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I/O-Efficient Dynamic Point Location in 
Monotone Planar Subdivisions 

(Extended Abstract) 

Pankaj K. Agarwal’ Lars Arget Gerth Stalting Brodalr Jeffrey S. Vitters 

Abstract 

We present an efficient external-memory dynamic data struc- 
ture for point location in monotone planar subdivisions. Our 
data structure uses O(N/B) disk blocks to store a monotone 
subdivision of size N, where B is the size of a disk block. 
It supports queries in O(logi N) I/OS (worst-case) and up- 
dates in O(lo& N) I/OS (amortized). 

We also propose a new variant of B-trees, called leuel- 
balanced B-trees, which allow insert, delete, merge, and split 
operations in O((l+ $ logM,B f) log, N) I/OS (amortized), 
2 5 b 2 B/2, even if each node stores a pointer to its par- 
ent. Here M is the size of main memory. Besides being es- 
sential to our point-location data structure, we believe that 
level-balanced B-trees are of significant independent inter- 
est. They can, for example, be used to dynamically main- 
tain a planar St-graph using O((1 + $10g~,~ $$) log, N) = 
O(logi N) I/OS (amortized) per update, so that reachability 
queries can be answered in O(log, N) I/OS (worst case). 

1 Introduction 

Planar point location, a widely studied problem in com- 
putational geometry, is defined as follows: Given a pla- 
nar subdivision II with N vertices (i.e., a decomposi- 
tion of the plane into polygonal regions induced by a 
straight-line planar graph), preprocess II into a data 
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structure so that the face of II containing a query point 
can be reported quickly. This problem arises in sev- 
eral applications, including graphics, spatial databases, 
and geographic information systems. The planar sub- 
divisions arising in many of these applications are too 
massive to fit in internal memory and must reside on 
disk. In such instances, the I/O communication is the 
bottleneck instead of the CPU running time. Most 
of the work to date, especially when we also allow to 
change the edges and vertices of II dynamically, has 
focused on minimizing the CPU running time under 
the assumption that the subdivision fits in main mem- 
ory [7, 9, 10, 14, 15, 22). Only a few static (or batched 
dynamic) results are known for I/O-efficient point lo- 
cation when the subdivision is stored in external mem- 
ory [S, 16, 251. 

In this paper we develop the first space- and I/O- 
efficient dynamic data structure for planar point loca- 
tion in monotone subdivisions. We also propose a vari- 
ant of B-trees in which each node stores a pointer to 
its parent and show that insert, delete, merge, and split 
operations can be performed ei&iently. This structure 
is of independent interest and can, for example, be used 
to obtain I/O-efficient dynamic data structure for an- 
swering various queries in planar s&graphs.’ 

1.1 Previous results 

A polygon is called monotone in direction 8 if any line in 
direction n/2 + 0 intersects the polygon in a connected 
intenal; a convex polygon is monotone in every direc- 
tion. A planar subdivision II is monotone if all faces of 
II are monotone in a 6xed direction. Every convex sub- 
division is a monotone subdivision. In the remainder of 
this paper we use the term a monotone subdivision to 
denote a subdivision that is monotone in the x-direction. 

In internal memory, Edelsbrunner et al. [14] pro- 
posed an optimal data structure for point location in 
monotone subdivisions with O(N) space, O(N) pre- 
processing time, and O(logN) query time. For ar- 
bitrary planar subdivisions, the preprocessing time is 
O(N 1ogN); see also [22]. If we allow the edges and 

‘A planar directed acyclic graph, with a given embedding, is 
called an st-gmph if it has unique source and sink vertices lying 
on the boundary of the same face. 
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vertices to be changed dynamically, two linear-space 
structures are known for general subdivisions: one 
by Cheng and Janardan [9] that answers queries in 
O(log2 N) time and supports updates in O(log N) time; 
the other by Baumgarten et al. [7] that supports queries 
in 0( (log N) log log N) time (worst-case), insertions in 
0( (log N) log log N) time (amortized), and deletions in 
O(log2 N) time (amortized). Both structures store the 
edges of the subdivision in an interval tree [13] con- 
structed on their z-projection (as first suggested in [15]) 
and use this structure to answer vertical ray-shooting 
queries: for a query point p, find the first edge, if any, of 
II hit by the ray emanating from p in the (+y)-direction. 
The face ,containing p can then be found in O(logN) 
time [20]. A summary of k:nown results can be found in 
the recent survey [23]. 

In this paper we are interested in the problem of dy- 
namically maintaining a monotone subdivision on disk, 
so that the number of I/O operations (or I/OS) used to 
perform a query or an update is minimized. We con- 
sider the problem in the standard two-level I/O model 
proposed by Aggarwal and Vitter [l]. In this model N 
denotes the number of elements in the problem instance, 
M is the number of elements fitting in internal memory, 
and B is the number of ellements per disk block, where 
M < N and 2 5 B _< M/2. An I/O is the operation of 
reading (or writing) a disk block from (or into) external 
memory. Computations can only be done on elements 
present in internal memory. Our measures of perfor- 
mance are the number of I/OS used to solve a problem 
and the amount of space (disk blocks) used. 

Aggarwal and Vitter [I] considered sorting and re- 
lated problems in the I/O model and proved.that sort- 
ing requires @( 9 log MIB $) I/OS. Subsequently, I/O- 
efficient algorithms and data structures have been de- 
veloped for numerous problems-see recent surveys for 
a sample of these results [2, 3, 261. All previous re- 
sults on point location in external memory have been 
either static or batched dynamic: Goodrich et aI. [16] 
designed a static data structure using O(N/B) space to 
store a monotone subdivision of size N so that a query 
can be answered in optimal O(log, N) I/OS. They also 
developed a structure for answering a batch of K point- 
location queries in optimal O(v logMiB N) I/OS. 
Arge et al. [S] extended the batched result to general 
subdivisions and Arge et aZ. [4] to an off-line dynamic 
setting in which a sequence of queries and updates are 
given in advance and all the queries should be answered 
as the sequence of operations are performed. Vahren- 
hold and Him-i&s considered the problem under some 
practical assumptions about the input data [25]. 

1.2 Our results 

In this paper we present t:he first provably I/O-efficient 
dynamic data structure for point location in a monotone 

planar subdivision II. Our structure uses O(N/B) disk 
blocks to store II, answers queries in O(logi N) I/OS 
in the worst-case, and inserts/deletes edges and vertices 
in O(log$ N) I/OS amortized per edge/vertex. Here 
we assume that an update operation is admissible only 
if the subdivision remains planar and monotone after 
the operation. Our algorithm first detects whether an 
update operation is admissible and carries it out only if 
it is. 

In order to answer the queries efficiently, we intro- 
duce a total order -in on the edges of II, as in [21, 241. 
As edges are inserted or deleted the order may change 
considerably. We maintain the order in a separate B- 
tree-like data structure using split and merge opera- 
tions. Each node of this structure stores a pointer to its 
parent. Although merge and split operations on stan- 
dard B-trees can be performed in O(logs N) I/OS, up- 
dating the parent pointers requires R(Blog, N) I/OS. 
We therefore introduce a new variant of B-trees called 
level-balanced B-trees in which parent pointers can be 
maintained efficiently. For 2 5 b 5 B/2, level-balanced 
B-trees use O(N/B) blocks to store N elements, and 
support insert, delete, merge, and split operations in 
0((1 + $ logMIB $$) log, N) = O(logi N) I/OS amor- 
tized. 

We believe that the level-balanced B-trees are of sig- 
nificant independent interest. They can, for example, be 
used to dynamically maintain a planar St-graph using 
0((1 + $ logMiB $$) log, N) = O(log$ N) I/OS amor- 
tized per update, so that reachability queries (of the 
form “is there a path from z to y?“) can be answered 
in O(logB N) I/OS worst-case. 

2 Static Point Location 

In this section we present a static data structure for 
point location, which we will dynamize in the next sec- 
tion. Let II be a monotone subdivision with N ver- 
tices. We assume that all vertices in II have distinct 
s-coordinates, and that there are no unbounded edges 
in II. Our structure can easily be extended to handle 
subdivisions in which these assumptions do not hold. 
We use s and t to denote the leftmost and the right- 
most vertices of II. We present a data structure for 
the vertical ray-shooting problem: Preprocess II into a 
data structure so that the first edge of II, if any, hit 
by a query ray in the (+y)-direction emanating from a 
query point p can be reported efficiently. As in internal 
memory, the face containing p can easily be found once 
the ray-shooting query is answered. Our data structure 
extends to an arbitrary set of disjoint segments, but we 
focus on monotone subdivisions because at present we 
do not know how to dynamize the structure for arbitrary 
segments. 
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2.1 Ordering the edges 

We first define a total order on the edges of II, originally 
introduced by Tamassia and Preparata [24], which will 
be crucial for our structure. We regard II as a directed 
planar St-graph with the edges of Il directed from left to 
right. We define the dual graph of II, denoted by II’, to 
be the directed planar graph in which there is a vertex 
f’ for every bounded face f of II and two vertices s* 
and t’ for the unbounded face. For every edge e E II, 
adjacent to two faces fr and fs with fi lying below f2, 
we add the edge e* = (f;,f;) in II’; if fi (resp., f2) 
is the unbounded face, then the edge in II’ is (s*, f;) 
(resp., (f;, t’)). See Figure 1 a) and b). 

v 
b) 

Figure 1: a) II. b) Dual II’. c) Order of edges in II. 

We say that there is a path from an edge e to another 
edge e’ in II if there is a path e = er , e2, . . . , el = e’ 
in II. It can be shown that there is a path from ei to 
ej in II if and only if there is no path from ef to e; in 
II’; see e.g. [24]. For a pair ei,ej E II of edges, we say 
ei -in ej if either there is a path from ei to ej in II or 
there is a path from et to e; in II*. See Figure 1 c). 

Lemma 1 (Tamassia-Preparata [24]) 

(i) +n defines a total order on the edges of II. 

(ii) Let E be a subset of the edges of II so that all seg- 
ments in E intersect a vertical line 4. If E is sorted 
according to <n then e intersects the edges in E in 
sorted order. 

2.2 Overall structure 

In the following we make frequent use of (a, b)-trees [18]. 
In (a, b)-trees the leaves are all on the same level and 
they contain the elements stored in the structure. All 
internal nodes (except possibly the root) have between 
a and b children. In most of this paper, a, b = @(Be) for 
some constant 0 < c 5 1, and each leaf contains O(B) 
data elements. Such a structure storing N elements is 
thus a O(B’)-ary tree over O(N/B) leaves. Each leaf as 
well as internal node fits in one disk block, and thus the 
tree occupies O(N/B) blocks. The height of the tree 
is O(log,, N) = O(log, N). Insert, delete, and search 
operations can be performed in O(log, N) I/OS [18]. A 

normal B-tree [8, 111 is just such a structure with c = 1. 
For c = l/2 we call the structure a a-tree. 

To simplify the presentation we assume without loss 
of generality that N = Bkj2 for some integer k > 0. Let 
S be the set of edges in II. Our point-location structure 
is a two-level tree structure similar to the external in- 
terval tree, developed by Arge and Vitter [6]. The first 
level, called the base tree, is a &tree T over the z- 
coordinates of the endpoint of the segments in S. The 
segments in S are stored in secondary structures associ- 
ated with the nodes of T. Each node v of T is associated 
with a vertical slab s,; the root is associated with the 
whole plane. For each interior node v, sv is partitioned 
into fl vertical slabs sr , . . . , sa, separated by verti- 
cal lines which we call slab boundaries (the dotted lines 
in Figure 2), so that each slab contains the same number 
of vertices of II. Here si is the slab associated with the 
i-th child of v. A segment e of S is stored at the highest 
node v of T at which it intersects a slab boundary asso 
ciated with v. Let S, E S be the set of segments stored 
at v. A leaf z stores segments whose both endpoints lie 
in the interior of the slab sz. The number of segments 
stored in a leaf is less than 3B - 6 and they can thus be 
stored in at most three blocks. 

? 

I c. 

Figure 2: A node in the base tree. For segment e we 
have I= 1, r = 4. Its middle segment spans ss and ss. 

Let v be an internal node of T, let e be a segment 
of S,, and suppose the left (resp., right) endpoint of e 
lies in the vertical slab sl (resp., s,) associated with v. 
We call the subsegment e n sl the left subsegment and 
e n s? the right subsegment of e. If r > 1 + 1, then the 
portion of e lying in s!+~, . . . , s,-1 is called the middle 
subsegment; if r = 1 + 1, then the middle subsegment is 
the intersection point of e with the common boundary 
of sl and sr. See Figure 2. Let M denote the set of 
middle subsegments of segments in S,,. For each 1 5 
i 5 a, let Li (resp., &) denote the set of left (resp., 
right) subsegments that lie in the slab si. We store the 
following secondary structures at v. 

(i) A multislab structure ek, on the set of middle seg- 
ments M that requires O(IMI/B) disk blocks. 

(ii) For each i < a, we have the following two struc- 
tures: 

- A left structure ti on all segments of Li; 
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- A right structure Ri on all segments of &. 

Li and R;, over all slabs of V, require a total of 
O(lSvl/B) blocks. 

A segment in S, is thus stored in at most three sec- 
ondary structures: the multislab structure, a left struc- 
ture, and a right structure. For example the segment e 
in Figure 2 is stored in the multislab structure, the left 
structure of si, and in the right structure of ~4. Each 
node 2, requires 0(1&]/B) space, therefore the overall 
data structure requires 0( N/B) disk blocks. 

Figure 3: Answering a query. 

Let p’ be the ray emanating from a point p in the 
(+y)-direction. To find the first segment of S hit by 
pf, we search T along a path from the root to a leaf 
z, such that S, contains p, using O(logB N) I/OS. The 
6rst segment of S, hit by p+ is computed by testing all 
segments of S, explicitly. At each internal node v visited 
by the query procedure, we compute the first segment 
of S, hit by p+. In particular, we first search QV to find 
the first segment of M hit by p+. Next, we find the 
vertical slab si that contains p and search J$ and Ri to 
find the first segments of Li and &, respectively, that 
intersect p+ (refer to Figure 3). We will show below 
that each of the three operations can be performed in 
O(logB N) I/OS. By repeating this procedure for each 
node and choosing the first segment hit by p+ among 
these O(log,N) segments, we can answer a query in 
O(log2, N) I/OS. 

Theorem 1 A monotone planar subdivision II with N 
vertices can be stored in a data structure using O(N/B) 
disk blocks, so that a vertical ray-shooting query can be 
answered in O(log& N) I/O operations. 

If S is an arbitrary set of disjoint segments, we 
can define another ordering on the segments of S, as 
in [17], that has essentially the same property as the 
+-ordering, and prove the following (details omitted 
due to space constraints). 

Theorem 2 A set S of N disjoint segments can be 
stored in a data structure using O(N/B) disk blocks, 
so that a vertical ray-shooting query can be answered in 
O(log% N) I/O operations. 

2.3 Left/right structures 

In this subsection we sketch how to construct the left 
and right structures. These structures use ideas similar 
to the ones used by Cheng and Janardan [9]. We only 
describe how to construct and query a left structure; 
the right structure is analogous. 

Let L be a set of K segments so that the right end- 
points of all segments in L have the same z-coordinate, 
i.e., all of them lie on a vertical line. We will use L to 
denote the sequence of segments sorted by y-coordinate 
of their right endpoints. We construct a B-tree L: on L. 
For each node v of C, let L, E L be the set of seg- 
ments stored in the subtree rooted at v. Let X, be the 
segment of L, whose left endpoint has the minimum x- 
coordinate; X, is called the minimal segment of v. At 
each internal node v we store the minimal segments of 
all its children. Note that each node fits in O(1) blocks 
and that the tree can be constructed (bottom-up) in 
O(K/B) I/OS assuming the segments in L are sorted. 

Let p be a query point, and let p+ (resp., p:) be the 
ray emanating from p in the (+y)-direction (resp., (-y)- 
direction). We actually answer the ray-shooting queries 
for both p+ and p- . To do so we explore L in a top- 
down fashion. In the ith step, the query procedure visits 
two nodes vi and vs at level i of C, so that among the 
minimal segments stored at all level i nodes, vr (resp., 
VZ) contains the first segment hit by p+ (resp. p-). If 
p+ (resp., p-) does not intersect any of the minimal 
segments, VI (resp., ve) is undefined. Note that v1 and 
v2 may be the same node. When we reach the leaf level, 
the leaf vr contains the desired segment. 

In the ith step, among the O(B) minimal segments 
stored at vi and 212, we find the first segment X, (resp., 
X,) hit by pi (resp., p-), and set ~1 to w and vs to z. 

Lemma 2 Among the minimal segments stored at level 
(i + 1) nodes, w and z contain the first segments hit by 
p+ and p-, respectively. 

The correctness of the query procedure follows from 
the above lemma, therefore we obtain the following. 

Lemma 3 A set L of K segments all of whose right 
endpoints lie on a single vertical line can be stored in a 
data structure using O(K/B) blocks, so that a vertical 
my-shooting query can be answered in O(log, K) time. 
If L is sorted by the y-coordinates of the right endpoints, 
then the structure can be constructed in O(K/B) I/OS. 

2.4 Multislab structure 

We now describe the multislab structure. Let M be a 
set of K disjoint segments whose endpoints have a+ 1 
distinct z-coordinates, i.e., they lie on fi + 1 vertical 
lines bl,...ba+,. Some of the segments in M may be 
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points. For 1 5 i 5 @, let si be the vertical slab 
bounded by bi and bi+l . -411 vertical lines in the interior 
of a slab intersect the same subset of M, so if we know 
the sorted (according to +n) set of lines M’ intersecting 
the slab containing the query ray, we can easily answer 
the query in @logs N) I/OS using a B-tree on M’. 
However, we cannot afford to construct a data structure 
for each slab separately, so we will construct a single 
data structure. Lemma 1 (ii) will be crucial for our 
construction. 

Let M denote the sequence of segments sorted by 
+-ordering. We first construct a @-tree Q on M. 
For a node v E Q, let M, denote the subsequence of M 
stored in the subtree rooted at v. We store a number of 
segments of M, at each internal node v of P to facili- 
tate the query procedure. Let wl,. . . , WJF~ denote the 
children of an internal node v. For 1 5 i, j 5 a, 
let pij denote the maximal segment of M,; (in the 
+-ordering) that intersects the vertical slab sj. If no 
segment of M,i intersects sj 9 pij is undefined. For 
l<i<~,l<j<~+l,let&denotethemaxi- 
mal segment of M ,,,< that intersects the vertical line bj. 
If there is no such segment, & is undefined. All less 
than 2B + JB segments pij and pij are stored at V. 

The x&-tree Q requires O(K/B) disk blocks and can 
be constructed (bottom-up) in O(K/B) I/OS, assuming 
that M, is sorted according to the- +-ordering. 

Let p be a query point and p+ the ray emanating from 
p in the (+y)-direction. To answer the query we follow a 
path from the root to a leaf z of q so that M, contains 
the first segment hit by p’. At each node v visited 
by the procedure we do the following: If p lies in the 
interior of a slab sr, let E, = {pi, 1 1 5 i 5 a}. Since 
all segments in E, intersect the vertical line containing 
p, by Lemma 1 and the definition of pij, if k, is the 
first segment of E, intersected by p+, then wi contains 
the first segment of M hit by p+. We therefore visit 
Wi next. If p lies on the slab boundary b,, then we set 
E, = {pi, ] 1 5 i < a} and determine the child of v 
that we visit next, following a similar approach. 

Lemma 4 A set M of K disjoint segments whose end- 
points have a+ 1 distinct endpoints can be stored in 
a data structure using O(N/B) blocks, so that a vertical 
ray-shooting query can be answered in O(log, K) I/OS. 
If M is sorted according to -in then the structure can 
be constructed in O(N/B) I/OS. 

If we store both “maximal” and “minimal” segments 
in the internal nodes of q, it is possible to find the 
first segment hit by p- as well. Note that the above 
lemma can also be used to determine whether a segment 
-y E M: the query ray is the ray emanating from the left 
endpoint of y; y E M if the query procedure returns 7 
itself. 

3 Dynamic Point Location 

In this section we show how to dynamize the data struc- 
ture described in the previous section. Preparata and 
Tamassia [21] showed that the operations of inserting 
or deleting a chain of edges between two existing ver- 
tices are complete for monotone subdivisions (i.e., an 
arbitrary subdivision can be assembled or dissembled 
using O(N) such operations). Because of space con- 
straints, we only consider the insertion of a single edge 
in this extended abstract. Insertion (and deletion) of a 
chain of edges can be handled using a similar, though 
more involved, procedure. Recall that an update is ad- 
missible only if the subdivision remains monotone and 
planar after the update operation. It can be checked in 
O(logs N) I/OS if an update is admissible using a mod- 
ified version of the normal internal memory algorithm. 
Details will appear in the full paper. 

In order to dynamize our data structure, we need effi- 
cient procedures for updating the base tree (when end- 
points are inserted/deleted) and the secondary struc- 
tures (when segments are inserted/deleted). Using the 
normal B-tree updating procedures the base tree can be 
updated in O(logB N) I/OS. However, as rebalancing is 
done by spiitting and fusing nodes we need to rebuild 
the corresponding secondary structures when perform- 
ing such an operation. As in [S], we use a weight bal- 
anced B-tree to implement the base tree, in which a 
node v with Y elements in its subtrees can only be in- 
volved in a rebalance operation for every n(v) updates 
that access v. This allows us to rebalance the base tree 
I/O-efficiently while maintaining the secondary struc- 
tures. Details will appear in the full paper. 

To insert a new segment e we traverse down the base 
tree, using O(logB N) I/OS, to 6nd the first node v at 
which e intersects one or more slab boundaries. Then 
we insert the left, right, and middle subsegments of e in 
the left, right, and multislab structures stored at v. A 
segment can be inserted into a left or right structures in 
O(logB N) I/OS using a slightly modified version of the 
standard B-tree insert procedure. The difficult part is 
updating the multislab structure. There are two main 
difhculties: First, insertion of an edge may change the 
+n ordering considerably, so we may have to rearrange 
multislab structures at many nodes of the base tree. 
Second, it seems impossible to determine in O(1) I/OS 
whether ei -+J ej, for two edges ei, ej E II, and thus a 
segment cannot be inserted in a multislab structure us- 
ing the standard B-tree insertion algorithm. The key to 
perform the update efEciently, is to maintain a second 
data structure on the +-ordering of the whole subdi- 
vision. In Section 3.1 we first describe how to maintain 
this structure during insertions, and then in Section 3.2 
we explain how to use it to update the multislab struc- 
tures. 



16 

3.1 Updating -QJ 

In order to update the +-ordering as II changes dy- 
namically, we extend the +-ordering to include ver- 
tices and faces of II. Let II’ be the dual graph of II, 
as defined in the previous section. Recall that the dual 
of a vertex (resp., face) of II is a face (resp., vertex) in 
II’. We refer to the vertices, edges, and faces of II or 
II* as its features. For each feature q5 of II or II’, we 
define two vertices Z(d) and ~(4). If 4 is a vertex, then 
l(4) = ~(4) = 4. If C$ is a directed edge (a,P), then 
l(4) = CY and r(d) = p. The boundary of a face C$ of II 
(or II*) consists of two paths from a vertex Q to another 
vertex P. We set 1(d) = o and ~(4) = p. We say that 
there is a path from a feature ~$1 to another feature 42 
of II if there is a path in II from ~(41) to Z(&). For two 
features &, 4j E II, we define $i +n 4j if either there 
is a path from 4i to 4j in lI or a path from 4f to 4; 
in the dual graph II*. As argued in [24], +n is a total 
order on the features of II. Let (II) denote the sequence 
of all features of II sorted by 4~. The following lemma 
is due to Tamassia and Preparata [24] (refer to Figure 4 
for case (iv)). 

Lemma 5 (Tamassia-Preparata [24]) Let II be a 
monotone planar subdivision, and let II’ be the subdi- 
vision obtained after inserting an edge e = (a,fl) that 
splits the face f of n into two faces fi, f.2, with fi lying 
to the left of e. Then (II’) can be obtained from @I) as 
follows. 

(9 0 +I P -3-1 f: 

(l3) = AaBPCfD =$ (II’) = AaBfiePCfzD. 

(ii) f -Q-f a -xn P: 

(II) = AfBcrCPD =S (IYI’) = AfiBcref&PD. 

(iii) a +n f -xn p: 

(Il) = AcrBfCPD => (II’) = AaBfief&‘j?D. 

(iv) ,f? -in f +n cy: 

(II) = APBfCaD => (ll’) = AfiCcrepBfiD. 

In order to maintain (II) efficiently, we store it in a 
level-balanced B-tree, denoted by A, in which each node 

Figure 4: Inserting e = (ebb) when P -31 f +-I Q 
(APBfCoD + Af~CaePBf2D). A, B, C, and D a.re 
defined by the topmost path from s to cy and from s to 
& and bottommost path from Q to t and from 0 to t. 

also stores a pointer to its parent. In the most involved 
case (case (iv)) we need to swap two subsequences in 
(II) and perform a constant number of insertions and 
deletions next to a, p, and f. Assuming that we have 
pointers to o, P, and f in the leaves of A, we can update 
(II) using O(1) insert, delete, split, and merge opera- 
tions, provided that we can compute the paths from the 
root of A to the leaves containing a,/?, and f. These 
paths can easily be found using the parent pointers. (It 
is not possible to do a root-leaf search for a given fea- 
ture, as we cannot directly compare two features). As 
we will show in the next section, level-balanced B-trees 
support each of the above operations in O(logi N) I/OS 
amortized. 

Theorem 3 For a monotone planar subdivision II, 
(II) can be maintained after an insert operation in 
O(logi N) I/OS amortized 

We will perform two types of queries on A. First, 
given two features 41,42 of II, determine whether #i +u 
&. To do so we follow the parent pointers from the 
leaves storing 41 and 42, in O(log, N) I/OS, until we 
reach their lowest common ancestor in A. We can then 
easily determine whether the leaf storing dl lies to the 
left of that storing &. 

Lemma 6 The relative order of two features of ll (ac- 
cording to +A) can be determined in O(log, N) I/OS. 

Second, let o be a vertex of II, and let e be a vertical 
line that lies between Q and t. Find the edge on the 
bottom-most path from Q to t intersecting e. Suppose 
at each node v of A, we also store the rightmost end- 
point among all the edges stored in the subtree of A 
rooted at v. (As II changes, this information can eas- 
ily be updated without using additional I/OS.) We can 
then answer the query as follows: We follow the parent 
pointers, starting from the leaf of A storing Q, until we 
reach a node w so that the right endpoint stored at w 
lies to the right of L. We then follow the leftmost possi- 
ble path in the subtree of A rooted at w so that at each 
node the rightmost endpoint lies to the right of e. The 
leaf reached in this way stores the desired edge of II. 

Lemma ,7 For a vertez a E II and a vertical iine L, we 
we can find in O(log, N) I/OS the edge of the bottom- 
most path from 01 to t that intersects f?. 

3.2 Maintaining the multislab structure 

We now describe how to maintain the multislab struc- 
tures. We will see that although the segments in a mul- 
tislab structure are ordered according to <n-ordering, 
we can still store them in a normal a-tree, i.e., parent 
pointers axe not required. Suppose we insert an edge 
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e = (a, /3) into a face f of Il, which is to be stored at a 
node v of the base tree. We assume that the pointers to 
the leaves of 4 storing o:,P, and f are given. In cases 
(i)-(iii) of Lemma 5, +n-ordering remains the same ex- 
cept that e is inserted, so we simply insert the middle 
subsegment of e into q,,. In case (iv), the +-ordering 
changes and thus we may have to modify the multislab 
structure at many nodes of the base tree. However, we 
can prove the following (proof omitted): 

Lemma 8 Let e = (a, p) be an edge to be inserted into 
a face f where ,S +n f + Q, so that &I) changes from 
APBfCcrD to AfiCaePBfsD. Let v be the node in 
the base tree T at which e is to be stored. Insertion of e 
does not affect the +n ordering for M, if w is not an 
ancestor of v. 

Hence, in all cases, only the multislab structures at v 
and possibly its O(logs N) ancestors are changed. At 
each such node w, we perform two steps: (i) re-organize 
the multislab structure Y?w to make it consistent with 
the new +-ordering, and (ii) update the maximal seg- 
ments pij and Pij at the nodes affected by the update 
procedure. The second step is relatively easy to handle, 
so we just describe step (i). Let A, B, C, and D be the 
same .as in Lemma 5. Let A,,, be the set of middle sub- 
segments of segments in An&; define B,, C,, and D, 
similarly. S, = A,,, U B, U C, U D,. We first split !J?‘w 
into four B-trees TA, TB, Tc, TD, by performing three 
split operations, which store A,,,, B,, CW, and D,, re- 
spectively. Then we merge TA with T, and TB with TD, 
and merge the two resulting trees together to obtain the 
structure gE, consistent with the new +-ordering. Fi- 
nally, if w = v, we insert the middle subsegment of e into 
the new !ljw. In order to perform the splits efficiently, 
we have to find the paths from the root to the leaves 
storing the first segments of B,, C,, and D,. The fol- 
lowing lemma suggests a way to find the first segment 
of B,. 

Lemma 9 Let e = (c~, /3) be an edge to be inserted into 
a face f where P +I f -Q-I Q, so that (II) changes 
from APBfCaD to AfiCaePBfaD. Suppose e is to be 
stored at a node v of the base tree. Let w be an ancestor 
of the node v, and let si be the vertical slab si of w in 
which p lies. Let 7 be the first segment on the path from 
p to t that intersects the right boundary bi+l of si. 

Suppose B, # 0 and the first segment of B, is the 
middle subsegment of < E SW. Then either 6 = 7 or 5 
is the segment of SW lying immediately above the point 
Y n bi+l. 

Proof: We first prove that < intersects bi+l. Assume 
that this is not the case; then { must intersect some 
other boundary bj to the right of b;+l . Now all segments 
on the path from 0 to the left endpoint of 5 belong to B 

and are smaller than < in the +-ordering. Since their 
middle subsegments are not in B,, they must be stored 
at other nodes. One of these segments 5’ must cross 
bi+l - its left endpoint lies to the right of (or on) /3 
and it right endpoint lies to the left of (or on) the left 
endpoint of <. This contradicts the fact that [’ is stored 
in another node. 

Since 5 intersects bi+l, if c # y, then y +-r < and 
therefore < lies above the point 7 n bi+l. Refer to Fig- 
ure 5. This completes the proof of the lemma. 0 

Figure 5: Proof of Lemma 9. 

Using Lemma 9, we can compute the first segment 
of B, as follows. Using Lemma 7, we can find in 
O(logs N) I/OS the first segment y of B that inter- 
sects the vertical line b;+l. If 7 $! B,, then we find the 
segment t in M, immediately above the point rn bi+l 
in O(logB N) I/OS using Lemma 4. Next we check in 
W%B N) I/O s, using Lemma 6, whether < +n f. If 
the answer is “no,” then B,,, = 0, otherwise < is the first 
segment of B,. Note that since the query procedure 
for finding < traverses the path from the root of !kw to 
the leaf storing <, we have actually found the path to 
split !J!‘w along (i.e., parent pointers are not needed). 
Similarly, we can find the first segments of C, and D,, 
as required, and split 3@‘w into four a-trees. Details 
will appear in the full paper. Putting everything to- 
gether, we conclude that we in total use O(log, N) I/OS 
in each of O(logB N) nodes to maintain the multislab 
structures. Thus we have obtained the following: 

Theorem 4 There exists a data structure using 
O(N/B) blocks to store a monotone subdivision of 
size N, such that a vertical ray shooting query can be 
answered in O(logg N) I/OS worst case and such that 
updates can be performed in O(log$ N) I/OS amortized. 

4 Level-Balanced B-Trees 

Normal B-trees do not contain parent pointers and thus 
one cannot follow a leaf-root path in such trees as 
needed in our dynamic point-location structure. Aug- 
menting B-trees with parent pointers leads to an unde- 
sirable O(B logB N) I/O bound for the split operation, 
the reason being that 8(logB N) B-tree nodes are split 
and fused when performing a split and in each such op 
eration O(B) parent pointers need to be updated. 
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In this section we des’cribe level-balanced B-trees, 
which support insert, delete, split, and merge opera- 
tions while maintaining parent pointers as needed in 
our dynamic point-location structure. The main new 
properties that allow us to perform all the above oper- 
ations I/O-efficiently are that we (i) allow the degree of 
a node to be arbitrarily small, and (ii) allow disk blocks 
to contain several nodes. By doing so we avoid fusing 
nodes altogether and we are able to split a node in a con- 
stant number of I/OS. Note that when we allow nodes 
to have degree o(B) we need some other way of assuring 
that the tree has height 0( logB N) We do so by impos- 
ing an invariant on the number of nodes on a given level 
of the tree, and rebuilding the nodes at a level whenever 
the invariant is violated. (Thus the name level-balanced 
B-trees.) In the next subsection we describe the general 
idea in level-balancing without discussing parent point- 
ers and how the tree are layed out on disk blocks. In 
Section 4.2 we then sketch how to adopt the technique 
to external memory while maintaining parent pointers. 

4.1 Level-balanced trees 

A level-balanced tree of degree b is similar to a (1, b)- 
tree, i.e., all leaves are on the same level and all internal 
nodes have degree between one and b. To simplify our 
arguments, we assume that b is a power of 2 and 3 (that 
is, b = 6k for some integer k 2 0). Since we allow split 
operations, we will show how to maintain a collection 
of trees (also called a forest) with a total of N leaves. 
As discussed, we impose an invariant on the number of 
nodes on a given level in order to bound the height of 
the trees. Set N; = N/($)i. We define the level of a 
node v to be the number of edges in a path from v to 
a leaf (i.e., leaves are on level zero), and maintain the 
following level invariant for all levels: 

The number of non-root nodes at level i in the 
forest is at most 2Ni. 

The invariant insures that the height of a tree is 
bounded by a function of the total number of leaves 
in the forest. 

Lemma 10 The height of all trees in the forest is 
Wag, W- 

Update operations are now basically performed as in 
(1, b)-trees: To insert a new leaf e next to an existing 
leaf e’, e is added to the child list of the parent p of e’. 
If p now has b + 1 children, p is split into two nodes 
of degree b/2 and b/2 + 1. The newly created node is 
recursively added to the p.arent of p. To delete a leaf z, 
we remove z from the tree. If the degree of the parent of 
z becomes zero, the parent is recursively deleted. (Note 
that no node fusions are performed). 

To merge two trees of equal height h, we create a node 
at level h+ 1 and make the two roots the children of the 
new node. To merge two trees of height hl and hp, with 
hl < hz, we make the root of the tree of height hl a new 
child of the rightmost or l.eftmost node at level hl + 1 
of the other tree. If this node now has degree b + 1, we 
recursively split the node as in insertions. To perform 
a split operation at a leaf e, we split the ancestor nodes 
of e so that e becomes the leftmost leaf of one of the 
resulting trees. The degree of ancestors of e may now 
be arbitrarily small, but we allow nodes to have small 
degrees, so no rebalancing (node fusion) is needed unless 
the level invariant is violated. 

One main property of the operations above is sum- 
marized in the following lemma. 

Lemma 11 Insert, delete, split, and merge operations 
create at most one new node (perform one node split) 
at each level in the forest. 

After performing one of the above operations the re- 
sulting trees are (1, b)-trees, but the level invariant may 
be violated. .If the level invariant is violated, we apply 
the following level rebuilding strategy: Let h be the low- 
est level for which the level invariant is violated (recall 
that the leaves are on level 0). For each tree T rooted at 
a level greater than h we simply replace level h and the 
subtree of T above level h with a new subtree in which 
all nodes, except possibly for the root, have degree at 
least b/2 and at most b. 

Note that before the level rebuilding there are 2Nh + 1 
non-root nodes at level h with a total of at most 2Nh-r 
children, i.e., the average degree of the nodes at level 
h is less than 8. After the rebuilding, each non-root 
node has degree at least b/2 and the number of non- 
root nodes on level h is at most 2Nh-r/(q) < $N,,. 
The rebuilding step reduces the number of non-root 
nodes at level h by increasing the average degree of the 
nodes at level h. In general, the number of non-root 
nodes at level i 2 h in the resulting forest is at most 
2N+i/($)i-h+1 5 $Ni. This means that Q(Ni) nodes 
now need to be created at level i 2 h before the level 
invariant can be violated for level i. Since each tree op 
eration creates O(log6 IV) nodes (Lemma 11) and fi(Ni) 
nodes are rebuilt before the level invariant is violated 
for level i again, we obtain the following. 

Lemma 12 The opemtions insert, delete, split, and 
merge each rebuild O(log, N) nodes in the amortized 
sense. 

4.2 External-memory representation 

We now sketch how to lay out level-balanced trees on 
disk blocks and how to maintain parent pointers during 
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insert, delete, split, and merge operations. As men- 
tioned, the key property that allows us to maintain par- 
ent pointers I/O-efficiently is that we allow each disk 
block to store several nodes. Whensplitting a node we 
can thus keep both resulting nodes in the same origi- 
nal block and avoid updating the parent pointers of the 
affected children. 

We represent each node v in a level-balanced B-tree 
by up to b + 1 constant-size records: One node record 
and between 1 and b child records. For each level i, 
node records of all nodes at level i are stored in a se- 
quence of disk blocks such that each disk block contains 
O(B) records. All child records at level i are stored in 
another sequence of blocks such that each disk block 
contains O(B) records and such that all child records of 
a node are stored in the same block. (We require that 
all records in a block are from the same level). Note that 
the node and the child records of a node v are stored in 
different disk blocks. 

Each child record of a node v stores a pointer to the 
node record of v and a pointer to the node record of a 
child node. The child records are kept in left-to-right or- 
der in a double linked list. The node record of v stores 
a pointer to the left-most child record of v, as well a 
pointer to a child record of the parent of v (which stores 
a pointer to the node record of v). A pointer is repre- 
sented as a pair consisting of a disk block identifier and 
a record offset within the block (for example the pointer 
(27,95) would point to record 95 in disk block number 
27). Note that because of the way records are stored in 
blocks, it is possible to update the parent pointer in the 
node record of v without having to load the child records 
of v, which in turn means that all the parent pointers of 
a level with X nodes can be updated in 0(X/B) I/OS. 
This will be crucial when rebuilding a level. 

It is easy to realize that except for node splitting 
and level rebuilding, each operation as described in Sec- 
tion 4.1 can be performed in O(log, N) I/OS (the height 
of the tree). Thus we only sketch how to split a node 
I/O-efficiently and how to rebuild a level I/O-efficiently. 
Details will appear in the full paper. 

Assume that 2b 5 B. A node can be split as follows: 
First the double linked list of child records are updated 
to reflect the split. Then a new node record is created 
and the pointers between the node record and the child 
records are set up. Finally, we have to create a new child 
record at the parent. There are two cases to consider. 
If the disk block storing the child list of the parent has 
space left for an additional child record, we create the 
new child record in the block. Otherwise, we first move 
between :B and $B of the child records to a new disk 
block and update the affected pointers with O(B) I/OS 
before creating the new child record. 

Except for the creation of the new child record, a 
split can be done in O(1) I/OS as only records in a 

constant number of blocks are updated. It can be shown 
that a new child record can be created with O(1) I/OS 
amortized. 

Lemma 13 A node in a level-balanced B-tree can be 
split in O(1) I/OS amortized. 

The level i of the forest is rebuilt as follows: First, we 
visit the level-i nodes of all trees rooted at level greater 
than i and generate a list of pointers to the children at 
level i - 1, using O(Ni) I/OS. Using another O(Ni) I/OS 
we then reconstruct the nodes at levels i, i + 1,. . . , as 
previously described, so that all new nodes have degree 
between b/2 and b and so that each disk block stores at 
most B/2 records. Finally, we need to update the parent 
pointers of the node records at level i - 1. In order to 
do so we first scan the child records of level-i nodes. For 
each child record P visited, we construct the pair (p, q), 
where p is the pointer (to the node record at level i - 1) 
stored at r, and q is the pointer to r itself. We then sort 
these pairs using p as the key, in 0( 9 logMiB q) 
I/OS; let L be the sorted list. Finally, we scan L and the 
sequence of node records at level i - 1 simultaneously, 
and for each.pair (p, e) E L, we set the parent pointer in 
the node record p at level i - 1 to e. This step requires 
O(Ni-l/B) I/OS. The total number of I/Os;.s_ed to 
rebuild level i is O(Ni + w logMiB * + 
O(Ni(1 + $IOg&f/B 9)). 

-y) = 

Lemma 14 Level i of a forest of Level-balanced B-trees 
can be rebuilt in O(Ni (1 + $ logM,B g) I/OS. 

Since tree operations create at most one node at each 
of the O(log, N) levels (Lemma 1 l), level i is only re- 
built once every n(Ni) tree operations. Thus the amor- 
tized cost of rebuilding Ievel i is 0(1 + $ logMMIB 3) 
I/OS per tree operation. The number of I/OS charged 
to each tree operation for rebuilding steps is thus 
0( (1 + $ log, s g) log, N). Since all other steps re- 
quire O(log, N I/OS, we obtain the following. i 

Theorem 5 A set of N elements can be stored in a for- 
est of level-balanced B-tree using O(N/B) blocks, such 
that insert, delete, split, merge operations can be per- 
formed in O((1 + 5 logMMIB g) log, N) I/OS amortized, 
2 5 b < B/2, while maintaining parent pointers. 

Choosing b = 
lWM/B 9 < 1 

& and using the fact $ logMMIB $$ = 

IogB - ogB N, we obtain the following. 

Corollary 1 A set of N elements can be stored in a for- 
est of level-balanced B-tree using O(N/B) blocks, such 
that insert, delete, split, merge operations can be per- 
formed in O(logs N) I/OS amortized while maintaining 
parent pointers. 
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5 Conclusions 

In this paper we have developed au I/O-efficient dy- 
namic data structure for point location in monotone 
subdivisions. Part of the data structure is a novel 
search tree rebalancing technique which allows for ef- 
ficient maintenance of parent pointers in B-trees. The 
most challenging open problem is of cause to extend our 
technique to general planar subdivisions. 

We believe that the techniques developed in this pa- 
per can be used to obt.ain I/O-efficient data struc- 
tures for a number of <other problems. For exam- 
ple, a planar St-graph of size N can be maintained in 
b((1 + $ 10gM,B $$) lo&N) I/OS for 2 < b 5 B/2, 
so that reachability queries in it can be answered in 
O(log, N) I/OS [24]. We believe that our techniques 
can be used to develop ext,emal dynamic data structures 
for more general ray-shooting queries and to obtain an 
efficient external memory data structure for three di- 
mensional point location. 
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