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ABSTRACT

The blood-brain barrier (BBB) is comprised of the endothelial cells that line the capillaries of the brain. The
unique characteristics of this barrier include tight intercellular junctions, a complex glycocalyx, a paucity of
pinocytic vesicles, and an absence of fenestra. These properties allow for the selective exchange of substances be-
tween the systemic circulation and the extracellular fluid compartment of the brain. It is well established that
there are many conditions, including those mediated by nitric oxide (NO), that can lead to an opening of the BBB,
eventually leading to vasogenic edema and secondary brain damage. The precise molecular mechanisms mediat-
ing NO-induced tissue injury and the breakdown of the BBB are complex and not completely understood. NO is
a soluble, easily diffusible gas that is generated by NO synthase. Two of the isoforms of NO synthase are con-
stitutive, calcium-dependent enzymes that modulate many physiological functions, including the regulation of
smooth muscle contraction and blood flow. The third isoform is calcium-independent and inducible and can be
stimulated by stress, inflammation, and infection. Under these conditions, NO can be generated in large quanti-
ties and has detrimental effects on the CNS. NO has been shown to increase permeability of the BBB, allowing
substances to enter into the brain passively. This review considers the role of NO and BBB integrity. Antioxid.

Redox Signal. 3, 273-278.

INTRODUCTION

HE SO-CALLED BLOOD—BRAIN BARRIER (BBB) is

localized at the single, continuous layer of
endothelial cells that line the capillaries of the
brain (9, 31). The unique properties of this bar-
rier relative to the typical peripheral endothe-
lium confer highly restricted exchange of
blood-borne molecules between the systemic
circulation and the extracellular fluid compart-
ment. The distinguishing features of brain mi-
crovessel or capillary endothelium are illus-
trated in Fig. 1 and include the presence of tight
intercellular junctions, a paucity of pinocytic
vesicles, the absence of fenestra, and a complex
glycocalyx (2). In addition, there are an abun-
dance of mitochondria and numerous enzymes

indicating substantial metabolic capacity. The
expression of the multidrug resistant gene
product 1 (MDR1) or P-glycoprotein, and the
multidrug resistant associated protein (MRP)
efflux systems contribute additional barrier
mechanisms that restrict exchange of solutes
between the blood and the central nervous sys-
tem (CNS) (28, 32). Passive diffusion across the
BBB is limited to rather lipophilic molecules.
Water-soluble molecules such as amino acids,
nucleosides, and hexoses utilize specific trans-
porters that are present in the capillary endo-
thelium (2). Most of the transporters present in
the BBB are specific, and there are few trans-
porters available for macromolecules (4).

It is well established that there are many
pathophysiological conditions that disrupt the
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FIG.1. Distinguishing features of the brain microves-
sel endothelial cell that forms the BBB.

integrity of the BBB and can lead to increased
permeation of substances across the BBB (3).
For instance, increased vesicular trafficking or
an opening of the tight intercellular junctions
present in the normal aging brain or patholog-
ical conditions such as stroke, ischemia, or Alz-
heimer’s disease will compromise the BBB (26).
Under these conditions, the CNS is highly vul-
nerable to free radical attack because of the
high blood flow rate and the presence of eas-
ily oxidizable substances (11). Consequently,
opening of the BBB can lead to vasogenic brain
edema and subsequent secondary brain dam-
age (36).

Stress can also cause an opening of the BBB
and a subsequent change in permeability. For
instance, soldiers who served in the Gulf War
were treated with the acetylcholinesterase in-
hibitor, pyridostigmine, which is not expected
to cross the BBB due to its quaternary ammo-
nium structure. However, there was a reported
threefold increase in CNS symptoms such as
headaches, insomnia, and drowsiness in sol-
diers treated with the drug prior to departure
for the battlefield (19). Friedman et al. (15) an-
alyzed the effects of pyridostigmine on “nor-
mal” patients during peacetime. These subjects
reported symptoms confined to the peripheral
nervous system such as diarrhea and sweating.
This suggests that the emotional effects and
stress of the battlefield may have caused the
BBB to become more permeable than normal
(19).
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Disease conditions such as ischemia, stroke,
multiple sclerosis, or Alzheimer’s disease
evoke an inflammatory response in the CNS.
This response can contribute to neurological
damage due to the release of cytokines, such as
tumor necrosis factor or interleukin-18 (IL-13)
(35). These types of mediators can be released
from astrocytes and neurons, as well as blood-
derived cells, and therefore can initiate im-
mune signaling from both apical and basolat-
eral sides of the capillaries (18). In addition, the
release of these same mediators may also ex-
hibit some neuroprotective effects (35). Nitric
oxide (NO) is a transient product of the in-
flammatory processes, generated from L-argi-
nine utilizing the enzyme NO synthase (NOS).
Indeed, NO has been implicated in both the
damage (10) and protection (21) of the brain,
similar to that seen with inflammatory modu-
lators. NO appears to be involved in numerous
vital cellular functions including neurotrans-
mission, blood-pressure control, and the regu-
lation of vascular tone. Our purpose herein is
to present an overview of the role of NO func-
tions and mechanisms specific to modulation
of the permeability properties of the BBB, the
gateway to the CNS.

NO AT THE BBB

Over the past 20 years, NO and its signaling
properties have been extensively investigated
and are one of the most rapidly growing areas
of biology (29). NO serves a multitude of phys-
iological purposes and reacts with a diverse
number of cellular targets. The basal produc-
tion of NO appears to be required for biologi-
cal regulation, and yet an excess of this same
molecule can be cytotoxic to the organism.

NO is synthesized by the conversion of L-
arginine to L-citrulline through the actions of
NOS. There are three distinct known isoforms
of NOS, and they are classified according to
their order of isolation and characterization
(27). These isoforms share an overall amino
acid sequence homology of ~55%, and there is
strong sequence conservation in the regions of
the proteins that are important in catalysis (27).
The NOS isoforms carry out a five-electron re-
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duction process utilizing oxygen, and cofactors
such as reduced NADPH, tetrahydrobiopterin,
flavin adenine dinucleotide, and flavin mono-
nucleotide participate in the formation of NO.

Endothelial NOS (eNOS)

Endothelial cells can produce NO in small
amounts that are released to control the local
blood flow. This NO is synthesized by a cal-
cium/calmodulin-dependent isoform of NOS
termed NOSIII or eNOS (30). Due to the de-
pendence on calcium/calmodulin binding,
eNOS is very sensitive to changes in calcium lev-
els in the cell. The release of NO from endothe-
lial cells results in the activation of the guany-
late cyclase signaling cascade (20). Once
activated, the cytosolic, soluble form of guany-
late cyclase can then convert guanosine triphos-
phate (GTP) to cyclic guanosine monophos-
phate (cGMP), which is a second messenger
molecule. In vascular smooth muscle cells,
c¢GMP activates a Ser/Thr protein kinase that
dephosphorylates myosin light chains, inhibit-
ing contraction that results in vasodilation. This
aids in blood flow during conditions such as
stroke. Therefore, it is thought that eNOS has a
protective effect due to these vasodilation prop-
erties of the endothelial cells (20).

A link between the cGMP signaling pathway
and the release of NO has been shown using
primary cultures of brain microvessel endo-
thelial cells (BMECs). The cells were treated
with the NO donor sodium nitroprusside in the
presence or absence of the nonhydrolyzable
GTP analogue 5'-O-3'-thiotriphosphate (24).
This analogue prevents the formation of cGMP,
and hence the commencement of the second
messenger signaling pathway. Detectable lev-
els of NO were measurable in the cells treated
solely with sodium nitroprusside. However,
the BMECs treated with both sodium nitro-
prusside and 5'-O-3'-thiotriphosphate did not
produce detectable levels of NO, indicating a
link between the cGMP signaling pathway and
NO production (24). There are also cases of NO
effects that are independent of the cGMP cas-
cade as well (29). For instance, NO activates cy-
clooxygenase and lipoxygenase, which leads to
the production of prostaglandin E,.

Other evidence also suggests NO is involved
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in BBB permeability and its regulation (34).
NOS has been shown to be enriched in caveo-
lae of cultured cells by Garcia-Cardena et al.
(16). The caveolae are thought to be the initial
structures that bud off the membrane during
receptor-mediated endocytosis and transcyto-
sis through the BBB and are regulated path-
ways molecules can utilize to enter into the
brain. These investigators also showed that the
palmitoylation of the enzyme is required for its
targeting to the caveolae structure (16).
Schnitzer et al. (33) demonstrated that the hy-
drolysis of GTP is involved in the fission of the
caveolae structures away from the plasma
membrane. Thus, it appears that NO and the
activation of cGMP via GTP appear to be im-
portant in the regulation of transendothelial
permeability (14).

Recent evidence from in situ rat perfusion
studies indicates that certain forms of NO will
mediate the opening of the BBB to different ex-
tents, depending on the NO donor used for
treatment (7). NO itself caused a moderate dis-
ruption of BBB permeability, but the greatest
disruption was caused when the rats were
treated with an NO donor that produced mul-
tiple redox species of NO (7).

Inducible NOS (iNOS)

Unlike eNOS, the inducible isoform of NOS
called NOSII or iNOS is not normally ex-
pressed in healthy cells. INOS is stimulated and
produced via cytokines or inflammatory re-
sponses. There is a lag time of ~8 h between
the induction of the iNOS enzyme and subse-
quent production of NO (13). It is calcium-in-
dependent and is therefore not affected by lev-
els of calcium in the cell like its constitutive
isoform counterparts. Cytokines such as IL-18,
interleukin-6, interferon-vy, and tumor necrosis
factor have been shown to modulate BBB in-
tegrity, and are inducers of iNOS (18). Once ini-
tiated, the production of NO will continue un-
til the stimulatory signal inducing the enzyme
is diminished.

Interestingly, although not detectable in nor-
mal healthy brain, iNOS can be detected in
aged conditions (26). Astrocytes in the aging
brain have high levels of IL-18. IL-18 induces
iNOS, which in turn produces a large quantity
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of NO. Similarly, in AIDS lymphocytes, IL-18
is released, which can influence the BBB. In-
deed, there is evidence that the AIDS brain ap-
pears to look very similar to an aged brain (26).

It is not clear as to whether these observa-
tions are solely due to NO, or to the action of
NO with other molecules or free radicals. Re-
active oxygen species are generated by many
different sources such as the environment (ul-
traviolet rays) or simply the normal function-
ing of the cell (mitochondrial metabolism). Due
to the high volume of blood flow and exchange,
it is common for blood vessels to generate free
radical species including NO, as well as super-
oxide anion (O;" ") (8). Under many conditions
such as reoxygenation after a stroke or injury,
NO and O;" ™ can react to form peroxynitrite.
The rate-limiting step of the peroxynitrite for-
mation is dependent on the molecule’s diffu-
sion rate. Peroxynitrite can isomerize to form
nitrate, which has minimal biological activity
and may act as a mechanism to inactivate the
free radicals NO and O, ™ (1). However, per-
oxynitrite is also a powerful oxidant that can
cause extensive cellular damage by oxidizing
proteins, lipids, and DNA (6). Peroxynitrite can
induce toxicity through nitrosylation of tyro-
sine residues on proteins, thereby critically in-
activating them (20). NO and peroxynitrite
have been implicated in the pathogenesis of
multiple sclerosis where NO was found to be
cytoxic to oligodendrocytes and neurons, and
inhibited the mitochondrial respiratory chain
(17). Elevated levels of nitrate and nitrite are
found in the cerebrospinal fluid of patients
with multiple sclerosis, and the cerebrospinal
fluid levels of nitrite and nitrate correlate with
the breakdown of the BBB (17). It is also possi-
ble for NO itself to nitrosylate thiol groups in
proteins as well.

When produced in excessive amounts due to
stimuli such as infection, NO production may
no longer be beneficial to the cell. Instead, the
large quantities of NO become neurotoxic. The
mitochondrial electron transport chain has
been shown to be impaired by excessive NO,
and therefore diminishes the cellular energy
production levels of adenosine triphosphate
(ATP). This ATP depletion is a hallmark of neu-
ronal cell death (12). Direct evidence that NO
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and O,"~ appear to be involved in cellular tox-
icity involves studies of transgenic animals.
Cu/Zn superoxide dis-mutase is a cytosolic
scavenger enzyme that removes reactive O,"~,
thus preventing the formation of peroxynitrite
(25). The overexpression of Cu/Zn superoxide
dismutase in transgenic mice reduces the in-
farct volume in the middle cerebral artery oc-
clusion model of focal ischemia compared with
that in wild-type mice (25). These findings are
strengthened by outcomes in other studies uti-
lizing neuronal NOS or iNOS knock-out mice
where there was reduced damage to focal isch-
emia compared with controls (22, 23).

SUMMARY

The BBB tightly regulates the passage of mol-
ecules between the systemic circulation and the
brain interstitial fluid. However, there are
many conditions that can alter the permeabil-
ity characteristics of the BBB.

The soluble gas NO is crucial for a variety of
normal physiological functions concerned with
maintenance of the CNS. NO has dual duties
in the CNS, acting as both a neuroprotectant
against viruses and a cytotoxic molecule, aid-
ing in the mediation of tissue damage. The in-
appropriate release of this mediator has been
linked to a variety of pathologies and subse-
quent opening of the BBB (20). What is appar-
ent from this discussion is that NO generated
through the constitutive eNOS is generally pro-
tective. By contrast, the dramatic elevation of
NO generated through induction of iNOS is
usually part of a biochemical cascade stimu-
lated by injury or inflammatory conditions.
Therefore, agents that modulate the activity of
NO may be of considerable interest and thera-
peutic value (20). Attempts have been made in
the pharmaceutical industry to capitalize on
NO and NOS mechanisms to enhance drug de-
livery across the BBB (5). We anticipate that the
basic characterization of biochemical processes
involved in opening the BBB could also be ap-
plied in reducing permeability as either a ther-
apeutic treatment or potentially prophylactic
action for cerebrovascular dysfunctions. The
current availability of more selective inhibitors
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of each of the NOS isoforms and availability of
transgenic animals should aid in this type of
research.
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ATP, adenosine triphosphate; BBB, blood-
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thelial cells; cGMP, cyclic guanosine mono-
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eNOS, endothelial nitric oxide synthase; GTP,
guanosine triphosphate; IL-18, interleukin-18;
iNOS, inducible nitric oxide synthase; NO, ni-
tric oxide; NOS, nitric oxide synthase; O," ", su-
peroxide anion.
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