
11

I/O-Efficient Dynamic Point Location in
Monotone Planar Subdivisions

(Extended Abstract)

Pankaj K. Agarwal’ Lars Arget Gerth Stalting Brodalr Jeffrey S. Vitters

Abstract

We present an efficient external-memory dynamic data struc-
ture for point location in monotone planar subdivisions. Our
data structure uses O(N/B) disk blocks to store a monotone
subdivision of size N, where B is the size of a disk block.
It supports queries in O(logi N) I/OS (worst-case) and up-
dates in O(lo& N) I/OS (amortized).

We also propose a new variant of B-trees, called leuel-
balanced B-trees, which allow insert, delete, merge, and split
operations in O((l+ $ logM,B f) log, N) I/OS (amortized),
2 5 b 2 B/2, even if each node stores a pointer to its par-
ent. Here M is the size of main memory. Besides being es-
sential to our point-location data structure, we believe that
level-balanced B-trees are of significant independent inter-
est. They can, for example, be used to dynamically main-
tain a planar St-graph using O((1 + $10g~,~ $$) log, N) =
O(logi N) I/OS (amortized) per update, so that reachability
queries can be answered in O(log, N) I/OS (worst case).

1 Introduction

Planar point location, a widely studied problem in com-
putational geometry, is defined as follows: Given a pla-
nar subdivision II with N vertices (i.e., a decomposi-
tion of the plane into polygonal regions induced by a
straight-line planar graph), preprocess II into a data

. Center for Geometric Computing, Department of Computer
Science, Duke University, Durham, NC 27708. Supported in
part by National Science Foundation research grsnts CCR-93-
01259 and EIA-9870724, by Army Research Office MURI grant
DAAH04-96-l-0013, by a Sloan fellowship, by a National Science
Foundation NYl award and matching funds from Xerox Corps
ration, and by a grant from the U.S.-Israeli Binational Science
Foundation. Email: pankaj0cs.dukc.edu.

t Center for Geometric Computing, Department of Computer
Science, Duke University, Durham, NC 27708. Supported in part
by the Army Research Office MURI grant DAAH04-96-1-0013
and by National Science Foundation ESS grant ElA-9870724.
Email: 1argeOcs. duke. edu.

* BRICS, University of Aarhus, DK-8000 Aarhus C., Denmark.
Supported by the Carlsberg foundation under grant 96-0302/20.
Partially supported by the ESPRIT Long Term Research Program
of the EU under contract 20244 (project ALCOM-IT). Part of
this work was done while at Max-Plsnck-Institut fiir Informatik,
Saarbriicken, Germany. Email: gerthebrics .dk.

i Center for Geometric Computing, Department of Computer
Science, Duke University, Durham, NC 27708. Supported in part
by’Army Research Office MURI grant DAAH04-9tZ-l-0013 and
by National Science Foundation grants CCR-9522047 and EIA-
9870724. Email: j svQcs .duke .edu.

structure so that the face of II containing a query point
can be reported quickly. This problem arises in sev-
eral applications, including graphics, spatial databases,
and geographic information systems. The planar sub-
divisions arising in many of these applications are too
massive to fit in internal memory and must reside on
disk. In such instances, the I/O communication is the
bottleneck instead of the CPU running time. Most
of the work to date, especially when we also allow to
change the edges and vertices of II dynamically, has
focused on minimizing the CPU running time under
the assumption that the subdivision fits in main mem-
ory [7, 9, 10, 14, 15, 22). Only a few static (or batched
dynamic) results are known for I/O-efficient point lo-
cation when the subdivision is stored in external mem-
ory [S, 16, 251.

In this paper we develop the first space- and I/O-
efficient dynamic data structure for planar point loca-
tion in monotone subdivisions. We also propose a vari-
ant of B-trees in which each node stores a pointer to
its parent and show that insert, delete, merge, and split
operations can be performed ei&iently. This structure
is of independent interest and can, for example, be used
to obtain I/O-efficient dynamic data structure for an-
swering various queries in planar s&graphs.’

1.1 Previous results

A polygon is called monotone in direction 8 if any line in
direction n/2 + 0 intersects the polygon in a connected
intenal; a convex polygon is monotone in every direc-
tion. A planar subdivision II is monotone if all faces of
II are monotone in a 6xed direction. Every convex sub-
division is a monotone subdivision. In the remainder of
this paper we use the term a monotone subdivision to
denote a subdivision that is monotone in the x-direction.

In internal memory, Edelsbrunner et al. [14] pro-
posed an optimal data structure for point location in
monotone subdivisions with O(N) space, O(N) pre-
processing time, and O(logN) query time. For ar-
bitrary planar subdivisions, the preprocessing time is
O(N 1ogN); see also [22]. If we allow the edges and

‘A planar directed acyclic graph, with a given embedding, is
called an st-gmph if it has unique source and sink vertices lying
on the boundary of the same face.

12

vertices to be changed dynamically, two linear-space
structures are known for general subdivisions: one
by Cheng and Janardan [9] that answers queries in
O(log2 N) time and supports updates in O(log N) time;
the other by Baumgarten et al. [7] that supports queries
in 0((log N) log log N) time (worst-case), insertions in
0((log N) log log N) time (amortized), and deletions in
O(log2 N) time (amortized). Both structures store the
edges of the subdivision in an interval tree [13] con-
structed on their z-projection (as first suggested in [15])
and use this structure to answer vertical ray-shooting
queries: for a query point p, find the first edge, if any, of
II hit by the ray emanating from p in the (+y)-direction.
The face ,containing p can then be found in O(logN)
time [20]. A summary of k:nown results can be found in
the recent survey [23].

In this paper we are interested in the problem of dy-
namically maintaining a monotone subdivision on disk,
so that the number of I/O operations (or I/OS) used to
perform a query or an update is minimized. We con-
sider the problem in the standard two-level I/O model
proposed by Aggarwal and Vitter [l]. In this model N
denotes the number of elements in the problem instance,
M is the number of elements fitting in internal memory,
and B is the number of ellements per disk block, where
M < N and 2 5 B _< M/2. An I/O is the operation of
reading (or writing) a disk block from (or into) external
memory. Computations can only be done on elements
present in internal memory. Our measures of perfor-
mance are the number of I/OS used to solve a problem
and the amount of space (disk blocks) used.

Aggarwal and Vitter [I] considered sorting and re-
lated problems in the I/O model and proved.that sort-
ing requires @(9 log MIB $) I/OS. Subsequently, I/O-
efficient algorithms and data structures have been de-
veloped for numerous problems-see recent surveys for
a sample of these results [2, 3, 261. All previous re-
sults on point location in external memory have been
either static or batched dynamic: Goodrich et aI. [16]
designed a static data structure using O(N/B) space to
store a monotone subdivision of size N so that a query
can be answered in optimal O(log, N) I/OS. They also
developed a structure for answering a batch of K point-
location queries in optimal O(v logMiB N) I/OS.
Arge et al. [S] extended the batched result to general
subdivisions and Arge et aZ. [4] to an off-line dynamic
setting in which a sequence of queries and updates are
given in advance and all the queries should be answered
as the sequence of operations are performed. Vahren-
hold and Him-i&s considered the problem under some
practical assumptions about the input data [25].

1.2 Our results

In this paper we present t:he first provably I/O-efficient
dynamic data structure for point location in a monotone

planar subdivision II. Our structure uses O(N/B) disk
blocks to store II, answers queries in O(logi N) I/OS
in the worst-case, and inserts/deletes edges and vertices
in O(log$ N) I/OS amortized per edge/vertex. Here
we assume that an update operation is admissible only
if the subdivision remains planar and monotone after
the operation. Our algorithm first detects whether an
update operation is admissible and carries it out only if
it is.

In order to answer the queries efficiently, we intro-
duce a total order -in on the edges of II, as in [21, 241.
As edges are inserted or deleted the order may change
considerably. We maintain the order in a separate B-
tree-like data structure using split and merge opera-
tions. Each node of this structure stores a pointer to its
parent. Although merge and split operations on stan-
dard B-trees can be performed in O(logs N) I/OS, up-
dating the parent pointers requires R(Blog, N) I/OS.
We therefore introduce a new variant of B-trees called
level-balanced B-trees in which parent pointers can be
maintained efficiently. For 2 5 b 5 B/2, level-balanced
B-trees use O(N/B) blocks to store N elements, and
support insert, delete, merge, and split operations in
0((1 + $ logMIB $$) log, N) = O(logi N) I/OS amor-
tized.

We believe that the level-balanced B-trees are of sig-
nificant independent interest. They can, for example, be
used to dynamically maintain a planar St-graph using
0((1 + $ logMiB $$) log, N) = O(log$ N) I/OS amor-
tized per update, so that reachability queries (of the
form “is there a path from z to y?“) can be answered
in O(logB N) I/OS worst-case.

2 Static Point Location

In this section we present a static data structure for
point location, which we will dynamize in the next sec-
tion. Let II be a monotone subdivision with N ver-
tices. We assume that all vertices in II have distinct
s-coordinates, and that there are no unbounded edges
in II. Our structure can easily be extended to handle
subdivisions in which these assumptions do not hold.
We use s and t to denote the leftmost and the right-
most vertices of II. We present a data structure for
the vertical ray-shooting problem: Preprocess II into a
data structure so that the first edge of II, if any, hit
by a query ray in the (+y)-direction emanating from a
query point p can be reported efficiently. As in internal
memory, the face containing p can easily be found once
the ray-shooting query is answered. Our data structure
extends to an arbitrary set of disjoint segments, but we
focus on monotone subdivisions because at present we
do not know how to dynamize the structure for arbitrary
segments.

13

2.1 Ordering the edges

We first define a total order on the edges of II, originally
introduced by Tamassia and Preparata [24], which will
be crucial for our structure. We regard II as a directed
planar St-graph with the edges of Il directed from left to
right. We define the dual graph of II, denoted by II’, to
be the directed planar graph in which there is a vertex
f’ for every bounded face f of II and two vertices s*
and t’ for the unbounded face. For every edge e E II,
adjacent to two faces fr and fs with fi lying below f2,
we add the edge e* = (f;,f;) in II’; if fi (resp., f2)
is the unbounded face, then the edge in II’ is (s*, f;)
(resp., (f;, t’)). See Figure 1 a) and b).

v
b)

Figure 1: a) II. b) Dual II’. c) Order of edges in II.

We say that there is a path from an edge e to another
edge e’ in II if there is a path e = er , e2, . . . , el = e’
in II. It can be shown that there is a path from ei to
ej in II if and only if there is no path from ef to e; in
II’; see e.g. [24]. For a pair ei,ej E II of edges, we say
ei -in ej if either there is a path from ei to ej in II or
there is a path from et to e; in II*. See Figure 1 c).

Lemma 1 (Tamassia-Preparata [24])

(i) +n defines a total order on the edges of II.

(ii) Let E be a subset of the edges of II so that all seg-
ments in E intersect a vertical line 4. If E is sorted
according to <n then e intersects the edges in E in
sorted order.

2.2 Overall structure

In the following we make frequent use of (a, b)-trees [18].
In (a, b)-trees the leaves are all on the same level and
they contain the elements stored in the structure. All
internal nodes (except possibly the root) have between
a and b children. In most of this paper, a, b = @(Be) for
some constant 0 < c 5 1, and each leaf contains O(B)
data elements. Such a structure storing N elements is
thus a O(B’)-ary tree over O(N/B) leaves. Each leaf as
well as internal node fits in one disk block, and thus the
tree occupies O(N/B) blocks. The height of the tree
is O(log,, N) = O(log, N). Insert, delete, and search
operations can be performed in O(log, N) I/OS [18]. A

normal B-tree [8, 111 is just such a structure with c = 1.
For c = l/2 we call the structure a a-tree.

To simplify the presentation we assume without loss
of generality that N = Bkj2 for some integer k > 0. Let
S be the set of edges in II. Our point-location structure
is a two-level tree structure similar to the external in-
terval tree, developed by Arge and Vitter [6]. The first
level, called the base tree, is a &tree T over the z-
coordinates of the endpoint of the segments in S. The
segments in S are stored in secondary structures associ-
ated with the nodes of T. Each node v of T is associated
with a vertical slab s,; the root is associated with the
whole plane. For each interior node v, sv is partitioned
into fl vertical slabs sr , . . . , sa, separated by verti-
cal lines which we call slab boundaries (the dotted lines
in Figure 2), so that each slab contains the same number
of vertices of II. Here si is the slab associated with the
i-th child of v. A segment e of S is stored at the highest
node v of T at which it intersects a slab boundary asso
ciated with v. Let S, E S be the set of segments stored
at v. A leaf z stores segments whose both endpoints lie
in the interior of the slab sz. The number of segments
stored in a leaf is less than 3B - 6 and they can thus be
stored in at most three blocks.

?

I c.

Figure 2: A node in the base tree. For segment e we
have I= 1, r = 4. Its middle segment spans ss and ss.

Let v be an internal node of T, let e be a segment
of S,, and suppose the left (resp., right) endpoint of e
lies in the vertical slab sl (resp., s,) associated with v.
We call the subsegment e n sl the left subsegment and
e n s? the right subsegment of e. If r > 1 + 1, then the
portion of e lying in s!+~, . . . , s,-1 is called the middle
subsegment; if r = 1 + 1, then the middle subsegment is
the intersection point of e with the common boundary
of sl and sr. See Figure 2. Let M denote the set of
middle subsegments of segments in S,,. For each 1 5
i 5 a, let Li (resp., &) denote the set of left (resp.,
right) subsegments that lie in the slab si. We store the
following secondary structures at v.

(i) A multislab structure ek, on the set of middle seg-
ments M that requires O(IMI/B) disk blocks.

(ii) For each i < a, we have the following two struc-
tures:

- A left structure ti on all segments of Li;

14

- A right structure Ri on all segments of &.

Li and R;, over all slabs of V, require a total of
O(lSvl/B) blocks.

A segment in S, is thus stored in at most three sec-
ondary structures: the multislab structure, a left struc-
ture, and a right structure. For example the segment e
in Figure 2 is stored in the multislab structure, the left
structure of si, and in the right structure of ~4. Each
node 2, requires 0(1&]/B) space, therefore the overall
data structure requires 0(N/B) disk blocks.

Figure 3: Answering a query.

Let p’ be the ray emanating from a point p in the
(+y)-direction. To find the first segment of S hit by
pf, we search T along a path from the root to a leaf
z, such that S, contains p, using O(logB N) I/OS. The
6rst segment of S, hit by p+ is computed by testing all
segments of S, explicitly. At each internal node v visited
by the query procedure, we compute the first segment
of S, hit by p+. In particular, we first search QV to find
the first segment of M hit by p+. Next, we find the
vertical slab si that contains p and search J$ and Ri to
find the first segments of Li and &, respectively, that
intersect p+ (refer to Figure 3). We will show below
that each of the three operations can be performed in
O(logB N) I/OS. By repeating this procedure for each
node and choosing the first segment hit by p+ among
these O(log,N) segments, we can answer a query in
O(log2, N) I/OS.

Theorem 1 A monotone planar subdivision II with N
vertices can be stored in a data structure using O(N/B)
disk blocks, so that a vertical ray-shooting query can be
answered in O(log& N) I/O operations.

If S is an arbitrary set of disjoint segments, we
can define another ordering on the segments of S, as
in [17], that has essentially the same property as the
+-ordering, and prove the following (details omitted
due to space constraints).

Theorem 2 A set S of N disjoint segments can be
stored in a data structure using O(N/B) disk blocks,
so that a vertical ray-shooting query can be answered in
O(log% N) I/O operations.

2.3 Left/right structures

In this subsection we sketch how to construct the left
and right structures. These structures use ideas similar
to the ones used by Cheng and Janardan [9]. We only
describe how to construct and query a left structure;
the right structure is analogous.

Let L be a set of K segments so that the right end-
points of all segments in L have the same z-coordinate,
i.e., all of them lie on a vertical line. We will use L to
denote the sequence of segments sorted by y-coordinate
of their right endpoints. We construct a B-tree L: on L.
For each node v of C, let L, E L be the set of seg-
ments stored in the subtree rooted at v. Let X, be the
segment of L, whose left endpoint has the minimum x-
coordinate; X, is called the minimal segment of v. At
each internal node v we store the minimal segments of
all its children. Note that each node fits in O(1) blocks
and that the tree can be constructed (bottom-up) in
O(K/B) I/OS assuming the segments in L are sorted.

Let p be a query point, and let p+ (resp., p:) be the
ray emanating from p in the (+y)-direction (resp., (-y)-
direction). We actually answer the ray-shooting queries
for both p+ and p- . To do so we explore L in a top-
down fashion. In the ith step, the query procedure visits
two nodes vi and vs at level i of C, so that among the
minimal segments stored at all level i nodes, vr (resp.,
VZ) contains the first segment hit by p+ (resp. p-). If
p+ (resp., p-) does not intersect any of the minimal
segments, VI (resp., ve) is undefined. Note that v1 and
v2 may be the same node. When we reach the leaf level,
the leaf vr contains the desired segment.

In the ith step, among the O(B) minimal segments
stored at vi and 212, we find the first segment X, (resp.,
X,) hit by pi (resp., p-), and set ~1 to w and vs to z.

Lemma 2 Among the minimal segments stored at level
(i + 1) nodes, w and z contain the first segments hit by
p+ and p-, respectively.

The correctness of the query procedure follows from
the above lemma, therefore we obtain the following.

Lemma 3 A set L of K segments all of whose right
endpoints lie on a single vertical line can be stored in a
data structure using O(K/B) blocks, so that a vertical
my-shooting query can be answered in O(log, K) time.
If L is sorted by the y-coordinates of the right endpoints,
then the structure can be constructed in O(K/B) I/OS.

2.4 Multislab structure

We now describe the multislab structure. Let M be a
set of K disjoint segments whose endpoints have a+ 1
distinct z-coordinates, i.e., they lie on fi + 1 vertical
lines bl,...ba+,. Some of the segments in M may be

15

points. For 1 5 i 5 @, let si be the vertical slab
bounded by bi and bi+l . -411 vertical lines in the interior
of a slab intersect the same subset of M, so if we know
the sorted (according to +n) set of lines M’ intersecting
the slab containing the query ray, we can easily answer
the query in @logs N) I/OS using a B-tree on M’.
However, we cannot afford to construct a data structure
for each slab separately, so we will construct a single
data structure. Lemma 1 (ii) will be crucial for our
construction.

Let M denote the sequence of segments sorted by
+-ordering. We first construct a @-tree Q on M.
For a node v E Q, let M, denote the subsequence of M
stored in the subtree rooted at v. We store a number of
segments of M, at each internal node v of P to facili-
tate the query procedure. Let wl,. . . , WJF~ denote the
children of an internal node v. For 1 5 i, j 5 a,
let pij denote the maximal segment of M,; (in the
+-ordering) that intersects the vertical slab sj. If no
segment of M,i intersects sj 9 pij is undefined. For
l<i<~,l<j<~+l,let&denotethemaxi-
mal segment of M ,,,< that intersects the vertical line bj.
If there is no such segment, & is undefined. All less
than 2B + JB segments pij and pij are stored at V.

The x&-tree Q requires O(K/B) disk blocks and can
be constructed (bottom-up) in O(K/B) I/OS, assuming
that M, is sorted according to the- +-ordering.

Let p be a query point and p+ the ray emanating from
p in the (+y)-direction. To answer the query we follow a
path from the root to a leaf z of q so that M, contains
the first segment hit by p’. At each node v visited
by the procedure we do the following: If p lies in the
interior of a slab sr, let E, = {pi, 1 1 5 i 5 a}. Since
all segments in E, intersect the vertical line containing
p, by Lemma 1 and the definition of pij, if k, is the
first segment of E, intersected by p+, then wi contains
the first segment of M hit by p+. We therefore visit
Wi next. If p lies on the slab boundary b,, then we set
E, = {pi,] 1 5 i < a} and determine the child of v
that we visit next, following a similar approach.

Lemma 4 A set M of K disjoint segments whose end-
points have a+ 1 distinct endpoints can be stored in
a data structure using O(N/B) blocks, so that a vertical
ray-shooting query can be answered in O(log, K) I/OS.
If M is sorted according to -in then the structure can
be constructed in O(N/B) I/OS.

If we store both “maximal” and “minimal” segments
in the internal nodes of q, it is possible to find the
first segment hit by p- as well. Note that the above
lemma can also be used to determine whether a segment
-y E M: the query ray is the ray emanating from the left
endpoint of y; y E M if the query procedure returns 7
itself.

3 Dynamic Point Location

In this section we show how to dynamize the data struc-
ture described in the previous section. Preparata and
Tamassia [21] showed that the operations of inserting
or deleting a chain of edges between two existing ver-
tices are complete for monotone subdivisions (i.e., an
arbitrary subdivision can be assembled or dissembled
using O(N) such operations). Because of space con-
straints, we only consider the insertion of a single edge
in this extended abstract. Insertion (and deletion) of a
chain of edges can be handled using a similar, though
more involved, procedure. Recall that an update is ad-
missible only if the subdivision remains monotone and
planar after the update operation. It can be checked in
O(logs N) I/OS if an update is admissible using a mod-
ified version of the normal internal memory algorithm.
Details will appear in the full paper.

In order to dynamize our data structure, we need effi-
cient procedures for updating the base tree (when end-
points are inserted/deleted) and the secondary struc-
tures (when segments are inserted/deleted). Using the
normal B-tree updating procedures the base tree can be
updated in O(logB N) I/OS. However, as rebalancing is
done by spiitting and fusing nodes we need to rebuild
the corresponding secondary structures when perform-
ing such an operation. As in [S], we use a weight bal-
anced B-tree to implement the base tree, in which a
node v with Y elements in its subtrees can only be in-
volved in a rebalance operation for every n(v) updates
that access v. This allows us to rebalance the base tree
I/O-efficiently while maintaining the secondary struc-
tures. Details will appear in the full paper.

To insert a new segment e we traverse down the base
tree, using O(logB N) I/OS, to 6nd the first node v at
which e intersects one or more slab boundaries. Then
we insert the left, right, and middle subsegments of e in
the left, right, and multislab structures stored at v. A
segment can be inserted into a left or right structures in
O(logB N) I/OS using a slightly modified version of the
standard B-tree insert procedure. The difficult part is
updating the multislab structure. There are two main
difhculties: First, insertion of an edge may change the
+n ordering considerably, so we may have to rearrange
multislab structures at many nodes of the base tree.
Second, it seems impossible to determine in O(1) I/OS
whether ei -+J ej, for two edges ei, ej E II, and thus a
segment cannot be inserted in a multislab structure us-
ing the standard B-tree insertion algorithm. The key to
perform the update efEciently, is to maintain a second
data structure on the +-ordering of the whole subdi-
vision. In Section 3.1 we first describe how to maintain
this structure during insertions, and then in Section 3.2
we explain how to use it to update the multislab struc-
tures.

16

3.1 Updating -QJ

In order to update the +-ordering as II changes dy-
namically, we extend the +-ordering to include ver-
tices and faces of II. Let II’ be the dual graph of II,
as defined in the previous section. Recall that the dual
of a vertex (resp., face) of II is a face (resp., vertex) in
II’. We refer to the vertices, edges, and faces of II or
II* as its features. For each feature q5 of II or II’, we
define two vertices Z(d) and ~(4). If 4 is a vertex, then
l(4) = ~(4) = 4. If C$ is a directed edge (a,P), then
l(4) = CY and r(d) = p. The boundary of a face C$ of II
(or II*) consists of two paths from a vertex Q to another
vertex P. We set 1(d) = o and ~(4) = p. We say that
there is a path from a feature ~$1 to another feature 42
of II if there is a path in II from ~(41) to Z(&). For two
features &, 4j E II, we define $i +n 4j if either there
is a path from 4i to 4j in lI or a path from 4f to 4;
in the dual graph II*. As argued in [24], +n is a total
order on the features of II. Let (II) denote the sequence
of all features of II sorted by 4~. The following lemma
is due to Tamassia and Preparata [24] (refer to Figure 4
for case (iv)).

Lemma 5 (Tamassia-Preparata [24]) Let II be a
monotone planar subdivision, and let II’ be the subdi-
vision obtained after inserting an edge e = (a,fl) that
splits the face f of n into two faces fi, f.2, with fi lying
to the left of e. Then (II’) can be obtained from @I) as
follows.

(9 0 +I P -3-1 f:

(l3) = AaBPCfD =$ (II’) = AaBfiePCfzD.

(ii) f -Q-f a -xn P:

(II) = AfBcrCPD =S (IYI’) = AfiBcref&PD.

(iii) a +n f -xn p:

(Il) = AcrBfCPD => (II’) = AaBfief&‘j?D.

(iv) ,f? -in f +n cy:

(II) = APBfCaD => (ll’) = AfiCcrepBfiD.

In order to maintain (II) efficiently, we store it in a
level-balanced B-tree, denoted by A, in which each node

Figure 4: Inserting e = (ebb) when P -31 f +-I Q
(APBfCoD + Af~CaePBf2D). A, B, C, and D a.re
defined by the topmost path from s to cy and from s to
& and bottommost path from Q to t and from 0 to t.

also stores a pointer to its parent. In the most involved
case (case (iv)) we need to swap two subsequences in
(II) and perform a constant number of insertions and
deletions next to a, p, and f. Assuming that we have
pointers to o, P, and f in the leaves of A, we can update
(II) using O(1) insert, delete, split, and merge opera-
tions, provided that we can compute the paths from the
root of A to the leaves containing a,/?, and f. These
paths can easily be found using the parent pointers. (It
is not possible to do a root-leaf search for a given fea-
ture, as we cannot directly compare two features). As
we will show in the next section, level-balanced B-trees
support each of the above operations in O(logi N) I/OS
amortized.

Theorem 3 For a monotone planar subdivision II,
(II) can be maintained after an insert operation in
O(logi N) I/OS amortized

We will perform two types of queries on A. First,
given two features 41,42 of II, determine whether #i +u
&. To do so we follow the parent pointers from the
leaves storing 41 and 42, in O(log, N) I/OS, until we
reach their lowest common ancestor in A. We can then
easily determine whether the leaf storing dl lies to the
left of that storing &.

Lemma 6 The relative order of two features of ll (ac-
cording to +A) can be determined in O(log, N) I/OS.

Second, let o be a vertex of II, and let e be a vertical
line that lies between Q and t. Find the edge on the
bottom-most path from Q to t intersecting e. Suppose
at each node v of A, we also store the rightmost end-
point among all the edges stored in the subtree of A
rooted at v. (As II changes, this information can eas-
ily be updated without using additional I/OS.) We can
then answer the query as follows: We follow the parent
pointers, starting from the leaf of A storing Q, until we
reach a node w so that the right endpoint stored at w
lies to the right of L. We then follow the leftmost possi-
ble path in the subtree of A rooted at w so that at each
node the rightmost endpoint lies to the right of e. The
leaf reached in this way stores the desired edge of II.

Lemma ,7 For a vertez a E II and a vertical iine L, we
we can find in O(log, N) I/OS the edge of the bottom-
most path from 01 to t that intersects f?.

3.2 Maintaining the multislab structure

We now describe how to maintain the multislab struc-
tures. We will see that although the segments in a mul-
tislab structure are ordered according to <n-ordering,
we can still store them in a normal a-tree, i.e., parent
pointers axe not required. Suppose we insert an edge

17

e = (a, /3) into a face f of Il, which is to be stored at a
node v of the base tree. We assume that the pointers to
the leaves of 4 storing o:,P, and f are given. In cases
(i)-(iii) of Lemma 5, +n-ordering remains the same ex-
cept that e is inserted, so we simply insert the middle
subsegment of e into q,,. In case (iv), the +-ordering
changes and thus we may have to modify the multislab
structure at many nodes of the base tree. However, we
can prove the following (proof omitted):

Lemma 8 Let e = (a, p) be an edge to be inserted into
a face f where ,S +n f + Q, so that &I) changes from
APBfCcrD to AfiCaePBfsD. Let v be the node in
the base tree T at which e is to be stored. Insertion of e
does not affect the +n ordering for M, if w is not an
ancestor of v.

Hence, in all cases, only the multislab structures at v
and possibly its O(logs N) ancestors are changed. At
each such node w, we perform two steps: (i) re-organize
the multislab structure Y?w to make it consistent with
the new +-ordering, and (ii) update the maximal seg-
ments pij and Pij at the nodes affected by the update
procedure. The second step is relatively easy to handle,
so we just describe step (i). Let A, B, C, and D be the
same .as in Lemma 5. Let A,,, be the set of middle sub-
segments of segments in An&; define B,, C,, and D,
similarly. S, = A,,, U B, U C, U D,. We first split !J?‘w
into four B-trees TA, TB, Tc, TD, by performing three
split operations, which store A,,,, B,, CW, and D,, re-
spectively. Then we merge TA with T, and TB with TD,
and merge the two resulting trees together to obtain the
structure gE, consistent with the new +-ordering. Fi-
nally, if w = v, we insert the middle subsegment of e into
the new !ljw. In order to perform the splits efficiently,
we have to find the paths from the root to the leaves
storing the first segments of B,, C,, and D,. The fol-
lowing lemma suggests a way to find the first segment
of B,.

Lemma 9 Let e = (c~, /3) be an edge to be inserted into
a face f where P +I f -Q-I Q, so that (II) changes
from APBfCaD to AfiCaePBfaD. Suppose e is to be
stored at a node v of the base tree. Let w be an ancestor
of the node v, and let si be the vertical slab si of w in
which p lies. Let 7 be the first segment on the path from
p to t that intersects the right boundary bi+l of si.

Suppose B, # 0 and the first segment of B, is the
middle subsegment of < E SW. Then either 6 = 7 or 5
is the segment of SW lying immediately above the point
Y n bi+l.

Proof: We first prove that < intersects bi+l. Assume
that this is not the case; then { must intersect some
other boundary bj to the right of b;+l . Now all segments
on the path from 0 to the left endpoint of 5 belong to B

and are smaller than < in the +-ordering. Since their
middle subsegments are not in B,, they must be stored
at other nodes. One of these segments 5’ must cross
bi+l - its left endpoint lies to the right of (or on) /3
and it right endpoint lies to the left of (or on) the left
endpoint of <. This contradicts the fact that [’ is stored
in another node.

Since 5 intersects bi+l, if c # y, then y +-r < and
therefore < lies above the point 7 n bi+l. Refer to Fig-
ure 5. This completes the proof of the lemma. 0

Figure 5: Proof of Lemma 9.

Using Lemma 9, we can compute the first segment
of B, as follows. Using Lemma 7, we can find in
O(logs N) I/OS the first segment y of B that inter-
sects the vertical line b;+l. If 7 $! B,, then we find the
segment t in M, immediately above the point rn bi+l
in O(logB N) I/OS using Lemma 4. Next we check in
W%B N) I/O s, using Lemma 6, whether < +n f. If
the answer is “no,” then B,,, = 0, otherwise < is the first
segment of B,. Note that since the query procedure
for finding < traverses the path from the root of !kw to
the leaf storing <, we have actually found the path to
split !J!‘w along (i.e., parent pointers are not needed).
Similarly, we can find the first segments of C, and D,,
as required, and split 3@‘w into four a-trees. Details
will appear in the full paper. Putting everything to-
gether, we conclude that we in total use O(log, N) I/OS
in each of O(logB N) nodes to maintain the multislab
structures. Thus we have obtained the following:

Theorem 4 There exists a data structure using
O(N/B) blocks to store a monotone subdivision of
size N, such that a vertical ray shooting query can be
answered in O(logg N) I/OS worst case and such that
updates can be performed in O(log$ N) I/OS amortized.

4 Level-Balanced B-Trees

Normal B-trees do not contain parent pointers and thus
one cannot follow a leaf-root path in such trees as
needed in our dynamic point-location structure. Aug-
menting B-trees with parent pointers leads to an unde-
sirable O(B logB N) I/O bound for the split operation,
the reason being that 8(logB N) B-tree nodes are split
and fused when performing a split and in each such op
eration O(B) parent pointers need to be updated.

18

In this section we des’cribe level-balanced B-trees,
which support insert, delete, split, and merge opera-
tions while maintaining parent pointers as needed in
our dynamic point-location structure. The main new
properties that allow us to perform all the above oper-
ations I/O-efficiently are that we (i) allow the degree of
a node to be arbitrarily small, and (ii) allow disk blocks
to contain several nodes. By doing so we avoid fusing
nodes altogether and we are able to split a node in a con-
stant number of I/OS. Note that when we allow nodes
to have degree o(B) we need some other way of assuring
that the tree has height 0(logB N) We do so by impos-
ing an invariant on the number of nodes on a given level
of the tree, and rebuilding the nodes at a level whenever
the invariant is violated. (Thus the name level-balanced
B-trees.) In the next subsection we describe the general
idea in level-balancing without discussing parent point-
ers and how the tree are layed out on disk blocks. In
Section 4.2 we then sketch how to adopt the technique
to external memory while maintaining parent pointers.

4.1 Level-balanced trees

A level-balanced tree of degree b is similar to a (1, b)-
tree, i.e., all leaves are on the same level and all internal
nodes have degree between one and b. To simplify our
arguments, we assume that b is a power of 2 and 3 (that
is, b = 6k for some integer k 2 0). Since we allow split
operations, we will show how to maintain a collection
of trees (also called a forest) with a total of N leaves.
As discussed, we impose an invariant on the number of
nodes on a given level in order to bound the height of
the trees. Set N; = N/($)i. We define the level of a
node v to be the number of edges in a path from v to
a leaf (i.e., leaves are on level zero), and maintain the
following level invariant for all levels:

The number of non-root nodes at level i in the
forest is at most 2Ni.

The invariant insures that the height of a tree is
bounded by a function of the total number of leaves
in the forest.

Lemma 10 The height of all trees in the forest is
Wag, W-

Update operations are now basically performed as in
(1, b)-trees: To insert a new leaf e next to an existing
leaf e’, e is added to the child list of the parent p of e’.
If p now has b + 1 children, p is split into two nodes
of degree b/2 and b/2 + 1. The newly created node is
recursively added to the p.arent of p. To delete a leaf z,
we remove z from the tree. If the degree of the parent of
z becomes zero, the parent is recursively deleted. (Note
that no node fusions are performed).

To merge two trees of equal height h, we create a node
at level h+ 1 and make the two roots the children of the
new node. To merge two trees of height hl and hp, with
hl < hz, we make the root of the tree of height hl a new
child of the rightmost or l.eftmost node at level hl + 1
of the other tree. If this node now has degree b + 1, we
recursively split the node as in insertions. To perform
a split operation at a leaf e, we split the ancestor nodes
of e so that e becomes the leftmost leaf of one of the
resulting trees. The degree of ancestors of e may now
be arbitrarily small, but we allow nodes to have small
degrees, so no rebalancing (node fusion) is needed unless
the level invariant is violated.

One main property of the operations above is sum-
marized in the following lemma.

Lemma 11 Insert, delete, split, and merge operations
create at most one new node (perform one node split)
at each level in the forest.

After performing one of the above operations the re-
sulting trees are (1, b)-trees, but the level invariant may
be violated. .If the level invariant is violated, we apply
the following level rebuilding strategy: Let h be the low-
est level for which the level invariant is violated (recall
that the leaves are on level 0). For each tree T rooted at
a level greater than h we simply replace level h and the
subtree of T above level h with a new subtree in which
all nodes, except possibly for the root, have degree at
least b/2 and at most b.

Note that before the level rebuilding there are 2Nh + 1
non-root nodes at level h with a total of at most 2Nh-r
children, i.e., the average degree of the nodes at level
h is less than 8. After the rebuilding, each non-root
node has degree at least b/2 and the number of non-
root nodes on level h is at most 2Nh-r/(q) < $N,,.
The rebuilding step reduces the number of non-root
nodes at level h by increasing the average degree of the
nodes at level h. In general, the number of non-root
nodes at level i 2 h in the resulting forest is at most
2N+i/($)i-h+1 5 $Ni. This means that Q(Ni) nodes
now need to be created at level i 2 h before the level
invariant can be violated for level i. Since each tree op
eration creates O(log6 IV) nodes (Lemma 11) and fi(Ni)
nodes are rebuilt before the level invariant is violated
for level i again, we obtain the following.

Lemma 12 The opemtions insert, delete, split, and
merge each rebuild O(log, N) nodes in the amortized
sense.

4.2 External-memory representation

We now sketch how to lay out level-balanced trees on
disk blocks and how to maintain parent pointers during

19

insert, delete, split, and merge operations. As men-
tioned, the key property that allows us to maintain par-
ent pointers I/O-efficiently is that we allow each disk
block to store several nodes. Whensplitting a node we
can thus keep both resulting nodes in the same origi-
nal block and avoid updating the parent pointers of the
affected children.

We represent each node v in a level-balanced B-tree
by up to b + 1 constant-size records: One node record
and between 1 and b child records. For each level i,
node records of all nodes at level i are stored in a se-
quence of disk blocks such that each disk block contains
O(B) records. All child records at level i are stored in
another sequence of blocks such that each disk block
contains O(B) records and such that all child records of
a node are stored in the same block. (We require that
all records in a block are from the same level). Note that
the node and the child records of a node v are stored in
different disk blocks.

Each child record of a node v stores a pointer to the
node record of v and a pointer to the node record of a
child node. The child records are kept in left-to-right or-
der in a double linked list. The node record of v stores
a pointer to the left-most child record of v, as well a
pointer to a child record of the parent of v (which stores
a pointer to the node record of v). A pointer is repre-
sented as a pair consisting of a disk block identifier and
a record offset within the block (for example the pointer
(27,95) would point to record 95 in disk block number
27). Note that because of the way records are stored in
blocks, it is possible to update the parent pointer in the
node record of v without having to load the child records
of v, which in turn means that all the parent pointers of
a level with X nodes can be updated in 0(X/B) I/OS.
This will be crucial when rebuilding a level.

It is easy to realize that except for node splitting
and level rebuilding, each operation as described in Sec-
tion 4.1 can be performed in O(log, N) I/OS (the height
of the tree). Thus we only sketch how to split a node
I/O-efficiently and how to rebuild a level I/O-efficiently.
Details will appear in the full paper.

Assume that 2b 5 B. A node can be split as follows:
First the double linked list of child records are updated
to reflect the split. Then a new node record is created
and the pointers between the node record and the child
records are set up. Finally, we have to create a new child
record at the parent. There are two cases to consider.
If the disk block storing the child list of the parent has
space left for an additional child record, we create the
new child record in the block. Otherwise, we first move
between :B and $B of the child records to a new disk
block and update the affected pointers with O(B) I/OS
before creating the new child record.

Except for the creation of the new child record, a
split can be done in O(1) I/OS as only records in a

constant number of blocks are updated. It can be shown
that a new child record can be created with O(1) I/OS
amortized.

Lemma 13 A node in a level-balanced B-tree can be
split in O(1) I/OS amortized.

The level i of the forest is rebuilt as follows: First, we
visit the level-i nodes of all trees rooted at level greater
than i and generate a list of pointers to the children at
level i - 1, using O(Ni) I/OS. Using another O(Ni) I/OS
we then reconstruct the nodes at levels i, i + 1,. . . , as
previously described, so that all new nodes have degree
between b/2 and b and so that each disk block stores at
most B/2 records. Finally, we need to update the parent
pointers of the node records at level i - 1. In order to
do so we first scan the child records of level-i nodes. For
each child record P visited, we construct the pair (p, q),
where p is the pointer (to the node record at level i - 1)
stored at r, and q is the pointer to r itself. We then sort
these pairs using p as the key, in 0(9 logMiB q)
I/OS; let L be the sorted list. Finally, we scan L and the
sequence of node records at level i - 1 simultaneously,
and for each.pair (p, e) E L, we set the parent pointer in
the node record p at level i - 1 to e. This step requires
O(Ni-l/B) I/OS. The total number of I/Os;.s_ed to
rebuild level i is O(Ni + w logMiB * +
O(Ni(1 + $IOg&f/B 9)).

-y) =

Lemma 14 Level i of a forest of Level-balanced B-trees
can be rebuilt in O(Ni (1 + $ logM,B g) I/OS.

Since tree operations create at most one node at each
of the O(log, N) levels (Lemma 1 l), level i is only re-
built once every n(Ni) tree operations. Thus the amor-
tized cost of rebuilding Ievel i is 0(1 + $ logMMIB 3)
I/OS per tree operation. The number of I/OS charged
to each tree operation for rebuilding steps is thus
0((1 + $ log, s g) log, N). Since all other steps re-
quire O(log, N I/OS, we obtain the following. i

Theorem 5 A set of N elements can be stored in a for-
est of level-balanced B-tree using O(N/B) blocks, such
that insert, delete, split, merge operations can be per-
formed in O((1 + 5 logMMIB g) log, N) I/OS amortized,
2 5 b < B/2, while maintaining parent pointers.

Choosing b =
lWM/B 9 < 1

& and using the fact $ logMMIB $$ =

IogB - ogB N, we obtain the following.

Corollary 1 A set of N elements can be stored in a for-
est of level-balanced B-tree using O(N/B) blocks, such
that insert, delete, split, merge operations can be per-
formed in O(logs N) I/OS amortized while maintaining
parent pointers.

20

5 Conclusions

In this paper we have developed au I/O-efficient dy-
namic data structure for point location in monotone
subdivisions. Part of the data structure is a novel
search tree rebalancing technique which allows for ef-
ficient maintenance of parent pointers in B-trees. The
most challenging open problem is of cause to extend our
technique to general planar subdivisions.

We believe that the techniques developed in this pa-
per can be used to obt.ain I/O-efficient data struc-
tures for a number of <other problems. For exam-
ple, a planar St-graph of size N can be maintained in
b((1 + $ 10gM,B $$) lo&N) I/OS for 2 < b 5 B/2,
so that reachability queries in it can be answered in
O(log, N) I/OS [24]. We believe that our techniques
can be used to develop ext,emal dynamic data structures
for more general ray-shooting queries and to obtain an
efficient external memory data structure for three di-
mensional point location.

References

PI

PI

[31

PI

I51

VI

[71

PI

PI

A. Aggarwai and J. S. Vitter. The Input/Output com-
plexity of sorting and related problems. Communica-
tions of the ACM, 31(9):1116-1127, 1988.

L. Arge. Efficient EsfemaGMemory Data Structures
and Applications. PhD Thesis, University of Aarhus,
1996.

L. Arge. External-memory algorithms with applica-
tions in geographic information systems. In Algorith-
mic Foundations of GIS (M. van Kreveld, J. Nievergelt,
T. Roos, and P. Widmayer, eds.). Lecture Notes in
Computer Science, 134.0, Springer-Verlag, 1997.

L. Arge, 0. Procopiuc, S. Ramaswarny, T. Suel, and
J. S. Vitter. Theory and practice of I/O-efficient al-
gorithms for multidimensional batched searching prob
lems. In Proc. ACM-SIAM Symp. on Discrete Algo-
rithms, 685-694, 1998.

L. Arge, D. E. Vengroff, and J. S. Vitter. External-
memory algorithms for processing line segments in ge-
ographic information systems. Algorithmica (to appear
in special issues on Geographical Information Systems),
1998.

L. Arge and J. S. Vitter. Optimal dynamic interval
management in external memory. In Proc. IEEE Symp.
on Foundations of Camp. Sci., 560-569, 1996.

H. Baumgarten, H. Jung, and K. Mehlhom. Dynamic
point location in general subdivisions. J. Algorithms,
17342-380, 1994.

R. Bayer and E. McCreight. Organization and mainte-
nance of large ordered indexes. Acta Infonnatica, 1:173-
189, 1972.

S. W. Cheng and R. Jasardan. New results on dynamic
planar point location. SIAM J. Cornput., 21:972-999,
1992.

WI

Pll

PI

P31

1141

1151

WI

P71

P31

PI

PO1

I211

WI

I231

[241

I251

P61

Y.-J. Chiang, F. P. Preparata, and R. Tamassia. A uni-
fied approach to dynamic point location, ray shooting,
and shortest paths in planar maps. SIAM J. Comput.,
25~207-233, 1996.

D. Comer. The ubiquitous B-tree. ACM Computing
Surveys, 11:121-137, 1979.

G. Di Battista and R. Tamassia. Algorithms for plane
representations of acyclic digraphs. Theoret. Comput.
Sci., 61:175-198, 1988.

H. Edelsbrunner. A new approach to rectangle intersec-
tions, Part I. Intemat. J. Comput. Math., 13:209-219,
1983.

H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Opti-
mal point location in a monotone subdivision. SIAM J.
Comput., 15:317-340, 1986.

H. Edelsbrunner and H. A. Maurer. A space-optimal so-
lution of general region location. Theoretical Computer
Science, 16:329-336, 1981.

M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S.
Vitter. External-memory computational geometry. In
Proc. IEEE Symp. on Foundations of Comp. Sci., 714-
723, 1993.

L. Guibas, M. Overmars and M. Sharir. Ray shooting,
implicit point location, and related queries in arrange-
ments of segments. Tech. Rept. 433, Dept. Computer
Science, New York University, 1989.

S. Huddleston and K. Mehlhom. A new data structure
for representing sorted lists. Acta Informatica, 17:157-
184, 1982.

M. H. Overmars. The Design of Dynamic Data Struc-
tures, Lecture Notes Comput. Sci., vol. 156, Springer-
Verlag, Germany, 1983.

M. H. Overmars. Range searching in a set of line seg-
ments. In Proc. 1st Annu. ACM Sympos. Comput.
Gwm., 177-185, 1985.

F. P. Preparata and R. Tamassia. Fully dynamic point
location in a monotone subdivision. SIAM J. Cornput.,
18:811-830, 1989.

N. Samak and R. E. Tarjau. Planar point location using
persistent search trees. Commun. ACM, 29:669-679,
1986.

J. Snoeyink. Point location. In Jacob E. Goodman and
Joseph O’Rourke, editors, Handbook of Discrete and
Computational Geometry, 559-574. CRC Press, 1997.

R. Tamassia and F. P. Preparata. Dynamic mainte-
nance of planar digraphs, with applications. Algorith-
mim,5:509-527, 1990.

J. Vahrenhold and K. S. Hinrichs. Fast and simple
external-memory planar point-location. Second CGC
Workshop on Computational Geometry, October 1997.

J. S. Vitter. External memory algorithms. In Proc. of
the 1998 ACM Symposium on Principles of Database
Systems, 114-128, 1998.

