±1. Because of the

trigonometric identities sin(−x) = −sin(x) and cos(−x) = cos(x), the imaginary

coefficients for both values of α̃k only vary by the sign, while the real coefficients

are the same for both cases. Without loss of generality, we store the imaginary

coefficients of α̃k = −1 in Im_LUT, and the real coefficients in Re_LUT. Both

LUTs have a depth of 16 coefficients, and are indexed by one of the two counters

generated in the LUT control block.

A hardware representation of the complex-multiplier in each parallel system

is shown in Fig. 7.17. The complex multiplier takes in the complex-valued sam-

59

Re(-1)

Im(+1)

Im(-1)

Re(+1)
x R

x R

x R

x R

Re_rx

Im_rx

Re_Coeff

Im_Coeff
- !

-! R

R

+ R

+ R

CTRL

Figure 7.17. Hardware representation of the MFs complex multi-
plier.

ples Re_rx and Im_rx, and the real and imaginary coefficients from the LUTs.

Because of the similarities in the coefficients described above, it only uses four

real-valued multiplications, and appropriate reordering of the real and imaginary

components to obtain the results. The outputs of the complex-multiplier and the

two-time delayed versions of Re_rx and Im_rx are then fed to the accumulator.

A hardware representation of the accumulator in each parallel system is shown

in Fig. 7.18. The accumulator is responsible for implementing the integral in

Eq. (4.3). In discrete-time, the integral becomes a summation, and a period of one

symbol time corresponds to 16 clock cycles. Therefore, the accumulator computes

the running sum of each of its inputs over 16 clock cycles. The two-times delayed

value of the counter indicates whether the sums need to be restarted or continue

accumulating. When the counter is zero, the sums are restarted with the current

inputs; otherwise, they are accumulated.

Finally, the results from one of the two parallel systems is selected for output.

This is done by the Output Control block, which is represented in Fig. 7.19.

The output control system uses the delayed counter values to make the selection.

60

R

Re(+1)

CTRL

=“0000”
counter

+ Re_+1_MFo

R

Im(+1) + Im_+1_MFo

R

Re(-1) + Re_-1_MFo

R

Im(-1) + Im_-1_MFo

R

Re_rx_delay2 + Re_0_MFo

R

Im_rx_delay2 + Im_0_MFo

0

1

0

1

0

1

0

1

0

1

0

1

Figure 7.18. Hardware representation of the MFs accumulator.

cntr2_delay2

cntr1_delay2

=“1111”

=“1111” R

R

R
TI_out

Valid_out

Out_Sel

0

1

Figure 7.19. Hardware representation of the MFs output control
system.

61

7.7 SOVA

The soft-output Viterbi algorithm (SOVA) decoder is responsible for estimat-

ing the hard-decisions and reliabilities associated with the maximum-likelihood

path through the trellis. The inputs to the SOVA are:

• Re_+1_OnTime_MF, Im_+1_OnTime_MF

• Re_-1_OnTime_MF, Im_-1_OnTime_MF

• Re_0_OnTime_MF, Im_0_OnTime_MF

• Re_+1_Early_MF, Im_+1_Early_MF

• Re_-1_Early_MF, Im_-1_Early_MF

• Re_0_Early_MF, Im_0_Early_MF

• Re_+1_Late_MF, Im_+1_Late_MF

• Re_-1_Late_MF, Im_-1_Late_MF

• Re_0_Late_MF, Im_0_Late_MF

• TI_in, Valid_in

• CTRL

And the outputs of the SOVA are:

• Pu_O, Hu_O

• BI_1, BI_2, BI_3, BI_4, ..., BI_8

• Valid

62

TED

Re_+1_OnTime_MF

Im_+1_OnTime_MF

Re_-1_OnTime_MF

Im_-1_OnTime_MF

Re_0_OnTime_MF

Im_0_OnTime_MF

Re_+1_Early_MF

Im_+1_Early_MF

Re_-1_Early_MF

Im_-1_Early_MF

Re_0_Early_MF

Im_0_Early_MF

Re_+1_Late_MF

Im_+1_Late_MF

Re_-1_Late_MF

Im_-1_Late_MF

Re_0_Late_MF

Im_0_Late_MF

TI_in

Valid_in

CTRL

PED

Output

Calculator

Hard-Decision

Traceback

Unit

Reliability

Traceback

Unit

Metric

Manager

Branch

Increment

Calculator

BI_1

BI_2

BI_3

BI_4

BI_5

BI_6

BI_7

BI_8

Pu_O

Hu_O

 Valid

P_e

PED_Valid

T_e

TED_Valid

Figure 7.20. Hardware representation of the SOVA decoder.

In order to handle all the needed operations in the decoding process, the SOVA

decoder has been broken down into seven individual units, each responsible for

a separate task. This structure can be seen in Fig. 7.20. A description of each

individual unit is provided below.

• Branch Increment Calculator. The branch increment calculator converts the

output of the on-time MFs bank into the real-valued probabilities associated

with the input bit in each branch of the trellis. The resulting eight branch

increments, one for each branch in the trellis, represent the standard input

to the SOVA decoder as described in Chapter 4.

63

• Metric Manager. The metric manager computes and updates the cumulative

metrics at each trellis state based on the provided branch increments. It also

determines the global winning state, the winning branch indexes, and the

differences between path metric candidates (∆) at each decoding step. This

information is provided to all other units in the decoder.

• Timing Error Detector. The TED is an essential component of the timing

synchronizer; however, in hardware, it is shown as part of the SOVA decoder.

This is due to the fact that some of its necessary inputs are originated here.

The TED uses the early and late MFs outputs, and the winning branch

indexes to compute the next timing error signal. A hardware description of

the TED is given in Section 7.8.

• Phase Error Detector. The PED is an essential component of the phase

synchronizer; however, in hardware, it is shown as part of the SOVA decoder.

This is due to the fact that some of its necessary inputs are originated here.

The PED uses the on-time MFs output, and the winning branch indexes to

compute the next phase error signal. A hardware description of the PED is

given in Section 7.9.

• Hard-Decision Traceback Unit. The hard-decision traceback unit (HTU)

updates the path decision vectors according to the indexes of the winning

branches and the trellis indicator. It outputs the oldest path decisions in

the decoding window, as well as comparisons of path decision candidates for

each trellis state.

64

• Reliability Traceback Unit. The reliability traceback unit (RTU) updates

the reliability vectors according to the indexes of the winning branches,

the ∆ values, the comparisons of path decision candidates, and the trellis

indicator. Similarly to the HTU, it outputs the oldest reliabilities in the

decoding window for each trellis state.

• Output Calculator. The output calculator accepts information from all the

other pieces, and determines the best choice of hard-decision and reliability

for each decoding step. It does so by using the global winning state deter-

mined by the metric manager. In addition, it delays the branch increments

corresponding to each decoded information so they are aligned at the out-

put. The branch increments are used as information inputs to the simple

version of the demodulator in the following iterations of the SCCC decoding

scheme.

7.7.1 Branch Increment Calculator

The branch increment calculator is responsible for providing the metric man-

ager with the eight real-valued probabilities associated with the input bit in each

branch of the trellis. The inputs to the branch increment calculator are:

• Re_+1_OnTime_MF, Im_+1_OnTime_MF

• Re_-1_OnTime_MF, Im_-1_OnTime_MF

• Re_0_OnTime_MF, Im_0_OnTime_MF

• TI_in, Valid_in

• CTRL

65

8 Re_+1_OnTime_MF

+/- !
Im_+1_OnTime_MF

+/- !
Re_-1_OnTime_MF

+/- !
Im_-1_OnTime_MF

+/- !
Re_0_OnTime_MF

+/- !
Im_0_OnTime_MF

+/- !

Multiplexers

R
BI_1

R
BI_2

R
BI_3

R
BI_4

R
BI_5

R
BI_6

R
BI_7

R
BI_8

R
TI_out TI_in

R

Valid_out Valid_in

CTRL

Figure 7.21. Hardware representation of the branch increment cal-
culator.

And the outputs of the branch increment calculator are:

• BI_1, BI_2, BI_3, BI_4, ..., BI_8

• TI_out, Valid_out

A hardware representation of the branch increment calculator is shown in

Fig. 7.21. The branch increment calculator receives the complex-valued outputs

of the on-time MFs bank, and computes their sign-altered counterparts. Both

sets of data are fed to a bank of multiplexers, which map the values of the branch

increments according to what part of the trellis is being used. The bank of multi-

plexers contains six 2-by-1 multiplexers, each one indexed by the trellis indicator

TI_in. The mapping performed by the multiplexers is shown in Table 7.2, and

follows Eq. (4.4).

66

Table 7.2. Mapping of branch increments according to TI.

TI BI_1
0 -Im_0_OnTime_MF
1 -Im_0_OnTime_MF

TI BI_5
0 Re_-1_OnTime_MF
1 Re_0_OnTime_MF

TI BI_2
0 -Im_+1_OnTime_MF
1 -Im_-1_OnTime_MF

TI BI_6
0 Re_0_OnTime_MF
1 Re_+1_OnTime_MF

TI BI_3
0 -Re_0_OnTime_MF
1 -Re_+1_OnTime_MF

TI BI_7
0 Im_+1_OnTime_MF
1 Im_-1_OnTime_MF

TI BI_4
0 -Re_-1_OnTime_MF
1 -Re_0_OnTime_MF

TI BI_8
0 Im_0_OnTime_MF
1 Im_0_OnTime_MF

7.7.2 Metric Manager

The metric manager is responsible for updating, comparing, and storing the

cumulative metrics at every decoding step. The inputs to the metric manager are:

• BI_1, BI_2, BI_3, BI_4, ..., BI_8

• TI_in, Valid_in

• CTRL

And the outputs of the metric manager are:

• w1, w2, w3, w4

• d1, d2, d3, d4

• gmax

• TI_out, Valid_out

67

Metric

Calculator

Metric Registers

Update

(CM1_reg - CM4_reg)

Max

Index

gmax

BI_1

BI_2

BI_3

BI_4

BI_5

BI_6

BI_7

BI_8

TI_in

Valid_in

R

w1

w2

w3

w4

d1

d2

d3

d4

TI_out

Valid_out

CTRL

Figure 7.22. Hardware representation of the metric manager.

A hardware representation of the metric manager is shown in Fig. 7.22. The

metric manager contains four registers, CM1_reg-CM4_reg, which store the cu-

mulative metric values of each trellis state, respectively. On every decoding step,

the metric calculator uses the provided eight branch increments BI_1, ..., BI_8

and the registered cumulative metric values CM1_reg, ..., CM4_reg to compute

a new set of four cumulative metrics. The newly computed metrics are stored by

the metric registers update unit in a way that allows the decoding operation to

continue indefinitely without overflowing. The four registered cumulative metric

values are fed to a max index unit, which determines the index (0 − 3) of the

current maximum registered metric.

A hardware representation of the metric calculator unit is shown in Fig. 7.23.

The metric calculator computes a new set of cumulative metrics based on Eq. (4.5)

and Eq. (4.6). According to Eq. (4.5), there are two branch metric candidates

entering each of the four trellis states. The eight branch metric candidates are

the result of the addition between the previous cumulative metric and the branch

68

R
BI_1

8
+

CM1_reg

R
BI_2

8
+

CM1_reg

R
BI_3

8
+

CM2_reg

R
BI_4

8
+

CM2_reg

R
BI_5

8
+

CM3_reg

R
BI_6

8
+

CM3_reg

R
BI_7

8
+

CM4_reg

R
BI_8

8
+

CM4_reg

Multiplexers

R
TI_in

Valid_in

TI_out

LM1

≤

- !

w1

d1

RM11

RM12

R

R Abs R

R

CM1_tmp

≤

- !

w2

d2

RM21

RM22

R

R Abs R

R

CM2_tmp

≤

- !

w3

d3

RM31

RM32

R

R Abs R

R

CM3_tmp

≤

- !

w4

d4

RM41

RM42

R

R Abs R

R

CM4_tmp

LM2

LM3

LM4

LM5

LM6

LM7

LM8

RR

R R

R

Valid_out

8

8

8

8

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 7.23. Hardware representation of the metric calculator.

increment corresponding to that ending state. In Fig. 7.23, these results are

referred to as LM*, which represents the branch metric candidate * as seen from

the left-hand side of the trellis. In order to determine the two branch metric

candidates entering each trellis state, we use a bank of multiplexers. The bank

of multiplexers contains six 2-by-1 multiplexers, each one indexed by the trellis

indicator. The mapping performed by the multiplexers is shown in Table 7.24.

The two branch metric candidates entering each trellis state are referred to

as RM*1 and RM*2, where RM*1 corresponds to the branch arriving to state *

from above, and RM*2 corresponds to the one arriving from below. The winning

69

Table 7.3. Mapping of branch metric candidates according to TI.

TI RM11
0 LM1
1 LM1

TI RM12
0 LM5
1 LM3

TI RM21
0 LM3
1 LM2

TI RM22
0 LM7
1 LM4

TI RM31
0 LM2
1 LM5

TI RM32
0 LM6
1 LM7

TI RM41
0 LM4
1 LM6

TI RM42
0 LM8
1 LM8

candidates are chosen according to Eq. (4.6) using four comparators and four

multiplexers. Each comparator’s binary output becomes the selector signal for the

corresponding multiplexer, which outputs the next cumulative metric value. In

addition, the comparator outputs represent the winning branch indexes (w1-w4).

Finally, the ∆ values (d1-d4) are computed according to Eq. (4.7). Each ∆ value

is the positive difference between the two branch metric candidates entering each

state.

A hardware representation of the metric registers update unit is shown in

Fig. 7.24. The metric registers update unit receives the four newly computed

cumulative registers and applies a mask on them before storing the values. The

mask serves the purpose of resetting bit number 16 of the metrics, when all the

four registered metrics have already reached this value. This guarantees that the

decoding operation can be carried on for an indefinite amount of time without

overflowing the cumulative metric registers.

70

RCM1_tmp

RCM2_tmp

RCM3_tmp

RCM4_tmp 18

18

18

18

(15:0) (17)

(16)

(16)

(16)

(16)

(16)

CM1_reg

CM2_reg

CM3_reg

CM4_reg

Figure 7.24. Hardware representation of the metric registers update
unit.

7.7.3 Hard-Decision Traceback Unit

The hard-decision traceback unit (HTU) is responsible for updating the path-

decision vectors on every decoding step. The inputs to the HTU are:

• w1, w2, w3, w4

• TI_in, Valid_in

• CTRL

And the outputs of the HTU are:

• u_hat1, u_hat2, u_hat3, u_hat4

• u_vector_xor1, u_vector_xor2, u_vector_xor3, u_vector_xor4

• TI_out, Valid_out

A hardware representation of the HTU is shown in Fig. 7.25. The HTU is

implemented using a method of traceback called register exchange, with a decod-

ing window length of T = 16. In this method, four length-T − 1 registers are

71

Valid_in

Multiplexers

u_path_12

u_path_11
w1

u_hat1 Right

Shift

‘0’

R

u_vector1

(0)

u_path_22

u_path_21
w2

u_hat2 Right

Shift

TI_in

R

u_vector2

(0)

u_path_32

u_path_31
w3

u_hat3 Right

Shift

-TI_in

R

u_vector3

(0)

u_path_42

u_path_41
w4

u_hat4 Right

Shift

‘1’

R

u_vector4

(0)

TI_out
R

Valid_out
R

u_vector1

u_vector2

u_vector3

u_vector4

TI_in

TI_in

u_vector_xor1
R

u_vector_xor2
R

u_vector_xor3
R

TI_in

TI_in

TI_in

u_vector_xor4
R

u_vector1

u_vector2

u_vector2

u_vector4

xor

xor

xor

xor

u_vector1

u_vector3

u_vector3

u_vector4

CTRL

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 7.25. Hardware representation of the hard-decision trace-
back unit.

used to keep track of the newest hard-decisions associated with the maximum-

likelihood path ending at each trellis state. In Fig. 7.25, these registers are la-

beled u_vector1, ..., u_vector4, and are referred to as path-decision vectors.

On every decoding step, two competing paths merge into the same ending state.

The path-decision vector corresponding to the winning branch metric candidate

72

gets copied into the path-decision vector of that ending state. And the ũk value

associated with the winning branch gets shifted in as the newest hard-decision of

the vector.

Table 7.4. Mapping of merging path-decision vectors according to
TI.

TI u_path_11
0 u_vector1
1 u_vector1

TI u_path_12
0 u_vector3
1 u_vector2

TI u_path_21
0 u_vector2
1 u_vector1

TI u_path_22
0 u_vector4
1 u_vector2

TI u_path_31
0 u_vector1
1 u_vector3

TI u_path_32
0 u_vector3
1 u_vector4

TI u_path_41
0 u_vector2
1 u_vector3

TI u_path_42
0 u_vector4
1 u_vector4

In the HTU, a bank of multiplexers is used to determine the two competing

paths merging at each state. The bank of multiplexers contains six 2-by-1 mul-

tiplexers, each one indexed by the trellis indicator. The mapping performed by

the multiplexers follows each branch in the trellis, and is shown in Table 7.4. The

winning branch indexes (w1-w4) provided by the metric manager, determine

which one of the two competing path-decision vectors to copy for the next set of

states. The hard-decision value to be shifted in is a constant for the first and last

ending states. However, for the two middle ending states, this value depends on

the trellis indicator, as shown in Fig. 7.25. The shift in values are right-shifted

into the vectors that were selected by the winning branch indexes. The results

of the shifting operations become the path-decision vectors for the next decoding

73

steps, and the oldest bit of each vector is used as the estimated hard-decision

output.

In addition, the HTU computes four registers of comparison bits, u_vector_xor1,

..., u_vector_xor4, one for each pair of merging path-decision vectors. There

are only four possible pairs of merging paths, given by the structure of the trellis.

Each merging paths comparison is implemented by means of an xor operation,

which returns zero if the inputs are equal, and one if they are different. Four

multiplexers indexed by the trellis indicator are used to select the comparison

bit registers associated with each decoding step. This comparison bit vectors are

necessary to update the reliabilities in the reliability traceback unit.

7.7.4 Reliability Traceback Unit

The reliability traceback unit (RTU) is responsible for updating the set of

reliabilities associated with the hard-decisions generated by the HTU. The inputs

to the RTU are:

• w1, w2, w3, w4

• d1, d2, d3, d4

• u_xor1, u_xor2, u_xor3, u_xor4

• TI_in, Valid_in

• CTRL

And the outputs of the RTU are:

• L_hat1, L_hat2, L_hat3, L_hat4

• Valid_out

74

Multiplexers

L_path_12

L_path_11

L_path_22

L_path_21

L_path_32

L_path_31

L_path_42

L_path_41

L_array1

L_array2

L_array3

L_array4

TI_in

Valid_in Valid_out
R R

L_array1

Reliability

Update

d1
w1

reg !

array !
[15:1]

L_hat1
R

[0]

u_xor1

8

L_array2

Reliability

Update

d2
w2

reg !

array !
[15:1]

L_hat2
R

[0]

u_xor2

8

L_array3

Reliability

Update

d3
w3

reg !

array !
[15:1]

L_hat3
R

[0]

u_xor3

8

L_array4

Reliability

Update

d4
w4

reg !

array !
[15:1]

L_hat4
R

[0]

u_xor4

8

CTRL

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 7.26. Hardware representation of the reliability traceback
unit.

A hardware representation of the RTU is shown in Fig. 7.26. The RTU is

implemented using the same method of traceback as the HTU. The only difference

is that instead of maintaining four lenght-T − 1 registers, the RTU keeps track

of four length-T − 1 arrays of 8-bit registers. This is because each reliability is

represented with eight bits, while in the HTU each hard-decision is represented

with just one bit.

In a similar way as before, on every decoding step there are two merging paths

ending on the same trellis state. Each merging path has an array of reliabilities

associated with the hard-decisions in its path-decision vector. These arrays of

reliabilities are labeled as L_array1, ..., L_array4 as shown in Fig. 7.26. In

order to determine the two merging sets of reliabilities at each state, a bank of

multiplexers is used. The bank of multiplexers contains six 2-by-1 multiplexers,

each one indexed by the trellis indicator. The mapping performed by the multi-

75

plexers is shown in Table 7.5. As it can be noticed, this is the same mapping as

the one used for merging path-decision vectors in the HTU.

Table 7.5. Mapping of merging reliability arrays according to TI.

TI L_path_11
0 L_vector1
1 L_vector1

TI L_path_12
0 L_vector3
1 L_vector2

TI L_path_21
0 L_vector2
1 L_vector1

TI L_path_22
0 L_vector4
1 L_vector2

TI L_path_31
0 L_vector1
1 L_vector3

TI L_path_32
0 L_vector3
1 L_vector4

TI L_path_41
0 L_vector2
1 L_vector3

TI L_path_42
0 L_vector4
1 L_vector4

The two merging reliability arrays for each trellis state are passed into the

reliability update units, where the winning branch indexes (w1-w4), ∆ values

(d1-d3), and bit comparisons (xor1-xor4) determine the way the reliabili-

ties should be updated. A hardware representation of the reliability update unit

is shown in Fig. 7.27. Using the provided information, the reliabilities are up-

dated following Eq. (4.8) and Eq. (4.9), for the cases with different and equal

hard-decision estimates, respectively. The T − 1 most significant locations of the

updated reliability arrays are stored in the reliability vectors for the next decoding

steps. And the oldest reliability value from each array is used as the output.

76

. . .

d xor

min

w

L_path1[0]

L_path2[0] min

+ !d

L_out[0] w
8

d xor

min

w

L_path1[1]

L_path2[1] min

+ !d

L_out[1] w
8

d xor

min

w

L_path1[14]

L_path2[14] min

+!d

L_out[14] w
8

L_out[15]
d

8

1

0

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

1

Figure 7.27. Hardware representation of the reliability update unit.

7.7.5 Output Calculator

The output calculator is responsible for rearranging the final decoder output

based on the information provided by all other units. The inputs the output

calculator are:

• u_hat1, u_hat2, u_hat3, u_hat4

• L_hat1, L_hat2, L_hat3, L_hat4

• BI_1_in, BI_2_in, BI_3_in, ..., BI_8_in

• gmax

• MM_Valid_in, RTU_Valid_in, BI_Valid_in

• CTRL

77

MM_Valid_in

u_hat_1
u_hat_2
u_hat_3
u_hat_4

00

01

11

10

R
gmax 2

0

1

L_hat_1
L_hat_2
L_hat_3
L_hat_4

00

01

11

10

RTU_Valid_in
RR

R
0

1

R

8 0

1

R

8 0

1

+/-!

R

BI_Valid_in

R
BI_1_in 0

1

R
0

1
R

8 BI_1

Valid_out

Hu_o

Pu_o

R
BI_8_in 0

1

R
0

1
R

8 BI_8

. . .

. . .

CTRL

Figure 7.28. Hardware representation of the output calculator.

And the outputs of the output calculator are:

• Hu_o, Pu_o

• BI_1, BI_2, BI_3, ..., BI_8

• Valid

A hardware representation of the output calculator is shown in Fig. 7.28. The

output calculator selects the best choice of hard-decision and reliability for each

decoding step from the four available paths. The best choice is determined by the

global maximum winning state (gmax), which represents the path of maximum-

likelihood. Then, the selected hard decision is used to apply the proper sign to the

selected reliability, as it needs to be in antipodal form upon output. Finally, the

78

output calculator delays the branch increments that led to the current decoded

information so that they are aligned in the output.

7.8 TED

The timing error detector (TED) is responsible for providing the TLF with

the next estimate of the timing error signal. The inputs of the TED are:

• Re_+1_Early_MF, Im_+1_Early_MF

• Re_-1_Early_MF, Im_-1_Early_MF

• Re_0_Early_MF, Im_0_Early_MF

• Re_+1_Late_MF, Im_+1_Late_MF

• Re_-1_Late_MF, Im_-1_Late_MF

• Re_0_Late_MF, Im_0_Late_MF

• w1_in, w2_in, w3_in, w4_in

• gmax_in

• TI_in, Valid_in

• CTRL

And the outputs of the TED are:

• T_e

• Valid_out

79

CTRL

Error

Calculator

Input

Selector

w1_in

w2_in

w3_in

w4_in

gmax_in

TI_in

T_e

Valid_out

Re_+1_Early_MF

Im_+1_Early_MF

Re_-1_Early_MF

Im_-1_Early_MF

Re_0_Early_MF

Im_0_Early_MF

Re_+1_Late_MF

Im_+1_Late_MF

Re_-1_Late_MF

Im_-1_Late_MF

Re_0_Late_MF

Im_0_Late_MF

Figure 7.29. Block diagram of the timing error detector.

A block diagram representation of the TED is shown in Fig. 7.29. The internal

structure of the TED has been broken down into two individual units. The first

unit is the input selector, which reorders the input so that it is as expected by the

error calculator. And the second unit is the error calculator, which computes the

timing error estimate T_e from the path history of the global maximum winning

state gmax.

A hardware representation of the input selector is shown in Fig. 7.30. The

input selector receives the complex-valued output from the early and late MFs,

and computes the input to be provided to the error calculator unit. The input

expected by the error calculator is described by Eq. (5.3). According to this

equation, the input to the error calculator is the real part of the multiplication

between the derivative of the on-time MFs Y k(·), and the phase states e−jθ̂k−D .

The derivative of the on-time MFs is obtained by computing the difference between

80

Multiplexers

TI_in

Valid_in

w4_in

w1_in

gmax_in

R

8 Te_branch1 0

1

R
Valid

. . .

R
TI 0

1

R
w4 0

1

. . .

R
w1 0

1

R

gmax 0

1

CTRL

Re_+1_Early_MF

Im_+1_Early_MF

Re_-1_Early_MF

Im_-1_Early_MF

Re_0_Early_MF

Im_0_Early_MF

Re_+1_Late_MF

Im_+1_Late_MF

Re_-1_Late_MF

Im_-1_Late_MF

Re_0_Late_MF

Im_0_Late_MF

Data1

Data2 - !

R

8 Te_branch5 0

1

Data9

Data10 - !

R

8
Te_branch8

0

1

Data15

Data16 - !

+/-!

. . .

. . .

. . .

Figure 7.30. Hardware representation of the TED input selector.

every corresponding late and early MF output. And the phase states only assume

±1,±j values, so the multiplication is implemented with a simple sign-alteration

and reordering of the real and imaginary parts. When both operations described

above are considered together, the output produced by Eq. (5.3) can be simply

obtained with a set of eight subtractions. The operands in each subtraction are one

from the late MFs output and the other from the early MFs output. Whether the

real or imaginary part of the MFs output is used depends on the trellis indicator

and the effects of applying the Re(·) operation and multiplying by ±1,±j. The

mapping of operands necessary to obtain the result described by Eq. (5.3) is shown

in Table. 7.6. This mapping is performed by a bank of twelve 2-by-1 multiplexers

indexed by the trellis indicator.

81

Table 7.6. Mapping of subtraction operands according to TI.

TI Data1
0 Im_0_Late_MF
1 Im_0_Late_MF

TI Data2
0 Im_0_Early_MF
1 Im_0_Early_MF

TI Data3
0 Im_+1_Late_MF
1 Im_-1_Late_MF

TI Data4
0 Im_+1_Early_MF
1 Im_-1_Early_MF

TI Data5
0 Re_0_Late_MF
1 Re_+1_Late_MF

TI Data6
0 Re_0_Early_MF
1 Re_+1_Early_MF

TI Data7
0 Re_-1_Late_MF
1 Re_0_Late_MF

TI Data8
0 Re_-1_Early_MF
1 Re_0_Early_MF

TI Data9
0 Re_-1_Late_MF
1 Re_0_Late_MF

TI Data10
0 Re_-1_Early_MF
1 Re_0_Early_MF

TI Data11
0 Re_0_Late_MF
1 Re_+1_Late_MF

TI Data12
0 Re_0_Early_MF
1 Re_+1_Early_MF

TI Data13
0 Im_+1_Late_MF
1 Im_-1_Late_MF

TI Data14
0 Im_+1_Early_MF
1 Im_-1_Early_MF

TI Data15
0 Im_0_Late_MF
1 Im_0_Late_MF

TI Data16
0 Im_0_Early_MF
1 Im_0_Early_MF

A hardware representation of the error calculator is shown in Fig. 7.31. The er-

ror calculator receives the eight timing error estimates Te_branch1, ..., Te_branch8,

one for each branch in the trellis, and performs the equivalent to two traceback

operations to determine the next timing error signal T_e. This can also be un-

derstood as the TED having a delay of D = 1 in computing the timing error

signal.

82

gmax

Te_branch1

Multiplexers

R

Te_nn1

R

Te_nn2

R

Te_nn3

R

Te_nn4

Te_branch2

Te_branch3

Te_branch4

Te_branch5

Te_branch6

Te_branch7

Te_branch8

Multiplexers

R

Te_n1

R

Te_n2

R

Te_n3

R

Te_n4

00

01

11

10

R

TI
w1

w2
w3

w4

TI
w1
w2

w3
w4

T_e

Valid Valid_out
R R

R

Figure 7.31. Hardware representation of the TED error calculator.

For the first traceback operation, the eight timing error estimates are reordered

in pairs merging at the same ending state according to the trellis indicator. Then,

using the winner branch indexes (w1-w4), provided by the metric manager, only

the timing error estimates corresponding to the winning branches are stored. The

mapping performed by the first traceback operation is implemented by a bank of

multiplexers. The bank of multiplexers contains four 4-by-1 multiplexers indexed

by the winning branch indexes and the trellis indicator as shown in Table 7.7.

In a similar way, for the second traceback operation only the four surviving

timing error estimates Te_nn1, ..., Te_nn4 are reordered to their corresponding

ending states according to the trellis indicator, and selected based on the winning

branch indexes. The mapping performed by the second traceback operation is

also implemented with a bank of multiplexers, and is described in Table 7.8. The

resulting four timing error estimates are fed to a multiplexer indexed by the global

maximum winning state gmax, which selects and outputs the next timing error

signal T_e

83

Table 7.7. Mapping of first traceback operation according to TI and
w1-w4.

w1,TI Te_nn1
00 Te_branch1
01 Te_branch1
10 Te_branch5
11 Te_branch3

w2,TI Te_nn2
00 Te_branch3
01 Te_branch2
10 Te_branch7
11 Te_branch4

w3,TI Te_nn3
00 Te_branch2
01 Te_branch5
10 Te_branch6
11 Te_branch7

w4,TI Te_nn4
00 Te_branch4
01 Te_branch6
10 Te_branch8
11 Te_branch8

Table 7.8. Mapping of second traceback operation according to TI
and w1-w4.

w1,TI Te_n1
00 Te_nn1
01 Te_nn1
10 Te_nn3
11 Te_nn2

w2,TI Te_n2
00 Te_nn2
01 Te_nn1
10 Te_nn4
11 Te_nn2

w3,TI Te_n3
00 Te_nn1
01 Te_nn3
10 Te_nn3
11 Te_nn4

w4,TI Te_n4
00 Te_nn2
01 Te_nn3
10 Te_nn4
11 Te_nn4

84

7.9 PED

The phase error detector (PED) is responsible for providing the PLF with the

next estimate of the phase error signal. The inputs of the PED are:

• Re_+1_OnTime_MF, Im_+1_OnTime_MF

• Re_-1_OnTime_MF, Im_-1_OnTime_MF

• Re_0_OnTime_MF, Im_0_OnTime_MF

• w1_in, w2_in, w3_in, w4_in

• gmax_in

• TI_in, Valid_in

• CTRL

And the outputs of the PED are:

• P_e

• Valid_out

A block diagram representation of the PED is shown in Fig. 7.32. The internal

structure of the PED has been broken down into two individual units. The first

unit is the input selector, which reorders the input so that it is as expected by the

error calculator. And the second unit is the error calculator, which computes the

phase error estimate P_e from the path history of the global maximum winning

state gmax.

85

Re_+1_OnTime_MF

Im_+1_OnTime_MF

Re_-1_OnTime_MF

Im_-1_OnTime_MF

Re_0_OnTime_MF

Im_0_OnTime_MF

CTRL

Error

Calculator

Input

Selector

w1_in

w2_in

w3_in

w4_in

gmax_in

TI_in

P_e

Valid_out

Figure 7.32. Block diagram of the phase error detector.

A hardware representation of the input selector is shown in Fig. 7.33. The

input selector receives the complex-valued output from the on-time MFs, and

computes the input to be provided to the error calculator unit. The input expected

by the error calculator is described by Eq. (6.3). According to this equation, the

input to the error calculator is the imaginary part of the multiplication between

the on-time MFs, the phase states e−jθ̂k−D , and the term −j. Since the phase

states only assume ±1,±j values, the multiplication by e−jθ̂k−D and the term

−j is implemented with a simple sign-alteration and reordering of the real and

imaginary parts. When this is taken into consideration, the output produced by

Eq. (6.3) can be simply obtained with a bank of six 2-by-1 multiplexers, each one

indexed by the trellis indicator. The inputs to the multiplexers are the outputs of

the on-time MFs, and their sign-altered counterparts. The mapping necessary to

obtain the result described by Eq. (6.3) is shown in Table. 7.9.

86

R

8 Pe_branch1 0

1

8 Re_+1_OnTime_MF

+/- !
Im_+1_OnTime_MF

+/- !
Re_-1_OnTime_MF

+/- !
Im_-1_OnTime_MF

+/- !
Re_0_OnTime_MF

+/- !
Im_0_OnTime_MF

+/- !

Multiplexers

TI_in

R
Valid Valid_in

CTRL

. . .

R

8
Pe_branch8

0

1

R

8 Pe_branch2 0

1

R
TI 0

1

w4_in R
w4 0

1

. . .
w1_in R

w1 0

1

gmax_in R

gmax 0

1

Figure 7.33. Hardware representation of the PED input selector.

A hardware representation of the error calculator is shown in Fig. 7.34. The er-

ror calculator receives the eight phase error estimates Pe_branch1, ..., Pe_branch8,

one for each branch in the trellis, and performs the equivalent to two traceback

operations to determine the next phase error signal P_e. This can also be un-

derstood as the PED having a delay of D = 1 in computing the phase error

signal.

87

Table 7.9. Mapping of phase-error estimates according to TI.

TI Pe_branch1
0 Re_0_OnTime_MF
1 Re_0_OnTime_MF

TI Pe_branch2
0 Re_+1_OnTime_MF
1 Re_-1_OnTime_MF

TI Pe_branch3
0 -Im_0_OnTime_MF
1 -Im_+1_OnTime_MF

TI Pe_branch4
0 -Im_-1_OnTime_MF
1 -Im_0_OnTime_MF

TI Pe_branch5
0 Im_-1_OnTime_MF
1 Im_0_OnTime_MF

TI Pe_branch6
0 Im_0_OnTime_MF
1 Im_+1_OnTime_MF

TI Pe_branch7
0 -Re_+1_OnTime_MF
1 -Re_-1_OnTime_MF

TI Pe_branch8
0 -Re_0_OnTime_MF
1 -Re_0_OnTime_MF

gmax

Pe_branch1

Multiplexers

R

Pe_nn1

R

Pe_nn2

R

Pe_nn3

R

Pe_nn4

Pe_branch2

Pe_branch3

Pe_branch4

Pe_branch5

Pe_branch6

Pe_branch7

Pe_branch8

Multiplexers

R

Pe_n1

R

Pe_n2

R

Pe_n3

R

Pe_n4

00

01

11

10

R

TI
w1

w2
w3

w4

TI
w1

w2
w3

w4

P_e

Valid Valid_out
R R

R

Figure 7.34. Hardware representation of the PED error calculator.

88

For the first traceback operation, the eight phase error estimates are reordered

in pairs merging at the same ending state according to the trellis indicator. Then,

using the winner branch indexes (w1-w4), provided by the metric manager, only

the phase error estimates corresponding to the winning branches are stored. The

mapping performed by the first traceback operation is implemented by a bank of

multiplexers. The bank of multiplexers contains four 4-by-1 multiplexers indexed

by the winning branch indexes and the trellis indicator as shown in Table 7.10.

In a similar way, for the second traceback operation only the four surviving

phase error estimates Pe_nn1, ..., Pe_nn4 are reordered to their corresponding

ending states according to the trellis indicator, and selected based on the winning

branch indexes. The mapping performed by the second traceback operation is

also implemented with a bank of multiplexers, and is described in Table 7.11.

The resulting four phase error estimates are fed to a multiplexer indexed by the

global maximum winning state gmax, which selects and outputs the next phase

error signal P_e

89

Table 7.10. Mapping of first traceback operation according to TI
and w1-w4.

w1,TI Pe_nn1
00 Pe_branch1
01 Pe_branch1
10 Pe_branch5
11 Pe_branch3

w2,TI Pe_nn2
00 Pe_branch3
01 Pe_branch2
10 Pe_branch7
11 Pe_branch4

w3,TI Pe_nn3
00 Pe_branch2
01 Pe_branch5
10 Pe_branch6
11 Pe_branch7

w4,TI Pe_nn4
00 Pe_branch4
01 Pe_branch6
10 Pe_branch8
11 Pe_branch8

Table 7.11. Mapping of second traceback operation according to TI
and w1-w4.

w1,TI Pe_n1
00 Pe_nn1
01 Pe_nn1
10 Pe_nn3
11 Pe_nn2

w2,TI Pe_n2
00 Pe_nn2
01 Pe_nn1
10 Pe_nn4
11 Pe_nn2

w3,TI Pe_n3
00 Pe_nn1
01 Pe_nn3
10 Pe_nn3
11 Pe_nn4

w4,TI Pe_n4
00 Pe_nn2
01 Pe_nn3
10 Pe_nn4
11 Pe_nn4

90

7.10 Soft-Decision Correlator

The soft-decision correlator is responsible for detecting the beginning of a frame

in the decoded data stream, as well as, resolving any phase ambiguity resulting

from locking with the carrier. The inputs of the soft-decision correlator are:

• Pu_I

• Hu_I

• BI_1, BI_2, BI_3, ..., BI_8

• CTRL

And the outputs of the soft-decision correlator are:

• Pu_O

• Hu_O

• BI_1_out, BI_2_out, BI_3_out, ..., BI_8_out

• Valid_out

A hardware representation of the soft-decision correlator is shown in Fig. 7.35.

The soft-decision correlator receives a new set of inputs about every 16 clock

cycles. These inputs correspond to the reliabilities, hard-decisions, and branch-

increments generated by the SOVA decoder, and are referred to as the decoded

data stream. At this point, the decoded data is only half-way correct, as it still

must be processed to find the beginning of a transmitted frame, and to resolve

any possible phase ambiguity.

The soft-decision correlator performs both data processing operations by com-

puting two correlation sums between the output reliabilities Pu_I, and a known

91

Pu_I Left

Shift

reg !

array !
8

64x[8]

Apply

Sign

Adders

Level1

32x[9] Adders

Level2
... Adders

Level5
+

14

R
abs_02

Abs

corr_02

ASM02

Apply

Sign

Adders

Level1

32x[9] Adders

Level2
... Adders

Level5
+

14

R
abs_13

Abs

corr_13
ASM13

64

64

Phase

Ambiguity

Selector

corr_02

abs_02

corr_13

abs_13

Sel0

+/-!

R

0

1
R

00

01

11

10 0

1

0

1

R

Sel1

TargetFound
R

R

Hu_I
R

Hu_O

Pu_O

Valid_out

R

BI_1
R

BI_1_out

R

BI_8
R

BI_8_out

. . .

. . .

CTRL

Figure 7.35. Hardware representation of the soft-decision correlator.

sequence of bits attached at the beginning of each frame, called the attached synch

marker (ASM). One correlation sum is done using the unmodified ASM, referred

to as ASM02. And the other one is done using the odd-bit inverted version of

ASM02, referred to as ASM13. In order to perform the one-to-one comparisons

required by each correlator, the input reliabilities are left-shifted and stored in a

register array with 64 8-bit locations. The length of the array is determined by

the 64 bits in the ASM. The correlation is implemented by the apply sign module,

which changes the sign of each stored reliability according to the corresponding bit

in the ASM. In this way, if a reliability is aligned with a zero, its sign is inverted,

92

threshold

abs_02

≥

≥
abs_13

Sel1

R
0

1

Counter

(12:0)

abs_13

abs_02

<

corr_02
< 0

corr_13
< 0

0

1

0

1
R

0

1
R

Sel0

TargetFound

Figure 7.36. Hardware representation of the phase ambiguity selec-
tor.

and if its aligned with a one, it remains unchanged. The resulting 64 8-bit compar-

isons produced by the apply sign module are mutually added in a six-level cascade

of adders. The first level contains 32 adders, the second 16, the third 8, the fourth

4, the fifth 2, and the sixth 1. The output of the level six adder corresponds to

the correlation sum, from which we also compute its absolute value.

The two correlation sums and their absolute values are used to determine the

phase ambiguity in the data, as well as the beginning of a frame. Both operations

are performed by the phase ambiguity selector shown in Fig. 7.36. First, the

two absolute values are compared against a predefined threshold, set to 915, to

determine if a high correlation sum has been obtained. If either comparison returns

one, it means that a new frame has been detected, so a counter is started to count

for 6240 iterations, which is the length of each frame. The counter’s output signal

TargetFound remains high while the counter’s value is between zero and 6240.

And then it goes back to zero when the value of 6240 is reached, until a new frame

is detected again.

93

When a new frame is detected, the phase ambiguity selector outputs two signals

Sel0, and Sel1, which index a multiplexer with the four versions of the phase-

resolved input reliabilities. The first signal Sel0 is obtained by comparing the

absolute values with themselves. And the second signal Sel1 is obtained by

comparing the correlation sum values with zero, as indicated in Fig. 7.36. The

multiplexer then selects one of the four possible phase-resolved reliabilities and

sends it to the output. The first input to the multiplexer corresponds to a 0◦

phase ambiguity. The second input corresponds to a 180◦ phase ambiguity, so

all reliabilities are sign inverted. The third input corresponds to a 90◦ phase

ambiguity, so all odd position reliabilities are sign inverted. And finally, the fourth

input corresponds to a 270◦ phase ambiguity, so all even position reliabilities are

sign inverted. The hard-decisions are not modified as they are not used in any

other module, but if desired, their phase ambiguity could also be resolved with an

additional multiplexer, similar to the one used for the reliabilities.

94

Chapter 8

Performance Results

This chapter evaluates the performance of the VHDL implementation outlined

in Chapter 7 based on two different categories. The first one is bit error rate (BER)

performance, which compares the decoding results of the proposed demodulator

against a software reference model, known to be correct. And the second one is

hardware performance, which describes hardware-specific parameters of the chosen

design. Throughout this chapter, we refer to the hardware implementation of the

demodulator as the “VHDL model”, and to the software reference equivalent as

the “MATLAB model”.

8.1 BER Performance

The VHDL model was first tested in a software simulator, in order to verify the

correct functionality of the design. The simulator of choice was ModelSim, because

it runs considerably faster than other available software simulators. The input to

the VHDL model, which is the noisy received signal, was generated in MATLAB

and quantized to have a bit-width of B = 8, with four bits being fractional. This

95

4 5 6 7 8 9 10 11 12
10

−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

P
ro

b
a
b
ili

ty
 o

f
B

it
 E

rr
o
r

Theoretical Optimum

Quantized MATLAB

Full−Precision MATLAB

VHDL in Simulator

Figure 8.1. BER performance of VHDL model in ModelSim.

bit-width was selected in order to accurately represent the majority of the values

in the range of the received signal, while at the same time keeping the complexity

of the design at a manageable level. Bit-widths for the remaining registers in the

design were estimated from a quantized version of the MATLAB reference model.

Also, by means of the quantized MATLAB model, we were able to approximate

the performance of the hardware implementation.

The software test of the VHDL model was run over different values of Eb/N0

in the interval from 4 dB to 10 dB. Each simulation was run over a minimum

of 1,000,000 transmitted bits, with a requirement of at least 100 bit errors after

decoding. These conditions were sufficient to generate an accurate BER plot.

To determine if the VHDL model was operating correctly, we compared its BER

96

{ˆ u k}
SOQPSK-TG

Modulator

AWGN

Channel
ADC

Input

File

T400TSS

r(nT
S
)r(t)

SOQPSK-TG

Demodulator

Output

File

WILDSTAR 5

{uk}
BPF

F
S
= 93

1

3
 MHz

Figure 8.2. Block diagram representation of the hardware test set-
ting.

plot with that of the full-precision MATLAB model, known to be correct. In

addition, we also compared it with the BER plot of the quantized MATLAB

model. Fig. 8.1 shows the BER performance of the VHDL model in ModelSim

compared against the full-precision and quantized MATLAB models. Fig. 8.1

also shows the theoretical optimum performance achievable by the demodulator.

We observe that the plot of the VHDL model almost overlaps the plot of the

quantized MATLAB model. This means that their BER performance is almost

identical, which is something we expected and that verifies the correctness of

the design. We also notice that the plot of the VHDL model is very close to

that of the full-precision MATLAB model, but with a slight difference. This

difference slowly increases with the positive values of Eb/N0, and can be attributed

to the effects of rounding due to the fixed-precision characteristic of the hardware

implementation. On average, the loss in performance from the simulation in

software is of approximately 0.1∼0.2 dB.

After successfully testing the correct functionality of the VHDL model in soft-

ware, we proceeded to test it in the actual hardware. For this purpose, we arranged

a test setting like the one illustrated in Fig. 8.2. The T400TSS block is a telemetry

signal simulator manufactured by the company RT-Logic. This module was used

to repeatedly modulate the bit sequence of 6240 bits provided in the input file at

97

4 5 6 7 8 9 10 11 12 13 14
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

P
ro

b
a
b
ili

ty
 o

f
B

it
 E

rr
o
r

Theoretical Optimum

Quantized MATLAB

Full−Precision MATLAB

VHDL in Simulator

VHDL in Hardware

Figure 8.3. BER performance of VHDL model in hardware.

a rate of 5.866 Mbits/s. It was also used to convert the modulated signal to IF,

and to add the effects of an AWGN channel. And finally, it was used to apply an

anti-aliasing band-pass filter to the resulting signal. The continuous-time received

signal was sampled by an ADC at the specific rate of 931
3
MHz to produce the

input to the demodulator. The WILDSTAR 5 block is a processing board manu-

factured by the company Annapolis Micro Systems, and contains three Virtex-5

XC5VLX110T FPGAs. After synthesis, mapping and routing, the VHDL design

was downloaded into one of the three FPGAs. An output file in the host com-

puter captured the decoded bits to later determine the BER performance of the

hardware.

The hardware test of the VHDL model was run over different values of Eb/N0

98

in the interval from 4.3 dB to 13.3 dB. The start value of 4.3 dB corresponds to the

minimum signal-to-noise power level allowed by the signal simulator. Since the

hardware simulation runs considerably faster than the software one, each point

was evaluated over 40,000,000 transmitted bits, instead of over just 1,000,000.

This allows us to evaluate larger values of Eb/N0, and to generate a more reliable

BER plot. To determine the performance of the VHDL model in hardware, the re-

sulting BER plot was compared with that of the full-precision MATLAB models.

Fig. 8.3 shows the BER performance of the VHDL model tested in hardware, as

well as all the other plots previously described in the software simulation. In the

interval from 4 dB to 10 dB, we can observe that the VHDL performance in hard-

ware has very similar behavior to that of the full-precision MATLAB model, but

with a small difference of approximately 0.3∼0.4 dB. This performance difference

can be attributed to the effects of hardware error like a small offset in the clock

frequency. As it was expected, the performance loss is slightly larger in the hard-

ware simulation than in the software simulation since the former is subject to

additional factors. The average BER performance loss for both simulations com-

pared against the full-precision MATLAB model is summarized in Table 8.1. Data

points for the three software reference plots at 11 dB and greater are not shown

in Fig. 8.3 as they take a very large number of bits, and consequently time, to

obtain in software.

Table 8.1. Average BER performance loss.

Simulation Type Performance Loss
Software 0.1 ∼ 0.2 dB
Hardware 0.3 ∼ 0.4 dB

99

8.2 Hardware Performance

The VHDL model was also evaluated in terms of its hardware-specific perfor-

mance. The target FPGA for the VHDL model is the Virtex-5 XC5VLX110T.

According to [17], this device has 17, 280 available Virtex-5 slices, with each slice

containing four lookup tables (LUTs) and four flip-flops (FFs). The overall foot-

print of the design is of medium size, consuming about 16% (2,790 out of 17,280)

of the available slices.

In addition to resource utilization, we are also interested in the maximum

clock frequency achieved by the design. By means of the ISE design suite, a user

constraint was defined for the clock signal to have a period of 10ns with a 50% duty

cycle. Based on this condition, ISE built the design in several attempts trying to

obtain the maximum clock frequency. We found that on average, the maximum

clock frequency achieved was of 114.6 MHz. This is a successful result as the

minimum requirement was to be greater than the ADC sample frequency Fs = 931
3

MHz. The hardware performance results of the VHDL model are summarized in

Table 8.2.

Table 8.2. Hardware performance results of the VHDL model.

Slices Occupied (%) Maximum Clock Frequency (MHz)
16 114.6

100

Chapter 9

Conclusion

9.1 Interpretation of Results

The BER plots presented in Chapter 8 indicate that the performance of the

proposed hardware implementation of the SOQPSK-TG demodulator is very sim-

ilar to that of the MATLAB reference model, with only a small loss of ∼0.4 dB.

Considering that this loss in performance is due to the effects of rounding and ap-

paratus error, it can be concluded that the VHDL implementation is correct. This

means that the proposed SOQPSK-TG demodulator can reliably and successfully

recover the symbol timing, adjust the carrier phase, and estimate the transmitted

sequence of bits from the noisy received signal.

These results also demonstrate that successfully implementing in hardware

theoretical principles such as the Viterbi algorithm, maximum-likelihood timing

recovery and phase synchronization, early-late timing error detection, etc, is pos-

sible. Although ideal case performances might not yet be achievable in hardware

due to the fixed-precision nature of the designs, and potential equipment error, a

very close approximation in performance is definitely within reach.

101

In terms of hardware-specific performance, the proposed hardware implemen-

tation is desirable because it consumes a relatively low number of FPGA resources,

and it exceeds the minimum clock frequency requirement.

9.2 Future Work

One suggestion for future work in the hardware implementation is to evalu-

ate the effect that higher quantization resolution may have in the demodulator’s

performance. This could be studied by increasing the number of bits used to rep-

resent internal signals, and observing whether the changes cause an improvement

in performance or not. But increasing the resolution comes with a cost in design

complexity. Therefore, finding the optimum balance between signal quantization

and performance is a tradeoff worth exploring.

Another suggestion for future work is to implement second-order loop filters

for the timing and phase synchronizers. A second-order PLL would allow the

system to handle larger frequency deviations, and therefore, bring the performance

closer to ideal. However, implementing this more sensitive loop filter imposes the

challenge of dealing with very high-precision parameters (>20 bits of quantization)

which substantially increases the complexity.

Finally, as part of the efforts of the HFEC project, this demodulator must

be connected with the convolutional code decoder and the LDPC decoder, as

described in Chapter 3, to obtain more robust decoding schemes.

102

References

[1] J. B. Anderson, T. Aulin, and C.-E. Sundberg, Digital Phase Modulation.

New York: Plenum Press, 1986.

[2] Range Commanders Council Telemetry Group, Range Commanders

Council, White Sands Missile Range, New Mexico, IRIG Stan-

dard 106-04: Telemetry Standards, 2004. (Available on-line at

http://www.ntia.doc.gov/osmhome/106.pdf).

[3] T. Aulin, C.-E. Sundberg, and A. Svensson, “Viterbi detectors with reduced

complexity for partial response continuous phase modulation,” in Proc. Na-

tional Telecommun. Conf., NTC’81, (New Orleans, LA), pp. A7.6.1–A7.6.7,

Nov./Dec. 1981.

[4] A. Svensson, C.-E. Sundberg, and T. Aulin, “A class of reduced-complexity

Viterbi detectors for partial response continuous phase modulation,” IEEE

Trans. Commun., vol. 32, pp. 1079–1087, Oct. 1984.

[5] E. Perrins and M. Rice, “Reduced-complexity approach to iterative detection

of SOQPSK,” IEEE Trans. Commun., vol. 55, pp. 1354–1362, Jul. 2007.

[6] M. Simon, Bandwidth-Efficient Digital Modulation With Application to Deep-

Space Communication. New York: Wiley, 2003.

103

[7] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial Concatenation

of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding,”

IEEE Transactions on Information Theory, vol. 44, pp. 909 – 926, May 1998.

[8] M. Simon and L. Li, (2003, Aug.), “A cross-correlated trellis-coded quadra-

ture modulation representation of MIL-STD shaped offset quadrature phase-

shift keying,” Interplan. Network Prog. Rep., vol. [Online]. Available:

http://ipnpr.jpl.nasa.gov/tmo/progress_report/42-154/154J.pdf.

[9] E. Perrins and M. Rice, “Simple detectors for shaped-offset QPSK using the

PAM decomposition,” in Proc. IEEE Global Telecommun. Conf., (St. Louis,

Missouri), pp. 408–412, Nov./Dec. 2005.

[10] J. Hagenauer and P. Hoeher, “Concatenated Vitebi Decoding,” in Proceedings

of the International Workshop on Information Theory, 1989.

[11] P. Chandran and E. Perrins, “Decision-directed symbol timing recovery for

SOQPSK,” IEEE Trans. Aerosp. Electron. Syst., vol. 45, pp. 781–789, Apr.

2009.

[12] M. Fossorier, F. Burkert, S. Lin, and J. Hagenauer, “On the equivalence be-

tween SOVA and Max-Log-MAP decodings,” IEEE Trans. Commun., vol. 2,

pp. 137–139, May. 1998.

[13] T. K. Moon, Error Correction Coding: Mathematical Methods and Algo-

rithms. Wiley, 2005.

[14] M. Rice, Digital Communications: A Discrete-Time Approach. New York:

Prentice Hall, 2009.

104

[15] M. Morelli, U. Mengali, and G. M. Vitetta, “Joint phase and timing recovery

with CPM signals,” IEEE Trans. Commun., vol. 45, pp. 867–876, Jul. 1997.

[16] D. Lee, J. Villasenor, W. Luk, and P. Leong, “A hardware Gaussian noise

generator using the Box-Muller method and its error analysis.,” IEEE Trans.

Computers., vol. 55, pp. 659–671, June. 2006.

[17] Xilinx, “Virtex-5 Family Overview: Product Specification.” February 2009.

DS100 (v5.0).

105

