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Abstract

We describe the �rst known algorithm for e�ciently main-
taining a Binary Space Partition (BSP) for n continuously
moving segments in the plane. Under reasonable assump-
tions on the motion, we show that the total number of
times the BSP changes is O(n2), and that we can update
the BSP in O(log n) expected time per change. We also
consider the problem of constructing a BSP for n trian-
gles in R

3 . We present a randomized algorithm that con-
structs a BSP of expected size O(n2) in O(n2 log2 n) ex-
pected time. We also describe a deterministic algorithm that
constructs a BSP of size O((n+ k) log n) and heightO(log n)
in O((n + k) log2 n) time, where k is the number of inter-
section points between the edges of the projections of the
triangles onto the xy-plane.

1 Introduction

The Binary Space Partition (BSP, also known as BSP tree),
originally proposed by Schumacker et al. [26] and further
re�ned by Fuchs et al. [16], is a hierarchical partitioning
of space widely used in several areas, including computer
graphics (global illumination [7], shadow generation [10, 11],
visibility determination [4, 28], and ray tracing [21]), solid
modeling [22, 20, 29], geometric data repair [19], robotics [5],
network design [18], and surface simpli�cation [3]. Key to
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the BSP's success is that it serves both as a model for an ob-
ject (or a set of objects) and as a data structure for querying
the object.

Informally, a BSP B for a set of objects is a binary tree,
where each node v is associated with a convex region �v.
The regions associated with the children of v are obtained
by splitting �v with a hyperplane. If v is a leaf of B, then
the interior of �v does not intersect any object. The regions
associated with the leaves of the tree form a convex decom-
position of space. The faces of the decomposition induced
by the leaves intersect the objects and divide them into frag-
ments; these fragments are stored at appropriate nodes of
the BSP. The e�ciency of BSP-based algorithms depends
on the number of nodes in the tree and on the height of
the tree. As a result, several algorithms for constructing
BSPs of small size and/or small height have been proposed;
see [4, 8, 16, 24, 25, 28, 29].

In this paper, we study cylindrical BSPs in which all
the cuts that do not contain any input objects are made
by hyperplanes parallel to the same �xed direction. We
address two problems. The �rst problem can be formulated
as follows: Let S be a set of n interior-disjoint segments in
the plane, each moving along a continuous path. We want
to maintain the BSP for S as the segments in S move. We
assume that the segments move in such a way that they
never intersect, except possibly at their endpoints. Most
of the work to date deals with constructing a BSP for a
set of \static" segments, which do not move. Paterson and
Yao propose a randomized algorithm that constructs a BSP
of expected O(n log n) size for a set of n segments in the
plane [24]. They also propose a deterministic algorithm,
based on a divide-and-conquer approach, that constructs a
BSP of size O(n log n) in O(n log n) time [24]. Both of these
algorithms are not \robust," in the sense that a small motion
of one of the segments may cause many changes in the tree,
or may cause non-local changes. Therefore, they are ill-
suited for maintaining a BSP for a set of moving segments.

There have been a few attempts to update BSPs when
the objects de�ning them move. Naylor describes a method
to implement dynamic changes in a BSP, where the static
objects are represented by a balanced BSP (computed in a
preprocessing stage), and then the moving objects are in-
serted at each time step into the static tree [23]. Using the
same assumption that moving objects are known a priori ,
Torres proposes the augmentation of BSPs with additional
separating planes, which may localize the updates needed
for deletion and re-insertion of moving objects in a BSP [30].
This approach does try to exploit (by introducing additional
planes) the spatial coherence of the dynamic changes in the
tree. Chrysanthou suggests a more general approach, which
does not make any distinction between static and moving
objects [12]. By keeping additional information about topo-
logical adjacencies in the tree, the algorithm performs inser-
tions and deletions of a node in a more localized way. But
all these prior e�orts boil down to deleting moving objects
from their earlier positions and re-inserting them in their
current positions after some time interval has elapsed. Such
approaches su�er from the fundamental problem that it is



very di�cult to know how to choose the correct time inter-
val size: if the interval is too small, then the BSP does not
in fact change combinatorially, and the deletion/re-insertion
is just wasted computation; if it is too big, then important
intermediate events can be missed, which a�ect applications
that use the tree.

Our algorithm, instead, treats the BSP as a kinetic data
structure, as de�ned by Basch et al. [6]. We view the equa-
tions of the cuts made at the nodes of the BSP and the
edges and faces of the subdivision induced by the BSP as
functions of time. The cuts and the edges and faces of the
subdivision change continuously with time. However, \com-
binatorial" changes in the BSP and in the subdivision (we
precisely de�ne this notion later) occur only at certain times.
We explicitly take advantage of the continuity of the motion
of the objects involved so as to generate updates to the BSP
only when actual events cause the BSP to change combina-
torially.

In Section 3, we describe a randomized kinetic algorithm
for maintaining a BSP for moving segments in the plane. We
assume that the segment motions are oblivious to the ran-
dom bits used by the algorithm. Following Basch et al. [6],
we assume that each moving segment has a posted 
ight
plan that gives full or partial information about its current
motion. Whenever a 
ight plan changes (possibly due to
an external agent), our algorithm is noti�ed and it updates
a global event queue to re
ect the change. We �rst derive
a randomized algorithm for computing a BSP for a set of
static segments, which combines ideas from Paterson and
Yao's randomized and deterministic algorithms, but is also
robust, in the sense described earlier. The \combinatorial
structure" of the BSP constructed by this algorithm changes
only when the x-coordinates of a pair of segment endpoints,
among a certain subset of O(n) pairs, become equal. We
show that under the above assumption on the segment mo-
tions, the BSP can be updated in O(log n) expected time
at each such event. We also show that if k of the segments
of S move along \pseudo-algebraic" paths, and the remain-
ing segments of S are stationary, then the expected number
of changes in the BSP is O(kn log n). As far as we know,
this is the �rst nontrivial algorithm for maintaining a BSP
for moving segments in the plane.

Next, we study the problem of computing a BSP for a
set S of n interior-disjoint triangles in R

3 . Paterson and
Yao [24] describe a randomized incremental algorithm that
constructs a BSP of expected size O(n2) in time O(n3).
They also show that their algorithm can be made determin-
istic without a�ecting its asymptotic running time. It has
been an open problem whether a BSP for n triangles in R3

can be constructed in near-quadratic time. Sub-quadratic
bounds are known for special cases [2, 14, 25]. However,
none of these approaches lead to a near-quadratic algorithm
for triangles in R3 . We present a randomized algorithm (in
Section 4) that constructs a BSP for S of expected size O(n2)
in O(n2 log2 n) time.

The bottleneck in analyzing the expected running time
of the Paterson-Yao algorithm is that no nontrivial bound is
known on the number of vertices in the convex subdivision
of R3 induced by the BSP constructed by the algorithm.
Known techniques for analyzing randomized algorithms,
such as the Clarkson-Shor framework [13] or backwards anal-
ysis [27], cannot be used to obtain a near-quadratic bound
on the size of the convex subdivision corresponding to the
BSP constructed by the Paterson-Yao algorithm, since the
BSP constructed by the algorithm depends on the order in
which triangles are added.

Our algorithm is a variant of the Paterson-Yao algorithm.
We construct the BSP for S in such a way that there is a
close relationship between the BSP and the planar arrange-
ment of lines supporting the edges of the xy-projections of
the triangles in S. We use results from "-net theory [17] and
on arrangements of lines [15] to bound the expected number
of vertices in the convex subdivision of R3 induced by the
BSP and the expected running time of the algorithm.

Finally, we present a deterministic algorithm (Section 5)
for constructing a BSP for a set S of n triangles in R3 . If k is
the number of intersection points of the xy-projections of the
edges of triangles in S, then the algorithm constructs a BSP
of size O((n+ k) log n) in time O((n+ k) log2 n); if k � n2,
the deterministic algorithm constructs a much smaller BSP
than do Paterson and Yao's and our randomized algorithm.
Another nice property of our deterministic algorithm is that
the height of the BSP it constructs is O(log n), which is
useful for ray-shooting queries, for example. It was an open
problem whether BSPs of near-quadratic size and O(log n)
height could be constructed for n triangles in R3 . The height
of the BSP constructed by the randomized algorithms (both
ours and the one by Paterson and Yao) can be 
(n), e.g.,
when S is the set of faces of a convex polytope. Due to
lack of space, we omit many proofs and details from this
abstract.

2 De�nitions

A binary space partition B for a set S of convex (d� 1)-

polytopes in R
d with pairwise-disjoint interiors is a tree

de�ned as follows: Each node v in B is associated
with a convex d-polytope �v and a set of (d � 1)-
polytopes Sv = fs \�v j s 2 Sg. The polytope associated

with the root is Rd itself. If Sv is empty, then node v is
a leaf of B. Otherwise, we partition �v into two convex
polytopes by a cutting hyperplane Hv. At v, we store the
equation of Hv and the set fs j s � Hv; s 2 Svg of polytopes
in Sv that lie in Hv. If we let H+

v be the positive halfs-
pace and H�

v be the negative halfspace bounded by Hv, the
polytopes associated with the left and right children of v
are �v \H�

v and �v \H+
v , respectively. The left subtree

of v is a BSP for S�v = fs \H�
v j s 2 Svg and the right sub-

tree is for S+v = fs \H+
v j s 2 Svg. The size of B is the sum

of the number of nodes in B and the total number of poly-
topes stored at all the nodes in B.

At a node v of B, the cutting hyperplaneHv may support
a polytope s 2 S such that Hv \�v � s, i.e., the portion
of Hv that lies in the interior of �v is contained in s. Such a
cutting hyperplane will be referred to as a free cut. Free cuts
will be critical in keeping the size of B small by preventing
excessive fragmentation of the polytopes in S.

For our purposes, S is either a set of n segments in the
plane or a set of n triangles in R

3 . A unifying feature of
all the BSPs constructed by our algorithms is that the re-
gion �v associated with each node v is a cylindrical cell in
the sense that �v may contain top and bottom faces that
are contained in objects belonging to S, but all other faces
are vertical. In the plane, �v is a trapezoid; in R

3 , �v may
have large complexity, as it may contain many vertical faces.

3 Kinetic Algorithm for Segments

Let S be a set of n non-intersecting segments in the plane.
We �rst describe a randomized algorithm for computing a
BSP B for S when the segments in S are stationary, and



then explain how to maintain B as each segment in S moves
along a continuous path.

Our algorithm makes two types of cuts: a vertical cut
through an endpoint of a segment and an edge cut along
a segment. Edge cuts are always contained totally within
input segments; therefore, they are free cuts. Each face in
the planar subdivision induced by B is a trapezoid; the left
and right boundaries of a trapezoid are bounded by vertical
cuts, and the top and bottom edges are bounded by edge
cuts. At an interior node v of B, if �v is split by a vertical
cut through an endpoint p, we store p at v; the left (resp.,
right) subtree of v corresponds to the BSP for the trapezoid
lying to the left (resp., to the right) of the cut; if �v is split
by an edge cut along a segment s, we store s at v, and the
left (resp., right) subtree of v corresponds to the BSP for
the trapezoid lying below (resp., above) of the cut.

For a node v in B, the combinatorial structure of
the trapezoid �v is the 4-tuple (�v; �v; �v; �v), where �v
(resp., �v) is the endpoint of a segment in S so that the
vertical line passing it contains the left (resp., right) edge
of �v, and �v (resp., �v) is the segment in S containing the
top (resp., bottom) edge of �v. The combinatorial structure
of B is a binary tree, each of whose nodes v is associated
with the set of segments Sv. We will use the combinatorial
structure of the BSP crucially in our kinetic algorithm.

3.1 The static algorithm

We now describe our static algorithm. We choose a ran-
dom permutation hs1; s2; : : : ; sni of S. We say that si has
a higher priority than sj if i < j. We add the segments in
decreasing order of priority and maintain a BSP for the seg-

ments added so far. Let S(i) = fs1; s2; : : : ; sig be the set of
the �rst i segments in the permutation. Our algorithm works
in stages. At the beginning of the ith stage, where i > 0, we

have a BSP B(i�1) for S(i�1); B(0) consists of a single node v,
where �v is the entire plane. In the ith stage, we add si
and compute a BSP B(i) for S(i) as follows: Suppose p2i�1
and p2i are the left and right endpoints of si, respectively.
Let �v be the trapezoid containing p2i�1 in the planar sub-

division induced by B(i�1). We store p2i�1 at v and cre-
ate two children w and z of v. We partition �v into two
trapezoids by drawing a vertical segment through p2i�1; �w

and �z are the trapezoids lying to the left and right of the
vertical line, respectively. The combinatorial structures of w
and z are (�v; p2i�1; �v; �v) and (p2i�1; �v; �v; �v), respec-
tively. We then perform a similar step for p2i. Finally, for
each trapezoid �x that intersects si, we split �x into two
trapezoids �x1 and �x2 by making an edge cut along si. We
store si at x, create two children x1 and x2 of x, and asso-
ciate �x1 (resp., �x2) with x1 (resp., x2). If �x1 is above si
and �x2 is below si, then the combinatorial structure of x1
and x2 are (�x; �x; �x; si) and (�x; �x; si; �x), respectively.

The resulting tree is the BSP B(i) for S(i). See Figure 1 for

an example of constructing B(i) from B(i�1).
The vertical segment drawn upwards (resp., downwards)

from an endpoint pi will be referred to as the upper (resp.,
lower) thread of pi. The segment containing the other end-
point of a thread is called the stopper of that thread. Note
that the priority of the stopper of a thread of pi is higher
than that of the segment containing pi.

This completes the description of our algorithm. Note
that once we �x the permutation, the algorithm is deter-
ministic and constructs a unique BSP. Using an analysis
similar to Paterson and Yao's [24], we can prove the follow-
ing lemmas:

z1

x1

y

u

v p2i�1 v0

y

B(i)

p2i

p2i

z2

x2

z1 z2 x1 x2

z si x

B(i�1)

v v0

u

u

v0

w

z x

w si

p2i

p2i�1

v

Figure 1: The BSP B(i�1), the sequence of cuts made in the

ith stage, and BSP B(i). At each step, the shaded trapezoids
are split. Portions of si that lie in the interior of a trapezoid
are drawn using thick lines.

Lemma 3.1 Let p be an endpoint of a segment in S. The
expected number of segments crossed by the threads of p
is O(log n).

Theorem 3.2 The expected size of the BSP constructed by
the above algorithm is O(n log n), and the expected height of
the BSP is O(log n).

3.2 The kinetic algorithm

We now describe how to maintain the static BSP as the
segments in S move continuously. The position of a seg-
ment si with endpoints p2i�1 and p2i can be speci�ed by a
point (x; y; tan(�=2)) 2 R3 , where (x; y) denotes the position
of p2i�1 in the plane and � denotes the angle that the ray
along the direction �����!p2i�1p2i makes with the (+x)-axis, in the
counterclockwise direction. Let si(t) denote the segment si
at time t, and let S(t) denote the set S at time t. We as-
sume that we choose a random permutation � of S once in
the very beginning (at t = 0), and that � does not change
with time. Let B(t) denote the BSP of S(t) constructed by
the static algorithm, using � as the permutation to decide
the priority of the segments. We describe an algorithm that
updates the BSP under the following assumption:

(?) There is no correlation between the motion of the seg-
ments in S and their priorities. Therefore, the chosen
permutation � always behaves like a random permu-
tation, and Lemma 3.1 and Theorem 3.2 hold at all
times.

We parameterize the motion of the segments by time
and use t to denote time. For a given time instant t, we will



use t� and t+ to denote the time instants t � " and t+ ",
respectively, where " > 0 is an arbitrarily small constant.
As the segments in S move continuously, the equations of
the cuts associated with the nodes of B also change. At the
same time, the edges and vertices of the trapezoids in the
subdivision of the plane induced by B also move. However,
the combinatorial structure of a trapezoid is unchanged un-
til two edges of the subdivision collide, at which point a
trapezoid �v, where v is a node in B, shrinks to a vertical
segment. Since the segments of S are not allowed to inter-
sect, the top and bottom edges of �v cannot meet, so the
combinatorial structure of �v can change only when the left
and right edges of �v become identical. Similarly, the com-
binatorial structure of B changes when the set Sv changes
for some node v 2 B. Since the segments in S are disjoint,
the set Sv changes when the endpoint of a segment in Sv
lies on the left or right edge of �v. Then we can show that
there is a node w 2 B such that �w shrinks to a vertical
segment.

A trapezoid �v shrinks to a segment only when the x-
coordinates of �v and �v become equal, although not all
such instances change the combinatorial structure of B. At
each instant t when a trapezoid �v shrinks to a segment,
either �v or �v moves from a trapezoid �w (at t�) to an
adjacent trapezoid �x (at t+), causing a change in the set
of segments Sw or Sx. Hence, the combinatorial structure
of B(t) also changes at t. Let B(t�) and B(t+) denote the
trees at t� and t+, respectively. We would like to ensure that
the edit distance between B(t�) and B(t+) is small,1 and
that B(t+) can be obtained from B(t�) in time proportional
to the edit distance between them.

xww x

At t� At t At t+

p p

w x

p

Figure 2: Endpoint p moves from �w at t� to �x at t+.
The set Sx changes at time instant t.

A node v of B(t) is called transient if �v does not contain
any endpoint in its interior and a vertical cut was made at
the parent p(v) of v; �v is called a transient trapezoid. See
Figure 3. Using the above assumption and Lemma 3.1, we
can prove that transient nodes have the following properties:

1. No proper ancestor or proper descendant of a transient
node is a transient node.

2. The number of transient nodes in B(t) is O(n).

3. Only edge cuts are made at the descendants of a tran-
sient node v (including v itself). The left and right
edges of the trapezoids associated with all the descen-
dants of v are portions of the left and right edges of �v .

4. The expected number of descendants of a transient
node is O(log n).

1The edit distance between B(t1) and B(t2) is the minimum
number of insertions of nodes, deletions of nodes, and pointer
changes required to obtain B(t2) from B(t1).

v

p(v)

Figure 3: The shaded trapezoid �v is transient.

Recall that for a node v in B(t), �v (resp., �v) denotes the
endpoint whose thread contains the left (resp., right) bound-
ary of �v. The following lemma characterizes the time in-
stances t at which the combinatorial structure of B changes.
Let �(t) = f(�v; �v) j v is a transient node at time tg; the
properties of transient nodes imply that j�(t)j = O(n).

Lemma 3.3 For any time instant t, B(t�) and B(t+) have
di�erent combinatorial structures if and only if there exists
a transient node v in B(t�) such that the x-coordinates of
the endpoints �v and �v become equal at time t.

Intuitively, transient nodes are the highest nodes in B(t)
whose combinatorial structure can change next. If a trape-
zoid contains an endpoint in its interior, it cannot shrink to
a segment; and if an edge cut is made at the parent p(v) of
a node v, then �p(v) also shrinks to a segment whenever �v

shrinks to a segment and �p(v) does not contain an end-
point. Hence, it su�ces to keep track of transient nodes to
determine all the combinatorial changes in B(t). To this end,
we maintain the set �(t). For each pair (�v; �v) in �(t), we
compute the time at which the x-coordinates of �v and �v
coincide, and store these time values in a global priority
queue. We refer to these values of time as critical events.

We will prove that if the combinatorial structure of B
changes at time t, then we can obtain B(t+) from B(t�)
in O(log n) expected time. We will also show that at each
event point, the expected number of changes in the global
event queue is O(log n).

In order to expedite the updating of B, we store some
additional information with the nodes in B: At each node v
of B, we store the number cv of endpoints lying in the in-
terior of �v (cv helps determine the new transient trape-
zoids at t+); and for each endpoint pj , we maintain the
list Tj (resp., Bj) of segments that its upper (resp., lower)
thread crosses; Tj (resp., Bj) is sorted in the (+y)-direction
(resp., (�y)-direction). As the endpoints move, these lists
will be used to compute new stoppers of threads. Although
we do not really need these lists, they simplify the descrip-
tion of the update procedure without a�ecting its expected
running time.

We now describe the procedure for updating the tree at
each critical event. Recall that at each such instant t, an
endpoint p of a segment in S moves from a trapezoid �w

(at t�) to an adjacent trapezoid �x (at t+). See Figure 2.
At time t�, the vertical cut made through p divides �w

into two trapezoids. At time t, one of these two trapezoids
shrinks to a segment, and at t+, a new trapezoid appears
inside �x. These changes inside �w and �x cause combi-
natorial changes in other trapezoids. We exemplify these
ideas below. Let B� = B(t�) and B+ = B(t+). For a



node z 2 B�, let B�z denote the subtree of B� rooted at z;
de�ne B+z similarly.

u

At time t+

s

�v

u

At time t�

�v

�v

�v�v

�v

�v0 = �v

v0v

s v0s

�v0 = �v

u

v

u

s

B
�

B
+

Figure 4: The case when �v and �v belong to the same
segment.

Suppose v is a transient node in at time B�. Hence,
the x-coordinates of the endpoints �v and �v become equal
at time t. Suppose �v and �v are endpoints of the same seg-
ment s 2 S; s is vertical at time t. See Figure 4. Let u
be v's grandparent in B�; the trapezoid �u contains s.
At time t+, a new trapezoid v0 with combinatorial struc-
ture (�v; �v; �v; �v) appears inside u. We obtain B+ by sim-
ply swapping the left and right subtrees of u in B� and
replacing v with v0.

sj

si

sj

(i) (iv)(iii)(ii)

sj

si

si

sj

sjsj

si

sj

si

sj

si

si

si

Figure 5: Some possible changes in the combinatorial struc-
ture of the trapezoids in the subdivision induced by the BSP.

Now suppose �v and �v are endpoints of di�erent seg-
ments. Figure 5 shows some of the ways in which the com-
binatorial structure of trapezoids can change at a critical
event; the other cases can be reduced to these cases by tak-

ing a re
ection with respect to one of the two axes, by going
backward in time, or by doing both. Assume that �v = p2i
and �v = p2j are the right endpoints of the segments si
and sj , respectively, that si lies above sj , that the prior-
ity of si is higher than that of sj , and that the x-coordinate
of p2j is less than the x-coordinate of p2i at t�; see Fig-
ures 5(i) and 5(ii). We now describe how we update B(t) for
this case; we omit the other cases from this abstract, since
they can be handled in a similar manner. Let u and w be the
nodes in B� at which the vertical cuts through p2i and p2j ,
respectively, were made. Then, by our assumptions, v is the
right child of w, and w lies in the left subtree of u. Let uL
be the left child of u, and let wL be the left child of w. The
segments �v and �v supporting the top and bottom edges
of �v, respectively, are the stoppers of the top and bottom
threads of p2j ; obviously, �v does not occur earlier than si in
the random permutation � used to construct B, and �v does
not lie above si. There are two cases to consider depending
on whether �v = si.

At time t� At time t+

w

wL

yuL

�v

�v�v

�v

p2j

x

x

wL

v

u u

p2i p2i

p2j

v v0 x

w x y

B� B+

u u

v0

uL

p(w)

p(w)

si

sj

si

sj

wL wL

Figure 6: The case �v 6= si: arrows on the bottom mark the
horizontal extents of the shaded trapezoids.

Case (i): �v 6= si. See Figure 6. Let x be the highest node in
the right subtree of u (in B�) with the combinatorial struc-
ture (p2i; pr; �v; �v), for some endpoint pr. Then �w and �x

share a common edge in B(t�). At time t+, as p2j leaves
the trapezoid �w and enters �x, �wL expands to �w, �v

disappears, and a new trapezoid �v0 = (p2i; p2j ; �v; �v) ap-
pears (i..e, �x is split at t+ into two trapezoids: �v0 and
the portion of �x lying to the right of the cut through p2j .)
Moreover, �v0 (at time t+) is intersected by sj and by the
set of segments intersecting �v (at time t�). At time t�, �w

is split by a vertical cut through p2j and �wL is split by an

edge cut along sj , while at time t+, �w is split by an edge
cut along sj . Therefore B

+
w is the same as B�wL .
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Figure 7: The edge cuts made in B�v and B+
v0
. Segments

crossing �v and �v0 are labelled with their priorities. The
label next to a node in B� and B+ is the priority of the
segment containing the edge cut made at that node.

To obtain B+, we delete the node w from B�, and if w
was a left (resp., right) child of its parent, we make wL the

new left (resp., right) child of p(w). We then construct B+
v0

by making edge cuts through the segments intersecting v0

in decreasing order of priority (see Figure 7). and attach it
to a descendant of the right child of u as follows: We create
a node y with combinatorial structure (p2i; pr; �v; �v). The
cut associated with y is the vertical cut through p2j (with �v
and �v as its stoppers). The left and right subtrees of y
in B+ are B+

v0
and B�x , respectively. If x is the left (resp.

right) child of its parent p(x) in B�, then y is the new left
(resp. right) child of p(x).

At time t�

w x

�v

sk

si

sj

�v

u u

xv0wL

e
p2i

e

sk

si

sj
p2j

vwL

p2i
p2j

At time t+

Figure 8: The case �v = si: arrows on the bottom mark the
horizontal extents of the shaded trapezoids. The segment e
is intersected by T2j at t

+ but not at t�.

Case (ii): �v = si. See Figure 8. In this case, at time t,
the stopper of the upper thread of p2j switches from si to
a segment lying above si. The new stopper is the �rst seg-
ment sk in T2i, the set of segments intersected by the top
thread of p2i, whose priority is higher than that of sj . All
segments that appear before sk in T2i are crossed by the top

thread of p2j at t+. The node x now corresponds to the
highest node in the right subtree of u (in B�) whose com-
binatorial structure is (p2i; pr; sk; �v), for some endpoint pr.
The new trapezoid �v0 that appears at t+ has combina-
torial structure (p2i; p2j ; sk; �v). The set Sv0 of segments
crossing �v0 at t

+ is sj , the set of segments in T2j and the
segments in T2i stored before sk at t�.

We �rst �nd sk by traversing the list T2i. B+ is con-
structed in the same way as in the previous case. We again
construct the subtree B+

v0
by adding the segments in Sv0 in

decreasing order of their priority.
Finally, in both cases, we insert sj into B2i, the list of

segments in S crossed by the lower thread of p2i, and up-
date T2j . For a node z, cz, the number of endpoints lying
in the interior of �z, changes only if z lies along the paths
from u to the nodes p(w) and y. For such a node z, if cz = 0
and if �p(z) is split by a vertical cut, we add (�z; �z) to the
list �(t+). On the other hand, if cz 6= 0 but z is transient
at t� (z must be an ancestor of x in B�), we delete (�v; �z)
from �(t+). Using Lemma 3.1 and assumption (?), we can
show that the expected time spent in these steps is O(log n).
We thus obtain the main result of this section:

Theorem 3.4 At each event point, B(t) can be updated in
O(log n) expected time.

Note that this theorem makes our BSP a kinetic data struc-
ture that is responsive, e�cient, local, and compact, in the
sense de�ned by Basch et al. [6].

We say that the trajectories followed by a set of segments
are pseudo-algebraic if the segments move so that each pair
of endpoints exchanges y-order only O(1) times. A special
case of pseudo-algebraic trajectories is when all the trajecto-
ries of the endpoints are constant-degree polynomials. If the
trajectories of k of the segments in S are pseudo-algebraic
and the remaining segments are stationary, then the total
number of event points is O(kn). We spend O(log n) ex-
pected time to maintain B(t) at each event point. Hence,
we obtain the following corollary to Theorem 3.4:

Corollary 3.5 Let S be a set of n segments in the plane,
and let G � S be a set of k segments. Suppose each segment
of G moves along a pseudo-algebraic trajectory and the re-
maining segments of S are stationary, the total expected time
spent in maintaining B is O(kn log n).

4 BSPs for Triangles: A Randomized Algorithm

In this section we describe a randomized algorithm for con-
structing a BSP B of expected size O(n2) for a set of n tri-
angles in R3 . The expected running time of the algorithm
is O(n2 log2 n). We describe the algorithm in Section 4.1
and analyze its performance in Section 4.2.

4.1 Algorithm

For an object s in R3 , let s� denote the xy-projection of s.
Let E be the set of edges of the triangles in S, and let E� de-
note the set fe� j e 2 Eg. Let L be the set of lines in the xy-
plane supporting the edges in E�. We choose a random
permutation h`1; `2; : : : ; `3ni of L, and add the lines one-by-

one in this order to compute B. Let L(i) = f`1; `2; : : : `ig.
The algorithm works in 3n stages. The ith stage adds `i
and constructs a top subtree B(i) of B by re�ning the leaves

of B(i�1); B(0) consists of one node (corresponding to R3)

and B(3n) is B. As usual, we have a convex polytope �v



associated with each node v of B(i); �v is a cylindrical cell,
bounded by a set of vertical faces (i.e., faces parallel to the z-
axis) and, possibly, top and bottom faces. If the top or bot-
tom face of �v exists, it is contained in a triangle of S. If v

is a leaf of B(i) and no triangle in S intersects the interior
of �v, i.e., Sv = ;, then v is a leaf of B and we do not re�ne
it further. Otherwise, we partition �v into two cylindrical

cells; these two cells are leaves of B(i+1).
Before describing the ith stage of the algorithm in detail,

we explain the structure of B(i). We need a few de�nitions

�rst. We say that a leaf v of B(i) (or the cell �v) is active if a
triangle in S intersects the interior of �v (i.e. Sv 6= ;); sim-

ilarly, we say that a face f in the line arrangement A(L(i))
is active if the xy-projection of some edge of a triangle in S

intersects the interior of f . For each active leaf v in B(i), �v

satis�es the following properties:

(P1) If a triangle s 2 S intersects the interior of �v, then
the boundary of s also intersects the interior of �v.

(P2) The cell �v is a vertical section of the cylin-
der f(p; z) j p 2 f; z 2 Rg, for exactly one active face f

of A(L(i)); the vertical section may be truncated by
triangles of S at the top and bottom. See Figure 9.

s�

x-axis

�v

z-axis

y-axis

s

f

Figure 9: An active face f and an active cell �v 2 �(f)
that is a vertical section of the cylinder erected on f . The
boundary of triangle s intersects �v and the boundary of s�

intersects f .

In order to execute each stage e�ciently, we maintain
the following additional information:

(i) For each active cell � in B(i), we store the set S� � S
of triangles that intersect the interior of �.

(ii) We maintain the arrangement A(L(i)) as a pla-
nar graph; see [15]. For each active face f in

A(L(i)), we maintain the list �(f) of those ac-

tive cells � in B(i) that lie inside the cylin-
der f(p; z) j p 2 f; z 2 R3g. Note that by Proper-

ties P(1) and P(2), a face f 2 A(L(i)) is active if and
only if �(f) 6= ;:

In the ith stage, we make a cut along the vertical plane
supporting `i, and then make cuts contained in triangles of S

as follows: Let hi be the vertical plane supporting `i and
let h+i (resp., h�i ) be the positive (resp., negative) halfspace
supported by hi.

1. We trace `i through the faces of A(L(i�1)). For each

face f 2 A(L(i�1)) intersected by `i, we use `i to split f
into two faces f+ and f�. Let � be an active cell
in �(f). We partition � into two cells �+ = � \ h+i
and �� = � \ h�i .

2. We then compute the set S�+ � S� of triangles
that intersect the interior of �+. We also compute
the set F�+ � S�+ of triangles whose boundaries do
not cross �+. Similarly, we compute the sets S��

and F�� for ��.

3. We split �+ into a set 	 of jF�+ j+1 cells by making
free cuts along each of the triangles in F�+ . For each
triangle s 2 S�+ n F�+ , we perform a binary search
to determine the unique cell in �0 2 	 that inter-
sects s and add s to S�0 . (�0 is unique because the
triangles in S are pairwise disjoint.) Finally, for each
cell �0 2 	, we add �0 to the set �(f+) if S�0 6= ;.
Next, we perform a similar procedure for ��.

The resulting tree is B(i). It is easily seen that B(i) sat-
is�es properties (P1) and (P2). Note that after the three
lines supporting the xy-projections of the edges of a trian-
gles s 2 S have been processed, s does not intersect the
interior of any cell.

Remark: The free cuts made in Step 3 are crucial in keep-
ing the size of the BSP quadratic. Instead, if we simply
erect vertical planes as we do in the algorithm, and make
cuts along a triangle s 2 S only when all three lines sup-
porting the xy-projections of s's edges have been added,
then there are instances of input triangles for which our al-
gorithm will construct a BSP of 
(n3) size regardless of the
initial random permutation.

4.2 Analysis of the algorithm

We �rst bound the expected size of B. The cuts made in
the algorithm partition each triangle in S into a number of
pieces. We can show that the size of B is boundedby the
total number of pieces into which the triangles in S are split
by the cuts made in the algorithm. To bound the expected
total number of pieces, we count the number of new pieces
created in the ith stage, and sum the result over all stages.
In the ith stage, we count the number of new pieces into
which a triangle s in S is partitioned by the cuts made in
the ith stage, and sum the resulting bound over all triangles
in S.

Let �s be the total number of new pieces into which a
triangle s 2 S is partitioned by the cuts made in the ith
stage. Note that these cuts are contained in the vertical
plane containing `i. For 1 � k � i, let �k be the intersec-
tion of the vertical plane through `k with the triangle s, and
let � = f�k; 1 � k � ig. To calculate �s , consider the line
arrangement A(�) on s. We call a face of A(�) a bound-
ary face if it is adjacent to an edge of s; otherwise, it is
an interior face. Recall that we partition a cell �v, for a

leaf v 2 B(i), only if �v is active. Property (P1) implies that
the cuts made in the ith stage do not intersect the interior of
any interior face of A(�), since such a face cannot intersect
the interior of any active cell �v. Hence, �s is the number
of boundary faces of A(�) that are intersected by �i.



For 1 � k � i, let �(�; k) denote the number of boundary
faces in the arrangement A(� n f�kg) that are intersected
by �k. Observe that the sum

P
1�k�i

�(�; k) equals the

total number of edges bounding the boundary faces of A(�).
Each such edge lies in the zone (in A(�)) of one of the edges
of s. Hence, by the Zone Theorem [9, 15],

X

1�k�i

�(A(�); k) = O(i):

Since `i is chosen randomly from the set L(i), �i can be
any of the lines �1; �2; : : : ; �i with equal probability. There-
fore, the expected value E

�
�s
�
of �s is

E
�
�s
�
=

1

i

X

1�k�i

�(A(�); k) = O(1):

Hence, the total number of pieces created in the ith stage
is O(n). Summing over i, we �nd that the total number
of pieces into which the triangles in S are partitioned into
over the entire algorithm is O(n2). The following lemma is
immediate:

Lemma 4.1 The expected number of nodes in the BSP con-
structed by the above algorithm is O(n2).

For an active face f in A(L(i�1)), let kf be the number
of projected edges in E� that intersect the interior of f . By
Property 1, if a triangle s 2 S intersects the interior of a
cell � 2 �(f), then the boundary of s also intersects the
interior of �. Therefore, an edge of s� intersects the interior
of f . Further, s cannot intersect the interior of two di�erent
cells in �(f); otherwise, s intersects a non-vertical face g
of one of those cells, which is impossible, since each such
face g is contained in a triangle in S and the triangles in S
are pairwise disjoint. As a result, we have

X

�2�(f)

jS�j � kf : (4.1)

We now analyze the expected running time of the algo-
rithm. We �rst count the time spent during the ith stage
in processing the line `i. In Step 1, we spend O(i) time

to trace `i through A(L(i�1)). When processing an ac-

tive face f of A(L(i�1)) that is intersected by `i, for each
cell � 2�(f), we spend jS�j time in Step 2. In Step 3,
we can �nd the cell in the set 	 that intersects a trian-
gle s 2 S�+ n F�+ in O(log jF�+ j) time by performing a bi-
nary search. Hence, the total time spent in Step 3 for the
face f is O(jS�j log jS�j). Thus, (4.1) implies that the total
time spent in processing f is

X

�2�(f)

O(jS�j log jS�j) = O(kf log kf ):

Let Z be the set of all active faces of A(L(i�1)) that are
intersected by `i. The total time spent in processing `i
is
P

f2Z
O(kf log kf ). Using the Zone Theorem [9, 15] and

the theory of random-sampling [13, 17], we can show that
the expected value of

P
f2Z

kf is O(n log n), which implies

the following theorem:

Theorem 4.2 Let S be a set of n non-intersecting triangles
in R3 . We can compute a BSP for S of expected size O(n2)
in expected time O(n2 log2 n) time.

Remark: Using a similar argument, we can also prove that
the expected value of the total number of vertices of the
nodes of B is O(n2). The height of B can be 
(n), e.g., if
the triangles in S form a convex polytope.

5 BSPs for Triangles: A Deterministic Algorithm

In this section we describe a deterministic algorithm for com-
puting a BSP for a set S of n triangles in R

3 . As in the
previous section, let E denote the set of edges of triangles
in S, and let E� = fe� j e 2 Eg be the set of xy-projections
of the edges in E. Let k be the number of intersection points
in E�. Our algorithm constructs in O((n+ k) log2 n) time a
BSP B of size O((n + k) log n). As in the previous section,
each node v of B is associated with a cylindrical cell �v,
but the top and bottom faces of �v are now trapezoids.
Let ��

v denote the xy-projection of the top (or bottom) face
of �v; two of the edges of �

�
v will be parallel to the y-axis.

Let E�
v be the set of segments in E� that intersect the inte-

rior of ��
v and are clipped within ��

v. A segment 
 2 E�
v is

called anchored if its endpoints lie on the two parallel edges
of ��

v and if it does not intersect any other edge of E�
v . The

anchored edges in E�
v can be linearly ordered from top to

bottom (since they are disjoint). Let Av be the set of an-
chored edges in E�

v . Let Fv � Sv the set of all free triangles
in Sv. Recall that a triangle s 2 Sv is free with respect
to �v if no edge s intersects the interior of �v. Since �v is
a cylindrical cell, the triangles in Fv can be sorted by their
heights.

The algorithm constructs B in a top-down fashion by
maintaining a top subtree of B. A leaf v of the subtree is
active if Sv 6= ;. We store the set of all active leaves of the
current subtree in a list. For each active leaf v, we maintain
three sets: Fv, Av, and Sv. Note that the set E�

v can be
easily computed from Sv. At each step, we choose an active
leaf v and compute the cutting plane hv that is used to
split �v into two cells �z and �w. Once hv is chosen, we
can compute �z and �w and the sets associated with them
in O(jSvj+ jFvj) time. If Sw (resp., Sz) is nonempty, we
mark w (resp., z) as being active.

x-axis

z-axis

(iii)(ii)

y-axis

(i)

�v

f

Figure 10: Cuts made in the deterministic algorithm: (i)
Free cut, (ii) Cut parallel to the z-axis through an anchored
edge, and (iii) Cut parallel to the yz-plane through a vertex
of A(E�

v)
.



We choose the cutting plane hv as follows:

1. If Fv 6= ;, we choose the median triangle s of Fv and
set hv to be the plane supporting s. See Figure 10(i).
Recall that the triangles in Fv are ordered by height.
Since s does not intersect any triangle of Sv, each tri-
angle of Sv n fsg belongs to either Sw or Sz. More-
over, Fw; Fz � Fv and Aw; Az � Av.

2. If Fv = ;, i.e., there is no free triangle in Sv, we use Av

to choose the cutting plane, as follows: If Av contains
at least one anchored segment, let 
 be the middle an-
chored segment. Since the anchored segments can be
totally ordered, the middle anchored segment is well
de�ned. We choose the cutting plane hv to be the ver-
tical plane containing 
. See Figure 10(ii). Since hv
may intersect some triangles of Sv, a triangle of Sv
may belong to both Sw and Sz. If a triangle s 2 Sv in-
tersects hv and if none of its edges intersect the interior
of �w (resp., �z), then s 2 Fw (resp., s 2 Fz).

3. Finally, if Av is empty, let � be a vertex in the ar-
rangement A(E�

v) with the median y-coordinate; � is
either an endpoint of a segment of E�

v or an intersec-
tion point of two segments of E�

v . We choose hv to
be the plane x = x(�), i.e., hv is the plane parallel to
the yz-plane and passing through �. See Figure 10(iii).
In this case too, hv can intersect the triangles of Sv.
If kv is the number of intersection points of E�

v , � can
be computed in O(jSv j + kv) time, after some initial
preprocessing. We can again compute the required sets
for w and z in O(jSvj) time.

This completes the description of the algorithm. We now
give the analysis. At each node v, since we choose the mid-
dle free triangle, middle anchored edge, or a middle vertex
of A(E�

v), we can show that the height of B is O(log2 n).
However, if we assign appropriate weights to each free tri-
angle in Fv and to each anchored edge and choose a weighted
median of the free triangles or the anchored edges, we can
improve the height of B to O(log n); for example, see [24].
Following an analysis similar to the one given in [24], we can
show that the number of nodes in B is O((n+k) log n), and
that the running time of the algorithm is O((n+ k) log2 n).
Hence, we obtain the following result:

Theorem 5.1 Let S be a set of n triangles in the plane,
and let k be the number of intersection points of the xy-
projections of the edges of S. Then we can compute
in O((n+ k) log2 n) time a BSP of size O((n+ k) log n) for
S.

6 Conclusions

We have presented an e�cient algorithm to maintain the
BSP of moving segments in the plane. Currently, we do not
know any non-trivial lower bounds for this problem. Re-
cently, Agarwal et al. [1] have extended our result and de-
veloped an algorithm to maintain BSPs for moving triangles
in R3 .

We have also presented algorithms to construct BSPs for
triangles in R

3 . The algorithms are (near-)optimal in the
worst-case. No e�cient algorithm is known for constructing
a BSP of optimal or near-optimal size for triangles in R

3 .
On the other hand, it is not known whether the problem is
NP -hard.
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