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High-Order Entropy-Compressed Text Indexes 

R o b e r t o  Grossi*  A n k u r  G u p t a  t J e f f r ey  S c o t t  V i t t e r  t 

A b s t r a c t  

We present a novel implementation of compressed s u ~ x  
arrays exhibiting new tradeoffs between search time and 
space occupancy for a given text (or sequence) of n sym- 
bols over an alphabet E, where each symbol is encoded by 
lg ]E I bits. We show that compressed su1~x arrays use just  
nHh + O(n lglg n~ lgl~ I n) bits, while retaining full text in- 
dexing functionalities, such as searching any pattern se- 
quence of length m in O(mlg [E[ + polylog(n)) time. The 
term Hh < lg IEI denotes the hth-order empirical entropy 
of the text, which means that our index is nearly optimal in 
space apart from lower-order terms, achieving asymptotically 
the empirical entropy of the text (with a multiplicative con- 
stant 1). I f  the text is highly compressible so that H~ = o(1) 
and the alphabet size is small, we obtain a text index with 
o(m) search time that requires only o(n) bits. Further results 
and tradeoffs are reported in the paper. 

1 I n t r o d u c t i o n  

The online proliferation of text documents and sequence 
data has made finding information difficult. Exhaustive 
search through very large collections is too slow. As 
a result, efficient indexing of massive documents is 
critical. Good indexes for textual and sequence data 
can be constructed quickly and offer a powerful tool set 
that  allows fast access and queries on the text. However, 
storage cost can be significant because of the sheer 
volume of data; hence, we also want our text indexes 
to be a compact and space-efficient representation of 
the text. 

We consider the text as a sequence T of n symbols, 
each drawn from the alphabet E = {0, 1,. . . ,~r}. The 
raw text T occupies n l g l E  ] bits of storage. 1 Without 
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~We use the notation lg~n = (lgn/lgb) c to denote the cth 

loss of generality, we can assume that IEI < n, since 
we only need to consider those symbols that  actually 
occur in T. In practice, text is often compressible by 
a factor of 3 or 4, and sequence data may be more 
highly compressible. The text T is compressible if each 
symbol in the text can be represented, on average, in 
fewer than lg IEI bits. The empirical entropy H is the 
average number of bits per symbol needed to encode the 
text T. We trivially have H < lg IE]. 

For any integer h > 0, we can approximate the em- 
pirical entropy H of the text by the hth-order empirical 
entropy Hh, defined as 

Hh = ~ n=,ln~,2 . . . n~,l~l 
xEE n 

sx,Y 

~ E n n x 
xEE h yES 

= E E - P r ° b [ y ' x ] ' l g P r ° b [ y l x ]  -< lglEl '  
XEE h y ~  

where n ~ is the number of occurrences in the text 
of the h-symbol sequence x, for 0 < x < IE] h -  1, 
and n x'y represents the number of occurrences in the 
text of the concatenated sequence y x  (y immediately 
preceding x), for 0 < y < I E I -  1. Moreover, 
Prob[y,x] represents the empirical joint probability 
that the symbol y occurs in the text immediately 
before the sequence x of h symbols, and Prob[ylx ] 
represents the empirical conditional probability that  
the symbol y occurs immediately before x, given that 
x occurs in the text. 2 High-order empirical entropy 
captures the dependence of symbols upon their context, 
and Hh converges to H for large h. In practice, once h 
gets larger than 4 or 5, the hth-order empirical entropy 
is close to the actual empirical entropy. Lempel and Ziv 
have provided an encoding such that h ~ a lg n (where 
0 < a < 1) is sufficiently good for approximating H 
with Hh; Luczak and Szpankowski prove a sufficient 
approximation when h = O(lgn)  in [8]. 

In order to support fast searching, an index can 
be formed by preprocessing the text T. For any query 

power of the base-b logarithm of n. Unless specified, we use b = 2. 
2The standard definition considers the symbol y immediately 

after the sequence x, though it makes no difference. 
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pattern P of m symbols, the search task is to find P 
in T quickly. When the text is compressible, a natural 
question to ask is whether the index can be compressed 
by a similar amount and still support fast searching. 
Ideally, we would like to achieve nH bits, but  all we can 
quantitatively analyze is nHh, confining our algorithmic 
investigation to the hth-order empirical entropy. Since 
we want the text index to be as space-efficient as 
possible, our goal is nHh bits and we want any amount 
over that  to be as small as possible, preferably o(n) bits. 
Note that  we do not simply compress the text; we also 
support fast decompression and search of a portion of 
the text,  without scanning the entire compressed text,  
which is unusual in classical compression schemes. 

1.1 R e l a t e d  W o r k  A new trend in the design of ad- 
vanced indexes for full-text searching of documents is 
represented by compressed suffix arrays [6, 18, 19, 20] 
and opportunistic FM-indexes [2, 3], in that  they sup- 
port  the functionalities of suffix arrays and suffix trees, 
which are more powerful than classical inverted files [4]. 
(An efficient combination of inverted file compression, 
block addressing and sequential search on word-based 
Huffman compressed text  is described in [15].) They 
overcome the well-known space limitations by exploit- 
ing, in a novel way, the notion of text  compressibility 
and the techniques developed for succinct da ta  struc- 
tures and bounded-universe dictionaries. 

Grossi and Vitter [6] developed the compressed 
suffix array, a space-efficient incarnation of the standard 
suffix array. Using this structure, they implement 
compressed suffix trees in 2n Ig I~I bits in the worst case, 
with o(m) searching time. If we index a 4-gigabyte ASCII 
file of Associated Press news in this manner, it requires 
12 gigabytes, which includes explicit storage of the text. 

The crucial notion of self-indexing text comes into 
play at this point. If the index is able to search for 
and retrieve any portion of the text without accessing 
the text itself, we no longer have to maintain the text 
in raw form--which can translate into a huge space 
savings. We refer to this type of index as a "self- 
index" to emphasize the fact that, as in standard text 
compression, it can replace the text. A self-index has 
the additional feature of avoiding a full scan of the 
compressed text for each search query. 

Sadakane [19, 20] extended the functionalities in [6] 
to show that compressed suffix arrays are self-indexing, 
and he related the space bound to the order-0 empir- 
ical entropy H0, getting the space bound e-lnHo + 
O(nlg lg lEI )  bits, where 0 < c _< 1 and E < lg°(1) n. 
Searching takes O(m lg n) time. If we index the Associ- 
ated Press file using Sadakane's index, we need roughly 
1.6 gigabytes of storage, since we no longer have to store 

the text. However, the index is not as compressible as 
the text,  even though it is still sublinear in the text size. 

The FM-index [2, 3] is a self-indexing data  structure 

=in)gohr~inHh :aOr!~l~ll+gl.l~lg n "~-nel~12~+El lglE') bits, while 
pp " g " g " O(m +lg n) time, where 

I~1 = O(1). It is based on the Burrows-Wheeler 
transform and is the first to encode the index size with 
respect to the high-order empirical entropy. In its space 
complexity, the second-order term may be o(n) bits for 
small alphabet size IZI. Indexing the Associated Press 
file with the FM-index would require roughly 1 gigabyte 
according to the experiments in [3]. 

The above self-indexes are so powerful that  the text  
is implicitly encoded in them and is not needed explic- 
itly. Searching needs to decompress a negligible portion 
of the text and is competitive with previous solutions. 
In practical implementation, these new indexes occupy 
around 25-40% of the text size and do not need to keep 
the text  itself. However, for moderately large alphabets, 
these schemes lose sublinear space complexity even if 
the text  is compressible. Large alphabets are typical of 
phrase searching [5, 21], for example, in which the al- 
phabet is made up of single words and its size cannot 
be considered a small constant. 

1.2 O u r  R e s u l t s  In this paper, we develop self- 
indexing data  structures that  retain fast, full search 
functionality of suffix trees and suffix arrays, require 
roughly the same space as the optimally compressed 
version of the text  to lower-order terms, and have 
less dependency on the alphabet size than previous 
methods [2, 3, 19, 20]. One of the contributions of 
this paper is tha t  we shed light on the significance of 
the lower-order terms in the space complexity of self- 
indexes; these terms can dominate the empirical entropy 
cost when the alphabet grows moderately large. We also 
relate the issue of compressing a full-text index with 
high-order entropy to the succinct dictionary problem, 
in which t keys over a bounded universe n are stored 
in the information theoretically minimum space, Ig (i) 
bits, plus lower-order terms (e.g., see [16, 17]). 

Our main result is a new implementation of com- 
pressed suffix arrays that exhibits several tradeoffs be- 
tween occupied space and search/decompression time. 
In one tradeoff, we can implement the compressed suffix 
array as a self-index requiring nHh + 0 (n Ig lg n~ Igi~ 1 n) 
bits of space and allowing searches of patterns of 
length m in O(mlg IEI + polylog(n)) time. Our method 
is the first self-index reaching asymptotically the high- 
order entropy, nHh, of the text. The index is nearly op- 
timal in space apart from lower-order terms, as the mul- 
tiplicative constant in front of the high-order entropy 
term is i. In some sense, we are in a similar situation to 



843 

T: 

SAo: 
B0: 

rank ( Bo, i): 
ff2o: 

1 
a 

15 
0 
0 
2 

2 3 4 5 6 7 8 9 10111213141516171819202122232~2526272829303132 
b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a # 
16 13 17 19 10 7 4 1 21 28 24 31 14 12 18 9 6 3 20 27 23 3011 8 5 2 26 22 29 25 32 
1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 
1 1 1 1 2 2 3 3 3 4 5 5 6 7 8 8 9 9 101010  11 11 12 12 13 14 15 15 15 16 
4 14 16 20 24 25 26 27 29 30 31 32 1 3 5 6 7 8 10 11 12 13 15 17 18 19 21 22 23 28 9 

list 
list 
list 

a: (2, 4, 14, 16, 20, 24, 25, 26, 27, 29, 30, 31, 32), Ilist a I = 13 
b: (1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 17, 18, 19, 21, 22, 23, 28>, Ilist b[ = 18 
#: (9>, I list #1 = 1 

Figure 1: Level k = 0 in the recursion for the compressed suffix array. 

tha t  of succinct dictionaries, achieving asymptot ica l ly  
the information theoretically min imum space. 

In  another  tradeoff, we describe a different imple- 
menta t ion  of the compressed suffix array, occupying 
e- lnHh+O(nlglgn/ lg~]  n) bits (0 < e < 1/3), so tha t  
searching a pa t t e rn  of length m takes O(m/lgL~ I n + 
l g ~ n l g  1-~ ]El) t ime (1 > ~ > 2e/(1 - e )  > 0). By  fixing 
e = 1/4, for example, we improve previous work bo th  
in terms of  space and search time. W h e n  nHh = o(n) 
and a lphabet  size is small, we obtain  the first self-index 
tha t  simultaneously exhibits sublinear size o(n) in bits 
and sublinear query t ime o(m). More results are s ta ted 
th roughout  the paper.  

1 .3 P r e l i m i n a r i e s  We use cons tant - t ime rank and 
select da t a  s t ructures  [7, 13, 16]. For a bi tvector  B 
of size n, function rankl(B,i) re turns  the number  of 
l s  in B up to (but  not  including) posit ion i; the da t a  
s t ructure  requires O(n lg lg n~ lg n) addit ional  bits. The 
function selectl(B,i) re turns  the posit ion of the i th  1 
in B; the da t a  s t ructure  requires O(n/lg lg n) addit ional  
bits. We can also suppor t  ranko and selecto using 
the same number  of  addit ional  bits. Let t ing  t be the 
number  of elements stored (the number  of l s  in the 
bitvector),  we can replace the bi tvector  suppor t ing  rank 
and select with the constant - t ime indexable dictionaries 
developed by Raman ,  Raman ,  and Rao  [17], requiring 
rig (?)]  + O(tlglgt / lgt)  + O ( l g l g n )  bits. I f  we also 
wish to suppor t  ranko and selccto, we can use the 
fully-indexable version of their s tructure,  called an FID, 
requiring [lg (?)]  + O(nlglgn/ lgn)  bits. 

2 C o m p r e s s e d  Suffix Arrays  

A s tandard  suffix ar ray  [4, 10] is an a r ray  containing 
the posit ion of each of the n suffixes of  text  T in 
lexicographical order. In  particular,  SAIl] is the s tar t ing 
position in T of the i th  suffix in lexicographical order. 
The size of  a suffix ar ray  is O(nlgn) bits, as each of  
the positions stored uses lg n bits. A suffix a r ray  allows 
constant  t ime lookup to  SA [i] for any i. 

The compressed suffix a r ray  [6] contains the same 
information as a s t andard  suffix array. The da ta  
s t ructure  is recursive in nature,  where each of the g = 
lg lg n levels indexes half  the  elements of the previous 
level. Hence, the k th  level indexes nk = n/2 k elements: 

1. Star t  with SAo = SA, the suffix ar ray  for text  T. 
2. For each 0 < k < l g l g n ,  t ransform SAk into a 

more succinct representat ion th rough  the use of a 
bi tvector  Bk, rank function rank(Bk,i), neighbor 
funct ion Ok, and SAk+i (i.e, the recursion). 

3. The final level, k = l g l g n  is wri t ten explicitly, 
using n bits. 

SAk is not  actual ly stored (except at the last level ~), 
but  we refer to it for the  sake of explanation.  Bk is 
a bi tvector such tha t  Bk[i] = 1 if and only if SAk[i] 
is even. Even-posi t ioned suffixes are represented in 
SAk+i, whereas odd-posi t ioned suffixes are not.  In  
order to retrieve odd-posi t ioned suffixes, we employ 
the neighbor function Ok, which maps  a position i in 
SAk containing the value p into the posit ion j in SAk 
containing the value p + 1: 

Ok( i )={  j such tha t  SAk[j] = (SAk[i] mod n) + l }.  

A lookup for SAk [i] can be answered as follows: 

2. SAk+l [rankk(Bk,i)] if Bk[i] = 1 
SAk[i] SAk [Ok(i)] - 1 if Bk[i] = o. 

An example of  the recursion for text  T is given 
in Figure 1 for level k = 0, where a < b < # and 
# is a special end-of-text  symbol.  Here, 00(4) = 16, 
since SAo[4] = 17 and SA0[16] = 1 7 +  1 = 18. To 
retrieve SA0[16], since Bo[16] = 1, we compute  2 .  
SA1 [rank(Bo, 16)] = 2. SA1 [12] = 2 . 9  = 18. To retrieve 
SA0[4], since B014] = 0, we compute  SA0[O0(4)] - 1 = 
SA0[16] - 1 = 1 8 -  1 = 17. 

The  representat ion of Bk and rank(Bk, i) uses the 
methods  of [7, 13, 16]. The  ma jo r  hurdle remains in the 
representat ion of Ok, which is at the hear t  of  compressed 
suffix arrays.  In fact, O0 is the inverse of  the LF 
mapping  in the Burrows-Wheeler  t ransform employed 
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in the FM-index [2, 3]. Grossi and Vitter developed an 
approach based on the notion of E lists. At level k, 
they parti t ion the suffix pointers indexed ( n k - - n / 2  k 
of them) by equal prefixes in the text  of length 2 k. 
For k ---- 0 (level 0), the prefix length is 2 ° = 1; thus 
they group the suffix pointers together according to the 
single symbol immediately preceding each suffix. For 
example, some position p is in list a if the suffix pointed 
to by SAo [p] in T is preceded by an a. For the text  T 
in our example, the E lists for level k = 0 needed to 
represent @k are shown in the bot tom of Figure 1. 

The fundamental property of these E lists is that  
each list is an increasing sequence of positions from 
the text.  Compression is achieved since we can simply 
encode, for each list, the lengths of the gaps in the 
increasing sequence. By concatenating the lists together 
(called Lk in [6]), adding some header and directory 
information, and encoding the gaps of Lk, we can 
achieve constant time access to @k(i) by looking at the 
i th entry in the concatenated list Lk (see [6]). 

Sadakane [19, 20] has proposed an alternative 
method to represent the E lists that  can be bounded 
in terms of the zero-order empirical entropy H0. In or- 
der to achieve self-indexing, he also defines the notion of 
the inverse suffix array SA -1, such that  SA-i[j]  = i if 
and only if SA[i] = j. To compress SA -1 along with SA, 
it suffices to keep SA~ -1 in the last level g. The cost of 
a lookup for SA -1 is the same as that  for SA. Sadakane 
describes a substring algorithm that ,  given an index i of 
the compressed suffix array, decompresses c consecutive 
symbols from the text starting from position SA[i] by 
incrementally applying ~0 each time, for a total cost of 
O(c) time. It is not difficult to extend his method to @k 
for any k, such that  each application of @k decompresses 
O(2 k) symbols, for a total cost of 0 ( c / 2  k + lg ~ n) time. 
We use the inverse compressed suffix array and this ex- 
tended version of decompression in Section 5. In future 
sections, we assume the following set of operations. 

DEFINITION 2.1. ([6, 19, 20]) Given a text T of 
length n, a compressed suffix array for T supports the 
following operations without requiring explicit storage 
of T or its (inverse) suJfix array: 

• compress produces a compressed representation that 
encodes (i) text T ,  (ii) its suffix array SA, and 
(iii) its inverse suffix array SA-1;  

• lookup in SA returns the value of SA[i], the position 
of the ith suffix in lexicographical order, for 1 < i < 
n; lookup in SA -1 returns the value of SA-l[j] ,  the 
rank of the j th  suffix in T,  for 1 _< j <_ n; 

• substring decompresses the portion of T corre- 
sponding to the first c symbols (a prefix) of the s u ~ x  
in SA[i], for l < i < n and l < c < n -  SA[i] + l. 

3 H i g h e r - O r d e r  E n t r o p y  R e p r e s e n t a t i o n  o f  
C o m p r e s s e d  Suffix A r r a y  

In this section, we further reduce the space in the 
compressed suffix array to the size of the text in 
compressed form, replacing the lg ]El factor in the space 
bound to Hh, for any h _< a lgl~ I n with 0 < c~ < 1. 
(Luczak and Szpankowski [8] show that  the average 
phrase length of the Lempel-Ziv encoding is O(lgn)  
bits.) We get this reduction by restructuring in a novel 
way 'Ilk, which contributes the bulk of the space that  
compressed suffix arrays use. 

Our basic idea is to parti t ion each E list y further 
into sublists <x, y}, using an h-symbol prefix x (hereafter 
known as context) of each of the suffixes. (The ]E] 2k- 
symbol sequence y precedes the context x in the text.)  
For example, for context length h = 2 and level k = 0, 
if we continue the above example, we break the E lists 
by context (in lexicographical order aa, ab, a#, ba, bb, 
and # and numbered from 0 to IEI h - 1 )  as shown below. 
We use # to represent #3 for all j < h. (Only level k = 0 
is shown here.) Each sublist <x, y) we have created is 
also increasing. The lists are stored in the nonempty 
entries of the columns in the table below, parti t ioned 
by row according to contexts x of length 2: 

x list a 
aa <2> 
ab <4> 
a# 
ba <14, 16, 20> 
~b (24, 25, 26, 27, 29, 30, 31) 

<32> 

list b 
<i> 

<3, 5, 6, 7, 8, 10, 11, 12> 
<13> 

<15, 17, 18, 19, 21, 22, 23> 
<2s) 

0 

list # 
0 

<9> 

0 

The crucial observation to make is that  all entries 
in the row corresponding to a given context x create a 
contiguous sequence of positions from the suffix array. 
For instance, along the fourth row of the table above 
for x = ba, there are 10 entries tha t  are contiguous and 
in the range [14, 23]. The conditional probability that  a 
precedes context ba is 3/10, that  b precedes context ba 
is 7/10, while tha t  of # preceding context ba is 0. As 
a result, we show in Section 3.5 that  encoding each of 
these sublists efficiently using context statistics results 
in a code length related to Hh, the hth-order entropy. 
In exchange, we must store more complicated context 
information. Below, we give some intuition about the 
information needed and how our method represents it 
in a compact way. 

x ~ o X  l i s t a  
a~ <2> 
ab i f  }2 <2> 
a# 0 
ba I0 13 <1, 3, 7> 
bb 8 23 <1, 2, 3, 4, 6, 7, 8> 
# 1 31 <1> 

list b 
<1> 

(1, 3,4,5, 6, S,9, 10} 
{1> 

<2,4,5,6,s,9,10> 
<5> 
0 

list # 

0 
<7) 
0 
0 
0 
O 



845 

For level k = 0 above, n~ is the number of 
elements in each context (row) x, and # x  represents the 

X ! partial  sum of all prior entries; tha t  is, # x  = ~ x ' < x  no • 
Using these arrays, we transform the s tandard lists by 
renumberin9 each element based on its order within its 
context. For example, the final entry in list b, 28, is 
writ ten as 5 in the new list b, as it is the fifth element in 
context bb. We can recreate b 's  final entry 28 from this 
information since we also store the number of elements 
in all prior contexts (in lexicographical order). For 
instance, we can recreate O0(31) = 28 by accessing 5 
from the new list b and adding # x  = 23, the number of 
elements in all contexts prior to x = bb. 

3.1 P r e l i m i n a r y  N o t i o n s  As we saw before, n~ is 
the number of elements at level k tha t  are in context x. 
Similarly, we can define n~ as the number of elements 
at level k in list y; and n~ 'y as the number of elements 
at level k tha t  are in both context x and list y, that  is, 
the size of sublist (x, y). For instance, in the example, 
n~ = 18 and n~b'b= 8. (Note that  ~ n ~  = nk, 
~ y  n~ -= nk, and ~ x -  n~ 'y = nk.) Notice tha t  Hh 
~zer~h ~ue~  - (no  /n°)lg(no /n0) '  where no - n. 

In what follows, we define Sk to be the number 
of nonempty sublists (x,y) at level k. We bound 
sk _< min{[E[2~+h,nk} as follows. The first inequal- 

2 ~ + h  • ity Sk _< [El is true since there are at most IE[ h 
contexts x and at most IE] 2k lists y at level k. The 
second inequality Sk _< nk comes from the worst case 
where each sublist contains only a single element. 

We define g = lg lgn  to be the last level in the 
compressed suffix array, as in Section 2. We introduce 
a special level g' < g, such that  2 e ' =  O(lgl~ I n) and 
2e- t '=  O(lglEI).  Rather  than storing all of the g 
levels as discussed in Section 2, we only maintain the 
recursion explicitly until level g', where 2 e' = O(lgt~ I n) 
and 2 e-t' = O(lg IEI). In this section, we prove: 

LEMMA 3.1. We can implement compressed suffix ar- 
rays using nHh lg lgl~ t n + 2 (lg e + 1) n + O (n lg lg n~ lg n) 
bits and O(nlg  IEI) preproeessing time for compress, so 
lookup takes O(lglgt~ I n + l g  IEI) time and substring for 
c symbols takes the cost of lookup plus O(c/lglE I n) time. 

LEMMA 3.2. For any fixed value of 0 < e < 1/2, we 
can implement compressed suffix arrays using e- lnHh + 
2(lge + 1)n + O(n lg lgn / l gn )  bits and O(nlg  IEI) pre- 
processing time for compress, so that lookup takes 
O((lglr~t n) "/(1-~) + lg  IEI) time and substring for c sym- 
bols takes the cost of lookup plus O(c/ lgt~ I n) time. 

3.2 O v e r v i e w  o f  the Method for Represent- 
ing ~ k  In order to support  a query for Ok(i), we 
need the following basic information: the list y con- 

taining Ok(i), the context x containing Ok(i), the el- 
ement z stored explicitly in list y, and the number  of 
elements # x  in all contexts prior to x. In the example 
from Section 2, for O0(31) = 28, we have y -~ b, x = bb, 
# x  = 23, and z = 5. The wlue  for Ok(i) is then # x + z ,  
as shown in the example. We execute five main steps to 
answer a query for Ok (i) in constant time: 

1. Consult a directory Gk to determine Ok(i) 's list y 
and the number of elements in all prior lists, #y .  
(We now know that  Ok(i) is the ( i -  # y ) t h  element 
in list y.) In the example above, we consult Go to 
find y = b and # y  = 13. 

2. Consult a list L~ to determine the context x of 
the (i - # y ) t h  element in list y. For example, we 
consult L~ to determine x = bb. 

3. Look up the appropriate  entry in list y to find z. 
In particular, we look in the sublist of list y having 
context x, which we call the (x,y) sublist and 
encode efficiently. In the example, we look for 
the appropriate element in the (bb, b) sublist and 
determine z = 5. 

4. Consult a directory Fk to determine # x ,  the num- 
ber of elements in all prior contexts. In the exam- 
ple, after looking at F0, we determine # x  = 23. 

5. Return # x  + z as the solution to Ok(i). The 
example code would then return Ok(i) = # x  + z = 
2 3 + 5  = 28. 

We now detail each step given above. 

3.3 D i r e c t o r i e s  Gk a n d  Fk We describe the details 
of the directory Gk (and the analogous structure Fk) 
defined in Section 3.2, which determines Ok(i) 's  list y 
and the number of elements in all prior lists #y .  We can 
think of Gk conceptually as a bitvector of length nk, 
the number of items indexed at  level k. For each 
nonempty list y at level k (considered in lexicographical 
order) containing n~ elements, we write ( n ~ -  1) 0s, 
followed by a 1. Intuitively, each 1 represents the last 
element of a list. Since there are as many I s  in Gk as 
nonempt~ lists at level k, Gk cannot have more than 
min{[EI 2 ,nk} ls.  To retrieve the desired information 
in constant time, we compute y = rank(Gk,i) and 
~ y  = select(Gk, y). The Fk directory is similar, where 
each 1 denotes the end of a context (considered in 
lexicographical order), rather  than the end of a list. 
Since there are at most min{]EI h, nk} possible contexts, 
we have at most  tha t  many  is .  We use the indexable 
dictionary method [17] for this purpose. 

LEMMA 3.3. Let M(r)  denote min{IZ] r ,nk}.  We can 
store Gk using O(M(2 k) lg M ~ ' ) )  bits of space, and Fk 
using space O(M(h) lg ~(h))" " 
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3.4 L i s t -Spec i f i c  D i r e c t o r y  L~ Once we know 
which list our query ~k(i) is in, we must find its con- 
text  x. We create a directory L~ for each list y at 
level k, exploiting the fact tha t  the entries are grouped 
into ix, y) sublists as follows. We can think of L~ con- 
ceptually as a bitvector of length n~, the number of 
items indexed in list y at level k. For each nonempty 
ix, y) sublist iconsidered in lexicographical order) con- 

= x,y elements iwhere ~ ,  n k we write raining n k 
(n~ m - 1) 0s, followed by a 1. Intuitively, each 1 rep- 
resents the last element of a sublist. Since there are 
as many  l s  in L~ as nonempty sublists in list y, tha t  
directory cannot have more than  min{IE] h, n~} Is .  Di- 
rectory L~ is made up of two distinct components: 

The first component  is an indexable dictionary [17] 
in the style of Section 3.3 that  produces a nonempty  
context number  p > 0. In the example given in 
Section 2, context ba  has p = 2 in list a, and p = 3 
in list b. I t  also produces the number  ~ p  of items 
in all prior sublists, which is needed in Section 3.5. 
In the example given above, context ba  has ~ p  -- 
2 in list a, and # p  = 10 in list b. To retrieve 
the desired information in constant time, we compute 
p = r a n k ( L ~ , i -  # y )  and # p  = select(L~,p). 

In order to save space, for each level k, we ac- 
tually store a single directory shared by all lists y. 
For each list y, it can retrieve the list 's p and # p  
values. Conceptually, we represent this global direc- 
tory Lk as a simple concatenation of the list-specific 
bitvectors described above. The only additional infor- 
mation we need is the start ing position of each of the 
above bitvectors, which is easily obtained by computing 
start = #y .  We compute p = rank(i) - rank(start) and 
~ p  = select(p + rank(start)). Lk is implemented by a 
single indexable dictionary [17] storing sk entries in a 
universe of size nk. 

LEMMA 3.4. We can compute p and # p  at level k in 
constant time using O(sk lg ~ )  bits. 

The second component  maps p, the local con- 
text  number  for list y, into the global one x (for 
level k). Since there are at most  min{IEIh,nk} differ- 
ent contexts x for nonempty  sublists ix, y) and at most 

min{IEI2k,nk} nonempty lists y at level k, we use the 

concatenation of I E[ 2k bitvectors of I E I h bits each, where 
bitvector b~ corresponds to list y and its l s  correspond 
to the nonempty sublists of list y. We represent the con- 
catenation of bitvectors b~ in lexicographical order by y 
using a single indexable dictionary. Mapping a value p 
to a context x for a particular list y is equivalent to 
identifying the position of the p th  1 in b~. This can be 
done by a constant number  of rank and select queries. 

LEMMA 3.5. We can map p to x at level k in constant 

time and O(sk lg ~-~--~-~) bits. 
8 k  

3.5 E n c o d i n g  S u b l i s t  G a p s  Armed with x, y, # y ,  
and #p ,  we can now retrieve z, the encoded element we 
warn from the (x, y) sublist. We compute z by finding 
the ( i -  ~ y -  # p ) t h  element in the ix, y) sublist. We now 
show how to get constant t ime access to any element in 
the sublist as well as relate the encoding size to Hh. 

We use the indexable dictionary [17] to encode each 
ix, y) sublist, storing n~ 'v i tems (the number  of items 
in the ix, y) sublist at level k) out of n~ (the number  of 
items in context x at level k). The resulting bound is 

[ (n~ ~ ]  + 0 (  n~'ylglgn~ 'y 
lg \hE,y j /  I,, ~n--~ ] + 0 (lglgn~), 

i 

[ ( )] n~ ,-~ n~ 'y lg e x,y lg + where lg n~. ~ = n k 

n~ 'v lg e, which encodes precisely the hth-order entropy, 
representing the ratio of elements in context x to those 
in both  context x and list y, plus an additive te rm 

x,y lge. Said another way, we are encoding the of rt k 
probabili ty of being in list y given the knowledge tha t  
we are in context x, which again, precisely represents 
the hth-order entropy term. 

LEMMA 3.6. We can encode all sublists at level k using 
at most nHh + nk lg e + O(nk lg lg (nk /Sk) / lg (nk / sk )  + 
O(sk lg lg(nUsk)) bits per  level. 

3.6 R e s u l t i n g  B o u n d s  for  the Compressed Suf-  
fix A r r a y  We have almost all the pieces we need to 
prove Lemma 3.1 and Lemma 3.2. We store all levels 
k = 0 , 1 , . . . , g '  - 1,e ' ,g  of the recursion in the com- 
pressed suffix array (notice the gap between t '  and 6). 
For each of the levels up to g~, we store a bitvector Bk 
and a neighbor function ~k as described in Section 2, 
with their space detailed below. 

• Bitvector Bk stores nk/2  (or nt _< nk /2  when 
k = g') entries out of nk. I t  is implemented 
with an indexable dictionary [17] in nk /2  + 
O(nk lg lg n k / l g  nk) bits. 

• Neighbor function 'I~k is implemented as described 
in Sections 3.2-3.5, with the space bounds stated 
in Lemmas  3.3-3.6. 

Similar to what we described in Section 2, level k = 
stores the suffix array SAt,  inverted suffix array SA[  1, 
and an array LCPe storing the longest common prefix 
information [10] to allow fast searching in SAt. Each 
array contains n~ lg n entries, which implies tha t  they 
occupy 3n bits in total; however, this can be reduced to 
less than  n bits with minor modifications. In particular,  
we can simply increase the last level from ~ to g + 2 
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without changing the overall space complexity. In 
sum, we obtain the following upper bound on the total 
number of bits: of space required for the compressed 
SUffLX array: nHh lglgt~ I n + 2(lge + 1)n + O ( - ~ ) .  

Building the above data  structures is simply a vari- 
ation of what was done in [6]; thus it takes O(nlg  IEI) 
time to compress (as given in Definition 2.1). Since 
accessing any of the data  structures in any level re- 
quires constant time, lookup requires O(e' + 2 e- t ' )  = 
O(lglgl~ln + lglEI) time, and a substring query for 
c symbols requires O(c + lglgt21 n + lg IEI) time. How- 
ever, we can improve substring by noting that  'I)t, de- 
compresses 2 e' = O(lgl~ I n) symbols at a time, thus we 
can replace the c term above by c~ lgl~ I n as we remarked 
in Section 2. This completes the proof of Lemma 3.1. 

In order to prove Lemma 3.2, we just store a 
constant number 1/e of the e' levels as in [6], where 
0 < c < 1/2. In particular, we store level 0, level t ' ,  and 
then one level every other 7g' levels; in sum, 1 + 1/7 = 
1/e levels, where V = c/(1 - e) with 0 < V < 1. Each 
such level k < g' stores 

• a directory Dk (analogous to Bk) storing the 
nk+~e, < nk/2 (or nl < nk/2 when k < ~') entries 
of the next sampled level. It is similarly imple- 
mented with an indexable dictionary [17] in less 
than nk/2 + O(nk lg lg nk/ lg  nk) bits; and 

• a neighbor function ~k implemented as before. 

The last level g stores the arrays SAe, SAT -1, and LCPe 
as previously described in less than n bits. (Recall that  
we actually store them at level g + 2.) We can bound 
the total number of bits required by the compressed suf- 
fix array as e-lnHh + 2(lge + 1)n + O(nlg lgn / lgn) .  
Thus, we are able to save space at a small cost to 
lookup, namely, O(e-12 ~e' + 2 e-e') = O(lg~ I n + lg IEI) 
time, while substring for c symbols reqmres an addi- 
tional O(c/lgtzl) time. Building the above data  struc- 
tures is again a variation of what was done in [6], so 
compress requires O(nlg  IEI) time, proving Lemma 3.2. 

4 C o m p r e s s e d  Suffix A r r a y s  in Sublinear Space 
We can further reduce the space in the implementation 
of compressed suffix arrays described in Section 3 to 
get a sublinear space bound by applying an even more 
succinct encoding of the E lists. 

THEOREM 4.1. Compressed suffix arrays can be im- 
plemented using e-lnHh + O(n lg lg n/  lg~ I n) bits and 
O(nlg IE[) preprocessing time for compress, so lookup 
takes O((lg[2ln)~/1-~lglE 0 time and substring for c 
symbols takes the cost of lookup plus O(c/ lgl~ I n) time. 

By a simple modification, we obtain an interesting 
special case: 

THEOREM 4.2. Compressed suffix arrays can be im- 
plemented using nHh + O(n lg lg n/lgl~ I n) bits and 
O(nlg [El) preprocessing time for compress, so that 
lookup takes O(lg2 n /  lg lg n) time and substring for c 
symbols takes the cost of lookup plus O(clg IEI) time. 

REMARK 4.1. The compressed suffix array in Theo- 
rem 4.2 is a nearly space-optimal self-index in that it 
uses nearly the same space as the compressed text-- 
nHh bits--plus lower-order terms. For example, when 
Z is of constant size, we get nHh +O(n lg lg n/ lg  n) bits. 

4.1 Space Redundancy of Multiple Directories 
In previous results, we encoded each sublist containing 
k items as a separate dictionary using roughly lg (~) ,-~ 
k lg(en/k) bits. In total among all the sublists at level k, 
the total space bound was more than the entropy term 
nHh by an additive term of nk lg e. However, in some 
sense, a dictionary (or sublist) is an optimal encoding 
of the locations of a particular symbol (or list) in the 
text T, so it should not require more space per symbol 
than the entropy representation, which is the optimal 
encoding size. This apparent paradox can be resolved 
by noting that  each dictionary only represented the 
locations of one particular symbol in a sequence; that  
is, there was a separate dictionary for each symbol. In 
entropy encoding, we encode the locations of all the 
symbols together. Thus, it is more expensive to have a 
dictionary for the locations of each symbol individually 
rather than having a single encoding for the entire 
sequence of symbols. 

Let 's define t~ to be the number of nonempty 
sublists contained in context x at level k. We define 
tk = max{t~, t~, . . . , t~  ~lh } to be the maximum number 
of sublists that  appear in a single context at level k. For 
u given context x at level k, let the number of entries in 
the nonempty sublists be x,1 x,2 x,t~ n k , n k , . . . ,  n k . Given x, 
the entropy of encoding the preceding 2 k symbols y is 

1 ( n~ ~ 1 ~-,  ='Y 1- n ~ .  
lg x,1 =,2 =,t~ "~ - ~ nk 

n-~ n k ,n k , . . . , n  k / n~ l_<y<t~ ~n~'Y 

(4.1) 
On the other hand, if for context x we store a dictionary 
of the locations of the entries in each sublist, then the 
dictionary for a given sublist y in context x must encode 

1. each of the n~ 'y occurrences of y, which happen 
with probability x , ~  1~= '~k / ' ~ k "  

x~y 2. each of the n~ - n k non-occurrences of y, which 
happen with probability 1 ~x,v/~= - -  '~k I ' ~ k "  

The resulting entropy of encoding the preceding 2 k 
symbols y in context x is 7~ ~z_<v_<t~ lg (~,%) < lge + 

n--~l El~y~t~. nkX'Y lg %.'~. The lg e additive term in the 

number of bits per sublist occurrence is the extra cost 
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incurred by encoding all positions where the sublist 
does not occur. When summed over all nk entries 
in all sublists and all contexts, this gives an n k l g e  
contribution to the total  space bound. Note tha t  the 
lge te rm does not appear  in (4.1). We can remove this 
undesired space te rm at the cost of a more expensive 
lookup by encoding each of our sublists in terms of the 
locations not occupied by prior sublists within the same 
context. For example, at level k = 0, the (x, a) sublist 
occupies various locations among the items in context x. 
When we encode the (x, b / sublist, we only encode the 
positions tha t  the (x,b) sublist occupies in terms of 
positions not used by the (x, a) sublist. For instance, a 
1 in the (x, b / sublist would represent the first position 
not used by an a within context x. Similarly, when we 
encode later sublists, we encode only those positions not 
used by the (x, a) and (x, b) sublists, and so on. 

The ramifications of our approach in te rms of search 
t ime is tha t  the search would be sequential in terms 
of the number  of sublists within a context, in order to 
decompose the relative positions tha t  are stored. For 
instance, at  level k = 0, to lookup the i th position in 
the (x, c) sublist, we have to find the position j of the 
i th non-position in the (x, b / sublist. Then we have to 
find the position of the j t h  non-position in the (x, a) 
sublist. Thus, the cost of a search goes up by a factor 
of t~ for queries on context x, since we potentially have 
to backtrack through each sublist to resolve the query. 

LEMMA 4.1. We can remove the O(nk lg e) space re- 
quirement at each level from the compressed suffix array, 
increasing the search times by a factor of at most tk. 

4 . 2  T h e  W a v e l e t  T r e e  The main difficulty with the 
approach of Lemma 4.1 is the large sequential t ime cost 
associated with reconstructing a query to a sublist. We 
present instead a wavelet tree data  structure, which 
is of independent interest, to reduce the query t ime 
to lgt~ < 2klg IEI, while still encoding in the desired 
space of nHh + o(nk) bits per level. In order to prove 
Theorems 4.1 and 4.2, we require this technique only 
for level k = 0 (since nk = o(n) for all other k); the 
slowdown is at most lg to < lg I EI. 

LEMMA 4.2. (WAVELET TREE COMPRESSION) Using 
a wavelet tree for each context x at level k, we 
can resolve a query on a sublist in lgt~ < lgtk 
time, while replacing the O(nk lg e) term with 
O(nk lg lgnk lg tk / lgnk)  bits of space for each level k. 

Proof. I t  suffices to consider the representation for a 
single context x at some level k. All other wavelet trees 
are constructed similarly. For ease of presentation, let 
s~ be the (x,i) sublist. Let n k = Is~l. 

We implicitly consider each left branch to be asso- 
ciated with a 0 and each right branch to be associated 
with a 1. Each internal node is a fully-indexable dictio- 
nary [17] with the elements in its left subtree stored as 
0, and the elements in its right subtree stored as 1. For 
instance, the root node of the tree in Figure 2 represents 
each of the positions of s l , . . . ,  s4 as a 0, and each of the 
positions of sh, . . . ,  ss as a 1. 

The major  point here is tha t  each internal node rep- 
resents elements relative to its subtrees. Rather  than  
the linear relative encoding of sublists we had before, 
we use a tree structure to exploit exponential relativity, 
thus reducing the length of the chain of querying signif- 
icantly. In some sense, the earlier approach corresponds 
to a completely skewed wavelet tree, as opposed to the 
balanced structure now. To resolve a query for the dth 
entry in sublist si, we follow these steps: 

1. S e t s = s i .  
2. If  i is odd, search for the dth 0 in s 's  parent.  
3. If  i is even, search for the dth 1 in s 's  parent.  
4. Set d = the position found in s 's  parent.  
5. Set i = [(i + 1)/2J. Set s -- parent(s). 
6. Recurse to step 2, unless s = root. 
7. Return d as the answer to the query in sublist si. 

This query trivially requires lg t~ t ime for context x 
and at most  lg tk t ime at level k. We analyze the space 
required in terms of the contribution of each internal 
node's  fully-indexable dictionary. We prove tha t  this 
cost is exactly the entropy encoding. (In some sense, 
we are calculating the space requirements for each s~, 
propagated over the entire tree. For instance, si is 
implicitly stored in each node of its root-to-leaf path.)  
By induction, we can prove tha t  the space required 
among all internal nodes is 

f x l  . x 2 \  n k' -~ nk' ~ ~n kx,t~-I t n  kx,t~ 
lg / x,2 / + • ." + Ig / x,tk ] \ nk ] \ n k 

I n  k + . . . + n  k "~ [n k  + . . . + n  k 
+ l g ~  n~.3+n~,4 / + . . . + l g  k ~,~-~ ~.,~ ) 

n k ..-~- n k 

w 1 x , t ~  x 
[ nk '  + ' " + n k  ~ nk  x 

+ l g  ~ x , 1 - -  - -  w , t ~ / 2 )  : l g  ( x,1 x,2 x ' t  k ) 

Hence, each wavelet tree encodes a particular con- 
text  in precisely the empirical entropy, which is what  
we wanted. Summing over all contexts, we use nHh 
bits per level by the definition of nHh. 

x , y  x , y  x , y  However, the sum of the O(n k l g l g n  k / l g n  k ) 
terms at each of the lgt~ levels of the wavelet 
tree for some context x at level k sum to 
O(n~ lglgn~/lgn~).  Thus, we end up paying, for each 
context x, O (n~ lg lg n~ lg t~ / lg n~) bits, which becomes 
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U s l , . . . ,  s4 U s b , . . . ,  ss  
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Figure 2: A wavelet tree 

O(nk lg lg nk lg tk / lg  nk) when summed over all con- 
texts  x at level k. Thus we prove Lemma 4.2. 

5 Applications to Text Indexing 

In this section, we show that  compressed suffix arrays 
are high-order entropy-compressed text  indexes sup- 
porting searching of a sequence pat tern  P of length m 
in O(m + polylog(n)) t ime with only nHh ÷ o(n) bits, 
where nHh is the information theoretical upper bound 
on the number of bits required to encode the text  T of 
length n. We also describe a text index that  takes o(m) 
search t ime and uses o(n) bits on highly compressible 
texts with small alphabet  size. To our knowledge, these 
are the first such results in text  indexing. 

5.1 A P a t t e r n  M a t c h i n g  Too l  We need a search 
tool for a list of r sequences $1 _< .- .  _< Sr in 
lexicographical order, so tha t  we can identify the least 
sequence Si having P as a prefix in O(m + r) time. 
(Identifying the greatest such sequence is analogous.) 
Our method examines the sequences $ 1 , . . . ,  Sr in left- 
to-right order. The steps are detailed below, where we 
denote the kth symbol of a sequence S by S[k]: 

1. Set i =  l and k =  l. 
2. Find the smallest j _> i such that  Sj[k] = P[k]. 
3. If j > r, declare that  P is not the prefix of any 

sequence and quit with a failure. Otherwise, assign 
the value of j to i, and increment k. 

4. If  k < m then go to step 2. Otherwise, check 
whether Si has P as a prefix, returning Si as the 
least sequence in case of success or declaring a 
failure otherwise. 

Denoting the positions assigned to i in step 3 with 
ik ~ "'" ~ i2 ~ il, we observe that  we do not access the 
first k - 1 symbols of Sik_l+l, . . . ,  Sik when ik > i k - 1 ,  
which could be potential  mismatches. In general, we 
compare only a total  of O(ik +k) symbols of S~1,. . . ,  Sis 
against those in P,  where ik <_ r. Only when we have 
reached the end of the pat tern  P (i.e., when k = m),  
do we increment k, set i = ira, and perform a full 
comparison of P against Si. This results in a correct 
method notwithstanding potential  mismatches. 

LEMMA 5.1. Given a list of r sequences $1 < ... < Sr 
in lexicographical order, let Si be sequence identified by 
our search tool. I f  P is a prefix of Si, then Si is the least 
sequence with this property. Otherwise, no sequence in 
$1, . . . ,  Sr has P as a prefix. The cost of the search is 
O(m + r) time, where m is the length of P. 

What  if S 1 , . . . , S r  are implicitly stored in our 
compressed suffix array, say at consecutive positions 
x + 1 , . . . , x  + r for a suitable value of x? To achieve 
this goal, we need to decompress each suffix Sj on the 
fly by knowing its position x + j  in the compressed suffix 
array (recall that  SA[x+j] contains the start ing position 
of Sj in the text). Decompressing one text  symbol of Sj 
at  a t ime is inherently sequential as in [2] and [19, 20]. 
But  steps 2-3 of our search tool require us to start  
decompressing from the kth symbol of suffix Sj, rather  
than the first, which could cost us O(mr) time! 

Fortunately, we can overcome this problem by using 
the inverse compressed suffix array. In order to incre- 
mentally decompress symbols from position k of suf- 
fix Sj (having position x + i), we decompress the first 
symbols in the suffix at position SA -~ [SA[x+i] + k -  1] 

in the compressed s u f f i  array, where SA and SA-1 de- 
note the s u f f i  array and its inverse as mentioned in 
Section 2. Equivalently, the latter suffix can be seen as 
obtained by removing the first k - 1 symbols from Sj. 
All this requires a constant number of lookup operations 
and a single substring operation, with a cost tha t  is in- 
dependent of the value of k. 

LEMMA 5.2. Given a sequence of r consecutive suffixes 
$1 _~ . ' .  _< Sr in the compressed suffix array, our search 
tool finds the lcflmost and the rightmost suffix having P 
as a prefix, in O(m + r) symbol comparisons plus O(r) 
lookup and substring operations, where m = IPI. 

5.2 H i g h - O r d e r  Entropy-Compressed Text I n -  
d e x i n g  We now have all the tools to describe our search 
of P in the compressed suffix array. We first perform 
a search of P in SAt+lgt(n), which is stored explicitly 
along with LCP~+]gt(,O, the longest common prefix in- 
formation required in [10]. (The term t(n) depends on 
which implementation of compressed suffix arrays we 
use.) We require O(m) symbol comparisons plus O(lg n) 
lookup and substring operations. At that  point, we lo- 
cate a portion of the (compressed) suffix array storing 
r = 2 t+lgt(n) = O(t(n)lg n) suffixes. We run our search 
tool on these r suffixes, at the cost of O(rn + t(n) lg n) 
symbol comparisons and O(t(n) lg n) calls to lookup and 
substring, which is also the asymptotical  cost of the 
whole search. 

THEOREM 5.1. Given a text of n symbols over the 
alphabet E, we can replace it by a compressed suffix 
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array occupying c- lnHh + O(n lg lgn/ lg~E I n) bits, so 
that searching a pattern of length m takes O(m/  lgtE I n +  

(lgn)(l+~)/(1-~)(lglEI)(1-3~)/(1-~)) time, for any fixed 
value ofO < e < 1/2.  

For example, fixing c = 1/3 in Theorem 5.1, we 
obta in  a search t ime of O(rn/lgl~ I n + l g  2 n) with a self- 

1/3 . 
index occupying 3nHh + O(nlglgn/ lgl~ I n) bits. We 
can reduce the space to  nHh bits plus a lower-order 
term, obta ining a nearly space-optimal self-index. 

THEOREM 5.2. Given a text of n symbols over the 
alphabet E, we can replace it by a compressed suf- 
fix array occupying nearly optimal space, i.e., nHh + 
O(nlglgn/ lglE 1 n) bits, so that searching a pattern 
of length m takes O(m lg IEI + lg 4 n~ lg 2 lg n lg tel) = 
O(m lg IEI + polylog(n))  time. 

If  we augment  the compressed suffix a r ray  to obta in  
the  hybr id  multilevel d a t a  s t ruc ture  in [6], we can im- 
prove the lower-order terms in the search t ime of Theo- 
rem 5.1, where tin ) = l g ~  I n and ~ = ~/(1 - e) > c. We 

use a sparse suffix tree storing every other  (t(n)lg n ) t h  
suffix using O(n/t(n))  = O(n / l g~  I n) bits to lo- 
cate a por t ion  of the (compressed) suffix a r ray  stor- 
ing O(t(n) lgn)  suffixes. However, we do not  imme- 
diately run  our  search tool in L e m m a  5.2; instead, we 
employ a nested sequence of space-efficient Patr ic ias  [12] 
of size lg ~ - "  n until  we are left with segments  of r = t(n) 
adjacent  suffixes in the compressed suffix array, for any 
fixed value of 1 > w > 2q, > 0. This scheme adds 
O(n/r)  = O ( n / l g ~  I n) bits to the self-index, allowing 
us to  restrict  the search of pa t t e rn  P to  a segment  of r 
consecutive suffixes in the compressed suffix array. At 
this point,  we run our  search tool  in L e m m a  5.2 on these 
r suffixes to  identify the  leftmost occurrence of  the pat-  
tern. 

THEOREM 5.3. Given a text of n symbols over the al- 
phabet E, we can replace it by a hybrid compressed suf- 
fix array occupying e- lnHh +O(n lg lg n~ lg~n] n) bits, so 
that searching a pattern of length m takes O(m/  lglE ] n +  

l g ~ n l o g  1-~ IEI) time, for any fixed value of 1 > w > 
2 e / ( 1 - e ) > 0  andO < e < l/3.  

We provide the first self-index with small a lphabets  
t ha t  is sublinear bo th  in space and in search time. 

COROLLARY 5.1. For any text where nHh = o(n) and 
the alphabet is small, the self-index in Theorem 5.3 
occupies just o(n) bits and requires o(m) search time. 
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