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ABSTRACT 
 

Tuberculosis, caused by Mycobacterium tuberculosis, is the leading cause of 

death due to infectious disease. Now, the prevalence of multidrug-resistant and 

extensively drug-resistant TB, and the emergence of co- infection of TB and HIV have 

highlighted the need for new antibiotics with novel mechanisms of action.  

Methionine aminopeptidase (MetAP) is a ubiquitous enzyme found in both 

prokaryotic and eukaryotic cells and carries out an important cotranslational modification 

of newly synthesized proteins. The MetAPs can be divided into type I and type II based 

on the existence of an insert in the catalytic domain. Prokaryotic cells have only one type 

of MetAP, either type I or type II; encoded by a single gene. MetAP is essential for cell 

viability, which is demonstrated by gene deletion experiment in E.coli and Salmonella 

typhimurium. Therefore, MetAP is a promising target for developing novel drugs against 

bacterial infection, inc luding TB-causing drug resistance bacteria. 

Two genes, mapA and mapB , were found in Mycobacterium tuberculosis H37Rv. 

They encode two type I MetAP enzymes, MtMetAP Ia and MtMetAP Ic, respectively. 

Both MtMetAP proteins were over-expressed and purified in homogeneity as apoenzyme. 

Biochemical characterization using a fluorogenic substrate (Met-AMC) was carried out 

with bo th MtMetAP Ia and MtMetAP Ic.  

Both MtMetAPs can be activated by divalent metals, including Ni(II), Co(II), 

Mn(II) and Fe(II). Ni(II) is the best activator for both MtMetAPs, followed by Co(II) . 

Mn(II) and Fe(II)  are the least efficient to activate MtMetAP Ia and MtMetAP Ic, 

respectively. Metal titration assays were used to determine the metal binding affinity to 

each MtMetAP.  In both MtMetAP Ia and MtMetAP Ic, Co(II) and Fe(II) are the tightest 
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binding metals, as indicated by their smallest Kd values. Mn(II) gives the weakest binding 

in MtMetAP Ia and Ni(II) shows a weakest binding to MtMetAP Ic.  

Growth complementation experiments were employed to evaluate the cellular 

function of MtMetAP in the E. coli that had an amber mutation in the chromosomal 

EcMetAP gene, and a pBAD plasmid, which encod ed a suppressor tRNA to suppress the 

lethal effect of the amber mutation. The existence of glucose or arabinose in the culture 

medium could suppress or express the tRNA respectively, therefore result the death or 

survival of the E. coli, respectively. The plasmid-expressed MtMetAP Ic in the amber 

mutant rescued the E coli from death and supported cell growth.  

A set of inhibitors with selectivity for different metalated MetAPs were tested on 

both MtMetAPs. For MtMetAP Ib, a ll tested compounds retained their inhibitory 

activities and metal selectivity. However, in MtMetAP Ia, the Co(II)-, Mn(II)- and Fe(II)-

selective inhibitors did not show inhibition. Only Fe(II)-selective inhibitors retained their 

inhibition, whereas they lost their metal selectivity.  

An amino acid sequence alignment suggested some differences in the active sites 

between MtMetAP 1a and MtMetAP Ic. A homology model of MtMetAP Ia based on 

MtMetAP Ic structure was generated. A similar active site is observed in this virtual 

structure of MtMetAP Ia. Given the size of the tested compound library, the failure to 

find an inhibitor specific for MtMetAP Ia may be due to the limited number of 

compounds in the library. Screening of a compound library consisting of a larger number 

of molecules with more structural diversity will possibly identify inhibitors for MtMetAP 

Ia.  
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The inhibitors of MtMetAP Ic were further tested for their inhibition on cellular 

growth. The fact that only the Fe(II)-form selective inhibitors inhibited the cellular 

MtMetAP Ic activity and inhibited the MtMetAP Ic-complemented cell growth, suggested 

that Fe(II) was the native metal used by MtMetAP1c in an E. coli cellular environment.  

X-ray structures of MtMetAP Ic in complex with three metalloform-selective 

inhibitors were analyzed. The results demonstrated different binding modes and different 

interactions with metal ions and active site residues for these inhibitors. The MtMetAP1c 

inhibitors with metalloform selectivity are potential leads for antitubercular drugs.  

Understanding the catalytic mechanism and inhibition of the mycobacterial 

MetAP is an essential step towards discovering and developing effective MetAP 

inhibitors as therapeutics. The compounds with potent inhibition and high metal 

selectivity toward MtMetAP may be therapeutically useful for improved TB treatment.  
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CHAPTER 1 
  

INTRODUCTION: METHIONINE AMINOPEPTIDASES  
IN ANTI-TUBERCULOSIS DRUG DISCOVERY 

 

1.1 Tuberculosis (TB) 

1.1.1 History of tuberculosis 

Tuberculosis (TB) is a deadly pulmonary disease caused by Mycobacterium tuberculosis 

in humans.  The history of TB can be backdated to ancient Egypt since the sign of TB infection 

was found in the fragments of spinal columns in mummies from 2400 BC. The terms of 

consumptions, phthisis, scrofula, Pott's disease, and the White Plague had been used to refer to 

tuberculosis throughout history without knowing the exact cause of the disease. In 1882, Dr. 

Robert Koch revealed the bacterium that caused TB, which advanced the understanding of TB. 

The chest X-ray enabled physicians to diagnose and track the disease. In the following years 

until the twentieth  century, the sanatorium movement, a medical program that involved diet, rest 

and medical treatment, began in Europe and spread to the U.S, and greatly contributed to the 

decline of the incidence and fatality of TB. As the century progressed, the BCG vaccines from 

Mycobacterium bovine and new antibiotics were used for TB treatment. Particularly, the 

discovery of streptomycin, the first antibiotic effective against M. tuberculosis, was considered 

as the beginning of the modern era of TB treatment. Combination therapy with isoniazid and 

rafampcin has significantly reduced the incidence of TB.  

However, the steady decline of TB incidence began to stop and even started to reverse 

since the middle of the 1980s. It was mainly due to the rise of multidrug-resistant (MDR) M. 

tuberculosis strains, and the emergence of co- infection with HIV. According to the data released 

from WHO in March 2010, in some areas of the world, one in four peop le with TB have MDR  

http://en.wikipedia.org/wiki/Tuberculosis�
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Figure 1-1 Mycobacterium tuberculosis  
A) Mycobacterium tuberculosis under scanning electron 
microscopy. Magnification 15549 ×, M. tuberculosis is rod-
shaped, 2-4 µm in length and 0.2-0.5 µm in width.   
B) Mycobacterium tuberculosis colonies formed in the 
Middlebrook’s medium. 
Both pictures are from the website of Center for Disease Control 
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TB. This poses a tremendous challenge for TB treatment as the standard d rugs currently being 

used show much less effect on the disease. Therefore, developing new and highly effective anti-

TB medicines with novel mechanisms is essential to address the emergence of MDR TB.   

 

1.1.2 Pathogen of tuberculosis 

The etiologic agent of TB in humans is Mycobacterium tuberculosis. It is a Gram-

resistant, non-motile, and rod-shaped bacterium. It is a relatively large bacterium as the rods are 

2-4 micrometers in length and 0.2-0.5 micrometers in width. Other than in humans with TB 

infection, M. tuberculosis is usually found in water and soil, and grows under anaerobic 

conditions with a slow generation time of 15-17 hours. When it is cultured in a Midd lebrook’s 

medium [1], it forms visible white or light yellow colonies after 4-6 weeks (Figure 1-1). The 

distinctive serpentine cords can be observed in the laboratory grown colonies because of the 

tendency of colonies to aggregate.  M. tuberculosis is an obligate aerobe. For this reason, the 

invading M. tuberculosis in hos ts is always found in the upper bronchiole. The bacterium can 

also survive inside cells with slow growth rates, such as macrophages, which contributes to their 

virulence.  

M. tuberculosis has a special cell wall with a high content of lipids. It is composed of 

mycolic acid/mycolate, and a peptidoglycan layer connected by polysaccharide (Figure 1-2). The 

extreme hydrophobic cell wall contributes to the impermeability and resistance to antimicrobial 

agents, the resistance of killing by acidic or alkaline agents in an intercellular or extracellular 

environment, and the resistance to lysosomal delivery after being taken into macrophages. 

Therefore, disruption of the M. tuberculosis cell wall, particularly interfering with the synthesis  
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Figure 1-2 Cell wall of Mycobacterium tuberculosis. 
M. tuberculosis has a cell wall with high lipid content above 60%. It is 
made of mycolic acid/ mycolate, and a peptidoglycan layer, connected by 
polysaccharide and arabnogalactan. ○1  outer lipid ○2  mycolic acid/ 
mycolate ○3  polysaccharide ○4  peptidoglycan ○5  plasma membrane 

  

○6  
lipoarabinomannan (LAM). 
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of virulent factors in cell membrane components, is the main strategy of  the drugs currently used 

for TB treatment. 

 

1.1.3 Pathoge nesis and transmission of tuberculosis 

Four stages are involved in pa thogenesis of pulmonary tuberculosis [2]. The nuclei 

droplets with mycobacteria exhaled from TB patients can spread from one to another. At the first 

stage, the alveolar macrophages in the host can take up the inhaled droplets nonspecifically and 

destroy them. But this destruction of M. tuberculosis depends on the intrinsic capacity of host 

phagocytes and virulence factors of the ingested pa thogen. If the macrophages cannot destroy the 

inhaled mycobacteria, the mycobacteria will multiply in macrophage until the macrophage burst. 

Upon the destruction of macrophages, which starts the second stage, blood monocytes are 

attracted to the place and develop into new macrophages in order to engulf M. tuberculosis 

without destroying them. Hence, the engulfed bacteria grow logarithmically inside macrophages 

and the macrophages accumulate within the first to the third weeks of the initial infection. No 

tissue damage occurs. In the third s tage, when T-cell immunity develops, the lymphocytes are 

able to recognize the pathogen, M. tuberculosis, and trigger the release of interferon. The 

interferon leads to the activation of macrophages to kill the mycobacteria. The intracellular 

logarithmical growth of bacteria is halted and the extracellular growth of bacteria is inhibited 

because of the solid center of necrosis in the primary infection. Therefore, the bacteria become 

latent and may be disseminated to other organs through blood circulation.  

In the last stage, which may be after months or even years later, under the circumstance 

of a weakening immune system, the latent pathogens could be reactivated in hos ts. Because of an 

unknown mechanism, the centers of caseation necros is liquefy, which provides a perfect 
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circumstance for extracellular multiplication of mycobacteria. Cavity formation may disrupt the 

nearby bronchi so that the mycobacteria will spread to other parts of the lungs and the outside 

environment. In summary, after entering the hos t, M. tuberculosis encounters a series of barriers 

from the host with different defense mechanisms. The final outcome of infection with M. 

tuberculosis depends on the ba lance be tween the outgrowth and killing of mycobacteria and the 

defense capability of the hos t’s immune system.  

A critical step in the pathogenesis of TB is the survival of M. tuberculosis in the hos t’s 

macrophages. Normally, the engulfed bacteria are transferred to the lysosome and degraded. But 

in case of TB, mycobacterium is resistant to this transfer. A protein kinase G (PknG) from M. 

tuberculosis is suggested to relate to resistance. The PknG mediates intracellular survival of 

bacteria and is identified as a target for the control of mycobacteria infections [3]. More study is 

needed to illuminate the inactivation mechanism of macrophage and will shed light on the 

discovery of new agents for TB treatment.  

 

1.1.4 Drugs used in chemotherapy of TB 

The fundamental purpos e of chemotherapy of TB is to kill bacteria or inhibit growth. 

Currently, there are five first-line drugs used for TB treatment, including streptomycin, isoniazid, 

rifampicin, ethanmbutol and pyrazinamide (Table 1-1). These drugs act in cell wall synthesis, 

DNA replication, RNA transcript ion and protein synthesis, which are essential for cell viability 

or logarithmical growth.  

Streptomycin (SM) was the first effective antibiotic used against TB, extracted from 

Streptomyces griseus. It targets the S12 protein of the 30S subunit of the ribosome in M. 

tuberculosis, therefore interfering with the binding of formyl-methionyl-tRNA to the 30s 



7 
 

ribosome subunit [4]. This results in the failure of protein synthesis initiation and leads to cell 

death. This drug is given by intramuscular injection due to its poor absorbance in the 

gastrointestinal tract. Adverse effects include the toxicity to peripheral and central nervous 

systems. Drug-resistant bacteria strains exist. 

Isoniazid (INH) is a pro-drug and requires the activation of catalase-peroxidase enzyme 

(kat G) from M .tuberculosis [5]. The kat G catalyzes the formation of isonicotinic acyl-NADH 

complex, which inhibits ketoenoylreductase (InhA) [6] and consequently blocks fatty acid 

synthesis. This process inhibits the synthesis of mycolic acid, a virulence factor required in cell 

walls. INH can be bactericidal to the M. tuberculosis in the log-phase, while it is bacteriostatic to 

the mycobacteria in the stationary-phase. The side effect includes hepetoxicity, and the toxicity 

to the peripheral and central nervous systems. However, hepetoxicity can be eliminated by the 

careful clinical monitoring of patients, while the toxicity to the nervous system can be avoided 

by the supplement of vitamin B6. The mutation in the inhA gene contributes to resistance to the 

INH in M. smegmatis[7]. 

Rifampicin (RIF) belongs to ansamycin antibiotics because its structure is similar to a 

basket. The aromatic moiety is the ‘basket’, and the long aliphatic chain that links both sides of 

the aromatic moiety is the ‘handle’. It inhibits RNA polymerase and reduces protein synthesis in 

mycobacteria. The combination of isoniazid and rifampicin increases the risk of hepatoxicity.   

Ethambutol (EMB) is bacteriostatic and usually given in combination with isoniazid, 

rifampicin, and pyrazinamide. It disrupts arabinogalactan synthesis by inhibiting arabinosyl 

transferase, therefore the complex of mycolyl-arabinogalactan-peptidoglycocan in the cell wall 

cannot be formed, which leads to the increased permeability of the cell wall. 

 

http://en.wikipedia.org/wiki/Bacteriostatic�
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Tabel 1-1  First-line drugs used in TB treatment 

Name  Structure  Mechanism Gene(s) invovled 
in resistance 

Gene function Mutantion 
Frequency 

SM 
 

Inhibition of protein 
synthesis by targeting 
30S subunit of 
ribosome 

rpsL          
rrs              
gidB 

S21 ribosomal protein           
16s rRNA                                 
rRNA methyltransferase 

52-59%        
8-21%        

INH 
 

Inhibit fatty acid 
synthesis by targeting 
mycolate synthetase 

KcatG               
InhA 

catalase-peroxidase            
enoyl ACP reductase 

50-95%    
8-43% 

RIF 
 

Intefer with protein 
systhesis by targeting 
DNA-dependant RNA 
polymerase 

rpoB   β-subunit of RNA polymerase 95% 

EMB 
 

Interfer with fatty acid 
synthesis by targeting 
arabinosyl transferase.  

embB Arabinosyl transferase 47-65% 

PZA 

 

to reduce the duration 
of treatment required 

pncA Nicotinamidase/pyrazinamidase 72-97% 

Abbreviations: SM: streptomycin   INH: isonizid RIF: rifampicin; EMB: ethambutol. PZA: pyrizinamide. Table modified from 
Yew et al 2009 [8]  
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Pyrazinamide (PZA) does not have significant bactericidal effects. It is used with 

isoniazid and rifampicin to shorten the treatment course. This pre-drug is converted to pyrazinoic 

acid b y mycobacterial amidase. The mutation in the pncA gene coding pyrazinamise confers 

resistance to this drug. 

There are also second- line drugs for TB treatment. They are defined as such because they 

are unavailable in most developing countries, or  they are less effective than the first- line drugs, 

or they have a higher toxicity or more side-effects.  Aminoglycosides and fluoroquinolones are 

in this category and inhibit protein synthesis and membrane integrity in M. tuberculosis.   

  

1.1.5 The challenge  encountered in anti-TB drug discovery 

All of the five first- line drugs listed above were discovered in the 1950s and have been 

extensively used. The high mutational frequency (10-6 ~ 10-8) in the chromosome DNA is the 

major cause of drug resistance observed in M. tuberculosis. Moreover, long treatment courses as 

well as the misuse and mismanagement of these drugs also contribute to resistance to the drugs. 

Novel antibiotics to combat drug-resistant TB strains with higher potency, less adverse effects, 

and that facilitate a shorter treatment course, are in critical need to address this challenge. Rather 

than focusing on modifying current antibiotics and optimizing current treatment regimens, 

exploring potential targets for drug design is likely to be the most promising approach.  

New antibiotics with novel mechanisms hold great promise to conquer drug-resistant TB. 

The completion of sequencing of the Mycobacterium tuberculosis H37Rv genome led to 

identification of essential genes for cell viability and greatly expanded the target pools for drug 

development. As more details of tuberculosis pathogenesis and mechanisms of drug-resistance 
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have been uncovered, a new paradigm targeting the virulence factor has been suggested as a 

better alternative for drug development [9]. 

 

1.2 Methionine aminopeptidase 

1.2.1 Methionine aminopeotidase family 

The methioine aminopeptidases (MetAPs) are a family of enzymes that are found in 

Bacteria, Archaea, and Eukarya. The enzymes cleave the N-terminal methionines from 

methionine-peptides in the presence of divalent metals. All protein translations begin at the N-

terminus with a methionine (or N-methylmethionine), corresponding to the start codon AUG. 

However, 50-70% proteins have this initial methionine removed by MetAPs. This process, which 

variously correlates with protein stability, function and degradation, plays an essential role in 

almost every aspect of cellular biology. 

MetAPs can be divided into two groups, type I and type II, based on the existence of the 

insert in the catalytic domains (Figure 1-3). Type I has no insert while type II has a 60 amino 

acid long insert. Eukaryotic cells have bo th type I and type II MetAPs, such as Saccharomyces 

cerevisiae [10] and humans [11]. In contrast, s ingle MetAP is common in proeukaryotic cells. 

For instance, Eubacteria only has a type I MetAP, while Archaea only has one type II MetAP. 

Multiple MetAPs are rare in bacteria, but with more genomic sequences reported, two or more 

putative MetAP genes have been identified in a small number of bacteria [12-13]. 

The presence of an N-terminal extension can subdivide MetAP into three groups. 

MetAPa doe s not have the extension, while MetAP b and MetAP c have the extension. MetAP b 

and MetAP c are differentiated by the lengt h of the N-terminal extension. Therefore, type Ia 

enzyme has neither an insert in the catalytic domain nor an N-terminal extension, and  
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MetAP from E.coli [14] is in this category. The Type Ib enzyme contains no insert in the 

catalytic domain, while it has an N-terminal extension, such as human MetAP Ib (HsMetAP Ib) 

and Saccharomyces cerevisiae MetAP Ib (ScMetAP Ib). Both of them have an extension of 

approximately 120 amino acids at the N-terminus, which includes two zinc-fingers and a linker 

of 50 amino acids. The proteolysis of the ScMetAP Ib by trypsin releases a fragment whose N- 

terminal sequence starts at Asp-70 with an immediately following Lys-69, indicating that 

ScMetAP Ib has an N-terminal zinc finger domain, and a C-terminal catalytic domain [15]. Metal 

titration experiments with wild-type ScMetAP Ib and the deletion mutant ScMetAP Δ2-69 

indicated that the native ScMetAP Ib had two zinc fingers and the zinc fingers were essential for 

MetAP normal function in vivo [16].  The type Ic MetAP has no insert in the catalytic domain 

and has a shorter N-terminal extension of 50 amino acid residues without a zinc finger. Type Ic 

MetAP was first described in Mycobacterium tuberculosis [17] and it was named as such in 

order to be differentiated from type Ib MetAP. 

 The alignment of MetAPs from E.coli, yeast and humans shows a high sequence 

similarity, indicating the evolutionary conservation of this type of enzyme.  

 

1.1.2 Structure of methionine aminopeptidase 

Crystal structures of EcMetAPs [18] reveal a pita-bread fold in the active sites. This 

unique fold consists of a central antiparallel β-sheet flanked by two pairs of α-helices, which 

have been observed in most MetAPs including EcMetAP, ScMetAP, and HsMetAP. Similar pita-

bread folds are also found in aminopeptidase P (AMPP) and creatine amidinohydrolase 

(creatinase) even though these two enzymes have different activities and substrate specificities.  
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Figure 1-3 Domain architecture of methionine aminopeptidase  

 

 

 

 

 

Figure 1-4 Crystal structures of EcMetAP I, pfMetAP IIa and HsMetAP IIb. 
The pita-bread core domain is illustrated by red α-helices and b lue β-sheets. The α-helical 
subdo main insertion in the type II enzymes is labeled in yellow. The N-terminal domain 
extension in HsMetAP IIb is indicated in blue. Metal ions are shown in magenta; Mn(II) in 
EcMetAP I, and Co (II) in pfMetAP IIa and HsMetAP IIb. 
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The pita-bread fold forms an internal pseudo 2- fold asymmetry. In EcMetAP I, which 

does not have the N-terminal extension or the insert in the catalytic domain, this pseudo 

symmetric fold can be clearly visualized. The symmetric unit consists of a β-sheet and a helix- 

bend-helix motif. The first half of the sequence residues from 11-116 comprises the N-terminal 

domain and the residues from 120-241 make another domain located at the N-terminus  

 (EcMetAP I in Figure 1-4). The least squares transformation, which superimposed 64 selected 

α-carbon atoms from the C-terminal part on those in the N-terminal part, is equivalent to a 

rotation of 174º and a translation of 0.6 Å to the axis of rotation. In addition to EcMetAP, 

chyrotryps in- like serine proteases and the acid protease are also alike in structure within a single 

polypeptide. This phenomenon has been suggested as evidence of an ancestral gene duplication 

and fusion.  

The dinuclear metal sites are located at the junction of two domains where two metal ions 

are clearly seen. These metals are in the center of the molecule, right between the β-sheets, and 

are bound through coordination with amino acids Asp-97, Asp-108, Glu-235, His-171 and Glu-

204 (Figure 1-5). The metal binding coordination is very similar to that is observed in PfMetAP 

IIa and HsMetAP IIb. Even though the numbering of the metal coordinating residues are 

different in these MetAPs, the binding modes in the active sites are very comparable.  

 

1.2.3 Catalysis of methionine aminopeptidase 

By analyzing crystal structures of MetAPs with or without substrate binding (or substrate 

analogues), catalytic models for dimetalated and monometalated MetAP have been proposed 

[19-21].  
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Figure 1-5 The dinuclear metal centers and the amino ac id residues in EcMetAP I, 
PfMetAP IIa and HsMetAP IIb  
EcMetAP is colored in yellow, PfMetAP IIa is colored in green, and HsMetAP IIb is colored in 
red. The blue colored enzyme is AMPP that has a similar pita-bread fold in its active site. Two 
metal ions are colored in magenta. The water molecule that bridges the metal ions is colored in 
deep blue. Only numberings in EcMetAP are listed. Modified from ref [22]  
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In dimetalated MetAP (Figure 1-6A), two metals (M1 and M2) and water molecules (A 

and B) are involved. The model is constructed based on following assumptions: 1) The N-

terminus of the substrate binds to M2 at the cost of replacing water B; 2) A non-covalent 

tetrahedral gem-diolate intermediate is formed during catalysis; 3) The carboxyl oxygen from the 

scissile peptide bond interacts with Glu-204, and; 4) Water is the nucleophile during catalysis.  

In the resting MetAP, water A and B are clearly seen to coordinate to the metal center. Water A 

bridges the metal ions whereas water B behaves as the terminal ligand of M2. M1 is coordinated 

to Asp-108, His-171, Glu-204, Glu-235 and water A. The coordination geometry is a distorted 

trigonal bipyrimid. M2 is coordinated with Asp-97, Asp-108, Glu-235, water A and water B and 

the geometry is a distorted octahedron. Upon the substrate analog binding, water A, B and D in 

the active site are replaced by the O2 hydroxyl, the N-terminal nitrogen and the O1 atom of the 

inhibitor (Figure 1-6B). The geometry of M1 forms a distorted oc tahedron. The proposed 

reaction mechanism of dimetalated MetAP was illustrated in Figure 1-6C.  

When the substrate approaches the active site, the carboxyl oxygen of the scissile bond 

(Oc) has been rotated so that it can interact with M1. Meanwhile, the hydroxide moiety from 

water A attacks the carbonyl carbon of the scissile bond. The Oc also interacts with His-178 and 

possibly forms a hydrogen bond to stabilize the transition state. Glu-204 is proposed to interact 

with the P’1 part of the substrate and shuttle a proton from the attacking hydroxide to the new N-

terminus, facilitating its leaving. Mutation experiment and the binding mode adopted from 

substrate-alike inhibitors support this model [19].  

In monometalated MetAP (Figure 1-7), only o ne metal (M1) and one water (A) are 

involved. M1 is coordinated with residues of His-171, Glu-204, Glu-235 and water A. When the  
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Figure 1-6 Proposed reaction mechanism of dimetalated EcMetAP I 
A. Interactions in the metal center of EcMetAP.  
B. Interactions in the metal center of EcMetAP bound with substrate- like inhibitor 

AHHpA. Color scheme for atoms: red, oxygen; blue, nitrogen; yellow, carbon; cyan, 
cobalt. Metals are labeled as Co1 and Co2; and water molecules are labeled as A to E.  

C. Proposed reaction mechanism for dimetalated EcMetAP (Figure modified from 
reference [23] 
 

 

 

C 
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Figure 1-7 Proposed reaction mechanism of monometalated EcMetAP I 

Substrate Met-Ala-Leu is colored red and its tetrahedral intermediate binds to the active 
site. The nucleophilic water molecule is colored blue. (Figure modified from ref [21] 
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substrate binds to the enzyme, it likely approaches M1 with the scissile bond in a trans- 

conformation. The imidazole moiety from His-79 moves toward the substrate and forms a 

hydrogen bond to the nitrogen of the scissile amide. Residue His-178 forms a hydrogen bond to 

the oxygen of the scissile carbonyl group. The metal-coordinated water A attacks the scissile 

carbonyl-group and a tetrahedral intermediate is formed. It shuttles a proton from the carbonyl 

group to the leaving group. As no M2 exists, residue Asp-97 and Asp-108 are no longer 

coordinated with metal. However, both residues move closer toward the positively charged 

moiety of the N-terminus of the peptide to develop charge-to-charge interaction, which helps to 

orient the peptide substrate for productive binding[21].  

This catalytic mechanism of monometalated MetAP suggests the possibility of using one 

metal for MetAP activity and modifies the prevailing catalytic mechanisms of dimetalated 

MetAP.  

The affinity differences were observed between two metal binding s ites in a 

metalloenzyme. For example, the dissociation constants of Co (II) to the first and second binding 

sites in DNA polymerase I are 2.5 µM and 600 µM, respectively; and β- lactamase has Kd value 

of 0.14 µM and 2.52 mM for its tight and weak binding s ites, respectively. Considering there 

would be no such large variation under nor mal physiological conditons, it is possible that only 

one metal binding site is occupied and used for catalysis. Therefore, caution must be exercised 

when structures are generated to aid in drug design. 

 

1.1.4 Metal activation of methioinine aminopeptidase 
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MetAP catalyzes the removal of the N-terminal methionine from nascent polypeptides. 

However, the loss of EcMetAP activity upon EDTA treatment suggested the MetAPs  were 

metalloenzymes, which depend on metal binding for activities [14].  

Purified apo-MetAP I can be activated by divalent metals in vitro, usually by more than 

just one type of metal. MetAP from E. coli (EcMetAP) can be activated by Co(II), Mn(II), Ni(II) 

and Zn(II); MetAP from Saccharomyces cerevisiae (ScMetAP Ib) can be activated by Co(II) [24], 

Zn(II), Mn(II) and N i [25]. MetAP from humans (HsMetAP1b) can be activated by Co(II), Mn(II) 

and Zn(II). Similar metal activation was also reported for type II MetAP. HsMetAP IIb shows 

activity in the presence of Co(II), Mn(II) and Zn(II).  ScMetAP IIb also showed metal activation 

by Co(II), Mn(II) and Zn(II). The diversity of activation by metals in vitro can be explained by 

the flexibility of the metal binding pocket. As long as the divalent metals can fit into the metal 

activity pocket consisting o f Glu, Asp and His, it may promote necleophilic catalysis with the 

hydroxide ion (-OH) via water ionization. 

Even though the apoenzyme of MetAP shows activity in the presence of various metals in 

vitro, the metals used by the cellular MetAPs remain controversial. The activating metals used by 

metalloenzymes under physiological conditions are affected by two factors: 1) The binding 

affinity of a metal. An enzyme tends to bind the metals that show high affinity if the abundances 

of the metals are assumed to be the same. Affinities for metals tend to follow the Irving-Williams 

series (Mg(II) or Ca(II) < Mn(II) < Fe(II) < Co(II) < Ni(II) < Cu(II) > Zn(II)). For example, if all 

divalent metals are present and abundant, all proteins would bind Cu(II) as it has the highest 

binding a ffinity; and:  2) The available of metals for metalloprotein in vivo. This is determined 

by metal homeostasis, which is related to metal-specific importers and exporters in the 

membranes, and is tightly regulated by metal sensors through metal-responsive transcription [26].  
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Several candidates for the metals used by MetAP in vivo have been proposed, including 

Co (II) [18, 27], and Zn(II) [25], Mn(II) [28] and Fe (II) [29-30]. Co(II) is most often advocated 

as the metal used in vivo, because of its stable and repeatable activation of MetAPs [18, 24]. A 

low concentration of Zn(II)  was observed to activate to the EDTA-pretreated ScMetAP Ib, 

which was comparable to the activation by Co(II). ScMetAP Ib activity was further tested using 

high concentration of Zn(II) and Co(II)  in the presence of a physiological concentration of 

reduced glutathione. The fact that the Zn(II)-substituted ScMeAP Ib retained high activity 

whereas the Co(II) substituted ScMetAP Ib lost activity suggested that Zn(II) could be  the metal 

used under physiological circumstances [25]. EcMetAP substituted by Co(II) and Fe(II)  in the 

presence of reduced glutathione gave the highest activity, indicating both metals were relevant to 

physiological function of MetAP. However, in the same paper, the metal content of 

mycobacterial extracts was measured with the extracts from two types of E. coli cells; one had a 

plasmid to express EcMetAP and another did not have. The mycobacterial extract from the E.coli 

with plasmid-expressed EcMetAP gave an increased Fe(II) content, when compared with the 

Fe(II) content from E.coli without plasmid-expressed EcMetAP, suggesting Fe(II) was the metal 

used by E.coli in vivo [30]. The E.coli growth was inhibited by the compounds that showed 

inhibition toward the Fe(II)-subs tituted EcMetAP, not by the compounds inhibiting Co(II) and 

Mn(II)-subs tituted EcMetAP. It also suggested that Fe(II) could be the metal used by E. coli. 

Chai et al. used metal-selective inhibitors to assign the metals used by E.coli in vivo. Only 

Fe(II)-specific inhibitors prevented the removal of N-terminal methionine in the recombinant 

glutathione S-transferanase, which confirmed the cellular target of these compounds was MetAP 

and Fe(II) was likely the metal used in E. coli [29]. At this time, more evidence is required to 

clarify the metal used by MetAP in vivo.  
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1.3 Methoinine aminopeptidase implication in anti-TB drug discovery  

1.3.1  Methionine aminopeptidase in Mycobacterium tuberculosis 

Mycobaterium tuberculosis has two MetAP genes (mapA and mapB in H37Rv genome 

and map_1 and map_2 in CDC1551 genome), and both belong to type 1 MetAP with high 

homology to E. coli MetAP (EcMetAP). Little is known about their biochemical properties other 

than their DNA sequences.  Addlagatta et al. purified MtMetAP 1c, which is encoded by the 

mapB gene, and crystallized it in an apoform and in a complex with methionine. The structure 

analysis revealed an SH3 binding motif at its N-terminus (Figure 1-8), which could potentially 

interact with ribos omes through the SH3 motif to facilitate removal of methionine [17]. Zhang et 

al. cloned and purified both MetAPs (MtMetAP1a encoded by the mapA gene; and MtMetAP1c 

encoded by the mapB gene). Both enzymes were characterized with metal activation, substrate 

specificity and temperature optima. Both enzymes could be activated by Co(II), Mg (II) and 

Zn(II). While Cu(II), Fe(II), and Ni(II) showed strong inhibitions of enzyme activity.  

Transcriptional levels of two map genes were analyzed by real-time quantitative PCR. 

Gene mapA showed a 2-fold higher expression level in the 14-day log phase culture. In contrast, 

gene mapB gave a higher expression level in the 60-day stationary phase, which was about 1.5 

fold higher than in the log phase. This result suggested that MtMetAP Ia and MtMetAP Ic could 

perform important functions in different growth phases of M. tuberculosis [31].   

 

1.3.2 MtMetAPs as the potential targets for anti-TB drug 
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Figure 1-8 Crystal structure of MtMetAP Ic (PDB ID: 1YJ3)  
The α-helices are colored red and β-sheets are colored blue. Two Co ions colored 
magenta are located in the active site. The N-terminal extension is colored yellow.     
PDB ID: 1YJ3 
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MetAPs have gained much attention as drug targets in the past few years because of their 

essentiality in cellular function. MetAP inhibitors targeting cancer, rheumatoid arthritis, fungal 

and malarial infections have been reported.  

There are two putative map genes in M. tuberculosis, which share about 36.9% identity to 

each other. The different expression profiles of gene mapA and mapB in the log phase and the 

stationary phase indicate they may play different roles in M. tuberculosis pa thogenesis [31]. The 

compounds that inhibit MetAP in M. tuberculosis hold the significant promise of effective TB 

therapy. However, it is important to determine if inhibition of either MetAP or both is sufficient 

for inhibition of mycobacterial growth.  

The compounds that inhibit MetAP enzymatic activity could be used to co-crystallize 

with MtMetAPs. Once the structure of MetAPs in the complex with the inhibitors is identified, it 

will provide useful information for rational design of ant i-TB drugs. The inhibitors with higher 

potency and selectivity can be developed for TB treatment. 
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CHAPTER 2 

BIOCHEMICAL CHARACTERIAZATION OF METHIONINE 
AMINOPEPTIDASE 1A IN MYCOBACTERIA TUBERCULOSIS 

 
 

The work described in this chapter was published in Bioorganic & Medicinal Chemistry Letters, 
entitled “Expression and characterization of Mycobacterium tuberculosis  

methionine aminopeptidase type 1a”. 
 

2.1 Introduction 

Mycobaterium tuberculosis, the etiological factor of tuberculosis (TB), is one of the 

toughest microbe that humans have ever fought against [1]. According to the data  released by 

WHO in 2010, about one third of the world’s population are infected with TB Bacillus [2]. The 

emergence of multidrug- resistant M. tuberculosis strains and the co-infection of TB with HIV 

complicate the disease; and the long duration of the required treatment reduces the efficiency of 

the therapy. New antibiotics with novel mechanisms are urgently needed to solve the problem. 

Methionine aminopeptidase (MetAP) is a promising target for anti-bacterial drug 

development, including anti-TB agents. It is widely distributed in prokaryotic and eukaryotic 

cells, catalyzing the removal of the N-terminal methionine in the nascent peptides [3]. The 

essentiality of the enzyme was demonstrated in deletion mutants in Escherichia coli [4], 

Salmonella typhimurium [5], and Saccharomyces cerevisiae [6], which were lethal, suggesting it 

as a potential drug target for antibiotic development. 

A critical step in discovering anti-TB agents is to characterize the MetAP of M. 

tuberculosis, and to find inhibitors targeting MetAP with strong potency and high selectivity. 

Determining the activation metal ions of MetAP is particularly important as MetAP is a 
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metalloenzyme, for which divalent metal ions play a key role in the hydrolysis. It shows metal-

dependant activities in the presence of a series of divalent metals in vitro, such as Co (II) [7], Mn 

(II) [8], Fe(II) [9], and Zn(II) [10]. However, which metal is utilized by MetAP in vivo has 

remained contentious. Fe (II) [9, 11], Mn(II) [12], and Zn(II) [13] have all been suggested to be 

the metal used under physiological conditions. The fact that compounds showed potent inhibition 

of MetAP from in vitro screening, but failed to inhibit the enzyme in vivo indicated the a 

discrepancy between  the metals used in vitro and in vivo [14-15]. Therefore, in order to develop 

anti-TB drugs based on MetAP, the covalent metals used by MetAP in vivo should be taken into 

consideration. Thus, determining which metal is responsible for the activation of MetAP is a 

necessary step in anti-TB drug development. 

There are two putative MetAP genes (mapA and mapB) found in the M. tuberculosis 

H37Rv strain [16] and bot h of them are type I MetAPs with high homology to E. coli MetAP 

(EcMetAP). Little is known about the biochemical properties of these putative MetAPs other 

than the DNA sequences. Recently, two MetAP proteins from M. tuberculosis were purified, and 

characterized for metal binding and activation [17]. However, the metal activation results from 

their experiment were not convincing. The MetAPs tested in their experiments showed activity in 

the absence of metal ions, indicating the enzymes were not apo form enzymes. Their result, 

therefore, be misleading. 

In order to characterize MetAP in M. tuberculosis, particularly its metal activation, both 

MtMetAP genes were cloned and the enzymes were purified and characterized in our laboratory. 

In this chapter, characterization of MtMetAP Ia is described, including metal activation, kinetic 

measurements, metal-selective inhibition, and crystallization. The results offer further insight 

into discovering and developing MtMetAP Ia inhibitors for anti-TB treatment. 
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2.2 Materials and Methods  

2.2.1 Cloning o f MtMetAP Ia into pGEMEX-1 plas mid 

The DNA encod ing MtMetAP Ia (mapA, locus_tag Rv0734 ) from the genomic DNA of 

Mycobacterium tuberculosis H37Rv (a generous gift from Professor Scott G. Franzblau at the 

University of Illinois at Chicago) was amplified by PCR . The PCR fragments were digested by 

EcoRI and NheI (New England Biolabs, Ispwich, MA) and cloned into plasmid pGEMEX-1 

(Promega, Madison, Wisconsin). The primers for PCR were synthesized by Enrofins MWG 

Operon (Enrofins MWG Operon Biotech, Huntsville, Alabama). All the sequences are listed in 

Table 2-1. 

The construct pGEMEX1-MtMetAP Ia-1 was checked by DNA sequencing a nalys is. It 

showed that a shorter mapA gene was cloned into the pGEMEX-1 plasmid instead of the 

complete mapA gene. It was due to an EcoRI restriction site (G-AATTC) in the mapA gene.  The 

DNA sequence at the end o f the mapA gene is shown be low. The missing nucleotides are framed 

and the EcoRI restriction sites are underlined. 

 

Construct  CGACCGCCGATGGGTCACGTGCGGCACACTGGGAACACACCGTGGCGGTAACCGACGACG   

           |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

mapA       CGACCGCCGATGGGTCACGTGCGGCACACTGGGAACACACCGTGGCGGTAACCGACGACG   

 

Construct  GGCCCCGAATTC

           |||||||||||| | ||| |||| | 

GTCGAC-CTCGAG  854 

mapA       GGCCCCCTTAAG

 

-T-GACGCTCGGG  143192 
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To fix this problem, two DNA oligonucleotide s were designed to change the EcoRI 

restriction site from GAATTC to GTATAC. Two ApaI digestion sites (G-GGCCC) and one 

AvrII digestion site (C-CTAGG) were introduced for easy confirmation of the new construct. 

Both DNA oligonucleotide s had the same sequences and were reverse-complement to one 

another. As shown be low, the ApaI restriction sites are framed, and the AvrII restriction site is 

underlined. 

 

  Oligonucleotides RF: TGCGACGACGGGCCCCGTATACTGACCCTAGG

  Oligonucleotides RR:  GCATCTAGAGGGCCCGAATTCTAA

TTAGAATTCGGGCCCTCTAGATGC 

CCTAGG

 

GTCAGTATACGGGGCCCGTCGTCGCA    

These two oligonucleotides (100 µM) were mixed together in the annealing buffer (1 mM 

EDTA, 10 mM Tris-HCl pH 8.0, and 50 mM NaCl) in a 1.5 mL centrifuge  tube and heated both 

in a boiling water bath for 5 minutes. The mixture was left in the water and allowed to cool down 

to room temperature. The annealed oligonucleotides were kept at -20 oC, ready for use. 

Both the annealed oligonucleotides and pGEMEX1-MtMetAP Ia were digested by ApaI 

at 37 ºC for 2 hours, followed by treatment with calf intestinal alkaline phosphatases (CIP) to 

remove the 5’- phosphates and prevent recircularization of the vector. The digested DNA 

oligonucleotides and pGEMEX1-MtMetAP Ia-1 were joined by T4 ligase. The fixed EcoRI 

restriction site in the resulting pGEMEX1-MtMetAP Ia-2 was confirmed by DNA sequencing.  

 

2.2.2 Re-cloning of the mapA gene into pET28a plasmid  

The mapA gene was cut from plasmid pGEMEX1-MtMetAP Ia by NheI and EcoRI and 

cloned into pET28a (EMD Biosciences, Gibbstown, NJ) to put a hexahistidine tag at its N- 
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Table 2-1: Primers and oligonucleotides used in cloning 

 

Protein   Primer sequence 
Restriction 

Enzyme Plas mid  
MtMetAP 

Ia forward  5'-GGATCACCA GCTAGC NheI ATGCGCCCACTGGCACGG-3’ pGEME
X-1  

  Reverse 5'-AGCACTCGAATTC EcoRI TAACCGAGCGTCAGAAT-3’   

    
Oligonucl
eotides to 

fix 
MtMetAP 
Ia-Mutant  

Oligonucleotide  RF:  
5’−TGCGACGACGGGCCCCGTATACTGACCCTAGGTTAGAATT
CGGGCCCTCTAGATGC-3’ 

pGEME
X-1  

AvrII 

  
Oligonucleotide RR:  
5’−GCATCTAGA GGGCCCGAATTCTAACCTAGG ApaI GTCAGTATAC
GGGGCCCGTCGTCGCA -3’ 
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terminus. The sequence of the plasmid pET28a-MtMetAP Ia was confirmed by DNA sequencing 

analysis. 

 

2.2.3 Protein solubility optimization  

Due to the poor solubility of HisMtMetAP Ia, an optimization test was carried out based 

on Kim’s publication [18] to improve the solubility. Kim et. al indicated that protein solubility 

can be improved by changing the constitution of the LB medium. Adding salt, sorbitol, or 

betaine as well as exposing bacteria to a heat shock can increase the cellular concentration of 

osmolytes or of chaperones, thereby helping to express soluble target proteins.  The medium 

recipes investigated in optimization tests are listed in Table 2−2.  

Solubility optimization tests were carried out in 10 mL culture tubes. Cells were grown in 

5 mL LB with ampicillin at 37 oC until an OD600 of 0.6 ~ 0.8. Isopropyl-β-D-

thiogalactopyranoside (IPTG) was added at a final concentration of 0.3 mM to induce protein 

expression. All of the heat-shock tubes were incubated in a 47 oC water bath for 10 minutes 

before they were put in a shaker and incubated at 20 oC for 20 hours. 

The cells were harvested and cell densities were adjusted to the same level. One milliliter 

samples of cell culture grown in the different mediums were taken from each sample and 

centrifuged (5000 × g, 5 minute, 4˚C), The pellets were resuspended with 100 µL 50 mM Tris-

HCl, pH 8.0 and 150 mM NaCl and sonicated for 10 x 10 sec (with 10 second rest between each 

sonication) at full power in an ice bath to avoid overheating of the samples. The cellular debris 

was removed by centrifugation at 16,873 × g for 10 min at 4 °C. The whole cell sample, as well 

as the supernatant, was collected after centrifugation. All the samples were examined by SDS-

PAGE gel to check the expression level of soluble protein.  
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Table 2-2 Medium used in HisMtMetAP Ia solubility optimization test 

Medium ID Ingredient 

LB LB 

LBS LB + 0.5 M sorbitol 

LBSB LB + 0.5 M sorbitol + 1 mM betaine 

LBSG LB + 0.5 M sorbitol + 0.2% glucose 

LBSBG: LB + 0.5 M Sorbitol+ 1 mM betaine + 0.2% glucose 

LBG LB + 0.2% glucose 

LBN LB + 0.5 M NaCl 

LBNB LB + 0.5 M NaCl + 1 mM betaine  

LBNG LB + 0.5 M NaCl + 0.2%glucose 
 

 

 
  



33 
 

2.2.4 Over-expression and purification of HisMtMetAP Ia 

The pET28a-MtMetAP Ia plasmid was introduced into E.coli BL21(DE3) (Invitrogen, 

Carlsbad, CA) for protein expression. A single colony freshly transformed was cultured in LB 

medium with 50 ng/mL kanamycin at 37 ºC overnight. The pre-culture was inoculated into 1 liter 

LB with kanamycin (50 ng/mL) and kept growing at 37 ºC until the optical cell density reached 

0.6 - 0.8 at 600 nm. Protein production was induced by adding 0.4 mM  IPTG and the 

temperature was reduced to 16 ºC. After 20 hours, the cells were harvested by centrifuga tion at 

4400 × g for 10 minutes and the pellets were resuspended with suspension buffer (50mM Tris-

HCl, pH 8, and 150 mM NaCl). The pelleted cells were stored at -20 ºC until purification. 

Frozen cells were disrupted by passing through French Press three times consecutively 

and the cellular debris was removed by centrifugation at 47,810 × g for 45 minutes at 4 °C.  

Sodium chloride and imidazole were added to the supernatant to make their concentrations in the 

supernatant to be the same as in the elution buffer (50 mM Tris-HCl, pH 8, 500 mM NaCl, 5 mM 

imidazole).  The supernatant was loaded onto a HiTrap FF His column (GE Healthcare Life 

Science, Piscataway, NJ) equilibrated with the elution buffer. A linear gradient of imidazole, 

from 10 mM to 200 mM, was applied and the HisMtMetAP Ia was eluted at the approximately 

150 mM imidazole. Fractions containing the His-tagged MtMetAP Ia were examined by SDS-

PAGE be fore being poo led and concentrated with an Amicon stirred cell through a YM-10 

membrane (Millipore, Billerica, MA). The concentrated protein was treated with 1,10-

phenathroline to remove the divalent metals. The treated protein, about 4 -5 mL, was loaded to a 

5 mL HiTrap desalting column (GE Healthcare Life Science, Piscataway, NJ) to change the 

buffer to 50 mM MOPS-NaOH, pH 7.5, and 150 mM NaCl, which was pretreated with Chelex-
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100 resin (BioRad, Hercules, CA). The apoenzyme was aliquoted into 0.2 mL fractions and kept 

at -20˚C. 

 

2.2.5 Untagged MtMetAP Ia preparat ion and confirmation of removal of His-tag 

A small amount of untagged MtMetAP Ia was prepared to compare the kinetic 

characteristic with His-tagged MtMetAP Ia. The purified HisMtMetAP Ia was treated with 

thrombin (1000 units /mg protein) (EMD, San Diego CA) at 4 oC for 48 hours in a buffer 

containing 50 mM Tris-HCl pH 8.0, and 1.5 mM CaCl2. The thrombin treated sample was loaded 

onto a HiTrap FF His tag column and the untagged MtMetAP Ia was recovered in the flow-

through. All fractions including the flow-through fractions and the eluted fractions were 

collected for Western blotting test. 

Western blotting was carried out to check the removal of the His-tag from HisMtMetAP 

Ia by thrombin treatment. A horseradish peroxidase (HRP) conjugated His•Tag® antibody (EMD, 

San Diego, CA) was used to check for the existence of the consecutive His- tag in combination 

of luminescence detection. All the fractions mentioned above and the pre-treated fractions were 

adjusted to appropriate concentrations to make one microgram of each sample for SDS-PAGE. 

After electrophoresis, the separated protein bands in the polyacrylamide gel were transferred to a 

PVDF membrane (Pall Corp. Pensacola, FL) using Bio-Rad Semi-dry Transfer Cell (BioRad, 

Hercules, CA). The transfer was performed at 400 mA for 30 minutes. The PVDF membrane 

was washed with 1 × TBS (150 mM NaCl, 10 mM Tris-HCl, pH 7.5)  twice, 10 minutes for each 

wash and incubated with 5% non-fat milk at 4 ºC overnight. The blocked membrane was washed 

with 1 × TBSTT (500 mM NaCl, 20 mM Tris-HCl, 0.2% v/v Triton X-100, 0.05 % v/v Tween-

20, pH 7.5) twice, 10 minutes for each time, and with 1 × TBS for 10 minutes. Thereafter, it was 



35 
 

incubated with HRP conjugated His-tag antibody (1:2000) at 4 ºC for 1 hour, followed by 

membrane washing with 1 × TBSTT twice, and with 1 × TBS once, 10 minutes for each wash. 

The substrate for detection was made immediately prior to use by combining equal parts of 2 × 

Luminol/Enhancer Solution and 2 × WestPico Stable Peroxide Solution (ThermoF isher 

Scientific, Rockford, IL). They were mixed briefly and added to the membrane. The PVDF 

Membrane was ready for luminescent signal detection after being soaked in the substrate mix for 

1 minute. Excess subs trate was drained from the membrane by touching the membrane edge to a 

paper towel. The membrane was placed on a fresh sheet of plastic wrap. Bubbles between plastic 

and membrane were removed by folding plastic over the membrane. The liquid was gently 

removed from the exterior of the plastic and A gLOCATOR™ Luminescent Label was put into 

the plastic folde r to record blot- identifying da ta for future reference. The image was taken in the 

chamber of the imaging system from UltraLum, (Claremont, CA).  

 

2.2.6 Metal activation of HisMtMetAP Ia 

Kinetic analysis with HisMtMetAP Ia was carried out with a fluorescence based assay, 

using the fluorogenic substrate methionine-7-amido-4-methyl-courmarin (Met-AMC) (Bacham, 

Bioscience, King of Prussia, PA), which was hydrolyzed by MetAP in the presence of covalent 

metal .The released AMC emits fluorescence that can be detected at 460 nm with λex 360 nm as 

an enzymatic activity monitor. All kinetic experiments were carried out in 384-well plates in a 

SpectraMax Gemini XPS plate reader (Molecular Devices, Sunnyvale, CA), at room temperature 

as described [8, 19].  

For metal activation, each well contained 50 mM MOPS-NAOH, pH 7.5, 100 µM Met-

AMC, 50 nM apoenzyme and increasing amounts of metal ions (NiCl2, CoCl2, MnCl2, or FeCl2 
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with twice the concentration of ascorbic acid). The total volume was 80 µL. The initial velocity 

values were converted to specific activity values and plotted against increasing concentrations of 

the metal.  

In order to describe metal activation of MtMetAP Ia, we determined the metal 

concentration that gave 50% activity of the enzymes, and defined it as apparent Kd as it 

suggested the binding affinity. For determination for binding of the divalent metals to 

HisMtMetAP Ia, the titration curves were generated using different amounts of HisMtMetAP Ia 

(12.5 nM apoenzyme for Ni(II), 25 nM apoenzyme for Co(II) and Fe(II), and 50 nM apoenzyme 

for Mn(II)) in 50 mM MOPS-NAOH-NAOH, pH 7.5, 100 µM Met-AMC and increasing 

concentrations of either CoC l2, MnCl2, N iCl2 or FeCl2. In the case of FeCl2, ascorbic acid was 

added at a two-fold concentration of FeCl2.  

The metal activation was also carried out with untagged MtMetAP Ia for comparison 

with that of HisMtMetAP Ia.  

 

2.2.7 Kinetic meas urement of different metalloform HisMtMetAP Ia 

For determination of Michaelis-Menten kinetic parameters, enzyme activities were 

measured in the 80 μL assay mixture containing 50 mM MOPS-NAOH, pH 7.5, HisMtMetAP Ia 

(25 nM Co(II)- or Fe(II)- substituted enzyme, 50 nM Mn(II)-substituted enzyme, or 12.5 nM 

Ni(II)-substituted enzyme), covalent metals (10 μM FeCl2 with 20 μM ascorbic acid, 20 μM 

CoCl2, 200 μM MnCl2, or 20 μM NiCl2), and substrate Met-AMC in a 2-fold dilution up to 2 

mM at  room temperature . The initial rates were plotted with the corresponding substrate 

concentrations, and the curve was fitted to the Michaelis-Menten equation to ob tain Km and kcat 

values (Figure 2-1). 
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Figure 2-1 Calculation of Km and Kcat values using non linear regression curve  fitting 
based on Michaelis-Menten equation. Va represents the measured enzyme 
activities. Vc represents the calculated activities based on Michaelis-Mention 
equation (V=Vmax*[S]/(Km+[S])). 
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2.2.8 IC50 determination with different metalloform HisMtMetAP Ia 

The IC50 is the compound concentration at which 50% of the enzyme activity is inhibited. 

For IC50 determination, enzyme activities were monitored in the presence of inhibitors at 

different concentrations and converted into percent inhibitions. The IC50 value was obtained from 

the non-linear curve fitting of percent inhibition (% inhibition) vs. inhibitor concentration [I] 

using t he equation, 

%𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =
100

1 + � 𝐼𝐶50
[𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟]�

𝑘 

where k is the Hill coefficient, the [inhibitor] is the inhibitor concentration,  and the % inhibition 

is the percent of activity in the presence of inhibitor at the corresponding concentration. 

The inhibitors were serially diluted with eight concentrations in total, and the maximal 

concentration of inhibitor was 1 mM. The 80 µL assay mix included 50 mM MOPS-NAOH, pH 

7.5, 100 µM Met-AMC, HisMtMetAP Ia (50 nM Co(II)- or Fe(II)- substituted enzyme, 200 nM 

Mn(II)-substituted enzyme, or 12.5 nM Ni(II)-substituted enzyme), and  metal ions at the optimal 

concentrations for the activity of MtMetAP Ia (10 µM FeCl2 with 20 µM ascorbic acid, 20 µM 

CoCl2, 200 µM MnCl2, or 20 µM NiCl2 for the optimal enzymatic activities). The percentages of 

inhibition converted from the activities were applied to calculate IC50 (Figure 2-2). 

 

2.2.9 Co-crystallization of HisMtMetAP Ia and MtMetAP Ia with inhibitors  

Concentrated HisMtMetAP Ia samples were combined with 2 mM covalent metals be fore 

mixing with inhibitors at a ratio of 1:5 or 1:10 (Table 2-5). The enzyme-compound complex was 

mixed up with well solution at a 1:1 ratio and used to set up crystal trays using a hanging drop 

vapo r-d iffus ion me thod a t room tempera ture. The screening kits from Hampton  
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Figure 2-2 Calculation of IC50 using non-linear curve fitting. The percentage of 
inhibition (% inhibition) was plotted against inhibitor concentration using the equation 
described in Method 2.2.8. 
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Research  (Aliso Viejo, CA) were tested, including Crystal Screening ™, Crystal Screening 2™, 

Index ™, and  PEG/ION ™. A small amount of untagged MtMetAP Ia was also prepared and 

concentrated to 2.5 mg/mL to test using t ne PEG/ION. 

 

2.3 Results 
 
2.3.1 Constructs of MtMetAP Ia 

The gene mapA was first cloned into the pGEMEX1 plasmid. The DNA sequence 

showed that the last 12 nucleotides at the end of the mapA gene were missing in the constructed 

plasmid of pGEMEX1-MtMetAP Ia-1 due to an EcoRI restriction site (G-AATTC) in the mapA 

gene. Two DNA oligos (Table 2−1), oligonucleotide RF and oligonucleotide RR, were designed 

to mutate the EcoRI restriction site in the mapA gene. Meanwhile, a restriction site of AvrII was 

introduced to identify the mutant.  The modified plasmid pGEMEX1-MtMetAP Ia-2 was 

confirmed with a corrected DNA insert and transformed into E.coli BL21(DE3) competent cells 

for protein expression.  

MtMetAP Ia protein was overexpressed upon IPTG induction (Figure 2-3A), which was 

indicated by a single band observed in the post-induction sample but not in pre-induction sample.  

The observed molecular weight of MtMetAP Ia was around 37 Kd, which was larger than its 

theoretical molecular weight of 29.7 Kd. It might be due to the hydrodynamic radius of the 

protein which in turn affected the protein mobility on SDS-PAGE.  

Due to the poor solubility of MtMetAP Ia, an expression optimization test was carried out 

by changing the components of the culture medium [18]. The MtMetAP Ia proteins expressed in 

different kinds of media were examined by SDS-PAGE (Figure 2-3B). The MtMetAP Ia protein 

was expressed as it was observed in the whole cell lysate of IPTG-induced samples on the gel  
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Figure 2-3B Optimization of ove r-
expression of MtMetAP Ia by changing 
the composition of the LB medium.  The 
medium IDs are written in capital letters.  
WC represents the whole-cell lysate 
fractions and S represents the supernatant 
fractions. M represents Fisher BioReagents* 
EZ-Run* Prestained Protein Marker. The 
observed Mw of HisMtMetAP Ia is 37 Kd. 

 

118 kD 

47 kD 

36 kD 

26 kD 

85 kD 

85 kD 
118 kD 

47 kD 
36 kD 

26 kD 
20 kD 

 
Figure 2-3A Overexpression of 
HisMtMetAP upon IPTG induction. 
From left to right are whole cell lysate 
from pre-induction sample, whole cell 
lysate from post- induction sample, the 
pe llet and the supernatant of post-
induction sample separated by 
centrifugation at 16,873 × g for 10 
minutes. M is the prestained protein 
ladder from Fermentas. The expressed 
MtMetAP Ia showed a Mw of 37 Kd, 
which was larger than its theoretical Mw 
of 29.7 Kd. 
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and it was not seen in the pre- induction samples. However, the molecular weight of the 

expressed protein was around 37 KD, which was larger than the theoretical molecular weight of 

MtMetAP Ia, 29.7 KD.  However, it could barely be seen in the supernatant, indicating very little 

soluble proteins was expressed. The culture medium and the heat shock treatment seemed not to 

improve the solubility of MtMetAP Ia. Therefore, LB medium was subsequently used to grow 

E.coli cells for MtMetAP Ia expression. 

 

2.3.2 Expression and purification of HisMtMetAP Ia protein.  

MtMetAP Ia was first cloned into plasmid pGEMEX-1 as an untagged protein, because of 

the possible interference between the His-tag and divalent metals. However, the untagged 

MtMetAP Ia showed poor solubility and it was extremely hard to trace the enzyme during 

purification. Therefore, the gene mapA was cloned into pET28a to introduce a His-tag at the N-

terminus. Even though HisMtMetAPa did not have a better solubility, the small amount of 

soluble protein with a His-tag was easily purified by metal-affinity chromatography (Figure 2−4). 

Purified HisMtMetAP Ia was treated with 1,10-phenathroline to remove metal ions, and the 

purified apoenzyme showed no activity in hydrolyzing the fluorogenic substrate Met-AMC 

unless metal was added in the assay mixture. The yield of HisMtMetAP Ia was around 2 mg per 

liter of E.coli cell culture. 

 

 2.3.3. Activation of HisMtMetAP Ia apoenzyme by diva lent metals.  

Activity of MtMetAP Ia was monitored by detecting an increase of fluorescence of 7-

amido-4-methylcourmarin released from the hydrolysis of the non-fluorogenic substrate Met-

AMC. The metal activation was immediate, and the fluorescence increased linearly for at least 

30 min once the apoenzyme was mixed with the metals (10 minutes for Fe (II) with 2-fold   
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Figure 2−4 The purification of HisMtMetAP Ia  

M: protein ladder from Fermantas  

Lane1: flow-through  

Lane2:  supernatant 

Lane3:  eluted His-tagged MtMetAP Ia  
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concentration of ascorbic acid). The apoenzyme concentration was held constant at 50 nM and 

increasing concentrations of metal were added for activation. Ni(II) was the most efficient metal 

to activate MtMetAP Ia, followed by Co(II), Mn(II) and Fe(II) (Figure. 2−5). These were very 

similar to the observations in ot her MetAPs [8] [20] [21], but were significantly different from 

those repo rted by Zhang et al. [17], in which Co(II) was an activator, Mn(II) had no effect, and 

Ni(II) and Fe(II)  showed inhibition instead of activation. The discrepancies likely resulted from 

the proteins used in the assays. The MtMetAP Ia characterized in our assay was in the apoform, 

while Zhang and colleagues used proteins with metal ions likely already incorporated. It is clear 

from the activation curves that high concentration of a metal ion often inhibited the enzyme 

activity; therefore inhibition could be observed for an activator when a metalated MetAP is used.  

Since the His-tag could potentially affect metal binding, a small amount of untagged 

MtMetAP Ia was purified and tested to compare with that of HisMtMetAP Ia. After being treated 

by thrombin, the HisMtMetAP Ia was loaded onto a HiTrap His tag column to separate the 

untagged MtMetAP Ia (Figure 2-7A). Three peaks in total appeared during elution; peak 1 and 

peak 2 were eluted at low imidazole concentration while peak 3 was eluted at high imidazole 

concentration.  All three fractions were identified by Western blotting using HRP-conjugated 

anti-His antibody. Only fractions in peak 2 were untagged MtMetAP Ia (Figure 2-7B).   

This untagged MtMetAP Ia was used for metal activation and measurement of binding 

affinity indicated as an apparent Kd in compa rsion with HisMtMetAP Ia (Table 2-2). The result 

showed comparable metal activation curves. Fe(II) showed the tightest binding to both the 

tagged and untagged enzymes with smallest apparent Kd values, followed by Co(II), and Ni(II). 

The apparent Kd of Mn (II) indicated the weakest binding to the protein.  
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Figure 2-5 Metal activation of (A) HisMtMetAP Ia and (B) untagge d MtMetAP Ia 
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Figure 2-6  Calculation of the apparent Kd of different metalloforms of MtMetAP Ia. Details 
were described in Method 2.3.3. 

  

Table 2-3 Comparison of metal activation of HisMtMetAP Ia and MtMetAP Ia  
 

HisMtMetAPa Fe(II) Ni(II) Co(II) Mn(II) 

App Kd, µM 1.56 ±0.03 2.31 ± 0.11 1.87 ± 0.10 12.64 ± 0.71 

Vmax (RFU/Sec)  11.70 ± 2.16   24.14 ± 2.55   26.84 ± 1.27   6.39 ± 0.83  

     
     

MtMetAP1a Fe(II) Ni(II) Co(II) Mn(II) 

App Kd, µM 1.59 ± 0.11 6.29 ± 0.5 2.33 ± 0.37 33.76 ± 2.30 
Vmax (RFU/ Sec) 8.43 ± 0.38 14.57 ± 0.51 12.87 ± 0.19 4.04 ± 0.23 
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Figure 2-7 Removal of His-tag from HisMtMetAP Ia confirmed by Western blot 

A: The HisMtMetAP Ia was loaded onto 5mL HiTrap His column after thrombin 

treatment. There were three peaks during the elution: peaks 1-3.  

B: Fractions from peaks 1-3 were identified by Western blotting using HRP-conjugated 

anti-His antibod y. 

  



48 
 

When the metal activation of HisMtMetAP Ia to the untagged MtMetAP Ia were 

compared, no significant difference in binding a ffinity among the metals was observed (Table 2-

2, Figure 2−7). The apparent Kd of Co(II) to HisMtMetAP Ia and untagged MtMetAP Ia were 

1.87 µM and 2.33 µM, respectively; and the apparent Kd  for Fe(II) binding to HisMtMetAP Ia 

and untagged MtMetAP Ia were 1.56 µM and 1.59 µM, respectively. The similar binding affinity 

of Co(II) and Fe(II) to MtMetAP Ia regardless of the His-tag was also coincident with the metal 

titration curves (Figure 2-5).  

In the cases of Ni (II) and Mn (II), a smaller Kd with untagged MtMetAP Ia than 

HisMtMetAP Ia was observed. The Kd value of HisMtMetAP Ia and MtMetAP Ia for Ni (II) were 

2.31 µM and 6.29 µM, respectively. The Kd values for Mn-substituted HisMtMetAP Ia and 

MtMetAP Ia were 12.64 µM and 33.76 µM, respectively (Figure 2-6). Theoretically, the 

apparent Kd measured from His-tagged protein should be bigger than the apparent Kd measured 

from untagged protein if there is any interaction between the His-tag and the metal. The reason 

for the reverse observation could possibly be the loss of the enzyme activities (Table 2-3), so that 

the binding was not reflected by the AMC production.  

In summary, the activation of all the metals showed similar order in both His-tagged and 

untagged MtMetAP Ia, which was Fe(II) > Co(II)  > Ni(II)  > Mn(II), with the binding affinity 

from high to low. The metal concentration for optimal enzyme activity were used for the 

following kinetic characterization.   

  

2.3.4. Kinetic measurement of different metalloform HisMtMetAP Ia:  

For Km measurements, it is usual that the substrate concentration is significantly higher 

than the enzyme concentration. In the HisMtMetAP Ia case, the enzyme concentration was  
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Figure 2-8 Calculation of the Km of different metalloforms of MtMetAP Ia by using no 
linear regression curve fitting based on Michaelis–Menten equation. 

 

Table 2-4  Kinetic measurement of HisMtMetAP Ia 

HisMtMetAP Ia Fe(II) Ni(II) Co(II) Mn(II) 

Km, µM 148.96± 9.26 13.13±2.62 70.46±7.52 169.92± 10.29 

kcat, sec-1 0.1429 ±0.0077 0.4779± 0.0068 0.3719± 0.018 0.062± 0.018 

kcat/Km, M-1sec-1 959 35634 5277 364 
 

The Ni(II)-substituted HisMtMetAP Ia showed the highest affinity for substrate, followed 

by the Co(II)-substituted enzyme. Both Mn(II)-substituted and Fe(II)-substituted 

HisMtMetAP Ia gave Km values that were about 11 ~ 13 fold bigger than the Km of Ni(II)-

substituted HisMtMetAP Ia. 
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around nM. Serially diluted substrates of Met-AMC from 2 mM to 0.9 µM were prepared and 

HisMtMetAP Ia with the optimal metal concentration used to initiate the hydrolysis of Met from 

Met-AMC. The increase in fluorescence at 460 nm (λEx=360 nm) was recorded and converted 

into µM AMC per min (Figure 2-8) (Table 2-3).  

At the optimal activating metal concentrations for each metal (10 µM FeCl2, 20 µM 

CoCl2, 200 µM MnCl2, or 20 µM NiCl2), Michaelis–Menten constants were calculated for  

substrate hydrolysis. Ni(II)-activated MtMetAP Ia was most efficient among the metalloforms 

tested in catalyzing the hydrolys is, with the lowest Km and the fastest kcat, consistent with the 

metal titration curves (Figure. 2-5). Co(II) was the next, Fe(II) followed and Mn(II) was the least 

efficient. It is important to note that although this order of activation is similar for MtMetAP Ia 

and MtMetAP Ic. However MtMetAP Ia is a much more efficient enzyme. 

 

2.3.5 IC50 determination with different metalloform MtMetAP Ia:  

Assignment of the physiologically relevant metalloform has been difficult, and a novel 

approach was developed for the assignment using the metalloform-selective inhibitors that can 

distinguish different metals at the active site [11, 22]. In our research on characterization of  

EcMetAP, a set of MetAP inhibitors were tested for the inhibition of different metalloforms [23] . 

For comparison, the same inhibitors for metalloform-selective inhibition were investigated with 

MtMetAP Ia (Table 2-4). From previous tests on EcMetAP; compounds 1 and 2 showed specific 

inhibition on Fe(II)-form enzyme [24], compounds 3 and 4 were Mn(II)- form selective [22], and 

compounds 5-7 were Co(II)- and Ni(II)- for m selective [22-23].However, when they were tested 

on different metal-subs tituted MtMetAP Ia, compounds 1 and 2 showed potent inhibition in all 

four metalloforms, and their metalloform selectivity was lost (Table 2 -5). It was more surprising  
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Table 2-5. Inhibition of enzymatic activities of purified MtMetAP Ia a 

 

 

Cmpd  

MtMetAP Iab 

Fe(II) Ni(II) Co(II) Mn(II) 

1 0.19 0.7 0.031 0.11 

2 0.07 2.3 0.53 0.1 

3 >250 >250 >250 0.25 

4 >250 172 20 104 

5 >250 >250 >250 >250 
6 >250 >250 >250 >250 

7 >250 >250 >250 >250 

8 >250 >250 205 >250 
 

a IC50 values are expressed in µM. b Purified enzymes were reconstituted by activating the 
apoenzyme with different divalent cations [Fe(II), 10 µM; Co(II) and Ni(II), 20 µM; Mn(II), 200 
µM)].  
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that compounds 3-8 showed almost no activity, even though they inhibited EcMetAP1 and 

MtMetAP Ic with metalloform selectivity as expected. MtMetAP Ia and MtMetAP Ic are highly 

homologous in sequence, and many active site residues are conserved (Figure. 2-9). The X-ray 

structure of MtMetAP Ia is not available, and conceivably a homology model can be built based 

on the structures of MtMetAP Ic [23, 25].  

However, it will be difficult to explain the remarkable differences in inhibition of 

MtMetAP Ia by these inhibitors both in potency and metalloform selectivity until a structure of  

MtMetAP Ia is solved experimentally. The differences in inhibition foretell significant 

differences in structure, especially at the active site, between MtMetAP Ia and MtMetAP Ic. 

 

2.3.6 Co-crystallization of MtMetAP Ia with inhibitors 

In order to improve HisMtMetAP Ia solubility for purification, LB medium with different 

additives was tested (Figure 2-1, and Table 2-2). The HisMtMetAP Ia solubility did not improve 

by changing the culture medium and the protein was produced in LB and purified with lower 

yield (2 mg per liter culture).  However, enough protein was purified that protein crystallization 

screens were performed as described in Table 2-5. In the first trial, CrystalScreenTM, 

CrystalScreen 2TM, Index TM , SaltR TM  were tested with Mn-substituted HisMtMetAP Ia. Even 

though HisMtMetAP Ia did not form crystals that were good enough for diffraction, the protein 

tended to form light precipitation, or needle clusters in the presence of polyethylene glycol 

(PEG). Staining by Izit Crystal Dye (Hampton Research, Aliso Viejo, C A) suggested these 

crystals were proteinaceous. Therefore, MtMetAP Ia (5 mg/mL) with inhibitory compounds were 

used to set up with PEG/ION kit ™ and the protein concentration was reduced from 5 mg/mL to 

3 mg/mL because precipitation occurred in most wells in the initial trials.  The huge ‘crystal’   
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Table 2-6: Summary of MtMetAP Ia initial crystallization screens (×: screen performed) 

Protein Protein Buffer  Additives or  other factor 
   

ScreenBuffer 
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HisMtMetAP1a 50 mM MOPS pH 7.5 2 mM MnCl2 RT × × × × 
  

5 mg/mL 150 mM NaCl  0.67 uM compound A54  
       

          
HisMtMetAP1a 50 mM MOPS pH 7.5 2 mM MnCl2 RT × × × × 

  
5 mg/mL 150 mM NaCl  0.67 uM compound A121 

       
          
HisMtMetAP1a 50 mM MOPS pH 7.5 2 mM MnCl2 (NiCl2 or CoCl2) RT 

     

× 
2.7 mg/mL 150 mM NaCl  0.5 uM compound 

       
          
HisMtMetAP1a 50 mM MOPS pH 7.5 2 mM MnCl2, or NiCl2  RT 

    

x 
 

2 mg/mL 150 mM NaCl  0.5 uM compound 
       

          
MtMetAP1a 50 mM MOPS pH 7.5 None RT 

    

× 
 

2.5 mg/mL 150 mM NaCl  
        

          
MtMetAP1a 50 mM MOPS pH 7.5 2 mM MnCl2 RT 

    

× 
 

2.5 mg/mL 150 mM NaCl  
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formed in solution PEG/ION buffer 1 (0.2M sodium fluoride, 20% PEG3350). However, only a 

few diffraction spots with strong intensity were obtained in the high resolution area when these 

crystals were exposed to synchrotron radiation, which suggested these crystals were likely salt 

crystals and the Izit Crystal dye identified them as salt.  

 

Discussion 

Of two MetAPs in M. tuberculosis, MtMetAP Ia was suggested to have higher expression 

level in M. tuberculosis at the log phase [17]. Knock-down experiment also suggested that 

MtMetAP Ia played a more important role than MtMetAP Ic in M. tuberculosis viability [26]. 

When the kinetic characterization of MtMetAP Ia was carried out, there was particular interest 

on its metal-selective inhibition and how the enzymes interact with the metal specific inhibitors 

in the presence of specific divalent metals.   

Thus, the MtMetAP Ia was cloned, o ver-expressed and purified as an active enzyme. It 

showed a much lower solubility than EcMetAP and MtMetAP Ic when it was first expressed 

without a His-tag. The untagged protein with lower solubility posed difficulties for purifying a 

large amount of the proteins, and achieving highly concentrated protein samples for 

crystallization. To potentially improve solubility and purification, the mapA gene was cloned into 

a pET28a plasmid so that the protein was expressed with a His tag at the N-terminus. In this 

system, larger portion of the protein was expressed as inclusion bodies with a small amount of 

soluble protein, which could be more efficiently purified through a nickel affinity column and 

used for kinetic characterization.  The purified protein was treated with 1,10-phenathroline to 
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remove metal ions following metal-affinity chromatography. The resulting apoenzyme showed 

no activity in hydrolyzing the fluorogenic substrate Met-AMC until metals were added.  

MtMetAP Ia is shown to be  a metallohydrolase  and several divalent metals, including Fe 

(II) (in the presence of two-fold ascorbic acid), Mn(II), Co(II), and Ni(II) were tested for catalytic 

activity. Both His-tagged and untagged MtMetAP Ia were tested for the metal binding a ffinities 

for compa rison (Table 2-3). Metal activation profiles of HisMtMetAP Ia and MtMetAP Ia were 

very similar. The binding a ffinity of different covalent metals, from high to low, was listed as:  

Fe (II) > Co (II) > Ni (II) > Mn (II). Even though the apparent Kd values of metals for binding to 

the untagged MtMetAP Ia were higher than the apparent Kd values of metals binding to the His-

tagged MtMetAP Ia, the overall metal activation scenarios were similar.   

The determination of kinetic characteristics was carried out with HisMtMetAP Ia (Table 

2-3). Ni(II) was the most efficient metal to activate the enzyme, having the lowest Km and the 

highest kcat. Co(II) with a Km  of 70.46 µM and a Kcat of 0.37 sec-1 was the next in efficiency, 

Fe(II) followed, and Mn(II) was the least efficient. Although the order of activation is similar 

between HisMtMetAP Ia and MtMetAP Ic [24]. HisMtMetAP Ia is a much more efficient 

enzyme, and the catalysis efficiency of Fe-substituted MtMetAP Ia was 22-fold higher than Fe-

subs tituted MtMetAP Ic;  67 fold higher for Ni-subs titued enzymes, 20-fold for Co-subs titued 

enzymes and 4 fold for Mn-substituted enzymes, respectively. It was surprising to see Ni(II) as 

the best activator for MtMetAP Ia in vitro. There are a limited number of enzymes utilizing Ni in 

vivo. It will be interesting to know if Ni is used by MtMetAP Ia in M. tuberculosis cells.  

The ability of metal-selective compounds was tested on HisMtMetAP Ia and IC50 values 

were calculated. To our surprise, only the Fe (II)-selective enzyme showed inhibition. Yet, the 
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metal-selectivity was although lost as they inhibited all the metalloforms of MtMetAP Ia. This 

raised the question as to why these compounds lost their inhibitions of MtMetAP Ia.  

To address this question, we attempted to co-crystallize MtMetAP Ia with inhibitory compounds 

to elucidate the interaction between MtMetAP Ia and the compounds. However, We failed to 

crystallize MtMetAP Ia . The failure in obtaining crystals could be partly due to the low 

solubility of MtMetAP Ia. Even though the protein solubility of MtMetAP1 was predicted to be 

similar to those of EcMetAP and MtMetAP Ic, this was not the case. The achievable highest 

concentration for HisMtMetAP Ia was about 5 mg/ml in the presence of metals. The 

concentrated protein was easily precipitated. Later, a lower protein concentration (2.7 mg/ml) 

was employed to set up crystal trays. Less precipitation occurred while most crystal drops 

remained clear. Attempts to improve the solubility of HisMtMetAP Ia were unsuccessfully.  

The amino acid sequences of MtMetAP Ia, MtMetAP Ic and EcMetAP, were aligned 

(Figure 2-9). MtMetAP Ia shares a 36.4 % identity of amino acid sequence to its homolog 

MtMetAP Ic in M. tuberculosis and a 36.9% identity to EcMetAP. The conserved amino acid 

residues in metal binding site in EcMetAP were D97, D108, H171, E204 and E235, and D131, 

D142, H205, E238 and E269 in MtMetAP Ic. MtMetAP Ia had them all with different numbering, 

which were D106, D117, H186, E219 and E250 (Figure 2-9). Theoretically, proteins with 

conserved function cons ist of conserved residues, therefore, MtMetAP Ia would be expected to 

retain conserved enzymatic characteristics, and the binding mode for the inhibitors should 

remain similar to those of EcMetAP and MtMetAP Ic.  

The primary differences observed from the amino acid alignment are an extension of the 

N-terminus and the length of a loop flanked by two α-helices close to the C-terminus (Figure 2-

9). However, the differences of the loops were not observed in the virtual structure of MtMetAP  
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  10        20        30        40 

                                              HHHHHHHHHHHHHHHHHHHHHHHHHH    HHHHH 

Ec                                      MAISIKTPEDIEKMRVAGRLAAEVLEMIEPYVKPGVSTGEL 

Mta                           MRPLARLRGRRVVPQRSAGELDAMAAAGAVVAAALRAIRAAAAPGTSSLSL 

Mtc MPSRTALSPGVLSPTRPVPNWIARPEYVGKPAAQEGSEPWVQTPEVIEKMRVAGRIAAGALAEAGKAVAPGVTTDEL 

                                              HHHHHHHHHHHHHHHHHHHHHHHHHH    HHHHH 

            10        20        30        40        50        60        70 

 

      50        60        70        80        90       100       110 

    HHHHHHHHHHH   SS   HHHHH    SSSS  SSS              SSSSSSSSSS  SSSSSSSSSS 

Ec  DRICNDYIVNEQHAVSACLGYHGYPKSVCISINEVVCHGIPDDAKLLKDGDIVNIDVTVIKDGFHGDTSKMFIVGKP 

Mta DEIAESVIRES-GATPSFLGYHGYPASICASINDRVVHGIPSTAEVLAPGDLVSIDCGAVLDGWHGDAAITFGVGAL 

Mtc DRIAHEYLVDN-GAYPSTLGYKGFPKSCCTSLNEVICHGIPDST-VITDGDIVNIDVTAYIGGVHGDTNATFPAGDV 

    HHHHHHHHHHH   SS   HHHHH    SSSS  SSS              SSSSSSSSSS  SSSSSSSSSS 

     80         90       100       110       120        130       140       150 

 

    120       130       140             150       160       170       180 

    HHHHHHHHHHHHHHHHHHHHHH          HHHHHHHHHHHHHHHH  SS     SSS      SSSSS 

Ec  TIMGERLCRITQESLYLALRMVKPG------INLREIGAAIQKFVEAEGFSVVREYCGHGIGRGFHEEPQVLHYDSR 

Mta SDADEALSEATRESLQAGIAAMVVGNRLTDVAHAIETGTRAAELRYGRSFGIVAGYGGHGIGRQMHMDPFLPNEGAP 

Mtc ADEHRLLVDRTREATMRAINTVKPG------RALSVIGRVIESYANRFGYNVVRDFTGHGIGTTFHNGLVVLHYDQP 

    HHHHHHHHHHHHHHHHHHHHH             HHHHHHHHHHHHHH  SS     SS          SS     

         160       170             180       190       200       210       220 

 

  190       200       210       220       230       240       250       260 

              SSSS  SSS     SSS      SSS     SSS  SSSSSS  SSSS           SSS 

Ec  ETNVVLKPGMTFTIEPMVNAGKKEIRTMKDGWTVKTKDRSLSAQYEHTIVVTDNGCEILTLRKDDTIPAIISHDE 

Mta GRGPLLAAGSVLAIEPMLTLGTTKTVVLDDKWTVTTADGSRAAHWEHTVAVTDDGPRILTLG 

Mtc AVETIMQPGMTFTIEPMINLGALDYEIWDDGWTVVTKDRKWTAQFEHTLLVTDTGVEILTCL 

              SSSS  SSS     SSS      SSS     SSS  SSSSS    SSS 

 

 
Figure 2-9. Structure-based sequence alignment of EcMetAP, MtMetAP Ia and MtMetAP 
Ic (labeled as Ec, Mta and Mtc, respectively). The numbering and secondary structures of 
EcMetAP are above the sequences, and the numbering and the secondary structures for 
MtMetAP Ic are below the sequences. “H” stands for α-helices and “S” stands for β-sheets. The 
secondary structures of EcMetAP and MtMetAP Ic are from the coordinates of 1XNZ and 3IU7, 
respectively. The identical residues among all three MetAPs are highlighted by shading in grey. 
The five conserved metal- ligating residues are shown in bold face. 
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Figure 2-10. Ribbon drawing of the ‘pita-bread’ domain fold existing in EcMetAP, 
MtMetAP Ic, and homology model of MtMetAP Ia based on MtMetAP Ic structure. Protein 
structure of MtMetAP Ia predicted by: 3D-JIGSAW. 
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Ia, which was generated by molecular modeling (Figure 2-10). The common ‘pita-bread’ domain 

in the active site of MetAPs was clearly seen in MtMetAP Ia with the pseudo two-fold domain; 

one fold located in the N-terminus and the other located in the C-terminus domain. Each of them 

consisted of two α-helices and two anti-parallel β-sheets. The fact the inhibitors failed to access 

to the active site may be due to the side chains of the amino acids.MtMetAP Ia does not have an 

N-terminal extension. Neither does EcMetAP1. MtMetAP Ic has a 42-amino acid long loop at 

the N-terminus, and it is clearly seen in the crystal structure that the loop wraps around the active 

site and forms sequence-specific contacts with other residues. Its function is proposed to bind 

MetAPs to t he ribo some by a complex be tween a PxxP (amino acid residue of 14-17 in 

MtMetAP Ic) motif in MetAPs and an SH3 do main on the ribosome [25]. The presence/absence 

of this N-terminal extension did not affect the enzyme activity as these compounds were tested in 

both MtMetAP Ic (chapter 3) and EcMetAP [20, 24], Similar inhibitory activity and metal 

selectivity were seen in both enzymes. Thus, the absence of N-terminal extension in MtMetAP Ia 

did not correlate with the loss of the inhibition and metal selectivity. Crystal structure of 

EcMetAP suggested that the absence of the N-terminal extension did not affect the formation of 

the active site. Neither should it affect enzyme inhibitions. The loss of inhibition and metal 

selectivity of these compounds cannot be explained neither by the absence of N-terminal 

extension nor the different length of the ins ide loop. F urther study is needed to explain the loss of 

inhibition and metal selectivity of these compounds on MtMetAP Ia. 

In this project, about one hundred MetAPs inhibitors were tested with MtMetAP Ia, and it 

is possible that many potential MtMetAP Ia inhibitors were not included. Screening a compound 

library with structural diversity would hold the promise of discovering more effective inhibitors 

for MtMetAP Ia for use as leads for novel antitube rcular drugs.   
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CHAPTER 3   

BIOCHEMICAL CHARACTERIAZATION OF METHIONINE 
AMINOPEPTIDASE 1c IN MYCOBACTERIA TUBERCULOSIS   

The work described in this chapter was published in the Journal of Medicinal Chemistry, entitled 
“Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase”. 

 

 

3.1 Introduction 

Methionine aminopeptidase (MetAP) is a unique metallohydrolase. It removes the N-

terminal initiator methioine from nascent polypeptides[1]. This N-terminal modification occurs 

in majority of the proteins; indicating the important roles of MetAP in protein maturation, 

stability, function and de gradation.  The essential function for MetAP has been demonstrated by 

the fact that deletion of MetAP from the genomes of E.coli[2], Salmonella typhimurium[3], and 

Saccharomyces cerevisiae[4] is lethal. Therefore, inhibitors against MetAP offer hope for the 

treatment of microbial and fungal infections. 

Tuberculosis (TB) caused by Mycobaterium tuberculosis is one of leading cause of 

mortality worldwide. Approximately one third of the world’s population is infected by M. 

tuberculosis and about 1.8 million people die each year [5]. Due to the extreme survival 

capability of M. tuberculosis in the human host, current treatments of TB usually invo lve three to 

four antibiotics that are administrated at the same time. Additionaly, a prolonged period for drug 

treatment (six to nine months) is required to completely eliminate the causative agent in TB 

patients. With the presence of multidrug-resistant and extensively drug-resistant forms of TB[6-
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7], and the prevalence of TB-HIV co- infection [8], the need for new and improved antibiotics 

with nove l mechanisms of action to fight TB infections has increased   

Recently, two MetAP genes (mapA and mapB ) from M. tuberculosis H37Rv [9], were 

cloned, and two corresponding MtMetAPs were purified, and characterized. Their mRNA 

transcripts were also analyzed in log phase and stationary phase bacterial culture [10]. The 

MtMetAP Ia gene (mapA) is expressed more in log phase, while MtMetAP Ic gene (mapB) 

shows a higher level in stationary phase culture, suggesting that the two MetAPs play their roles 

in different growth phases of M. tuberculosis. Olaleye et al introduced a plasmid pSCW35DsigF 

with mapA or mapB into M. tuberculosis and constructed MetAP knock-in strains. O ver-

expressed MtMetAP Ia and MtMetAP1 in these knock- in strains of M. tuberculosis conferred the 

resistance to the MetAP inhibitors [11], indicating MetAP in M. tuberculosis may be a promising 

target for the development of antituberculosis agents.  

In order to further characterize MetAP in M. tuberculosis, particular the metal activation, 

both MtMetAP Ia and MtMetAP Ic were cloned, purified and characterized in our laboratory. In 

this chapter, the characterization of MtMetAP Ic is described. The MtMetAP complemented the 

functional of inactive EcMetAP in the E.coli with amber mutant and enabled E. coli to grow in 

the non-permissive medium. A set of metal-selective inhibitors were tested towards the Fe(II)-

form, the Mn(II)- form, or the Co(II)- and Ni(II)- forms of the enzyme, and their metal-selective 

inhibition on MtMetAP Ic were consistent with what observed in EcMetAP. These metalloform 

selective inhibitors were then used to identify which metalloform of MtMetAP Ic was 

physiologically important. Only the Fe (II)- form selective inhibitors inhibited the cellular 

MtMetAP Ic activity and inhibited the MtMetAP Ic-complemented cell growth. The data 

suggested that Fe (II) is the native metal used by MtMetAP Ic in an E. coli cellular environment. 
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X-ray structures of MtMetAP Ic in complex with metalloform-selective inhibitors were analyzed 

and showed different binding modes and different interactions between metal ions and active site 

residues. Understanding the catalytic mechanism and inhibition of the mycobacterial MetAP is 

essential to discovering and developing effective MetAP inhibitors as therapeutics. 

 

3.2 Materials and Methods  

3.2.1 Cloning o f MtMetAP Ic into pGEMEX-1 plas mid. 

The DNA encod ing MtMetAP Ic (mapB, locus_tag Rv2861c) was obtained by PCR using 

genomic DNA of M. tuberculosis H37Rv as the template (a kind gift from Professor Scott G. 

Franzblau at the University of Illinois at Chicago). The forward primer was 5'-GGA TCA CCA 

GCT AGC ATG CCT AGT CGT ACC GCG, and the reverse primer was 5'-AGC ACT CGA 

ATT CTA CAG ACA GGT CAT (the restriction sites were underlined). The resulting PCR 

product of MtMetAP Ic was digested with EcoRI and NheI (New England Biolabs, Ispwich, MA), 

and cloned into an E. coli plasmid pGEMEX-1 (Promega, Madison, Wisconsin) for 

overexpression under the control of a T7 promotor. The final recombinant protein MtMetAP Ic 

has three residues MAS added to its N-terminus and were not removed. The sequence of the 

desired plasmid of pGEMEX1-MtMetAP Ic was confirmed by DNA sequence analysis, and 

transformed into E. coli BL21(DE3) (Invitrogen, Carlsbad, CA) for protein over-production. 

 

3.2.2 Over-expression and purification of MtMetAP Ic. 

E.coli BL21(DE3) harboring the plasmid MtMetAP Ic was grown in a 5 mL of LB 

medium with 50 ng/mL ampicillin at 37 ºC overnight. The culture was then used to inoculate 1 

liter of LB containing 50 ng/mL of ampicillin the next day for protein expression. The cells 
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were grown at 37 ºC with shaking at 225 rpm until the OD600 reached 0.6 ~ 0.8 before 0.4 mM 

IPTG was added to initiate protein expression. Thereafter, the induced E.coli cells were kept 

growing at 16 ºC for 20 hours. The cells were harvested by centrifugation at 4400 × g for 5 

minutes. A resuspension buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA) was 

used to suspend cell pellets, and the cell suspension was stored at -20 ºC.  

Frozen cells after thawing were broken by three consecutive passes through a French 

Press (Thermo Fisher Scientific, Asheville, NC) at 20000 psi. The supernatant was collected 

from centrifugation at 47,810 × g for 30 minutes and loaded onto a 20 mL Q-Sepharose column 

pre-equilibrated with buffer A (50 mM Tris-HCl, pH 8.0). The proteins were eluted with a 

linear gradient of NaCl from 0 to 1 M. The MtMetAP Ic appeared in the flow-through fractions. 

Solid ammonium sulfate was added to the combined fractions in a step-wise manner. The 

majority of MtMetAP Ic was precipitated when ammonium sulfate was 40% saturated. The 

pellet was resuspended in buffer A, and the mixture was loaded onto a 5-mL HiTrap desalting 

column (GE Healthcare Life Science, Piscataway, NJ) to remove ammonium sulfate. Chelex-

100 resin (BioRad, Hercules, CA) was added to the desalted fractions, and was shaken at 4 ºC 

for 2 hr to remove the metals. The sample was filtered to remove the resin, and loaded onto a 

desalting column. Buffer B (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, which was pre-treated 

with Chelex-100 resin) was used to elute the protein.  

The MtMetAP Ic in the apo-form was verified by hydrolysis of Met-AMC in the presence 

and absence of divalent metals. No activity was detected before metal was added. 

 

3.2.3 Metal activation of MtMetAP Ic.  
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Several covalent metals (NiCl2, CoCl2, MnCl2, ZnCl2 or FeCl2 with twice the 

concentration of ascorbic acid) were used to test the metal activation of apo-MtMetAP Ic. The 

measurement was carried out in 384-well plates and the total reaction volume was 80 µL. The 

well contained 50 mM MOPS-NaOH, pH 7.5, 100 µM fluorogenic substrate Met-AMC (Bachem 

Bioscience, King of Prussia, PA), 0.5 µM apoenzyme and increasing amounts of metal ions. The 

initial velocity values, which were measured changes in relative fluorescent intensity (Relative 

Fluorescence Unit), were converted to specific activity values and plotted against increasing 

concentrations of the metals.  

An improved model of the multiple independent binding sites (MIBS) was used to 

accurately calculate the binding affinity ( apparent Kd ) when the amount of functional enzyme 

was taken into consideration [12]. Briefly, the initial rate of hydrolysis was plotted against 

increasing concentrations of Co(II) at two MtMetAP Ic protein concentrations (20 µM and 0.5 

µM) and fit with the MIBS model [12] via an iterative process to obtain an accurate protein 

concentration. For apparent Kd determination of the various divalent metals to MtMetAP Ic, the 

titration curves were generated using the calculated apoenzyme concentration of 0.54 µM in 50 

mM MOPS-NaOH, pH 7.5, 200 µM Met-AMC and increasing concentrations of either CoCl2, 

MnCl2, N iCl2 or FeCl2. In the case of FeCl2, ascorbic acid was added at double the concentration 

of FeCl2. An iterative process was allowed to proceed until apparent Kd and functional enzyme 

concentration values converged after a few cycles.  

 

3.2.4 Kinetic measurement of different metalloforms of MtMetAP Ic. 

To obtain the kcat and Km, reactions were carried out in 80 μL assay mixture with 50 mM 

MOPS-NaOH, pH 7.5, 0.5 µM MtMetAP Ic and divalent metal ions (50 µM FeCl2 with 100 µM 

ascorbic acid, 10 µM CoCl2, 20 µM MnCl2, or 20 µM NiCl2), and increasing concentrations of 
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Met-AMC from 0.9 mM to 2mM. The kcat and Km values of MtMetAP Ic were derived from a 

nonlinear regression fitting  of the curve in the plot of the initial rates vs the subs trate 

concentrations, using the Michaelis-Menton equation V= Vmax[S]/(Km + [S]).  

 

3.2.5 IC50 determination with different metalloform MtMetAP Ic. 

Serial dilution of the tested compounds was performed by Precision liquid handling 

system from BioTek (Winooski, VT). For IC50 determination, the hydrolysis of Met-AMC was 

monitored in the presence of the 3-fold diluted inhibitors, with concentrations varying from 1000 

µM to 0.5 µM. In addition to the inhibitors, each well contained 50 mM MOPS-NaOH, pH 7.5, 

100 µM Met-AMC, 0.5 µM MtMetAP Ic, and the metal ion that gave the op timal activity of 

MtMetAP Ic (50 µM FeCl2 with 100 µM ascorbic acid, 10 µM CoCl2, 20 µM MnCl2, or 20 µM 

NiCl2). The IC50 values were calculated from non- linear regression curve fitting o f percent 

inhibitions as a function of inhibitor concentrations.  

  

3.2.6 Complementation of the essential function of EcMetAP with MtMetAP Ic in E. coli.  

To evaluate the MtMetAP Ic function in the cellular environment, an E. coli strain with 

conditional expression of the endogenenous EcMetAP under the control of pBAD promoter, was 

used for complementation testing [13-14]. This E. coli strain with an amber mutantion is 

constructed by inserting a n amber stop codon (UAG) in the chromosomal EcMetAP gene, and 

has a plasmid pBAD/sup2 that encodes an amber-mutation-suppressor tRNA under the control 

on arabinose promoter. Since the EcMetAP gene is essential for cell viability, the insertion of 

this amber mutation in the EcMetAP gene causes a premature termination of protein translation 

thus leading to cell death. However, the lethal effect can be suppressed by expression of the  
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Figure 3-1 Conditional control of growth of E. coli. amber mutant.  
A) In the normal gene, tRNA attaches an appropriate amino acid into the elongated peptide based 
on the three-base codon region in mRNA.  In the amber mutant, the amber stop codon (TAG) in 
the gene will result in the termination of protein synthesis. In the amber suppression mutant, the 
suppressor tRNA, which is encoded by the pBAD plasmid and controlled by arabinose, can 
recognize the amber stop codon and insert an Ala to the elongation of the peptide. B) The map of 
pBAD/sup2 p lasmid (from reference [13] with modification.)  
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suppressor tRNA, which has modification in its encoding DNA sequence that allows it to insert 

an amino acid at the UAG coden. Therefore, the trans lation continues regardless of the Amber 

mutation so that EcMetAP is fully translated and enable the E.coli to survive in the non-

permissive medium. By adjusting the amount of glucose or arabinose in the medium, the 

expression of suppressor tRNA can be tightly controlled (Figure 3-1).  

Plasmid pFLAGCTC was used as the vector for complementation tests as the desired 

gene could be expressed under the control of an IPTG-inducible tac promoter. MtMetAP Ic gene 

was taken from plasmid pGEMEX1-MtMetAP Ic by digestion of NdeI and BamH I, and cloned 

into pFLAGCTC. Similarly, the EcMetAP gene was cloned into the pFLAGCTC plasmid as 

pFLAGCTC-EcMetAP. Both the parent plasmid pFLAGCTC and the plasmid pFLAGCTC-

EcMetAP were used as controls. These plasmids were all transformed into the E. coli amber 

mutant. The cells were cultured in a special MOPS-NaOH-based liquid medium 

(Teknova,Hollister, CA) or on agar plates prepared with the medium. The MOPS-based rich 

defined medium was used in combination with kanamycin, ampicillin, IPTG and L-arabinose, or 

D-glucose.  

 

3.2.7 Inhibition of cellular MtMetAP Ic activity  

The above-mentioned pF LAGCTC-MtMetAP Ic-transformed E. coli cells (MtMetAP Ic-

complemented cells) were used to establish the cellular MtMetAP Ic activity assay. Bacterial 

cells were allowed to grow to the exponential phase, harvested and washed twice with water. The 

final cell pellet was resuspended in 10 mM CaCl2, 100 mM Tris-HCl, pH 7.5 [15] and then an 

equal volume of glycerol was added. The cell suspension was kept at -80 ºC for storage. 
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For the cellular MtMetAP Ic activity assay, the cell suspension was diluted with 10 mM 

CaCl2, and 100 mM Tris-HCl, pH 7.5. The cells, substrate Met-AMC, and inhibitors at 12 

serially diluted concentrations were combined in wells of a 384-well plate. The final assay 

volume was 80 µl with 150 µM Met-AMC, 5 mM CaCl2, and 50 mM Tris-HCl, pH 7.5. Increase 

of the fluorescent product was monitored via fluorescence (λex 360 nm, λem 460 nm) at room 

temperature every 2 min for 6-8 hr. The IC50 values were calculated from the rate of substrate 

hydrolysis. 

 

3.2.8 Inhibition of MtMetAP Ic-complemented E. coli cell growth  

Inhibition of bacterial growth was carried out using the MtMetAP Ic-complemented E. 

coli cells. The experiments were performed in a similar way as previously reported with minor 

modifications[15]. The assay was carried out on 384-well opaque plates containing 12 serially 

diluted concentrations for each inhibitor (40 µL per well) with the highest final concentration of 

1 mM in the assay. A suspension of bacterial cells was prepared from agar plates containing rich 

defined media with 0.2% glucose, 50 µg/mL kanamycin and 100 µg/mL ampicillin grown to the 

exponential phase, which was used to inoculate a second culture batch. This ensured that the 

survival of the cells was due to MtMetAP Ic complementation rather than residual endogenous 

EcMetAP. The suspension was adjusted to 0.5 McFarland optical density [16] and then further 

diluted by 1000 fold in the same medium containing 100 mM Tris-HCl, pH 7.5, and 225 µM 

resazurin. Cells were dispensed into the microplate (40 µL per well) by a Multidrop Combi 

reagent dispenser (Thermo Scientific, Waltham, MA). The conversion from resazurin to 

resofurin was monitored kinetically by fluorescence at λem 590 nm with λex 530 nm using a 

SpectraMax Gemini XPS plate reader. Fluorescence kinetic experiments were carried out for 10 
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hours at 37 ºC, with readings taken every 5 min. Signa l intensities at time points along the 

exponential phase of the growth curve corresponding to 50-85% of total intensity of an 

uninhibited sample were averaged and converted to percent inhibition to calculate IC50 values by 

non- linear regression curve fitting. 

 

3.2.9 Crystallization and data collection  

Crystals of the enzyme-inhibitor complexes were obtained independently by using a 

hanging-drop vapor-diffusion method at room temperature. The MtMetAP Ic crystal was first 

grown in buffer 3 (0.1M Bis-Tris-HCl pH 5.5, 2.0 M ammonium sulfate) and buffer 4 (0.1M Bis-

Tris-HCl pH 6.5, 2.0 M ammonium sulfate) in Index™ kit (Hampton Research, Aliso Viejo,  

CA). The well solutions were optimized by changing the ammonium sulfate concentration, pH 

buffer and addition of additives, such as glycerol and PEG400. Each of the inhibitors (100 mM 

or 50 mM in DMSO) was added to high concentration of metalated enzyme (10 mg/mL, 0.32 

mM protein; 2 mM metal) in 50 mM Tris-HCl, pH 8.0, 150 mM NaCl and the molar ratio of 

inhibitor to MtMetAP Ic was 5:1 or 10:1. The enzyme/inhibitor mixture was mixed with the 

reservoir buffer in a 1:1 ratio. The reservoir buffer was 100 mM Bis-Tris-HCl, pH 5.5, 1.1 M – 

1.4 M NH4SO4, 5% - 15% glycerol or PEG400. Diffraction data were collected at the Advanced 

Photon Source, Argonne National Laboratory (beamline 19BM) and processed with HKL3000 

[17]. All of the crystals belong to space group P63. One molecule is in the asymmetric unit. 

 

3.2.10 Structural solution and refinement 

The structures were solved by molecular replacement with MolRep [18] in CCP4 [19] 

with CCP4i interface [20], using the previously published MtMetAP Ic structure (PDB code 
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1YJ3) [21] as the search model. The structure was refined with REFMAC5 [22] with iterative 

model building using WinCoot [23]. The refinement was monitored with 5% of the reflections 

set aside for Rfree factor analys is throughout the whole refinement process. Electron dens ity was 

clear for all residues except a few residues at the N-terminus, and residues from the second (P2) 

in the native protein to the end (L285) were modeled. Comparison of structures and generation of 

structural drawings were carried out by using PyMOL [24]. Statistic parameters in data 

collection and structural refinement are shown in Table 3-3. Atomic coordinates and structure 

factors for the three structures were deposited in the Protein Data Bank. 

 

3.2.11 Identification of quaternary structure of MtMetAP Ic using size exclusion 

chromatography 

 As the crystal structure of MtMetAP Ic showed a trimeric form, it is suspe ct whether it 

also exhibited as a trimer in solution. Therefore, size exclusion chromatography was employed to 

identify the quaternary structure of MtMetAP Ic in solution. Protein molecular weight standards 

from Gel Filtration Calibration Kits (GE Healthcare Life Science, Piscataway, NJ) including blue 

dextran (2000 Kd), aldolase (153 Kd), bovine serum albumin (67 Kd), ovalbumin (43 kD) and 

ribo nuclease (13.7 kD) were dissolved into water to make 10 mg/mL stock solution. In order to 

make the protein standard, one hundred microliter samples were taken from each stock and 

mixed to make a 500-µL protein standard. The protein standard was applied to a size-exclusion 

column, Superdex 75 10/300 GL, (GE Healthcare Life Science, Piscataway, NJ) and eluted with 

50 mM MOPS-NaOH pH 7.5 and 150 mM NaCl at a rate of 0.5 mL/min until all the proteins 

were eluted from the Superdex 75 10/300 GL column. Two hundred and fifty microliter of 

purified MtMetAP Ic (5 mg/mL) was applied to Superdex column and washed with 50 mM 
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MOPS-NaOH pH 7.5 and 150 mL NaCl. The elution volume was recorded and compared to that 

of protein standard to de termine the size of MtMetAP Ic in solution. 

 

3.3 Results 

3.3.1 Expression and purification of MtMetAP Ic. 

The MtMetAP Ic protein was expressed in E.coli as a soluble protein and was purified 

using anion exchange chromatography followed by ammonium sulfate precipitation. The 

purified MtMetAP Ic was ~99% homologous as determined by SDS-PAGE (Figure 3-2) with a 

yield of 20-30 mg per liter of cells.  Three amino acid residues MAS were added to the N-

terminus of the protein for cloning purposes. No attempt was made to remove the extra sequence, 

although the terminal methionine is often processed cotranslationally by MetAP in E. coli cells. 

The apoenzyme showed no activity when tested by the fluorogenic substrate Met-AMC and 

could be immediately activated by adding divalent metals ions. 

 

3.3.2. Metal binding and activation of MtMetAP Ic  

A metalloenzyme usually can be activated by several different metal ions because the 

similar sizes of these metal ions make this isomorphous replacement possible. The MtMetAP Ic 

was tested for activation by divalent metals, including Co(II), Ni(II), Mn(II), Fe(II) and Zn(II) 

(Figure 3-3). Bell-shaped metal activation curves were observed, similar to these observed 

previously with EcMetAP. The apoform of MtMetAP Ic did not show activity in the absence of 

metal ions or when the metal concentrations were lower. As the metal concentrations increased, 

the metallated MtMetAP Ic could hydrolyze the substrate Met-AMC, as indicated by the increase 

of fluorescence detected at λem 460 nm (λex 360 nm). High concentrations of a metal often inhibit  
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Figure 3−2 : The purification of MtMetAP Ic 

Lane 1: Cell lysate of BL21(DE3)-pGEMEX1-MtMetAP Ic before IPTG-induction 
Lane 2: Cell lysate of  BL21(DE3)-pGEMEX1-MtMetAP Ic after IPTG-induction 
Lane 3: Purified MtMetAP Ic  
Lane 4: pre-stained protein ladders from Fermantas 
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Figure 3−3. Activation of MtMetAP Ic apoenzyme by divalent metals. 
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MetAP enzymatic activity [25-26], which was observed in all the metals tested on MtMetAP Ic. 

Co(II) activated MtMetAP Ic effectively, starting at a low concentration less than 1 µM, 

consistent with its activation for many MetAPs. Mn(II) and Fe(II) also showed activation, and 

the starting concentrations were around 1 µM,  while no activation was observed for Zn(II). 

What is unique and surprising was the observed strong activation of MtMetAP Ic by Ni(II), 

starting around 1 µM. This has not been observed in EcMetAP or other MetAPs, and raises the 

question whether Ni(II) is the native cofactor for MtMetAP Ic. To further understand the metal 

binding a nd activation of MtMetAP Ic, a detailed kinetic study was carried out with the 

activating metal ions. The hydrolysis of Met-AMC can be conveniently monitored by 

fluorescence from the released aminomethylcoumarin. The affinity (apparent Kd) for each of the 

activating metals was measured by fitting a model of multiple independent binding sites (MIBS), 

taking into consideration the amount of functional enzyme [12]. It is apparent that Co(II) bound 

to MtMetAP Ic the tightest with the lowest apparent Kd values, followed by Fe(II) and Mn(II) 

(Table 3-1). Ni(II) was shown to have the weakest affinity, which is about 4-fold weaker than 

Co(II).  

 

3.3.3. Kinetic characterizat ion of purified MtMetAP Ic.  

For Km measurements of an enzyme, it is used that the subs trate concentration is higher 

than the enzyme concentration. In this case, the concentration of MtMetAP Ic was fixed at 0.5 

µM, which was much lower than the concentrations of Met-AMC, ranging from 1 µM to 2 mM. 

The increase in fluorescence at λem 460 nm (λex 360 nm) was recorded and converted into µM 

product per min at the optimal metal concentrations, Michaelis–Menten constants were 

calculated (Table 3-2). Interestingly, N i(II)-activated MtMetAP Ic was the most efficient among 
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Figure 3-4  Calculation of the apparent Kd  of different metalloforms of MtMetAP Ic by using a 
MIBS model [12] 

 

 

Table 3-1  Activation of MtMetAP Ic by different metals a   

MtMetAP Ic Fe(II) Ni(II) Co(II) Mn(II) 
App Kd, µM 2.2 ± 0.1 2.4 ± 0.2 0.6 ± 0.1 2.1 ± 0.2 
 

 a App Kd  is apparent Kd, which represents the metal concentration when apoform 
MtMetAP Ia achieves 50% activation. The constants were obtained with 0.5 µM 
apoenzyme, 100 µM substrate Met-AMC in 50 µM MOPS-NaOH. The apparent Kd 

was obtained from three separate tests and it is represented as the mean and 
the standard deviation (s.d.) of three experiments.  



78 
 

 

3.3.4. Functional complementation of EcMetAP I in E.coli growth by MtMetAP Ic  

 

Figure 3-5 Calculation of Km value of different metalloform of MtMetAP Ic 

 

Table 3-2 Kinetic measurement of MtMetAP Ic 

  Fe(II) Ni(II) Co(II) Mn(II) 
Km, µM 160.7 ± 6.0 96.3 ± 9.8 221.1 ± 13.2 227.3 ± 8.8 

kcat, sec-1 0.0039 ± 0.0002 0.029 ±  0.002 0.027 ± 0.0004 0.0082 ±  0.00033 

kcat/Km, M-1sec-1 24.3 301.1 122.1 36.1 
 

Km and Kcat are the Michaelis-Menten constants and they were obt ained with Fe(II) at 50 µM, 
Ni(II) and Mn(II) at 20 µM, and Co(II) at 10 µM.   
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the metalloforms tested in catalyzing the hydrolysis of the substrate, with the lowest Km and the 

highest  kcat, consistent with the metal titration cur ve (Table 3-2).  

A functional MetAP enzyme is essential for E. coli growth [2] and the EcMetAP gene 

cannot be deleted. However, an E. coli strain with an amber mutation at its chromosomal 

EcMetAP gene and a plasmid with a pBAD-regulated amber suppressor tRNA gene suppresses 

the lethal effect of the amber mutation and provides a perfect tool to evaluate the func tion of 

MtMetAP Ic in the E.coli environment [14]. When the E. coli cells grow in the presence of 

arabinose, because expression of the tRNA induced, which suppresses the lethal effect of the 

amber mutation, functional EcMetAP is produced. On the other hand, the cells cannot grow in 

the presence of glucose, because no such tRNA is expressed and the translation of EcMetAP is 

prematurely terminated due to the amber mutation in the EcMetAP gene. The hypothesis for this 

experiment is that function of the chromosomally expressed EcMetAP can be complemented 

with a functional MetAP expressed from a plasmid. In order to test whether MtMetAP Ic can 

function in an E. coli cellular environment, the MtMetAP Ic gene was inserted into pFLAGCTC 

and transformed into the E.coli amber mutant. The parent plasmid pFLAGCTC without any 

MetAP gene, and the plasmid pF LAGCTC-EcMetAP with EcMetAP gene, were used as controls 

and were transformed into E.coli amber mutant as well. On agar plates, cells transformed with 

parent plasmid pFLAGCTC grew in the presence of arabinose and did not grow in the presence 

of glucose (Figure. 3−6A). This confirmed that a functional MetAP is required for cell growth. 

The cells with either pFLAGCTC-EcMetAP or pFLAGCTC- MtMetAP Ic grew on the agar plate 

in the absence of arabinose and presence of glucose (Figure 3-6A), which suggests that 

EcMetAP or MtMetAP Ic expressed from the plasmids was functional and complemented the 

function of chromosomally expressed EcMetAP to support the growth.  
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Figure 3−6. Complementation of EcMetAP I function by MtMetAP Ic.  
A. E. coli cells carrying an amber mutation in chromosomal EcMetAP gene were streaked on 
agar plates with glucose (bottom plate) or with arabinose (top plate). Each plate displays cells 
containing pFLAGCTC (top), pFLAGCTC-MtMetAP Ic (bottom left) or pFLAGCTC-EcMetAP 
(bottom right). B. Growth of the E. coli cells in liquid medium supplemented with glucose. 
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The growth of the transformed E. coli strains was also tested in a liquid medium 

supplemented with glucose and without arabinose. The cells with either pFLAGCTC-EcMetAP 

or pFLAGCTC-MtMetMetAP Ic showed robust growth, while the E. coli cells with the parent 

plasmid pFLAGCTC did not grow under the same conditions (Figure. 3-6B). These results 

confirm that MtMetAP Ic expressed from a plasmid in E. coli was a functional enzyme and 

supported the growth of E. coli cells when EcMetAP was absent. 

 

3.3.5. Metalloform-selective inhibition of purified MtMetAP Ic and the enzyme in an E. 

coli cellular environment 

Assignment of the physiologically relevant metalloform has been difficult, and a new approach 

was developed in our lab for the assignment using metalloform-selective inhibitors that can 

distinguish different metals at the active site [15, 27]. A set of inhibitors (Table 3-3) with known 

metalloform-selectivity for EcMetAP were used to evaluate inhibition of purified MtMetAP Ic 

enzyme and the same enzyme in an E. coli cellular environment, to provide clues for the metal 

cofactor used by MtMetAP Ic in cells. The catechol compounds 1 and 2 inhibited selectively the 

Fe(II) form of EcMetAP [28], while compound 3 and 4 were shown to be highly selective 

inhibitors for the Mn(II) form [27]. Triazole inhibitors were shown to interact directly with the 

catalytic metal ions through nitrogen atoms [29], and it was hypothesized that they may inhibit 

the Co(II) and Ni(II) forms of MetAP because of their chelation through nitrogen atoms [30]. 

Four such triazole compounds, 5-8, were selected for this study. All of the eight MetAP 

inhibitors were first tested with purified MtMetAP Ic apoenzyme activated by Co(II), Ni(II), 

Mn(II) or Fe(II). Indeed, all of these inhibitors showed potent and metalloform-selective 

inhibition at low micromolar or submicromolar concentrations (Table 3−3). Compounds 1 and 2 



82 
 

were selective for the Fe(II) form, compounds 3 and 4 were selective for the Mn(II) form, and 

compounds 5-8 were selective for the Ni(II) and Co(II) forms.  

 

3.3.6. Growth inhibition of MtMetAP Ic-complemented E. coli cells.  

Subsequently, the ability of compounds 1-8 to inhibit the cellular enzymatic activity of 

MtMetAP Ic in permeabilized E. coli cells was tested. Inclusion of Ca(II) at 5 mM made these 

cells permeable to substrates and inhibitors, and Ca(II) had no effect on MetAP activity[15]. 

Clearly, the highest inhibition of the cellular MtMetAP Ic activity was achieved by the two 

Fe(II)- form selective inhibitors 1 and 2 (Table 3−3), suggesting that MtMetAP Ic present in the 

live E. coli cells used Fe(II), not Ni(II) or Co(II), as the cofactor for catalysis. 

The excision of N-terminal methionine is an important co-translational process, and a 

lethal phenotype  is observed when the single gene coded for EcMetAP was deleted in E. coli [2], 

demonstrating that it is essential for bacterial survival. In our construct, it was observed that the 

MtMetAP Ic complemented the essential func tion of EcMetAP in E. coli cells. Therefore, 

effective inhibition of cellular MtMetAP Ic would conceivably inhibit the growth of the E. coli 

cells. Therefore, some of the metalloform-selective inhibitors were also tested on the E. coli cells 

with MtMetAP Ic complementation and we observed that only the Fe(II)- form selective 

inhibitors 1 and 2 arrested bacterial cell growth (Table 3−3). In contrast, inhibitors 3, 5 and 6 

showed no inhibition at the highest concentration (1 mM) tested. Although there are many 

reasons a compound may not work in whole cells, including lack of cell penetration, the 

observed inhibition by 1 and 2 is consistent with the conclusion that the functional metalloform 

of cellular MtMetAP Ic exists as the Fe(II)-form in E.coli.  
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Table 3−3. Inhibition of enzymatic activities of purified and cellular MtMetAP Ic and 
inhibition of cell growth of MtMetAP Ic-complemeted E. coli by metalloform-selective 
inhibitors a                      

 

 

 

Cmpd  
Purified Enzyme b 

Cellular Enzyme c Bacterial Growth d 
Fe(II) Ni(II) Co(II) Mn(II) 

1 3.6 104 76 37 20 208 

2 1.4 60 38 14 35 89.5 

3 >500 >500 >500 14 623 >1000 

4 >500 >500 >500 16 N.D.e N.D. 

5 >500 1.3 0.74 18 121 >1000 

6 >500 2.5 0.69 26 281 >1000 

7 >500 0.58 2.0 143 N.D. N.D. 

8 40 0.24 0.26 2.0 N.D. N.D. 
a IC50 values are expressed in µM. b Purified enzymes were reconstituted by activating the 
apoenzyme with different divalent cations [Fe(II), 50 µM; Ni(II) and Mn(II), 20 µM; Co(II), 10 
µM)]. c Cellular enzyme was the recombinant MtMetAP Ic expressed in E. coli cells lacking 
endogenous EcMetAP. d Growth of E. coli cells with the recombinant MtMetAP Ic was 
monitored. e Not determined.  
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3.3.7 Co-crystallization of MtMetAP Ic with inhibitors 

Structural information for mycobacterial MetAPs is lacking, and only two X-ray 

structures of MtMetAP Ic either as an apoenzyme or in complex with product methionine were 

reported [21]. With the confirmed inhibition of MtMetAP Ic by the metalloform selective 

inhibitors, crystallization and structural analysis were utilized to elucidate their binding mode at 

the active site of MtMetAP Ic. Three structures of such enzyme-inhibitor complexes with 4, 7, or  

8 were determined independently. All of the structures were folded in the “pita-bread” shape  

commonly seen in previous MetAP structures [31]. Electron density for two Mn(II) or Ni(II) ions 

was clearly observed at the dinuclear metal site, and fluorescence spectrum scan was used to 

conf irm the divalent metal ion existed in the crystals based on the excitation energy. All there 

inhibitors bound in the shallow and mostly hydrophobic active site pocket.  

All MtMetAP Ic−inhibitor complex crystals belonged to the space group P63 with unit 

cell dimension a = 106.4 Å, b = 106.4 Å, c = 50.5 Å. Data collection statistics are listed in Table 

3-4.  

The structure was solved with a resolution of 1.4 Å, and two molecules of inhibitor 4 

were fitted to the structure. One of the inhibitor molecules occupied the active site, and the other 

took a position on the opposite side of the protein molecule, 10.9 Å away from the active site 

inhibitor. The structure of EcMetAP in complex with the same inhibitor was solved before (pdb 

code 1XNZ), and only one inhibitor molecule was identified [32]. When these two structures 

were overlaid, the active site inhibitor showed the same binding mode with a non-coplanar 

conformation between its two aromatic rings (Fig. 3-7B). Occupation of 4 at the active site is 

likely sufficient for MetAP inhibition, because the second molecule of 4 was not observed in the 

EcMetAP structure, and 4 inhibited bo th MtMetAP Ic and EcMetAP potently at 16 µM and 0.24 
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Table 3−4 X-ray data collection and refinement statistics 

Inhibitor 4 7 8 
Inhibitor code FCD T03 T07 
PDB code 3IU7 3IU8 3IU9 
Metal ion 2 Mn(II) 3 Ni(II) 2 Ni(II) 
Cell Parameters    
space group P63 P63 P63 
a (Å) 106.4 105.7 106.2 
b (Å) 106.4 105.7 106.2 
c (Å) 50.4 50.4 50.8 
α (deg) 90 90 90 
β (deg) 90 90 90 
γ (deg) 120 120 120 
X-ray Data Collection    
Resolut ion range (Å) a 50-1.40 (1.42-1.40) 50-1.85 (1.88-1.85) 50-1.75 (1.78-1.75) 
Collected reflections 642,578 304,665 301,490 
Unique reflections  64,180 27,549 32,971 
Completeness (%) a 99.9 (100) 99.5 (90.5) 99.5 (92.2) 
I/σ (I) a 43.8 (9.4) 23.3 (3.8) 59.8 (15.7) 
Rmerge (%) a 4.5 (21.5) 15.6 (71.4) 7.8 (17.5) 
Refinement Statistics    
R (%) 17.1 16.5 16.4 
Rfree (%) 19 20 19.5 
R.m.s.d. bonds (Å) 0.031 0.028 0.028 
R.m.s.d. angles (º) 2.52 1.97 2.31 
No. of solvent 
molecules 

249 162 193 

<B> protein (Å2) 11 14.4 14.1 
<B> inhibitor (Å2) 9.5 21.4 12.5 
<B> water (Å2) 18.6 19.2 19.7 

a Values given in parentheses correspond to the outer shell of data. 
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Figure 3−7. Structure of MtMetAP Ic in the Mn(II)-form in complex with the Mn(II)-form 

selective inhibitor 4. A. the trimeric arrangement of MtMetAP Ic in the crystal. Inhibitor 4 at the 

active site is shown as sticks. The three molecules of MtMetAP Ic were colored cyan, magenta 

and yellow, respectively. B. Overlay of this structure with EcMetAP in complex with the same 

inhibitor (carbon magenta, pdb 1XNZ) and with the same protein in complex with methionine 

(carbon cyan, pdb 1YJ3). Only residues (thin sticks) surrounding the ligands (thick sticks) at the 

active site are shown. Non-carbon atoms are colored: red, oxygen; blue, nitrogen; yellow, sulfur; 

and green, chlorine. Mn(II) (green) and Co(II) (red) ions are shown as spheres. For residue 

labeling, the first is for MtMetAP Ic and the second for EcMetAP. 

 

A B
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µM [27], respectively. EcMetAP has a longer C-terminus, and the binding of a second 4 is 

spatially incompatible with residues R251, D253 and D254 in EcMetAP. 

The previous MtMetAP Ic structure (pdb code 1YJ3) is in the Co(II) form, and the ligand 

used is also different. However, superimposing the two structures by aligning all main chain 

atoms from residue R4 to the end residue L285 gave a rmsd of 0.301 Å, indicating very similar 

structures. Due to different ligands, the active site residues showed movements to accommodate 

the different sizes of the ligands. The most significant movements were H114, which moved by 

1.4 Å and is a conserved residue in EcMetAP that plays an important role in catalysis,37 and 

W255, which moved the most by 2.2 Å. 

Triazoles were reported as potent inhibitors of the Co(II)-form of Staphylococcus aureus 

MetAP (IC50, 43.7 nM) [29] and X-ray structures of enzyme-inhibitor complexes were reported. 

Here we described the inhibition of MtMetAP Ic by similar triazole compounds with high 

potency at submicromolar concentrations and selectivity for the Co(II) and Ni(II)- form. We 

crystallized two of the triazole inhibitors (7 and 8) with MtMetAP Ic in a unique Ni(II)- form and 

solved the complexes to 1.85 Å and 1.75 Å resolution, respectively. Although both inhibitors 

have the same triazole moiety, they bound differently at the active site. While inhibitor 8 bound 

at the active site as a dimetalated structure (Figure 3-8 B), inhibitor 7 acquired an additional 

Ni(II) ion to form a trimetalated structure (Figure 3-8A). The extra ion was tetra coordinated 

with ligation to the conserved H144 mentioned before and to a water molecule and a chlorine ion 

as the third and fourth coordination points. Trimetalated MetAP enzymes in complex with other 

types of inhibitors have been observed before [30, 33-34] and their formation requires specific 

spatial arrangement of coordinating heteroatoms. However, it is interesting to note that inhibitor 

7 formed a trimetalated structure, while inhibitor 8 formed a dimetalated structure with small 
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Figure 3−8. Structures of MtMetAP Ic in the Ni(II)-form in complex with the Co(II)- and 

Ni(II)-form selective inhibitors 7 and 8. A. Trimetalated active site with inhibitor 7 bound. 

Inhibitor is shown as thick sticks and the protein residues as thin sticks (carbon, cyan; oxygen 

,red; nitrogen, blue; sulfur, yellow; and fluorine, pale). Ni(II) ions (yellow) are shown as large 

spheres, and water (red) and chlorine ion (green) are shown as small spheres. Metal coordination 

is shown as dashed lines. B. Dimetalated active site with inhibitor 8 bound. The same color 

scheme as in A is used, except carbon is colored magenta and chlorine is colored green. C. 

Comparison of the bound conformations of 7 and 8. For clarity, only selected protein residues 

are shown. 

  

A B C
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structural differences. These two structures also differ significantly at the dinuclear metal site. 

M1 and M2 were both pentacoordinated in the complex with inhibitor 7, and they became 

hexacoo rdinated in the complex with inhibitor 8. The distances from M1 to the two oxygen 

atoms of E238 are 2.0 Å and 3.2 Å in the complex with 7, therefore, E238 provided only one 

oxygen atom for coordination. In contrast, the distances are 2.1 Å and 2.2 Å in the other 

complex, and both oxygen atoms coordinated with M1. For M2 coordination, one of the oxygen 

atoms of E269 shifted from a monodentate mode to M1 in complex with inhibitor 7 to a bridging 

bidentate mode to both M1 and M2 in complex with inbhitor 8, providing the additional 

coordination point for M2. 

A unique structural feature of the complex with inhibitor 8 is the bound conformation of 

the inhibitor. Although both inhibitors 7 and 8 have the core benzylthiotriazole structure, 

inhibitor 8 adapted a bound conformation, with its benzyl group turning into a pocket formed by 

rotation of F211 by 90º (Figure 3-8C). This binding pocket identified by this structure has not 

been seen in any other MetAP structures and provides additional interactions for MetAP 

inhibitor design. 

 

3.3.8 Identification of the quaternary structure of MtMetAP Ic using size exclusion 

chromatography 

It is interesting that all of the three structures showed P63 space group in the crystal packing, 

instead of the common P21 space group seen in other MetAPs. This symmetry indicates a 

trimeric arrangement in the crystals (Figure 3−7A), and indeed, the calculation on the PISA 

server (http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html, Protein Interface Surfaces and 

http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html�
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Assemblies service) showed that there are large contact surfaces between the protein molecules, 

and a trimetric form is energetically favored. 

A similar analysis for the previous MtMetAP Ic structures (PDB codes 1Y1N and 1YJ3, 

with P21 space group) yielded no specific interactions between protein molecules, and a 

monomeric solution structure was predicted. The previously reported MtMetAP Ic has a longer 

N-terminus with a His-tag present [21], and it is not known whether the extra sequence, a lthough 

not visible in the X-ray structures, prevented its packing within the crystals as a trimer. The His- 

tag has identified not locate near the contact surfaces. One question is whether MtMetAP Ic is 

trimeric in solution. We eluted our MtMetAP Ic (31 kDa predicted molecular weight) in 50 mM 

Tris-HCl pH 7.5 with 150 mM NaCl through a Superdex 75 size-exclus ion column, with blue 

dextran (2000 kDa), aldolase (153 kDa), bovine serum albumin (67 kDa), ovalbumin (43 kDa), 

and ribonuclease (13.7 kDa) as molecular weight standards (Figure 3-9A). MtMetAP Ic was 

eluted between ovalbumin and ribonuclease and its calculated Mw was 33 kDa, suggesting a 

monomeric state in the solution condition (Figure 3-9C). Disagreement in oligomer states 

between crystal packing and solution has been noted [35],  and it is possible that MtMetAP Ic 

exists in a trimeric form in some crystals, while it is monomeric in solution. 

 

3.4 Discussion 

Although the majority of bacteria have only one MetAP gene, two or more MetAP genes 

have been identified in a small number of bacteria, but most of them have not been characterized 

enzymatically. Two homologous type 1 MetAP isozymes in Bacillus subtilis were isolated and 

investigated. Although both showed enzymatic activity, only one of them was essential for 
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Figure 3-9 Identification of quaternary s tructure of MtMetAP Ic using Superdex 75 .  

A) The elut ion curve of protein standard. Peaks were 1) blue dextran and Aldolase; 2) 

bovine serum albumin, 3) ovalbumin; 4) ribonuclease 

B) The elut ion curve of MtMetAP Ic 

UV260 nm 

UV260 nm 

Elution volume (mL) 

Elution volume (mL) 
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Figure 3-9 Identification of quaternary s tructure of MtMetAP Ic using Superdex 75 .  

C) The standardization curve of Superdex 75 10/300. The eluted MtMetAP Ic (illustrated as 

a red dot) was between ribonuclease and ovalbumin, consisting with a molecular weight of 

30.9 Kd, which indicated it was a monomer. 
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growth, and the other was concluded to be  non-essential due to low expression [36]. Two MetAP 

genes were also identified in Acinetobacter baumannii, but none of them has been demonstrated 

as a functional enzyme. The protozoan parasite Plasmodium falciparum has four MetAP 

sequences, and inhibitors discovered and characterized on one of the four showed antimalarial 

activity [3]. Deletion of the single MetAP gene from E. coli [30] or Salmonella typhimurium [37] 

is lethal. For those organisms that have two copies of MetAP enzymes, one type 1 and one type 2, 

such as Saccharomyces cerevisiae, deletion one of MetAP showed a slow growth phenotype, and 

deletion of both was proved [4].  

There are two MetAP enzymes in M. tuberculosis, MtMetAP Ia and MtMetAP Ic. Both 

belong to type I MetAP, and an alignment of their protein sequences showed 36% identity to 

each other [38]. Because MtMetAP Ia and MtMetAP Ic are homologous enzymes, it is likely that 

the function of one can be complemented by the other, and inhibitors of one will inhibit the other 

as well. Therefore, both MtMetAP Ia and MtMetAP Ic are potential drug targets, and inhibition 

of one or both is likely required to show antimycobacterial activity. The mRNA transcript  

analysis of these two MetAPs in M. tuberculosis showed different mRNA levels in the log phase 

and the stationary phase [10]. The expression of MtMetAP Ia gene (mapA) expressed more in the 

log phase, while the expression of MtMetAP Ic gene (mapB) showed a higher level in the 

stationary phase, suggesting that the two MetAPs may perform important functions in different 

growth phases of M. tuberculosis [10]. The special characteristics of the mycobacterial life cycle 

may require more than one MetAP enzyme to carry out this important cotranslational 

modification.  

We purified MtMetAP Ic to homogeneity as an apoenzyme and demonstrated its 

enzymatic function not only as a purified enzyme but also in live E. coli cells. Divalent metals 
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Co(II), Mn(II), Ni(II), and Fe(II) all showed immediate activation of the purified apoenzyme. 

Co(II) and Fe(II) had a higher affinity, while Ni(II) bound more weakly but showed the highest 

catalytic efficiency. Zhang et al [10] described Fe(II) and Ni(II) as inhibitors of MtMetAP Ic 

activity, partially contradicting our results. However, their enzyme showed high activities before 

the metal ions were added, indicating that a metalated enzyme was already present. Considering 

that the enzyme was purified as a His-tagged protein, and no procedure was described for metal 

removal, their observed inhibitory effect of Fe(II) or Ni(II) was probably due to competition of 

the metal added with the active site metal already in place. Another possibility is that higher 

metal concentrations (in addition to the metal already in place) were used in their experiments, as 

our metal activation profiles (Figure 3-3) showed that a metal can also inhibit MetAP activity at 

high concentrations. It is interesting to note that a MetAP enzyme was purified from 

Mycobacterium smegmatis mc2155 strain, and its enzymatic activity was enhanced by Mg(II) 

and Co(II) and inhibited by Fe(II) and Cu(II)[39]. However, the enzyme was purified by 

following the hydrolysis of a MetAP substrate, and its identity as a mycobacterial MetAP was 

not confirmed by sequencing. 

Many dinuclear metallohydrolases [40] play key roles in physiological and pathological 

processes and often are targets for therapeutics. For instance, MetAP in protein cotranslational 

modification, dicer in RNA interference [41], HIV reverse transcriptase in AIDS [42], and 

protein phosphatase-1 in cell cycle regulation [43]. Assignment of their physiologically relevant 

metalloform is often difficult and confusing, but it is critically important for the discovery and 

development of inhibitors that are effective against cellular enzymes. Initially from high- 

throughput screening, we discovered several classes of unique MetAP inhibitors that can 

distinguish different metal ions at the enzyme active site [27-28] . These metalloform-selective 
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inhibitors are valuable research tools for the assignment, and here we presented an example of 

their application to clarification of the native metalloform of MtMetAP Ic in an E. coli cellular 

environment. With confirmed inhibitory potency and selectivity on the metalloforms of the 

purified MtMetAP Ic, we characterized these inhibitors for inhibition of MetAP activity from the 

recombinant MtMetAP Ic in live E. coli cells. Only the Fe(II)-form selective inhibitors inhibited 

the cellular MtMetAP Ic activity and inhibited the growth of MtMetAP Ic-complemented E. coli 

cells, leading to the conclusion that MtMetAP Ic is in the Fe(II)- form in an E. coli cellular 

environment. It is intriguing why MtMetAP Ic utilizes Fe(II) for catalysis when Ni(II) offers 

higher catalytic efficiency. One possible explanation is that the higher binding affinity and easier 

availability of Fe(II) results in its preferential use. It was demonstrated that E. coli peptide 

deformylase utilized Fe(II) as the native metal cofactor, but the Borrelia burgdorferi used Zn(II) 

after heterologous expression in E. coli [44]. Therefore, expression of MtMetAP Ic in E. coli 

probably does not swap the intracellular type of metal utilized by MtMetAP Ic in M. 

tuberculosis. Nevertheless, the native metalloform of MtMetAP Ic in M. tuberculosis remains to 

be confirmed. Our approach of using MtMetAP Ic in E. coli cells is an attractive alternative to 

the direct manipulation of pathogenic organisms for drug discovery in that the conventional 

approach would not be readily accessible due to the dangers they pose. 

The first group of small molecule inhibitors for a mycobacterial MetAP enzyme was 

presented and elucidated their binding characteristics at the enzyme active site. They showed not 

only potency but also selectivity for different metalloforms and were initial lead compounds for 

the development of inhibitors of mycobacterial MetAPs as novel anti-TB drugs. Although 

metalloform selectivity may not be required for effective inhibition of cellular MetAPs, selective 

inhibition of different metalloforms may be advantageous. Fe(II) is likely the metal used by 
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MetAPs in bacteria such as E. coli and Bacillus [15]. O n the contrary, human type 2 MetAP uses 

Mn(II) as its physiologically relevant metal cofactor [45] . It is unknown which metal the human 

type 1 MetAP uses for its catalysis, but it is possibly not Fe(II) because free Fe(II) concentration 

in mammalian cells is low and sequestering iron is a defense mechanism against bacterial 

infection [46-47]. Metalloform-selectivity may provide a viable strategy for selective inhibition 

of bacterial MetAP enzymes. 
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CHAPTER 4   

CONCLUSIONS AND FUTURE PLANS   
 

In this project, two methionine aminopeptidase (MetAP) enzymes from Mycobacterium 

tuberculosis were purified and characterized. Both MetAPs were active and could be activated 

by Ni(II), Co(II), Mn (II) and Fe(II). The plasmid-expressed MtMetAP Ic rescued an EcMetAP 

amber mutant in E.coli, which  was otherwise lethal [1] [2]. A set of compounds with specific 

inhibitory activities against different metal-substituted MetAP were identified and tested in a 

cellular assay. Only Fe(II)-selective inhibitors show inhibition in this cellular MtMetAP Ic  assay 

and the growth of E. coli, indicating that Fe(II) was most likely the metal used by MtMetAP Ic 

when it is expressed in E.coli. Both MtMetAPs were co-crystallized with inhibitors. Only crystal 

structures of different metalloforms MtMetAP Ic in complex with inhibitors were solved. The 

structural information of MtMetAP Ic with inibitors has provided awareness for development of 

anti-TB agents.    

A number of questions regarding to the physiological functions of MetAP enzyme remain 

unsolved and further investigation is needed to address them. Compounds that inhibit MtMetAP 

Ia activity are still of great interest and needed for: 1) Testing their inhibition on different 

metalated MtMetAP Ia; 2) Testing their inhibitory activity on cellular growth; 3) Illuminating the 

interaction between the active sites of MtMetAP Ia and the inhibitory compounds; and  4) 

Identifying the role of MtMetAP Ia in M. tuberculosis pathogenesis.  

MtMetAP Ia and MtMetAP Ic share approximately 36.9% sequence identity. In addition, 

a homology model of MtMetAP Ia has an active site consisting of amino acid residues of Glu, 
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His, and Asp, which is similar to that of MtMetAP Ic [3]. MtMetAP Ia, however, showed 

different enzymatic characteristic from MtMetAP Ic in our study. The metal binding a ffinities to 

MtMetAP Ia, from the highest to lowest, are showed as following;  Fe(II) ≥Co(II)> Ni(II)> 

Mn(II). In contrast, in MtMetAP Ic, the affinities are Co(II)> Mn(II) ≥Fe(II) >Ni(II).  

While both MtMetAP can hydrolyze the fluorogentic substrate Met-AMC, MtMetAP Ia is 

a more efficient enzyme than MtMetAP Ic as indicated by the larger Kcat/Km value (Table 4-1). In 

testing inhibition, most MetAP inhibitors of EcMetAP Ia, HsMetAP Ia and MtMetAP Ic did not 

inhibit MtMetAP Ia. The only exceptions were the Fe(II)-selective inhibitors. However, these 

Fe(II)-selective inhibitors lose their metal specificity for MtMetAP Ia.  These in vitro kinetic 

differences between MtMetAP Ia and MtMetAP Ic may contribute to their different functions as 

observed in the E. coli growth complementary experiment. 

In the experiment, the E. coli with an amber mutation in the map gene could be rescued 

from death by the plasmid-expressed MtMetAP Ic, which complementated of the function of the 

mutated EcMetAP. However, MtMetAP Ia gave an inconsistent result. MtMetAP Ia could 

suppress the lethal effect of amber mutation in E.coli but it gave a much weaker 

complementation when compared with EcMetAP and MtMetAP Ic and it was not reproducible. 

Figure 4-1 shows the culture plates comparing relative growth of cells harboring plasmids of 

pFLAG-MtMetAP Ia, pFLAG-MtMetAP Ic, pFLAG-EcMetAP and pFLAG.  In the plates, cells 

with MtMetAP Ia grew much slower than the others. Even after several days, the colonies were 

smaller than the other cells.  It would be of significance to c larify the function of MtMetAP Ia in 

the pathogenesis of TB. 
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Table 4-1 ª comparison of Kinetic measurement of HisMtMetA Ia and MtMetAP Ic 

MtMetAP Ia Fe(II) Ni(II) Co(II) Mn(II) 

kcat, sec-1 0.1429 
±0.0077 

0.4779± 
0.0068 0.3719± 0.018 0.062± 0.018 

kcat/Km, M-1sec-1 959 35634 5277 364 
          
          

MtMetAP Ic Fe(II) Ni(II) Co(II) Mn(II) 

kcat, sec-1 0.0039 ± 
0.0002 0.029 ±  0.002 0.027 ± 0.0004 0.0082 ±  

0.00033 
kcat/Km, M-1sec-1 24.3 301.1 122.1 36.1 

 

ª Data taken from Table 2-4 in Chapter 2 and Table 3-1 in Chapter 3. 

 

 

 

Figure 4−1. Complementation of EcMetAP function by MtMetAP1a.  
A. E. coli cells carrying an amber mutation in the chromosomal EcMetAP gene were streaked on 
agar plates with arabinose (the left plate) or glucose (the right plate). Each plate displays cells 
containing pFLAGCTC (top), pFLAGCTC-MtMetAP1a (bottom), pFLAGCTC-EcMetAP (left) 
and pFLAGCTC-MtMetAP1c (right).  
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Differences between MtMetAP Ia and MtMetAP Ic have also been reported in other 

studies. Zhang et al. investigated the mRNA expression levels of MtMetAP Ia and MtMetAP Ic 

in the 14-day-old and the 60-day-old cultures of M. tuberculosis H37Rv [4]. The mapA gene 

showed a two-fold decrease in the 60-day-old culture compared with the 14-day-old culture; the 

mapB gene showed a 1.5-fold higher expression in the 60-day-old culture than in the 14-day-old 

culture. The various transcription levels of the map gene indicate the important functions that 

MtMetAP Ia and MtMetAP Ic perform in different growth stages. Olaleye et al made a M. 

tuberculosis strains with knocked-down copies of the mapA or mapB genes by introducing a 

plasmid containing e ither the anti-mapA gene or the anti-mapB gene [5]. Inhibitors from a high-

throughput screening of MtMetAP Ic were tested in these knock-down M. tuberculosis strains 

and compared to a control, in which neither the mapA nor mapB genes were down-regulated. The 

M. tuberculosis with the knock-down of MtMetAP 1a showed decreased cell viability to 76%. 

The knock-down of MtMetAP Ic only caused a marginal effect on cell viability. The result 

suggested that MtMetAP Ia is likely the essential enzyme in cell viability and the observed 

inhibition on M. tuberculosis growth caused by the inhibitors is through the function of 

MtMetAP Ia, not MtMetAP Ic. All of these results indicate the essential role that MtMetAP Ia 

plays in pa thogenesis of M. tuberculosis.   

The inhibitors that selectively suppress the MtMetAP Ia enzyme in M. tuberculosis would 

be a helpful tool to achieve our goa l of elucidating the role of MtMetAP Ia in tuberculosis 

pathogenesis. So far, there are no such compounds reported. The inhibitors used in the study of 

Olaleye et al. were from a high-throughput screening against Co-metalated MtMetAP Ic. They 

have not identified their inhibitory activities on MtMetAP Ia even though the knock-down 

experiment indicated the possible inhibition of MtMetAP Ia. The reason may be the relatively 
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low yield of MtMetAP Ia and thus the difficulty in obtaining sufficient amount of MtMetAP Ia [4] 

[5]. Another reason maybe the lack of the knowledge about the func tion of MtMetAP Ia in M. 

tuberculosis when these two s tudies were carried out.  In conclusion, identifying the inhibitors 

that specifically target MtMetAP Ia, or/and MtMetAP Ic, would facilitate our understanding of 

the rules of MetAP in M. tuberculosis pa thogenesis in add ition to identifying new pathway for 

development of ant i-TB agents. 
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