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Abstract 

This dissertation proposes a new factor-analytic technique for detecting cheating on exams. 

Person-fit statistics have been developed to assess the extent to which examinees’ response 

patterns are consistent with expectation, with expectation defined in the context of some model. 

Response patterns that are inconsistent with expectation are said to be aberrant. Many person-fit 

statistics have been developed, mostly in the context of classical test theory or item response 

theory. However, in the person-fit literature, most of these techniques rely on assessing person-fit 

for unidimensional measurement models. This dissertation proposes that cheating can be 

conceptualized as a multidimensional phenomenon. A new person-fit technique that involves 

comparing changes in person-fit across one-factor- and two-factor exploratory factor analysis 

models is investigated. A statistically-significant improvement in person-fit when adding a 

second factor to the model is taken as evidence of cheating. Results indicate that this new 

technique may be useful for detecting cheating when a small-to-moderate proportion of 

examinees are cheaters. Suggestions are offered for future research on this new technique. 
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Aberrant Response Patterns as a Multidimensional Phenomenon: 

Using Factor-Analytic Model Comparison to Detect Cheating 

 Many industries are regulated by governing bodies. Such guardians of practice may be 

autonomous, self-governing bodies within the industry itself, or regulation may be imposed by 

an outside entity, such as the state or federal government. In either case, a common tool used to 

regulate practice is an examination. Examinations that are used to regulate entry into the field are 

referred to as licensure examinations, and these often are overseen directly or indirectly by a 

government body. Examinations that are used to demonstrate a certain level of achievement 

within a field, or perhaps mastery of a set of skills particular to a specialty within a field, are 

referred to as certification exams. The distinction between these two examination types is that 

examinees must pass a licensure exam to gain entry into the field in which they wish to practice, 

whereas completion of a certification exam is voluntary. However, both types of examinations 

are sometimes referred to as high stakes exams. The stakes for examinees who take licensure 

exams are high for obvious reasons—if an examinee fails a licensure exam, he or she will not be 

permitted to practice. Although certification exams are voluntary, failing such an exam may 

carry other undesirable consequences. Certification test takers’ promotions, levels of 

compensation, and job duties may depend on whether or not they earn the credential they are 

seeking.  

 The necessity for these exams lies in public protection and preservation of the integrity of 

an industry or practice. Often, these kinds of examinations are used to protect the public from 

incompetent practitioners. Sometimes, these exams may be used as a tool to recognize an 

individual as having mastered a certain specialty, or perhaps simply being a highly skilled and 

knowledgeable practitioner. Regardless of the ultimate purpose or goal of the examination, the 
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credentialing process is dependent on a properly-functioning examination. Such exams are 

designed to divide test takers into two mutually exclusive groups: those who pass and those who 

fail. Individuals who pass the exam are said to have reached the credentialing body’s criterion of 

minimal competence and earn the credential associated with the exam. Those who fail the exam 

fall below this criterion of minimal competence and are denied the credential they seek. Boards 

or governing bodies, in conjunction with experts from the testing industry, work to create 

examinations that are valid and reliable, with a minimal amount of measurement error. By 

following proper procedures and best practices, the Board or governing body can be confident 

that the pass/fail decisions rendered by the exam are accurate and appropriate. However, 

sometimes even when test development best practices have been followed strictly, threats to the 

validity of the exam cannot be avoided. One especially salient threat to the validity of an exam 

outcome is cheating. 

 Cheating will be defined in this paper as an activity carried out by a test taker in a 

conscious and willful effort to gain an unfair advantage on the exam. Cheating in the context of 

licensure and certification exams is problematic because such behavior has a negative impact on 

the criterion-related validity of the exam, it reduces the value of the credential, and it may 

potentially result in increased risk to the public. 

 Cheating can manifest itself in several ways. Cheating behaviors include, but are not 

limited to, copying answers from another test-taker, bringing a “cheat sheet” with answers into 

an exam, and participating in an unfair or dishonest test preparation course that uses items stolen 

from an examination. A variety of statistical techniques have been developed to identify cheating 

behavior, but methods largely vary depending on the measurement framework that is employed. 
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The following section contains brief overviews of three measurement frameworks that are 

employed in testing: classical test theory, item response theory, and factor analysis. 

Common Measurement Frameworks Used in Testing 

Classical test theory. 

 In classical test theory (CTT), a given examinee’s overall test score, Y, is a sum of two 

parts: the examinee’s unobserved true score (T) and a random error component (E). This 

relationship is represented in the equation (McDonald, 1999),  

 Y = T + E.    (1)

At the item level, this relationship is represented for a given examinee as 

 ௝ܺ ൌ ܶ ൅ ௝, (2)ܧ

where items are indexed j = 1, 2, … J. According to classical test theory, the examinee’s true 

score (T) is the only common component across items for the examinee. E is assumed to have a 

mean of 0, it is assumed to be uncorrelated with T, and error terms associated with all items on 

the exam are assumed to be independent of each other (McDonald, 1999). To describe T in 

terminology used in common factor theory: classical test theory assumes that a unidimensional 

factor structure underlies item responses on an exam, with individual item responses being fully 

independent from one another after accounting for the lone systematic component, T.  

 Much of the focus of classical test theory is directed at the overall test. Reliability and 

measurement error, for example, are assessed at the test level. However, techniques for assessing 

performance of individual items have been developed in the classical test theory measurement 

framework. Two important indicators of item performance include the item’s difficulty level and 

its discrimination. In classical test theory, the difficulty parameter for a given item, πj, is 

estimated by the sample statistic, pj, which is equal to the proportion of examinees providing a 
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correct answer to a given item (McDonald, 1999). The discrimination index provides information 

regarding how well an item differentiates examinees of varying ability levels. In general, 

discrimination indices relate performance on a particular item to performance on the overall test. 

One of the common methods for estimating item discrimination in classical test theory is the 

item-total correlation, which is calculated as the correlation between responses to a particular 

item and total scores on the exam.  

 Variations on how to compute item-total correlations exist (McDonald, 1999). Some 

calculations include the item that is being assessed in calculating the overall test score, and some 

calculations remove it from the total score. Regardless of computational variations, the concept 

of discrimination fundamentally involves relating test-taker ability, as represented by test score, 

to performance on a particular item. If high-ability test takers tend to answer a given item 

correctly and low-ability test-takers tend to answer the item incorrectly, the item is displaying 

positive discrimination—a desirable characteristic. If test-taker ability has no appreciable 

relationship to performance on an item, the item does not discriminate at all. If low-ability test-

takers tend to answer an item correctly while high-ability test-takers answer the item incorrectly, 

the item is said to have negative discrimination. 

Item response theory. 

Parametric IRT for dichotomous data. 

 Whereas the primary concern and focus of attention in classical test theory is on the 

overall test score, item response theory (IRT) is a measurement technique that—as its name 

implies—is largely focused at the item level. Item response theory is a label applied to an entire 

family of statistical models of varying complexity and focus. Hambleton, Swaminathan, and 
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Rogers (1991) provide a basic overview of IRT for dichotomous data, which will be summarized 

in this section. 

 When tests are comprised entirely of dichotomous data, three IRT models are especially 

common. The 3-parameter logistic (3-PL) IRT model models the probability of a correct 

response on item j with the function, 

 ܲ൫ ௝ܺ ൌ 1หߠ൯ ൌ ௝ܿ ൅ ൫1 െ ௝ܿ൯ ݁௔ೕ൫ఏି௕ೕ൯1 ൅ ݁௔ೕ൫ఏି௕ೕ൯, (3)

where ߠ is the conditional value of the examinee’s ability parameter, bj is the difficulty 

parameter, aj is the discrimination parameter, and cj is the lower asymptote for item j. Plotting 

the function across a range of conditional values of θ results in an S-shaped curve (or ogive), 

which is referred to as the item response function (IRF), or item characteristic curve (ICC). This 

function represents the expected value of Xj at conditional levels of ߠ. 

 In some contexts, the b parameter may be referred to generically as an item’s location 

parameter. Similarly, the ߠ parameter is sometimes referred to generically as the individual’s 

trait parameter. These labels are most commonly applied in contexts in which it does not make 

sense to refer to the “difficulty” of an item or the “ability” level required of an individual to 

provide a response. For example, the b and θ parameters might be labeled as the location and 

trait parameter, respectively, in a case in which an IRT model is fit to personality data. However, 

for a testing situation in which item responses are coded correct or incorrect (or variations 

between, as in partial credit scoring), labeling b as the item difficulty parameter and ߠ as the 

examinee ability parameter is appropriate, so those labels will be used in this paper.  

 The item’s b parameter and the examinee’s ߠ parameter are measured on the same scale. 

This common scale allows for the difficulty of a particular item to be interpreted in terms of how 

much ability is required in order to have a particular probability of providing a correct response. 
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The value of the b parameter is set to the point where the conditional probability of a correct 

response equals (1 + c) / 2. 

 The a parameter is proportional to the slope of the item response function at its inflection 

point. The a parameter is assumed to be positive—a negative a parameter would represent an 

negative relationship between ability level and probability of success—and larger values of a 

correspond to steeper item response function slopes. In IRT, the a parameter functions as the 

item’s discrimination parameter.  

 The c parameter is sometimes labeled as the item’s pseudo-guessing parameter. For 

certain item types, particularly multiple-choice items with no penalty imposed for guessing, it 

may be unreasonable to assume that even an examinee with an extremely low ability level would 

have a probability of success on a given item that is near zero. For example, a low-ability test-

taker may have a probability of success that is closer to 1 / 4 = 0.25 than 0 for a 4-option multiple 

choice item. By estimating a c parameter, the IRF is allowed to have a lower asymptote that 

approaches a value greater than zero to account for behaviors such as guessing.   

 Historically, early applications of IRT used the normal cumulative density function 

(CDF) to draw the item response function. Although the logistic function is now standard, 

sometimes the a parameter is multiplied by a constant, 1.701, which causes the logistic item 

response function to take on a shape that closely approximates an item response function created 

using the normal CDF. This scaling constant is denoted D. An example item response function 

appears in Figure 1. For this example item, a = 1.25, b = 0.00, and c = 0.25; the scaling constant 

was omitted from this item response function.  

 The item response function shown in Figure 1 represents the probability of a correct 

response as a function of examinee ability level. The probability of a correct response for item j 
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is represented by the function, P(Xj = 1|θ), or more compactly as Pj(θ). Another function that will 

become important for future discussion is the probability of an incorrect response. The 

probability of an incorrect response for item j is equal to P(Xj = 0|θ) = 1 – Pj(θ), which is often 

written simply as Qj(θ). An example item response function with both Pj(θ) and Qj(θ) functions 

plotted is shown in Figure 2. 

 In addition to the 3-PL model, there are other IRT models for dichotomous response data 

that have varying levels of constraints imposed on the number of estimated parameters for each 

item. The 2-parameter logistic model (2-PL) imposes the constraint on the 3-PL model that all 

items have a lower asymptote of 0, or c = 0 for all items. The probability of a correct response to 

item j is related to ability in the 2-PL model by the following function, 

 ܲ൫ ௝ܺ ൌ 1หߠ൯ ൌ ݁௔ೕ൫ఏି௕ೕ൯1 ൅ ݁௔ೕ൫ఏି௕ೕ൯. (4)

Imposing a restriction that c = 0 for all items allows all items to have lower asymptotes that 

approach 0.  

 Another popular IRT model for dichotomous response data is the 1-parameter logistic (1-

PL) model, or sometimes referred to as the Rasch model. The 1-PL model places an additional 

limitation on estimated item parameters, constraining all items to have the same estimated 

discrimination parameter, or a = 1 for all items. The probability of a correct response to item j is 

represented in a 1-PL model by the item response function, 

 ܲ൫ ௝ܺ ൌ 1หߠ൯ ൌ ݁൫ఏି௕ೕ൯1 ൅ ݁൫ఏି௕ೕ൯. (5)

Nonparametric IRT for dichotomous data. 

 As described in Mokken (1997), nonparametric IRT models are similar to traditional 

parametric IRT models in that they relate the probability of success on individual items to 
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examinee ability using an item response function. However, in nonparametric item response 

theory, neither the item response function, nor the examinee’s ability parameter are specified 

using parametric distributions (Mokken, 1997). Nonparametric IRT models are based on three 

assumptions: (1) items are unidimensional, (2) item responses are locally independent after 

accounting for ߠ, and (3) item response functions are monotonically nondecreasing. The 

nonparametric IRT model that meets these assumptions is known as the model of monotone 

homogeneity. The model of double monotonicity goes one step further and imposes the 

constraint that item response functions cannot intersect. Both the robustness of nonparametric 

item response theory models and the ability to restrict nonparametric item response functions 

from intersecting have made nonparametric IRT models useful for computing certain person-fit 

statistics and for creating person response function plots (e.g., Meijer, 2003; Emons, Sijtsma, & 

Meijer, 2004, 2005), however, researchers have found evidence that person-fit statistics are less 

accurate when nonparametric IRT models are used (St-Onge, Valois, Abdous, & Germain, 

2009). 

Parametric IRT for polytomous data. 

 Item response theory models have applicability beyond dichotomous data. Numerous IRT 

models have been developed for polytomous data as well. As explained by Samejima (1997), the 

graded response model (GRM) can be applied to data obtained from Likert scales or tests in 

which partial credit is awarded. While the previously-discussed IRT models for dichotomous 

data model the probability of success on a given item, the GRM can be used to model the 

probability of scoring in a particular ordered category (x) or higher at a given level of ߠ. The 

graded response model is somewhat similar to the dichotomous 2-parameter logistic model for 

dichotomous data, in that only the a and b parameters are modeled for items, but for item j with a 
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minimum possible score of 0 and a maximum possible score m, one a parameter and m b 

parameters are estimated. As shown in Figure 3, each estimated b parameter represents the 

boundary between different scores on item j. Each curve in this figure represents the conditional 

probability of obtaining a score of x or higher, given ߠ, on this item. As illustrated in Figure 4, 

response probabilities for individual scores on items can also be modeled using the GRM. Each 

curve in the plot represents the probability of a particular score, x, on item j, conditional on ߠ. 

Factor analysis. 

 Factor analysis (FA) is a measurement technique that is most often used to explain 

observed correlations among a set of items by means of a smaller set of latent constructs, or 

factors (Brown, 2006; McDonald, 1999). Although factor analysis is used less often than CTT or 

IRT in traditional testing applications, this measurement framework has some applicability for 

testing. For a unidimensional test, the model for item j is given by 

 ௝ܺ ൌ ௝ߤ ൅ ߠ௝ߣ ൅ ௝, (6)ߝ

where µj is the item’s intercept , λj is the item’s factor loading, θ is the examinee’s latent factor 

score, and εj is a unique factor, consisting of specific and error components. For an FA model 

applied to test data, µj is an indicator of item j’s difficulty, and λj is an indicator of the item’s 

discrimination. The value ߤ௝ ൅  can be conceptualized as the expected value of Xj, given the ߠ௝ߣ

examinee’s factor score. Equation (6) can easily be generalized for multidimensional models by 

adding additional factor scores and loadings. Although multidimensional IRT models have been 

developed, at the present time it is far easier to test multidimensional models using 

commercially-available software in the context of factor analysis. 
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Similarities Between the FA and IRT Measurement Frameworks 

 Common ground between factor analysis and item response theory has been well 

documented (e.g., Brown, 2006; Kamata & Bauer, 2008; McDonald, 1999; Wirth & Edwards, 

2007). Although FA and IRT are often used in different applications for different purposes, the 

two techniques share certain similarities that make a short comparison useful for the present 

discussion of person-fit. Every parameter in a 1-PL or 2-PL IRT model can be represented in an 

approximately equivalent manner in a factor analytic model. The transformations that are 

discussed next have been demonstrated in Brown (2006). It is quite easy to transform parameter 

estimates from one measurement framework to another. To convert FA parameters into IRT 

parameters, the IRT a parameter is computed, 

 ܽ ൌ 1√ߣ െ ଶߣ , (7)

and the b parameter is computed, 

 ܾ ൌ ߣ߬ , (8)

where ߬ is an estimated threshold parameter. 

 The IRT and factor-analytic measurement frameworks begin to diverge at the IRT c 

parameter. As previously discussed, the c parameter is used in IRT to represent the extent to 

which guessing affects success probabilities for examinees with very low ability levels, which 

affects the lower asymptote of the item response function. No parameter in factor analysis 

directly corresponds to IRT’s c parameter, and there is no method to transform estimates from 

factor analysis into an IRT c parameter or vice-versa.  

 In the preceding paragraphs, simple item-level transformations were demonstrated to 

illustrate how item parameters relate to one another across the two measurement frameworks. At 
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the model level, making comparisons across measurement frameworks is similarly 

straightforward. A 2-parameter logistic IRT model is equivalently represented in factor analysis 

by a model with all items loading onto a single latent construct. A 1-parameter logistic IRT 

model is equivalently represented in factor analysis with the additional requirement that loadings 

be constrained to equality.  

Aberrant Response Patterns 

 Upon inspection, certain patterns of item responses may seem strange or otherwise 

unexpected. For example, a low ability examinee who answers several very difficult items 

correctly would represent an unexpected occurrence. In broad, general terms, aberrant response 

patterns can be defined as response patterns that defy some expectation. Of course, the primary 

challenge in this endeavor is defining a level of expectation so a judgment can be rendered 

regarding the degree of aberrance associated with an examinee’s response pattern.   

 A large number of person-fit indicators have been developed for the purposes of 

identifying aberrant response patterns (Karabatsos, 2003). Many of these techniques compare 

observed response patterns to expected outcomes defined by a particular model. These values are 

compared, and person misfit occurs where observed item response patterns are incongruous with 

what is implied by the model (Meijer, 1996; Meijer, Muijtjens, & van der Vleuten, 1996; Meijer 

& Sijtsma, 2001). However, depending on the context of measurement (CTT, IRT, or FA), 

methods for defining expectation in a response pattern and measuring deviations from 

expectation differ. 

The Guttman model. 

 In classical test theory, one simple and intuitive technique for establishing what 

characteristics are to be expected in a response string is based on the concept of the deterministic 
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Guttman model (Guttman, 1944). Let Xj represent the score on item j, with a correct answer 

coded Xj = 1 and an incorrect answer coded Xj = 0. The number-correct (NC) score, r, is equal to 

the sum of item responses. According to the Guttman model, for item j, 

ߠ  ൏ ௝ߜ ֞ ௝ܲሺߠሻ ൌ 0, (9)

and 

ߠ  ൒ ௝ߜ ֞ ௝ܲሺߠሻ ൌ 1, (10)

where θ is the examinee’s latent ability level, δj is the difficulty parameter for item j, which is 

measured on the same scale as θ, and Pj(θ) is the conditional probability of a given examinee of 

ability level θ correctly answering item j. According to this model, if a given examinee has an 

ability level that is greater than or equal to the difficulty level of a particular item, the probability 

of a correct response is 1, and if the examinee’s ability level is less than the item’s difficulty 

level, the probability of a correct response is 0 (Guttman 1994; Meijer & Sijtsma, 1995; Meijer 

& Sijtsma, 2001). The Guttman model therefore implies that for a given examinee’s number-

correct score of r on an exam, it is assumed that the examinee answered only the r easiest items 

on the exam correctly and that all of the r easiest items have difficulty parameters that are less 

than or equal to the examinee’s ability level. As described by Meijer and Sijtsma (2001), a 

response vector in which the r easiest items are answered correctly and the J – r items are 

answered incorrectly is known as a Guttman pattern or a conformable pattern. The opposite 

circumstance, in which the r most difficult items are answered correctly and the J – r easiest 

items are answered incorrectly is known as a reverse Guttman pattern. At the item level, items 

that are scored contrary to expectation as outlined in the Guttman model are known as errors or 

inversions. For example, two items are indexed 1 and 2, and item 1 is less difficult than item 2. 

Three possible item response patterns would be consistent with expectation as defined by the 
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Guttman model: [0, 0], [1, 1], and [1, 0]. A response pattern of [0, 1] for this pair of items would 

represent an error according to the Guttman model. Several CTT person-fit methods that will be 

discussed later in this paper use the Guttman model (e.g., Karabatsos, 2003; Meijer & Sijtsma, 

2001). 

Causes and manifestations of aberrant response patterns. 

 Although cheating is one example of an examinee behavior that can lead to aberrant 

response patterns, it is not the only examinee behavior that can lead to aberrant response 

patterns. In his introductory article on person-fit, Meijer (1996) discussed seven distinct 

examinee behaviors that may cause aberrant response patterns and how these behaviors may 

manifest themselves in examinees’ response vectors. The examinee behaviors that Meijer 

identified included sleeping, guessing, cheating, plodding, alignment errors, extreme creativity, 

and deficiency of subabilities.  

 Meijer (1996) describes sleeping behavior as an examinee with a poor test-taking strategy 

who does not take time to carefully check answers to some of the easier items on the test, which 

may result in a higher-than-expected number of mistakes on some of the easier items on the test. 

When guessing occurs, an examinee with a low ability level guesses blindly on medium-to-

difficult items on the test. Examinees who engage in guessing may get a high proportion of easy 

items correct, whereas the proportion of correct answers on more difficult items may be close to 

the inverse of the number of response options (e.g., 0.25 for 4-option multiple choice items). 

Meijer describes a possible cheating scenario in which a low-ability examinee gets a high 

proportion of easy items correct because the difficulty of each of those items is less than or equal 

to the examinee’s ability level. However, the examinee struggles with the medium-difficulty 

items and answers most of them incorrectly. After making a futile attempt to answer the 
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medium-difficulty items correctly, the examinee resorts to looking off of a high-ability 

neighbor’s answer sheet to respond to the most difficult items on the test, resulting in a response 

pattern where many easy items are answered correctly, many medium-difficulty items are 

answered incorrectly, and many difficult items are answered correctly. Plodding behavior occurs 

when an examinee works very slowly and methodically, refusing to move on to the next item 

until the examinee is satisfied that the current item is answered correctly. A plodding examinee 

may have a high ability level, but this may not be reflected in the examinee’s NC score, which 

may be low because the examinee runs out of time before having an opportunity to answer a 

significant portion of items on the exam. Meijer states that plodding behavior may result in 

perfect Guttman patterns, or patterns that are “too good to be true,” but the overall NC score is 

not representative of the examinee’s ability level. Alignment errors occur when an examinee uses 

a separate answer sheet to record responses. The examinee elects to skip a particular item but 

fails to adjust his or her responses on the answer sheet accordingly, thus recording a response for 

item j on the line for item j – 1, for example. Meijer defines extremely creative examinees as 

high-ability individuals who may over-think easy items on the test and consider them “too simple 

to be true.” After choosing an answer to an easy item, the extremely creative examinee may 

rethink his or her answer and determine that the originally-selected response is too simple to be 

correct, and choose another, incorrect answer. These high-ability examinees may answer some of 

the easiest items incorrectly while getting a higher proportion of the more difficult items correct. 

Finally, Meijer states that if item difficulty levels happen to coincide with particular content 

areas, examinees with deficiencies in subabilities (i.e., less knowledge of a particular content 

area on the exam), may have aberrant response patterns (see also Harnish, 1983; Harnish & Linn, 

1981; Meijer & Sijtsma, 1995). Meijer uses an example where the 10 easiest items on a 30-item 
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test are linked to content area A and the 20 most difficult items are linked to content area B. An 

examinee with deficient knowledge of content area A, but strong knowledge of content area B, 

may answer a high proportion of the 20 most difficult items correctly but answer a low 

proportion of the 10 easiest items correctly. Meijer provides examples of response patterns that 

may result from these various examinee behaviors. These different types of aberrant response 

patterns, along with the items’ population-level proportion-correct values (πj) are illustrated in 

Table 1. 

 It is important to note that the example response patterns provided by Meijer (1996) 

assume that the exam’s items are presented to examinees in ascending difficulty order, with the 

easiest items appearing at the beginning of the exam and the most difficult items appearing at the 

end. Except in circumstances of (1) speeded exams that are designed such that most examinees 

will not be able to provide answers on all items in the allotted time limit, or (2) very poorly 

constructed exams, such an exam design is unlikely to be used in real-world professional testing 

applications. This unorthodox assumption of items being presented in order of ascending 

difficulty somewhat limits how Meijer’s discussion of how these behaviors generalizes to a more 

common exam design where items are not presented in order of difficulty. However, some of 

Meijer’s conclusion can be generalized to other testing contexts. 

 Regardless of the how items are presented on an exam relative to their difficulty, Meijer’s 

description of how cheating behavior manifests itself in a response vector remains plausible. 

When describing the characteristics of a cheater, a relatively low ability level is a safe 

assumption—an examinee with a high ability level is unlikely to need to resort to cheating in 

order to achieve a high score on the exam. It is also reasonable to assume that a cheater may get 

a high proportion of the easiest items on the exam correct, even without the aid of cheating, 
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because some of the easiest items on the exam will have difficulty levels at or below the 

examinee’s ability level. Finally, if the cheating examinee has access to correct answers on some 

of the most difficult items on the examination, this examinee likely will get more of these 

difficult items correct than would be expected given the examinee’s ability level. In Meijer’s 

example scenario, the cheating examinee answers the initial (easy) items correctly, answers some 

of the moderately-difficult items near the middle of the exam incorrectly, and resorts to looking 

at another examinee’s answer sheet at the end of the exam in an effort to achieve a higher test 

score. Cheating behavior that involves one examinee looking off of another examinee’s answer 

sheet—with or without the other examinee’s consent—is typically referred to as collusion, and 

much of the research on detecting collusion on exams has focused on assessing the similarity of 

particular aspects of response patterns (e.g., choosing a higher-than-expected percentage of the 

same distractors across items) among pairs of respondents (e.g., Angoff, 1974). In a more 

common test design where items are not presented in difficulty order, collusion may be less 

likely to cause a response pattern such as this to emerge, unless the cheater resorts to looking at a 

neighbor’s answer sheet on only the most difficult items. However, there are other forms of 

cheating that may result in aberrant response patterns. 

Exposed items. 

 Computer-based testing has made collusion much more difficult for examinees who hope 

to cheat. Security measures such as administering multiple forms at a single site and scrambling 

the presentation order of items and response options are effective collusion deterrents, and they 

are easy to accomplish in computer-based testing with capable software. However, test takers 

looking to get an unfair advantage on an exam still have other cheating methods at their disposal. 

Some examinees may bring a cheat sheet or other resource when they sit for the exam. Other test 
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takers may gain access to compromised test questions by participating in unfair or illegal “test 

preparation” courses or by purchasing stolen test questions.  

 Of course, not all test preparation services operate in an unethical manner. Many 

reputable test preparation services perform services that are both helpful to their customers and 

within the limits of the law. Legitimate test preparation courses teach to the subject matter 

covered by the examination. Using resources such as the exam’s published test specifications, 

the test preparation organization creates an educational curriculum designed to address topics 

and areas that appear on the exam. Although the educational curriculum may place most of its 

emphasis on particular topics that are addressed on the exam’s specifications, the focus of the 

education is on the underlying concepts being tested by items on the exam—not the exam’s 

items themselves.  

 However, other purported test preparation services operate illegally—using illicit means 

to gain inside information about the exam. Illegitimate test preparation courses teach directly to 

the test. Rather than focusing on underlying topics that are covered by the test specifications, 

they sell illegally-obtained live test items to test takers. Stolen items that are used for these 

purposes are referred to as exposed (or compromised) items. The methods used to steal the items 

vary. Some organizations collaborate with test takers and ask them to relay whatever information 

they can recall about the exam and its content. Sometimes, test preparation organizations send 

their own employees to the testing site for the sole purpose of memorizing as many items as 

possible. Regardless of how the stolen items were obtained, both of these forms of cheating—

using cheat sheets while taking the exam or taking an illegal test preparation course prior to 

sitting for the exam—can result in certain suspicious outcomes for examinees who use these 
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methods to gain an unfair advantage. When examinees have access to exposed items prior to 

taking the exam, their response patterns may be aberrant. 

Effects of aberrant responses on ability estimation in IRT. 

 In the following hypothetical scenario, two different examinees take a five-item test. The 

items on the test have item parameters listed in Table 2 and item response functions shown in 

Figure 5. 

 Based on the parameters for these five example items, items 1-5 can be described as 

generally being sorted in ascending difficulty (although some of the item response functions do 

intersect, it occurs at very low levels of θ). In parametric item response models, the likelihood 

function for an examinee’s θ parameter can be computed using the formula, 

ܮ  ൌ ෑ ௝ܲ௑ೕ ௝ܳଵି௑ೕ.௃
௝ୀଵ  (11)

where Pj represents the probability of a correct response to item j and Qj represents the 

probability of an incorrect response for item j, or 1 – Pj. As discussed before, the dichotomous 

item response, denoted Xj, is coded 1 for correct responses and 0 for incorrect responses. It can 

be seen that when item j is coded as correct, the outcome is jjjjj PQPQP ==− 01111 , and when item j 

is coded as incorrect, the outcome is jjjj QQQP ==− 1010 . Therefore, the likelihood function is the 

product of Pj for all items answered correctly and Qj for all items answered incorrectly. The 

maximum likelihood estimate (MLE) of θ, ߠ෠, occurs at the maximum of this function—or the 

point at which the first derivative of the function equals 0.  

 Because possible values of P and Q range between 0 and 1, multiplying P and Q across 

many items will result in extremely small products, which a computer may have difficulty 

representing accurately, so a log-likelihood function can be used instead to estimate ߠ෠ and avoid 
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computational issues with handling extremely small numbers. The log-likelihood function is 

defined as  

 ln ܮ ൌ ෍ ln ቂ ௝ܲ௑ೕ ௝ܳଵି௑ೕቃ .௃
௝ୀଵ  (12)

 Using the five-item test from Table 2, it can be easily illustrated how different 

combinations of item responses affect properties of the MLE of an examinee’s θ parameter. For 

example, two different examinees take this five-item test. Both examinees achieve number-

correct scores of 3 on the test, but examinee 1 answers the three easiest items correctly (items 1-

3), while examinee 2 answers the three most difficult items correctly (items 3-5). As will be 

shown shortly, the response pattern for examinee 1 is consistent with expectation under the IRT 

model, while the response pattern for examinee 2 is contrary to expectation, or aberrant. A log-

likelihood function for each examinee can be created using formula (12).  

 The log-likelihood function for the non-aberrant response string belonging to examinee 1 

is presented in Figure 6. As illustrated in this figure, a non-aberrant response vector results in a 

log-likelihood function that is peaked at the MLE for θ, with fairly sharp drop-offs in the 

function at other conditional values of θ.  

 The log-likelihood function for the aberrant response string belonging to examinee 2 is 

shown in Figure 7. Both examinees in this example answered three items correctly, but they 

differed in which items were answered correctly. As illustrated in these figures, examinees with 

aberrant response patterns have log-likelihood functions that are flatter than log-likelihood 

functions computed from non-aberrant response vectors. This example also shows that it can 

sometimes be unclear where the best estimate of the examinee’s ߠ level lies when a response 
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string is aberrant. In Figure 7, a local maximum occurs near the vicinity of θ = 0.5, but the log-

likelihood function is higher at large negative values of θ. 

 This simple example illustrates basic maximum likelihood estimation of θ in IRT, but 

there are also other parameter estimation techniques that make use of Bayesian methods and mix 

the log-likelihood function with a prior distribution to form a posterior distribution of θ (e.g., 

expected a posteriori [EAP], modal a posteriori [MAP]; Hambleton et. al 1991). Regardless of 

which particular estimation method is used, the presence of aberrant response patterns causes the 

function that is used to estimate ability to flatten when compared to a function computed from a 

data set with no aberrance present. 

Methods for Assessing Person-Fit 

 Model-fit is an integral and well-known component to statistical modeling. In factor 

analysis, for example, model-fit indicates how well the covariance matrix implied by the factor 

analysis model reproduces the observed covariance matrix obtained from the sample (Brown, 

2006; McDonald, 1999). When model fit is good, the implied covariance matrix is highly similar 

to the observed covariance matrix, and when model fit is poor, the implied covariance matrix is 

not very similar to the observed covariance matrix. In a broader sense, model-fit indicates the 

extent to which expectations as outlined in a particular statistical model align with the reality of 

what was observed in a sample. It is noteworthy that model fit provides a single indicator of the 

adequacy of the model for the entire sample.  

 The concept of person-fit, as its name implies, is similar to model-fit in that it provides an 

indication of the extent to which characteristics of observed data conform to expectations defined 

by a model; however, model-fit and person-fit differ greatly in scope. A model-fit statistic 

indicates how well a model fits the aggregated data. A person-fit statistic indicates how 
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reasonable one individual’s response pattern is, given some expectation—to be defined shortly. 

As mentioned before, a very large number of person-fit statistics have been developed, and 

person-fit statistics have been developed to be applied in a number of measurement frameworks. 

Because of the vast number of person-fit statistics in existence, not every person-fit statistic that 

has been developed and published will be discussed in this paper. Rather, each of the major 

groups of person-fit statistics will be discussed, and several of the most common and popular 

techniques within each group will be discussed. The two most commonly researched and applied 

classes of person-fit statistics are group-based techniques and IRT-based techniques. Also 

discussed in this paper are less commonly researched and applied—but relevant—techniques 

based on factor analysis and Bayesian estimation. 

Group-based person-fit. 

 As previously mentioned, all person-fit statistics more or less can be summarized as 

establishing the reasonableness of an individual’s response pattern by comparing the individual’s 

response pattern to some expected outcome. How the basis of expectation is formed is what 

separates the different types of person-fit statistics. Group-based person-fit statistics define 

expectation based on aggregate-level item characteristics estimated from the overall sample 

(Karabatsos, 2003). In general, group-based person-fit statistics classify response patterns as 

aberrant when items with proportion-correct (p) values near 0 tend to be answered correctly and 

items with p near 1 tend to be answered incorrectly (Meijer & Sijtsma, 2001). Of course, there is 

considerable variability in how each of these group-based person-fit statistics are calculated, but 

all involve comparing individual response patterns to response patterns belonging to other 

examinees to some extent—although some researchers have also recommended repeated-
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measures comparisons as well (Tatsuoka & Tatsuoka, 1983). Several of the most common 

group-based statistics are discussed in the following sections. 

The personal point-biserial correlation. 

 In the overview of classical test theory item analysis, the item-total correlation was 

discussed as an indicator of an item’s discrimination. A positive item-total correlation for a 

particular item indicates a positive relationship between item performance and overall exam 

performance—an outcome that is desirable in testing. Conceptually, the personal point-biserial 

correlation coefficient ( *
pbr ) can be thought of as the transpose of the traditional item-total 

correlation coefficient. With examinees represented as rows and items represented as columns in 

the data matrix, the item-total correlation represents the correlation between a particular column 

(i.e., responses for a single item) and a column comprised of row sums (i.e., total exam scores). 

Conversely, the personal point-biserial correlation coefficient represents the correlation between 

a row (i.e., an examinee’s complete response string) and a row comprised of items’ proportion-

correct values (Karabatsos, 2003; Meijer & Sijtsma, 2001). The term point-biserial correlation is 

used with this particular statistic because it was originally developed for use with tests comprised 

of dichotomous item responses. 

 The personal point-biserial correlation coefficient’s interpretation is relatively simple and 

straightforward. Negative values of *
pbr  indicate aberrant response patterns and positive values 

indicate response patterns that are consistent with expectation. Being a correlation coefficient, 

possible values for the coefficient range from +1 to -1. However, the actual range of observed 

values for this statistic will be attenuated to some extent when dichotomous item responses are 

used to calculate the correlation coefficient.  
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The caution index. 

 The personal point-biserial correlation coefficient holds a certain intuitive appeal: even 

psychometricians who are new to person-fit are familiar with the item-total correlation, and 

calculating a correlation between a string of item responses and a string of proportion-correct 

values makes sense. However, the issue of attenuation is a limitation. The caution index (C; Sato, 

1975) is similar to the personal point-biserial correlation coefficient in that the covariance 

between item responses and item difficulty indicators is estimated, but the caution index also 

incorporates Guttman pattern information into the formula. The caution index can be calculated 

as one minus the ratio of two covariances, 

ܥ  ൌ 1 െ covሺX, pሻcovሺX*, pሻ, (13)

where X is the observed response vector for a given examinee, *X  is a response vector 

containing  correct responses only for the easiest r items, and p represents the items’ proportion-

correct vector. When X is a perfect Guttman vector, *XX = , which results in an estimated value 

of 0 for C. As X becomes less like a perfect Guttman vector, C becomes larger (Meijer & 

Sijtsma, 1995). Although the caution index has a lower bound of 0, it has no upper bound. This 

limitation has led to the development a variation on this person-fit statistic: the modified caution 

index. 

The modified caution index. 

 The modified caution index (C*) alters the previously-discussed caution index to be 

calculated as 

כܥ  ൌ cov൫X*, p൯ െ covሺX, pሻcovሺX*,  pሻ െ covሺX', pሻ, (14)
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where X′  is a reverse Guttman vector containing correct responses only for the most difficult r 

items. This modification to the formula has the effect of limiting both the upper and lower limits 

of the statistic. Once again, when X  is a perfect Guttman vector, *XX = , which causes the 

numerator (and therefore the value of C*) to equal 0. When X  is a perfect reverse Guttman 

pattern, XX ′= , which results in the numerator and denominator being equal, thus resulting in 

C*equaling 1.  

The HT statistic. 

 The HT statistic (Sijtsma, 1986; Sijtsma & Meijer, 1992) is another group-based person-

fit statistic, but unlike C and C*, HT is not normed against the Guttman pattern (Meijer & 

Sijtsma, 2001). The HT statistic for examinee a is calculated as 

்ܪ  ൌ ∑ ∑௔௕௔ஷ௕ߪ ௔௕max௔ஷ௕ߪ . (15)

As shown in equation (15), the observed covariances between all pairs of examinees (indexed a 

and b here) are calculated and summed, and that value is divided by the sum of the maximum 

possible covariances between all pairs of examinees. For an exam comprised entirely of 

dichotomously-scored items, let βa represent the proportion of items answered correctly by 

examinee a. Let βab represent the proportion of items answered correctly by both examinee a and 

examinee b. The covariance of the two examinees’ response strings can then be computed as 

௔௕ߪ  ൌ ௔௕ߚ െ ௕, (16)ߚ௔ߚ

and assuming that examinee indices a < b imply that βa < βb, the maximum covariance between 

the two response vectors is 

௔௕maxߪ  ൌ ௔ሺ1ߚ െ ௕ሻ. (17)ߚ
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 Like the personal point-biserial correlation coefficient, a positive value of HT is indicative 

of a response vector that is consistent with other examinees’ response vectors and a negative 

value is indicative of an aberrant response vector. 

 In addition to person-fit assessment, HT has also been applied as a statistical test to 

determine whether or not nonparametric item response functions intersect (e.g., Sijtsma & 

Junker, 1996; Sijtsma & Meijer 1992). Such applications demonstrate the utility of this statistic, 

but a detailed discussion of HT applied for that purpose is beyond the scope of the current paper. 

IRT-based person-fit statistics. 

 As previously discussed in the overview of item response theory, the item response 

function relates the probability of a correct response at conditional ability levels. If person-fit is 

conceptualized as the extent to which an examinee’s response vector conforms with expectation, 

then the item response function provides a very useful tool to use in evaluating person-fit. Recall 

that the item response function represents the probability of a correct response at conditional 

values of θ. As an example, assume that a particular item on an exam has the following item 

parameters: a = 1.70, b = 0.00, c = 0.00, and a particular examinee has an ability level of θ = 

2.00. In this example, the examinee answers this item correctly. The item response function, with 

the examinee’s response also plotted, is illustrated in Figure 8. 

 Treating the line plotted by the item response function as the expected outcome and the 

point representing the response as the observed outcome, it is easy to see that for this particular 

item, a correct response is quite reasonable for an examinee with an ability level of θ = 2.00. As 

shown in Figure 9, it would be far less likely for an examinee with a lower ability level of  

θ = -2.00 to answer this same item correctly, as indicated by the distance between the plotted 

item response and the probability of success. 
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 Although not presented in graphical form here in this paper, it would also be easy to 

demonstrate that an incorrect response to this item would fall in line with expectation for an 

examinee with an ability level of θ = -2.00, and an incorrect response to the same item would be 

highly unexpected for an examinee with an ability level of θ = 2.00. Of course, actual person-fit 

assessment in IRT involves additional steps than what has been presented so far, but these simple 

examples illustrate how the item response function makes IRT a useful measurement framework 

to use when conducting person-fit assessment. The small selection of group-based person-fit 

statistics that were reviewed in the previous section used several different methods to establish 

the expected performance criterion: item difficulty, Guttman patterns, and consistency with other 

examinees’ response vectors. Item response theory has the expectation criterion component built 

in already.  

 IRT has proven to be a popular measurement framework in the person-fit research 

literature (e.g., Karabatsos, 2003), with a number of person-fit statistics having been developed 

for use with IRT. The log-likelihood (l0) person-fit statistic and the standardized log-likelihood 

statistic (lz), especially, have proven to hold enduring interest in the person-fit research literature. 

Those person-fit statistics will be discussed in next section. 

The l0 and lz statistics. 

  The l0 person-fit statistic (Levine & Rubin, 1979) is calculated using the formula, 

 ݈଴ ൌ ෍ሼ ௝ܺln ሾ ௝ܲሺߠሻሿ ൅ ൫1 െ ௝ܺ൯ lnൣ1 െ ௝ܲ ሺߠሻ൧ሽ௃
௝ୀଵ . (18)

This formula is a slightly altered version of formula (12), which was used to create the log-

likelihood function of the examinee’s ߠ parameter for the purpose of parameter estimation. As 

with formula (12), ln[Pj(ߠ)] is calculated for correctly-answered items, and ln[1 – Pj(ߠ)] is 
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calculated for incorrectly-answered items. Recall that 1 – Pj(ߠ) in formula (18) corresponds to Qj 

in formula (12). These values are then summed across all items to calculate l0. Aside from minor 

differences in notation, the only major difference between formula (12) and formula (18) is that 

formula (12) is calculated across a range of conditional ߠ values in order to create a function (see 

Figure 6), while in formula (18), Pj(ߠ) and 1 – Pj(ߠ) are computed at a single fixed value of ߠ: 

the examinee’s MLE, or ߠ෠, thus resulting in a scalar value of l0, as opposed to a function. 

Therefore, the l0 person-fit statistic can be described as the logarithm of the likelihood function, 

computed at the examinee’s MLE of ߠ (Meijer & Sijtsma, 2001). In their 1996 article, Drasgow, 

Levine, and Zickar assert that person-fit statistics based on information obtained from likelihood 

ratio tests are optimal from both the perspectives of Type I error and power. Some authors have 

classified IRT-based person-fit statistics into residual-based statistics and likelihood-based 

statistics: the l0 person-fit statistic is one that fits into both of these categories (Kogut, 1986). 

 The l0 statistic provides an intuitive basis for assessing person-fit. Because both Pj(ߠ) and 

Qj(ߠ) range between 0 and 1, taking the natural logarithm of any value between the upper and 

lower limits of the range will result in a negative value. Referring back to the example shown in 

Figure 8, when observed item responses are congruent with expected outcomes, Pj(ߠ) or Qj(ߠ) is 

a value close to 1. Taking the natural logarithm of a number close to 1 will result in a value that 

is close to 0. In an ideal scenario where Pj(θ) and Qj(θ) are equal to values extremely close to 1 

for all items that are answered correctly or incorrectly, respectively, l0 approaches its maximum 

possible value of 0. Conversely, when observed item responses are incongruent with expectation, 

Pj(θ) or Qj(θ) is a value closer to 0, which is illustrated in Figure 9. Taking the natural logarithm 

of a value that is near 0 results in a larger, negative value.  
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 Drawing together what has been previously discussed, it becomes clear why the l0 

statistic provides a sensible method for assessing person-fit. The more an examinee’s responses 

tend to be congruent with expectation, the closer l0 will be to 0. An examinee with responses that 

are incongruent with expectation will have an l0 statistic that is larger, in terms of absolute value, 

and negative. Although the l0 statistic is a scalar value and not a function, this discussion is 

consistent with what was previously noted about how log-likelihood functions differ overall for 

aberrant and non-aberrant response patterns. As illustrated in Figure 6, a log-likelihood function 

created from a non-aberrant response pattern will tend to be peaked, while a log-likelihood 

function created from an aberrant response pattern (as illustrated in Figure 7) will tend to be 

flatter. The maxima of the two functions will also vary, with a function associated with a non-

aberrant response pattern reaching a maximum closer to 0 than the maximum of a function 

created from an aberrant response pattern. By measuring the height of the log-likelihood function 

at ߠ෠, the l0 statistic provides an intuitive method of assessing the level of aberrance associated 

with a vector of responses. However, the l0 statistic has serious limitations that reduce its 

applicability.  

 The l0 person-fit statistic has two major limitations that have been identified in the 

research literature (Kogut, 1988; Meijer & Sijtsma, 2001; Molenaar & Hoijtink, 1990). First, it is 

not standardized. As a result of this limitation, classification of a particular response pattern as 

model-fitting or misfitting depends on ߠ. Second, in order to classify response patterns as 

misfitting, a distribution of l0 under the null hypothesis is required, but the null distribution of l0 

is unknown. 

 In response to these limitations, Drasgow, Levine, and Williams (1985) developed a 

standardized version of the l0 statistic: lz. This statistic is computed 
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 ݈௭ ൌ ݈଴ െ ሺ݈଴ሻඥvarሺ݈଴ሻܧ , (19)

where E(l0) and var(l0) are the expectation and variance of l0, respectively: 

ሺ݈଴ሻܧ  ൌ ෍൛ ௝ܲሺߠሻ lnൣ ௝ܲሺߠሻ൧ ൅ ൣ1 െ ௝ܲሺߠሻ൧ lnൣ1 െ ௝ܲሺߠሻ൧ൟ,௃
௝ୀଵ  (20)

and 

ሺ݈଴ሻݎܽݒ  ൌ ෍ ௝ܲሺߠሻൣ1 െ ௝ܲሺߠሻ൧ ቈln ௝ܲሺߠሻ1 െ ௝ܲሺߠሻ቉௃
௝ୀଵ

ଶ. (21)

 The lz statistic was initially purported to be asymptotically standard normally distributed 

(Drasgow et al., 1985). Because lz was believed to be standard normal, it was originally thought 

that it could be interpreted like a z score, with decisions regarding the relative aberrance of 

response patterns based on values from a z score table. However, researchers have since disputed 

this conclusion. Van Krimpen-Stoop and Meijer (1999) found evidence that lz is not normally 

distributed when used with computer adaptive tests. Several other studies have shown that lz may 

not be normally distributed when ߠ෠ is substituted for ߠ in computing the statistic (Nering, 1995; 

Schmitt, Chan, Sacco, McFarland, & Jennings, 1999) and its variance may be underestimated as 

well (Snijders, 2001). Nering reports that the lz statistic is closer to being normally distributed 

when ߠ is more accurately estimated. However, the skewness and kurtosis of the statistic’s 

sampling distribution were found to be generally problematic, as was the Type I error rate 

associated with cut-off values obtained from a z table. For these reasons, Nering recommends 

using empirically-derived cutoff values when assessing person-fit using lz, rather than uniformly 

applying a z table cut in all circumstances. 
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 In their 2007, study, Armstrong, Stoumbous, Kunk, and Shi found that detection power 

may also be greatly reduced when lz is calculated using the MLE of ߠ. This finding is not 

altogether surprising, because the examinee’s item responses are used in estimating ߠ෠. Therefore, 

cheating on the exam is likely to bias the examinee’s MLE of ߠ, which will also affect the 

estimate of lz. Of course, this problem is not limited to the lz person-fit statistic. Indeed, any 

person-fit statistic that makes use of some estimate of examinee ability from the empirical data is 

going to be affected by characteristics of the observed data (e.g., Emons, Meijer, & Sijtsma, 

2002). Ironically, Brown and Villarreal (2007) advocate using lz as a weighting function to 

correct biased estimates of ability that may arise when aberrant response patterns are present. 

Other research on this statistic has suggested employing corrections to the MLE of ߠ for 

unreliability prior to computing the lz statistic (de la Torre & Deng, 2008). 

IRT-based person response functions. 

 The item response function was previously introduced as an IRT plot relating the 

probability of success on a given item to examinee ability. At the conceptual level, the person 

response function (PRF) can be thought of as the transpose of the item response function. As 

shown in Figure 1, the IRF illustrates the probability of a correct answer as a function of ߠ and 

fixed item parameters, while the PRF illustrates the proportion of correctly-answered items as a 

function of item difficulty and a fixed person parameter (Emons, Sijtsma, & Meijer, 2004; 

Ferrando & Lorenzo, 2000; Sijtsma & Meijer, 2001). The PRF can also be applied to polytomous 

data obtained from personality inventories, for example (Ferrando, 2004). 

 A PRF is plotted using observed item responses. The exam’s J items are sorted in 

ascending difficulty order, (1 – π1) < (1 - π2) < … < (1 - πJ), and then grouped into G strata, with 

an individual stratum denoted Ag (indexed g = 1, 2, …, G). Each stratum consists of m = J / G 
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items (or some variant if J / G yields a remainder). The proportion of correctly-answered items 

within each stratum is plotted in a line chart. Emons, Sijtsma, and Meijer (2004) have shown that 

when an IRT model meets four important assumptions: (1) unidimensionality, (2) local item 

independence, (3) monotonicity, and (4) non-intersecting item response functions, the plotted 

person response function is expected to be a nonincreasing function. The first three assumptions 

are common assumptions for parametric IRT models, but the fourth assumption (non-intersecting 

item response functions) is met in parametric IRT only in the case of the Rasch (1-PL) IRT 

model, which constrains all IRF slopes to equality and all IRF lower asymptotes to equal 0.  

Because the IRFs in the Rasch model do not intersect, when comparing two items, b1 > b2 

implies that P1(ߠ) > P2(ߠ) for all ߠ. In addition to the Rasch model, nonparametric IRT models 

that meet the double monotonicity assumption can be used for assessing person-fit using PRFs as 

well (Emons Sijtsma, & Meijer, 2004). Person response functions that significantly depart from a 

nonincreasing appearance (i.e., PRFs that go back up for the strata that contain more difficult 

items) provide visual evidence of aberrance in the response vector.  

 Two examples of person response functions, adapted from Emons, Sijtsma, and Meijer 

(2005), are shown in Figure 10 and Figure 11. Both figures are examples of discrete person 

response functions. The term discrete is used here because some researchers have advocated 

taking an additional step and applying kernel smoothing to the discrete person response function 

as well (e.g., Emons, Sijtsma, & Meijer, 2004, 2005). No smoothing is applied to the person 

response functions illustrated in this paper.  

 Both Figure 10 and Figure 11 illustrate person response functions for examinees who 

took a test with items that were grouped into 9 strata. Figure 10 is an example of a person 

response function generated from a non-aberrant response vector. The person response function 
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is monotonically decreasing, indicating that the examinee’s performance declines as the 

difficulty of the items increases. This outcome is consistent with expectation, which will be 

explained in greater detail shortly.  

 Figure 11 is an example of a person response function that was generated from an 

aberrant response vector. In this example, the examinee’s performance steadily declines across 

the first 7 strata, but performance improves for strata 8 and 9—the strata comprising the most 

difficult items on the exam—which is contrary to expectation.  

 Although a visual inspection of an examinee’s observed performance across strata may 

provide useful diagnostic information regarding person-fit, a comparison of observed 

performance to some representation of expected performance would likely prove helpful in 

assessing the level of a response vector’s aberrance. A clearly aberrant person response function, 

such as the example illustrated in Figure 11, is quite easy to identify without any comparison to 

an expected level of performance necessary. However, assessing a PRF for a response vector that 

is less obviously aberrant becomes problematic when relying on a visual interpretation of 

observed performance alone. For example, in Figure 11, the examinee answered 60% of items in 

stratum 8 correctly and 70% of items in stratum 9—an obvious departure from the percentage of 

correct answers observed in stratum 7 (40%) and the observed downward trend across strata 1-7. 

However, if the examinee had instead answered 45% of items in stratum 8 and 50% of items in 

stratum 9 correctly, the final determination regarding the aberrance of the response vector 

becomes less clear. Although the person response function would indeed no longer be 

monotonically decreasing in that situation, judging whether or not the PRF significantly diverges 

from expectation enough to indicate a problematic level of response vector aberrance is difficult 
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without additional information. Therefore, it becomes necessary to define a level of expected 

performance for each stratum to serve as a basis for comparison for observed performance. 

 According to Emons, Sijtsma, and Meijer (2004), the expected proportion of correct 

answers for a given examinee to items in stratum Ag is equal to 

 ߬௚ ൌ ݉ିଵ ෍ ௝ܲሺߠሻ.௝א஺೒  (22)

Assuming an IRT model with no intersecting item response functions (e.g., the Rasch model) is 

being used, ordering items in ascending difficulty order implies that for each examinee, 

 ݉ିଵ ෍ ௝ܲሺߠሻ ൒ ݉ିଵ௝א஺೒ ෍ ௝ܲሺߠሻ,௝א஺೒శభ  (23)

for all ߠ. For the G strata, it also follows that 

 ߬ଵ ൒ ߬ଶ ൒ ڮ ൒ ߬ீ, (24)

for all ߠ. Therefore, a nonincreasing person response function is expected, with stratum-level 

expected values computed using equation (22). 

 Comparing observed and expected proportion-correct scores within each stratum allows 

for a detailed visual person-fit assessment to be conducted. If an observed PRF is found to 

increase over one or more strata, for example, the observed proportion correct values for the 

strata can be compared to their respective expected values. Expected values across strata are not 

necessarily expected to fall into a neat, 45-degree downward slope; the only constraint imposed 

on expected values is that they are nonincreasing, but the rate at which expected values decrease 

may change across some strata, depending on the characteristics of the items and the examinee’s 

ability level. Comparing observed proportion-correct values to expected proportion-correct 

values across strata provides additional valuable information when conducting a visual person-fit 

assessment of an examinee’s response vector. 
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 A related technique that has been used to assess person-fit in conjunction with person 

response functions incorporates multilevel logistic regression (e.g., LaHuis & Copeland, 2007; 

Reise, 2000; Woods, 2008). As described by Woods (2008), with this method item- and person 

parameters are estimated from a set of item responses using an IRT model. Next, item responses 

are regressed onto item difficulty, 

 log ቆ ௝௜1݌ െ ௝௜ቇ݌ ൌ ܾ଴௜ ൅ ܾଵ௜ߚ௝
ܾ଴௜ ൌ ଴଴ߛ  ൅ ଴௜ ܾଵ௜ݑ ൌ ଵ଴ߛ ൅  ,ଵ௜ݑ

(25)

where the first row in (25) represents Level 1 of the two-level logistic regression model and the 

second and third rows represent Level 2. Examinees are indexed i and items are once again 

indexed j. In equation (25), pji represents the probability that examinee i correctly answers item j, 

βj is the difficulty parameter for item j, ߛ଴଴ and ߛଵ଴ are Level 2 intercepts, and ݑ଴௜ and ݑଵ௜ are 

error terms.  

 Woods (2008) explains that significant heterogeneity in the person response function 

slope (b1i) is taken as an indication that person-fit varies significantly over individuals and may 

be poor for some. If this outcome is found, Woods recommends employing empirical Bayes 

methods (Snijders & Bosker, 1999, pp. 58-63) to estimate individual person response function 

slopes. 

 Each of the previously-discussed person-fit statistics provides a single scalar value for 

use in assessing the aberrance of an examinee’s response vector. The added benefit of using a 

person response function is that it provides several pieces of person-fit information across the 

entire range of examinee’s response string. Nering and Meijer (1998) recommend using a 

traditional scalar person-fit statistic as an initial screening tool to flag aberrant response patterns, 
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and then creating person response functions for flagged examinees for diagnostic purposes. 

Considering the item response pattern characteristics thought to coincide with various test-taker 

behaviors (see Table 1; Meijer, 1996), the researcher can use a person response function to gain 

insight into possible explanations as to why a particular examinee’s response pattern was 

classified as aberrant, thus saving time and resources by targeting follow-up only for examinees 

that have response patterns that (1) are flagged as aberrant and (2) match a particular pattern of 

interest. 

 A related concept that makes use of person response functions is differential person 

functioning (DPF). Much like a person response function can be conceptually thought of as the 

transpose of an item response function, differential person functioning can be conceptually 

thought of as the transpose of differential item functioning (Johanson & Alsmadi, 2002). 

Differential item functioning (DIF) occurs when two or more groups of examinees who are 

matched on ability are found to have differential probabilities of success on a particular item. For 

example, groups may be formed based on some demographic variable that is of interest, and then 

examinees are matched across groups based on their ability levels. If the item appears to be 

significantly easier for one of the matched groups, the item is exhibiting DIF. Differential person 

functioning assessment is similar to DIF assessment, with the main difference being that 

assessment is conducted for one examinee at a time, and performance is assessed across different 

groups of items.  

 As described in Johanson and Alsmadi (2002), much of the methodology used to assess 

DPF is identical to what was previously described regarding the construction of person response 

functions. Once again, items are ordered by difficulty and then grouped into G strata. However, 

DPF assessment includes an additional step where items are broken down into two groups: the 
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focal group and the reference group. The groups may be comprised of particular content domains 

or perhaps item types (e.g., recognizing or recalling concepts vs. applying them). Items from 

each group are matched on difficulty and placed into G strata. A person response function may 

be plotted, with a different line plotted for each group of items. A technique such as this is 

especially useful for performing a visual assessment of aberrance due to subabilities (Meijer, 

1996). 

Factor-analytic techniques for assessing person-fit. 

 Although classical test theory and item response theory are by far the most popular 

measurement frameworks in the person-fit research literature, a small number of studies have 

explored aberrant response pattern detection using factor analysis. Reise and Widaman (1999) 

proposed an FA-based person-fit statistic that is based on partitioning overall model fit down to 

the individual’s level. At the model level, the fit function can be related to the log-likelihood of 

the model parameters given the data, 

ܮܮ  ൌ െሺܰ ൈ ெ௅ሻܨ / 2. (26)

The authors go on to state that the log-likelihood value can be partitioned to determine a given 

examinee’s contribution. Equation (27) gives the log-likelihood of the model at the level of the 

examinee: 

 ௅ܲ௅ ൌ െ 12 ሾܬ lnሺ2ߨሻ ൅ ln|઱כ| ൅ ሺ܆ െ ܆ଵሺିכሻ઱ۻ െ ሻሿ, (27)ۻ

where *Σ  is the reproduced covariance matrix, and M is a vector of sample means. The left side 

of the equation is constant for all individuals, and the right side is the Mahalanobis squared 

distance formula and varies across examinees (Comrey, 1985; Reise & Widaman, 1999). 

 In discussing this statistic, Reise and Widaman (1999) report that small negative values 

indicate good person-fit, while large negative values indicate poor person-fit, but a direct 
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conditional standardization of this statistic is not offered. However, the authors offer a method 

that is more objective and standardized than simply comparing values of PLL among examinees. 

Using equation (27), values of PLL are computed for both a saturated and substantive model, and 

then -2 is then multiplied by the difference in log likelihoods between the two models. The 

authors interpret this value as the individual examinee’s contribution to the overall model chi-

square, which the authors denote INDCHI. Large, positive values of INDCHI are indicators of 

individuals whose response vectors are making larger contributions to overall model misfit.  

 Ferrando (2007) proposed person-fit techniques that are described in his article as factor-

analytic counterparts to the familiar IRT-based l0 and lz statistics. The context of the study was 

assessing individual response vectors comprised of J personality items. In the article, Ferrando 

states that a single latent trait is assumed to underlie an instrument made up of graded response 

format items. As previously shown, an individual’s response to item j can be represented in the 

factor analytic framework as a sum of item difficulty (µj), the product of the item’s factor 

loading, (λj) and the examinee’s factor score (ߠ), and the unique component (εj). According to 

Ferrando, the conditional distribution of responses for a fixed ߠ is assumed to be normal, with a 

mean µj + λjθ and variance 2
jεσ . The lco scalability index, which Ferrando described as the 

factor-analytic counterpart to IRT’s l0 person-fit index, is calculated, 

݋݈ܿ  ൌ ෍ ቈ ௝ܺ െ ௝ߤ െ ఌೕߪߠ௝ߣ ቉ଶ ,௃
௝ୀଵ  (28)

where the maximum-likelihood estimate of the examinee’s factor score is estimated by Bartlett’s 

weighted least-squares formula (Ferrando, 2007),  
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ሻܮܯ෠ሺߠ  ൌ ∑ ௝൫ߣ ௝ܺ െ ∑ఌೕଶ௃௝ୀଵߪ௝൯ߤ ఌೕଶ௃௝ୀଵߪ௝ଶߣ . (29)

The lco person-fit statistic could be characterized as a sum of squared naïve standardized 

residuals (Bollen & Arminger, 1991). Standardized residuals like this have been used for other 

testing issues as well, such as applications involving response time (Ferrando & Lorenzo-Seva, 

2007). When ߠ෠ is substituted for θ in equation (28), the distribution of individual lco values 

across respondents is expected to be χ2 with J – 1 degrees of freedom (Ferrando, 2007). In 

comparing lco with l0, Ferrando (2007) notes two important differences between the statistics. 

First, the lco statistic is referred to the χ2 distribution, whereas the l0 statistic is asymptotically 

referred to the normal distribution (due to the central limit theorem, l0 is expected to approach a 

normal distribution as the number of items increases). Second, because the l0 index is a log-

likelihood, large, negative values indicate misfit, while lco is a minimum chi-square, so large, 

positive values indicate misfit. 

 Ferrando (2007) writes that an ideal person-fit index should satisfy three criteria: (1) it 

should have reference values so it can be interpreted, (2) it should be independent of test length, 

and (3) it should be independent of trait levels (i.e., able to detect misfitting response patterns 

equally well at all trait levels). The lco index meets conditions (1) and (3), but fails to meet 

condition (2), because the length of the test changes the sampling distribution of the statistic via 

changes in degrees of freedom. In response to this limitation, Ferrando (2007) proposed an FA 

counterpart to the IRT lz person-fit statistic, lcz, which uses a normal approximation to the χ2 

distribution, 

ݖ݈ܿ  ൌ ݋2݈ܿ√ െ ඥ2ܬ െ 3. (30)
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 The lcz statistic is referred to a standard normal distribution, so it is interpreted as a z 

score (Ferrando, 2007). As was the case with the l0 and lco statistics, signs are once again 

reversed when comparing the lz and lcz statistics. Large, negative values of lz indicate person-

level misfit, and large, positive values of lcz indicate misfit. 

 In his follow-up article, Ferrando (2009) generalized the lco and lcz person-fit statistics 

for models with K estimated latent factors. The multidimensional lco person-fit index, M-lco, is 

computed 

ܯ  െ ݋݈ܿ ൌ ෍ ෍ ቈ ௝ܺ െ ௝ߤ െ ఌ௝ߪ෠௠௞ߠ௝௞ߣ ቉௃
௝ୀଵ

௄
௞ୀଵ

ଶ. (31)

Like its unidimensional counterpart, the M-lco person-fit statistic follows a χ2 distribution with 

J – K degrees of freedom. Ferrando also developed a standardized version of the M-lco statistic, 

ܯ  െ ݖ݈ܿ ൌ ܯ2√ െ ݋݈ܿ െ ඥ2ሺܬ െ ሻܭ െ 1. (32)

Similar to the unidimensional lcz statistic, M-lcz is expected to follow a standard normal 

distribution. 

Other methods used to assess person-fit. 

 In addition to the previously-described techniques that have been used to evaluate person-

fit, there are several other methods that have received some attention in the research literature. 

Although these person-fit techniques are somewhat less common than the group-based and IRT-

based person-fit statistics, they warrant a brief mention in a discussion of person-fit assessment. 

Bayesian techniques. 

 As previously mentioned in the discussion of IRT parameter estimation, some IRT 

estimation routines make use of Bayesian methods by mixing the log-likelihood function with a 

prior distribution (Hambleton et. al 1991). However, methods such as these rely predominately 
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on maximum likelihood methods for parameter estimation. The Bayesian component 

incorporating the prior distribution is included as an additional step that is added to the 

maximum likelihood estimation procedure by mixing the prior distribution with the log-

likelihood function. IRT models can also be fit to data using a fully Bayesian estimation 

procedure, with numerous draws repeatedly taken from a posterior distribution using a Markov 

Chain Monte Carlo (MCMC) procedure (e.g., Glas & Meijer, 2003; Hendrawan, Glas, & Meijer, 

2005; Kim & Bolt, 2007). Person-fit assessment performed as part of MCMC estimation is 

incorporated by way of posterior predictive checks. 

 According to Hendrawan et. al (2005), the posterior distribution of parameters for an IRT 

model is simulated using the MCMC method. This step estimates the probability of the item 

parameters given the data, p(ξ | y), where ξ represents the person and item parameters and y 

represents the observed data. Next, person-fit is assessed using a posterior predictive check based 

on the index T(y, ξ), where T is an IRT-based person-fit statistic. Once the chain has converged, 

draws from the posterior distribution are used to generate model-conforming data, yrep, and to 

compute the Bayes p value, 

 Bayes ݌ value ൌ Pr ሺܶሺݕ୰ୣ୮, ሻߦ ൒ ܶሺݕ, ሻ. (33)ݕ|ሻߦ

For every saved iteration, the T(y, ξ) person-fit statistic is computed, a new model-conforming 

response pattern is generated, and a value T(yrep, ξ) is computed. The Bayes p value is computed 

as the proportion of iterations where T(yrep, ξ) ≥ T(y, ξ).  

Cumulative sum statistics. 

 Cumulative sum (CUSUM) statistics take a slightly different approach than the other 

common person-fit statistics. Rather than compute a scalar value that is meant to be interpreted 

as an indicator of the degree of aberrance for an overall response pattern, CUSUM statistics are 
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designed to detect aberrance that occurs over a segment of an exam. In general, CUSUM 

statistics work as follows: the statistic is initialized at 0 and accumulates as aberrant responses 

occur over the course of the exam. When a non-aberrant response is provided, the CUSUM 

statistic resets back to 0 and begins to re-accumulate again when aberrant responses are 

provided. Meijer (2002) used a CUSUM procedure that has an upper statistic, ܥ௝௎, and a lower 

statistic, ܥ௝௅. These statistics are initialized, ܥ଴௎ ൌ ଴௅ܥ ൌ 0, and accumulate across items, 

௝௎ܥ  ൌ max൛0, ௝ିଵ௎ܥ ൅ ௝ܺ െ ሻൟ, (34)ߠ௝ሺ݌

and 

௝௅ܥ  ൌ min൛0, ௝ିଵ௅ܥ ൅ ௝ܺ െ ሻൟ. (35)ߠ௝ሺ݌

 Armstrong and Shi (2009) explain that if expectation is defined by an item response 

model, then non-aberrant responses are represented as pj(ߠ) and the measure of aberrance is Xj – 

pj(ߠ). Therefore, positive and negative values will accumulate over the course of the exam for 

non-aberrant examinees, but they will average around 0. Aberrant response behavior would be 

characterized by a high number of positive or negative deviations over a segment of the test.   

 Variations to Meijer’s (2002) method for computing CUSUM statistics have been 

developed (e.g., Armstrong & Shi, 2009), but all of the techniques in this family of person-fit 

indices utilize the same basic approach of accumulating the person-fit statistic over responses. 

Armstrong and Shi (2009) claim that one potential drawback of traditional person-fit indices is 

that they do not make use of item sequencing information in their computation. The authors 

claim that a run of positive (or negative) deviations on the exam can be counter-acted by a 

similar run of negative (or positive) deviations later on the exam, which will result in an 

examinee being characterized as non-aberrant if a traditional person-fit statistic is used, whereas 

a CUSUM method may be more likely to flag the examinee as aberrant on the basis of the string 
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of concurrent aberrant responses. Of course, in more advanced testing settings, such as 

computer-based testing with scrambled presentation order, the CUSUM approach may have less 

applicability. For example, if two examinees of equal ability levels have access to the same 

subset of exposed items and then they each take scrambled versions of the same form, a CUSUM 

approach is likely to yield different results for each examinee, depending on how and where the 

exposed items appear on their respective forms. For this reason, a CUSUM approach is best used 

on a fixed test form, where order is consistent for all examinees. 

Research Methodologies Used by Investigators in Person-Fit Research 

Simulation studies. 

 As expected, much of person-fit research uses simulated data. Using simulated data 

affords the researcher an opportunity to exercise full control over the characteristics of the data 

and the response patterns under investigation. Although it is generally true in all circumstances 

in which a statistic is being investigated or developed that retaining direct control over the data 

that are used in the investigation is beneficial, incorporating simulated data is especially 

important in the context of person-fit research.  

 Meijer (1996) illustrated how different examinee behaviors result in various 

manifestations in the individual’s response vector. However, as Meijer explained, sometimes two 

different examinee behaviors may result in similar response pattern manifestations. For example, 

if most of the difficult items on the exam come from one particular content domain and most of 

the easiest items come from a different content domain, the response pattern obtained from an 

examinee who has strong knowledge of the difficult content domain but deficient knowledge of 

the easier content domain may appear very similar to a response string obtained from an 

individual who cheated on the exam and answered a higher-than-expected proportion of difficult 
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items correctly. Although both scenarios may ultimately result in aberrant response vectors, 

which may furthermore appear similar to one another, the underlying cause for the aberrance 

differs greatly. If understanding and identifying aberrant response patterns that result from 

various kinds of examinee behavior is of primary interest to the researcher, data simulation 

provides the best method for ensuring that aberrance is not attributed to an incorrect underlying 

cause. 

 If the underlying cause of aberrant response patterns is of less importance to the 

researcher than simply making an accurate assessment of issues such as hit- and error rates for a 

person-fit statistic, then data simulation remains the method of choice when designing a research 

study. A researcher who simulates all data for an investigative person-fit study not only 

maintains control over the general characteristics of simulated items and participants, but the 

researcher can also control factors such as the number, type, and degree of aberrant response 

patterns within the simulated data sets. Because the researcher has simulated all data in the study 

and has knowledge of which patterns were simulated to be aberrant, it is easy to draw 

conclusions about issues such as power, and Type I and Type II error rates when investigating 

person-fit using simulated data. 

 Many person-fit studies that utilize simulated data have used item response theory for 

data simulation (e.g., Armstrong & Shi, 2009; Karabatsos, 2003; Woods, 2008).  The use of item 

response theory in data simulation is not surprising, given the prevalence of IRT methodologies 

in person-fit research. However, regardless of whether or not IRT methodologies are used in the 

actual person-fit data analysis, IRT models provide a useful and intuitive framework for 

simulating item response data.  
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 The steps for simulating data using IRT are quite simple and can be summarized rather 

succinctly as a series of steps. In the first step, a particular IRT model is chosen for data 

simulation. In the second step, the researcher chooses population-level values for both person- 

and item parameters. Once the person- and item population parameters have been chosen, they 

are treated as known, and expected success probabilities (conditional on each simulated 

examinee’s true ߠ value) are generated for all items. In the case of simulating dichotomous item 

response, a random draw is pulled from a uniform distribution [0, 1] and compared to the 

expected probability for each cell in the data set. If the random draw is less than or equal to the 

expected probability of success given the population-level person- and item parameters, the item 

response is coded 1; if the random draw is greater than the expected probability of success, the 

item response is coded 0.  

 This procedure for simulating dichotomous item responses can easily be generalized to be 

appropriate for polytomous data as well. Using an IRT model for polytomous data (e.g., the 

graded response model), person- and item parameters are simulated and treated as known. For 

each item response, a random draw is pulled from the uniform distribution. The random draw is 

compared to boundaries for the possible score categories, and the value of the random draw 

determines which score will be simulated on the item. 

 The IRT model is especially useful for simulating item responses because it provides an 

easy and intuitive method for generating data that conform to specifications at both the person- 

and item level. Over repeated sampling using the same person- and item parameters, the 

proportion of correct answers to each item will approach the expected proportion, as defined by 

the person- and item parameters, but including random draws from the uniform distribution 

ensures that data simulation remains a random process. The final step in the simulation process 
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involves identifying a subset of simulated examinees and recoding their responses to make them 

aberrant.  

 When simulating cheating behavior, researchers often begin by simulating model-fitting 

data from an IRT model and then identify a subset of simulated examinees to be identified as 

cheaters and a subset of items to be identified as exposed. Most often, the researcher selects a 

subset of very difficult items to be simulated as exposed (e.g., Hendrawan, Glas, & Meijer, 2005; 

Karabatsos, 2003; Meijer, 2003). The researcher alters item responses where cheaters encounter 

exposed items. Karabatsos (2003) simply imputed correct answers wherever a cheater 

encountered an exposed item, while Meijer (2003) imputed correct responses with a fixed 

success probability of 0.90 for cheaters on exposed items while Hendrawan, Glas, and Meijer 

(2005) used a fixed success probability of 0.80. 

 Studies have varied in manipulating the proportion of exposed items and/or cheaters in 

data sets. For example, Hendrawan, Glas, and Meijer (2005) varied the proportion of exposed 

items in their conditions (1/6, 1/3, or 1/2 of the exam) but all of their conditions had a fixed 

percentage of cheaters set at 10% throughout. Conversely, Karabatsos (2003) varied the 

percentage of cheaters across conditions (5%, 10%, 25%, or 50% of examinees) but the 

percentage of exposed items was fixed at 18%. In all of these cases, the cheaters and exposed 

items are fixed across replications within each condition. 

Empirical studies. 

 In developing and investigating person-fit statistics, some researchers have elected to 

base their studies—in whole or in part—on empirical data obtained either from study participants 

or database records (e.g., Armstrong & Shi, 2009; Brown & Villarreal, 2007; Comrey, 1985; 

Emons, Sijtsma, & Meijer, 2005, Reise & Widaman, 1999). With established person-fit statistics, 
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such studies can be helpful in assisting researchers to better understand how these various 

person-fit assessment techniques behave with real—often messy—data obtained from actual 

people. Empirical studies are beneficial to furthering research on person-fit because they provide 

an opportunity to assess characteristics of person-fit statistics when applied to more realistic data 

sets. However, in most situations with empirical data, the identity of cheaters and exposed items 

is not known by the researcher, so conclusions regarding power and error rates can be difficult to 

reach. 

Method 

 The overarching goal of this study was to investigate the utility of a new application of 

existing person-fit statistics for detecting cheating. Specifically, this study was undertaken to 

explore the applicability of Ferrando’s factor-analytic lco and M-lco (2007, 2009) statistics in a 

novel model comparison approach for cheating detection. With rare exceptions, such as Woods 

(2008), cheating is not often discussed or conceptualized in the literature as a multidimensional 

phenomenon. In a unidimensional test design where raw exam scores are assumed to be directly 

influenced by the examinee’s underlying ߠ level, once the common underlying trait has been 

accounted for, item responses should be fully independent for all examinees. However, if some 

examinees take the exam with prior knowledge of a subset of exposed items, then a 

unidimensional factor structure would not be adequate for these examinees on these exposed 

items. Rather, I posit that the factor structure for these individuals on the exposed items becomes 

multidimensional, where the second factor that emerges on these exposed items will account for 

covariance among these exposed items due to prior exposure. 

 To date, no researchers have studied cheating in the multidimensional context that is 

explored in this paper. As previously mentioned, Woods (2008) discussed cheating as a 
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multidimensional phenomenon, but that study used multilevel logistic regression as opposed to 

the factor analytic technique that I use in the present study. Drasgow, Levine, and McLaughlin 

(1991) discussed person-fit in the context of a multidimensional test, but cheating was not one of 

the underlying dimensions in that study. Rather, their study was focused on tests that were 

designed to be multidimensional from a content perspective—or a multidimensional test 

consisting of independent, unidimensional subtests. Similarly, Ferrando’s (2009) M-lco statistic 

has so far been researched using only data that are expected to be multidimensional: personality 

inventories comprised of items designed to assess multiple, distinct constructs, for example. I 

investigated a new application of Ferrando’s person-fit statistics for data that come from an exam 

that was designed and intended to be unidimensional.  

 If cheating violates the unidimensionality of exposed items for cheaters, then this 

violation of unidimensionality should be systematic and detectable at the examinee level by 

comparing person-fit computed by a one-factor model with person-fit computed by a two-factor 

model, with expectation being that the two-factor model should fit significantly better at the 

person level for cheaters. I investigated a new method for assessing person-fit, where one- and 

two-factor models are fit to item responses.  

 The lco and M-lco person fit statistics follow a χ2 distribution with J – K degrees of 

freedom (Ferrando, 2007, 2009). For each examinee, lco from the one-factor model and M-lco 

from the two-factor model were computed and person-fit was assessed using χ2 difference tests. 

A significant χ2 difference test was taken as indication that an individual’s response pattern is 

aberrant and was not adequately represented by the unidimensional model. Two simulation 

studies were conducted to investigate this new technique. 
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Simulation Study 1 

 The first simulation study was conducted for the purposes of assessing Type I error rates 

for the statistics used in this study. Polytomous item responses with score categories ranging 

between 0 – 4 were generated from the graded response model using the program WinGen (Han, 

2007). Population parameters were drawn from the following distributions: ߠ ~N(0, 1), a ~U(0.5, 

2.0), and b ~N(0, 1). A total of 2,000 replicated data sets were generated in this simulation study, 

with each generated data set consisting of 25 items and 1,000 simulated examinees.  

 The test length and number of score categories used in the present study were chosen 

based on Ferrando’s 2009 article, which was the first study to use the M-lco statistic. Ferrando 

(2009) used test lengths with 10, 18, and 24 items, and all items had score categories ranging 

from 0 – 4. One item was added to Ferrando’s longest test length so the test length would be an 

odd number, which would eventually facilitate some aspects of item exposure simulation to be 

discussed in the next section. No systematic misfit was introduced at any point in the data 

generation process during this simulation study. 

 Following data generation, the 2,000 replicated data sets were analyzed using R, version 

2.10.1. (R Development Core Team, 2009). For each replicated data set, a one-factor exploratory 

factor analysis model was fit to the data using R’s built-in ML exploratory factor analysis 

procedure: factanal. As recommended by Ferrando (2007, 2009), factor scores were estimated 

using Bartlett’s method. The lco and lcz person-fit statistics were computed for each simulated 

examinee using the factor scores and parameter estimates obtained from the one-factor model. 

Next, a two-factor exploratory factor analysis model was fit to the data. Oblique target rotation 

was used in the two-factor model, with the target matrix consisting entirely of 1s in the first 

column and 0s in the second column. Once again, factor scores in the two-factor model were 
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estimated using Bartlett’s method and M-lco was computed for each simulated examinee. 

Changes in person-fit between the one-factor- and two-factor models were assessed by 

computing the lco difference: lco – M-lco. Because the lco difference should be distributed χ2 

with df = 1, any response pattern resulting in an lco difference greater than 3.841 was flagged as 

aberrant. The lcz statistic that was calculated for the one-factor model is expected to follow a 

standard normal distribution, and poor person-fit is indicated by large, positive values of lcz, so 

any simulated examinee with a response pattern resulting in an lcz value greater than 1.645 was 

flagged. Factor loadings from the one-factor model and rotated factor loadings from the two-

factor model were also aggregated across replications. 

 This process was repeated for all 2,000 replicated data sets in the first simulation study. 

The number of simulated examinees flagged as aberrant based on the criteria described in the 

previous paragraph were used to calculate Type I error rates for the lcz statistic and the lco 

difference. For each person-fit method, approximately 5% of all simulated examinees were 

expected to be flagged as aberrant based on these criteria. Because data were simulated to be 

unidimensional and no items were simulated to be exposed in this study, no consistently strong 

loadings on the second factor were expected to be found. 

Simulation Study 2 

 The second simulation study took the methodology employed in the first simulation study 

and extended it by adding several manipulations to the procedure. As in the first study, 

polytomous item responses ranging between 0 – 4 were simulated from the graded response 

model using WinGen (Han, 2007). The same person- and item parameters were employed in the 

second simulation study, and each simulated data set once again consisted of 1,000 simulated 

examinees and 25 items. However, in the second study, additional manipulations were performed 
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on the item responses prior to fitting factor analysis models to the data. The second simulation 

study took the form of a 3 × 4 design, where the manipulated conditions were number of 

simulated cheaters (10, 50, 100, or 250 out of 1,000) and number of exposed items (3, 7, or 13 

out of 25). 

 Cheaters were selected as follows: all 1,000 simulated examinees were sorted in 

descending order to true ability level such that the simulated examinee with the highest true 

ability level was located in row 1 and the simulated examinee with the lowest true ability level 

was located in row 1,000. In each condition, cheaters were selected from three ranges within the 

bottom half of the ability distribution: approximately one-third of cheaters were selected from 

the range of ability just below the distribution’s mid-point, approximately one-third were 

selected from the bottom of the ability distribution, and the remaining approximate one-third 

were selected from the mid-point between those two ranges. For example, in the conditions in 

which 10 cheaters were present, the following simulated examinees (designated by row number) 

were selected to serve as cheaters: 501-503, 749-752, and 998-1,000.  

 Exposed items were selected from three ranges of difficulty. Items were sorted in 

descending order of difficulty, with difficulty judged by the true b parameter associated with the 

highest score category of Xj = 4. Approximately 1/3 of the exposed items were the easiest items 

on the exam, approximately 1/3 of the exposed items were near the mid-point of the difficulty 

range, and approximately 1/3 of the exposed items were the most difficult items on the exam. For 

example, in the condition in which 7 items were exposed, the following items (designated by 

column number) were selected to serve as exposed items: 1-2, 12-14, and 24-25. 

 Once all cheaters and exposed items had been selected, item responses were manipulated. 

In each condition of the study, cheaters and exposed items were identified, and cheating was 
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simulated in cells in the data matrix in which cheaters encountered exposed items. In these cells, 

cheaters were assigned a 0.80 probability of achieving the maximum possible score of 4 on 

exposed items, regardless of the examinee’s true ability level or the item’s true difficulty level. 

All subsequent analyses in the second simulation study were identical to the methodology 

described for the first simulation study. 

Results 

Simulation Study 1 

 All factor analysis models in the first simulation study converged successfully. On 

average, both methods had Type I error rates that slightly deviated from the nominal 0.05 level. 

The lcz person-fit statistic’s Type I error rate was somewhat conservative. The overall Type I 

error rate for lcz across all replications was equal to 0.040. Conversely, the lco difference method 

had a Type I error rate that was somewhat inflated, with an overall error rate of 0.071.  

 A cursory review of Type I error rates across the range of simulated examinee ability 

levels indicated that error rates may vary as a function of examinee ability level, so this was 

investigated further. Simulated examinees were sorted in ascending order of true ability and then 

grouped into 10 ability strata, each of which contained 100 simulated examinees. Type I error 

rates were aggregated across the 100 simulated examinees grouped within each stratum. Type I 

error rates for each ability stratum are reported in Table 3, and Figure 12 graphically illustrates 

the relationship between Type I error rate and examinee ability level. Both methods have 

conservative Type I error rates for examinees with very low ability levels (i.e., stratum 1) and 

very high ability levels (i.e., stratum 10), and both methods have inflated Type I error rates for 

examinees who are have near-average ability levels (i.e., strata 5 and 6). However, on average 

the lcz person-fit statistic’s Type I error rate was lower than expected, with Type I rates for 6 out 
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of 10 examinee ability strata less than the 0.05 level, and the lco difference method’s Type I 

error rate was higher than expected, with Type I rates for 8 out of 10 strata greater than the 0.05 

level. 

 A summary of factor loading is provided in Table 4. Loadings from the one-factor model 

appear under the FA 1 heading, and loadings from the two-factor model appear under the FA 2 

heading. Loadings onto the second factor were somewhat higher than anticipated, given that data 

in this study were simulated to be unidimensional and model-fitting. However, no 

overwhelmingly strong evidence of multidimensionality was found, with loadings onto the 

second factor ranging between 0.135 and 0.194. The factors in the two-factor model had a 

correlation of -0.644. The higher-than-expected loadings onto the second factor and the factor 

correlation will be addressed in greater detail in the Discussion section. 

Simulation Study 2 

 All factor analysis models in the second simulation study converged successfully. A 

summary of the proportions of correctly-identified cheaters and the proportions of incorrectly-

identified non-cheaters based on the flagging criteria outlined in the Method section is provided 

in Table 5. As reported in this table, the lcz person-fit statistic was most successful when 13 out 

of 25 items (or 52% of the exam) were exposed and 10 out of 1,000 examinees (or 1%) were 

cheaters, achieving a detection rate of 0.668 in this condition. Detection rates for lcz in other 

conditions in this study generally ranged from moderate to poor. The lco difference method was 

most successful in detecting cheating when 13 out of 25 items were exposed and 50 out of 1,000 

examinees (or 5%) were cheaters, achieving a detection rate of 0.878 in this condition. Detection 

rates for the lco difference method were generally better than what was observed for the lcz 

statistic, but there were some conditions—most notably those in which (1) very few items were 
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exposed, and (2) there were either very few or very many cheaters present—in which detection 

rates for the lco difference method were also quite poor.  

 As illustrated in Figure 13 for lcz and Figure 14 for the lco difference method, detection 

rates generally improved with increased proportions of exposed items for both techniques. 

However, the impact of the number of cheaters differed for each method. As illustrated in Figure 

15, the lcz person-fit statistic was most powerful in the condition with the fewest number of 

cheaters, where only 10 out of 1,000 (or 1%) of examinees were cheaters. Detection rates for lcz 

declined as more cheaters were added to the data set. The relationship between detection rate and 

number of cheaters was somewhat more complex for the lco difference method. As illustrated in 

Figure 16, detection of simulated cheaters with this method was most successful when moderate 

amounts of cheaters (i.e., 5% or 10% of examinees) were present in the data set, and detection 

rates were poorer when very few or very many cheaters were present.  

 Detection rates for the two methods will be compared in two different contexts: number 

of exposed items and number of cheaters. The line graphs shown in Figure 17 through Figure 20 

compare detection rate performance across levels of item exposure, with each individual graph 

corresponding to a particular cheating condition. As illustrated in Figure 17, when only 1% of 

examinees are cheaters, the lcz method performed as well or better than the lco difference 

method at all investigated levels of item exposure. However, Figure 18 through Figure 20 show 

that the lco difference method consistently detected more cheaters than the lcz statistics across all 

levels of item exposure when 5% or more of examinees are cheaters. Next, the line graphs shown 

in Figure 21 through Figure 23 compare detection rate performance across cheating conditions, 

with each graph corresponding to a particular level of item exposure. These figures reinforce that 

when very few cheaters (i.e., 1% of examinees) are present in a data set, the lcz method performs 
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as well or better than the lco difference method. However, the lco difference method outperforms 

lcz when more cheaters are present, regardless of the number of exposed items. 

 Factor loadings for the second simulation study are shown in Table 6 through Table 8. In 

conditions where only 1% of examinees were cheaters, the exposed items’ loadings onto the 

second factor were not particularly noteworthy when compared to the non-exposed items’ 

loadings on this factor. However, in the conditions in which at least 5% of examinees were 

cheaters, exposed items’ loadings onto the second factor began to differ from the non-exposed 

items’ loadings, with exposed items loading more strongly than the non-exposed items onto the 

second factor in the two-factor model. As would be expected, in the conditions in which 3 or 7 

items are exposed, the exposed items’ loadings onto the second factor generally increase when 

more cheaters are present in the data set. In the final four conditions of this study, in which 52% 

of the exam is exposed, loadings onto the second factor change dramatically when compared to 

the other eight conditions of the study. When more than half of the exam has become exposed 

and 5% or more examinees are cheaters, the role of the second factor changes, with the exposed 

items now loading weakly onto the second factor and the non-exposed items loading more 

strongly onto this factor. Across all conditions, the factor correlations from the two-factor 

models ranged between -0.456 and -0.745, with 9 out of the 12 conditions in this study resulting 

in a factor correlation for the two-factor model between -0.6 and -0.7.  

Discussion 

 The results of these two studies highlight some of the promise and several important 

limitations of the lco difference method for assessing person-fit. One of the most notable 

apparent strengths of the lco difference method, when compared to a traditional person-fit 

statistic like lcz, is that the lco difference method remains powerful when more than just a few 
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cheaters are present in a data set. In fact, the lco difference method appears to reach its highest 

levels of power for detecting cheating when a moderate number of cheaters are present. This 

outcome is not altogether surprising, given that success in identifying cheaters using the lco 

difference method is dependent upon the factor analysis model’s ability to extract a second factor 

when cheating has occurred. It seems reasonable to conclude that a second (cheating) factor is 

more likely to emerge when at least a moderate proportion of examinees are cheaters. 

Conversely, the lcz statistic’s power appears only to diminish as more cheaters are added to the 

data set. However, in conditions in which very few cheaters were present, the simulation study 

results indicate that the lco difference method is no more effective than the lcz statistic. In 

conditions where only 1% of examinees were cheaters, the lcz person fit statistic performed as 

well or slightly better than the lco difference method. The difference in how the proportion of 

cheaters relates to the effectiveness of each method is reflective of the different approaches the 

two methods take to evaluating person-fit.  

 As previously discussed, all person-fit statistics essentially amount to comparing a vector 

of observed item responses to their expected values, given some model, and estimating the extent 

to which observed performance differs from expected performance. However, when many 

cheaters are present in a data set, their better-than-expected performance on the exposed items 

affects the exposed items’ parameter estimates. This makes the exposed items appear to be easier 

than they really are, which in turn causes the cheaters’ correct answers to the exposed items to 

appear less aberrant, thus reducing the gap between observed and expected performance for these 

cheaters on the exposed items and reducing a person-fit statistic’s power to detect cheating.  

 For this reason, a person-fit statistic such as lcz is most effective when very few of the 

examinees are cheaters. As more cheaters are added to the data set, their influence on the item 
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statistics has the net effect of making the cheaters more difficult to detect. The results of the 

second simulation study support my assertion that a traditional person-fit statistic like lcz loses 

power as more cheaters are added to a data set. Performance for the lcz person-fit statistic 

declined as more cheaters were added to the data set. Because the lco difference method also 

involves comparing observed performance to expected performance, it also loses power when a 

very large proportion of examinees are cheaters, but this method remains relatively effective 

when small-to-moderate proportions of cheaters are present while the lcz method’s effectiveness 

for detecting cheating drops off considerably when more than a few examinees are cheaters. 

 One of the factors that drew me to investigate the lco difference method for investigating 

person-fit was the potential for using loadings as a diagnostic indicator of item exposure. The 

person-fit research literature is largely focused on identifying individuals who have aberrant 

response patterns, but no effort is made to identify the exposed items that contribute to the 

response pattern’s aberrance. This may be due—wholly or in part—to the aforementioned 

common practice in much of the person-fit simulation research to limit simulation of exposed 

items to the most difficult items on the exam. However, in real-world testing situations, exposure 

may not be limited to the most difficult items on an exam, so a tool for identifying exposed items 

would be very useful for a test administrator conducting an investigation. A factor-analytic 

technique such as the lco difference method holds promise because it may be useful for 

identifying both cheaters and exposed items. 

 The factor loading results were somewhat mixed. Loadings may be useful tools for 

identifying exposed items, but this occurs only when two conditions have been met: first, at least 

a moderate proportion of examinees (i.e., 5% or more) are cheaters; and second, less than half of 

the items are exposed. If a small proportion of examinees are cheaters, or if more than half of the 
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items on the exam have been exposed, factor loadings may be less useful or possibly even 

misleading for this use. When very few cheaters are present, loadings for the exposed items are 

indistinguishable from loadings for the non-exposed items on the second factor. In situations in 

which more than half of the exam’s items are exposed, an investigation based solely on factor 

loadings may lead to the incorrect conclusion that the non-exposed items have been exposed, 

because their factor loadings onto the second factor become much stronger than the loadings for 

the exposed items. 

 To investigate the use of rotated factor loadings further, I performed a small-scale follow-

up investigation and fit the two-factor model to data sets across several conditions using oblique 

quartimin rotation. In terms of utility for identifying exposed items, quartimin-rotated factor 

loadings fared no better or worse than the oblique target rotation that was reported in this paper. 

Two apparent differences between the two rotation methods were observed, however.  

 The first major difference between rotation methods was the effect of the rotation method 

on the pattern of the loadings. When target rotation was applied to factor loadings in conditions 

where at least a moderate proportion of examinees were cheaters and less than half of the items 

were exposed, exposed items generally manifested themselves by having strong loadings onto 

both the first and second factor  in the two-factor model, while non-exposed items only loaded 

strongly onto the first factor. Given the target matrix that was used for the two-factor models in 

this study, this outcome would be expected. In the two-factor model, the target matrix specified 

strong loadings for all items onto the first factor. When quartimin rotation was used in these 

conditions, exposed items loaded strongly onto the second factor only, while non-exposed items 

loaded strongly onto the first factor only. In the simulation study conditions where at least 

moderate proportions of examinees were cheaters and less than half of the items were exposed, 
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exposed items were easy to identify regardless of which rotation was used, but they manifested 

themselves differently depending on the rotation method. In the study conditions with very few 

cheaters, all items loaded strongly onto the first factor and had mostly weak loadings onto the 

second factor regardless of rotation method, but loadings onto the second factor tended to be 

closer to zero when quartimin rotation was used. However, neither rotation method appeared to 

be noticeably better-suited for detecting exposed items in this condition. In study conditions with 

more than half of the items exposed, target rotation resulted in strong loadings onto both factors 

for non-exposed items and strong loadings onto the first factor only for exposed items, while 

quartimin rotation resulted in strong loadings onto the second factor only for non-exposed items 

and strong loadings onto the first factor only for exposed items. When more than half of the 

items on an exam are exposed, an investigator using either rotation method likely would arrive at 

the wrong conclusions when flagging exposed items based on factor loadings. 

 The other major difference between the two oblique rotation methods is the effect of the 

rotation method on the estimated factor correlation. The strong factor correlations that were 

found in the first simulation study were unexpected. Data in the first study were simulated to be 

unidimensional, so the second factor in the two-factor model was not expected to have a strong 

correlation with the first factor. A short follow-up investigation revealed that the stronger-than-

expected factor correlations that were observed in the first study likely were byproducts of the 

target rotation method that was used. Factor correlations in the first simulation study tended to be 

much closer to zero when quartimin rotation was used. When quartimin rotation was applied to 

factor loading matrices from a sample of data sets across conditions in the second simulation 

study, factor correlations were generally weaker in conditions with 10 or 250 cheaters, with 

absolute values generally ranging between 0.00 – 0.30. In conditions with 50 or 100 cheaters, 
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factor correlations obtained from quartimin rotation were much stronger, with absolute values 

generally ranging between 0.50 – 0.80. 

Limitations 

 The results of this study show that this new method for assessing person-fit holds promise 

and warrants further investigation. However, both the new person-fit technique proposed in this 

paper and the research methodology that was used to investigate it have limitations that bear 

mentioning. These limitations will be addressed in the following sections. 

Limitations of the lco difference method. 

 In developing the lco and M-lco person-fit statistics, Ferrando (2007, 2009) asserts that 

these statistics follow a χ2 distribution with degrees of freedom equal to J – K. If this is true, then 

their difference should be distributed χ2 with df = 1 when comparing the difference of lco from a 

one-factor model with M-lco from a two-factor model. Furthermore, if M-lco and lco are 

indicators of model fit evaluated at the level of the individual, fit should never decrease when 

adding an additional factor to the model. Recall that with these statistics, large values are 

indicative of poor fit, so if a one-factor model and a two-factor model are both fit to the same 

data set, then subtracting the two-factor model’s M-lco statistic from the one-factor model’s lco 

statistic for a given examinee should always yield a positive value. However, this was not always 

the case in the simulation studies presented in this paper. The distribution of the lco difference 

from Study 1, in which no cheaters or other sources of systematic model misfit were included, is 

shown in Figure 24. As illustrated in this figure, a small amount of these lco – M-lco difference 

values are negative. Taken at face value, this outcome would seem to imply that the two-factor 

model fits worse for some individuals than the one-factor model, but this is not likely to be the 

case with these examinees. 
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 Most of the negative lco difference values are large enough that they cannot be dismissed 

as mere cases of rounding error; some observed lco difference values approach -2. Prior to 

investigating further, the computational methods employed in this study were reviewed and 

verified. All statistics from this study were calculated exactly as described by Ferrando (2007, 

2009), thus ruling out the possible explanation that these negative lco difference methods are due 

to computational errors. These occasionally-negative lco difference values, taken with the 

slightly inflated observed Type-I error rate for the lco difference method, indicate that the 

sampling distribution for the lco difference method may not follow a χ2 distribution as well as 

might be expected. Similarly, the lcz statistic may deviate from the normal distribution 

somewhat. The distribution of lcz, shown in Figure 25, appears to have a slight negative skew 

(recall that negative values of lcz indicate good person-fit and positive values indicate poor 

person-fit), and the observed Type I error rate for lcz was slightly below the expected 0.05 level.  

 One possible explanation for these observations is that using estimated person- and item 

parameters may alter the sampling distributions for these statistics somewhat. As previously 

discussed in the Introduction, several researchers (e.g., Nering, 1995; Schmitt, Chan, Sacco, 

McFarland, & Jennings, 1999) have found that the IRT-based lz person-fit statistic’s sampling 

distribution deviates from N(0, 1) when ߠ෠ is substituted for ߠ in calculating the statistic. If lco 

and lcz are the factor-analytic counterparts to IRT’s l0 and lz person-fit statistics, then it is 

possible that the sampling distributions for these factor-analytic person-fit statistics also may 

deviate from their expected sampling distributions when estimates are used in place of true 

parameters to calculate these statistics. 
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Limitations of the research methodology. 

 When designing this study, I purposefully limited the amount and type of misfit that was 

introduced into the data. Because the purpose of this study was to test a new technique, I chose to 

generate model-fitting data, and the only source of systematic misfit in the data was created by 

the simulated cheating behavior. Introducing population model misfit—such as other sources of 

multidimensionality beyond cheating, for example—into the methodology of this study likely 

would have resulted in data sets that more closely resembled data observed in real-world testing 

contexts. Data as “clean” as those used in this study are unlikely to be obtained when 

administering a real-world test to real-world examinees. Other systematic sources of misfit—

such as multidimensionality and non-independent errors, for example—may show up in such 

data sets, but those other sources of misfit were not simulated in the present study.  

 Using data that have unrealistically good model fit (aside from misfit introduced by 

cheating) somewhat limits the generalizability of the results of this study. The reader is 

encouraged to consider the rather ideal qualities of the data used in this study and interpret the 

reported detection rates with an appropriate degree of caution. In a real-world application of this 

method, detection rates may be somewhat lower than the rates reported in this study due to the 

influence of potential sources of model misfit other than cheating. Because this study was the 

first to use this new method, I elected to utilize fairly ideal simulated data mainly for the 

purposes of establishing best-case scenario performance levels for the lco difference method. 

Had more realistic (i.e., messier) data sets been used in this study and performance of the lco 

difference method been found to be poor, it would have been difficult to determine if the poor 

performance was due to deficiencies in the lco difference method or due to the level of misfit in 



62 

the data. In this early stage of development for this technique, the present study has established 

that this method may have utility for detecting cheating in certain conditions.  

 Another limitation of this study that bears discussion is the method that was used to 

simulate cheating behavior. One of the methodological goals of this study was to investigate the 

performance of person-fit statistics under more realistic conditions of item exposure, namely, by 

allowing more than just the most difficult items on the exam to be exposed; however, I make no 

claims that the cheating simulation methodologies that were employed in the present study were 

without fault. Each simulated cheater had a 0.80 probability of success on each exposed item. A 

success probability that was less than 1 was chosen to incorporate an element of random error 

into the simulation. This ensured that all cheaters would have a high success probability on each 

exposed item, but these simulated cheaters occasionally would answer some exposed items 

incorrectly as well. Although a 0.80 probability of success for cheaters on exposed items 

sometimes has been used in past person-fit research (e.g., Hendrawan, Glas, & Meijer, 2005), 

this value is admittedly arbitrary. Reasonable arguments could be made for employing a higher 

or lower success probability. Also, in certain rare instances, assigning a 0.80 success probability 

has the potential to disadvantage a cheater with a moderate ability level on an easy exposed item, 

because the cheater’s model-implied probability of success may be greater than 0.80. 

Furthermore, by applying the same success probability to all cheaters across all exposed items, I 

make the somewhat unreasonable implicit assumption that it is equally easy to cheat on all of the 

exposed items, and all cheaters are equally capable of successfully cheating. Although I would 

suggest that including exposed items from a broader range of difficulty was an important first 

step toward more a more realistic simulation of item exposure in studies like this, additional 
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steps could have been taken to strengthen the fidelity of the item exposure simulation even 

further. 

Future Research 

 The results of this study indicate that further investigation of the lco difference method is 

warranted. The present study has shown the lco difference method performs similarly well 

compared to the lcz method when few cheaters are present, and the lco difference method 

appears to be more powerful than lcz when larger proportions of cheaters are present. However, 

many issues need to be explored further in future research on this method, and several of the 

most salient issues will be discussed here. 

 Differences in the Type-I error rates should be considered when comparing the cheating 

detection rates for the lco difference method and the lcz person-fit statistic. The results of the 

present study indicate that further research on the sampling distributions for the lco difference 

method and the lcz person-fit statistic are necessary. Traditional cut-off values based on the χ2 or 

normal distributions may not always be appropriate for these person-fit techniques. Additional 

research on the sampling distributions of these statistics is necessary. 

 Factor loadings may hold some value as diagnostic tools for identifying exposed items, 

but clearly this particular area needs further investigation and development. In certain 

circumstances, factor loadings may be useful indicators of exposed items. However, the present 

study demonstrated that in some situations, loadings are less useful or even misleading. Further 

investigation into the behavior of factor loadings in the presence of cheating would be an 

informative and valuable contribution to the research literature on this topic. Future research 

devoted to investigating other methods (e.g., OLS) and other rotation methods may provide 

valuable contributions to this research field.  
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 Although using the lco difference method as a means to identify cheaters amongst the 

examinees was the main focus of the present study, some additional investigating was performed 

on the factor loadings. A histogram displaying the distribution of loadings onto the second factor 

across replications for one exposed item is shown in Figure 26. More specifically, this 

distribution of factor loadings comes from item 12 from the condition with 7 exposed items and 

50 cheaters in the dataset. As seen in this figure, the vast majority of the loadings onto the second 

factor across replications were large and positive, although some replications had weaker 

loadings or even large, negative loadings. The distribution of loadings for the same item, but in 

the condition with 7 exposed items and only 10 cheaters, is displayed in Figure 27. As shown in 

this figure, loadings were widely dispersed across replications when fewer cheaters were present, 

and on average, loadings tended to be smaller than what was observed in the condition with more 

cheaters. 

 Future research on aberrant response pattern detection may benefit from more realistic 

simulation of cheating behavior. As previously discussed, the method used in the present study 

essentially assumed that all cheaters were equally able to cheat, and that all exposed items were 

equally easy for cheaters to answer correctly. However, this may not be a very realistic 

representation of real-world cheating behavior. It is more likely that some individuals are more 

capable cheaters than others and some exposed are easier for cheaters to answer correctly. Future 

studies in person-fit would be well-served by incorporating distributions for cheaters and 

exposed items. 

 Another topic for future lco difference research is applying a model comparison method 

similar to the one employed in this study to dichotomous data. Applying the statistical 

methodologies employed in the present study to dichotomous data adds certain complications, 
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due to the complexities of calculating unstandardized factor loadings and uniquenesses for 

dichotomous items. Another area that holds potential for this line of research is comparing 

changes in person-fit across IRT models of varying complexity (e.g., change in person-fit going 

from a unidimensional IRT model to a multidimensional IRT model). Regardless of which 

measurement framework may be used in future research, extending model comparison person-fit 

methods presented in this study to dichotomously-scored items may provide a valuable 

contribution to person-fit research, given the prevalence of tests comprised entirely of 

dichotomously-scored items. 

Conclusion 

 This dissertation investigated a new technique for conceptualizing and measuring person-

fit. Findings indicate that under the right set of circumstances, cheating can be detected by 

measuring changes in person-fit through factor-analytic model comparison. Questions arise 

about the sampling distribution of the statistic that has been proposed, and further research on 

this matter is warranted.  
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Table 1 
Aberrant Item Score Patterns on a Fictitious 12-Item Test (Meijer, 1996) 

 Item 
Behavior 1 2 3 4 5 6 7 8 9 10 11 12 
Sleeping 0 0 0 1 1 1 1 1 1 1 0 1 
Guessing 1 1 1 1 0 0 1 0 0 0 0 1 
Cheating 1 1 0 1 0 1 0 0 0 1 1 1 
Alignment Errors 1 1 1 1 1 0 1 1 0 0 0 0 
Plodding 1 1 1 1 1 1 0 0 0 0 0 0 
Extreme Creativity 0 0 0 0 1 1 1 1 0 1 1 1 
Deficiency of Subabilities 0 0 1 0 1 1 1 0 1 1 1 0 
π .90 .85 .83 .82 .57 .55 .50 .49 .30 .25 .21 .15
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Table 2 
Item Parameters for a Hypothetical Five-Item Test (Hambleton et. al 1991) 

 Item 
Parameter 1 2 3 4 5 
a 0.67 1.00 1.14 1.34 1.27 
b -2.00 -0.59 0.15 0.59 1.19 
c 0.01 0.20 0.15 0.15 0.10 
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Table 3 
Type I Error Rates Across Ability Strata for Simulation Study 1 

Stratum lcz lco Difference 
1 0.004 0.031 
2 0.022 0.060 
3 0.043 0.078 
4 0.061 0.087 
5 0.071 0.093 
6 0.070 0.095 
7 0.061 0.090 
8 0.043 0.080 
9 0.022 0.064 
10 0.005 0.035 

Overall 0.040 0.071 
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Table 4 
Factor Loadings for Simulation Study 1 

FA 1 FA 2 
Item F1 F1 F2 

1 0.495 0.628 0.160 
2 0.438 0.572 0.161 
3 0.658 0.822 0.182 
4 0.553 0.702 0.178 
5 0.593 0.748 0.178 
6 0.269 0.380 0.135 
7 0.510 0.654 0.172 
8 0.480 0.618 0.171 
9 0.292 0.405 0.139 
10 0.310 0.427 0.146 
11 0.600 0.761 0.187 
12 0.567 0.727 0.187 
13 0.559 0.713 0.185 
14 0.519 0.663 0.172 
15 0.481 0.624 0.179 
16 0.325 0.446 0.152 
17 0.300 0.418 0.145 
18 0.501 0.645 0.173 
19 0.674 0.847 0.193 
20 0.612 0.768 0.178 
21 0.665 0.838 0.194 
22 0.546 0.696 0.178 
23 0.610 0.774 0.189 
24 0.466 0.600 0.164 
25 0.541 0.693 0.184 
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Table 5 
Detection Rates and Type I Error Rates for Simulation Study 2 

Exposed 
Items 

lcz Rates lco Difference Rates 
Condition Cheaters Detection Type I  Detection  Type I 

1 3 10 0.184 0.038 0.162 0.070 
2 50 0.105 0.033 0.600 0.044 
3 100 0.064 0.031 0.569 0.033 
4 250 0.033 0.034 0.272 0.062 
5 7 10 0.615 0.037 0.497 0.067 
6 50 0.447 0.028 0.854 0.036 
7 100 0.201 0.023 0.776 0.031 
8 250 0.027 0.032 0.453 0.093 
9 13 10 0.668 0.036 0.654 0.066 
10 50 0.557 0.024 0.878 0.035 
11 100 0.454 0.017 0.781 0.032 
12 250 0.201 0.014 0.470 0.086 
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Figure 1 

Example 3-PL Item Response Function 
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Figure 2 

Example Item Response Function With Both Pj(ߠ) and Qj(ߠ) Shown 
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Figure 3 

Cumulative Category Response Function for Graded Response Model 
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Figure 4 

Score Category Response Function for Graded Response Model 
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Figure 5 

Item Response Functions for Five Example Items 
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Figure 6 

Log-Likelihood Function for a Non-Aberrant Response Pattern 
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Figure 7 

Log-Likelihood Function for an Aberrant Response Pattern 
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Figure 8 

IRF With an Item Response That Is Consistent With Expectation 
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Figure 9 

IRF With an Item Response That Is Less Consistent With Expectation 
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Figure 10 

Person Response Function for a Non-Aberrant Response Vector 
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Figure 11 

Person Response Function for an Aberrant Response Vector 
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Figure 12 

Type I Error Rates for lcz and lco Difference Across Examinee Ability Strata 
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Figure 13 

Detection Rates for lcz Across Numbers of Exposed Items 
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Figure 14 

Detection Rates for lco Difference Method Across Numbers of Exposed Items 
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Figure 15 

Detection Rates for lcz Across Numbers of Cheaters 
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Figure 16 

Detection Rates for lco Difference Across Numbers of Cheaters 
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Figure 17 

Comparison of Detection Rates for Conditions With 10 Cheaters 
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Figure 18 

Comparison of Detection Rates for Conditions With 50 Cheaters 
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Figure 19 

Comparison of Detection Rates for Conditions With 100 Cheaters 
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Figure 20 

Comparison of Detection Rates for Conditions With 250 Cheaters 
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Figure 21 

Comparison of Detection Rates for Conditions With 3 Exposed Items 
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Figure 22 

Comparison of Detection Rates for Conditions With 7 Exposed Items 

 

  

0 50 100 150 200 250

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Simulated Cheaters

P
ro

po
rti

on

lcz
lco difference



103 

Figure 23 

Comparison of Detection Rates for Conditions With 13 Exposed Items 
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Figure 24 

Distribution of lco Differences Across Replications When No Cheaters Are Present 
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Figure 25 

Distribution of lcz Across Replications When No Cheaters Are Present 
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Figure 26 

Distribution of Factor Loadings for Item 12: Condition With 7 Exposed Items and 50 Cheaters 
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Figure 27 

Distribution of Factor Loadings for Item 12: Condition With 7 Exposed Items and 10 Cheaters 
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