
Approximating Probability Density Functions with Mixtures of
Truncated Exponentials

Barry R. Cobb
Prakash P. Shenoy

University of Kansas School of Business
1300 Sunnyside Ave., Summerfield Hall

Lawrence, KS 66045–7585
{brcobb, pshenoy}@ku.edu

Rafael Rumı́
Dept. of Statistics

and Applied Mathematics
University of Almeria

Almeria, Spain
rrumi@ual.es

Abstract

Mixtures of truncated exponentials
(MTE) potentials are an alterna-
tive to discretization for approx-
imating probability density func-
tions (PDF’s). This paper presents
MTE potentials that approximate
standard PDF’s and applications of
these potentials for solving inference
problems in hybrid Bayesian net-
works.
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1 Introduction

Bayesian networks model knowledge about
propositions in uncertain domains using
graphical and numerical representations. At
the qualitative level, a Bayesian network is a
directed acyclic graph where nodes represent
variables and the (missing) edges represent
conditional independence relations among the
variables. At the numerical level, a Bayesian
network consists of a factorization of a joint
probability distribution into a set of condi-
tional distributions, one for each variable in
the network. Hybrid Bayesian networks con-
tain both discrete probability mass functions
(PMF’s) and continuous conditional probabil-
ity density functions (PDF’s) as numerical in-
puts.

Poland [6] proposes using a finite mixture of
Gaussians to fit arbitrary continuous distribu-

tions for chance variables in hybrid Bayesian
networks. An alternative to using mixtures
of Gaussians for approximating continuous
chance variables is mixtures of truncated ex-
ponentials (MTE) potentials [4]. General for-
mulations for standard PDF’s and procedures
for estimating parameters in MTE potentials
for approximating arbitrary PDF’s can allow
implementation of hybrid Bayesian networks
to a broader range of problems.

In this paper, we describe MTE approxima-
tions for three standard probability distribu-
tions. The remainder of this paper is orga-
nized as follows. Section 2 defines MTE po-
tentials and describes a method of estimat-
ing parameters for MTE potentials. Section 3
presents MTE approximations to standard
PDF’s. Section 4 demonstrates inference in
hybrid Bayesian networks using MTE poten-
tials. Section 5 summarizes the paper. This
paper is a brief version of a longer unpublished
working paper [2].

2 Estimating Parameters for
Mixtures of Truncated
Exponentials (MTE) Potentials

2.1 Notation

Random variables in a hybrid Bayesian net-
work will be denoted by capital letters, e.g.
A,B,C. Sets of variables will be denoted by
boldface capital letters, Y if all variables are
discrete, Z if all variables are continuous, or
X if some of the components are discrete and
some are continuous. If X is a set of variables,
x is a configuration of specific states of those
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variables. The discrete, continuous, or mixed
state space of X is denoted by ΩX.

MTE probability potentials and discrete
probability potentials are denoted by lower-
case greek letters, e.g. α, β, γ. Subscripts
are used for fragments of MTE potentials or
conditional probability tables when different
parameters or values are required for each
configuration of a variable’s discrete parents,
e.g. α1, β2, γ3. Subscripts are also used for
discrete probabilities of elements of the state
space, e.g. δ0 = P (D = 0).

In graphical representations, continuous
nodes in hybrid Bayesian networks are rep-
resented by double-border ovals, whereas dis-
crete nodes are represented by single-border
ovals.

2.2 MTE Potentials

A mixture of truncated exponentials (MTE)
potential has the following definition [4].

MTE potential. Let X be a mixed n-
dimensional random variable. Let Y =
(Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the dis-
crete and continuous parts of X, respectively,
with c + d = n. A function φ : ΩX �→ R+

is an MTE potential if one of the next two
conditions holds:

1. The potential φ can be written as

φ(x) = φ(y, z) =

a0 +
m∑

i=1

ai exp{ d∑
j=1

b
(j)
i yj +

c∑
k=1

b
(d+k)
i zk} (1)

for all X ∈ ΩX, where ai, i = 0, . . . ,m and
b
(j)
i , i = 1, . . . ,m, j = 1, . . . , n are real num-

bers.

2. There is a partition Ω1, . . . ,Ωk of ΩX veri-
fying that the domain of continuous variables,
ΩZ, is divided into hypercubes, the domain of
the discrete variables, ΩY, is divided into ar-
bitrary sets, and such that φ is defined as

φ(x) = φi(x) if x ∈ Ωi, (2)

where each φi, i = 1, ..., k can be written in
the form of equation (1) (i.e. each φi is an
MTE potential on Ωi).

2.3 Kullback-Leibler (KL) Divergence

When approximating a standard PDF with
an MTE potential, we measure the Kullback–
Leibler (KL) divergence introduced by the ap-
proximation and minimize this measure in the
process of finding parameters for the MTE po-
tential, subject to certain constraints.

The relative entropy or KL divergence [3] be-
tween PDF’s fX(x) and f̃X(x) is defined as

DKL(fX(x) || f̃X(x)) =∫
S
fX(x) log

fX(x)
f̃X(x)

dx.
(3)

Define pfXi
and qf̃Xi

as the probability masses
of fX(x) and f̃X(x), respectively, in the in-
terval (xi−1, xi]. A discrete approximation to
the KL divergence statistic over a set of points
xi, i = 0, ..., n can be calculated as follows:

D′
KL(fX(x) || f̃X(x)) =

n∑
i=1

pfXi
log

pfXi

qf̃Xi

.

(4)

The function g(x) = log (fX(x)/f̃X(x)) can
be interpreted as the information contained in
x for distinguishing between fX(x) and f̃X(x).
Thus, KL divergence is the expectation of the
information content over the domain S taken
with respect to the distribution fX(x). By
minimizing this expectation when determin-
ing parameters for MTE approximations to
standard PDF’s—subject to probability mass
constraints—we ensure a small chance of dis-
tinguishing between results obtained from in-
ference with standard PDF’s and correspond-
ing MTE approximations.

2.4 Estimation Procedure

The numerical representation of a hybrid
Bayesian network requires a conditional prob-
ability potential for each variable in the net-
work, given its parents. We first consider



the problem of estimating parameters for
an MTE potential approximating a marginal
PDF. This technique can be extended in a
straightforward way to estimate the parame-
ters for a conditional MTE potential by using
the mixed tree structure in [5].

2.4.1 Partitioning the Domain

To estimate the parameters of an MTE po-
tential for a continuous variable X, a parti-
tion Ω1, . . . ,Ωk of ΩX must be determined.
Typically, in each interval of the partition,
the PDF to be approximated should show
no changes in concavity/convexity or in-
crease/decrease. To increase efficiency in
the inference process, we may choose to ex-
clude a small amount of probability den-
sity in the tails when approximating a PDF.
PDF’s whose basic shape does not change dra-
matically when the distribution parameters
change, such as the normal PDF, can be fit
by partitioning the domain with respect to
changes in increase/decrease only.

Suppose the domain of the continuous vari-
able has been divided into K intervals de-
noted D1, ..., DK . To estimate parameters
for an MTE potential which approximates a
standard PDF within a given interval Dk, we
choose a set of points x = (x0, ..., xn) by
evenly dividing the portion of the domain of
the PDF represented by Dk. A set of points
y = (y0, ..., yn) is determined by calculat-
ing the value of the PDF at each point xi,
i = 0, ..., n.

2.4.2 Approximation by Nonlinear
Optimization

Defining an MTE approximation to a PDF
fX(x;Θm) (abbreviated fX(x)) requires esti-
mating constants a0k, aik and b

(j)
ik in (1) for

each interval Dk. We assume Θm is an arbi-
trary vector of parameters of a standard PDF
and the MTE approximation will be fitted for
potential parameter vectors, m = 1, ...,M .
The formulation in (1) allows an independent
term (a0k) and an unlimited number of ex-
ponential terms in each interval Dk; however,
we will restrict the MTE potential to three

exponential terms in each interval to increase
efficiency during the inference process. Addi-
tionally, we assume one MTE potential will be
defined for each configuration of a variable’s
discrete parents, so in each exponential term,
parameters b(j)ik are only defined for j = 1, ..., d
in (1). Thus, the parameters to be estimated
are a0k, a1k, a2k,a3k, b

(j)
1k ,b(j)2k and b(j)3k .

Define φ̂(k)(x; θmk) (abbreviated φ̂(k)(x))
as the initial MTE approximation
for PDF fX(x) in interval Dk. To
estimate the parameters θmk =
{a0mk, a1mk, a2mk, a3mk, b

(j)
1mk, b

(j)
2mk, b

(j)
3mk}

in (1), the discrete approximation to KL
divergence between the standard PDF and
the MTE approximation is minimized sub-
ject to continuity, probability mass and
non-negativity constraints for each selected
paremeter vector Θm, m = 1, ...M .

To create the approximation to the gamma,
beta and lognormal PDF’s in Section 3, the
following optimization problem is solved,

argmin
θmk

n∑
i=1

pfXi
log

pfXi

q ˆφXi
(k)

subject fX(x0) = φ̂(k)(x0)
to fX(xn) = φ̂(k)(xn)∫ xn

x0

(
fX(x) − φ̂(k)(x)

)
dx = 0

φ̂(k)(xi) ≥ 0, i = 0, ..., n,

where pfXi
and q ˆφXi

(k) are the probability

masses between xi and xi−1 for fX(x) and
φ̂(k)(x), respectively. The solution to the
above optimization problem is defined as θ̂mk.
The first and second constraints ensure that
the end points in adjacent regions of the MTE
potential are equal. The first constraint can
be relaxed in region D1 and the second con-
straint can be relaxed in region DK .

3 MTE Approximations to
Standard PDF’s

An MTE potential can be used to ap-
proximate any PDF. In this section, we



present MTE approximations to three stan-
dard PDF’s. Two MTE approximations to
the normal PDF are presented in [1].

3.1 Gamma PDF

3.1.1 Function Characteristics

Suppose we have a Poisson process with con-
stant rate λ per unit of time. Let the random
variable X denote the waiting time for the rth
event. The variable X has the gamma distri-
bution with parameters r and λ where

fX(x) =
λr

Γ(r)
xr−1 exp{ − λx} , x > 0.

for any r > 0 and λ > 0, where Γ(r) is the
gamma function.

For r > 1, the gamma PDF has an abso-
lute maximum where its first derivative equals
zero, or m = (r−1)/λ. For r > 2, the gamma
PDF has inflection points (changes in concav-
ity) where its second derivative equals zero, or
x = (r − 1)/λ±√(r − 1)/λ.

Define d =
√

(r − 1)/λ so that the inflection
points are defined as x = m± d. The gamma
PDF has two inflection points and one criti-
cal point (which is always a maximum) when
r ≥ 3. When 1 < r < 3, the gamma PDF
is a concave down function to the left of the
critical point. When r = 1, the gamma pdf is
a special case of the exponential PDF and is
a monotonically decreasing, concave up func-
tion. For 0 < r ≤ 1, we approximate the
gamma PDF with the exponential PDF.

3.1.2 MTE Approximation

The gamma PDF has four regions where
no changes in increase/decrease or concav-
ity/convexity occur: (0,m − d), [m − d,m),
[m,m + d), and [m + d,∞). The procedure
in Section 2.4 is used to fit a 4-piece MTE
approximation to the gamma PDF.

The MTE approximations to the gamma PDF
with parameters r = 6, 8 and 11 and λ = 1 are
displayed graphically in Figure 1. These MTE
approximations have KL divergence statistics
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Figure 1: The MTE approximations to
gamma PDF’s with parameters r = 6, 8 and
11 and λ = 1 overlayed on the graph of the
gamma PDF’s.

of 0.002095, 0.000856, and 0.000283, respec-
tively.

3.2 Beta PDF

3.2.1 Function Characteristics

A distribution of a random proportion, such
as the proportion of defective items in a ship-
ment, can be represented with the beta PDF.
The beta PDF for a random variable X which
represents a random proportion is

fX(x) =
xα−1(1 − x)β−1

B(α, β)
, 0 < x < 1.

for any α > 0 and β > 0 where B(α, β) is the
beta function.

For most parameters α and β, the beta PDF
has a critical point (either an absolute maxi-
mum or minimum) where its first derivative
equals zero, or m = (1 − α)/(2 − α − β).
For some parameters α and β, the beta PDF
has inflection points (changes in concavity),
d±, where its second derivative equals zero,

or d± = (α−1)(α+β−3)±
√

(β−1)(α−1)(α+β−3)

(α+β−3)(α+β−2) .

The behavior of the beta PDF is summarized
in Figure 2.

3.2.2 MTE Approximation

For each of the regions defined by the param-
eters in Figure 2, we could define an MTE
approximation, but the symmetry of the beta
PDF allows us to reduce the parameter space.
If £(X) ∼ Beta(α, β), then fX(x) = fY (1−x)



Figure 2: Critical and inflection points for the
different parameters of the beta distribution.
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Figure 3: The MTE approximations to
beta PDF’s with parameters (α, β) =
(2, 2), (2.7, 1.3) and (1.3, 2.7) overlayed on the
graph of the beta PDF’s.

where £(Y ) ∼ Beta(β, α). This property
allows us to define an MTE approximation
for parameters (α, β) fulfilling the property
α ≥ β. The MTE approximation will have a
different number of pieces, depending on the
critical point and the existence of inflection
points.

The MTE approximations to the beta PDF
with parameters (α, β) = (2, 2), (2.7, 1.3) and
(1.3, 2.7) are displayed graphically in Figure 3.
The MTE parameters for Beta(1.3, 2.7) are
obtained from Beta(2.7, 1.3). The KL di-
vergence statistics for these MTE approxi-
mations are 2.62118E − 06, 0.000330, and
0.000330, respectively.

3.3 Lognormal PDF

3.3.1 Function Characteristics

A random variable X is is lognormal, i.e.
£(X) ∼ LN(µ, σ2), if and only if £(lnX) ∼
N(µ, σ2). A lognormal random variable has
the PDF

fX(x) =
1

x
√

2πσ2
exp

−(lnx− µ)2

2σ2
, x > 0.

for any σ2 > 0.

The lognormal PDF has an absolute maxi-
mum where its first derivative equals zero, or
m = exp{µ− σ2}.
The inflection points, d±, are de-
fined where the second derivative of
the lognormal PDF equals zero, or
d± = exp

{
1
2(2µ− 3σ2 ± σ

√
4 + σ2)

}
.

3.3.2 MTE Approximation

To define upper and lower bounds for the
MTE approximation to the lognormal PDF,
we use the normal PDF as a benchmark
and construct a potential containing the same
probability mass in the lognormal PDF as
contained in the normal PDF over the inter-
val [µ− 3σ, µ+ 3σ]. This probability mass—
which equals 0.9973—is contained in the in-
terval [ exp{µ−3σ}, exp{µ+3σ}] of the log-
normal PDF.

The MTE approximations to the lognormal
PDF with parameters µ = 0 and σ2 =
0.25, 0.50 and 1 are displayed graphically
in Figure 4. The KL divergence statistics
for these MTE approximations are 0.000330,
0.000099, and 0.006467, respectively.

4 Applications

This section presents two applications of MTE
potentials to inference problems in hybrid
Bayesian networks. The operations required
to perform inference with MTE potentials are
described in detail in [1, 4].
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Figure 4: The MTE approximations to log-
normal PDF’s with parameters µ = 0 and
σ2 = 0.25, 0.5 and 1.0 overlayed on the graph
of the lognormal PDF’s.

4.1 Bank Example

A small town has 50 residents and one bank.
The number of daily arrivals to the bank (R)
follows a Poisson distribution with rate λ =
0.24, i.e. £(R) ∼ Poisson (12). Let ρ denote
the discrete probability potential for R.

The service rate of customers (S) is normally
distributed with a mean of 3.0 per hour and
a standard deviation of 0.25, i.e. £(S) ∼
N(3.0, 0.0625). Let ϕ be the potential for S,
which is a 2-piece MTE approximation to the
normal PDF [1]. The time to serve all cus-
tomers arriving in one day (T ) has a gamma
distribution that is conditional on random
variables R and S, i.e. £(T | S = s,R = r) ∼
Γ(R,S), which is represented by the MTE ap-
proximation ϑ. Hire (H) is a binary, discrete
random variable representing whether or not
the bank manager hires an additional teller,
and is modeled with a binary sigmoid func-
tion. This sigmoid function is approximated
using a general MTE formulation [1].

The MTE potential fragments ψ0 and ψ1 con-
stitute the MTE potential ψ for {H,T}. The
MTE potential fragment for {H = 1, T} is
shown graphically in Figure 5.

Solving the problem of calculating marginal
distributions for each variable in the network
will require the estimate of the parameter vec-
tors θ̂mk = θ̂rk for r = 2, ..., 20, where θ̂2k

represents parameters needed to approximate
the gamma PDF with r = 2, etc.

The hybrid Bayesian network for the Bank
example is depicted in Figure 6. A join tree
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Figure 5: The MTE approximation to the sig-
moid function representing P (H = 1 | T = t)
in the Bank network.

Arrivals (R)

Time (T)

Service (S)

Hire (H)

Figure 6: Hybrid Bayesian network for the
Bank example.

for the Bank example is shown in Figure 7.

4.1.1 Posterior Marginals

The message sent from {R,S, T} to {T} is the
marginal distribution for T and is calculated
as follows

τ(t) =
∫

s

(
ϕ(s)

(
20∑

r=0

ρ(r) · ϑ(s, t)

))
ds.

The expected value and variance of the
marginal distribution for T are 4.0782 and
3.2859, respectively. The posterior marginal
distribution for T is shown graphically in Fig-
ure 8.

To calculate the posterior marginal probabil-

Figure 7: The join tree for the Bank example.
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Figure 8: The posterior marginal distribution
for T in the Bank example.

A P X

Figure 9: The hybrid Bayesian network for
the Binomial example.

ities for H, the marginal distribution for T is
combined with the conditional MTE potential
fragments ψ0 and ψ1 as follows

�1(t) = ψ1(t) · τ(t) ,
�0(t) = ψ0(t) · τ(t).

The marginal probability of the bank manager
hiring an additional teller (H = 1) is 33.6%,
which is found by removing T from �1.

4.2 Binomial Example

In a quality control process, a random sample
of output is taken and evaluated on whether
or not each unit meets a pre–determined stan-
dard. Suppose the prior distribution for the
success parameter P of the binomial distri-
bution (where 0 < p < 1) characterizing the
sample output has a beta distribution which
depends on the state of the system (A) with
ΩA = {0 = poor, 1 = average, 2 = good}.
A discrete random variable X represents the
number of successes in 5 trials, i.e. £(X) ∼
Binomial (5, P ), which is denoted as ψ. The
Bayesian network for this example is shown
in Figure 9.

4.2.1 MTE Potentials

Assume the following discrete distribution for
A: ϕ0 = P (A = 0) = 0.05, ϕ1 = P (A = 1) =

Figure 10: The join tree for the Binomial ex-
ample.

0.15, ϕ2 = P (A = 2) = 0.80.

The potential fragment for {P,A = 2} is an
MTE approximation to the beta PDF with
parameters α = 1.3 and β = 2.7:

ρ2(p,A = 2) = P (P | A = 2) =




−5.951669 + 5.573316 exp{0.461388p}
−0.378353 exp{ − 6.459391p}

if 0 < p < 0.492929

0.473654 − 6.358483 exp{ − 2.639474p}
+2.729395 exp{ − 0.331472p}

if 0.492929 ≤ p < 0.85

1.823067 − (5.26E − 12) exp{26.000041p}
+0.035775 exp{0.529991p}

if 0.85 ≤ p < 1

0 elsewhere.

If the system is in state A = 0, P has a beta
distribution with β = 1.3 and α = 2.7. Due to
the symmetry of the beta PDF, the potential
fragment for {P | A = 0} is approximated as
ρ0(p,A = 0)=P (P | A = 0)=ρ2(1− p,A = 2).

The potential fragment for {P,A = 1} is an
MTE approximation to the beta PDF with
parameters α = 2 and β = 2. The poten-
tial fragments constituting the potential ρ for
{P,A} are shown graphically in Figure 3 in
Section 3.

The binary join tree for the Binomial example
is shown in Figure 10.

4.2.2 Posterior Marginals

The marginal distribution for P and is cal-
culated as �(p)= 0.05 · ρ0(p,A = 0) +0.15 ·
ρ1(p,A = 1)+ 0.80 · ρ2(p,A = 2). The ex-
pected value and variance of this distribution
are 0.6308 and 0.0536, respectively.
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Figure 11: The revised marginal distribution
for (P ) incorporating the evidence X = 1.

Marginal probabilities for X are calculated
by evaluating ((ϕ ⊗ ρ)↓P ⊗ ψ)↓X . For X =
0, . . . , X = 5, these probabilities are 0.0563,
0.1081, 0.1604, 0.2068, 0.2374, and 0.2310, re-
spectively.

4.2.3 Entering Evidence

Suppose a sample of output from the system
is taken and only one unit meets the quality
standard. This can be expressed by evidence
potential eX = 1 and passed as a message in
the join tree of Figure 10 from {X} to {X,P}.
New potential fragments for {P,A} are deter-
mined as

π0(p,A = 0) = ψ(1, p) · ρ0(p,A = 0)
π1(p,A = 1) = ψ(1, p) · ρ1(p,A = 1)
π2(p,A = 2) = ψ(1, p) · ρ2(p,A = 2).

The revised probabilities for A given the ev-
idence are determined by integrating these
potential fragments over P and normalizing.
These probabilities are: P (A = 0) = 0.1193,
P (A = 1) = 0.2477, and P (A = 2) = 0.6330.

The revised marginal distribution for P is
shown in Figure 11 and has a mean and ex-
pected value of 0.3735 and 0.0260, respec-
tively.

5 Summary

We have described a method of estimating
the required parameters for MTE potentials
which approximate standard PDF’s and pre-
sented MTE approximations to three stan-
dard PDF’s. Two examples of inference in hy-

brid Bayesian networks which use these MTE
approximations were presented. Propagation
in these examples is exact, so the only error
in the solution is introduced in the approxi-
mation of the standard PDF’s.
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