Design and Analysis of Fast Text Compression
Based on Quasi-Arithmetic Coding

Paul G. Howard and Jeffrey Scott Vitter

To appear in Information Processing and Management.

A shorter version appears in the proceedings of the
IEEE Computer Society/NASA /CESDIS Data Compression Conference,
Snowbird, Utah, March 30-April 1, 1993, pages 98-107.

DEsSIGN AND ANALYSIS OF FaAsT TEXT COMPRESSION
BASED ON QUASI-ARITHMETIC CODING!

Paul G. Howard* Jeffrey Scott Vitter®
Department of Computer Science Department of Computer Science
Brown University Duke University
Providence, R.I. 02912-1910 Durham, N.C. 27706-0129
Abstract

We give a detailed algorithm for fast text compression. Our algorithm, related to
the PPM method, simplifies the modeling phase by eliminating the escape mechanism
and speeds up coding by using a combination of quasi-arithmetic coding and Rice
coding. We provide details of the use of quasi-arithmetic code tables, and analyze
their compression performance. Our Fast PPM method is shown experimentally to be
almost twice as fast as the PPMC method, while giving comparable compression.

1 Introduction

For compression of text files, the best compression results from the use of high-order models
in conjunction with statistical coding techniques. The best compression reported in the
literature comes from the PPM (prediction by partial matching) method of Cleary and
Witten [3]; the most widely used implementation is Moffat’s PPMC. The PPM methods use
adaptive context models with a fixed maximum order, and arithmetic coding for the coder.

In this paper we show that we can obtain significantly faster compression with only a
small loss of compression efficiency by modifying both the modeling and coding aspects
of PPM. The important idea is to concentrate computer resources where they are needed
for good compression while using simplifying approximations where they cause only slight
degradation of compression performance.

On the modeling side, we eliminate the explicit use of escape symbols, we use approximate
probability estimation, and we simplify the repeated-symbol-exclusion mechanism. For the
coder, we replace the time-consuming arithmetic coding step with various combinations
of quasi-arithmetic coding and simple prefix codes from the Rice family. Quasi-arithmetic
coding, introduced and explained in [6], is a variation of arithmetic coding [11] that uses
lookup tables after performing all the arithmetic ahead of time. The computations are done
to low precision to keep the table sizes manageable.

In Section 2 we briefly describe the PPM method and our speed-oriented enhancements.
In Section 3 we describe our implementation, including a detailed example showing both en-
coding and decoding using quasi-arithmetic coding. In Section 4 we analyze quasi-arithmetic
coding, showing that using it instead of full-precision arithmetic coding causes only a small
loss of compression efficiency. In Section 5 we show experimentally that our methods run
nearly twice as fast as PPMC, with comparable compression.

2 Prediction by Partial Matching

The Cleary-Witten PPM method. The PPM idea is to maintain contexts of different
lengths up to a fixed maximum order o. To encode a new symbol, we check whether the
current order-o context has occurred, and if so, whether the new symbol has occurred
in that context. If it has, we use arithmetic coding to encode the symbol based on the

1A shorter version of this paper appears in the proceedings of the IEEE Computer Soci-
ety /NASA /CESDIS Data Compression Conference, Snowbird, Utah, March 30-April 1, 1993, 98-107.

2Support was provided in part by NASA Graduate Student Researchers Program grant NGT-50420, by
a Universities Space Research Association/CESDIS associate membership, and by National Science Foun-
dation grant IRI-9116451.

3Work was performed while the author was at Brown University. Support was provided in part by a
National Science Foundation Presidential Young Investigator Award with matching funds from IBM and by
Air Force Office of Scientific Research grant number F49620-92-J-0515. Additional support was provided
by a Universities Space Research Association/CESDIS associate membership.

Order Context Symbol Count Action

3 nin — — automatic escape

2 in . 1 NOT FOUND Symbol
n 1 NOT FOUND, escape 0

1 n . 1 exclude 1 n
n 1 exclude 9 i
1 1 NOT FOUND, escape 3 e

0 — n 4 exclude 4 t
1 3 exclude 5 h
. 2 exclude 6 b
e 2 NOT FOUND 7 g
t 1 NOT FOUND 8 new-symbol
h 1 NOT FOUND 9 end-of-file
b 1 NOT FOUND
g 1 FOUND

-1 Full alphabet not needed.

(a) (b)

Table 1: Example of PPM operation, maximum coding order o = 3. (a) Standard PPM.
Suppose we are encoding the short message “inmthesbeginning” (= representing the space
character), and that we have coded all but the final ‘g’. The current order 3 context, ‘nin’,
has never occurred, so we try order 2. Neither of the symbols that have occurred in the
current order-2 context are the one we want, so we explicitly escape to order 1. At order 1
we can exclude ‘o’ and ‘n’ since we already checked them at order 2; ‘i’ is not the letter we
want, so we escape to order 0, the empty context. At order 0 we exclude ‘n’, ‘i’, and ‘w’,
and check the others until we come to ‘g’. This is the letter we want, so we code it and stop.
If the symbol had not yet occurred in the message, we would have escaped to order “—1”
which includes the entire alphabet. In this example contexts of all orders have been created
or updated after coding each symbol. (b) Concatenated list in Fast PPM at the same point
in the coding. It results from combining the lists of various orders and eliminating duplicate
symbols. The new-symbol and end-of-file pseudo-symbols have been added to the end of the
list. We code ‘g’ by indicating 7 NOT-FOUNDs and one FOUND.

current symbol counts in the context. Otherwise, we encode a special escape symbol (whose
probability must be estimated) and repeat the process with progressively shorter contexts
until we succeed in encoding the symbol. (In the shorter contexts we may exclude from
consideration symbols that have already been rejected in longer contexts.) If a symbol has
never occurred in any context, we escape to a special context containing the entire alphabet
(including a special end-of-file symbol, but possibly excluding symbols already rejected),
thus ensuring that every symbol can be encoded. Table 1(a) illustrates the coding of one
symbol using the PPM method.

The symbols are coded using a multi-symbol arithmetic coder. The probabilities passed
to the coder are based on symbol frequency counts, periodically scaled down to exploit
locality of reference. At least seven different methods have been used to estimate the escape
probability [1,3,6,8,10]; Moffat’s PPMC [8] is the most widely used, although our PPMD
method [6] consistently gives about one percent better compression on text files.

Fast PPM. We observe that the use of arithmetic coding guarantees good compression
but runs slowly: the multi-symbol version used in PPMC requires two multiplications and
two divisions for each symbol coded, including escapes. We also note that often the PPM
method predicts very well. When we compress text files using a maximum order of 3 or
more, we find that the symbol that actually occurs is the most frequent symbol in the longest
available context more than half the time, as seen in Table 2. This implies that the escape
mechanism is not needed very often. (This is one reason for the observations by Cleary,
Witten, and Bell that the choice of escape probability makes little difference in the amount

Maximum order

File 1 2 3 4 5

bib 30.3 47.0 587 62.6 63.5
bookl | 26.9 39.4 48.8 53.2 54.2
book2 | 24.5 39.7 52.9 59.4 61.2
news | 22.6 37.9 504 554 564
paperl | 25.2 42.1 52.6 55.6 56.0
paper2 | 26.5 41.3 51.4 54.8 55.3
progc | 27.9 45.9 54.9 57.0 574
progl |31.0 49.3 60.4 64.0 65.3
progp | 38.0 56.4 65.8 67.7 68.2
trans | 33.6 52.9 659 69.7 70.7

Table 2: Probability of finding next symbol in one trial. We show the percentage of symbols
that are found as the most probable symbol in the first usable context. The rows represent
the ten text files of the Calgary corpus. The columns represent different maximum model
orders. The compression program is a version of Fast PPM in which the symbol lists within
each context are maintained in approximate frequency count order: when a symbol occurs,
its count is compared with that of its predecessor in the list; if the current symbol’s count 1s
greater than or equal to that of its predecessor, the two symbols are transposed in the list.
For models of maximum order 3, 4, or 5, we find the current symbol in the first position of
the longest context more than half the time.

of compression obtained.) Finally, we recall that arithmetic coding significantly outperforms
prefix codes like Huffman coding only when the symbol probabilities are highly skewed.

In the methods presented here, we eliminate the escape mechanism altogether. First
we concatenate the symbol lists of the current contexts of various orders, beginning with
the longest, as shown in Table 1(b). (Of course the concatenation is only conceptual. In
practice we simply search through the context’s lists, moving to the next list when one is
exhausted and stopping when we find the current symbol.) To avoid wasting code space, we
exclude all but the first occurrence of repeated symbols using the fast exclusion mechanism
described in Section 3.

We must identify the current symbol’s position within the concatenated list. We choose
one of a number of related methods, our choice depending on the speed and compression
required. The idea is to use binary quasi-arithmetic coding to encode NOT-FOUND/FOUND
decisions for the symbols with highest probability, then if necessary to use a simple prefix
code (in particular, a Rice code) to encode the symbol’s position in the remainder of the list.
For maximum speed, we can eliminate the quasi-arithmetic coding step altogether, while
for maximum compression we can eliminate the prefix code, using only a series of binary
decisions to 1dentify each symbol. Using quasi-arithmetic coding for just the first symbol in
the longest context is a good practical choice, as i1s using quasi-arithmetic coding until the
FOUND probability falls below a specified threshold. Lelewer and Hirschberg [5] also use
the idea of coding a symbol’s position within a PPM context list.

Quasi-arithmetic coding. In arithmetic coding, we subdivide the real interval [0, 1), the
lengths of the subdivisions being proportional to the probabilities of the events that can
occur, then select the subinterval corresponding to the event that actually occurs. We
recursively repeat the subdivision and selection process for all input symbols. At the end
of coding we output enough bits to distinguish the final interval from all other possible
final intervals. In practice we use integer arithmetic and subintervals of an integer interval
[0, N). We output bits as soon as we know them and expand the interval, allowing us to
limit the coding delay and to use finite precision arithmetic. Witten, Neal, and Cleary [11]
present a very clear implementation of arithmetic coding; they use a large N for the interval,
namely N = 65,536. In [6] we introduce guasi-arithmetic coding, a reduced-precision version
of the Witten-Neal-Cleary implementation of arithmetic coding. Our idea is to do all the
arithmetic ahead of time and to store the results in lookup tables. Since the number of coder
states is 3N2/16, if we choose a small enough value for N, the number of coder states will
be small enough to permit keeping all the lookup tables in memory. Table 3 is the entire
coding table for N = 8; in practice somewhat larger values of N give slightly better results.

Start Probability | U mput Tinput giort Probability 0 input I'input

state of 0input Out Next Out Next state of 0 input Out Next Out Next
state state state state
[0,8) 0.000-0.182 | 000 [0,8) | — [1,8) [1,7) 0.000—0.244 | 001 [0,8) | — [2,7)
0.182-0.310 | 00 [0,8) | — [2,8) 0.244 - 0415 | of [0,8) | — [3,7)
0.310 - 0437 | 0 [0,6) | — [3,8) 0415 -0585 | 0 [2,8) | 1 [0,6)
0.437-0563 | 0 [0,8) | 1 [0,8) 0.585 — 0.756 | — [1,5) | 1f [0,8)
0.563-0.690 | — [0,5) | 1 [2,8) 0.756 — 1.000 | — [1,6) | 110 [0,8)
0.690 —0.818 | — [0,6)) 11 [0.8) 50000 0203 | 001 [0,8) | £ [0,8)
0.818 -1.000 | — [0,7) | 111 [0,8) 0.293 - 0.500 | of [0,8) | f [2,8)
[0,7) 0.000 - 0.208 | 000 [0,8) | — [1,7) 0.500 - 0.707 | 0 [2,8) | 10 [0,8)
0.208-0.355 | 00 [0,8) | — [2,7) 0.707 - 1.000 | — [1,5) | 101 [0,8)
0.355 - 0.500 | 0 [0,6) \ — [37) 750000~ 0.369 | 001 [0,8) | £ [0,6)
0.500 —0.645 | 0 [0,8) | 1 [0,6) 0.369 - 0.631 | of [0,8) | ff [0,8)
0.645-0.792 | — [0,5) | 1f [0,8) 0.631 -1.000 | 0 [2,8) | 100 [0,8)

0.792 - 1.000 | — [0,6) | 110 [0,8)
[2,8) 0.000 - 0.244 | 010 [0,8) | — [3,8)
[0,6) 0.000 - 0.244 | 000 [0,8) | — [1,6) 02640415 | 01 [0.8) | 1 [o.8)
0.244-0415 | 00 [0,8) | £ [0,8) o415 0585 | £ [06) | 1 [28)
0.415-0.585 | 0 [0,6) | £ [2,8) 0.585 - 0.756 | £ [0,8) | 11 [0,8)
0.585 - 0.756 | 0 [0,8) | 10 [0,8) 0.756 — 1.000 | — [2,7) | 111 [0,8)

0.756 — 1.000 | — [0,5) | 101 [0,8)
[2,7) 0.000 - 0.293 | 010 [0,8) | — [3,7)
[0,5) 0.000 - 0.293 | 000 [0,8) | — [1,5) 0293 0500 | 01 [08) | 1 [0.6)
0.293 - 0.500 | 00 [0,8) | £ [0,6) 0500 0707 | £ [0.6) | 1f [o.8)
0.500 = 0.707 0 [0,6) | ff [0,8) 0.707 ~ 1.000 | £ [0,8) | 110 [0,8)

0.707 - 1.000 | 0 [0,8) | 100 [0,8)
[3,8) 0.000 - 0293 | 011 [0,8) | 1 [0,8)
[1,8) 0.000 - 0.208 | 001 [0,8) | — [2,8) 0293 0500 | £f [08) | 1 [28)
0.208 - 0.355 | Of [0,8)) — [3,8) 0.500 - 0.707 | £ [2,8) | 11 [0,8)
0.355 - 0500\ 0 [2,8) | 1 [0,8) 0.707 - 1.000 | — [3,7) | 111 [0,8)

0.500 - 0.645 | — [1,5) | 1 [2,8)
0.645-0.792 | — [1,6) | 11 [0,8) [3,7) 0.000-0.369 | 011 [0,8) | 1 [0,6)
0.792 - 1.000 | — [1,7) | 111 [0,8) 0.369 —0.631 | ff [0,8) | 1f [0,8)
0.631 - 1.000 | f [2,8) | 110 [0,8)

Table 3: Complete quasi-arithmetic coding code table for N = 8, based on the arithmetic
coding method described by Witten, Neal, and Cleary. The initial state is [0,8). An fin
an “Out” (output) column indicates that the bits-to-follow count should be incremented.
Within a given state we choose the row based on the probability of a ¢ input; the probability
ranges are calculated according to Equation (1).

Rice codes. Because a quasi-arithmetic coder must encode a number of binary decisions,
a text coder that uses quasi-arithmetic coding alone can take almost as long as PPMC. By
encoding a number of decisions at once, however, we can speed up the coder. Rice codes [9]
are eminently suitable for encoding a number of NOT-FOUND decisions followed by a single
FOUND decision.

Each Rice code has a non-negative integer parameter k. We encode a non-negative
integer n by outputting [n/2*] in unary, then outputting n mod 2* in binary. In practice,
we divide the binary representation of n into high- and low-order parts, the low-order part
consisting of & bits; then we output the high-order part as a unary number, and the low-
order part directly as a binary number. For example, to encode n = b with the Rice code
whose parameter k = 2, we divide 519 = 1015 into 1-01, output 10 (the unary representation
of 1, the high order part), and then output 01 (the low order k bits). Several Rice codes
are illustrated in Table 4.

Strictly speaking, Rice codes apply to exponential distributions, but in fact they will
give good compression for almost any decaying probability distribution. If we keep our
symbol lists ordered by frequency count within each context, the concatenated list used to
find a symbol will be in decreasing probability order except possibly for bumps where the
context lists are joined, so we can use Rice coding to encode symbol positions within the
concatenated lists.

k=0 k=1 k=2 k=3
0- 0-0 000 0-000

10- 0-1 001 0-001

110 100 010 0-010
1110 101 011 0-011

11110- 110-0 ~ 10-00 0-100
111110- 110-1 10-01 0-101
1111110- 1110-0 10-10 0-110
11111110- 11101 10-11 O-111
111111110- 11110-0 110-00 10-000
1111111110- 11110-1 110-01 10-001

O 0O R W= O3

Table 4: Examples of the beginnings of some Rice codes for several parameter values. In
this table a midpoint (-) separates the high-order (unary) part from the low-order (binary)
part of each code.

To choose the parameter value k, in each context we maintain a cumulative count for
each reasonable parameter value of the number of bits that would have been required if we
had always used that parameter value; we then choose the parameter value with the smallest
count. This parameter estimation method is presented in detail in [7], where we prove that
under reasonable assumptions it produces a code length only O(\/{) bits in excess of that
of the optimal Rice code for a context that occurs ¢ times.

Rice codes are a subset of Golomb codes [4]; in Golomb codes we encode n by outputting
[n/m] in unary and n mod m in binary (adjusted to avoid wasting code space if m is not a
power of 2). Since the Rice codes are just the Golomb codes where m is a power of 2, Rice
codes are somewhat simpler. Since there are fewer reasonable Rice codes, the parameter
estimation technique is faster. We could use Golomb codes in the Fast PPM method; in
practice, Rice codes run slightly faster and give about 1 percent worse compression.

3 Implementation

In this section we describe an implementation of the Fast PPM text compression system.
We explain the differences in modeling between our method and the PPMC method. Then
we discuss the coding phase, particularly quasi-arithmetic coding with precomputed tables.
We give an extended example that includes complete coding tables for a small coder.

Data structure for high order models. We use a multiply-linked list structure similar
to the vine pointers of Bell et al. [2]; the structure is illustrated in Figure 1. In the versions
of the Fast PPM system that use Rice coding, we keep the context lists sorted according
to frequency count, while in the version that uses only quasi-arithmetic coding we do not
reorganize the lists at all.

We delay creating new nodes in order to save time and control the number of nodes
present. Every symbol instance appears simultaneously in contexts of all orders from 0
to o, but we do not create nodes for all possible orders. Instead, we create at most one
new node for any symbol instance, just one order higher than the one at which the symbol
was found. (If it was found at the highest order, we do not create any new nodes.) This
procedure runs somewhat counter to a recommendation of Bell et al. [2, pages 149-150],
but compression does not appear to suffer greatly. We also use a lazy update rule as in [2],
updating statistics only for contexts actually searched. In our implementation we allow
the model to grow without bound, never deleting nodes or restarting the model. This is a
reasonable approach considering the increasing availability of large amounts of inexpensive
memory. Hirschberg and Lelewer [5] use a hashing approach to save space in PPM-like
models.

Exclusion mechanism. The standard approach for exclusions is to maintain a bit map
of alphabet symbols, together with a list of currently excluded symbols to quickly reset
the bit map after every symbol. We can make resetting the exclusion map unnecessary by

s *
119 119
in na ‘] nn . ni .
n —— o L n —— 1 —
30417 | (L] 9 [1 1]
—J J
Null context V(yrj D)
! : o 7B . T (T g T
o i n — = t — g
o—j_ O see D—j_
5] 1]~ 3 1]y I 14 1]~
L
- o))))

Figure 1: Implementation of part of the multiply-linked list data structure for Fast PPM,
maximum order o = 3, after coding everything but the final ‘g’ in “insthesbeginning”. Each
node except at the highest order is both a node in the list for a certain order (middle link)
and the head of a list of the next greater order (upper link). Each node also points to the
head of the list of the next smaller order (lower link). For example, the node labeled ‘in’ is
the first (and only) node in the ‘i’ context; it is the head of the list for the ‘in’ context, on
the top row; and it points to the head of the list for the ‘n’ context. The numbers in the
nodes are frequency counts. To code the last ‘g’, we would begin at node ‘in” and follow the
links in the order indicated by the small boxed numbers.

using a time stamp array, with one element for each alphabet symbol. The “time” is the
position of the current symbol within the file. When we reject a symbol in the concatenated
list, we write the current time in the symbol’s position in the time stamp array. If a
symbol’s entry in the array is the same as the current time, then we must have previously
encountered it in the concatenated list for the current symbol, so we can exclude it. We
must clear the time stamp array only when the symbol position counter overflows, typically
after about 232 & 4 x 10° bytes. When we are using quasi-arithmetic coding for all coding,
this mechanism introduces a small inaccuracy in the FOUND/NOT-FOUND probabilities:
the NOT-FOUND probabilities will be higher than they should be since they include symbols
further down the list that should be excluded. Fortunately the effect is minor.

Coding new symbols and end-of-file. At any point in the coding, the concatenated,
duplicate-free context list contains exactly & symbols, where k is the number of distinct
alphabet symbols seen so far in the file. To deal with symbols not yet seen in any context,
we add a pseudo-symbol whose meaning is “new symbol”. When a new symbol occurs,
we send the new-symbol pseudo-symbol, followed by the uncoded bits of the new symbol.
(Using arithmetic coding to identify new symbols requires considerably more work and saves
only klog, n — (log, n! — logy(n — k)!) bits for a file with k distinct characters drawn from
an n-character alphabet. For n = 256 and k& = 100, this is about 4 bytes.) We also append
a second pseudo-symbol to the concatenated list; its meaning is “end-of-file”. Hence a
sequence of k +1 NOT-FOUNDs (however we choose to code them) means that the file is
complete.

Coding. We now explain the coding mechanism and illustrate it with a complete tables
and a short example using a small coder. In practice we would use larger tables, but their
size remains manageable; the construction and use of the tables follows exactly the same
principles. In the example we use N = 8, i.e., the full interval is [0,8). Using N = 32
improves compression by about 3.5 percent, and using N = 128 gives only another 0.2
percent improvement.

Probability estimation for quasi-arithmetic coding. We use a modification of the

scaled-count technique to estimate the FOUND/NOT-FOUND probabilities used by the

Index Counts Probability Transitions
F NF of F after F after NF
P=0 1 4 0.200 = 3 = 0
=1 1 3 0.250 = 4 = 0
= 2 1 2 0.333 P=17 P= 1
P= 3 2 4 0.333 P=5 P= 1
= 4 2 3 0.400 P=3 P= 3
= 5 3 4 0.429 =9 = 4
= 6 1 1 0.500 P =13 P= 2
=7 2 2 0.500 P=11 P= 4
P= 3 3 3 0.500 P =10 P= 5
= 9 4 4 0.500 P =10 = 5
P =10 4 3 0.571 P=11 = 9
Gr=1 3 2 0.600 P=12 P= 38
P =12 4 2 0.667 P =14 P= 10
P =13 2 1 0.667 P =14 P= 7
OpP=14 3 1 0.750 P=15 @QP= 11
P =15 4 1 0.800 P =15 = 12

Table 5: Probability arrays for quasi-arithmetic coding.

quasi-arithmetic coder. In effect we use small counts for the FOUND and NOT-FOUND
events at each decision point; i.e., we keep a count pair F : NF. Only a few bits are used for
each count. When either count overflows, we scale both counts downward; the new scaled
count pair is the closest to the (unavailable) new count pair, closeness being measured by
average excess code length.

In the implementation we denote each possible pair of counts by an index number, and
we precompute all the transitions to new count states, including those requiring scaling.
In Table 5 we show the correspondence among counts, probabilities, and probability index
numbers for a small example coder, as well as all the transitions. For example?, @ index
P = 14 corresponds to F : NF = 3 : 1 and @We find that P = 11 is the index of the new
count state after a NOT-FOUND event, where @ index P = 11 corresponds to F : NF =3 : 2.
In the example we allow counts to reach 4; in practice we allow somewhat larger counts (up
to 10 or so), and allow some of the unbalanced counts to be larger than the balanced ones.
It is quite feasible to store each probability index number in one byte. Only the transition
columns are needed by the coder.

Use of quasi-arithmetic coding. We use quasi-arithmetic coding to encode binary de-
cisions, with probabilities (indicated by probability index numbers) supplied by the model.
In the implementation we include internal states corresponding to expandable subintervals.
The process consists of selecting a new state based on the current event and event probabili-
ties, possibly followed by the output of some bits and a second transition to an unexpandable
state. This mechanism makes very efficient use of space in the code tables; allowing us to
use a larger full interval and hence to obtain more precise coding and more compression.

We use a pointer into a code table to indicate the state of the coder, corresponding to
the current interval in a true reduced-precision arithmetic coder. Table 6 shows a complete
code table for N = 8 (full interval [0, 8)); the initial state is Qus, marked @4) in the table. In
practice we use a somewhat larger value of N, say 32. We use left subintervals for FOUND
decisions and right subintervals for NOT-FOUND decisions.

We illustrate the use of the coder with an example. @ Suppose we are in state Q17 =
[1,7), the F : NF counts are 3 : 1, indicated by index P = 14 @, and the next decision
is NOT-FOUND. @The W entry for state @17 18 Ws since the width of the interval is 6;
@ We is a pointer to one of the five vectors in the delta array (Table 7), the interface
between the probability estimator and the coder. (In Section 4 we show how to find the
cutoff probabilities between successive values of A, which can then be used with Table 5 to
compute the delta array.) @ We use P = 14 to index into the W vector, and (8) find A = 2;
this is the size of the right subinterval of [1, 7). @ If the decision were FOUND, we would

4 The small circled numbers key the text to the tables.

Terminal states Nonterminal states
w H T L R F N Q@

Qos Ws Hg 8 Qos |0 — 0 1 Qos More nonterminal states
Qo7 | Wr Hr 7 Qos |0 — 0 1 Qos L R F N Q
Qos | We Hs 6 Qo2 |0 0 0 2 Qos

Qs | 1 — 0 1 Qos

W, H 5 0 00 0 3
Qos 5 5 Qo1 Cos Ov |1 = 0 1 Qos
Qs | W7 Hsg 8 Qua |0 — 0 1 Q2 Qe | 1 0 0 2 Qos
@Ql? W6® H7 7 Qs |0 — 1 2 Qos Qs | 1 00 0 3 Qos
58 - 08

@Q15 W, Hs 5 Q57 1 _ 1@ 2@ QOS@
Qs | We Hg 8 Qe |— — 1 1 Qos Qs | 1 01 0 3 Qos
Q2 | Wy Hy 7 Qs | — — 1 1 Qos Qs | 1 1 0 9 Qos

Q¢ | 0102 Qos Qer |1 10 0 3 Qo
Q|0 10 0 3 Qos
1 11 0 3
Qas | W Hs 8 Qi | — — 1 1 Qa2 @rs @os
Qa7 | We Hy 7 Qs | — — 2 2 Qos
Qs |0 11 0 3 Qos

Table 6: Complete implementation of the quasi-arithmetic coding table for N = 8. Terminal
states are the states that appear in Table 3; nonterminal states are internal states that can
be expanded with output. The L and R entires are used only by the encoder, the T"and N
entires only by the decoder, and all other entires by both. This table and the companion
delta array (Table 7) and right-branch array (Table 8) are considerably more compact and
faster in operation than the conceptual N = 8 quasi-arithmetic coder shown in Table 3.

move down A = 2 rows in the code table to @15, a “terminal state” (one for which no output
or interval expansion is possible). But in fact the decision is NOT-FOUND, so We use
the H entry for state 17, namely H7, which indicates that 7 is the high end of the interval
[1,7). @) H; is a pointer to one of the four vectors in the right-branch array (Table 8).
@ We use A = 2 as an index into the H7 vector, and @ find the next state, @s7. We go
to state (57 in the code table. It 1s a nonterminal state, so we perform the output indicated
by the L, R, F', and @) entries, which were computed by applying the Witten-Neal-Cleary
algorithm to the interval [5,7).

To do the output, we use a two-byte buffer and two counts (Table 9). We insert new bits
into the upper end of the low-order byte, then shift the useful bits into the high-order byte;
when the high-order byte is full of useful bits, we output them. Continuing the example,
@ suppose that the output buffer contains 6 useful bits, so there is room for 2 more, and that
the pending count is 2, meaning that the next output bit will be followed by two opposite
bits, as in the bits-to-follow mechanism of Witten et al. [11]° The leading output bit L
1s 1, so @ we put 10000000 into the low byte of the buffer (if L had been 0, we would have
put 01111111 into the low byte of the buffer). We then shift left by three bits altogether,
one for the leading bit and two for the pending bits. Since there was only room for two bits,
we shift left by two bits, output 01011010, indicate that space remains for 8 bits, and
shift left by one more bit. The R entry shows that there are no remaining bits. (If
there had been, we would have put them into the upper end of the low-order byte of the
buffer, then shifted them into the high-order byte.) @ The F' entry shows that the pending
count should be increased by 1. The resulting buffer state is shown at @ Finally, @the
() entry shows that the next coder state is (Qog, indicated at .

Decoding is more mysterious but slightly easier than encoding. We illustrate it by
showing how to decode the decision used in the encoding example. Suppose that the encoded
file contains the bytes ... 01011010 01000101 01001000 ..., the first of these bytes
being the byte written in the encoding example. Again we maintain a two-byte buffer,
shown in Table 10; @5) as we begin decoding this decision, all eight bits of the first byte have

5Briefly, when the endpoints of the current interval in arithmetic coding are both in the range [1/s, 3/4)
but on opposite sides of ., we know that the next two output bits are 01 or 10. We do not know what the
next bit is, but whatever it is, the following bit must be the opposite. So we keep track of this fact, and
expand the middle half of the interval. The process can be repeated any number of times.

W4 W5 W6@ W7 WS
P=0 3 4 5 6 6
P=1 3 4 4 5 6
=23 3 4 5 5 . e 1D g,
= 3 3 3 4 5 5
=42 3 4 4 5 A=1|Cws Qs Qo7 Qs
=52 3 3 4 5 A =2 Qs Que Q57@ Qes
= 6| 2 2 3 3 4 A=3|Qx» Qi Qir Qs
= 7| 2 2 3 3 4 A=4|Q1s Q2 Qs (Qus
= 8 2 2 3 3 4 A=5 Qe Qa7 Qs
=9 2 2 3 3 4 A=6 Q7 Q28
P =10 2 2 3 3 3 A=T Qs
P=11 2 2 2 3 3
P=12| 1 2 2 2 3 Table 8: Right branch array. The four
P=13] 1 2 2 2 3 vectors, one for each possible value of
MHP=14] 1 1 2 2 2 the high end of a terminal state, are in-
P=15| 1 1 1 1 2 dexed by A/ the size of the right subin-

terval, to find a pointer to the next
Table 7: Delta array. The five vectors, one for

. ‘ -) state.
each possible terminal state width, are indexed
by probability index numbers to find A, the size
of the right subinterval.

. Bits Pendin
Encod buff & i
ficoding bulter left count Decoding buffer]131ftts
€

(5 10010110 00000000
@ 10010110 10000000
01011010 00000000
10110100 00000000
@ 10110100 00000000

@ 11000101 01001000 | 16
00010101 00100000 | 14
10010101 00100000 | 14

-~ =1 G0 o D
O =W Y

Table 10: Decoding example. Useful
bits not yet processed are shown in bold

Table 9: Encoding example. Useful bits not yet face type.

output are shown in bold face type.

been consumed, the third byte has been read, and the first bit of the next byte has been
changed from 1 to 0, to account for the pending bits left over from the previous decision.
As in the encoder, @We are in state ()17, and we find A = 2 as in steps @ through .
We take the T entry for the current state (T = 7, indicating that 7 is the top of the
current state) and subtract A = 2 to obtain the cutoff value C' = 5 between the left and
right decisions. We shift this value to left-justify it in a byte; since in this coder N = 8§,
three bits of C' are significant, so we shift C' leftward by b bits, giving 10100000. If the
actual value of the high-order byte in the buffer had been less than ', we would have a
left (FOUND) branch, but in this case @3 the high-order byte 11000101 is greater than
(or equal to) the cutoff value, so we have a right (NOT-FOUND) branch. As in steps
through @, we find the next state to be nonterminal state)57, indicated at . @ From
the N entry for state @57 we find that 2 bits are to be consumed (corresponding to the
output of the leading 1 bit and the incrementing of the pending count by 1). To consume
the two bits, we shift the entire buffer leftward by two bits. (We would have paused to read
another byte had the number of useful bits fallen below 9.) Because @ the F' entry for
state ()57 is nonzero, we change the value of the high-order bit of the high-order byte, in
this case from 0 to 1. Finally, @ we use the) entry to find the next state, (Qys, indicated

at .

Use of Rice coding. The use of Rice codes to encode the symbol positions is straight-
forward. The only complication is the difficulty of interleaving the quasi-arithmetic code
output and the prefix code output. The bits (or bytes) must be output by the encoder in
the order that the decoder will read them. The resulting buffering problem can be solved,
but here we sidestep the problem by simply using two separate output files.

4 Analysis of quasi-arithmetic coding

We now show that using quasi-arithmetic coding causes an insignificant increase in the code
length compared with pure arithmetic coding. We analyze several cases.

First we assume that we know the success probability p of each event, and we show both
how to minimize the average excess code length and how small the excess is. In arithmetic
coding we divide the current interval (whose width is W) into subintervals of length L and
R, the left subinterval being associated with the success event; this gives an effective coding
probability ¢ = L/W since the resulting code length is —log, q for the left branch and
—log,(1 — ¢) for the right. When we encode a binary event with probability p using an
effective coding probability ¢, the average code length (p, q) is given by

l(p,q) = —plogy ¢ — (1 — p) logy(1 — q).

If we use exact arithmetic coding, we can subdivide the interval into lengths pW¥ and (1 —
p)W, thus making ¢ = p and giving an average code length equal to the entropy, —plog, p—
(1 = p)log,(1 — p); this is optimal.

Consider two probabilities p; and ps that are adjacent based on the subdivision of an
interval of width W; in other words, py = (W—=A1)/W, po = (W—2A,)/W,and Az = Ay —1.
For any probability p between p; and ps, either p; or ps should be chosen, whichever gives
a shorter average code length. There is a cutoff probability p* for which p; and ps give the
same average code length. We can compute p* by solving the equation {(p*, p1) = l(p*, p2),

giving A
log =L
* 1 _ ©8 AZ 1
P = T : (1)
log == W — Ay Ay
1_|_ P1]o
1— W — A1 Ay
10 P1
g
1T —ps

Clearly we can construct the delta table by computing cutoff probabilities for every pair of
adjacent coding probabilities and every possible interval size and then applying them to the
count state probabilities. As an example, we compute the value of A, the size of the right
subinterval, to be used for F : NF = 3 : 1 (i.e., for p = %) and W = 6. Clearly A = 1 or 2,
sop1 = Ys (A1 = 2) and ps = % (A = 1). We compute p* = log2/log(:) ~ 0.756, and
choose A = Ay = 2 since 0.667 < 0.750 < 0.756 < 0.833, 1.e., p1 < p < p* < pa. This is the
entry at in Table 7.

Probability p* is the probability between p; and ps with the worst average quasi-
arithmetic coding performance, both in excess bits per decision and in excess bits relative
to optimal compression. (This can be shown by monotonicity arguments.) For a quasi-
arithmetic coder with full interval [0, N), the shortest terminal state intervals have size
W = N/4 4 2; the worst average error occurs for the smallest W and the most extreme
probabilities. We bound the absolute and relative average excess code length in the following
theorem. (This analysis excludes probabilities less than 1/W and greater than (W —1)/W,
for which the relative excess code length becomes infinite. It is not unusual for probabilities
to be very large or small in image compression applications, but in text compression extreme
probabilities occur infrequently.)

Theorem 1 If we construct a quasi-arithmetic coder based on full interval [0, N), and use
correct probability estimates for probabilities between 1/N and (N — 1)/N, the number of
bits per input symbol by which the average code length obtained by the quasi-arithmetic coder
exceeds that of an exact arithmetic coder s at most

4 | 2 1 L0 1 0.497 L0 1

m2 ®em2 N N? N Nz)
and the fraction by which the average code length obtained by the quasi-arithmetic coder
exceeds that of an exact arithmetic coder s at most

1 2 1 0 1 __ 0.0861 0 1
o8z eln2log, N + (log N)2) ™ logy N + (log N)? J°

Compressed size Encoding throughput

(bits per input character) (thousands of characters per second)

File QE;St }(;PAA;[Rice PPMC compress QE;St }(;PAA;[Rice PPMC compress
bib 2.19 2.32 2.12 3.35 23.2 29.0 16.4 111.3
bookl 2.51 2.58 2.52 3.46 23.2 30.1 18.5 108.3
book2 2.29 2.41 2.28 3.28 23.5 30.6 18.1 111.1
news 2.78 2.94 2.77 3.86 16.9 23.5 12.6 99.2
paperl 2.62 2.83 2.48 3.77 17.8 24.7 13.6 106.3
paper2 2.51 2.67 2.46 3.52 21.1 26.5 15.2 102.7
progc 2.68 2.92 2.49 3.87 16.9 23.6 12.4 99.0
progl 1.99 2.16 1.87 3.03 24.8 31.7 18.4 119.4
progp 1.96 2.17 1.82 3.11 22.0 31.1 16.5 98.8
trans 1.88 2.09 1.75 3.27 23.7 32.1 18.0 117.1

Table 11: Compression and encoding throughput on the ten text files in the Calgary corpus.

If we let B = (p1+p2)/2 and note that the maximum value of p in our analysisis 1 —1/W,
we can expand Equation (1) asymptotically in W to express p* as

P =7+ L pok +O(1)W) (2)
6W2p(1-p) '

The O(-) term is 1 /W because of the effect of the maximum possible value of p. The constant
in the O(1/W) term is very small, less than 0.002. We can use Equation (2) to approx-
imate the cutoff probabilities using rational arithmetic; the compression loss introduced
by using the approximation p* instead of the exact value of p* is completely negligible,
never more than 0.06%. In the example above with p; = %3 and ps = 5, we find that
p* = log2/log(®k) ~ 0.75647 and p* = 245/324 ~ 0.75617.

Next we consider a more general case, in which we compare quasi-arithmetic coding
with arithmetic coding for a single worst-case event. We assume that both coders use
the same estimated probability, but that the estimate need not be right. In this case we
find the cutoff probability between p; and ps for Yo < p; < ps by equating the excess
code length from using probability p; for the more probable event and the excess from using
probability pa for the less probable event, that is, by solving the equation — log, p1+log, p* =
—log,(1 = pa) + log, (1 — p*); this yields

1 W — Ay
1 —ps w—1
P1

1+

The excess code length in this case is just log,(W/(W — 1)) ~ 1/W In 2 regardless of the
value of Ay. We note that the smallest value of W is N/4 + 2, and thus we bound the
worst-case excess code length in the following theorem.

Theorem 2 If we construct a quasi-arithmetic coder based on full interval [0, N), and use
arbitrary probability estimates between 1/N and (N — 1)/N, the number of bits per input
symbol by which the code length obtained by the quasi-arithmetic coder exceeds that of an
exact arithmetic coder in the worst case 1s at most

o, N8 4571
2 NT4 " Nm2 "~ N

5 Experimental Results

We compare the Fast PPM method with PPMC and with the UNIX compress program; the
results appear in Table 11. We show results for two versions of Fast PPM: one that uses
quasi-arithmetic coding for all binary decisions (QA) and one that uses quasi-arithmetic
coding for one decision in each context, then uses Rice coding if necessary to encode the
symbol’s position in the remainder of the concatenated context list (QA/Rice). For quasi-
arithmetic coding use we N = 32 and an order-3 coder; the time needed to precompute the

tables 1s not included, since the tables can be compiled into the coder. The PPMC imple-
mentation also uses exclusions and an order 3 model. The test data consists of the 10 text
files of the Calgary corpus. We see that Fast PPM outcompresses the compress program on
all text files. Fast PPM with quasi-arithmetic coding gives compression performance com-
parable to that of PPMC, especially for larger files. We show timing results for encoding
on a Sun SPARCstation1GX; decoding times are similar for the PPM methods. We see
that Fast PPM, even using quasi-arithmetic coding alone, is always faster than PPMC; the
version that uses some Rice coding is nearly twice as fast as PPMC.

6 Conclusion

We have identified several parts of the PPMC text compression method that can be speeded
up by the introduction of simplifying approximations. In the Fast PPM method presented
here we speed up the modeling phase by eliminating the need for escape symbols; since
they occur infrequently anyway this does not hurt compression much. We speed up coding
by using quasi-arithmetic coding instead of arithmetic coding when we need high-precision
predictions, and by using Rice codes to encode the context list positions of low-probability
symbols. Quasi-arithmetic coding gives enough precision for practical use as a binary coder
and runs much faster than true arithmetic coding; Rice codes waste some code space because
of the limitations of their models, but the amount is small because we apply them only to
infrequently occurring symbols.

We have presented a detailed example of a quasi-arithmetic coder and its use, and
analysis showing that the excess code length introduced is only O(1/N) (in both the average
and worst cases) and that the excess relative code length is only O(1/log N'). The analysis
is also useful in the construction of the code tables.

Finally, we have shown experimentally that Fast PPM gives compression comparable to
that of PPMC, with nearly twice the throughput.

References

[1] R. B. Arps, G. G. Langdon & J. J. Rissanen, “Method for Adaptively Initializing a Source
Model for Symbol Encoding,” IBM Technical Disclosure Bulletin 26 (May 1984), 6292-6294.

[2] T. C. Bell, J. G. Cleary & 1. H. Witten, Text Compression, Prentice-Hall, Englewood Cliffs,
NJ, 1990.

[3] J. G. Cleary & I. H. Witten, “Data Compression Using Adaptive Coding and Partial String
Matching,” IEEE Trans. Comm. COM-32 (Apr. 1984), 396-402.

[4] S. W. Golomb, “Run-Length Encodings,” IEEE Trans. Inform. Theory I'T-12 (July 1966), 399—
401.

[5] D. S. Hirschberg & D. A. Lelewer, “Context Modeling for Text Compression,” in Image and
Text Compression, J. A. Storer, ed., Kluwer Academic Publishers, Norwell, MA, 1992, 113-144.

[6] P. G. Howard & J. S. Vitter, “Practical Implementations of Arithmetic Coding,” in Image and
Text Compression, J. A. Storer, ed., Kluwer Academic Publishers, Norwell, MA, 1992, 85-112.

[7] P. G. Howard & J. S. Vitter, “Fast and Efficient Lossless Image Compression,” in Proc. Data
Compression Conference, J. A. Storer & M. Cohn, eds., Snowbird, Utah, Mar. 30-Apr. 1, 1993,
351-360.

[8] A. M. Moffat, “Implementing the PPM Data Compression Scheme,” IEEE Trans. Comm. COM-
38 (Nov. 1990), 1917-1921.

[9] R. F. Rice, “Some Practical Universal Noiseless Coding Techniques,” Jet Propulsion Laboratory,
JPL Publication 79-22, Pasadena, California, Mar. 1979.

[10] T. H. Witten & T. C. Bell, “The Zero Frequency Problem: Estimating the Probabilities of
Novel Events in Adaptive Text Compression,” IEEE Trans. Inform. Theory IT-37 (July 1991),
1085-1094.

[11] T. H. Witten, R. M. Neal & J. G. Cleary, “Arithmetic Coding for Data Compression,” Comm.
ACM 30 (June 1987), 520-540.

