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CHAPTER 1 – SIGNIFICANCE AND AIMS 

 

 

1.1  Significance 

 

Cell migration is an intricate process that is important during immune responses and 

cancer metastasis.  Immune cells must be able to migrate throughout the body in order to 

properly mount effective immune responses.  Similarly, a successful metastatic cancer cell must 

also be able to migrate from the primary tumor to a secondary site.  Cell migration is carried out 

via a process called chemotaxis, in which cells sense gradients of chemoattractants, through their 

chemotactic receptors.  Activation of chemotactic receptors leads to downstream signaling 

processes required for integrin-mediated migration.  Integrins are adhesion proteins that allow 

the cell to adhere to surfaces, propel itself along these surfaces and de-adhere so that the cycle 

can be repeated.  Both immune cells and cancer cells use specific chemotactic receptors to signal 

to integrins in order to mediate migration to precise locations that express specific gradients of 

chemokines.  

Under normal conditions immune cells constantly migrate throughout the body scanning 

lymphoid organs and other tissues looking for foreign invaders, such as bacteria or viruses.  

Immune cells use chemotactic receptors to migrate into specific areas of the body such as the 

bone marrow, lymph nodes, lungs and brain.  T lymphocytes are major players in the immune 

response as they are important for activating B lymphocytes, secreting cytokines that further 

amplify the immune response, retaining memory that allow for a quicker immune response and, 

in certain cases being cytotoxic.   The chemokine CCL21 is highly expressed in high endothelial 
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venules (HEVs), and through unknown signaling mechanisms, directs naïve T lymphocytes that 

express C-C Chemokine Receptor 7 (CCR7) into lymph nodes from the blood through HEVs.  

Inside lymph nodes, the chemokines CCL19 and CCL21 direct naïve T lymphocytes that express 

CCR7 into regions of the lymph node where they can interact with other cells such as B 

lymphocytes and dendritic cells.  In the lymph node naïve T lymphocytes scan dendritic cells 

that present an antigen, broken down bacterial or viral peptides, which the naïve T lymphocyte 

can recognize.  Dendritic cells also express the chemokine CCL19 which attract naïve T 

lymphocytes to their vicinity.  If a naïve T lymphocyte fails to recognize antigen presented by a 

dendritic cell, a mechanism is in place that will allow the naïve T lymphocyte to exit the lymph 

node and to migrate to other lymph nodes where the cells can continue to look for antigen it 

recognizes.  However, if a T lymphocyte recognizes antigen presented by the dendritic cell, the 

naïve T lymphocyte becomes activated, differentiates, exits the lymph nodes and migrates into 

the periphery to participate in the inflammatory response.  It is during an extended period of time 

of T lymphocyte/dendritic cell interactions that exit mechanisms are up-regulated, yet it is 

unclear what specific signal(s) is/are required to turn on this machinery and promote egress from 

the lymph node.  During over-exaggerated allergic reactions and autoimmune disorders, T 

lymphocytes recruited to areas of inflammation can cause severe damage and even death.  

Therefore, it is important to be able to regulate the migration of naïve T lymphocytes before or 

while they are in lymph nodes, before they have the opportunity to exit lymph nodes and move 

into areas of inflammation as activated effector T lymphocytes and create further destruction of 

tissues.   

Many types of metastatic cancers, such as breast cancer, exploit the same molecular 

mechanisms used by lymphocytes to become motile and migrate into specific organs.  CCR7 is 
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up-regulated in metastatic breast cancers and has been correlated with metastasis to lymph nodes.  

Because CCR7’s role in lymphocyte migration is to direct cells into the lymph nodes, there have 

only been strong correlations but no observations in vivo that demonstrate that CCR7 mediates 

this same process in breast cancer cells.  Furthermore, at present it is unclear what CCR7 

mediated mechanisms might control lymph node metastasis.  Taken together, CCR7 represents a 

primary target that can potentially be used to regulate autoimmunity and breast cancer 

metastasis.  The results of my dissertation project have increased our knowledge of the molecular 

mechanisms that contribute to CCR7 mediated migration through its ligands CCL19 and CCL21 

in naïve T lymphocytes and development of a mouse model to study CCR7 mediated metastasis 

of breast cancer to the lymph nodes outlined in the three following chapters:   

 

Chapter 3)  CCR7/CCL21 Migration is Mediated by PLCγ1 and ERK1/2 in Primary T  

Lymphocytes. 

 

Chapter 4)   CCR7/CCL19 Mediates T Lymphocyte Expression of EDG-1. 

 

Chapter 5)  Expression of a Chemokine Receptor, CCR7, Mediates Metastasis of Breast Cancer 

to the Lymph Nodes and Reduces Metastasis to the Lungs in mice. 
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CHAPTER 2 – BACKGROUND 

 

2.1  Cellular Migration 

 

   Cell migration is a multifaceted process that requires activation followed by de-

activation of adhesive contacts, polarization of the appropriate signaling molecules and a 

chemokine/growth factor gradient of which to migrate towards [1].  As cells migrate along the 

extracellular matrix they use adhesive contacts called integrins.  Integrins are unique receptors 

that can be activated by “inside out” signaling which occurs through activation of another cell 

surface receptor, such as a chemokine receptor, or “outside in” signaling which occurs via a 

ligand binding to the integrin itself [2].  Integrins are heterodimeric proteins that are made up of 

an α and β subunit.  During integrin activation these subunits are typically in an extended 

conformation, while during de-activation the subunits return to a bent/folded confirmation [3].  

When a cell receives a signal to move, integrins are rapidly polarized to the leading edge of the 

cell where they bind the extracellular matrix [4, 5].  Force is then generated through interactions 

with the actin cytoskeleton and the cell is then propelled over the extracellular matrix [6].  The 

integrins then release from the extracellular matrix and are recycled back into the cell to repeat 

the cycle again [7].   

 As described in Chapter 1, naïve T lymphocytes must be able to enter into and migrate 

within lymph nodes in order to encounter antigen presenting dendritic cells and they rely greatly 

on β1 integrins to accomplish this task [8].  β1 integrins bind to collagen I and IV, Vascular Cell 

Adhesion Molecule-1 (VCAM-1), laminin and fibronectin.  Both laminin and fibronectin are 

expressed in high endothelial venules, the point of entry for lymphocytes migrating into lymph 
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nodes [9, 10].  Chemokine activation results in β1 integrin polarization at the leading edge of 

migrating cells and increased activation of β1 integrins [4, 8].  In human naïve T lymphocytes 

activation of CCR7 by its ligand CCL21 results in firm adhesion, tethering and rolling on 

VCAM-1, a β1 integrin ligand. [11, 12].  However, the molecular mechanisms of how CCR7 

signals to β1 integrins to induce migration to lymph nodes remain unclear.    

 

2.2  Organization and Function of the Lymph Nodes 

 

 Lymph nodes are small bean shaped structures linked together by lymphatic vessels that 

are found throughout the entire body.  Regardless of size, lymph nodes are one of the most 

important sites for cellular interaction and activation of immune responses.  The lymph node is 

divided into two individual regions including the cortex and the medulla [13] (Figure 1).  The 

cortex can be further divided into two regions including the paracortex which is also known as 

the T cell area and the node cortex that includes the B cell area [14].  The paracortex (T cell area) 

is the location where T lymphocytes and dendritic cells interact and where lymphocytes enter 

into lymph nodes through high endothelial venules, a rich source of CCL21 [15].  The paracortex 

is populated with fibroblastic recticular cells, which are a source of CCL19 and CCL21 [16].  As 

lymph nodes are sites of continuous cell chemotaxis they therefore express many types of 

extracellular matrix molecules that assist in cell migration to different compartments including 

collagen, laminin, vitronectin and fibronectin [17, 18].  

 Lymph nodes are central sites of antigen presentation, cell to cell interactions and 

lymphocyte activation.  Dendritic cells located in the periphery take up antigen, undergo  
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Figure 1. Organization of the lymph node. Lymph nodes are important sites of cellular

interaction and activation of immune responses. The lymph node is divided into two regions,

the cortex and the medulla. The cortex is further divided into the paracortex and node cortex.

The paracortex includes the T lymphocyte area where high endothelial venules (HEV) are

located. High endothelial venules are the entry point for T lymphocytes and express CCL21.

In the paracortex T lymphocytes (T) expressing CCR7 interact with dendritic cells (DC) that

express CCL19. The paracortex is also populated with fibroblastic recticular cells (FRC)

expressing CCL19 and CCL21. The cortex is the B lymphocyte area and under inflammatory

conditions forms germinal centers (GC), which are composed of areas of activated B

lymphocytes.
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maturation and migrate to regional lymph nodes, where they will display antigen for recognition 

by naïve T lymphocytes.  Naïve T lymphocytes migrate toward lymph nodes, entering into the 

lymph nodes through high endothelial venules where they first encounter CCL21.  Upon entering 

the lymph nodes naïve T lymphocytes immediately begin to scan dendritic cells that express 

CCL19 [19], which facilitates interactions between the two cell types.  In the absence of antigen 

naïve T lymphocytes and dendritic cells can make upwards of 5,000 contacts per hour, which is 

amplified during an immune response [20, 21].  In the presence of antigen, naïve T lymphocytes 

during early stages of interaction with dendritic cells, will make transient contacts that last for 

minutes, with little activation detected among the T lymphocytes [22].  Following these brief 

interactions, naïve T lymphocyte will form stable interactions with dendritic cells that can last up 

to 36-48 hours [22].  During this stable interaction the T lymphocyte becomes activated, 

proliferates and eventually detaches from the dendritic cell [23].  Lastly, the activated T 

lymphocytes exit the lymph nodes and return to the circulation to carry out their effector 

functions in the periphery.   

 

2.3  C-C Chemokine Receptor 7 (CCR7) and its Ligands CCL19 and CCL21   

 

 CCR7 is expressed by naïve T lymphocytes, mature dendritic cells (DC), natural killer 

cells (NK), central memory T cells and T regulatory cells (Tregs) [24].  CCR7 binds two 

chemokine ligands, CCL19 and CCL21.  CCL19 is expressed in the thymus, spleen, stromal cells 

of the lymph nodes, and dendritic cells [16, 25, 26].  CCL21 is expressed in the appendix, spleen, 

high endothelial venules and stromal cells of the lymph nodes [16, 27, 28].  To date the major 

role of CCR7 in immunity is to direct T lymphocyte migration into secondary lymphoid organs 
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such as the lymph nodes.  The importance of this function lies in the positioning of cells within 

the lymph node such that activation of effector cell subsets like T and B lymphocytes occurs.  If 

T lymphocytes fail to come into contact with antigen presenting dendritic cells either because the 

dendritic cells can’t migrate to the lymph node or T lymphocytes can’t find the dendritic cells in 

the lymph node, then T lymphocytes simply do not become activated.  In addition, if T 

lymphocytes are unable to find and activate B lymphocytes, then the immune response is 

diminished.  In support of this function, mice lacking CCR7 have severely reduced numbers of 

CD4+ T cells in lymph nodes while increased numbers of these cells are found in the blood and 

bone marrow [29].  In addition, there is structural rearrangement of lymph nodes, such as B cell 

follicles in the paracortex, which are normally located in the cortex and lymph nodes are also 

devoid of T cell areas normally located in the paracortex [29].  CCR7 knockout mice also have 

impaired T cell and B cell activation and diminished lymphocyte responses during immune 

challenge [29].    

In mice CCL21 is expressed in two forms that differ at nucleotide position 65, resulting 

in one that encodes a serine and the other a leucine [30].  The leucine form is expressed in non-

lymphoid tissues while the serine form is expressed in lymphoid tissues and resembles the 

expression pattern of human CCL21 [30].  Paucity of lymph node T cells (plt) is a spontaneous 

mutant in mice that results in the deletion of both CCL21 (serine form expressed in lymphoid 

tissue) and CCL19 [16, 30].  Similar to the CCR7 knock out mouse, plt mice display a loss of T 

cells and DCs in the lymph nodes, spleen and Peyer’s patches and as expected plt are more 

susceptible to viral infections [31].  Recent studies have demonstrated a role for CCL19 and 

CCL21 in the development of lymph nodes, Peyer’s patches and spleen [32, 33].  However, 

studies from the plt mouse make it difficult to delineate specific roles for each ligand.   
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The development of a CCL19 knock out mouse and CCL19 (8-83) and CCL21 (mSLC4) 

antagonists have provided more insight into the role for these ligands.  A study carried out in a 

CCL19 knock out mouse revealed that CCL19 was not essential for development of lymphoid 

tissue and lack of CCL19 did not affect the ability of naïve T cells to migrate into secondary 

lymphoid organs, suggesting that CCL21 may be more important for these functions [34].  In 

support of these studies, it has been shown that ectopic expression of CCL21 alone is sufficient 

for development of lymphoid tissue in pancreatic islets [35].  Antagonists developed against 

CCL19 (8-83) and CCL21 (mSLC4) also suggest more important functions.  Similar to the 

CCL19 knock out mouse, the CCL19 antagonist 8-83 does not affect the ability of lymphocytes 

to enter into lymph nodes, however lymphocytes accumulate in peripheral and mesenteric lymph 

nodes during an immune response, suggesting that CCL19 might play a role in lymphocyte 

egress from lymphoid tissues [36].  In support of these studies, use of the CCL21 antagonist 

(mSLC4) determined that cells failed to migrate efficiently into secondary lymphoid organs [37].  

Although a clear predominate role has emerged for CCL21 in mediating migration into lymph 

nodes and a possible role for CCL19 mediating egress has been suggested, the precise molecular 

mechanisms of these process are not understood.  

 

2.4  G-Protein Coupled Receptors  

 

G-protein coupled receptors (GPCRs) are involved in many everyday human sensations.  

For example, they are the detection molecules for light, odor and taste as well as hormones, 

neurotransmitters and chemokines.  GPCRs play a role in many important physiological 

processes including neurological, cardiovascular, endocrine and immunity [38].  Therefore, it is 
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not surprising GPCRs are a major target for drug discovery and that 60% of all drugs available 

today target GPCRs[39].   

GPCRs are large transmembrane receptors that span the membrane seven times and 

couple to G-proteins to transmit signals into the cell.  When a G-protein coupled receptor binds 

to a ligand the receptor undergoes a conformational change that results in coupling to a G protein 

[40].  G proteins are heterotrimeric molecules made up of α, β and γ subunits.  Receptor 

activation results in an exchange of guanosine diphosphate (GDP) for guanosine triphosphate 

(GTP) on the Gα subunit of the G protein.  The Gα-GTP bound subunit then dissociates from the 

Gβγ subunit [41].  Once dissociation occurs each subunit then can initiate downstream signaling 

events.  The Gα subunit family is composed of Gαs, Gαi, Gαq and Gα12/13 and is responsible 

for regulating activity of adenylyl cyclase, calcium channels, tyrosine kinases, mitogen protein 

activated kinase (MAPK), and phospholipase C (PLC) [42].  Gβγ subunits can also activate a 

variety of signaling molecules including G-protein receptor kinases (GRKs), 

phosphatidylinositol 3-kinase (PI3K), MAPK and PLC [42].  Activation of the Gα and Gβγ 

pathways leads to cellular events such as proliferation, differentiation and migration. 

 

2.5  Entrance into Lymph Nodes:  Signaling Through the CCR7 Receptor in T Lymphocytes  

 

 As previously mentioned G-protein coupled receptor activation of downstream signaling 

events requires coupling to a G-protein.  Pertussis toxin specifically targets the Gαi family of G-

proteins and adenosine diphosphate (ADP) ribosylates the Gαi subunit resulting in the inability 

of the G-protein to interact or couple with the receptor [43].  Studies using pertussis toxin have 

demonstrated that CCR7 couples to the Gαi G-protein and is required for migration to CCL21 
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and CCL19 [44, 45].  Additionally, CCR7 mutants that lack the C-terminal tail of the receptor 

also are unable to activate the Gαi subunit resulting in a loss of extracellular signal-related kinase 

1and 2 (ERK1/2) activation and migration [46].   

Following GPCR activation and release of Gα/Gβγ subunits, CCR7 becomes 

phosphorylated at its C terminus, which allows for binding of arrestins (commonly referred to as 

β-arrestin 1 or β-arrestin 2).  Arrestins are important for receptor internalization, migration and 

act as adaptor proteins that mediate signaling through multiple proteins such as MAPKs [47] 

(Figure 2).  Interestingly, β-arrestin 1 or β-arrestin2 are not required for CCR7 mediated 

migration in response to CCL21 activation [48].  In contrast, both β-arrestin 1 and β-arrestin 2 

are required for migration to CCL19 [48].  Additionally, depletion of β-arrestin 2 lead to a loss of 

ERK1/2 phosphorylation in HEK293 cells stimulated with CCL19 [49].   

Mitogen Activated Protein Kinase (MAPK) signaling is required for many cellular 

functions such as differentiation, survival and migration.  G-protein coupled receptors are well 

known for their ability to activate MAPK signaling cascades [50-52].  Stimulation of CCR7 with 

either CCL19 or CCL21 results in phosphorylation of the MAPK, ERK1/2 in HEK293 cell lines 

[49].  In primary T and B lymphocytes ERK1/2 is rapidly and transiently phosphorylated in 

response to CCR7 stimulation by CCL21 [53, 54].  Rapid and transient phosphorylation of 

ERK1/2 in aortic smooth muscle cells is necessary for migration [55], suggesting that transient 

phosphorylation of ERK1/2 might also be required to induce migration of naïve T lymphocytes.  

However, to date it remains unclear if transient phosphorylation of ERK1/2 is required for CCR7 

mediated migration to CCL21 or CCL19.  
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Figure 2. Requirement for arrestins during CCR7 signaling. Both β-arrestin 1 and β-

arrestin 2 are required for migration to CCL19, but not CCL21. Depletion of β-arrestin 2

results in a loss of phosphorylation of ERK1/2 in cells stimulated with CCL19.
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In addition to MAPKs, GPCRs also are well known for their ability to activate the 

phospholipase C family of proteins which include PLCA, PLCβ, PLCD and PLCγ.  

Phospholipase C proteins can regulate cell motility by binding to the actin cytoskeleton as well  

as interacting with adhesion proteins such as integrins to control migration.  In lymphocytes 

PLCγ1 plays an important role in cytoskeletal rearrangement, cell spreading and migration [56-

58].  Activation of PLCγ1 results in hydrolysis of phosphatidyl inositol (4,5) bisphosphate (PIP2) 

to inositol (1,4,5) triphosphate (IP3) and diaglycerol (DAG) [59].  In T lymphocytes IP3 

regulates calcium mobilization and together with DAG can regulate activation of Ras, through 

the Ras activator RasGRP [60].  Through the activation of Ras, PLCγ1 activation indirectly 

contributes to activation of MAPK pathways, which are important for controlling cell migration 

[61].  Another way that PLCγ1 controls migration is that it directly binds to and activates β1 

integrins [62].  β1 integrins are important for T lymphocyte transendothelial migration into 

lymphoid organs.   CCR7 phosphorylation of PLCγ1 is required for migration of head and neck 

cancer cells to CCL19 [63].  However, it is not clear if PLCγ1 activation is important for 

migration to CCL19 or CCL21 in T lymphocytes. 

 

2.6  Sphingosine-1-Phosphate Receptor 1 and Lymph Node Egress 

 

 As naïve T lymphocytes migrate throughout the body traveling into lymphoid organs, 

they must be able to navigate their way back out and either migrate onto other secondary 

lymphoid organs or into the periphery to carry out effector functions.  The Sphingosine-1- 

phosphate receptor 1 (S1P1), is expressed on T lymphocytes and is required for lymphocyte 

egress from the thymus, spleen, Peyer’s patches and lymph nodes [64, 65].  The ligand for the 
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S1P1, sphingosine 1 phosphate (S1P) is expressed at high concentrations in blood (100-300nM) 

and acts as a gradient to attract cells from lymphoid organs [66].   Interestingly, twenty-four 

hours following T lymphocyte entry into lymph nodes, T lymphocytes lose the ability to migrate 

to S1P, correspondingly mRNA for the receptor is decreased 1-10% [64, 65].  Approximately 

three days following T cell receptor activation, mRNA for S1P1 is increased and cells once again 

regain the ability to migrate to S1P and rapidly reappear in circulation [65].  During this three 

day period, T lymphocytes remain in lymph nodes where they interact with dendritic cells that 

express CCL19, become activated and proliferate (Figure 3).  Kruppel Like Factor 2 (KLF2), a 

transcription factor, regulates S1P1 expression.  Similar to S1P1, KLF2 mRNA mirrors the cyclic 

expression levels of S1P1 during an immune response [67].  However, the precise signal that 

leads to increased KLF2 transcription resulting in increased S1P1 transcription to allow for 

lymphocyte egress from lymph nodes remains unclear. 

 One possible upstream candidate for KLF2 activation is the MAPK, extracellular signal-

related kinase 5 (ERK5).  ERK5 is expressed in T lymphocytes and is phosphorylated in 

response to T lymphocyte activation (anti-CD3 and anti-CD28) or IL-7 stimulation [68].  ERK5 

directly regulates KLF2 expression in T lymphocytes [68].  Depletion of ERK5 leads to down-

regulation of CD62L [68].  CD62L is also known as L-selectin and is an adhesive molecule 

expressed on the surface of naïve T lymphocytes and plays a role in homing of these cells into 

secondary lymphoid organs.  Consequently, only cells that express high levels of CD62L can 

efficiently migrate to S1P [65].  Because depletion of ERK5 leads to down-regulation of CD62L 

on the surface of T lymphocytes, this suggests that migration to S1P could also be diminished.  

These results suggest a possible role for ERK5 in regulating S1P1 expression.  However, anti-

CD3, anti-CD28 or IL-7 stimulation of ERK5 does not fully explain S1P1 regulation since ERK5  
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Figure 3. S1P1 regulates T lymphocyte lymph node egress. Naïve T lymphocytes (T)

enter into lymph nodes where they begin scanning dendritic cells (DC) that present antigen.

Twenty fours hours after entering into the lymph nodes, T lymphocytes down-regulate S1P1

expression. Following brief interactions with the dendritic cells, naïve T lymphocytes will

form stable interactions with the dendritic cells that can last 36-48 hours. During this period

of time the T lymphocyte will become activated and proliferate. Approximately, 72 hours

following T lymphocyte activation S1P1 mRNA is increased and cells regain the ablility to

migrate to S1P, which is at a higher concentration in blood. This results in T lymphocytes

exiting the lymph node. We proposed that CCL19, which is expressed by dendritic cells

provides the signal necessary for increased expression of S1P1. We propose that CCL19

activates ERK5, which increases transcription of KLF-2, which increases transcription of

S1P1.
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activation is only induced over a short period of time and S1P1 is regulated over the course of 

days.  In contrast, during the ~48 hour time period that T lymphocytes form conjugates with 

dendritic cells in the lymph nodes, the T lymphocytes are consistently stimulated with CCL19  

expressed by dendritic cells.  Interestingly, in CCL19 knockout mice retention of both CD4+ and 

CD8+ cells occurs in lymph nodes during normal homeostasis [34].  In a similar study using a 

CCL19 antagonist (8-83), cells were also retained in lymph nodes during an allogenic immune 

response [36].  Furthermore, in CCR7 deficient mice S1P1 levels were also found to be decreased 

[69] suggesting that CCR7 expression may be important for S1P1 expression.  These studies 

together suggest a possible role for CCR7/CCL19 in lymphocyte egress from lymph nodes 

(Figure 3). 

  

2.7  Potential Role for CCR7 Signaling in Lymph Metastasis During Breast Cancer Progression 

 

 According to the American Cancer Society, breast cancer is the second leading cause of 

cancer deaths among women in the United States with an estimated 207,090 new cases in women 

and 1,970 new cases in men occurring in 2010.  It is estimated that approximately 40,000 women 

will lose their lives to breast cancer in the United States this year alone.  While the 5 year 

survival rate has drastically improved to 90%, the rate for survival if the breast cancer has 

metastasized to distant lymph nodes and organs is a staggering 23% [70].   

Metastasis is a complex process whereby a cell detaches from a primary tumor and 

migrates to a second site.  In recent years, it has been recognized that cancers tend to not 

randomly metastasize to distant sites, but instead favor certain metastatic sites over others.  For 

example, breast cancers typically metastasize to the bone, lung, liver, brain and lymph nodes.  
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These reoccurring sites of metastasis have been explained due to the expression of chemokine 

receptors on the surface of breast cancer cells that respond to gradients of chemokines located in 

target organs.  In particular, CXCR4 and CCR7 are expressed on human breast cancer cells and 

are considered diagnostic biomarkers that predict lymph node metastasis [71-73]. 

 Lymph nodes have not always been thought of as sites of metastasis.  Instead lymph 

nodes have been considered as sentinel sites where metastases simply filter through on their way 

to other organs.  It is not known if tumor cells become trapped in the lymph nodes or continue to 

metastasize to distant organs.  In any case, staging of breast cancer relies heavily on lymph node 

involvement, with greater involvement correlating to a worse disease outcome [74].  In most 

breast cancer cases, axillary lymph nodes are removed without a comprehensive understanding if 

removal is clinically better/worse for patient survival, as lymph nodes are important site for 

immunological responses [74].  Recent studies found strong correlations that human breast 

cancers expressing CCR7 specifically metastasize to lymph nodes, which highly express CCR7 

ligands, CCL19 and CCL21 [73, 75].  However, a contrasting study determined that CCR7 

expression did not correlate with lymph node metastasis in breast cancer [76].  At present, it is 

unclear if and by what mechanisms CCR7 controls lymph node metastasis in breast cancer. 

  

2.8  CCR7 Signaling in Breast Cancer Cells 

 

As lymphocytes are experts at migrating and entering into tissues, cancer cells take 

advantage of the same machinery used by lymphocytes to also metastasize and invade tissue.  

Therefore, we can learn an abundant amount of information about the molecular mechanisms 

involved in these processes in cancer cells through our knowledge of lymphocyte behavior.  



18 

 

CCR7 is up-regulated in many types of metastatic cancers including gastric, pancreatic, thyroid, 

endometrial, lung and breast and is implicated in lymph node metastasis [77-81].  Similar to T 

lymphocytes, CCR7 activates the MAPK, ERK1/2, in cancer cells to induce migration and 

inhibition of either CCR7 or ERK1/2 results in reduction of migration and invasion [82].  In T 

lymphocytes PLCγ1 plays an important role in cell migration and β1 integrin activation [56, 57, 

62].  In head and neck cancer cells, CCR7 mediated migration requires activation of PLCγ1 [83].  

PLCγ1 has also been found to be indispensable for activation of β1 integrins in cancer cells [84].  

Additionally, in thyroid carcinoma cells, stimulation of CCR7 by CCL21 increased β1 integrin 

expression on the cells surface [79].   

Similar to T lymphocytes, β1 integrins have been identified as important mediators or 

breast cancer migration.  Compared to the primary tumor, metastatic breast cancer cells display 

increased expression of β1 integrins on their cells surface [85].  Blocking β1 integrins reverts the 

malignant phenotype of these breast cancer cells to a normal epithelial phenotype, characterized 

by well organized actin, organized adherens junctions, deposition of a basement membrane and 

growth arrest [85].  Additionally, use of AIIB2 a β1 integrin functioning antibody, in 

combination with radiation therapy significantly enhanced the effects of the radiation therapy 

and reduced the tumor size in human cells and in vivo [86].  A better understanding of how 

CCR7 regulates β1 integrin up-regulation or activation can advance our understanding of how 

breast cancer cells become metastatic and invade surrounding tissue.  Finally, a better 

understanding of the role of CCR7 in mediating breast cancer metastasis to lymph nodes is 

necessary in order to design novel therapeutic strategies targeting this pathway.    
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CHAPTER 3- CCR7/CCL21 MIGRATION ON FIBRONECTIN IS MEDIATED BY 

PLCγ1 AND ERK1/2 IN PRIMARY T LYMPHOCYTES 

 

 

3.1  Abstract 

 

C-C Chemokine receptor 7 (CCR7) binds to its cognate ligand, CCL21, to mediate the 

migration of circulating naive T lymphocytes to the lymph nodes. T lymphocytes can bind to 

fibronectin, a constituent of lymph nodes, via their 1 integrins, which is a primary mechanism 

of T lymphocyte migration; however, the signaling pathways involved are unclear. We report 

that Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) is required for T cell migration on 

fibronectin in response to CCL21 with a rapid (within 2 minutes) and transient phosphorylation 

of ERK1/2. Conversely, prevention of ERK1/2 phosphorylation by inhibition of its kinase, MEK, 

prevented T lymphocyte migration. Previous studies have suggested that Phospholipase C 

gamma 1 (PLC1) can mediate phosphorylation of ERK 1/2, which is required for 1 integrin 

activation. Paradoxically, we found that inhibition of PLC1 phosphorylation by the general PLC 

inhibitor, U73122, was associated with an enhanced phosphorylation of ERK1/2 and reduced 

migration of T lymphocytes on fibronectin. To further characterize the relationship between 

ERK1/2 and PLC1, we reduced PLC1 levels by 85% using shRNA and observed a sustained 

phosphorylation of ERK1/2 and a significant reduction in CCR7 mediated migration of T 

lymphocytes on fibronectin. In addition, we found that inhibition of ERK 1/2 phosphorylation by 

U0126 resulted in a decreased phosphorylation of PLC1 suggesting a feedback loop between 

ERK 1/2 and PLC1. Overall, these results suggest that the CCR7 signaling pathway leading to T 
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lymphocyte migration on fibronectin is a 1 integrin dependent pathway involving transient 

ERK1/2 phosphorylation, which is modulated by PLC1. 

 

3.2  Introduction 

 

     G-protein coupled receptors (GPCRs) are responsive to many types of stimuli such as 

hormones, neurotransmitters and chemoattractants.   Ligand activation of a GPCR causes a 

conformational change in the receptor that leads to an exchange of GDP for GTP in the Gα 

subunit and dissociation of Gα from the Gβγ subunits.  The subunits then initiate downstream 

signaling events to regulate activation of adenylyl cyclase or phospholipase C (PLC) [42].  C-C 

Chemokine Receptor 7 (CCR7), a G-protein coupled receptor, is expressed on naive T 

lymphocytes and is required for migration into and within lymph nodes.  CCR7 binds to two 

ligands CCL19 and CCL21.  CCL21 is expressed in high endothelial venules, the entry route into 

lymph nodes [28].  However, it is currently unknown how T lymphocytes signal through CCR7 

to mediate migration via β1 integrins in response to CCL21.   

     Integrins, which are key mediators of lymphocyte adhesion and migration, are heterodimeric 

adhesion proteins, consisting of an α and the β subunit, for which they are named.  β1 integrins 

which are expressed by T lymphocytes and bind to VCAM, collagen and fibronectin [87].  

Fibronectin is a major component of the lymph node and is highly expressed in the cortex in the 

presence of fibroblastic recticular cells, which express CCL21[17, 88].  This network provides an 

environment that allows CCR7 expressing T lymphocytes to migrate throughout the lymph node.   

     Phospholipase C (PLC) is a downstream target of Gβγ signaling and is important for T cell 

migration [89].  PLCγ binds to and activates β1 integrins [62].  Furthermore, PLCγ1 is required 
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for adhesion to fibronectin and important for β1 integrin mediated cell migration [63, 84].  

PLCγ1 was recently shown to be phosphorylated by CCR7 in head and neck cancer cells and was 

necessary for migration of squamous cell carcinoma of head and neck cells [83].     

     GPCRs can activate the downstream effector mitogen activated protein kinases (MAPK) to 

regulate chemotactic migration [53, 90].  In HEK293, CCR7 transient transfectants, stimulated 

with CCL19 rapidly activated extracellular related kinase 1/2 (ERK1/2), while CCL21 had a 

minimal effect on ERK1/2 phosphorylation [46].  In primary B lymphocytes that express 

endogenous CCR7, CCL21 mediated activation of ERK1/2 [53].  These contrasting studies 

illustrate the importance of determining the role of ERK1/2 in the migration of primary T 

lymphocytes to CCL21.  

     Therefore, we examined the molecular mechanisms that are required for β1 integrin activation 

and β1-mediated migration.  In primary T lymphocytes we have found that CCL21 promotes 

activation of PLCγ1 and transient activation of ERK1/2, which are required for β1 integrin 

activation in response to CCL21.  Loss of activation of either PLCγ1 or ERK1/2 prevented 

migration via β1 integrins to CCL21.  These results indicate that CCL21 activation of CCR7 

promotes activation of β1 integrins leading to migration following phosphorylation of PLCγ1 

and ERK1/2.  

 

3.3  Results 

 

3.3.1  Primary Lymphocytes Differentially Migrate to CCL21 on Fibronectin 

  Naïve T lymphocytes which express CCR7, enter into lymph nodes in response to CCL21 

expressed in high endothelial venules.  To define the molecular mechanisms that control CCL21 
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mediated T lymphocyte migration we used chemotaxis assays.  Naïve T lymphocytes were 

induced to migrate over a physiological range of CCL21 concentrations (0-400nM).  We found 

that naïve T lymphocytes migrated to CCL21 at 2μM concentration on polycarbonate 

membranes (Figure 4A).  To understand how T lymphocytes migrate via β1 integrins we pre-

incubated the polycarbonate membranes with the β1 integrin ligand, fibronectin.  Lymphocytes 

were induced to migrate over a wide physiological concentration to 0-400nM CCL21, with the 

greatest migration occurring at 40nM (Figure 4B). These results implicate β1 integrins in T 

lymphocyte migration to CCL21. 

 

3.3.2  ERK1/2 is required for Migration to CCL21 

 GPCRs can activate extracellular signal related kinase (ERK1/2) in order to mediate 

migration of human primary macrophages and human osteosarcoma cells [90, 91].  To examine 

the role of ERK1/2 in the migration of naïve T lymphocytes to CCL21 via their β1 integrins, we 

examined migration to CCL21 in the presence of the MEK inhibitor UO126.  Under these 

conditions naïve T lymphocytes failed to migrate on fibronectin compared with controls treated 

with vehicle (DMSO) (Figure 5A).  To confirm that UO126 blocked MEK activation of ERK1/2, 

we used western blots.  As expected, UO126 blocked ERK1/2 phosphorylation in cells treated 

with CCL21 (Figure 5B).  PLCγ can mediate phosphorylation of ERK1/2 [92, 93].   To examine 

the contribution of ERK1/2 to activation of PLCγ1, we probed for PLCγ1 phosphorylation.  

Unexpectedly, we found that phosphorylation of PLCγ1 was decreased (Figure 5B).  From these 

results we concluded that rapid ERK1/2 activation is required for migration to CCL21.   
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Figure 4. Migration of primary cells to CCL21 on fibronectin. A) Migration of primary

naïve T lymphocytes to 0-400nM CCL21 on 5um membranes incubated in sfRPMI (n=3), p <

0.01. B) Migration of primary naïve T lymphocytes to 0-400nM CCL21 on 5um membranes

incubated in 10μg/ml fibronectin (n=4), p < 0.004.
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Furthermore, PLCγ1 phosphorylation may be mediated by activated ERK1/2 to regulate CCL21 

mediated migration.    

     Cell migration requires regulated integrin adhesion, which is mediated by activation, followed 

by integrin de-adhesion [94, 95].  Therefore, we questioned the role of ERK1/2 in β1 integrin 

activation.  To this end we pretreated lymphocytes with UO126 or vehicle (DMSO) and 

measured levels of activated β1 integrins following activation with CCL21.  Lymphocytes were 

stained with an activation specific antibody, 12G10 [96].  Levels of activated β1 integrins were 

analyzed by flow cytometry.  We found that lymphocytes treated with UO126 displayed similar 

β1 integrin activation compared to controls (Figure 5C).   From this data we concluded that β1 

integrin activation in T lymphocytes in response to stimulation of CCR7 with CCL21 is not 

regulated by ERK1/2 phosphorylation. 

 

3.3.3  PLC is required for Migration on Fibronectin to CCL21  

  As mentioned, PLCγ1 binds to and activates β1 integrins [62].  Since loss of ERK1/2 

phosphorylation correlated with decreased PLCγ1 phosphorylation and reduced migration to 

CCL21, we questioned if PLC was necessary to control migration to CCL21.  To determine if 

PLC was necessary for migration, we used chemotaxis assays in the presence of U73122, a 

universal PLC inhibitor, or the U73343 control.  To confirm that U73122 blocked activation of 

PLCγ in T lymphocytes in response to CCL21 stimulation, we assayed for phosphorylation of 

PLCγ1 by western blot.  Lymphocytes pretreated with U73122 displayed decreased 

phosphorylation of PLCγ1.  In contrast, phosphorylation of ERK1/2 was increased compared to 

controls (Figure 6B).  When T lymphocytes were pre-incubated with U73122, migration to  
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Figure 5. Inhibition of ERK1/2 decreases migration of T lymphocytes to CCL21. Primary

naïve T lymphocytes were treated with 1uM UO126 or DMSO (control) for 90 minutes and were

migrated to 40nM CCL21across a membrane pre-incubated in 10μg/ml fibronectin. A) Cells

pretreated with UO126 migrated to CCL21 (n=3), p < 0.03. B) Cells stimulated with CCL21

probed for ERK1/2 and PLCγ1 phosphorylation and total (n=3). Densitometric analysis of

PLCγ1 and ERK1/2 was performed using ImageJ software. C) Cells were treated with UO126,

stimulated with 40nM CCL21 and assayed for activated β1 integrins on the cell surface (n=3), p

< 0.41.
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CCL21 was reduced (Figure 6A).  From these results we concluded that activation of PLC 

mediates migration of T lymphocytes to CCL21.   

 

 3.3.4  PLCγ1 is Necessary for β1 Integrin Migration and Activation  

 Because U73122 is a universal inhibitor of PLC, to determine the role PLCγ1 in the 

migration of naïve T lymphocytes via β1 integrins, we used PLCγ1 shRNA to specifically target 

and knock down levels of PLCγ1 in primary human T lymphocytes.  Lymphocytes were 

transiently transfected with PLCγ1 shRNA or control shRNA and assayed for migration and β1 

integrin activation.  We found that total PLCγ1 levels were reduced approximately 85% in the 

shRNA transfected lymphocytes (Figure 7A).  T lymphocytes that were depleted of PLCγ1 failed 

to migrate on fibronectin compared to controls (Figure 7B).  In addition, loss of PLCγ1 led to a 

failure to activate β1 integrins in response to stimulation with CCL21 as determined by flow 

cytometry (Figure 7C).  Since in response to U73122, we observed an increase in ERK1/2 

phosphorylation, we questioned if this was due to inhibition of PLCγ1.  Similarly, we observed 

that knock down of PLCγ1 resulted in a trend towards increased ERK1/2 phosphorylation 

compared to controls (Figure 7D and 7E).  From these results we concluded that PLCγ1 is 

required for transient ERK1/2 phosphorylation and activation of β1 integrins resulting in 

migration of naïve T lymphocytes to CCL21 on fibronectin. 
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Figure 6. Migration to CCL21, PLCγ1 and ERK1/2 phosphorylation is decreased upon

U73122 treatment. Primary naïve T lymphocytes were pretreated with 2.0uM U73122 for 20

minutes and migrated to 40nM CCL21 on membranes preincubated with 10μg/ml fibronectin. A)

Cells treated with U73122 were migrated on fibronectin to CCL21. (n=3), p < 0.03. B) Cells

stimulated with CCL21 were probed for PLCγ1 and ERK1/2 total and phosphorylation (n=3).

Densitometric analysis of PLCγ1 and ERK1/2 was performed using ImageJ software.
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Figure 7. PLCγ1 shRNA reduces migration to CCL21, β1 integrin activation and increases

ERK1/2 phosphorylation. Primary naïve T lymphocytes were transiently transfected (LipoD

293) with 8ug/ml PLCγ1 shRNA or control shRNA and incubated at 37°C, 5%CO2 for 72 hours

before use. A) Human primary T lymphocytes were depleted of PLCγ1 approximately 85% .

B) PLCγ1 knock down cells were migrated on fibronectin to 40nM CCL21 (n=3). p < 0.002.

C) β1 integrin activation (n=3), p < 0.03. D) Phosphorylation of ERK1/2 and PLCγ1 in

response to CCL21 stimulation. (n=3). E) Graphical Representation of western. Densitometric

analysis of PLCγ1 and ERK1/2 was performed using ImageJ software.
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3.3.5  Gαi Mediates Migration to CCL21  

To examine the signaling events upstream of PLCγ1 we investigated the role of G 

proteins in the activation of PLCγ1.  CCR7 couples to Gαi to initiate downstream signaling 

events and is required for migration to CCL21 [28].  Therefore, to examine signaling events 

more proximal to the membrane that mediates activation of PLCγ1, we pretreated lymphocytes 

with pertussis toxin.  As expected, lymphocytes pre-treated with pertussis toxin failed to migrate 

to CCL21 compared to controls (Figure 8A).  Therefore, to determine the role of Gαi in signaling 

through CCR7 to mediate activation of PLCγ1 and ERK1/2 in the presence of pertussis toxin, we 

assayed for changes in phosphorylation of PLCγ1 and ERK1/2.  In pertussis toxin treated 

lymphocytes phosphorylation of ERK1/2 and PLCγ1 was lost (Figure 8B).  These results 

indicate that CCR7 coupling to Gαi is necessary for activation of PLCγ1 and ERK1/2 mediated 

migration on fibronectin.  Furthermore, activation of Gαi is required to induce phosphorylation 

of both PLCγ1 and ERK1/2.   

     To determine the extent to which Gαi affects β1 integrin activation in naïve T lymphocytes, 

we pretreated lymphocytes with pertussis toxin, stimulated with 40nM CCL21 and assayed by 

flow cytometry for activated integrins on the cell surface.  We observed that loss of Gαi 

activation had no effect on β1 integrin activation, although cell migration to CCL21 was lost 

when compared to controls (Figure 8C).   Since cell migration requires control of integrin 

adhesion (activation) and de-adhesion (de-activation), from these studies we concluded that 

signaling through Gαi leads to cycling of adhesion and de-adhesion states.  These results suggest 

that Gαi is important for migration to CCL21, but not for the initial activation of β1 integrins in 

response to CCL21 stimulation.  
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Figure 8. Inhibition of Gαi decreases cell migration to CCL21, phosphorylation of ERK1/2

and PLCγ1 and β1 integrin activation. Cells were pretreated with 100ng/ml pertussis toxin for

2 hours and were migrated across a membrane incubated in 10μg/ml fibronectin to 40nM CCL21.

A) Cells were pretreated with pertussis toxin and migrated to 40nM CCL21 (n=3), p < 0.04. B)

Cells pretreated with pertussis toxin probed for total and phosphorylation of PLCγ1 and ERK1/2

(n=3). Graphical averages of three independent experiments. Densitometric analysis of PLCγ1

and ERK1/2 was performed using Image J software. C) Cells were stimulated with 40nM

CCL21, incubated with 3ug/ml 12G10 anti-human β1 antibody, labeled with anti-mouse FITC

secondary and assayed by flow cytometry. (n=3) p < 0.122.
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3.4  Discussion 

 

     CCR7 is expressed on B lymphocytes, dendritic cells, natural killer cells, T regulatory cells 

and naïve T lymphocytes and is required for their migration into and within lymph nodes.  CCR7 

binds to two ligands, CCL19 and CCL21.  Although many studies have described CCL19 

signaling through CCR7, little is known about how CCL21 signals through CCR7 leading to 

migration [97-100].  Here we show that CCL21 stimulation of CCR7 leads to migration on 

fibronectin, which requires activation of Gαi and phosphorylation of PLCγ1 and ERK1/2. 

     High endothelial venules as well as lymph nodes express substantial amounts of fibronectin 

(1).  As lymphocytes enter into and migrate through lymph nodes they use β1 integrins for 

adhesion and migration (2).  Because CCL21 is required for lymph node entry as well as 

migration within the lymph nodes, we wanted to define the CCL21 mediated mechanisms that 

control β1 integrin-mediated migration on fibronectin.  In this study we provide evidence that 

CCL21 induces β1 integrin activation and promotes migration on fibronectin via PLCγ1 and 

ERK1/2 activation.  

     GPCRs are well known for their ability to activate MAPKs [52, 101].  MAPKs are involved 

in many cellular processes, including migration [102-104].  Several groups have reported that 

stimulation of CCR7 by CCL21 phosphorylates the MAPK ERK1/2 in primary murine T 

lymphocytes, B lymphocytes and HEK293 CCR7 transfected cells [46, 53, 54].  However, from 

these studies it is difficult to interpret what if any role ERK1/2 plays in migration of T 

lymphocytes.  In this study similar to previous studies, we report that ERK1/2 is rapidly and 

transiently phosphorylated in response to CCR7 activation by CCL21.  In addition, we find that 

ERK1/2 is required for migration to CCL21 via CCR7 on the β1 integrin ligand, fibronectin.  β1 
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integrin activation can result in ERK1/2 phosphorylation as a result of “outside in” signaling 

[105], however we also find that transient ERK1/2 phosphorylation can mediate migration to 

CCL21 via CCR7 by signaling to β1 integrins by “inside out” signaling.  

     Transient activation of ERK1/2 has been shown to be important for aortic smooth cell 

migration [55].  We used the MEK inhibitor UO126, to demonstrate that phosphorylation of 

ERK1/2 is important for T cell migration in response to CCL21.  In addition, using PLCγ1 

shRNA, we found that ERK1/2 phosphorylation was sustained which correlated with decreased 

migration to CCL21. Taken together, these results suggest rapid phosphorylation followed by a 

rapid decrease in phosphorylation of ERK1/2 is important for migration to CCL21 in T 

lymphocytes.   

     Stimulation of human epidermoid carcinoma cells with 12 (S) HETE results in PLCγ1 

phosphorylation and downstream activation of ERK1/2 via pertussis toxin sensitive signaling 

events [106].  In our study we found that transient phosphorylation of ERK1/2 is lost following 

reduction of PLCγ1 levels, suggesting that PLCγ1 contributes to the transient phosphorylation of 

ERK1/2.  Taken together we determined that not only is ERK1/2 important for migration, but 

PLCγ1s also important for regulating states of ERK1/2 activation.  These states of ERK1/2 

activation may also play an important role in β1 integrin de-activation.   

     As mentioned, cell migration requires regulated integrin adhesion (activation) followed by de-

adhesion (in-activation).  Interestingly, we found that Gαi activation was not necessary for β1 

integrin activation however, pertussis toxin inhibited migration to CCL21.  Similarly, we found 

that UO126 also had no effect on β1 integrin activation, but also inhibited migration to CCL21.  

Because pertussis toxin inhibited phosphorylation of ERK1/2, we speculated that Gαi and 

ERK1/2 are not required for the initial activation of β1 integrins, however they are required for 
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de-adhesion (in-activation) of β1 integrins, which leads to the loss of migration as seen with 

pertussis toxin and UO126.  Depleted PLCγ1 resulted in increased and sustained ERK1/2 

phosphorylation suggesting that it is the de-phosphorylation of ERK1/2 that is important for β1 

integrin recycling and migration to CCL21.  

         T lymphocytes are crucial mediators of inflammation, autoimmune disorders, allergic 

disease and cancer.  Migration is not only important for a normal functioning immune system, 

but also important in disease. Therefore, it is important to understand the molecular mechanisms 

of how T lymphocytes migrate into and throughout lymph nodes to become effector cells to 

carry out immune responses in the periphery.  This study is an important step in further 

understanding the molecular mechanisms of how T lymphocytes migrate to CCL21 and therefore 

could provide identification of inhibitors that could specifically target T cell entry and migration 

within lymph nodes in order to regulate the immune response. 

 

3.5  Experimental Procedures 

 

3.5.1  Mice, Primary Human Lymphocytes and Reagents 

C57BL/6 mice were purchased from Jackson Labs.  Primary human T lymphocytes were 

isolated from volunteer donors under an approved protocol, in accordance with policies and 

procedures of the human subjects protection program at the University of Kansas Medical 

Center.    UO126 (Calbiochem), U73122 and U73343 (Biomol) and pertussis toxin (List 

Biological Laboratories, Inc), human PLCγ1 shRNA (Origene) and species specific CCL19 and 

CCL21 (R&D) were purchased.  12G10 anti human activated beta 1 integrin antibody was 

generously provided by Dr. Martin Humphries at The University of Manchester.   
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3.5.2  T Lymphocyte Isolation 

Murine splenocytes were harvested and purified by negative selection (EasySep).  Human 

blood was collected from volunteer donors and peripheral blood mononuclear cells were isolated 

by Ficoll-paque (GE Healthcare Life Sciences) gradient.  Whole blood was transferred to 50ml 

conical tubes and diluted at a 1:1 ratio with PBS+Ca
2+

/Mg
2+ 

(Cellgro).  In a separate 50ml 

conical tube 15ml of ficoll was layered with 35ml of whole blood/PBS+Ca
2+

/Mg
2+

, and 

centrifuged for 20 minutes at 2,000rpm without the brake.  The middle layer containing 

lymphocytes was removed, washed and pelleted.  The cell pellet was resuspended in 2ml of 

ACK lysis buffer (Lonza), incubated for 5 minutes at 37°C then rinsed with PBS.  T 

lymphocytes were negatively selected by EasySep kit (Stemcell Technologies) according to 

manufacturer’s protocol.  Lymphocytes isolated from C57BL6 mice or human donors were 

maintained in RPMI-1640 (Invitrogen), 10% heat inactivated fetal bovine serum (Hyclone), 2nM 

L-glutamine (Invitrogen) in a humidified atmosphere at 37°C and 5% CO2 for use within 3 days 

of isolation.   

 

3.5.3  Chemotaxis Assays   

All chemotaxis assays were carried out using a 48 well chemotaxis chamber 

(Neuroprobe).  Lower wells were loaded with 0-400nm of CCL21 in serum free RPMI-1640 

(sfRPMI) and were separated from the upper wells, which contained lymphocytes, by a 5 µm 

pore-nitrocellulose (Neuoprobe) membrane that had been pre-incubated in either sfRPMI or 

10µg/ml fibronectin (Sigma).  C57BL6 splenocytes or primary human T lymphocytes (5x10
5
) 

were migrated across the nitrocellulose membrane in a humidified, 37°C, 5% CO2 chamber for 2 
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hours to gradients of CCL21.  Chambers were disassembled, lymphocytes in the bottom chamber 

were collected, fixed in 2% paraformaldehyde and counted by hemacytometer.  Assays were 

performed in duplicate and replicated 3 times. 

 

3.5.4  Western Blots 

 Lymphocytes were pre-treated in serum free media with either UO126 (1μM) for 90 

minutes, U73122 (2μM) for 20 minutes or pertussis toxin (100ng/ml) for 2 hours at 37°C.  

Lymphocytes were then stimulated with 10nM CCL19 or CCL21 for 0,2,5,7, and10 minutes. 

Lymphocytes were lysed in radio immunoprecipitation assay buffer (RIPA) (100mM Tris pH 

8.0, 150mM NaCl, 2% Nonidet P40, 1% sodium deoxycholate, 0.2% SDS) supplemented with 

protease inhibitor cocktail (Sigma), 1mM sodium ortho-vanadate, 1mM sodium pyrophosphate, 

10mM sodium fluoride (Sigma) and 1mM β-glycerophosphate (Sigma) for 15 minutes on ice.  

Lysates were sheared and insoluble material removed by centrifugation @ 14,000 x g for 20 

minutes.  Supernatants (5x10
5
 cell equivalents per timepoint) were mixed with Laemmli sample 

buffer, fractionated on 7.5% SDS poly acrylamide gels and transferred to PVDF membranes.  

Membranes were pre-incubated in 5% milk/Tris buffered saline (50mM Tris-HCl pH7.5, 

150mM NaCl) 0.1% Tween-20 (TBST) or 5% BSA/TBST (Sigma) and probed with anti-

phospho ERK1/2, anti-total ERK1/2, anti-total PLCγ1 or anti-phospho PLCγ1 (Cell Signaling 

Technologies).  Primary antibodies were detected with HRP-conjugated anti species specific IgG 

(Pierce) and immune complexes were visualized with chemilluminence Supersignal West Femto 

(Pierce).  Membranes were stripped using Blotfresh (Blotfresh (Signagen)), rinsed in 1X TBST, 

blocked and re-probed.  Protein bands were quantified using ImageJ software. 
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3.5.5  PLCγ1shRNA Transfection  

Primary human T lymphocytes were transiently transfected with PLCγ shRNA or control 

shRNA using LipoD293 according to manufacturers’ instructions (Signagen). Briefly, in separate 

tubes PLCγ1 and control (8μg) shRNA were diluted into DMEM.  In a second set of tubes 

LipoD293 was diluted into DMEM.  Diluted LipoD293 was added to the diluted shRNA, 

incubated for 15 minutes and the LipoD293 complexes were added to the lymphocytes.  

Lymphocytes were incubated with the complexes in complete media for 72 hours at 37°, 5%CO2 

before use in assays.      

 

3.5.6  Beta 1 Integrin Activation Assay   

Lymphocytes were treated with UO126, pertussis toxin or transfected with PLCγ1 

shRNA as described previously.  Lymphocytes were unstimulated (0 minutes) or stimulated (2 

minutes) with 10nM CCL19 or CCL21.  Following stimulation lymphocytes were submerged 

into 1ml of ice cold 1X PBS.  Lymphocytes were labeled with 10μg/ml 12G10 on ice for 30 

minutes, washed in 1X PBS two times, incubated with fluorescein isothiocyanate (FITC) 

conjugated anti-mouse secondary antibody (Jackson Laboratories) for 30 minutes and washed in 

1X PBS two times.  Lymphocytes were fixed in 2% paraformaldehyde and analyzed by the 

FACS Calibur. 

 

3.5.7  Statistics 

All migration and β1 integrin activation assays are shown as two tailed, unpaired 

student’s t test.  A p value of <0.05 was considered statistically significant.   
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CHAPTER 4 - CCR7/CCL19 MEDIATES T LYMPHOCYTE EXPRESSION OF EDG-1 

 

4.1  Abstract 

 

T cells continually cycle between the blood, tissues and lymph to carry out immune 

surveillance and to mediate inflammatory responses.  While CCR7 controls lymphocyte 

recruitment to lymph nodes, its role in the egress of cells from the lymph nodes remains 

unexplored.  Here, we report a critical role for CCR7 and its ligand CCL19 in activating 

extracellular regulated kinase 5 (ERK5) and up-regulating the endothelial differentiation gene 1 

(EDG1) transcription factor Kruppel-Like factor 2 (KLF2) in naïve T cells.  Further, we 

demonstrate that exit of thymocytes from the thymus induces expression of EDG1, since this 

migration is inhibited in the presence of FTY720.  Using shRNA to knock down expression of 

ERK5 we demonstrate that signaling from CCR7 is required to induce EDG1 expression, and 

therefore exit of T cells from the lymph nodes. Thus, we define a novel signaling pathway which 

regulates T cell migration via CCR7/CCL19.  

 

4.2  Introduction 

 

 Following maturation, naïve T cells exit the thymus, travel through the circulation and 

enter lymph nodes via high endothelial venules (HEV) [107]. Well-defined immunological 

events that control T cell trafficking to and through lymph nodes are regulated by selectins, 

integrins, and chemokine receptors [108, 109]. Lymph node entry is mediated primarily via 

chemotaxis of C-C Chemokine receptor 7 (CCR7) expressing naïve T cells to CCL21 [31, 35], a 
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chemokine which is expressed along the HEV. In addition to CCL21, cells expressing CCR7 

respond to CCL19. Stromal cells within the T zone express both CCL19 and CCL21, while 

CCL19 is also expressed on mature dendritic cells [16, 110, 111]. Although both ligands are 

found in different regions of lymph nodes, physiologically distinct roles for each of the ligands 

remain mostly undefined. Recent studies by our laboratory and others, however, have revealed 

that T cells respond differentially to CCL19 and CCL21 [112-115]. 

 Studies to define roles for CCL19 and CCL21 have been carried out in paucity of lymph 

node T cell (plt) mice, a spontaneous mutant that lacks functional CCL19 and CCL21 [31, 116, 

117].  The absence of both ligands makes it difficult to discriminate specific, individual functions 

for CCL19 or CCL21.  Therefore, as expected, the phenotype of the plt mouse is similar to that 

of the CCR7
-/-

 mouse [29].  Further efforts to define individual roles for CCR7 ligands have used 

ectopically expressed CCL19 or CCL21 and have revealed that CCL21 promotes lympho-

neogenesis more efficiently than CCL19 [35, 113]. More recently the CCL19
-/-

 mouse, in which 

the CCL19 locus has been homozygously deleted, appeared normal, although there was a 

statistically significant increase in the number of lymphocytes in the lymph nodes of the CCL19
-

/-
 mouse when compared to a congenic wild type strain [34]. Similarly, adoptively transferred 

cells were trapped in the lymph nodes of mice treated with the CCL19 specific antagonist ELC8-

83 [36]. Normally, T cells exit the lymph nodes via the endothelial differentiation gene 1 (EDG-

1), a receptor for sphingosine-1 phosphate [65]. Because in the absence of CCL19 stimulation T 

cells fail to exit the lymph nodes, it was unclear whether the CCR7 receptor could be involved in 

regulating egress of cells from the lymph nodes via EDG-1. In contrast, the role of CCL21 

appears to be lymph node recruitment, since in the presence of a CCL21-specific antagonist, T 

cells failed to migrate to secondary lymphoid organs [37]. 
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 In T cells, transcription of EDG-1 is regulated by the Kruppel like factor 2 (KLF-2) [118] 

while expression of KLF-2 is thought to be regulated by extracellular regulated kinase 5 (ERK5) 

[68].   ERK5 (Big-Mitogen Activated Protein Kinase 1 (BMK1)) belongs to the mitogen-

activated protein kinase (MAPK) family of serine/threonine protein kinases.  ERK5 contains a C-

terminal trans-activation domain that allows it to directly regulate [119, 120] the myocyte 

enhancing factor 2 (MEF2) family of transcription factors [121]. Via MEF2 transcription factors, 

ERK5 promotes transcription of KFL2[68] and KLF2 is required for the expression of EDG1 

[118]. How this signaling pathway is regulated in T cells once they enter the lymph node is 

unknown.  

 In this manuscript, to characterize the signaling events that control EDG-1 expression we 

used the human HuT78 T cell line to examine the contribution of CCL19 to the regulation of the 

expression of EDG-1.  Examination of this pathway revealed that CCL19 mediates activation of 

the extracellular regulated kinase 5 (ERK5), which leads to increased levels of expression of 

Kruppel-like factor 2 (KLF2). Following prolonged stimulation with CCL19 we observed 

increased migration of cells to EDG-1. Knockdown of ERK5 expression by shRNA inhibits 

KLF2 expression, and results in a loss of migration to S1P. We used murine primary T cells and 

targeted siRNA to confirm this pathway in vivo.  To determine if CCL19 expression by activated 

dendritic cells, mediates recruitment of naïve T cells and the resultant expression of EDG1, we 

blocked signaling via CCL19 by using CCL19 shRNA on activated dendritic cells in vitro and a 

CCL19 antagonist, ELC8-83 in an adoptive transfer assay, in vivo [36].  We found that in the 

absence of CCL19, ovalbumin-primed dendritic cells failed to form conjugates with ovalbumin 

specific T cells in vitro. In vivo, in the presence of the CCL19 antagonist, naïve T cells failed to 
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up-regulate EDG-1 and therefore did not leave the lymph nodes. Taken together, these studies 

define a novel pathway in which CCL19 activates up-regulation of EDG-1.   

 

4.3  Results 

 

4.3.1  CCL19 Stimulation of Thymocytes Leads to EDG1 Mediated Migration  

 In fetal thymic organ cultures, migration of thymocytes from the thymus requires a 

minimum of eight hours stimulation with CCL19. The thymocytes do not migrate to CCL21.  In 

contrast, thymocytes dissociated from these fetal thymic organ cultures migrate robustly to both 

CCL19 and CCL21 during a 90 minute chemotaxis assay in transwells, in vitro [122]. Since the 

migration from the intact fetal thymic organ cultures in response to stimulation with CCL19 is 

delayed for eight hours, we hypothesized that this migration is promoted by transcriptional up-

regulation of a second protein(s).  EDG-1 is a candidate protein, since it is required for migration 

of thymocytes from the thymus [65] and the ligand for EDG-1, sphingosine-1 phosphate, is at a 

concentration of about 100nM in [123] fetal thymic organ culture media.  This concentration is 

sufficient to induce EDG-1 migration of primary T cells [65].  To examine the role of EDG-1 in 

CCL19 induced migration of T cells, we used fetal thymic organ cultures, treated with the EDG-

1 receptor antagonist FTY720 [65, 124] (Figure 9A). Antagonizing the EDG1 receptor with the 

FTY720 blocked T cell migration in response to stimulation with CCL19, and the migration of 

these thymocytes to CCL19 was reduced to the level of the cells treated without ligand (Figure 

9B). These studies demonstrate that treatment of fetal thymic organ cultures with CCL19, leads 

to the migration via a receptor that can be antagonized by FTY720.   
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** *

Figure 9.Thymic migration of T cells to CCL19 can be blocked by FTY720. A.)

Representative migration assay of day 15.5 thymus. B) Inhibition of migration of

thymocytes from a day 15. 5 thymus in the presence of FTY720. *p=0.0018; **p=0.675

students T test.
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4.3.2  Activation of CCR7 via CCL19 but not CCL21 Leads to Phosphorylation of ERK5 

Our attempts to block the migration of fetal thymocytes via retroviral transduction of the 

fetal thymic organ cultures were thwarted, since transduction with the control virus, led to an 

increase in ERK5 and a concomitant increase in the number of cells that migrated to CCL19 

(data not shown). Therefore, to define the CCR7/CCL19-regulated signaling events in T cells, 

we used the CCR7 expressing human T cell line, HuT78[112].  To determine if EDG1 was up-

regulated in the HuT78 human T cell line following stimulation with CCL19, we examined 

HuT78 migration to 10nM sphingosine-1-phosphate following stimulation with 100nM CCL19 

or CCL21 for 24, 48, 72 or 96 hours. Only in response to CCL19 did we observe migration at 48 

and 72 hours (Figure 10A).  In the presence of CCL21 cells migrated to the same extent as the 

controls.  Semi-quantitative RT-PCR was used to measure levels of EDG1 expressed.  Following 

stimulation of cells in vitro for 48, 72 and 96 hours with 100nM CCL19, EDG1 mRNA was 

expressed (Figure 10B).  In the presence of CCL21, HuT78 showed a slight increase in EDG1 

expression, which was quickly reduced to below background levels (Figure 10B).  From these 

results, we concluded that following a 48-96 hour exposure of HuT78 T cells to CCL19 EDG1 

was up-regulated. 

 Expression of EDG-1 is regulated by KLF2 [118].  To examine the contribution of KLF2 

to the expression of EDG-1 in HuT78 cells following stimulation with CCL19, we used western 

blots.  Following stimulation with CCL19, KLF2 levels increased over 72 hours (Figure 11A).  

This increased level of expression correlated with increased expression of EDG-1.   To confirm 

that this signaling pathway was active in primary T cells we stimulated splenic T cells with 

CCL19 or CCL21 (Figure 11B), in culture for 24, 48, 72 or 96 hours. Expression of KLF2 

increased in primary T cells following exposure to CCL19 but not in response to CCL21.  Since  
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Figure 10. CCL19 stimulation of HuT78 T cells induces expression of S1P1 and

migration to sphingosine 1 phosphate. A) HuT78 cell migrate to sphingosine 1 phosphate

after 48 and 72 hours of stimulation with 200nM CCL19 but not CCL21. B) Treatment of

cells with CCL19 mediates increased levels of S1P1 mRNA. Expression levels were

normalized to actin.
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Figure 11. KLF-2 is increased in response to CCL19 treatment. A) Stimulation of

HuT78 T cells with CCL19 mediates strong up-regulation of KLF2. B) Stimulation of

Primary murine T lymphocytes with CCL19 mediates up-regulation of KLF-2.
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KLF2 is a transcription factor for EDG-1[118], this observation demonstrated that CCL19 

activation of CCR7 led to increased levels of KLF2. 

 Extracellular regulated kinase 5 (ERK5) has a controversial role in up-regulating the 

expression of KLF2 [68, 125].  To determine if ERK5 is involved in up-regulating EDG-1 

following activation of T cells by CCL19, we wanted to determine if stimulation with CCL19 

could mediate activation of ERK5.  Activation of ERK5 can parallel activation of ERK1/2 [126, 

127]. In addition, in heterologous systems, CCL19 induced a four-fold increase in activation of a 

ERK1/2 when compared to ERK1/2 phosphorylation levels induced by CCL21 [49].  To 

determine if CCL19 preferentially activated ERK1/2 in T cells that express an endogenous 

CCR7, we compared activation of HuT78 by CCL19 to activation by CCL21 (Figure 12A).  We 

observed a transient increase in the phosphorylation of ERK1/2 in the presence of CCL19. In the 

presence of CCL21 we observed a loss of ERK1/2 phosphorylation when compared to un-

stimulated cells. To confirm the signaling event in primary cells we used mouse splenic T cells 

(Figure 12B).  We observed that while CCL21 failed to mediate ERK1/2 phosphorylation in 

primary murine T cells or in the HuT78 cell line, CCL19 mediated activation of ERK1/2 within 

5 minutes of stimulation. While at early time-points ERK1/2 was phosphorylated, we were 

unable to detect activation of ERK5 during this interval (data not shown).  As observed in 

macrophages, in T cells ERK5 runs as a 115kDa band [126]. Because up-regulation of KLF2 and 

the EDG1 receptor takes place over four days we examined the phosphorylation of ERK5 in the 

presence of CCL19, over 96 hours.  After 48 hours of stimulation of HuT78 T cells with CCL19 

we observed an increase in ERK5 phosphorylation, which was maintained through 96 hours of 

stimulation (Figure 13A).  ERK5 was also phosphorylated in cells treated with CCL21, but to a 

lesser extent. In primary T cells, however, levels of ERK5 increased and ERK5 was  
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Figure 12. ERK1/2 is phosphorylated in response to CCL19. A) Stimulation of

HuT78 human T cells with CCL19 but not CCL21 leads to phosphorylation of p44/42, 0-

5 minutes. B) Stimulation of Hut78 human T cells with CCL19 but not CCL21 leads to

phosphorylation of p44/42, 5-120 minutes.
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Figure 13. ERK5 is phosphorylated in response to CCL19. A) HuT78 T cell

line induce ERK phosphorylation following activation with CCL19. B) Primary

murine T cells induce ERK5 phosphorylation following activation with CCL19,

but not CCL21.
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phosphorylated only in the presence of CCL19 and not in the presence of CCL21 (Figure 13B).  

We concluded that in primary cells CCL19 differentially up-regulated ERK5. 

 

4.3.3  CCL19 Expression by Activated Dendritic Cells Mediates Recruitment of Naïve T Cells  

A likely source of CCL19 is mature dendritic cells, and since CCL19 mediates 

chemotaxis of CCR7 expressing cells, [128] to examine the contribution of CCL19 to the 

generation of conjugates between naïve T cells and activated dendritic cells we used an in vitro 

conjugate assay.  To this end, CD11c+ bone marrow derived dendritic cells (BMDC) (Figure 

14A) loaded with ovalbumin and matured in the presence of tumor necrosis factor alpha (TNF) 

were incubated with naïve OTI cells, which express a transgenic T cell receptor (TCR).  Under 

these conditions, we observed a mean of 28% T cells formed conjugates with antigen primed T 

cells when dendritic cells were treated with control shRNA.  In contrast, in the presence of 

CCL19 shRNA (Figure 14B), the numbers of conjugates was significantly reduced  (p=0.030) 

(Figure 14C).  We concluded that CCL19 expressed by dendritic cells mediated the generation of 

conjugates between naïve T cells and activated dendritic cells.   

 

4.3.4  In the Absence of ERK5 Naïve T Cells Failed to Exit the Lymph Nodes  

Previous studies by other labs have used adoptive transfer assays to demonstrate that T 

cells have a reduced ability to migrate via CCR7 as they up-regulate EDG-1[65] in response to 

antigen exposure.  This reduced migration is likely a result of exposure to CCL19, which rapidly 

internalizes ~80% of CCR7 [112, 115] since exposure to CCL21 leads to internalization of only 

~25% of available CCR7. Since homozygous deletion of ERK5 is embryonic lethal [119, 129, 

130] to confirm the ERK5 signaling was required to induce the EDG-1 expression following  
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Unstained            Isotype                  CD11c

452   Control

CCL19

Figure 14. CCL19 knockdown results in inhibition of dendritic cell/T cell

conjugate formation. A) Isolation and purification of primary murine dendritic cells

indicated by expresssion of CD11c by flow cytometry. B) Confirmation of knock

down of CCL19 by viral transduction. C) Loss of CCL19 expression in dendritic cells

blocks T cells from forming conjugates with dendritic cells in vitro.
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activation of T cells with CCL19, we used ERK5 specific siRNA.  Splenic and lymph node T 

cells were nucleofected with ERK5 siRNA, cultured for 2 days, labeled with CSFE and 

transferred to wild type hosts.  The wild type hosts were immunized with ovalbumin, and 96 

hours later, adoptively transferred CSFE+ V5+ cells were isolated by flow cytometry from 

draining lymph nodes and assayed for EDG-1 in a migration assay to 10nM S1P.  Both OTI and 

OTII cells were retained in the lymph nodes (Figure 15A and 15B). Cells treated with control 

siRNAs expressed EDG-1 and migrated to S1P (Figure 15C).  In contrast, cells treated with 

ERK5 siRNA failed to migrate to EDG-1.  We concluded that signaling within the lymph node 

induces expression of EDG-1 via ERK5 and KLF2.  

 

4.4  Discussion  

 

The differential roles for CCL19 and CCL21 in the behavior of T cells have been elusive.  

In this study, we described a novel signaling pathway that differentiates signaling from CCL19 

and CCL21 in T cells. The results in this paper lead to the model shown in Figure 8.  We have 

found that CCL19/CCR7 activation mediates phosphorylation of ERK5, and in turn, up-

regulation of KLF2. In response to increased levels of KLF2 the expression of EDG1 increases. 

Our model is supported by the lymph node distribution of CCL21 and CCL19 and the extent of 

internalization of CCR7 following engagement of these two ligands. We and others have shown 

that only ~20% of CCR7 is internalized when it is bound to CCL21, allowing for CCR7 to 

remain on the surface of the cell and continue to sense CCL19 or CCL21 in the lymph node. We 

speculate that if the T cell fails to make a conjugate with a dendritic cell that lasts for more than 

an hour, the signaling pathway is not turned on, allowing the T cell to  
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Figure 15. Loss of ERK5 results in T lymphocyte retention in lymph nodes. A)

Loss of ERK5 expression prevents exit of CD4 T cells from lymph nodes. B) Loss

of ERK5 expression prevents exit of CD8 T cells from lymph nodes. C) Loss of

ERK5 expression prevents CCL19 treated T cells from migrating to S1P at 48 hours.
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maintain its level of EDG-1 receptor and exit the lymph nodes.  In contrast, if the T cell forms a 

conjugate with an activated dendritic cell, that expresses a cognate ligand the T cell recognizes, it 

maintains the close contact required to internalize over 80% of CCR7 and to activate ERK5.   

Studies are ongoing within our lab to determine what cytoplasmic adaptors are required for 

activation of ERK5. 

 We initiated our studies with thymic migration studies. Recent studies have reported that 

thymic dendritic cells regulate the evolution of regulatory T cells in the thymus [131].  These 

dendritic cells which are recruited from the periphery would express high levels of CCL19.  

Initially, CCL19 was described as a chemokine that directed the emigration of newly generated 

thymocytes from the thymus [108]. By in vitro assays, migration of dissociated thymocytes was 

equivalent when comparing CCL21 and CCL19. It was unclear however, why thymocytes 

exiting the thymus, migrated from the thymus only after an eight-hour exposure to CCL19, but 

not to CCL21. This delayed migration to CCL19, led to our hypothesis that transcriptional up-

regulation of specific genes was required to regulate the expression of a second receptor that 

could be used for migration from the thymus.  This implicated the existence of a second receptor 

that was used for emigration of cells from the thymus. Interestingly, two years later, studies 

examining the role of EDG-1 in thymocyte emigration, revealed EDG-1 as a possible candidate 

receptor.  

As mentioned, CCL19 induces internalization of 80% of the CCR7 on the cell surface. In 

contrast, CCL21 induces internalization of ~20% of the cell surface CCR7.  Therefore, it is 

possible that the differential signaling is due to differences in levels of CCR7 on the surface.  

Such a hypothesis would be difficult to test without generating numerous T cell lines that express 

different levels of CCR7 on the cell surface.  An alternative explanation is that internalization of 
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CCR7 via CCL19 vs. CCL21 mediates recruitment of different adaptor proteins that remain 

associated with the cytoplasmic face of the receptor following recycling of the receptor. We have 

observed that internalization of CCL19 bound CCR7 mediates recruitment of arrestin 3, while 

CCL21 does not. Since CCL19 mediates internalization of CCR7 through arrestins, while 

CCL21 does not[112], it is possible that the activated form of CCR7 recruits ERK5 following 

engagement of CCL19 via arrestins. The recruitment of arrestins takes place within 5 minutes of 

CCR7 activation by CCL19, and while ERK1/2 is activated within this timeframe, activation of 

ERK5, requires a minimum of one hour of exposure to CCL19.  From this observation, we 

speculate that other adaptors may be required, that associate only after CCR7/CCL19 has 

trafficked within the cell to sites that allow for recruitment of these adaptors.  The adaptors 

would then remain associated when the receptor recycles. In contrast, signaling through 

CCR7/CCL21 fails to activate this pathway since it takes a different pathway when it is 

internalized [46, 49, 112, 114].  If the receptor is re-internalized rapidly, due to the presence of 

ligand the subsequent internalizations may recruit novel adaptors, to the already modified 

cytoplasmic tail.  At some point ERK5 associates with the activated receptor and is internalized.  

CCR7 has been observed in the nucleus in some cells [71].  A function for CCR7 in the nucleus, 

however has not yet been defined. 

 Since the ERK5
-/-

 mouse is embryonic lethal, we were unable to use the T cells from that 

mouse to study ERK5 signaling in the absence of ERK5.  Therefore, we used ERK5 siRNA to 

reduce expression of ERK5 in primary T cells.  This allowed us to examine signaling via 

CCR7/CCL19 in the absence of ERK5. From our studies, we concluded that ERK5 is indeed 

required for up-regulation of EDG-1.  These results are supported by reports in which a CCL19 

specific antagonist was used to block signaling through CCR7/CCL19.  In this study, following 
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pre-treatment of mice with the CCL19 antagonist ELC8-83, the mice were injected with T cells 

expressing the ovalbumin TCR, and stimulated with ovalbumin.  In support of our studies, ELC8-

83 prevented egress of T cells from the lymph nodes.  More recently, T cells adoptively 

transferred to a CCL19
-/-

 mouse, failed to leave the lymph nodes [34]. In these studies and in our 

studies, loss of signaling through CCR7/CCL19 blocked egress of T cells from the lymph nodes.   

 KLF2 expression is tightly regulated in T cells during differentiation and maturation. 

Over-expression of activated ERK5 leads to up-regulation of KLF2 in a reconstituted fetal 

thymic organ culture, while dominant negative ERK5 blocks KLF2 [119] . Recently it was 

reported that Foxo1, one of four members of the Foxo subfamily of transcription factors, that 

control life span cell cycle progression and [132, 133] apoptosis, controls the expression of 

CCR7 and KLF2[133]. In these studies, in response to homozygous deletion of a floxed Foxo1, 

in a CRE/lox mouse, the levels of CCR7 were reduced along with the levels of KLF2. In other 

studies, using a microarray of RNA’s enriched for immune function, KLF2 mRNA levels were 

found to be up-regulated during positive selection at the same time when CCR7 is first expressed 

in T cells [134] in the thymus and lymph nodes. This was not surprising, given the role that 

CCR7 has in the up-regulation of KLF2. Furthermore, KLF2 levels increase following in vitro 

stimulation of naïve T cells, with IL-2 or IL-17 [135]. KLF2 expression correlated with long 

term survival.  

 ERK5 activation has been associated with Src activation and the increased migration of 

fibroblasts by mediating changes in the actin cytoskeleton, in particular mediating a loss of stress 

fibers [136, 137]. In addition, activation of ERK5 in fibroblasts promotes invasive phenotype of 

the cells and degradation of ECM [136].  In fibroblasts, transformed by activated c-Src or v-Src, 

ERK5 mediates podosome formation and the invasive behavior of cells, by regulating the 
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induction of matrix degradation. Since mature T cells leave the lymph nodes, and extravasate to 

sites of infection, it is questionable whether the observed change in ERK5 activation, reflects 

increased migratory potential.  In addition, we observed a decrease in the level of ERK1/2 

phosphorylation.  Since the levels of ERK5 phosphorylation are below our limits of detection, by 

western blot, it is unclear if along with pERK1/2, ERK5 phosphorylation levels decrease 

following exposure to CCL21. Such a decrease could slow matrix degradation and extravasation 

of cells into the tissues.   We observed an increase in the level of EDG-1 expressed in T cells 

over the 96 hour CCL19 stimulation period making it difficult to determine if there were any 

changes in the overall migration potential of the cells to EDG-1 over the time course.  At present, 

studies are underway in our laboratory to examine the role of ERK5 in regulating migration in 

CCL19 activated T cells to chemokines other than CCL19 and CCL21. 

 ERK5 plays roles in cell proliferation, survival and differentiation [126, 138-144].  In a 

macrophage cell line, and in primary human macrophages ERK5 phosphorylation in response to 

signaling through the CSF-1 receptor, mediates proliferation [126].  This proliferation is linked 

to signaling through c-jun, which correlates with translocation of ERK5 into the nucleus. Our 

studies measured ERK5 phosphorylation in the presence of 40nM CCL19 or CCL21. T cells that 

lacked expression of CCR7 had reduced proliferation [145]. It is tempting to speculate that a 

possible role for activation of ERK5 in response to a CCL19 rich dendritic cell, would be to help 

to promote proliferation of the activated T cell. 

 In conclusion, our data defines differential signaling events that take place within naïve T 

cells following activation by CCL19 or CCL21. This signaling information may be used to 

combat a variety of diseases.  That CCL198-83 and m-SLC4 are CCL19 and CCL21 specific 

antagonists, which block lymph node entry and dendritic cell/T cell association, respectively, 
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may lead to the identification of pharmaceutical agents that specifically block lymph node entry 

or sampling of dendritic cells/exit from the lymph nodes. Such therapies could be important in 

treating autoimmune diseases, lymphoproliferative disorders or asthmas that have been linked to 

CCR7 [146-152]. 

 

4.5  Experimental Procedures 

 

4.5.1  Cell Lines and Mice   

The HuT78 human T cell line was purchased from ATCC and maintained in HuT78 

media (RPMI 1640 (Invitrogen)/10% heat inactivated fetal bovine serum (Hyclone) /2nM L-

glutamine (Invitrogen)) in a humidified atmosphere at 37°C and 5% CO2.  C57BL/6 mice were 

purchased from Jackson Labs. C57BL/6-Tg(OT-I)-recombination-activating gene 1 deficient 

(RagI
-/-

) mice were purchased from Taconic.  T lymphocytes isolated from OT-II.2a/RAG1 

C57BL/6 were maintained for up to one week in T cell media (RPMI 1640, 10% heat inactivated 

fetal bovine serum, 2nM L-glutamine, 50µM -mercaptoethanol, 20U/ml
 

IL-2, 100U/ml 

penicillin/100µg/ml streptomycin). 

 

4.5.2  Fetal Thymic Organ Culture  

Thymic organ cultures were prepared as described [122], with the following 

modifications. Thymic lobes were removed from C57BL/6 fetuses at 15.5 days postcoitum, 

cultured at the air/media interface on 3µm
2
 transwell filter membranes in a humidified 

5%CO2/air incubator at 37°C.  Cultures were maintained in FTOC media ((RPMI1640 

(Sigma)/10% heat inactivated fetal bovine serum (Hyclone) /50µM -mercaptoethanol (Fisher), 
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2mM L-glutamine (Sigma), 1 x nonessential amino acids (Cellgro), 10mM HEPES (Cellgro), 

1mM sodium pyruvate (Cellgro), 100 U/ml penicillin (Cellgro), and 100µg/ml streptomycin 

(Cellgro)), for 5 days to allow for the development of thymocytes to a broad range of 

developmental stages that resemble the distributions of an adult thymus [122].  Thymic lobes 

were washed, placed on a fresh 3µm
2
 transwells (Millipore) for 2 days after adding 100nM of 

either murine CCL19 (R&D) or murine CCL21 (R&D) or FTY720 (Cayman). The number of 

cells that migrated to the lower wells were counted by hemacytometer.  

 

4.5.3  Chemotaxis Assays 

Chemotaxis assays were carried out as described[112].  For chemotaxis assays, Hut78 

cells were treated with 40 nM murine CCL19  (R&D), CCL21 (R&D) or an equal volume of 

vehicle (phosphate buffered saline (PBS)) for 96, 72, 48 and 24 hours and migrated across a 5um 

membrane (Neuro Probe, Inc.) at 37°C and 5% CO2 for 2 hours to 10nM S1P (Sigma) in serum 

free RPMI 1640 medium in a 48 well chemotaxis chamber.  Cells in the bottom chamber were 

counted by hemacytometer.  Assays were performed in duplicate and replicated 3 times. 

 

4.5.4  Dendritic Cell/T Cell Conjugates   

Bone marrow derived dendritic cells were generated from C57BL/6 wildtype mice as 

described[153].  Briefly, 2 x 10
6
 cells isolated from bone marrow were plated on bacterial petri 

dishes and cultured in 10 ml DC media (RPMI 1640, 10% heat inactivated fetal bovine serum, 

100µg/ml penicillin-streptomycin, 50µM β-mercaptoethanol, 20ng/ml murine granulocyte 

macrophage colony stimulating factor (GM-CSF) (R&D), and 2nM L-glutamine).  At 48 hours 

(Day3), 10ml of fresh DC media was added to each dish.  On days 6 and 8, 10ml of 
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supernatant/cells was removed, cells isolated by centrifugation (90 x g) and resuspended with 

fresh DC medium.  On day 9 non-adherent cells were collected and nucleofected using the Amax 

DC Nucleofection kit, Nuclefector II, and program Y-001 (Amaxa) with shRNA against CCL19 

(Origene).  10
6
 nucleofected cells were plated into each well of a 12 well dish and RNA knocked 

down for 48 hours.  On day 11 immature dendritic cells were labeled with (5uM) 5-(and-6)-

carboxyfluorescein diacetate, succinimidyl ester (CFSE) for 10 minutes at 37°C, washed, primed 

with 50ug/ml ovalbumin, and matured with 100ng/ml TNFα.   T cells were isolated from OT-

II2a/Rag1C57BL/6 spleens by passing spleens through a wire mesh.  T cells were purified using 

a negative selection, mouse T cell enrichment kit according to manufacturers’ directions 

(EasySep).  Purified T cells were labeled with (10uM) (5-(and-6)-(((4-

chloromethyl)benzoyl)amino)tetramethylrhodamine) CMTMR for 30 minutes at 37°C, washed 

and plated in the well with the ovalubumin-primed, CFSE labeled mature dendritic cells.  Cells 

were allowed for form conjugates for two hours, fixed and conjugates counted per 100 dendritic 

cells. 

 

4.5.5  Western Blots 

HuT78 and primary cells were counted by hemacytometer or following migration assays, 

whole thymic organ cultures were lysed in radio immunoprecipitation assay buffer (RIPA) 

(100mM Tris pH 8.0, 300mM NaCl, 2% Nonidet P40, 1% sodium deoxycholate, 0.2% SDS) 

supplemented with protease inhibitor cocktail (Sigma), 1mM sodium ortho-vanadate, 1mM 

sodium pyrophosphate, 10mM sodium fluoride (Sigma) and 1mM β-glycerophosphate (Sigma).  

Lysates were centrifuged for 20 minutes following homogenization.  5 x 10
5
 cell equivalents 

were solubilized in sample buffer with 10 mM dithiothreitol, fractionated on 10% SDS poly 
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acrylamide gels and transferred to PVDF membranes.  Membranes were incubated in 5% 

milk/Tris buffered saline (50mM Tris-HCl pH7.5, 150mM NaCl) 0.1% Tween-20 (TBST) and 

probed with anti-ERK5 (Cell Signaling Technologies), anti-α-tubulin (Cell Signaling 

Technologies), anti-β-actin (Cell Signaling Technologies), anti-KLF-2 (CeMines) or anti-MIP3β 

(AbCam).  To detect phospho-ERK5, membranes were incubated in 3% bovine serum albumin 

(Sigma #A3058) and probed with anti-phosphoERK5 (Upstate).  MIP3β was detected with HRP 

rabbit anti-goat IgG and all other antibodies were detected with HRP goat anti-rabbit IgG 

(Pierce) and immune complexes were developed with chemilluminence Supersignal West Femto 

(Pierce).  Protein bands were visualized with X-MAT film and quantified with a Fuji LAS-4000.  

Membranes were stripped using Blotfresh (Signagen) stripping buffer for 10 minutes 

(SignaGen), rinsed three times in TBST, blocked and re-probed.    

 

4.5.6  Reverse Transcriptase-PCR  

Total RNA was extracted from Hut78 cells or splenocytes using TRIzol (Invitrogen).  

cDNA was prepared as follows: 50ng random primers (Invitrogen), 1µg RNA, 0.25mM dNTP 

(TakaRa) and ddH2O, were heated to 65°C for 5 minutes and chilled on ice. 5X First Strand 

Buffer (Invitrogen) was added to the mixture and adjusted to 1X in the presence of 5 mM DTT 

(Invitrogen), and 40 U RNAse (Promega).  The reaction was incubated at 25°C for 2 minutes, 

and 200U Super Script II RT (Invitrogen) was added. The cDNA was primed at 25°C for 10 

minutes, and then extended by incubating at 42°C for 50 minutes. Super Script II RT was 

inactivated by heating to 70°C for 15 minutes.  To assay for expression, PCR was carried out by 

addition of 1x Green Go Taq flexi buffer (Promega), 1.5mM MgCl2 (Invitrogen), 0.25mM dNTP 

(TakaRa), 1U Taq DNA polymerase (Invitrogen), cDNA, H2O and mRNA specific primers.  
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Primers used: murine S1P1 [65] and murine β-actin forward: 

5’ATGACGATATCGCTGCGCTG3’ reverse: 5’AGTAACAGTCCGCCTAGAAG3’.  PCR 

products were resolved on a 2% agarose gel containing ethidium bromide. Products were 

amplified 30 cycles using a thermocycler. S1P1 and β-actin yielded products of the predicted 

size. 

 

4.5.7  Adoptive Transfer 

Adoptive transfers were carried out as described[65], with the following modifications. 

OT-II.2a/RAG1 C57BL/6 splenocytes were isolated and 2 x 10
7
 cells were Nucleofected 

(Amaxa) with ERK5siRNA or control siRNA (Ambion) in OptiMEM.  Endogenous ERK5 was 

knocked down for 72 hours, and labeled with 1µM 6-carboxyfluorescein diacetate succinimidyl 

ester (CFSE, Molecular probes)for 20 minutes at 37°C, rinsed and transferred intravenously to 

C57BL/6 recipients.  The day after transfer, (day 0), mice were immunized subcutaneously with 

a total of 200µg ovalbumin (Sigma) emulsified in complete Freund’s adjuvant (Sigma) (ratio 

1:1) at 4 sites along the back.  After 96 hours, mice were euthanized, and lymph nodes were 

analyzed for migration to sphingosine 1 phosphate, CCL19, CCL21 and for numbers of CSFE+ 

cells in lymph nodes, by flow cytometry and hemacytometer.  All assays were performed in 

duplicate for sphingosine 1 phosphate or chemokine and were repeated using cells from a 

minimum of two different animals of each type. 
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CHAPTER 5 – EXPRESSION OF A CHEMOKINE RECEPTOR, CCR7, MEDIATES 

METASTASIS OF BREAST CANCER TO THE LYMPH NODES AND REDUCES 

METASTASIS TO THE LUNGS IN MICE 

 

 

5.1  Abstract 

 

The C-C chemokine receptor 7 mediates lymphocyte migration to lymph nodes in 

response to its ligand CCL21, where it regulates lymph node organization and proliferation. 

While CCR7 has been implicated in lymphocyte migration to lymph nodes, the molecular 

mechanism that mediates targeting of breast cancer metastasis to the lymph nodes has yet to be 

defined. To explore the mechanisms used by breast cancer to migrate to the lymph nodes, we 

used the MMTV-PyVmT mammary tumor cells (PyVmT).  In vitro we found that expression of 

CCR7 controlled migration of PyVmT mouse mammary tumor cell migration to CCR7 ligands 

as well as MDA-MB-231, MCF-7 and T47D human breast tumor cells.  To define a 

physiological significance for CCR7 regulation of migration, we used the PyVmT transgenic 

mouse model of metastatic breast cancer. When PyVmT cells transfected with control vector 

were orthotopically transferred to the mammary fat pad of FVB mice, there were significantly 

more lung metastasis (10/10 mice) but not to the lymph nodes (0/10), which repeated the known 

phenotype. In contrast, CCR7-transfected PyVmT (PyVmT-CCR7) cells transplanted to the fat 

pad metastasized to the lymph nodes (6/10 mice) but had a reduced rate of metastasis to the 

lungs (4/10 mice). These data show, for the first time, that expression of CCR7 in breast cancer 
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can target migration of breast cancer cells to the lymph nodes, and in the future may be used as a 

tool for studying lymph node.  

 

5.2  Introduction 

 

When a breast tumor has metastasized to more than four lymph nodes, a woman’s chance 

of surviving breast cancer is significantly reduced.  Consequently, clinical staging of breast 

cancer involves determining whether breast tumors have metastasized to the lymph nodes. It is 

puzzling however, that subsets of these women are long-term breast cancer survivors, even when 

breast cancer metastases have been detected within their lymph nodes.  A clue to the differences 

in survival rates among women may have been revealed when it was observed that in patients 

with C-C chemokine receptor 7 (CCR7) expressing breast tumors that had metastasized to the 

lymph nodes, tumor metastases were not found in the lungs, liver or brain, but instead were 

restricted to the surgically removable lymphoid organs [154].  

CCR7 is activated by binding either CCL19 or CCL21 [155, 156]. Under normal 

circumstances, naïve T cells use CCL21 to travel to and enter lymphoid tissues from the blood 

via high endothelial venules (HEV) and migrate through the T cell zone before returning to the 

circulation.  Naive T cells are activated when they migrate toward and interact with activated 

CCL19-expressing dendritic cells, then bind to the appropriate major histocompatibility/antigen 

complex[157]. CCL19 and CCL21 chemokines have important roles in establishing and 

maintaining the architecture [158] of the secondary lymphoid organs, where they coordinate the 

adaptive immune responses between dendritic cells, B-cells and T cells. Thus, chemokines are 
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critical mediators of the inflammatory response and may contribute to tumor cell lymph node 

localization in CCR7 expressing tumors.   

At present, it is thought that metastasis results from non-random events, where tumor cells 

target specific organs in response to unique factors found within the targeted organ [159]. These 

factors control tumor cell adhesion, migration and organ invasion.  Small (8-12KDa) chemotactic 

cytokines, termed chemokines have been recently identified as contributing to the metastatic 

behavior of tumor cells [72], but the specific functions regulated by chemokines like CCL19 and 

CCL21 that contribute to breast tumor metastasis have remained elusive.  During metastasis, a 

tumor cell must detach from the primary tumor, extravasate to the micro vessel walls, and 

migrate to the target tissue.  CCR7 regulates lymphocyte adhesion, migration and proliferation, 

and therefore is an important receptor to understand in the regulation of tumor metastasis.  

CCR7 is up regulated in certain breast cancers [72] and is associated with lymph node 

metastases [71]. In vitro MDA-MB-231 and MDA-MB-361 breast cancer cell lines and a 

primary sample from a patient were capable of migrating to CCL21.   To date, it remains unclear, 

whether CCR7 can promote migration of breast cancer from the mammary fat pad to the lymph 

nodes. We have adapted a mouse mammary tumor virus (MMTV)-PyVmT model of metastatic 

breast cancer, which selectively metastasizes to the lungs, to express CCR7 in the PyVmT cells 

to allow us to determine the role for CCR7 in breast cancer progression and metastasis.  We have 

observed that CCR7 directs the migration of metastasis to the lymph nodes, instead of the lung 

where PyVmT cells that lack CCR7 expression metastasize.  In addition, we have found that 

similar to its role in lymphocytes, CCR7 alters the differentiation state of PyVmT cells as 

reflected in their increased proliferation rate of 3 D mammospheres in vitro.    
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5.3  Results 

 

5.3.1  CCR7 is Expressed on Human Primary Cells   

CCR7 is up-regulated on the surface or in the cytoplasm of cells histochemical preparations of 

tumors [71, 72, 154, 160, 161]. To determine whether CCR7 is expressed on the surface of breast 

cancer cells, we examined the expression levels of CCR7 in isolated epithelial cells by surface 

labeling with anti-CCR7 antibodies (n=5) and quantified by flow cytometry.  To this end primary 

cells were dissociated with collagenase and isolated by positive selection using magnetic beads 

that target epithelial cell markers.  We found that CCR7 was elevated on freshly isolated primary 

cells and CCR7 receptor was expressed in malignant breast epithelia as compared to normal.  

Even this difference in receptor expression levels can profoundly affect the cellular response to 

ligand binding [162].  

 

5.3.2  Generation of CCR7 Expressing PyVmT Cells   

We hypothesized that CCR7 is used by breast cancer to metastasize to the lymph nodes, a 

process that requires adhesion, cell spreading and migration.  To examine the effect of low levels 

of CCR7 on breast cancer cell adhesion, spreading and migration, we examined the effects of 

stimulating CCR7 in a murine breast cancer cell line PyVmT [158], which lacks endogenous 

CCR7 as determined by RT-PCR (data not shown).  To facilitate detection of CCR7 in PyVmT 

tumors in vitro we used a FLAG epitope fused to the N-terminus of CCR7 to generate transient 

transfectants that expressed N-FLAG-CCR7 (PyVmT-CCR7).  Transient transfection of the 

PyVmT cells resulted in a modest increase in the levels of murine CCR7 expression that were 
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similar to levels that we have observed in fresh tumor isolates from human breast cancer patients 

and (Figure 16).   

 

5.3.3  CCR7CCL19 Promotes Spreading of PyVmT Cells on Fibronectin  

Adhesion of tumor cells, via 1 integrins promotes tumor metastasis [85].  To determine 

if CCR7 expression affects cell adhesion, spreading or migration via 1 integrins we used in 

vitro assays.  Coverslips were coated with the 10µg/ml 1 integrin ligand fibronectin, and cells 

were allowed to adhere for 5 minutes or spread for an hour.  To confirm specificity for the 1 

integrins, we used a 1 integrin, function blocking antibody. Activation of CCR7 on PyVmT-

CCR7 cells had no effect on cell adhesion via the 1 integrins (Figure 17A).  In contrast, we 

observed that CCR7 promoted 1 integrin-specific cell spreading, in the presence of CCL19, a 

ligand for CCR7(Figure 17B). 

     

5.3.4  CCR7 Promotes Migration of Breast Cancer Cells to CCL19 and CCL21   

Following detachment and extravasation, an essential step in metastasis is migration of 

cells from the primary tumor to the site where the metastasis attaches and grows.  To determine 

if CCR7 can promote migration to CCR7 ligands, we used an in vitro transwell chemotaxis assay 

on 1 integrin coated surfaces.  We found that CCR7 preferentially promoted migration to 

CCL19 and CCL21 under these conditions (Figure 18A and 18B).  From these results we 

conclude that CCR7 can promote directed migration of cells to lymphoid organs in response to 

CCL19 and to CCL21. 
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Isotype control    

CCR7 (M2)  

Figure 16. Transient transfection of PyVmT with N-FLAG-CCR7 results in low level of

CCR7 expression. PyVmT were transiently transfected with a N-terminally tagged murine

CCR7, dissociated from culture and assayed for expression of FLAG with an M2 antibody,

counterstained with FITC-conjugated, donkey anti-mouse.
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Figure 17. CCR7 activation by CCL19 promotes spreading but not adhesion. A) PyVmT

cells were seeded onto fibronectin incubated coverslips in the presence of CCL19 and CCL21

+/- anti-β1 antibody and allowed to adhere. Number of cells were counted per 10X field. B)

PyVmT cells were seeded onto fibronectin incubated coverslips in the presence of CCL19 and

CCL21 +/- anti-β1 antibody and allowed to spread for 1 hour. Cell surface area was measured.

A B
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5.3.5  Development of PyVmT/FVB Mouse Model of Breast Cancer   

To examine the physiological significance of our in vitro observations, we used the 

PyVmT model [158], that has been shown to form tumors analogous to stage IV human breast 

cancer, making this an ideal model to study breast cancer progression.  The PyVmT tumor cells 

that were isolated had been selected for metastasis primarily to the lungs [158].  In the original 

study, 500,000 PyVmT tumor cells were implanted into the fifth mammary fat pad of syngeneic 

FVB mice and within forty two days, 100% of the mice uniformly developed tumors that 

metastasized only to the lung [158].  Previous studies, which examined the role of the CXCR4 

receptor in metastatic behavior of tumor cells, revealed that differences were observed in 

outcome between CXCR4 expressing tumors and vector controls only when low levels of tumor 

cells were seeded, [163]. Therefore, to determine the lowest number of PyVmT cells that could 

be used to generate tumors in the FVB mice, we compared the numbers of tumors generated 

following the introduction of 10
6

, 10
5
 and 10

4
 tumor cells.  In our studies 100% (6/6) of the 

animals with 10
6 

tumor cells developed palpable tumors within 24 days, 100% (6/6) of the 

animals with 10
5
 tumor cells developed tumors within 50 days, and 33% (2/6) of the mice 

developed tumors when 10
4
 cells were implanted (Table 1) .    

  Therefore, we injected 10
5 

PyVmT-CCR7 or 10
5 

PyVmT-vector (CCR7 (-)) tumor cells 

into the fifth mammary fat pad of the FVB mice.  To obtain statistically significant data, we used 

10 mice per group.  Calipers were used to measure tumor length, width and height.  Tumor 

volumes were calculated as a product of these three measurements. Volumes of the  
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Figure 18. Stimulation of PyVMT-CCR7 cells with 40nM CCL19 or 40nM CCL21

promotes migration when compared to PyVMT-pcDNA3.1 controls. A) Graphical

representation of PyVmT migration to CCL19 or CCL21 on fibronectin-coated membranes

(10g/ml). After 3 hours migrated cells were counted. (n=3) B) PyVmT transfectants were

allowed to migrate to 50, 15, 7.5 and 3.75 nM ligand for 3 hours on fibronectin (10g/ml)

coated membranes. After 3 hours migrated cells in the bottom well of the chemotaxis

chamber were counted (n=3).
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Number of Cells 
Implanted

Average Days to 
Develop Tumor

Number of Animals 
with Tumors

1,000,000 24 6/6

100,000 24 6/6

10,000 29 2/6

Table 1. Number of PyVmT cells implanted results in number of animals that develop

tumors.
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PyVmT-CCR7 tumors were significantly greater than the tumor volumes observed in the 

PyVmT-vector control tumors over the course of the study (Figure 19A and 19B).  On day 48 

post-implantation, tumors in two of the PyVmT-CCR7 mice grew to sizes that were greater than 

20mm in a single dimension, our criterion for euthanization, and were therefore immediately 

removed from the study.  

 

5.3.6  CCR7 Expression Results in Lymph Node Metastasis and Decreased Lung Metastasis  

To determine if CCR7 altered the metastatic behavior of the tumors, we used RT-PCR to 

determine if PyVmT cells were present in the lymph nodes. To this end, we isolated the draining 

lymph node, and used half of the lymph node to isolate mRNA for PCR and used the other half 

for histological preparations.  By PCR we found that 60% of the PyVmT-CCR7 animals 

developed metastases in the draining lymph nodes.  In contrast, 0% of the PyVmT-vector 

controls had metastases within their lymph nodes.  Additionally, we found that while four of the 

PyVmT-CCR7 animals developed metastasis in their lungs, 100% of the PyVmT-vector control 

mice had between one and four metastases in their lungs (Table 2). It is important to note that, on 

blind evaluation of the remaining lymph node tissue, we found that the lymph nodes of the mice 

bearing the PyVmT-CCR7 tumors were dysmorphic and had few if any clear germinal centers, 

when compared to the lymph nodes of the PyVmT-vector control mice, which had clear germinal 

centers and normal morphology (Figure 20).   

 

5.3.7  CCR7 Promotes Increased Growth in Response to CCL19 and CCL21 in 3D Cultures  

To define the mechanism that mediated differences in growth between PyVmT-CCR7 

and PyVmT-vector control animals, we used 2D tissue culture on a flat tissue culture surface.  
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Figure 19. Average tumor volume of CCR7 (+) tumors was significantly greater than

CCR7 (-) tumors on day 48 A) 105 cells were injected into the fifth mammary fat pad of

FVB mice. Palpable tumors were detected as early as day 25 in both groups. Tumors

volume as measured with calipers (length x width x height) was significantly greater in the

PyVmT-CCR7 mice when compared to the PyVmT-vector controls p=0.002. B) At day 48

the average tumor volume of PyVmT-CCR7 tumors (259.9 71.22) was significantly larger

than the PyVmT-vector controls (119.1 27.30).

A B

 

 

 

 

 

 

 

 

 



73 

 

Observed differences in mice injected orthotopically with PyVmT-CCR7 or 

PyVmT-vector control cells

Cell Line Animals with Tumors in 

Lung (average number 

of tumors)

Presence of PyVmT in 

lymph node by PCR

PyVmT-CCR7 4/10 6/10

PyVmT-Vector 10/10 0/10

Table 2. CCR7 promote metastasis of PyVmT cells to the lymph nodes and decreases

metastasis to the lungs.
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Figure 20. CCR7 disrupts the architecture of lymph nodes. H&E stained histological

sections from PyVmT CCR7+ mice and PyVmT Vector control mice.
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We found that when cells were grown on flat surfaces, there was no statistically significant 

difference in the rates of proliferation of CCR7 expressing cells in the presence of CCR7 ligands 

CCL19 and CCL21 (Figure 21A). Indeed, cells grown in the absence of ligand grew marginally 

better than cells grown in the presence of CCL19 or CCL21.  

It is well recognized that growth of tumor cells in three-dimensional (3D) serum free 

mammosphere culture leads to growth of different lineages of epithelial cells [164]. As 

mentioned, CCR7 mediates differentiation of T lymphocytes. Therefore, to determine if CCR7 

promoted growth under conditions that allows differential proliferation of PyVmT we used a 

mammosphere assay. To this end, we allowed PyVmT-CCR7 or PyVmT-vector cells to 

proliferate for seven to ten days in the presence of CCL21 or CCL19 in mammosphere media 

[165]. We observed a significant difference in the size of PyVmT-CCR7 mammospheres when 

compared to PyVmT-vector control mammopsheres (Figure 21B and 21C) and this growth was 

inhibited by blocking β1 integrins in human MCF-7 cells (Figure 22).  These results support the 

increased growth rate of the PyVmT-CCR7 that we observed in our FVB mice in vivo.  From 

these studies we conclude that CCR7 can regulate the size of tumors as well.   

  

5.4  Discussion 

 

In patients with CCR7-expressing breast tumors that had metastasized to the lymph 

nodes, tumor metastases were not found in the lungs, liver or brain, but instead were restricted to 

the surgically removable lymphoid organs [154]. Women with CCR7+  metastases in their 

lymphoid organs do not exhibit metastasis to vital organs. Without an animal model, it has  
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Figure 21. Expression of CCR7 affects mammosphere size in 3D culture but has no effect

on mammosphere number. A) 105 PyVMT-CCR7 cells were allowed to grow  ligand in 2D

tissue culture for 5 days. Cells were trypsinized and counted, in duplicate. Results are means  

SD. (n=3) B) PyVmT-CCR7 and PyVmT-vector control cells were allowed to grow into

mammospheres in low adhesion plates in the presence of CCL21. C) PyVmT-CCR7 and

PyVmT-vector control cells were allowed to grow in mammosphere media in low adhesion plates

in the presence of CCL19. Numbers of mammospheres were counted and sizes measured. (n=2)
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Figure 22. Blocking β1 integrin activation in the presence of CCL19 reduces

mammosphere size. Human MCF-7 cells were plated on low density bindging plate in

mammosphere media and allowed to grow for 9 days. Mammospheres were fixed and size

was measured. Measurement is compared to the percent area of the PBS control.
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remained difficult to determine why these women with CCR7 (+) metastases show minimal 

spread beyond lymphoid organs. From our studies, we find that CCR7 expression leads to  

increased growth of tumors while promoting migration to the lymph nodes. It is unclear if CCR7 

prevents cell death or promotes proliferation. Recently, it has been shown that CCR7 prevents 

anoikis of MDA-MB-231, MDA-MB-361 and MDA-MB-453 breast cancer cells and blocks 

apoptosis in hematopoietic cells [166-168].  Since PyVmT-CCR7 mammopsheres grew to 

significantly larger sizes than vector controls, it will be important to use these mammosphere in 

the future in biochemical assays to further our understanding of the mechanisms used by CCR7 

in breast cancer cells to control the extent of tumor growth. 

CCR7 expressing cells travel to lymph nodes and may survive long enough to promote an 

immunological response, which would correlate with improved survival in human breast cancer 

patients [154]. It is tempting to speculate that within lymph nodes these CCR7 expressing tumors 

would co-localize with CCR7-expressing activated dendritic cells, which also express high levels 

of CCL19.  Increased levels of CCL19 have correlated with increased overall survival of human 

breast cancer patients [169]. It likely that controlling migration of breast cancer cells to CCL19 

and CCL21 exposes the tumors to the immune system early during development.  It is unclear 

what events take place within CCR7 (+) breast cancer tumors that control tumor metastases 

numbers, sites and ability to grow.  Due to the inherent nature of CCL19 and CCL21 

chemokines, which mediate recruitment of lymphocytes and organogenesis, it is important to 

consider potential roles for CCR7 in regulation of breast cancer metastasis.   

 It is unclear at what point CCR7 must be expressed to regulate lymph node metastasis or 

tumor growth. As mentioned, in our model, PyVmT cells, which lack endogenous CCR7 

expression, have been selected that metastasize only to the lung [158].  Therefore, we 
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hypothesized that expression of CCR7 would lead to increased migration of breast cancer cells to 

the lymph nodes.  It is unclear what function the lymph nodes play in the development of cancer, 

but we considered several roles.  If the lymph nodes were simply filters, where cells were 

trapped after they exited the tumor, we would have expected to find lymph node metastasis in 

both PyVmT-CCR7 and PyVmT-vector control mice.  In contrast CCR7 could direct metastasis 

to the lymph nodes, the PyVmT-CCR7 tumors would be able to metastasize to the lymph nodes 

earlier than the PyVmT-vector cells, and they would provide the immune system with a possible 

immunogen. In this case they would alert the immune system before the number of PyVmT cells 

reached a critical level where they induced tolerance in the mouse. Studies are underway in our 

laboratories to compare the immune response of the mice transplanted with PyVmT-CCR7 to the 

mice transplanted with PyVmT-vector.   

Our results with our mouse model are supported by recent studies in which in vitro 

studies have demonstrated that CCR7 inhibits post intravasation of mammary cancers [170].  In 

these studies it was also observed that CCR7 failed to affect the growth characteristics of CCR7 

expressing tumors in 2D in vitro cultures.  While they did not examine the metastatic behavior of 

tumors within the mammary fat pad, in support of our studies, these studies observed that when 

Her2/neu (CCR7+) cells were injected directly intravenously, the mice had a reduced capacity to 

develop lung tumors, as well. As mentioned, CCR7 prevents apoptosis but has not been 

implicated in preventing growth of breast cancer.  Therefore, it will be important to determine 

the mechanisms used by CCR7 (+) tumors that prevent growth in peripheral organs, but allow 

growth in lymph nodes.  

We found that stimulation through CCR7 did not affect adhesion of PyVmT-CCR7 to the 

1 integrin, fibronectin in an adhesion assay but that CCR7 promoted migration preferentially to 
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CCL19 but could mediate migration to CCL21 as well.  Since CCR7-expressing tumors grow 

significantly larger when compared to the vector controls, we asked if exposure of PyVmT-

CCR7 to CCL19 or CCL21 could promote proliferation in 3D.  To explore the possibility, we 

examined the growth of PyVmT-CCR7 in mammosphere cultures.  We found that similar to 

what we observed in vivo, PyVmT-CCR7 grew to significantly larger mammospheres when 

compared to vector controls. These results define possible mechanisms used by breast cancer 

tumors that improve overall survival of breast cancer patients with CCR7 expressing breast 

cancer. Studies are currently underway to determine to what extent CCR7 controls differentiation 

of tumors and the signaling events that are activated by CCL19 and CCL21 in breast cancers that 

mediate the changes in the proliferation rate in 3D cultures.  

In conclusion, we have established an MMTV-PyVmT mouse model of breast cancer 

metastasis that allows us to examine the roles of CCR7 in breast cancer progression and 

metastasis.  We have found that similar to what has been observed in cancer patients, CCR7 can 

control tumor metastases in vivo. In this way CCR7 directs PyVmT-CCR7 cells to the lymph 

nodes in vivo, while CCR7 expressing tumors fail to establish lung metastasis. In order to 

metastasize, a tumor must change its adhesive properties and detach from the primary.  To 

determine at what step CCR7 controls tumor metastasis we examined the effect of CCR7 

stimulation on tumor adhesion.   
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5.5  Experimental Procedures 

 

5.5.1  Chemicals and Reagents   

Chemicals and reagents were purchased from Sigma unless otherwise specified.  The 

following antibodies were used: M2 (anti-FLAG) and fluorescein-conjugated anti-mouse 

(Jackson Immunoresearch). Murine CCR7 cDNA was a generous gift from James Campbell 

(Harvard Medical School, Boston, MA).  pcDNA3.1 (Invitrogen) or pEGFP-N-1 (Clontech) 

control vectors, fluorescein- conjugated Donkey anti-mouse (Jackson Immuno Labs) and 

fibronectin (Sigma) were purchased.  

 

5.5.2  Cell Lines, Mice and In Vivo Manipulations  

PyVmT cells were generated as described [158]. FVB/N mice were purchased from 

Jackson labs (Bar Harbor, ME).  PyVmT cells were transiently transfected using Lipofectamine 

Plus (Invitrogen) per manufacturer’s instructions, with the following modifications. For adhesion 

assays and in vivo injections, cells were plated at 80% density and transfected 16-24 hours later 

with twice the suggested amount of DNA in serum free DMEM.  Cells were incubated in the 

presence of DNA/Lipofectamine complexes for four hours. The media was adjusted to 10% fetal 

bovine serum, and the cells were allowed to recover overnight.  In the morning, the cells were 

rinsed with PBS and fresh media was added.  Cells were re-transfected each evening on three 

consecutive days.  After the final transfection, cells were trypsinized and plated on Petri dishes 

overnight at 37C in a 5% CO2 humidified atmosphere in complete DMEM 

(10%FBS/90%DMEM/2mM L-glutamine).  Cells were isolated with light trypsin, neutralized 

with cDMEM and injected into the left thoracic mammary fat pad of FVB/N mice (Jackson 
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Labs).  Animals were palpated for tumors starting on day 21, and length, width and height were 

measured with calipers every other day until the tumors reached 20mm in any measurement. At 

that point the animals were euthanized, and the tumors and lungs were collected and processed 

for histology or PCR.  

 

5.5.3  Flow Cytometry   

Transfected PyVmT cells were dissociated from tissue culture with cell dissociation 

solution, rinsed with PBS and labeled with anti-FLAG (M2) antibody (1:1000) for one hour on 

ice in 1%BSA/PBS.  Cells were rinsed 3 x in1% BSA/PBS and labeled with fluorescein- 

conjugated Donkey anti-mouse (1:200) for one hour on ice 1%BSA/PBS.  Cells were rinsed 2 x 

in 1% BSA/PBS, re-

cytometry (FACS-caliber).   

 

5.5.4  Detection of PyVmT Expression in Lungs and Lymph Nodes   

Histological slides were blinded, examined and scored for the presence of metastasis by 

two individuals.  Following physical examination and isolation of the lymph nodes, the DNA 

was extracted using a Qiagen Tissue isolation kit.  DNA was quantified; equal amounts were 

used to amplify PyVmT DNA as described [158]. 

 

5.5.5  Chemotaxis Assays  

Transfected PyVmT cells were dissociated from tissue culture with cell dissociation 

solution, rinsed with PBS and counted. Fifty thousand cells were added in 50µl to the top well of 

a chemotaxis chamber (Neuroprobe) that had been pre-loaded with a 10µg/ml fibronectin-coated 
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5µm membrane and increasing concentration of ligand in each well.  Cells were allowed to 

migrate for three hours. At the end of the assay, the media in the top wells was removed, the 

chamber was disassembled and the cells in the lower wells counted on a hemacytometer.   

 

5.5.6  Mammosphere Cultures   

Six million exponentially growing PyVmT cells were isolated by trypsinization, 

neutralized with complete media, and rinsed twice in PBS and electroporated using a Bio-Rad 

electroporator according to the manufacturer’s protocol (Bio-Rad Bulletin 1349).  Transfected 

cells were isolated by trypsinization and rinsed twice in PBS to remove all traces of serum.  

Single cells were plated on ultra low-attachment six-well plates (Corning; Corning, NY) at a 

density of 30,000 viable cells per well.  Cells were grown in serum-free mammary epithelial 

basal medium (Lonza; Walkersville, MD) supplemented with 20 ng/ml EGF, 5 µg/ml insulin, 1 

µg/ml hydrocortisone (Lonza), 20 ng/ml bFGF, B27 (Invitrogen; Carlsbad, CA), 4 µg/ml heparin 

(MP Biomedicals; Irvine CA), 100 IU/ml penicillin, and 100 µg/ml streptomycin (Mediatech).  

Cells were fed every three days by adding additional media to wells.  Seven days after the initial 

plating, primary mammospheres were measured using a Metamorph.  Significance of difference 

between PyVmT-CCR7 and PyVmT-vector control cells in the presence or absence of ligand 

was determined using an unpaired t test with Welch’s correction. 
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CHAPTER 6 – DISCUSSION AND FUTURE DIRECTIONS 

 

 

6.1  How the New Conclusions Impact the Field and Future Directions 

 

 The function of CCR7 is to mediate lymph node entry and motility within the lymph 

node, by interacting with the chemokines CCL19 and CCL21.  While both ligands are expressed 

within lymph nodes, CCL21 is also expressed in high endothelial venules, the entry route to 

lymph nodes.  The role of CCL21 in promoting lymph node entry is well established [27, 171]; 

however, as naive T lymphocytes use CCR7 to mediate migration to CCL21, there is still much 

to learn about the molecular mechanisms that are initiated upon ligand binding.  Dendritic cells 

express CCL19, which is important for attracting T lymphocytes into close proximity of 

dendritic cells so that naïve T lymphocytes can become activated [19].  Following dendritic 

cell/T lymphocyte interactions naïve T lymphocytes become activated, exit from the lymph 

nodes and migrate to sites of inflammation.  Paradoxically, without CCL19, T lymphocytes 

become trapped in lymph nodes [34, 36], indicating that further information is needed to fully 

understand the role of CCL19 in lymph node trafficking.   

 In addition to the role of CCR7 in mediating normal homeostasis of circulating T 

lymphocytes, CCR7 and its ligands have also been implicated in progression of autoimmune 

disease.  For example, CCR7 knock out mice display decreased severity of antigen induced 

arthritis (AIA) characterized by decreased knee joint swelling and decreased formation of ectopic 

tertiary lymphoid structures [172].  In support of these findings, CCL21 has been shown to 

promote lymphoid neogenesis in pancreatic islets, which serves to recruit other inflammatory 
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mediators to the pancreas and perpetuates the autoimmune state [35].  In addition, CCL21 

expression is increased on lymphatic endothelial cells in Myasthenia gravis and is thought to 

promote thymic hyperplasia [173].  Similarly, both CCR7 and CCL21 expression are increased 

in graft versus host disease and atopic dermatitis, also serving to recruit other inflammatory 

mediators such as central memory T cells, which maintains the inflammatory response [146].  In 

contrast, studies using CCR7 knock out mice revealed that in the absence of CCR7 mice have 

greater immune infiltrates in the stomach, lung, pancreatic islets and liver, which is a hallmark of 

autoimmunity [174].  Additionally, CCR7 knock out mice spontaneously developed a chronic 

renal autoimmune disorder, similar to systemic lupus erythematosus characterized by glomerular 

IgG deposits, reduction in creatinine clearance and anti-nuclear antibodies [174].  Because the 

presence of CCR7 in some instances seems to yield a protective function against autoimmunity, 

yet in other cases the presence of CCR7 increases the severity of the disease, CCR7 and its 

ligands represent important targets for investigation.  

Similar to T lymphocytes, metastatic breast cancer cells also express CCR7.  It remains 

unclear if CCR7 expression by breast cancer cells promotes metastasis to lymph nodes in vivo 

and what affect this has on disease outcome.  Therefore, using what we learn about CCR7 

mediated migration in T lymphocytes can be used to assist in understanding how breast cancer 

cells also use CCR7 to mediate migration to CCL19 and CCL21 and perhaps how to control 

metastasis.     

The ultimate goal of the work outlined in this dissertation is to contribute to a greater 

understanding of CCR7 mediated migration outlined in the following questions:  1) What are the 

mechanisms by which naïve T lymphocytes are attracted to migrate into lymph nodes?  2)  Does 

CCR7 contribute to egress from the lymph node?  3)  In breast cancer is CCR7 required for 
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lymph node metastasis and does this promote or prevent metastasis to other organs?   4)  Do 

metastatic breast cancer cells hijack CCR7 mechanisms used by T lymphocytes to mediate 

metastasis to lymph nodes?  The results of my dissertation contribute toward the resolution of 

some of these questions. 

 

 

6.1.1  What are the Mechanisms by Which Naïve T Lymphocytes are Attracted to Migrate into 

Lymph Nodes? 

  

Naive T lymphocytes enter into lymph nodes through high endothelial venules, which 

express CCL21.  Additionally, high endothelial venules also express fibronectin [9], which is the 

ligand for the β1 integrin.  Integrins are important adhesion proteins activated by chemokine 

receptors during migration.  As cells migrate they use integrins to adhere to the extracellular 

matrix, which includes proteins such as fibronectin [175].  The cell then propels forward, de-

attaches from the matrix by de-activating the integrins [6].  Then the integrins recycle back into 

the cell in preparation for the next migration cycle [176].  Because high endothelial venules 

express both CCL21 and fibronectin, it is important to understand how and if naïve T 

lymphocytes use CCL21 and fibronectin ultimately to gain entry into lymph nodes. 

While several studies have revealed downstream signaling effectors of CCR7 activation, 

there has been a lack of understanding if these signaling molecules are important for naïve T 

lymphocyte migration.  For example, ERK1/2 has been shown to be transiently phosphorylated 

in response to CCR7 stimulation by CCL21 in primary T lymphocytes and in HEK293 cells [49, 

54], however it is unclear from these studies if phosphorylation of ERK1/2 is necessary for 
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migration.  Similarly, PLCγ1 has been shown to be activated by CCR7 in response to CCL21 in 

highly motile cancer cells [83], yet a possible role in CCR7 mediated T lymphocyte migration 

has not been defined.  The possible role of PLCγ1 in migration is suggested by its ability to bind 

to and activate β1 integrins [62].  Additionally, T lymphocyte activation of CCR7 by CCL21 

leads to adhesion and spreading on VCAM-1, a β1 integrin ligand [4].   

We have found that migration to CCL21 on fibronectin requires ERK1/2, PLCγ1 and Gαi 

activation, however only PLCγ1 is required for β1 integrin activation (Figure 23).  We observed 

that rapid and transient phosphorylation of ERK1/2 is required for migration of naïve T 

lymphocytes to CCL21 on fibronectin, but is not required for initial activation of β1 integrins.  In 

addition, we found that inhibition of PLCγ1 resulted in a loss of naïve T lymphocyte migration to 

CCL21 and β1 integrin activation.  Inhibition of PLCγ1 also resulted in sustained 

phosphorylation of ERK1/2 confirming the importance of transient phosphorylation of ERK1/2 

for migration and suggesting an important role for the recruitment of a phosphatase in response 

to PLCγ1 activation.   In the future it will be important to identify the phosphatase responsible 

for de-phosphorylating ERK1/2.  Two possible phosphatase candidates that could be regulated 

by PLCγ1 include dual specificity phosphatase 2 (PAC-1) and mitogen-activated protein kinase 

phosphatase (MKP-3), which are expressed in T lymphocytes and specifically target ERK1/2 

[177].      
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Figure 23. Proposed CCR7/CCL21 signaling in naïve T lymphocytes. We propose that

activation of CCR7 by CCL21 results in Gαi activation , which results in down-stream

phosphorylation of PLCγ1, which in turn results in down-stream transient phosphorylation

of ERK1/2. Inhibition of Gαi, PLCγ1 or ERK1/2 results in a loss of migration to CCL21

on fibronectin. Only inhibition of PLCγ1, but not Gαi or ERK1/2 inhibition, prevents β1

integrin activation. We propose that inhibition of Gαi or ERK1/2 may prevent recycling of

β1 integrins, thus preventing migration to CCL21 on fibronectin.
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Although CCR7 is well established to mediate migration of T lymphocytes via Gαi 

coupling to the receptor, the downstream signaling events resulting from Gαi activation that are 

required for migration to CCL21 have remained unclear.  We found that both PLCγ1 and 

ERK1/2 phosphorylation was reduced, but not completely lost upon inhibition of Gαi in response 

to stimulation with CCL21.  This suggests that another pathway may also contribute to activation 

of PLCγ1 and ERK1/2.  Other signaling pathways that activate PLCγ1 in T lymphocytes 

includes stimulation of growth factor receptors and T cell receptors [178].   Because inhibition of 

Gαi reduced migration to CCL21 without preventing the initial activation of β1 integrins, one of 

these other signaling pathways may have initiated β1 integrin activation while Gαi-induced 

PLCγ1 activation.   Other Gαi-dependent signaling pathways may be important for de-attaching 

or recycling of β1 integrins.   

Another possible mechanism for Gαi-independent activation of β1 integrins is activation 

of the Janus Kinase-2 (JAK-2) non-receptor tyrosine kinase [179], which could also explain the 

reduction, but not complete loss of PLCγ1 and ERK1/2 phosphorylation in response to pertussis 

toxin.  Several studies report that ligand binding to GPCRs initiate the traditional G-protein 

pathway and the JAK/STAT signaling pathway [180-182].  Interestingly, inhibition of JAK-2 

kinase resulted in decreased β1 integrin activation independent of Gαi activation in response to 

CCL21 stimulation of CCR7 [179], providing a possible explanation for our results.  In the 

future it will be important to carry out studies to inhibit both Gαi and JAK-2 in order to 

understand if these pathways work together to contribute to β1 integrin mediated migration to 

CCL21 on fibronectin.  Additionally, it will be important to further understand how inhibition of 

JAK-2 affects PLCγ1 and ERK1/2 signaling. 
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Integrins are unique receptors in that they undergo bi-directional signaling.  Integrins can 

be signaled to from another receptor, such as CCR7 a process termed “inside out” signaling.  

Integrins can also signal through “outside in” signaling via interaction with a ligand.  Our work 

demonstrates that CCL21 signals to activate β integrins through “inside out” signaling.  However 

β1 integrins also signal upon contact with fibronectin which also contributes to CCR7 motility 

through “outside in” signaling.  It will be important to further understand how these two 

pathways converge to mediate migration by co-incubating both CCL21 and fibronectin and 

observe changes in signaling compared to fibronectin or CCL21 alone.  β1 integrins also 

phosphorylate PLCγ1 in order to mediate motility [84], so one could speculate that in vivo when 

a T lymphocyte encounters CCL21 and fibronectin both signals combined further amplify 

activation of PLCγ1 in order to promote continuous migration.  This is significant, because as 

naïve T lymphocytes migrate through the high endothelial venules to enter into lymph nodes, the 

lymphocytes will encounter both CCL21 and fibronectin signals at the same time and in the 

future it may be important to not only inhibit CCL21, but also inhibit β1 binding to fibronectin to 

completely inhibit migration.   

 Taken together, our working model is that PLCγ1 is required for migration to CCL21 

and activation of β1 integrins, while Gαi and ERK1/2 are required for migration.  PLCγ1 

promotes migration by terminating phosphorylation of ERK1/2 via activation of an unknown 

phosphatase.  Gαi contributes to migration by activating PLCγ1.  At this point it remains unclear 

as to the mechanism of how ERK1/2 is phosphorylated since Gαi inhibition only partially 

decreases ERK1/2 activation.  Further, it is uncertain if ERK1/2 is continually cycling between 

phosphorylated and de-phosphorylated states or if once de-phosphorylated, ERK1/2 remains de-

phosphorylated for the duration of the migration event.  It is also unclear if PLCγ1 directly 
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activates the phosphatase that de-phosphorylates ERK1/2 or if there is a signaling intermediate.  

It will be important to identify other signaling molecules activated by CCR7 in response to 

CCL21 in order to better understand how PLCγ and ERK1/2 contribute to migration.   

This work contributes to the greater understanding of the mechanisms required for T 

lymphocyte migration and in the future it will be important to continue to define mechanisms 

that are important for migration to CCL21.  As CCL21 is important for T lymphocyte entry into 

lymph nodes, it is important to understand if blocking this event could alter the course of an 

immune response.  An antagonist of CCL21 (mSLC4) was found to reduce the severity of graft 

versus host disease in mice, which was contributed to a reduction in CD4+ cells, which in turn 

reduced activated B lymphocytes [37].  Perhaps one could develop specific targets against the T 

cell receptor that recognizes a specific self antigen, coupled with a CCL21 antagonist.  This 

would allow one to specifically target those T lymphocytes engaged in attacking the body and 

prevent them from entering into lymph nodes to become activated without affecting the entire 

immune system.  Therefore, CCL21 represents an important target for manipulation of the 

immune response.  Certainly, more work is needed to continue to increase our knowledge of 

CCL21 mediated mechanisms that will hopefully serve to identify specific inhibitors that can 

possibly be used to treat disease in the future.      

 

 

 6.1.2  Does CCR7 Contribute to Egress From the Lymph Node?   

 

 As mentioned during normal homeostasis naïve T lymphocytes are in continuous 

migration throughout the lymph nodes.  Although it is very important that these cells are able to 
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migrate into lymph nodes, it is imperative they also be able to migrate out in order to continue to 

scan for antigen and carry out effector functions in the periphery.  During an immune response 

naïve T lymphocytes enter into lymph nodes and immediately begin scanning dendritic cells that 

present antigen.  The close proximity of dendritic cells to the high endothelial venules, the route 

by naïve T lymphocytes enter into lymph nodes,  as well as expression of CCL19 by dendritic 

cells facilitate these interactions [19, 183].  Once T lymphocytes recognize antigen they form 

stable interactions with dendritic cells that can last upwards of 36-48 hours [22].  During this 

prolonged interaction the T lymphocyte becomes activated, begins to proliferate and eventually 

detaches from the dendritic cell [23].  Lastly, the activated T lymphocytes exit the lymph nodes 

and return to the circulation to carry out their effector functions in the periphery.   

The S1P1 receptor has been well defined for its role in promoting lymph node egress [65, 

123].  When naïve T lymphocytes first enter into the lymph nodes, S1P1 levels are low so as to 

not cause exit prematurely before having the opportunity to locate antigen [184].  However, after 

some point when the cell receives a signal to exit, S1P1 is up-regulated.  The molecular 

mechanisms that mediate up-regulation of S1P1 in order to initiate lymph node egress are still not 

understood.  Two separate studies carried out with a CCL19-deficient mouse and a CCL19 

antagonist (8-83) demonstrated that without CCL19 function T lymphocytes were retained in 

lymph nodes during normal homeostasis and during immune responses [34, 36].  Furthermore, in 

CCR7-deficient mice, S1P1 levels were also found to be decreased [69], suggesting that CCR7 

expression may be important for S1P1 expression.   

Together, these studies suggest a role for CCR7/CCL19 in mediating lymph node egress.  

We first made the observation that T lymphocytes treated with CCL19, but not CCL21 migrate 

to S1P, at 48 hours, suggesting that CCL19-treated cells had increased expression of S1P1.  
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Importantly, CCL19-treated cells did not migrate to S1P until 48 hours after treatment.  The 

significance of this timing correlates with T lymphocytes losing the ability to migrate to S1P in 

vivo 24 hours after entering into lymph nodes [64], then regaining the ability to migrate to S1P 

by 72 hours [65].  To investigate the mechanism of up-regulation of S1P1 we assayed for 

changes in protein expression of ERK5 and KLF-2 following treatment with CCL19.  We found 

that activation of CCR7 by CCL19 over the course of 24-72 hours increased phosphorylation of 

ERK5 and up-regulated total levels of both ERK5 and KLF2, suggesting a mechanism for the 

increase in S1P1 levels and increased migration observed to S1P at 48 hours (Figure 24).  Our 

proposed ERK5 pathway was further supported when we used siRNA to knock down ERK5 and 

found that CD4+/CD8+ T lymphocytes failed to exit lymph nodes and displayed decreased 

migration to S1P 48 hours following CCL19 treatment.   

Taken together, our results suggest that CCR7activation by CCL19 is important for 

turning on the machinery that regulates lymph node exit via S1P1.  In the future, it will be 

important to determine the impact of inhibiting the CCR7/CCL19/ERK5 pathway on the immune 

response or other cellular functions.  This is of great interest since FTY720, an inhibitor of S1P1, 

is currently being used in phase III clinical trials to treat multiple sclerosis [185, 186].  It is 

interesting to speculate which ligand, CCL21 or CCL19 or both, would be most effective at 

inhibiting the immune response.  As CCL21 is important for entering the lymph nodes one could 

argue that preventing these cells from ever entering the lymph nodes would be important for 

diminishing any possible immune response.  However it seems that during immune responses T 

lymphocytes can find alternative ways to enter into lymph nodes such as through the afferent 

lymphatics and can bypass CCR7 ligands altogether [187], which might still result in enough T 

lymphocyte activation to cause damage.   
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Figure 24. Proposed CCL19/CCR7 signaling required for increased expression of S1P1.

We propose that activation of CCR7 by CCL19 results in phosphorylation of ERK5, which

increases transcription of KLF-2, which in turn promotes increased transcription of S1P1. We

found that treatment of Hut78 human T lymphocytes and primary murine T lymphocytes with

CCL19 over the course of 48 hours increased phosphorylation of ERK5 and increased overall

total protein levels of ERK5. We observed also that KLF-2 protein levels were increased

over this same time period. After 48 hours of CCL19 treatment, cells were able to migrate to

S1P, suggesting increased S1P1 receptor on the surface of these cells. Increased S1P1 mRNA

was confirmed by RT-PCR. Knock down of ERK5 resulted in decreased migration of T

lymphocytes to S1P at 48 hours and retention of CD4+ and CD8+ T lymphocytes in lymph

nodes.
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Therefore, one might argue that inhibiting both ligands would provide the best alternative 

to not only prevent entry but for those lymphocytes that do enter, also block exit to ensure that 

you could control the entire T lymphocyte response.  One important consequence of inhibiting 

CCL21 and CCL19 together is that in plt mice, which lack both ligands CCL19 and CCL21, 

immune responses are delayed initially but ultimately enhanced over a period of 20 days [187], 

which would be detrimental in autoimmune disease.  As the plt mouse is a result of a 

spontaneous mutant that deletes both CCL19 and CCL21, it is unclear if both ligands contribute 

to the delayed but enhanced response.  Therefore, it will be important in the future to use the 

antagonists CCL19 (8-83) and CCL21 (mSLC4) together and individually to understand if the 

impact of blocking both ligands or simply one ligand CCL19 or CCL21 results in a similar 

enhanced response.  In contrast, a delayed but enhanced immune response would be very 

beneficial with respect to vaccinations and even possibly to boost immunity during bacterial and 

viral infections.  Taken together, there are still many questions that need to be answered, but our 

findings contribute to the current knowledge of how T lymphocytes emigrate into the periphery 

and define additional potential therapeutic targets that could possibly be used in either in 

combination with FTY720 or alone to treat autoimmune disease.   

 

6.1.3  In Breast Cancer is CCR7 Required for Lymph Node Metastasis and Does This Promote or 

Prevent Metastasis to Other Organs? 

 

 Recent studies have found strong correlations between patients who develop CCR7 

expressing breast cancers and metastasis to lymph nodes, which highly express CCR7 ligands. 

[73, 75].  However, a contrasting study determined that CCR7 expression did not correlate with 
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lymph node metastasis in breast cancer [76].  At present, it is unclear if and by what mechanisms 

CCR7 controls lymph node metastasis in breast cancer.  We have demonstrated in a mouse 

model that CCR7(+) breast cancer cells preferentially metastasize to lymph nodes, while CCR7(-

) cells metastasized to the lung and were not found in the lymph node.  Several studies have 

reported that CCR7(+) tumors result in overall decreased patient survival however, it remains 

uncertain as to why patient survival is decreased [73].  In contrast, other studies suggest that 

CCR7(+) tumors have no effect on overall survival [154].  In most breast cancer cases, axillary 

lymph nodes are removed without any understanding if removal affects overall patient survival 

[74].  Unexpectedly, we found that while CCR7(+) mice that had preferential metastases to the 

lymph nodes, that lung metastases were reduced.   

As lymph nodes are important sites for activation of lymphocytes, it seems counter 

intuitive that cancer cells would dare up-regulate receptors that would allow migration into these 

areas, as these are places of highly activated lymphocyte, that could potentially kill the cancer 

cells right then and there.  Therefore, it is possible that in our model CCR7(+) cells were directed 

into the lymph nodes where they come into direct contact with lymphocytes that resulted in the 

mounting of a stronger immune response against the metastatic cancer cells, thus preventing 

further metastases to distant organs.   

Alternatively, one could argue that cancer cells migrating into lymph nodes could provide 

an advantage for the cancer cells, such as inducing immunologic tolerance.  Tolerance is 

characterized by the lack of an immune response directed toward specific antigens, such as 

tumor antigen.  The induction of tolerance may provide an explanation as to why in some cases 

CCR7(+) tumors correlate with a worse patient outcome.  It is difficult at this stage to fully 

understand the dynamics of what is occurring in lymph nodes when breast cancer metastases 
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migrate to these locations.  It will be important to analyze the immune response in CCR7(+) 

breast cancers  to understand if the immune response is enhanced or down-regulated as compared 

to CCR7(-) breast cancers.  For example, one could begin by using the CCR7
-/-

 mouse model and 

assaying for numbers of T regulatory cells, which are important for down-regulating the immune 

response.  Additionally, one could isolate CD8+ cytotoxic T cells from mice who have 

developed tumors and perform cytotoxic killing assays with PyVmT cells isolated from CCR7+ 

and CCR7- tumors and metastasis.  Furthermore, because we found that lymph nodes metastases 

resulted in decreased metastases to the lung, more work is needed to fully understand the impact 

of removal of lymph nodes during disease progression, as we are not yet certain if this affects the 

immune response and/or metastatic outcome CCR7(+) breast cancer patients.  Removal of lymph 

nodes could result in increased metastases to more distant locations simply because cancer cells 

that would normally migrate into lymph nodes are possibly directly exposed to antigen 

presenting cells that could take up antigen from dead or dying cancer cells and effector cytotoxic 

cells that could directly kill the cancer cell.  Ultimately much more work is needed to fully 

understand the role of CCR7 and the role of lymph nodes in breast cancer metastasis.     

 

6.1.4  Do Metastatic Breast Cancer Cells Hijack CCR7 Mechanisms Used by T Lymphocytes to 

Mediate Metastasis to Lymph Nodes? 

  

 As mentioned in Chapter 1, lymphocyte migration is a complex process in which the cell 

activates adhesive contacts to adhere to extracellular molecules [1].  The cell then spreads in 

order to be propelled over the extracellular matrix and then de-activates its adhesive contacts to 

release from the extracellular matrix, to repeat the cycle again [7].  In naïve T lymphocytes, both 
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CCR7 and β1 integrins are important for mediating migration into lymph nodes.  Naïve T 

Lymphocytes enter into lymph nodes via high endothelial venules, which express CCL21 as well 

as fibronectin, a β1 integrin ligand [9].  Importantly, CCR7 has been shown to mediate migration 

of T lymphocytes to CCL21 on a β1 integrin ligand.  Specifically, T lymphocyte activation of 

CCR7 by CCL21 leads to adhesion and spreading on VCAM-1, a β1 integrin ligand, resulting in 

migration to CCL21 [4].  In response to CCR7 activation by CCL21, T lymphocytes activate 

several important mediators that regulate migration and β1 integrin activation.  For example, we 

observed that both ERK1/2 and PLCγ1 are necessary for migration to CCL21 on the β1 integrin 

ligand fibronectin.  In addition, JAK-2 is required for β1 integrin activation in response to 

CCL21 activation and is required for migration to both CCL19 and CCL21 [179].     

Similar to T lymphocytes, metastatic breast cancers also express CCR7 and β1 integrins.  

In contrast to the primary tumor, metastatic breast cancer cells display increased expression of β1 

integrins on their cells surface [85].  Blocking β1 integrins reverts the malignant phenotype of 

these breast cancer cells to a normal epithelial phenotype, characterized by well organized actin, 

organized adherens junctions, deposition of a basement membrane and growth arrest [85].  

Therefore, it is important to understand how β1 integrins are regulated in breast cancer cells and 

use our knowledge of how T lymphocytes signal to and regulate β1 integrins so that we can 

begin to understand this process in breast cancer.     

While breast cancer cells migrate to CCL19 and CCL21, it is not clear if breast cancer 

cells can signal through CCR7 to regulate β1 integrin mediated adhesion or migration similar to 

T lymphocytes.  Migration is a multi-step process in which cells must adhere, spread and de-

adhere with each step relying greatly on integrin interactions with extracellular matrix molecules.  

We found that activation of CCR7 was not important for β1 mediated cell adhesion or initial 
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activation of the β1 integrin in PyVmT murine breast cancer cells.  However, CCR7 activation 

by CCL19 did promote β1 integrin-specific spreading.  These results suggested that CCR7 

signals to β1 integrins to promote migration.  In support of this model, we found that CCR7-

induced breast cancer cell migration to both CCL19 and CCL21 on fibronectin.  In vivo T 

lymphocytes travel into lymph nodes via high endothelial venules which express CCL21 and 

fibronectin.  Therefore, these results support our mouse model results from the previous section 

in which CCR7 promoted lymph nodes metastasis.  Furthermore, these results suggest that CCR7 

can promote migration, similar to that seen with T lymphocytes, under similar conditions 

presented in high endothelial venules.  In the future it will be important to begin to understand 

the molecular mechanisms that contribute to CCR7-mediated migration to both CCL19 and 

CCL21.  For example, it will be important to understand the role of PLCγ1, as it is not only 

important during CCR7/CCL21 activation and mediated migration, but is also activated in 

response to β1 integrin binding of ligands.  Additionally, ERK1/2 is also activated in response to 

CCL19 and CCL21 stimulation of CCR7 in T lymphocytes and may play an important role in 

breast cancer migration as well.      

One hallmark of cancer is the ability to undergo uncontrolled cell proliferation.  In 

metastatic breast cancer cells β1 integrins promote proliferation [188].  Since we observed CCR7 

mediated migration on β1 integrins, suggesting the possibility that CCR7 signals to β1 integrins, 

we questioned if activation of CCR7 by CCL19 or CCL21 could promote growth of breast 

cancer cells, possibly via a β1 integrin mediated mechanism.  We found that both CCL19 and 

CCL21 promoted growth of breast cancer cells, while β1 integrin inhibition decreased growth in 

the presence of CCL19.  These results were further supported in vivo as CCR7(+) breast cancer 

tumors displayed an increase in tumor volume compared to CCR7(-) tumors.  It is important to 
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take into consideration that increased growth could be a result of increased proliferation, 

increased survival or decreased death signals.  Therefore, it will be important to assay for 

changes in anti-apoptotic mediators such as Bcl-2, apoptotic mediators such as caspase-3 and 

proliferation markers such as Ki-67 in order to further understand how activation of CCR7 can 

affect growth in breast cancer cells.   

 Taken together, our data suggest that CCR7 mediates spreading, migration and growth of 

metastatic breast cancer cells.  In the future it will be important to continue to learn what CCR7-

mediated mechanisms are important for breast cancer migration and metastasis as this knowledge 

could be used to develop drug targets.  This will help us to understand to a greater extent if 

CCR7 behavior in breast cancer cells will resemble that observed in T lymphocytes.   This is 

significant, because if CCR7 becomes a therapeutic target for metastatic breast cancer and CCR7 

activates similar signaling pathways in T lymphocytes, the immune system will also be affected 

with any drugs developed to target CCR7 expressing breast cancer cells.   

 

 

6.2  Concluding Remarks 

 

Taken together, the work carried out in this dissertation contributes to a deeper 

understanding of the molecular mechanisms that are carried out in response to activation of 

CCR7 by its ligands CCL19 and CCL21.  Furthermore, we have identified a novel and important 

function of the CCR7 receptor in naïve T lymphocytes, to regulate lymph node egress.  We have 

also learned that CCR7 promotes breast cancer metastasis to lymph nodes, while reducing 

metastasis to other vital organs.  If metastatic breast cancers use similar CCR7 mediated 
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mechanisms as T lymphocytes to mediate egress from lymph nodes, the findings outlined in this 

dissertation could eventually lead to additional molecular targets for cancer therapies.  Currently, 

a S1P specific antibody (ASONEP) has been found in vivo to reduce metastasis and is currently 

in phase 1 clinical trials [189].  Overall the information presented in this dissertation provides 

new insights, yet also raises important questions that hopefully someday will lead to a better 

resolution for autoimmune disorders and cancer metastasis.    
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