
841

High-Order Entropy-Compressed Text Indexes

R o b e r t o Grossi* A n k u r G u p t a t J e f f r ey S c o t t V i t t e r t

A b s t r a c t

We present a novel implementation of compressed s u ~ x
arrays exhibiting new tradeoffs between search time and
space occupancy for a given text (or sequence) of n sym-
bols over an alphabet E, where each symbol is encoded by
lg]E I bits. We show that compressed su1~x arrays use just
nHh + O(n lglg n~ lgl~ I n) bits, while retaining full text in-
dexing functionalities, such as searching any pattern se-
quence of length m in O(mlg [E[+ polylog(n)) time. The
term Hh < lg IEI denotes the hth-order empirical entropy
of the text, which means that our index is nearly optimal in
space apart from lower-order terms, achieving asymptotically
the empirical entropy of the text (with a multiplicative con-
stant 1). I f the text is highly compressible so that H~ = o(1)
and the alphabet size is small, we obtain a text index with
o(m) search time that requires only o(n) bits. Further results
and tradeoffs are reported in the paper.

1 I n t r o d u c t i o n

The online proliferation of text documents and sequence
data has made finding information difficult. Exhaustive
search through very large collections is too slow. As
a result, efficient indexing of massive documents is
critical. Good indexes for textual and sequence data
can be constructed quickly and offer a powerful tool set
that allows fast access and queries on the text. However,
storage cost can be significant because of the sheer
volume of data; hence, we also want our text indexes
to be a compact and space-efficient representation of
the text.

We consider the text as a sequence T of n symbols,
each drawn from the alphabet E = {0, 1,. . . ,~r}. The
raw text T occupies n l g l E] bits of storage. 1 Without

*Dipartimento di Informatica, Universitg di Pisa, via Filippo
Buonarroti 2, 56127 Pisa (grossi©di.uaipi.it). Support was
provided in part by the University of Pisa.

t Center for Geometric and Biological Computing, Department
of Computer Science, Duke University, Durham, NC 277080129
(agupta©cs. duke. edu). Support was provided in part by the ARO
through MURI grant DAAH04-96-1-0013.

:~School of Science, Purdue University, West Lafayette, IN
47907-2068 (jsv0purdue.edu).. Work was done in part while at
Duke University. Support was provided in part by the Army
Research Office through grant DAAD19--01-1-0725 and by the
National Science Foundation through grant CCR-9877133.

~We use the notation lg~n = (lgn/lgb) c to denote the cth

loss of generality, we can assume that IEI < n, since
we only need to consider those symbols that actually
occur in T. In practice, text is often compressible by
a factor of 3 or 4, and sequence data may be more
highly compressible. The text T is compressible if each
symbol in the text can be represented, on average, in
fewer than lg IEI bits. The empirical entropy H is the
average number of bits per symbol needed to encode the
text T. We trivially have H < lg IE].

For any integer h > 0, we can approximate the em-
pirical entropy H of the text by the hth-order empirical
entropy Hh, defined as

Hh = ~ n=,ln~,2 . . . n~,l~l
xEE n

sx,Y

~ E n n x
xEE h yES

= E E - P r ° b [y ' x] ' l g P r ° b [y l x] -< lglEl '
XEE h y ~

where n ~ is the number of occurrences in the text
of the h-symbol sequence x, for 0 < x < IE] h - 1,
and n x'y represents the number of occurrences in the
text of the concatenated sequence y x (y immediately
preceding x), for 0 < y < I E I - 1. Moreover,
Prob[y,x] represents the empirical joint probability
that the symbol y occurs in the text immediately
before the sequence x of h symbols, and Prob[ylx]
represents the empirical conditional probability that
the symbol y occurs immediately before x, given that
x occurs in the text. 2 High-order empirical entropy
captures the dependence of symbols upon their context,
and Hh converges to H for large h. In practice, once h
gets larger than 4 or 5, the hth-order empirical entropy
is close to the actual empirical entropy. Lempel and Ziv
have provided an encoding such that h ~ a lg n (where
0 < a < 1) is sufficiently good for approximating H
with Hh; Luczak and Szpankowski prove a sufficient
approximation when h = O(lgn) in [8].

In order to support fast searching, an index can
be formed by preprocessing the text T. For any query

power of the base-b logarithm of n. Unless specified, we use b = 2.
2The standard definition considers the symbol y immediately

after the sequence x, though it makes no difference.

842

pattern P of m symbols, the search task is to find P
in T quickly. When the text is compressible, a natural
question to ask is whether the index can be compressed
by a similar amount and still support fast searching.
Ideally, we would like to achieve nH bits, but all we can
quantitatively analyze is nHh, confining our algorithmic
investigation to the hth-order empirical entropy. Since
we want the text index to be as space-efficient as
possible, our goal is nHh bits and we want any amount
over that to be as small as possible, preferably o(n) bits.
Note that we do not simply compress the text; we also
support fast decompression and search of a portion of
the text, without scanning the entire compressed text,
which is unusual in classical compression schemes.

1.1 R e l a t e d W o r k A new trend in the design of ad-
vanced indexes for full-text searching of documents is
represented by compressed suffix arrays [6, 18, 19, 20]
and opportunistic FM-indexes [2, 3], in that they sup-
port the functionalities of suffix arrays and suffix trees,
which are more powerful than classical inverted files [4].
(An efficient combination of inverted file compression,
block addressing and sequential search on word-based
Huffman compressed text is described in [15].) They
overcome the well-known space limitations by exploit-
ing, in a novel way, the notion of text compressibility
and the techniques developed for succinct da ta struc-
tures and bounded-universe dictionaries.

Grossi and Vitter [6] developed the compressed
suffix array, a space-efficient incarnation of the standard
suffix array. Using this structure, they implement
compressed suffix trees in 2n Ig I~I bits in the worst case,
with o(m) searching time. If we index a 4-gigabyte ASCII
file of Associated Press news in this manner, it requires
12 gigabytes, which includes explicit storage of the text.

The crucial notion of self-indexing text comes into
play at this point. If the index is able to search for
and retrieve any portion of the text without accessing
the text itself, we no longer have to maintain the text
in raw form--which can translate into a huge space
savings. We refer to this type of index as a "self-
index" to emphasize the fact that, as in standard text
compression, it can replace the text. A self-index has
the additional feature of avoiding a full scan of the
compressed text for each search query.

Sadakane [19, 20] extended the functionalities in [6]
to show that compressed suffix arrays are self-indexing,
and he related the space bound to the order-0 empir-
ical entropy H0, getting the space bound e-lnHo +
O(nlg lg lEI) bits, where 0 < c _< 1 and E < lg°(1) n.
Searching takes O(m lg n) time. If we index the Associ-
ated Press file using Sadakane's index, we need roughly
1.6 gigabytes of storage, since we no longer have to store

the text. However, the index is not as compressible as
the text, even though it is still sublinear in the text size.

The FM-index [2, 3] is a self-indexing data structure

=in)gohr~inHh :aOr!~l~ll+gl.l~lg n "~-nel~12~+El lglE') bits, while
pp " g " g " O(m +lg n) time, where

I~1 = O(1). It is based on the Burrows-Wheeler
transform and is the first to encode the index size with
respect to the high-order empirical entropy. In its space
complexity, the second-order term may be o(n) bits for
small alphabet size IZI. Indexing the Associated Press
file with the FM-index would require roughly 1 gigabyte
according to the experiments in [3].

The above self-indexes are so powerful that the text
is implicitly encoded in them and is not needed explic-
itly. Searching needs to decompress a negligible portion
of the text and is competitive with previous solutions.
In practical implementation, these new indexes occupy
around 25-40% of the text size and do not need to keep
the text itself. However, for moderately large alphabets,
these schemes lose sublinear space complexity even if
the text is compressible. Large alphabets are typical of
phrase searching [5, 21], for example, in which the al-
phabet is made up of single words and its size cannot
be considered a small constant.

1.2 O u r R e s u l t s In this paper, we develop self-
indexing data structures that retain fast, full search
functionality of suffix trees and suffix arrays, require
roughly the same space as the optimally compressed
version of the text to lower-order terms, and have
less dependency on the alphabet size than previous
methods [2, 3, 19, 20]. One of the contributions of
this paper is tha t we shed light on the significance of
the lower-order terms in the space complexity of self-
indexes; these terms can dominate the empirical entropy
cost when the alphabet grows moderately large. We also
relate the issue of compressing a full-text index with
high-order entropy to the succinct dictionary problem,
in which t keys over a bounded universe n are stored
in the information theoretically minimum space, Ig (i)
bits, plus lower-order terms (e.g., see [16, 17]).

Our main result is a new implementation of com-
pressed suffix arrays that exhibits several tradeoffs be-
tween occupied space and search/decompression time.
In one tradeoff, we can implement the compressed suffix
array as a self-index requiring nHh + 0 (n Ig lg n~ Igi~ 1 n)
bits of space and allowing searches of patterns of
length m in O(mlg IEI + polylog(n)) time. Our method
is the first self-index reaching asymptotically the high-
order entropy, nHh, of the text. The index is nearly op-
timal in space apart from lower-order terms, as the mul-
tiplicative constant in front of the high-order entropy
term is i. In some sense, we are in a similar situation to

843

T:

SAo:
B0:

rank (Bo, i):
ff2o:

1
a

15
0
0
2

2 3 4 5 6 7 8 9 10111213141516171819202122232~2526272829303132
b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #
16 13 17 19 10 7 4 1 21 28 24 31 14 12 18 9 6 3 20 27 23 3011 8 5 2 26 22 29 25 32
1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1
1 1 1 1 2 2 3 3 3 4 5 5 6 7 8 8 9 9 101010 11 11 12 12 13 14 15 15 15 16
4 14 16 20 24 25 26 27 29 30 31 32 1 3 5 6 7 8 10 11 12 13 15 17 18 19 21 22 23 28 9

list
list
list

a: (2, 4, 14, 16, 20, 24, 25, 26, 27, 29, 30, 31, 32), Ilist a I = 13
b: (1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 17, 18, 19, 21, 22, 23, 28>, Ilist b[= 18
#: (9>, I list #1 = 1

Figure 1: Level k = 0 in the recursion for the compressed suffix array.

tha t of succinct dictionaries, achieving asymptot ica l ly
the information theoretically min imum space.

In another tradeoff, we describe a different imple-
menta t ion of the compressed suffix array, occupying
e- lnHh+O(nlglgn/ lg~] n) bits (0 < e < 1/3), so tha t
searching a pa t t e rn of length m takes O(m/lgL~ I n +
l g ~ n l g 1-~]El) t ime (1 > ~ > 2e/(1 - e) > 0). By fixing
e = 1/4, for example, we improve previous work bo th
in terms of space and search time. W h e n nHh = o(n)
and a lphabet size is small, we obtain the first self-index
tha t simultaneously exhibits sublinear size o(n) in bits
and sublinear query t ime o(m). More results are s ta ted
th roughout the paper.

1 .3 P r e l i m i n a r i e s We use cons tant - t ime rank and
select da t a s t ructures [7, 13, 16]. For a bi tvector B
of size n, function rankl(B,i) re turns the number of
l s in B up to (but not including) posit ion i; the da t a
s t ructure requires O(n lg lg n~ lg n) addit ional bits. The
function selectl(B,i) re turns the posit ion of the i th 1
in B; the da t a s t ructure requires O(n/lg lg n) addit ional
bits. We can also suppor t ranko and selecto using
the same number of addit ional bits. Let t ing t be the
number of elements stored (the number of l s in the
bitvector), we can replace the bi tvector suppor t ing rank
and select with the constant - t ime indexable dictionaries
developed by Raman , Raman , and Rao [17], requiring
rig (?)] + O(tlglgt / lgt) + O (l g l g n) bits. I f we also
wish to suppor t ranko and selccto, we can use the
fully-indexable version of their s tructure, called an FID,
requiring [lg (?)] + O(nlglgn/ lgn) bits.

2 C o m p r e s s e d Suffix Arrays

A s tandard suffix ar ray [4, 10] is an a r ray containing
the posit ion of each of the n suffixes of text T in
lexicographical order. In particular, SAIl] is the s tar t ing
position in T of the i th suffix in lexicographical order.
The size of a suffix ar ray is O(nlgn) bits, as each of
the positions stored uses lg n bits. A suffix a r ray allows
constant t ime lookup to SA [i] for any i.

The compressed suffix a r ray [6] contains the same
information as a s t andard suffix array. The da ta
s t ructure is recursive in nature, where each of the g =
lg lg n levels indexes half the elements of the previous
level. Hence, the k th level indexes nk = n/2 k elements:

1. Star t with SAo = SA, the suffix ar ray for text T.
2. For each 0 < k < l g l g n , t ransform SAk into a

more succinct representat ion th rough the use of a
bi tvector Bk, rank function rank(Bk,i), neighbor
funct ion Ok, and SAk+i (i.e, the recursion).

3. The final level, k = l g l g n is wri t ten explicitly,
using n bits.

SAk is not actual ly stored (except at the last level ~),
but we refer to it for the sake of explanation. Bk is
a bi tvector such tha t Bk[i] = 1 if and only if SAk[i]
is even. Even-posi t ioned suffixes are represented in
SAk+i, whereas odd-posi t ioned suffixes are not. In
order to retrieve odd-posi t ioned suffixes, we employ
the neighbor function Ok, which maps a position i in
SAk containing the value p into the posit ion j in SAk
containing the value p + 1:

Ok(i)={ j such tha t SAk[j] = (SAk[i] mod n) + l }.

A lookup for SAk [i] can be answered as follows:

2. SAk+l [rankk(Bk,i)] if Bk[i] = 1
SAk[i] SAk [Ok(i)] - 1 if Bk[i] = o.

An example of the recursion for text T is given
in Figure 1 for level k = 0, where a < b < # and
is a special end-of-text symbol. Here, 00(4) = 16,
since SAo[4] = 17 and SA0[16] = 1 7 + 1 = 18. To
retrieve SA0[16], since Bo[16] = 1, we compute 2 .
SA1 [rank(Bo, 16)] = 2. SA1 [12] = 2 . 9 = 18. To retrieve
SA0[4], since B014] = 0, we compute SA0[O0(4)] - 1 =
SA0[16] - 1 = 1 8 - 1 = 17.

The representat ion of Bk and rank(Bk, i) uses the
methods of [7, 13, 16]. The ma jo r hurdle remains in the
representat ion of Ok, which is at the hear t of compressed
suffix arrays. In fact, O0 is the inverse of the LF
mapping in the Burrows-Wheeler t ransform employed

844

in the FM-index [2, 3]. Grossi and Vitter developed an
approach based on the notion of E lists. At level k,
they parti t ion the suffix pointers indexed (n k - - n / 2 k
of them) by equal prefixes in the text of length 2 k.
For k ---- 0 (level 0), the prefix length is 2 ° = 1; thus
they group the suffix pointers together according to the
single symbol immediately preceding each suffix. For
example, some position p is in list a if the suffix pointed
to by SAo [p] in T is preceded by an a. For the text T
in our example, the E lists for level k = 0 needed to
represent @k are shown in the bot tom of Figure 1.

The fundamental property of these E lists is that
each list is an increasing sequence of positions from
the text. Compression is achieved since we can simply
encode, for each list, the lengths of the gaps in the
increasing sequence. By concatenating the lists together
(called Lk in [6]), adding some header and directory
information, and encoding the gaps of Lk, we can
achieve constant time access to @k(i) by looking at the
i th entry in the concatenated list Lk (see [6]).

Sadakane [19, 20] has proposed an alternative
method to represent the E lists that can be bounded
in terms of the zero-order empirical entropy H0. In or-
der to achieve self-indexing, he also defines the notion of
the inverse suffix array SA -1, such that SA-i[j] = i if
and only if SA[i] = j. To compress SA -1 along with SA,
it suffices to keep SA~ -1 in the last level g. The cost of
a lookup for SA -1 is the same as that for SA. Sadakane
describes a substring algorithm that , given an index i of
the compressed suffix array, decompresses c consecutive
symbols from the text starting from position SA[i] by
incrementally applying ~0 each time, for a total cost of
O(c) time. It is not difficult to extend his method to @k
for any k, such that each application of @k decompresses
O(2 k) symbols, for a total cost of 0 (c / 2 k + lg ~ n) time.
We use the inverse compressed suffix array and this ex-
tended version of decompression in Section 5. In future
sections, we assume the following set of operations.

DEFINITION 2.1. ([6, 19, 20]) Given a text T of
length n, a compressed suffix array for T supports the
following operations without requiring explicit storage
of T or its (inverse) suJfix array:

• compress produces a compressed representation that
encodes (i) text T , (ii) its suffix array SA, and
(iii) its inverse suffix array SA-1;

• lookup in SA returns the value of SA[i], the position
of the ith suffix in lexicographical order, for 1 < i <
n; lookup in SA -1 returns the value of SA-l[j] , the
rank of the j th suffix in T, for 1 _< j <_ n;

• substring decompresses the portion of T corre-
sponding to the first c symbols (a prefix) of the s u ~ x
in SA[i], for l < i < n and l < c < n - SA[i] + l.

3 H i g h e r - O r d e r E n t r o p y R e p r e s e n t a t i o n o f
C o m p r e s s e d Suffix A r r a y

In this section, we further reduce the space in the
compressed suffix array to the size of the text in
compressed form, replacing the lg]El factor in the space
bound to Hh, for any h _< a lgl~ I n with 0 < c~ < 1.
(Luczak and Szpankowski [8] show that the average
phrase length of the Lempel-Ziv encoding is O(lgn)
bits.) We get this reduction by restructuring in a novel
way 'Ilk, which contributes the bulk of the space that
compressed suffix arrays use.

Our basic idea is to parti t ion each E list y further
into sublists <x, y}, using an h-symbol prefix x (hereafter
known as context) of each of the suffixes. (The]E] 2k-
symbol sequence y precedes the context x in the text.)
For example, for context length h = 2 and level k = 0,
if we continue the above example, we break the E lists
by context (in lexicographical order aa, ab, a#, ba, bb,
and # and numbered from 0 to IEI h - 1) as shown below.
We use # to represent #3 for all j < h. (Only level k = 0
is shown here.) Each sublist <x, y) we have created is
also increasing. The lists are stored in the nonempty
entries of the columns in the table below, parti t ioned
by row according to contexts x of length 2:

x list a
aa <2>
ab <4>
a#
ba <14, 16, 20>
~b (24, 25, 26, 27, 29, 30, 31)

<32>

list b
<i>

<3, 5, 6, 7, 8, 10, 11, 12>
<13>

<15, 17, 18, 19, 21, 22, 23>
<2s)

0

list #
0

<9>

0

The crucial observation to make is that all entries
in the row corresponding to a given context x create a
contiguous sequence of positions from the suffix array.
For instance, along the fourth row of the table above
for x = ba, there are 10 entries tha t are contiguous and
in the range [14, 23]. The conditional probability that a
precedes context ba is 3/10, that b precedes context ba
is 7/10, while tha t of # preceding context ba is 0. As
a result, we show in Section 3.5 that encoding each of
these sublists efficiently using context statistics results
in a code length related to Hh, the hth-order entropy.
In exchange, we must store more complicated context
information. Below, we give some intuition about the
information needed and how our method represents it
in a compact way.

x ~ o X l i s t a
a~ <2>
ab i f }2 <2>
a# 0
ba I0 13 <1, 3, 7>
bb 8 23 <1, 2, 3, 4, 6, 7, 8>
1 31 <1>

list b
<1>

(1, 3,4,5, 6, S,9, 10}
{1>

<2,4,5,6,s,9,10>
<5>
0

list #

0
<7)
0
0
0
O

845

For level k = 0 above, n~ is the number of
elements in each context (row) x, and # x represents the

X ! partial sum of all prior entries; tha t is, # x = ~ x ' < x no •
Using these arrays, we transform the s tandard lists by
renumberin9 each element based on its order within its
context. For example, the final entry in list b, 28, is
writ ten as 5 in the new list b, as it is the fifth element in
context bb. We can recreate b 's final entry 28 from this
information since we also store the number of elements
in all prior contexts (in lexicographical order). For
instance, we can recreate O0(31) = 28 by accessing 5
from the new list b and adding # x = 23, the number of
elements in all contexts prior to x = bb.

3.1 P r e l i m i n a r y N o t i o n s As we saw before, n~ is
the number of elements at level k tha t are in context x.
Similarly, we can define n~ as the number of elements
at level k in list y; and n~ 'y as the number of elements
at level k tha t are in both context x and list y, that is,
the size of sublist (x, y). For instance, in the example,
n~ = 18 and n~b'b= 8. (Note that ~ n ~ = nk,
~ y n~ -= nk, and ~ x - n~ 'y = nk.) Notice tha t Hh
~zer~h ~ue~ - (no /n°)lg(no /n0) ' where no - n.

In what follows, we define Sk to be the number
of nonempty sublists (x,y) at level k. We bound
sk _< min{[E[2~+h,nk} as follows. The first inequal-

2 ~ + h • ity Sk _< [El is true since there are at most IE[h
contexts x and at most IE] 2k lists y at level k. The
second inequality Sk _< nk comes from the worst case
where each sublist contains only a single element.

We define g = lg lgn to be the last level in the
compressed suffix array, as in Section 2. We introduce
a special level g' < g, such that 2 e ' = O(lgl~ I n) and
2e- t '= O(lglEI). Rather than storing all of the g
levels as discussed in Section 2, we only maintain the
recursion explicitly until level g', where 2 e' = O(lgt~ I n)
and 2 e-t' = O(lg IEI). In this section, we prove:

LEMMA 3.1. We can implement compressed suffix ar-
rays using nHh lg lgl~ t n + 2 (lg e + 1) n + O (n lg lg n~ lg n)
bits and O(nlg IEI) preproeessing time for compress, so
lookup takes O(lglgt~ I n + l g IEI) time and substring for
c symbols takes the cost of lookup plus O(c/lglE I n) time.

LEMMA 3.2. For any fixed value of 0 < e < 1/2, we
can implement compressed suffix arrays using e- lnHh +
2(lge + 1)n + O(n lg lgn / l gn) bits and O(nlg IEI) pre-
processing time for compress, so that lookup takes
O((lglr~t n) "/(1-~) + lg IEI) time and substring for c sym-
bols takes the cost of lookup plus O(c/ lgt~ I n) time.

3.2 O v e r v i e w o f the Method for Represent-
ing ~ k In order to support a query for Ok(i), we
need the following basic information: the list y con-

taining Ok(i), the context x containing Ok(i), the el-
ement z stored explicitly in list y, and the number of
elements # x in all contexts prior to x. In the example
from Section 2, for O0(31) = 28, we have y -~ b, x = bb,
x = 23, and z = 5. The wlue for Ok(i) is then # x + z ,
as shown in the example. We execute five main steps to
answer a query for Ok (i) in constant time:

1. Consult a directory Gk to determine Ok(i) 's list y
and the number of elements in all prior lists, #y .
(We now know that Ok(i) is the (i - # y) t h element
in list y.) In the example above, we consult Go to
find y = b and # y = 13.

2. Consult a list L~ to determine the context x of
the (i - # y) t h element in list y. For example, we
consult L~ to determine x = bb.

3. Look up the appropriate entry in list y to find z.
In particular, we look in the sublist of list y having
context x, which we call the (x,y) sublist and
encode efficiently. In the example, we look for
the appropriate element in the (bb, b) sublist and
determine z = 5.

4. Consult a directory Fk to determine # x , the num-
ber of elements in all prior contexts. In the exam-
ple, after looking at F0, we determine # x = 23.

5. Return # x + z as the solution to Ok(i). The
example code would then return Ok(i) = # x + z =
2 3 + 5 = 28.

We now detail each step given above.

3.3 D i r e c t o r i e s Gk a n d Fk We describe the details
of the directory Gk (and the analogous structure Fk)
defined in Section 3.2, which determines Ok(i) 's list y
and the number of elements in all prior lists #y . We can
think of Gk conceptually as a bitvector of length nk,
the number of items indexed at level k. For each
nonempty list y at level k (considered in lexicographical
order) containing n~ elements, we write (n ~ - 1) 0s,
followed by a 1. Intuitively, each 1 represents the last
element of a list. Since there are as many I s in Gk as
nonempt~ lists at level k, Gk cannot have more than
min{[EI 2 ,nk} ls. To retrieve the desired information
in constant time, we compute y = rank(Gk,i) and
~ y = select(Gk, y). The Fk directory is similar, where
each 1 denotes the end of a context (considered in
lexicographical order), rather than the end of a list.
Since there are at most min{]EI h, nk} possible contexts,
we have at most tha t many is . We use the indexable
dictionary method [17] for this purpose.

LEMMA 3.3. Let M(r) denote min{IZ] r ,nk}. We can
store Gk using O(M(2 k) lg M ~ ')) bits of space, and Fk
using space O(M(h) lg ~(h))" "

846

3.4 L i s t -Spec i f i c D i r e c t o r y L~ Once we know
which list our query ~k(i) is in, we must find its con-
text x. We create a directory L~ for each list y at
level k, exploiting the fact tha t the entries are grouped
into ix, y) sublists as follows. We can think of L~ con-
ceptually as a bitvector of length n~, the number of
items indexed in list y at level k. For each nonempty
ix, y) sublist iconsidered in lexicographical order) con-

= x,y elements iwhere ~ , n k we write raining n k
(n~ m - 1) 0s, followed by a 1. Intuitively, each 1 rep-
resents the last element of a sublist. Since there are
as many l s in L~ as nonempty sublists in list y, tha t
directory cannot have more than min{IE] h, n~} Is . Di-
rectory L~ is made up of two distinct components:

The first component is an indexable dictionary [17]
in the style of Section 3.3 that produces a nonempty
context number p > 0. In the example given in
Section 2, context ba has p = 2 in list a, and p = 3
in list b. I t also produces the number ~ p of items
in all prior sublists, which is needed in Section 3.5.
In the example given above, context ba has ~ p --
2 in list a, and # p = 10 in list b. To retrieve
the desired information in constant time, we compute
p = r a n k (L ~ , i - # y) and # p = select(L~,p).

In order to save space, for each level k, we ac-
tually store a single directory shared by all lists y.
For each list y, it can retrieve the list 's p and # p
values. Conceptually, we represent this global direc-
tory Lk as a simple concatenation of the list-specific
bitvectors described above. The only additional infor-
mation we need is the start ing position of each of the
above bitvectors, which is easily obtained by computing
start = #y . We compute p = rank(i) - rank(start) and
~ p = select(p + rank(start)). Lk is implemented by a
single indexable dictionary [17] storing sk entries in a
universe of size nk.

LEMMA 3.4. We can compute p and # p at level k in
constant time using O(sk lg ~) bits.

The second component maps p, the local con-
text number for list y, into the global one x (for
level k). Since there are at most min{IEIh,nk} differ-
ent contexts x for nonempty sublists ix, y) and at most

min{IEI2k,nk} nonempty lists y at level k, we use the

concatenation of I E[2k bitvectors of I E I h bits each, where
bitvector b~ corresponds to list y and its l s correspond
to the nonempty sublists of list y. We represent the con-
catenation of bitvectors b~ in lexicographical order by y
using a single indexable dictionary. Mapping a value p
to a context x for a particular list y is equivalent to
identifying the position of the p th 1 in b~. This can be
done by a constant number of rank and select queries.

LEMMA 3.5. We can map p to x at level k in constant

time and O(sk lg ~-~--~-~) bits.
8 k

3.5 E n c o d i n g S u b l i s t G a p s Armed with x, y, # y ,
and #p , we can now retrieve z, the encoded element we
warn from the (x, y) sublist. We compute z by finding
the (i - ~ y - # p) t h element in the ix, y) sublist. We now
show how to get constant t ime access to any element in
the sublist as well as relate the encoding size to Hh.

We use the indexable dictionary [17] to encode each
ix, y) sublist, storing n~ 'v i tems (the number of items
in the ix, y) sublist at level k) out of n~ (the number of
items in context x at level k). The resulting bound is

[(n~ ~] + 0 (n~'ylglgn~ 'y
lg \hE,y j / I,, ~n--~] + 0 (lglgn~),

i

[()] n~ ,-~ n~ 'y lg e x,y lg + where lg n~. ~ = n k

n~ 'v lg e, which encodes precisely the hth-order entropy,
representing the ratio of elements in context x to those
in both context x and list y, plus an additive te rm

x,y lge. Said another way, we are encoding the of rt k
probabili ty of being in list y given the knowledge tha t
we are in context x, which again, precisely represents
the hth-order entropy term.

LEMMA 3.6. We can encode all sublists at level k using
at most nHh + nk lg e + O(nk lg lg (nk /Sk) / lg (nk / sk) +
O(sk lg lg(nUsk)) bits per level.

3.6 R e s u l t i n g B o u n d s for the Compressed Suf-
fix A r r a y We have almost all the pieces we need to
prove Lemma 3.1 and Lemma 3.2. We store all levels
k = 0 , 1 , . . . , g ' - 1,e ' ,g of the recursion in the com-
pressed suffix array (notice the gap between t ' and 6).
For each of the levels up to g~, we store a bitvector Bk
and a neighbor function ~k as described in Section 2,
with their space detailed below.

• Bitvector Bk stores nk/2 (or nt _< nk /2 when
k = g') entries out of nk. I t is implemented
with an indexable dictionary [17] in nk /2 +
O(nk lg lg n k / l g nk) bits.

• Neighbor function 'I~k is implemented as described
in Sections 3.2-3.5, with the space bounds stated
in Lemmas 3.3-3.6.

Similar to what we described in Section 2, level k =
stores the suffix array SAt, inverted suffix array SA[1,
and an array LCPe storing the longest common prefix
information [10] to allow fast searching in SAt. Each
array contains n~ lg n entries, which implies tha t they
occupy 3n bits in total; however, this can be reduced to
less than n bits with minor modifications. In particular,
we can simply increase the last level from ~ to g + 2

847

without changing the overall space complexity. In
sum, we obtain the following upper bound on the total
number of bits: of space required for the compressed
SUffLX array: nHh lglgt~ I n + 2(lge + 1)n + O (- ~) .

Building the above data structures is simply a vari-
ation of what was done in [6]; thus it takes O(nlg IEI)
time to compress (as given in Definition 2.1). Since
accessing any of the data structures in any level re-
quires constant time, lookup requires O(e' + 2 e- t ') =
O(lglgl~ln + lglEI) time, and a substring query for
c symbols requires O(c + lglgt21 n + lg IEI) time. How-
ever, we can improve substring by noting that 'I)t, de-
compresses 2 e' = O(lgl~ I n) symbols at a time, thus we
can replace the c term above by c~ lgl~ I n as we remarked
in Section 2. This completes the proof of Lemma 3.1.

In order to prove Lemma 3.2, we just store a
constant number 1/e of the e' levels as in [6], where
0 < c < 1/2. In particular, we store level 0, level t ' , and
then one level every other 7g' levels; in sum, 1 + 1/7 =
1/e levels, where V = c/(1 - e) with 0 < V < 1. Each
such level k < g' stores

• a directory Dk (analogous to Bk) storing the
nk+~e, < nk/2 (or nl < nk/2 when k < ~') entries
of the next sampled level. It is similarly imple-
mented with an indexable dictionary [17] in less
than nk/2 + O(nk lg lg nk/ lg nk) bits; and

• a neighbor function ~k implemented as before.

The last level g stores the arrays SAe, SAT -1, and LCPe
as previously described in less than n bits. (Recall that
we actually store them at level g + 2.) We can bound
the total number of bits required by the compressed suf-
fix array as e-lnHh + 2(lge + 1)n + O(nlg lgn / lgn) .
Thus, we are able to save space at a small cost to
lookup, namely, O(e-12 ~e' + 2 e-e') = O(lg~ I n + lg IEI)
time, while substring for c symbols reqmres an addi-
tional O(c/lgtzl) time. Building the above data struc-
tures is again a variation of what was done in [6], so
compress requires O(nlg IEI) time, proving Lemma 3.2.

4 C o m p r e s s e d Suffix A r r a y s in Sublinear Space
We can further reduce the space in the implementation
of compressed suffix arrays described in Section 3 to
get a sublinear space bound by applying an even more
succinct encoding of the E lists.

THEOREM 4.1. Compressed suffix arrays can be im-
plemented using e-lnHh + O(n lg lg n/ lg~ I n) bits and
O(nlg IE[) preprocessing time for compress, so lookup
takes O((lg[2ln)~/1-~lglE 0 time and substring for c
symbols takes the cost of lookup plus O(c/ lgl~ I n) time.

By a simple modification, we obtain an interesting
special case:

THEOREM 4.2. Compressed suffix arrays can be im-
plemented using nHh + O(n lg lg n/lgl~ I n) bits and
O(nlg [El) preprocessing time for compress, so that
lookup takes O(lg2 n / lg lg n) time and substring for c
symbols takes the cost of lookup plus O(clg IEI) time.

REMARK 4.1. The compressed suffix array in Theo-
rem 4.2 is a nearly space-optimal self-index in that it
uses nearly the same space as the compressed text--
nHh bits--plus lower-order terms. For example, when
Z is of constant size, we get nHh +O(n lg lg n/ lg n) bits.

4.1 Space Redundancy of Multiple Directories
In previous results, we encoded each sublist containing
k items as a separate dictionary using roughly lg (~) ,-~
k lg(en/k) bits. In total among all the sublists at level k,
the total space bound was more than the entropy term
nHh by an additive term of nk lg e. However, in some
sense, a dictionary (or sublist) is an optimal encoding
of the locations of a particular symbol (or list) in the
text T, so it should not require more space per symbol
than the entropy representation, which is the optimal
encoding size. This apparent paradox can be resolved
by noting that each dictionary only represented the
locations of one particular symbol in a sequence; that
is, there was a separate dictionary for each symbol. In
entropy encoding, we encode the locations of all the
symbols together. Thus, it is more expensive to have a
dictionary for the locations of each symbol individually
rather than having a single encoding for the entire
sequence of symbols.

Let 's define t~ to be the number of nonempty
sublists contained in context x at level k. We define
tk = max{t~, t~, . . . , t~ ~lh } to be the maximum number
of sublists that appear in a single context at level k. For
u given context x at level k, let the number of entries in
the nonempty sublists be x,1 x,2 x,t~ n k , n k , . . . , n k . Given x,
the entropy of encoding the preceding 2 k symbols y is

1 (n~ ~ 1 ~-, ='Y 1- n ~ .
lg x,1 =,2 =,t~ "~ - ~ nk

n-~ n k ,n k , . . . , n k / n~ l_<y<t~ ~n~'Y

(4.1)
On the other hand, if for context x we store a dictionary
of the locations of the entries in each sublist, then the
dictionary for a given sublist y in context x must encode

1. each of the n~ 'y occurrences of y, which happen
with probability x , ~ 1~= '~k / ' ~ k "

x~y 2. each of the n~ - n k non-occurrences of y, which
happen with probability 1 ~x,v/~= - - '~k I ' ~ k "

The resulting entropy of encoding the preceding 2 k
symbols y in context x is 7~ ~z_<v_<t~ lg (~,%) < lge +

n--~l El~y~t~. nkX'Y lg %.'~. The lg e additive term in the

number of bits per sublist occurrence is the extra cost

848

incurred by encoding all positions where the sublist
does not occur. When summed over all nk entries
in all sublists and all contexts, this gives an n k l g e
contribution to the total space bound. Note tha t the
lge te rm does not appear in (4.1). We can remove this
undesired space te rm at the cost of a more expensive
lookup by encoding each of our sublists in terms of the
locations not occupied by prior sublists within the same
context. For example, at level k = 0, the (x, a) sublist
occupies various locations among the items in context x.
When we encode the (x, b / sublist, we only encode the
positions tha t the (x,b) sublist occupies in terms of
positions not used by the (x, a) sublist. For instance, a
1 in the (x, b / sublist would represent the first position
not used by an a within context x. Similarly, when we
encode later sublists, we encode only those positions not
used by the (x, a) and (x, b) sublists, and so on.

The ramifications of our approach in te rms of search
t ime is tha t the search would be sequential in terms
of the number of sublists within a context, in order to
decompose the relative positions tha t are stored. For
instance, at level k = 0, to lookup the i th position in
the (x, c) sublist, we have to find the position j of the
i th non-position in the (x, b / sublist. Then we have to
find the position of the j t h non-position in the (x, a)
sublist. Thus, the cost of a search goes up by a factor
of t~ for queries on context x, since we potentially have
to backtrack through each sublist to resolve the query.

LEMMA 4.1. We can remove the O(nk lg e) space re-
quirement at each level from the compressed suffix array,
increasing the search times by a factor of at most tk.

4 . 2 T h e W a v e l e t T r e e The main difficulty with the
approach of Lemma 4.1 is the large sequential t ime cost
associated with reconstructing a query to a sublist. We
present instead a wavelet tree data structure, which
is of independent interest, to reduce the query t ime
to lgt~ < 2klg IEI, while still encoding in the desired
space of nHh + o(nk) bits per level. In order to prove
Theorems 4.1 and 4.2, we require this technique only
for level k = 0 (since nk = o(n) for all other k); the
slowdown is at most lg to < lg I EI.

LEMMA 4.2. (WAVELET TREE COMPRESSION) Using
a wavelet tree for each context x at level k, we
can resolve a query on a sublist in lgt~ < lgtk
time, while replacing the O(nk lg e) term with
O(nk lg lgnk lg tk / lgnk) bits of space for each level k.

Proof. I t suffices to consider the representation for a
single context x at some level k. All other wavelet trees
are constructed similarly. For ease of presentation, let
s~ be the (x,i) sublist. Let n k = Is~l.

We implicitly consider each left branch to be asso-
ciated with a 0 and each right branch to be associated
with a 1. Each internal node is a fully-indexable dictio-
nary [17] with the elements in its left subtree stored as
0, and the elements in its right subtree stored as 1. For
instance, the root node of the tree in Figure 2 represents
each of the positions of s l , . . . , s4 as a 0, and each of the
positions of sh, . . . , ss as a 1.

The major point here is tha t each internal node rep-
resents elements relative to its subtrees. Rather than
the linear relative encoding of sublists we had before,
we use a tree structure to exploit exponential relativity,
thus reducing the length of the chain of querying signif-
icantly. In some sense, the earlier approach corresponds
to a completely skewed wavelet tree, as opposed to the
balanced structure now. To resolve a query for the dth
entry in sublist si, we follow these steps:

1. S e t s = s i .
2. If i is odd, search for the dth 0 in s 's parent.
3. If i is even, search for the dth 1 in s 's parent.
4. Set d = the position found in s 's parent.
5. Set i = [(i + 1)/2J. Set s -- parent(s).
6. Recurse to step 2, unless s = root.
7. Return d as the answer to the query in sublist si.

This query trivially requires lg t~ t ime for context x
and at most lg tk t ime at level k. We analyze the space
required in terms of the contribution of each internal
node's fully-indexable dictionary. We prove tha t this
cost is exactly the entropy encoding. (In some sense,
we are calculating the space requirements for each s~,
propagated over the entire tree. For instance, si is
implicitly stored in each node of its root-to-leaf path.)
By induction, we can prove tha t the space required
among all internal nodes is

f x l . x 2 \ n k' -~ nk' ~ ~n kx,t~-I t n kx,t~
lg / x,2 / + • ." + Ig / x,tk] \ nk] \ n k

I n k + . . . + n k "~ [n k + . . . + n k
+ l g ~ n~.3+n~,4 / + . . . + l g k ~,~-~ ~.,~)

n k ..-~- n k

w 1 x , t ~ x
[nk ' + ' " + n k ~ nk x

+ l g ~ x , 1 - - - - w , t ~ / 2) : l g (x,1 x,2 x ' t k)

Hence, each wavelet tree encodes a particular con-
text in precisely the empirical entropy, which is what
we wanted. Summing over all contexts, we use nHh
bits per level by the definition of nHh.

x , y x , y x , y However, the sum of the O(n k l g l g n k / l g n k)
terms at each of the lgt~ levels of the wavelet
tree for some context x at level k sum to
O(n~ lglgn~/lgn~). Thus, we end up paying, for each
context x, O (n~ lg lg n~ lg t~ / lg n~) bits, which becomes

849

U 8 1 , . . . ~ 8 8

U s l , . . . , s4 U s b , . . . , ss

81 S2 83 84 85 86 87 88

Figure 2: A wavelet tree

O(nk lg lg nk lg tk / lg nk) when summed over all con-
texts x at level k. Thus we prove Lemma 4.2.

5 Applications to Text Indexing

In this section, we show that compressed suffix arrays
are high-order entropy-compressed text indexes sup-
porting searching of a sequence pat tern P of length m
in O(m + polylog(n)) t ime with only nHh ÷ o(n) bits,
where nHh is the information theoretical upper bound
on the number of bits required to encode the text T of
length n. We also describe a text index that takes o(m)
search t ime and uses o(n) bits on highly compressible
texts with small alphabet size. To our knowledge, these
are the first such results in text indexing.

5.1 A P a t t e r n M a t c h i n g Too l We need a search
tool for a list of r sequences $1 _< .- . _< Sr in
lexicographical order, so tha t we can identify the least
sequence Si having P as a prefix in O(m + r) time.
(Identifying the greatest such sequence is analogous.)
Our method examines the sequences $ 1 , . . . , Sr in left-
to-right order. The steps are detailed below, where we
denote the kth symbol of a sequence S by S[k]:

1. Set i = l and k = l.
2. Find the smallest j _> i such that Sj[k] = P[k].
3. If j > r, declare that P is not the prefix of any

sequence and quit with a failure. Otherwise, assign
the value of j to i, and increment k.

4. If k < m then go to step 2. Otherwise, check
whether Si has P as a prefix, returning Si as the
least sequence in case of success or declaring a
failure otherwise.

Denoting the positions assigned to i in step 3 with
ik ~ "'" ~ i2 ~ il, we observe that we do not access the
first k - 1 symbols of Sik_l+l, . . . , Sik when ik > i k - 1 ,
which could be potential mismatches. In general, we
compare only a total of O(ik +k) symbols of S~1,. . . , Sis
against those in P, where ik <_ r. Only when we have
reached the end of the pat tern P (i.e., when k = m),
do we increment k, set i = ira, and perform a full
comparison of P against Si. This results in a correct
method notwithstanding potential mismatches.

LEMMA 5.1. Given a list of r sequences $1 < ... < Sr
in lexicographical order, let Si be sequence identified by
our search tool. I f P is a prefix of Si, then Si is the least
sequence with this property. Otherwise, no sequence in
$1, . . . , Sr has P as a prefix. The cost of the search is
O(m + r) time, where m is the length of P.

What if S 1 , . . . , S r are implicitly stored in our
compressed suffix array, say at consecutive positions
x + 1 , . . . , x + r for a suitable value of x? To achieve
this goal, we need to decompress each suffix Sj on the
fly by knowing its position x + j in the compressed suffix
array (recall that SA[x+j] contains the start ing position
of Sj in the text). Decompressing one text symbol of Sj
at a t ime is inherently sequential as in [2] and [19, 20].
But steps 2-3 of our search tool require us to start
decompressing from the kth symbol of suffix Sj, rather
than the first, which could cost us O(mr) time!

Fortunately, we can overcome this problem by using
the inverse compressed suffix array. In order to incre-
mentally decompress symbols from position k of suf-
fix Sj (having position x + i), we decompress the first
symbols in the suffix at position SA -~ [SA[x+i] + k - 1]

in the compressed s u f f i array, where SA and SA-1 de-
note the s u f f i array and its inverse as mentioned in
Section 2. Equivalently, the latter suffix can be seen as
obtained by removing the first k - 1 symbols from Sj.
All this requires a constant number of lookup operations
and a single substring operation, with a cost tha t is in-
dependent of the value of k.

LEMMA 5.2. Given a sequence of r consecutive suffixes
$1 _~ . ' . _< Sr in the compressed suffix array, our search
tool finds the lcflmost and the rightmost suffix having P
as a prefix, in O(m + r) symbol comparisons plus O(r)
lookup and substring operations, where m = IPI.

5.2 H i g h - O r d e r Entropy-Compressed Text I n -
d e x i n g We now have all the tools to describe our search
of P in the compressed suffix array. We first perform
a search of P in SAt+lgt(n), which is stored explicitly
along with LCP~+]gt(,O, the longest common prefix in-
formation required in [10]. (The term t(n) depends on
which implementation of compressed suffix arrays we
use.) We require O(m) symbol comparisons plus O(lg n)
lookup and substring operations. At that point, we lo-
cate a portion of the (compressed) suffix array storing
r = 2 t+lgt(n) = O(t(n)lg n) suffixes. We run our search
tool on these r suffixes, at the cost of O(rn + t(n) lg n)
symbol comparisons and O(t(n) lg n) calls to lookup and
substring, which is also the asymptotical cost of the
whole search.

THEOREM 5.1. Given a text of n symbols over the
alphabet E, we can replace it by a compressed suffix

850

array occupying c- lnHh + O(n lg lgn/ lg~E I n) bits, so
that searching a pattern of length m takes O(m/ lgtE I n +

(lgn)(l+~)/(1-~)(lglEI)(1-3~)/(1-~)) time, for any fixed
value ofO < e < 1/2.

For example, fixing c = 1/3 in Theorem 5.1, we
obta in a search t ime of O(rn/lgl~ I n + l g 2 n) with a self-

1/3 .
index occupying 3nHh + O(nlglgn/ lgl~ I n) bits. We
can reduce the space to nHh bits plus a lower-order
term, obta ining a nearly space-optimal self-index.

THEOREM 5.2. Given a text of n symbols over the
alphabet E, we can replace it by a compressed suf-
fix array occupying nearly optimal space, i.e., nHh +
O(nlglgn/ lglE 1 n) bits, so that searching a pattern
of length m takes O(m lg IEI + lg 4 n~ lg 2 lg n lg tel) =
O(m lg IEI + polylog(n)) time.

If we augment the compressed suffix a r ray to obta in
the hybr id multilevel d a t a s t ruc ture in [6], we can im-
prove the lower-order terms in the search t ime of Theo-
rem 5.1, where tin) = l g ~ I n and ~ = ~/(1 - e) > c. We

use a sparse suffix tree storing every other (t(n)lg n) t h
suffix using O(n/t(n)) = O(n / l g~ I n) bits to lo-
cate a por t ion of the (compressed) suffix a r ray stor-
ing O(t(n) lgn) suffixes. However, we do not imme-
diately run our search tool in L e m m a 5.2; instead, we
employ a nested sequence of space-efficient Patr ic ias [12]
of size lg ~ - " n until we are left with segments of r = t(n)
adjacent suffixes in the compressed suffix array, for any
fixed value of 1 > w > 2q, > 0. This scheme adds
O(n/r) = O (n / l g ~ I n) bits to the self-index, allowing
us to restrict the search of pa t t e rn P to a segment of r
consecutive suffixes in the compressed suffix array. At
this point, we run our search tool in L e m m a 5.2 on these
r suffixes to identify the leftmost occurrence of the pat-
tern.

THEOREM 5.3. Given a text of n symbols over the al-
phabet E, we can replace it by a hybrid compressed suf-
fix array occupying e- lnHh +O(n lg lg n~ lg~n] n) bits, so
that searching a pattern of length m takes O(m/ lglE] n +

l g ~ n l o g 1-~ IEI) time, for any fixed value of 1 > w >
2 e / (1 - e) > 0 andO < e < l/3.

We provide the first self-index with small a lphabets
t ha t is sublinear bo th in space and in search time.

COROLLARY 5.1. For any text where nHh = o(n) and
the alphabet is small, the self-index in Theorem 5.3
occupies just o(n) bits and requires o(m) search time.

Acknowledgments
We would like to t hank Rajeev Raman , Venkatesh
Raman , S. Srinivasa Rao, and Kunihiko Sadakane for

sending us a copy of the full journal version of their
papers, and Rajeev R a m a n and S. Srinivasa Rao for
clarifying some details on succinct da t a structures.

References

[1] D. E. Ferguson. Bit-Tree: a data structure for fast file
processing. C. ACM, 35(6):114-120, 1992.

[2] P. Ferragina, G. Manzini. Opportunistic data struc-
tures with applications. In FOCS, 390-398, 2000.

[3] P. Ferragina, G. Manzini. An experimental study of an
opportunistic index. In SODA, 269-278, 2001.

[4] G. H. Gonnet, R. A. Baeza-Yates, T. Snider. New
indices for text: PAT trees and PAT arrays. In
Information Retrieval: Data Struct. Algs., 66-82, 1992.

[5] http ://www. google, com/help/refinesearch .html.
[6] R. Grossi, J. S. Vitter. Compressed suffix arrays and

suffix trees with applications to text indexing and string
matching. In STOC, 397-406, 2000.

[7] G. Jacobson. Space-efficient static trees and graphs. In
FOCS, 549-554, 1989.

[8] T. Luczak, W. Szpankowski. A Suboptimal Lossy Data
Compression Based in Approximate Pattern Matching.
IEEE Trans. Inform. Theory, 43, 1439-1451, 1997.

[9] E. M. McCreight. A space-economical suffix tree
construction algorithm. J. ACM, 23(2):262-272, 1976.

[10] U. Manber, G. Myers. Suffix arrays: a new method for
on-line string searches. SIAM J. Comput., 22:935-948,
1993.

[11] D. R. Morrison. PATRICIA - Practical Algorithm To
Retrieve Information Coded In Alphanumeric. J. ACM,
15(4):514-534, 1968.

[12] J. I. Munro, V. Raman, S. S. Rao. Space efficient suffix
trees. J. Algorithms, 39:205-222, 2001.

[13] J. I. Munro. Tables. FSTTCS, 16:37-42, 1996.
[14] A. Moffat, J. Zobel. Self-indexing inverted files for

fast text retrieval. ACM Trans. Informat. Systems,
14(4):349-379, 1996.

[15] G. Navarro, E. Silva de Moura, M. Neubert, N. Ziviani,
R. Baeza-Yates. Adding compression to block address-
ing inverted indexes. Inform. Retrieval, 3:49-77, 2000.

[16] R. Pagh. Low redundancy in static dictionaries with
constant query time. SIAM J. Comput., 31:353-363,
2001.

[17] R. Raman, V. Raman, and S. S. Rao. Succinct
indexable dictionaries with applications to encoding k-
ary trees and multisets. In SODA, 233-242, 2002.

[18] S. S. Rao. Time-space trade-offs for compressed suffix
arrays. IPL, 82(6):307-311, 2002.

[19] K. Sadakane. Compressed text databases with efficient
query algorithms based on the compressed suffix array.
In ISAAC, 410-421, 2000.

[20] K. Sadakane. Succinct representations of lcp informa-
tion and improvements in the compressed suffix arrays.
In SODA, 2002.

[21] I. H. Witten, A. Moffat, T. C. Bell. Managing Giga-
bytes: Compressing and Indexing Documents and Im-
ages. Morgan Kaufmann, second edition, 1999.

