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Abstract 

Response time has been regarded as an important source for investigating the relationship 

between human performance and response speed. It is important to examine the relationship 

between response time and item characteristics, especially in the perspective of the relationship 

between response time and various factors that affect examinee’s responses. The purpose of this 

study was to examine different scoring models using response time data in conjunction with item 

response models. In this study distinctive response time models incorporated in IRT were 

compared, and the relationship between item characteristics and examinee ability as well as 

response time were examined using real and simulated data.  

Bayesian estimation using Markov Chain Monte Carlo (MCMC) methods for Thissen’s 

(1983) lognormal response time model, Wang and Hanson’s (2005) 4PL RT model, and van der 

Linden’s (2007) hierarchical framework were applied to the investigation of response time on 

real data. Overall, van der Linden’s (2007) hierarchical framework showed the most reasonable 

outcomes from the real data analysis when it was compared with the 4PL RT and Thissen’s 

models. Compared with Wang and Hanson’s (2005) 4PL RT model in the simulated data 

analysis, the hierarchical framework also showed better results as follows: (1) better recoveries 

in item and examinee parameter, (2) reasonable explanations in delineating relationships between 

response time and other related parameters in the model. There were no clear relationships 

among speed-related parameters across the models when the relationships between the response 

time-related parameters were investigated across the response time models. This was due to the 

different definitions and different parameterization procedures of the speed-related parameters 

based on the response time model.  
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Chapter 1.   Introduction 

 

Statement of Problem 

Response time on items in a computer–based test enables researchers to study examinees’ 

responses further in test settings and provides valuable information. Response time data allow 

understanding of examinee behavior from data–based perspectives not previously feasible, and 

illustrate the important role that these investigations can play in test development, administration, 

and validation (Schnipke & Scrams, 2002; Zenisky & Baldwin, 2006). Response time has been 

one of many popular topics in traditional psychological measurement, investigating the 

relationship between human performance and response speed. Although using response time data 

is not fully developed in the educational measurement field, it is valuable in understanding human 

behavior in test settings. It is important to examine the relationship between response time and 

item characteristics, especially in the perspective of the relationship between response time and 

various factors that affect examinees’ responses. 

Response time and test performance have been studied in various ways. Schnipke and 

Scrams (2002) enumerated the related areas in the measurement field such as scoring models 

using response time data in conjunction with response data, speed–accuracy relationships, strategy 

usage, speededness, pacing, predicting finishing times and setting time limits, and subgroup 

differences. Because several areas are interrelated and quite different perspectives exist depending 

on the situation, it is not easy to consider only one area without considering the rest. For example, 

Gulliksen (1950) pointed out two factors of the tests and contrasted power and speed tests. In 

traditional psychological measurement, response speed and accuracy have been regarded as 
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interchangeable concepts as accepted in the speed test. However, in the power test situation, speed 

theoretically is not a related concept; accuracy is independent from response speed. Likewise, 

speed–accuracy (speed–ability) trade–off and scoring models using response time data also have 

quite different perspectives when they are applied to speed tests from when they are applied to the 

power test situation. 

Most major standardized achievement tests are power tests, which indicate the goal of 

testing is to measure how accurately examinees respond to the item rather than how quickly they 

finish the item. In reality, most tests contain both speed and power components, requiring an 

assessment of speededness (Rindler, 1979). However, the amount of speededness in operational 

testing has been underestimated prior to the research on speededness using response time in 

computer–based testing (Oshima, 1994; Schnipke, 1995; Schnipke & Scrams, 1996). Most tests 

have multiple choice items, no penalty for incorrectly responded items, and restricted time limits. 

Therefore, rapid guessing behavior, especially at the end of testing, may be easily attempted by the 

examinees. The effects of speededness and rapid guessing behavior are highly evident in terms of 

measurement accuracy. Undetected speededness affects erroneously estimation procedures of item 

characteristic parameters and examinee true ability parameter (Oshima, 1994). Various research 

studies have been conducted on speededness by investigating aberrant behaviors (e.g., Schinipke, 

1995), strategy usage (e.g., Bontempo & Julian, 1997; Gitomer, Curtis, Glaser, & Lensky, 1987), 

estimating optimal time to solve the items (e.g., Bridgeman & Cline, 2004), and moderated effort 

(e.g., Wise & DeMars, 2006). Although each study has indicated a different approach in terms of 

its focus and design, these studies all contribute to the construction of a nomological validity 

network for the effect of response time in computer–based testing (Cronbach & Meehl, 1955; 
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Messick, 1981). 

The most commonly observed examinee behavior in testing is accuracy on test items. 

Although it is not always directly reflected, the score, an examinee receives on the test, is based on 

their accuracy. Likewise, most psychometric research has focused on scores in some form 

(Schnipke & Scrams, 2002). Given the primary interest in test scores and the possible effect of 

speededness, researchers have tried to develop models that use response time in the scoring 

process (e.g., Roskam, 1987, 1997; Thissen, 1983; van der Linden, 2007; Verhelst, Verstralen, & 

Jansen, 1997; Wang & Hanson, 2005). Several models have been proposed differing in terms of 

the assumed response time distributions, the assumed relationship between ability and response 

speed, and the nature of items for which the model was designed. van der Linden (2006) 

categorized these models under two distinct approaches: modeling response time in the framework 

of an item response theory (IRT) and separate models for response time and response for the item. 

He also stated that, for the educational assessment field, it is pertinent to adopt a response time 

model integrated in the framework of IRT.  

Thissen’s model (1983) is one of the oldest models using response time, and has a 

lognormal distribution of the response time on an item with a two–parameter logistic (2PL) IRT 

structure. This model has person speed and item speed parameters with a time interpretation. The 

2PL IRT response component is regressed on the response time and indicates two sources of 

relationships: (a) response time and examinee ability, (b) response time and item difficulty. 

Similarly, Wang and Hanson (2005) proposed the 4PL IRT response time model, which has an 

examinee and an item slowness parameter in the typical 3PL IRT model. Those two models tried 

to reflect two different components of examinee data from testing settings. In addition, van der 
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Linden (2007) proposed a hierarchical modeling framework consistent with the previous two 

traditions. This model has two separate response and response time models as first level models 

and the integrated model of their parameters as a second level. Therefore it can be possible to 

estimate response time and response models independently at the first level as well as identify the 

relationships between two separate models. More specifically, this hierarchical framework can 

distinguish the following levels: (1) the within–person level, at which the value of the person 

parameters are allowed to change over time (e.g., due to a change of strategy or external 

conditions); (2) the fixed–person level, at which the parameters remain constant; and (3) the level 

of a population of fixed persons, for which there is a distribution of parameter values across 

persons (van der Linden, 2007). van der Linden’s (2007) hierarchical framework enables one to 

locate the sources of variability between examinee ability and response time as well as item 

characteristics and response speed. 

 

Purpose 

The purpose of this study is to compare two different scoring models using response time 

data in conjunction with item response models. Various scoring models incorporating response 

time have been proposed. However, there are not many studies comparing different orientations on 

the response time and item response model. Most of the studies using response time models have 

been focused on model fit to the given data. Although it is not easy to compare models which are 

founded on different theoretical bases, it is worthwhile considering the potential benefits of using 

response time information in educational assessment. The results from the analysis of response 

time allow us to devise appropriate scoring models, secure test validity under the threats of various 



5 
 

factors affecting the assumptions of unidimensional IRT, and further examine human behavior in 

various test settings.  

In this study distinctive response time models incorporated in IRT were compared, and the 

relationship between item characteristics and examinee ability as well as response time were 

examined using real and simulated data. Bayesian estimation using Markov Chain Monte Carlo 

(MCMC) methods for Thissen’s (Thissen, 1983) lognormal response time model, Wang and 

Hanson’s (Wang & Hanson, 2005) 4PL RT model, and van der Linden’s (van der Linden, 2007) 

hierarchical framework were applied to the investigation of response time on real data. After the 

application of those response time models on real data, examinee ability and item characteristic 

parameters from the item response models, as well as speed–related parameters from response 

time models, were estimated and used for generating simulated data. Those models were, then, 

applied to simulated data and compared under various conditions of testing situations by utilizing 

Bayesian posterior estimates.  

 

Research Questions 

The research questions addressed in this study are as follows:  

1. Among the 4PL response time (RT), hierarchical framework, and Thissen’s model, which is 

the best method for scoring examinees’ item responses when response time data are available on 

real data? 

2. What are the relationships between the response time–related parameters (examinee and item 

slowness, time intensity and time discrimination parameters) from different models that explain 

the speed–accuracy trade–off among item characteristics and examinee ability in item responses?  
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3. Between the 4PL RT model and hierarchical framework, which model is better to use for 

scoring examinees’ responses with response time data under different conditions such as various 

numbers of examinees, different number of items, and different relationship among item 

characteristics and examinee ability? 

 

Hypotheses 

The 4PL RT model and the hierarchical framework showed successful results in applications 

to real data as well as simulated ones (e.g., Wang & Hanson, 2005; van der Linden, 2007; Fox, 

Klein Entink, & van der Linden, 2007). However, Wang & Hanson’s (2005) 4PL RT model has 

several limitations when applied in real situations. Because the 4PL RT model has an assumption 

of independence between response time and the examinee ability parameters, it is unrealistic in 

most timed testing environment. Later, Wang (2006) modeled the joint distribution of response 

time using a 1PL Weibull distribution to extend the 4PL RT model. The joint distribution of a 

response and response time model enables to remove the independence assumption which the 4PL 

RT model has; however, it did not show much improvement from the typical IRT models that do 

not consider response time. 

It was hypothesized that van der Linden’s (2007) hierarchical framework would fit the data 

better when there is a positive or negative relationship between item characteristics and 

examinee’s ability parameters. As item difficulty increases, it is assumed that it will take longer for 

examinees to finish such items than easier ones. Likewise, it is also assumed that high level 

examinees will complete problem solving processes faster than their low level counterparts. The 

hierarchical framework allows researchers to estimate item and examinee parameters separately by 
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distinguishing different models of examinee response time and responses. Thus, identifying 

various sources of response time latency is available by using the hierarchical framework on 

response time data. However, it is also assumed that the complex models do not always produce 

better results than simpler ones do. The principle of parsimony is one of the factors that should be 

considered when making decisions about model fit and model comparison.   
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Chapter 2.    Literature review 

 

More tests are now being administered on computers, providing easy collection of response 

times in standard, operational testing settings. As response times are becoming more available, it is 

more prevalent to make use of this information. Many studies have been done in the area of 

scoring and parameter estimation procedures utilizing response time data in conjunction with 

response data (e.g., Roskam, 1987, 1997; Thissen, 1983; van der Linden, 2007; Verhelst, 

Verstralen, & Jansen, 1997; Wang & Hanson, 2005). This chapter presents a summary of the 

relevant studies on speed, accuracy, and performance in computer–based tests. It begins with some 

prerequisite definitions of related concepts, including item response theory, preceding discussions 

on the relationship of speed and accuracy. Various studies investigating the relationships between 

ability and speed will be summarized and scoring models with response time data will follow. 

Finally, for the model parameter estimation procedures, Markov Chain Monte Carlo (MCMC) 

methods using Gibbs sampling will be introduced.  
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Power and speed tests 

Gulliksen (1950) pointed out two essential factors for the tests: speed and power. A pure 

power test has items with a range of difficulties and an infinite time limit. The goal of a pure 

power test is to measure how accurately examinees respond to the items. Because power tests have 

a time limit long enough to permit everyone to attempt all items, item difficulty is steeply graded 

and includes items too difficult for anyone to solve, so it is hard to get a perfect score. On the 

other hand, the goal of a pure speed test is to measure how quickly examinees respond to the items. 

A test is constructed with easier items and a time limit is so short that no one can finish all the 

items. On pure speed testing, each person’s score directly reflects the speed with which each 

examinee worked. Anastasi (1976) also defines that a speed test is when the speed of performance 

determines individual differences. However, both power and speed tests are designed to prevent 

the achievement of perfect scores. 

 

Historical perspectives on response time analysis 

As indicated by Gulliksen’s (1950) definitions of power and speed tests, it is generally 

accepted that there exists interchangeability between speed and ability. Because measuring the 

time it takes an examinee to process information is deemed indicative of how examinee processed 

it, researchers had believed speed and accuracy measured the same construct. Spearman (1927) 

became one of the earliest proponents of the theory that the speed at which an examinee 

completed a test and the accuracy from the results gave equivalent information. Thus he argued 

that an examinee’s mental ability could be measured on a scale of accuracy, a scale of speed, or 

some combination of the two constructs (Spearman, 1927). However, the study of these two 
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constructs on complex tasks did not show that they were same constructs by subsequent 

researchers (Baxter, 1941; Bridges, 1985; Foos, 1989). Myers (1952) demonstrated that speed and 

accuracy comprised orthogonal factors in test scores, indicating that an examinee’s speed in 

testing is not related to the examinee’s ability. Various other studies also confirmed that 

Spearman’s (1927) interchangeability concept on speed and ability is unrealistic in educational 

assessment settings (Schnipke & Scrams, 2002).  

The speed–accuracy trade–off is one of best known findings in response time research (Luce, 

1986). The speed–accuracy trade–off implies that if a person chooses to perform a task at a higher 

speed rather than a relatively lower speed, their level of accuracy will become lower. It is obvious 

that the trade–off can be applied either to pure speed tests or pure power tests. However, studies on 

response time for correct and incorrect responses showed different directions. Bergstrom, Gershon, 

and Lunz (1994) found that examinees spent more time on items they answered incorrectly than 

on items they answered correctly. Hornke (2000) also found that relatively longer response times 

are required to respond to questions that are answered incorrectly. A variety of systematic studies 

on item response times in computerized adaptive testing found that incorrect answers require 

much longer processing time than correct answers (Rammsayer, 2004).  

It is argued that most wrong responses are from the lower ability group, examinee’s lower 

ability used to relate to relatively longer response time in the marginal analysis (Bergstrom et al., 

1994; Hornke, 2000). As explained by Simpson’s paradox (Agresti, 2002; Simpson, 1951), taking 

the ability of examinees into account would result in explaining a somewhat different relationship 

between response time and response accuracy. Therefore, the relationship among response speed 

and related examinee characteristics needs to be verified by further examining the relationship 



11 
 

among examinees’ ability, item difficulties, and response time simultaneously.  

It is reasonable to assume that the relationships between accuracy and speed are not to be 

correlated without considering other effects derived from item and examinee characteristics. 

Schnipke and Scrams (2002) pointed out that a great deal of previous research has used 

confounding measures to investigate the relationship of speed and accuracy. Specifically, 

examinee speed is easily confounded with item difficulty when it is administered on computer 

adaptive tests (CAT). More discussion of the relationships between accuracy and speed, ability 

and response time will be presented in the following sections. 

 

Item response theory 

Item response theory (IRT) is a statistical theory about the probability of an examinee 

responding to an item correctly at a given level of latent proficiency. IRT models specify how test 

items and examinee responses relate to the abilities of the examinees that are measured by the 

items in the test (Hambleton & Jones, 1993). Two basic assumptions are required to use these IRT 

models (Hambleton & Jones, 1993; Hambleton, Swaminathan, & Rogers, 1991). First, a 

unidimensionality assumption is required, meaning that there is one construct of a given test. The 

items in a test are considered to be unidimensional when a single factor or trait accounts for a 

substantial portion of the total test score variance. It is a broad concept which also encompasses 

local independence and parameter invariance assumptions; item responses are deemed locally 

independent when examinees’ ability is the sole source that affects responses on the items. Second, 

the item characteristic function or curve (ICC) is needed to form a mathematical representation. It 

delineates the relationship between examinees’ unobserved latent ability and observed test scores 
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from responses to the items (Hambleton & Jones, 1993; Swygert, 1998). 

Many models have been formulated within the general IRT framework; however, usually 

one, two, or three parameter logistic functions will be considered when the model is applied to 

dichotomously scored items. In terms of dichotomously scored test items, on which responses are 

designated either correct or incorrect, all IRT models express the probability of a correct response 

to a test item as a function of θ , given one or more parameters of the item. The 3PL model is 

expressed as follows: 

1.7 ( )

1
( 1| )

1 j i j

j
ij i j a b

c
P u c

e θθ − −

−
= = +

+
,                             (1) 

where Pij(θ ) is the probability that an examinee i with ability θ  answers test item j correctly, 

which has generally scaled with a mean of 0 and standard deviation of 1. bj is the item difficulty or 

location parameter, aj is the discrimination or slope parameter, which is bounded by 0, and 

generally ≤ 2.0. cj is the pseudo guessing or lower asymptote parameter. This is bounded by 0 and 

1, and generally ≤ 0.25 depending on the number of alternative answers in the items. Under the 

typical IRT framework, both the test items and the examinees responding to the items are arrayed 

on θ  from lowest to highest abilities. The position of examinee i on θ (denoted θ i ), is usually 

referred to as the person’s ability or proficiency. The position of item j on θ , (usually denoted bj), 

is termed the item’s difficulty. It is expected that the probability of a correct response to item j will 

increase monotonically as (θ i – bj) increases. The 1PL and 2PL IRT models are regarded as the 

constrained forms of the typical 3PL model; the item discrimination parameter is set to 1.0 in the 

1PL IRT model; the pseudo guessing parameter is set to zero in the 1PL and 2PL models. 
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Response time analysis and computerized tests 

The availability of item response times, made possible by computerized testing, provides an 

entirely new type of information about items. Previously, only total testing time and item 

responses were available. However, in addition to knowing the accuracy with which test takers 

answer an item, it is now possible to investigate the amount of time examinees spend on each item. 

This allows one to examine the relationships among examinee ability, item characteristics, and 

response speed (Schnipke & Scrams, 1999). Various other kinds of information in test settings can 

be obtained from response time data, such as speededness, pacing, strategies used, and time limit. 

 

Speededness 

Speededness is the effect of time limits on the candidate’s scores. It is the extent to which a 

test is affected by time limits, which is measured when the examinee’s total incorrect score is 

equal to the number of items that were not attempted by the examinee (Evans & Reilly, 1972). 

Bejar (1985) stated that “a test is speeded when some portion of the test–taking population does 

not have sufficient time to attempt every item in the test within the allocated time.” Bontempo and 

Julian (1997) also defined speededness as “the degree to which the amount of time allowed for test 

administration affects the rate at which examinees answer items.”  

Speededness is a closely related concept with other response time related constructs such as 

pacing, strategy use, and predicting finishing times or setting up time limits. Test speededness is 

gauged from the perspective of testing environment, while pacing and guessing behaviors are 

construed from the examinee perspectives. Likewise, strategy use in testing is also related to 

pacing and test speededness. Schnipke (1995) defined two distinct types of behavior when test 
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speededness exists: problem solving and rapid guessing behaviors. Just as rapid guessing behavior 

at the end of a test substantially affects the examinee’s ability estimate, test taking strategies, test 

wiseness, and pacing also need to be examined in the perspective of these two types of test taking 

behavior.  

In reality, most tests contain both speed and power components, requiring assessments of 

certain amount of speededness (Rindler, 1979). It is argued, therefore, that a test is investigated the 

degree of speededness instead of existence of speededness or lack thereof (Lu & Sireci, 2007). It 

is obvious that that the amount of speededness in testing has been underestimated until recent 

research on speededness conducted using response time in computerized tests (Schnipke & 

Scrams, 2002). Schaeffer, Reese, Steffen, McKinley, and Mills (1993) examined the average item 

response time from the Graduate Record Examination (GRE) and concluded that the time limits 

were sufficient. On the other hand, Bridgeman (2004) found that an examinee who worked at the 

mean rate for the first 20 items would require 11 more minutes than what was allowed on the GRE.  

Speededness in a computerized testing environment has raised significant validity issues in 

some studies. Oshima (1994) demonstrated that undetected speededness can cause a significant 

problem on many large–scale standardized tests such as TOEFL and SAT (e.g., Angoff, 1989; 

Bejar, 1985; Schmidt & Dorans, 1990). Bridgeman (2000) states that time limits may raise equity 

issues if the limit is imposed for administrative convenience rather than an essential part of what 

the test is measuring. Bridgeman, Cline, and Hessinger (2003) also concluded that the variation 

among examinees in the rate of response to test items constitutes an irrelevant source of difficulty 

in test performance. Irrespective of the definition and directions of the research studies, all 

research in speededness ended up with one agreement of detrimental results of the validity of 
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interpretations of test scores (Lu & Sireci, 2007). As indicated by Messick (1981), it is obvious 

that construct irrelevant variance resulting from test speededness contributes to unreliability and 

invalidity of test.  

 

Computer adaptive testing (CAT) 

Computer adaptive testing (CAT) introduces new dimensions to the speededness issue. 

Usually, computer–based tests (CBT) implement the same administration and scoring algorithms 

as typical paper and pencil versions. On the other hand, a CAT modifies the difficulty of a test 

based on an examinee’s responses as a function of the current estimate of ability. However, these 

procedures may add to the cognitive load of the higher ability examinees, because more difficult 

items usually demand more time to solve.  

Speededness in CAT is connected to the fairness issue because omitting items is no longer 

an option in CAT. Many studies have demonstrated that item difficulty and response time are 

positively correlated in CAT (Bergstrom et al., 1994; Bridgeman & Cline, 2004; Chang, 2006; 

Plake, 1999; Smith, 2000). This is because response time and item difficulty are closely related to 

critical reasoning and problem solving procedures that increase the number of steps required to 

answer a problem correctly. The assumption is that successive items become more difficult, it also 

adds more cognitive load and finally results in spending extra time to solve the item.  

Various studies have consistently found that pacing and test taking strategies are also 

affected by speededness in CAT. Bergstrom et al. (1994) and Bridgeman and Cline (2004) 

concluded that it took longer for higher ability students to finish the test than lower ability students, 

because higher ability students are administered more difficult items. Chang (2006) also suggested 
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the same result, indicating the test becomes more speeded for higher ability students regardless of 

item types. Specifically, it is noted that higher ability examinees spend much more time on pretest 

items. This introduces an important piece of information to explain the relationship between 

ability and speededness in CAT. Because pretest items are not tailored to the examinees based on 

their relative ability levels, it may be generalized that more able examinees spend more time on all 

items regardless of whether their responses are right or wrong. Test taking strategies are also 

confounded by the fact that most CAT implementations prevent the test taker from reviewing 

previous answers, as well as from omitting answers. Bridgeman and Cline (2004) noted that more 

rapid guessing behavior is required for the higher ability examinees because they have more time 

consuming items. Bergstrom et al. (1994) also concluded that the ability and item positions are 

significant factors in predicting the finishing time of examinees in a within subject model. They 

suggested that controllable factors such as using figures, item length, and position of keyed correct 

answers contribute to explaining the variance of response time (Bergstrom et al., 1994).  

 

Relationships between response time and ability 

As discussed in the previous section, understanding the relationship between response time 

and accuracy is important in building appropriate and reasonable models. Results from previous 

studies indicated that there are distinct patterns among item characteristics, examinee ability, and 

response time. When items become more difficult, it takes more time for examinees to process 

(e.g., Bergstrom et al., 1994; Bridgeman & Cline, 2004; Chang, 2006; Plake, 1999; Smith, 2000). 

Incorrect responses take more time than correct responses (e.g., Bergstrom et al., 1994; Hornke, 

2000; Rammsayer, 2004). More able examinees generally take more time to finish items than less 
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able examinees (e.g., Bergstrom et al., 1994; Bridgeman & Cline, 2004; Chang, 2006; Swygert, 

1998). However, there are not many studies regarding systematic explanations of why such 

relationships exist among these factors.  

The relationship between response time and examinee ability is manifested by how those 

components are modeled in the scoring framework. Various studies have implemented models of 

response time and item responses based on a range of different scoring methods and response time 

distributions (Schnipke & Scrams, 2002). Researchers have tried to find models that can be fit 

with statistical distribution functions with known properties. Normal and lognormal distribution 

were tested by Thissen (1983), gamma and Weibull distribution have been tested by Tatsuoka and 

Tatsuoka (1980) and Roskam (1997). These distributions were fit to empirical distribution 

functions from a computer–based test. Schnipke and Scrams (1997, 2002) found that response 

time data were best fit by the lognormal distribution for both exploratory and confirmatory 

samples and provided meaningful interpretations of the data.  

van der Linden (2006, 2009) categorized existing response time models into two distinct 

groups based on the approaches those models have. The first one models response times in the 

framework of an item response theory (IRT) model. Because response times are modeled in the 

framework of an IRT model, it is assumed that an interaction exists between the parameters that 

govern the distributions of the person’s response times and response variables for the items. As 

discussed previously, it is often suggested that more difficult items require more time to be solved. 

It is also noted that this modeling is based on the speed–accuracy trade–off that has been the focus 

of much of the psychological literature on response times (Luce, 1983; van der Linden, 2006).  

The other group of models discussed by van der Linden (2006, 2009) consists of scoring 
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models without parametric relationships between response time and the examinee’s responses. In 

this approach, response time distributions are modeled without any parametric consideration of the 

response variables on the items, in other words, they are assumed to be independent. It is also 

assumed that speed is not related to the accuracy of an examinee’s responses based on an 

examinee’s ability. Results from some of the studies introduced in the previous section suggest 

this approach is feasible (e.g., Bergstrom et al., 1994; Bridgeman & Cline, 2004; Chang, 2006; 

Swygert, 1998). Positive as well as no relationships between response time and accuracy have 

been found in many studies (e.g., Bergstrom et al., 1994; Scrams & Schnipke, 1997; Swygert, 

1998; Thissen, 1983).  

Schnipke and Scrams (2002) pointed out that the relationship between speed and accuracy 

depends on the test context and content, and much of the research addressing this issue uses 

measures of accuracy that are affected by response speed. Thus, response speed is examined with 

an examinee ability estimate that is already confounded with item difficulty in a given testing 

situation. Therefore it is important to have response time scoring models in model checking 

procedures which resolve such problems.  

 

Scoring models using response time 

Most psychometric research has focused more on accuracy than speed, although there are many 

experimental studies that have investigated reaction time in psychology (Schnipke & Scrams, 

2002). Research and studies on response times in the educational testing field are limited by 

practical reasons (e.g., record keeping in operational settings, randomization of ability group). 

Therefore it was not used much until computerized testing was introduced. However, more tests 
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are now administered on computer, so it is much easier to collect response time data than before. 

Accuracy on test items and the score examinees receive on the test based on their ability is the 

most commonly observed examinee behavior in testing. Early research on scoring models using 

response time data is closely related to the concept of response time in traditional cognitive 

psychology. Various models have response speed as a dependent variable and measure the ability 

of processing skill. These are regarded as distinct models for response time (van der Linden, 2006, 

2009). However, these models are appropriate only when items are relatively simple to process 

and momentary ability is measured by speed of processing, such as a typical speed test in 

intelligence testing (e.g., processing speed tests in WAIS–IV).  

Later models have focused more on empirical response time distribution functions in the 

response model. Scrams and Schnipke (1997) proposed using response times in standardized tests 

to compare speed and accuracy as different components of proficiency. These models suggested 

the way to use both response accuracy and response speed to provide separate measures of 

performance. More specifically, IRT modeling has been proposed to deal with response time. van 

der Linden clearly categorized these models as response time models incorporating IRT and IRT 

models incorporating response time (van der Linden, 2009).  

 

Thissen’s (1983) model 

Thissen (1983) proposed the response time model which incorporates IRT in it for the first 

time as follows: 
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where ln ijT  is the log response time of examinee i to item j, μ  is the grand mean, jβ  is a 

slowness parameter for item j, iτ is a slowness parameter for examinee i, ρ  is the regression 

coefficient for the 2 PL IRT structure on log response time, and ijε  is error term. Specifically, it 

has person slowness and item slowness parameters as well as the probability of correct response of 

the examinee to the given item. Therefore this model reflects two different trade–offs; one 

between the item parameters (item difficulty and slowness) and the other between the person 

parameters (examinee ability and slowness). The regression term can be interpreted as an index of 

the direction of the relationships between these two trade–offs (Schnipke & Scrams, 2002). The 

results from Thissen’s study showed that different kind of relationships exist based on the test; 

explained relationships between examinees’ response speed and accuracy were different 

depending on the characteristics of the test.  

Several applications of this model can be found in previous studies. Scrams and Schnipke (1997) 

applied a 3PL IRT model instead of the 2PL structure as follows: 
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They applied this model to computer–administered tests of verbal, quantitative, and reasoning 

skills and found that moderate relationships exist between examinees’ response speed and ability 

as well as item difficulty throughout the different sections of the test. Swygert (1998) used a 

modified version of Thissen’s (1983) model in examining item response time on the GRE CAT. 

She also found a moderate positive relationship between response speed and examinee proficiency 

estimates in the two sections of the test. Ingrisone (2008) also used Thissen’s (1983) model and 
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compared a marginal maximum likelihood estimation (MMLE) with a maximum a posteriori 

(MAP) procedure. Three different simulation studies were conducted and the results of item and 

person parameter estimates based on MMLE and MAP procedures were found to be consistent 

and accurate. 

 

Wang and Hanson’s (2005) 4PL Response Time model 

Wang and Hanson (2005) proposed the 4 PL RT model for item parameter estimation. In this 

model, response time is incorporated in the parameter estimation procedure as follows: 
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where rtij is the response time by examinee i on the item j, jβ  is the item slowness parameter, 

and iτ  is the examinee slowness parameter. The item and person slowness parameters determine 

the rate of increase in the probability of a correct answer as a function of response time. The 

product of these two slowness parameters determines the rate of probability change with 

increasing response time for a particular examinee to a particular item. 

Later, Wang (2006) modeled the joint distribution of response accuracy and response time 

using a 1PL Weibull distribution to extend the model. Because Wang and Hanson’s (2005) model 

has an assumption of independence between response time and the examinee ability parameters, it 

is unrealistic in most timed testing situations (Ingrisone, 2008). The joint distribution of response 

and response time enables removing this independence assumption; however, it did not show 

much improvement from the typical IRT models without considering response time. Ingrisone 
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(2008) extended Wang’s (2006) model by applying a 2PL Weibull distribution to the marginal 

distribution of response time model. Among several estimation methods applied to the item 

characteristic and examinee true ability parameter, marginal maximum likelihood estimation 

(MMLE) and maximum a posteriori (MAP) procedures showed that item and examinee 

parameters were recovered quite well in this model (Ingrisone, 2008). 

 

Hierarchical Framework 

van der Linden (2007) introduced the third approach in modeling the response and response 

time distributions. The hierarchical framework has both response time and typical IRT model as 

two level–one models and a second level model as a realization of the population model of the two 

level–one models. Figure 1 shows a graphical representation of the model. 

 

Figure 1. The hierarchical Framework for modeling speed and accuracy on items (van der 
Linden, 2007) 
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Level-1 response model is typical 3PL IRT model as follows: 
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A response time model is a lognormal model as follows: 
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where and tij is the response time by examinee i on the item j, jτ  is the speed parameter of 

examinee j, iα  is the time discrimination parameter of item i, and jβ  is the time intensity 

parameter of item j.   

The level-2 model has a bivariate normal distribution for examinee’s ability and speed 

parameters and a multivariate normal distribution for the item parameters of response and 

response time models as follows: 
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and for item parameters, 
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Therefore, the level-1 has each independent response time and response models, but the level-2 

has the covariance structure of the parameters of the lower level models. The has a basic 

assumption that the person operates at constant ability and speed, which indicate that the 

examinee’s true ability and speed levels are constrained by a speed–accuracy trade-off. If the 

constant level of the examinee’s speed is taken, the response-time distribution depends on the 

speed, and the response times become conditionally independent given speed. However, for a 

population of examinees, ability and response speed are expected to be dependent; a second-level 

population model needs to represent the dependency in it (van der Linden, 2006).  

 

Bayesian estimation in IRT 

Bayesian inference enables us to fit a probability model to data and to summarize the result 

by a probability distribution on the parameters of the model, as well as on unobserved quantities 

such as predictions for new observations (Gelman, Carlin, Stern, & Rubin, 2003). For further 

application of Bayesian procedures, the core principles of Bayesian inference need to be discussed. 

The centerpiece of this framework is Bayes’ theorem, as follows:  
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where ( )p B A is the posterior probability of B given A, ( )p A B is the conditional probability of 

A given B, and ( )p B is the prior probability of B. Equation (7) can be extended when we accept 

( )p A as the marginal probability of event A as follows: 
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Therefore the marginal probability of event A is computed as the sum of conditional probability of 

A under all event of Bi in the sample space. The summation represents an accumulation across all 

possible outcomes of event B and thus can also be taken as the probability of A, P(A). This is the 

process of using the known value of the data and the basic property of conditional probability, 

resulting in the posterior distribution of the given data. From Bayes’ theorem it is known that a 

representation of the conditional probability of one event given another provides an explanation in 

terms of the opposite conditional probability (Kim & Bolt, 2007). Lynch (2007) also stated that 

“the goal of Bayesian statistics is to represent prior uncertainty about model parameters with a 

probability distribution and to update this prior uncertainty with current data to produce a posterior 

probability distribution for the parameter that contains less uncertainty.”  

Bayes’ theorem expressed in terms of a probability density function appears as: 
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,                   (9) 

where ( )f Xθ is the posterior distribution for the parameter θ , ( )f X θ is the sampling density 

for the data X, and ( )f X is the marginal probability of the data X. The sampling density is 
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proportional to the likelihood function, and the denominator of (9) has a role of scaling the 

posterior density to make it a proper density, otherwise Bayes’ theorem for probability 

distributions is simply stated as: 

Posterior Likelihood Prior∝ × .                             (10) 

When fitting an item response model to data, it is necessary to obtain information about 

parameters of the item response model from the response data of the examinees. From the 

perspective of Bayes’ theorem, this information is expressed as the relative likelihood of particular 

parameter values for the model given the observed item response data. The three–parameter 

logistic model (3PL) introduced in equation (1) presents the probability of an examinee 

responding to an item correctly as a function of the examinee ability, item difficulty, item 

discrimination, and guessing parameters. The joint distribution of all variables when there are N 

examinees and J items in the test is presented as: 
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             (11) 

The joint posterior density in the left hand side of (11) is used to determine estimates of the model 

parameters. To evaluate it requires knowledge about the quantities on the right hand side. The 

quantities of ( ),  ( ),  ( )j j jP a P b P c  are the prior densities of the model parameters and can be 

thought of as indicating the relative likelihoods of particular parameter values prior to data 

collection. The likelihood of the item response data given all of the model parameters is expressed 

as ( , , )ij i j j jP X a b cθ ,  and it is defined by the item response model along with its associated 

assumptions of local independence and exchangeability. The quantity in the denominator is not 
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written in (11) and is regarded as a constant for a fixed data set. It is often referred to as a 

normalizing constant since its value generally makes a proper density. This proportionality 

relationship is often the basis for sampling procedures that underlie MCMC, when it is possible to 

evaluate the relative likelihoods of different sets of parameter values even if the exact form of the 

posterior density cannot be determined (Kim & Bolt, 2007; Lynch, 2007).  

 

Markov Chain Monte Carlo (MCMC) method 

Markov Chain Monte Carlo (MCMC) methods have offered many advantages such as 

convenience of implementation and software availability. MCMC methods provide an opportunity 

to sample from multivariate densities that are not easily sampled from by implementing maximum 

likelihood methods using a laborious EM (Expectation Maximization) algorithm. A fundamental 

difference between MCMC and other popular estimation techniques, such as maximum likelihood 

(ML) estimation, lies in the emphasis on Bayesian inference on estimating distributions. Kim and 

Bolt (2007) contrasted that Bayesian estimation has “a potentially richer description of the 

parameter estimate distribution than is usually provided in ML estimation.” MCMC methods have 

expanded the opportunity to experiment with new models needed for specialized measurement 

applications (Kim & Bolt, 2007; Lynch, 2007).  

Kim and Bolt (2007) described the basic MCMC approach applied to IRT estimation. It 

provides a way for sampling from one or more dimensions of a posterior distribution and moving 

throughout the entire support of a posterior distribution. According to Lynch (2007) MCMC 

methods “utilized the process of sampling by breaking these densities down into more manageable 

univariate or multivariate densities.” Because the MCMC estimation results in the reproduction of 
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the posterior distribution of interested parameters, iterative procedures of samplings from 

observations based on this distribution are important. These procedures imply that by sampling 

enough observations, it becomes possible to determine characteristics of the distribution. Those 

characteristics, captured in the form of mean and variance, can be the basis for model parameter 

estimates for given data. The precise mechanism by which sampling is conducted may vary based 

on the known features of the posterior distribution. However, once an appropriate sampling 

procedure is determined, computing corresponding characteristics of the generated sample make it 

possible to have relevant posterior distributions. 

The use of MCMC estimation for IRT models was introduced by Patz and Junker (1999a) 

and has since been used to estimate a variety of models. When item parameter estimates are 

treated as known, interest centers on estimating examinee ability parameters. Likewise, when 

examinee parameters are treated as known, interest centers on estimating item parameters. More 

generally, both examinee and item parameters can be estimated concurrently. After an IRT model 

is chosen and priors have been specified for all model parameters, sampling procedure for 

updating posterior distribution begins. The objective of MCMC is to define a mechanism by which 

observations can be sampled from the joint posterior density of model parameters shown in (8), 

making the iterative process conducted under MCMC methods considerably different from that 

conducted in the ML procedure. MCMC procedures enable us to have representative posterior 

distribution of the model parameters rather than a converged point estimate of the model 

parameters. Gilks, Richardson, and Spiegelhalter (1996) provide a more general explanation about 

the method on various models and Patz and Junker (1999b) describe an application on IRT in 

detail.  
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Gibbs sampler 

Kim and Bolt (2007) described the Gibbs sampler as follows; 

“a mechanism by which sampling can be performed with respect to smaller numbers of 

parameters, often one at a time. The Gibbs sampler samples with respect to univariate 

conditional distributions of the model parameters. Unlike the full joint posterior 

distribution, the conditional distributions, denoted as ( , )k kf Xξ ξ− , represent the posterior 

distribution of a single model parameter ( kξ ) conditional upon the data (X) and all other 

model parameters ( kξ− )”.  

Therefore, after all the other parameters are known, Gibbs sampling enables each parameter to be 

sampled individually based on its conditional distribution. In other words, the full conditional 

density for a parameter needs to be known only up to a normalizing constant, and it allows one to 

use the joint density with the other parameters set at their current values. Gibbs sampling involves 

ordering the parameters and sampling from the conditional distribution for each parameter given 

the current updating process. This makes Gibbs sampling relatively simple for most problems in 

which the joint density is reduced to known forms for each parameter once all other parameters 

are treated as fixed (Lynch, 2007). 

A generic Gibbs sampler follows the following iterative process (e.g., Kim, 2001; Lynch , 

2007; Rowe, 2003): 

0. Assign a vector of starting values as an initial value for the parameter vector: 

0j Sξ = = . 
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1. Set 1j j= + , where j indicates the iteration count. 

At the thj iteration define ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 2 3 1( , , , , , )j j j j j j

k kξ ξ ξ ξ ξ ξ+ + + + + +
−= L  by the values from 

following procedures:  

2. Sample 1
1
jξ +  from 1 2 3 1( , , , , )j j j j

k kp ξ ξ ξ ξ ξ−L . 

3. Sample 1
2
jξ +  from 1

2 1 3 1( , , , , )j j j j
k kp ξ ξ ξ ξ ξ+
−L . 

4. Sample 1
3
jξ +  from 1 1

3 1 2 1( , , , , )j j j j
k kp ξ ξ ξ ξ ξ+ +
−L . 

M 

k. Sample 1j
kξ
+  from 1 1 1

1 2 1( , , , , )j j j j
k k kp ξ ξ ξ ξ ξ+ + +

−L . 

k+1. Return to step 1.  

In Gibbs sampling procedure each step draws random sample from the associated conditional 

posterior distribution. After drawing thj iteration of the sample, there will be 

1 2 3 1, , , , ,j jξ ξ ξ ξ ξ−L samples of the parameter estimates. A pre–specified number of first samples 

is called “burn–in”, it will be discarded and remaining samples will be kept and used for 

calculating the mean and the standard deviation values for posterior distribution of the samples 

(Kim, 2001; Lynch, 2007).  

 

Checking model convergence 

Monitoring the simulated states of the Markov chain is an important procedure for checking 

model convergence. Theoretically, the Markov chain should converge to a stationary distribution 

so that the sampled observations can be regarded as a sample from the posterior distribution of the 
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model parameters. The rate at which this convergence occurs can vary depending on several 

factors as follows: (a) high correlations between adjacent states, (b) sampling algorithms, and (c) 

identification problems with the model. When there are relative high correlations between states, a 

slow rate of convergence occurs; therefore, a very large number of iterations is necessary. The 

selections of the sampling algorithm and problems in identification with the models also will 

affect model convergence in the MCMC procedures (Kim & Bolt, 2007; Lynch, 2007). 

It is possible to determine whether an MCMC run has been successful by detecting 

convergence. Observations of the history plots of the chain, autocorrelation between the states, 

and the posterior density plots of the estimated parameters are usually made. Various diagnostic 

indices can also be applied to observations from the chain to evaluate the likelihood of 

convergence. Kim and Bolt (2007) described how these indices are calculated in detail. One of the 

diagnostics is Geweke’s (1992) criterion; a z–score is computed from the sampled states for each 

parameter in this approach. The z–score for a given parameter is defined by taking the difference 

between the mean of the first 10% of states, and the mean of the last 50% of states, and dividing 

by their pooled standard deviation. Z–values within a range of non–significance can be taken as 

evidence of convergence. Another criterion explained in Kim and Bolt (2007) is the Raftery and 

Lewis criterion which considered the number of samples needed to estimate quantiles of the 

posterior with sufficient precision. When the index, I, indicates greater than 5.0, the increase in the 

number of sampled states needed to reach convergence due to autocorrelations in the chain 

(Raftery & Lewis, 1992). When multiple chains are applied, the Gelman and Rubin criterion can 

be used. There is a strong likelihood of convergence if the chains demonstrated the same 

stationary distribution, which is reflected by a large overlap in their sampling histories. The 
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Gelman and Rubin test is based on a comparison of (a) the pooled between chain variances and (b) 

within chain variances for each parameter. If the R value is approaching to 1.0, it is indicated that 

stability for the chains are assumed (Gelman & Rubin, 1992). 

 

Checking model goodness of fit and comparison 

IRT models require that several assumptions be met by the data including local 

independence and specific forms of the item response function. When these assumptions are not 

appropriately satisfied, inferences regarding the nature of the items and examinees can be 

erroneous, and the potential advantages of IRT are not attained. It is therefore crucial to check the 

adequacy of the fit of the chosen IRT model to item responses. Several fit statistics have been 

proposed within the frequentist framework (e.g., Orlando & Thissen, 2003; Yen, 1981), but it is 

difficult to find a universally accepted model fit checking method, and this still remains an 

underdeveloped area in IRT (Sinharay, Johnson, & Stern, 2006). 

 Several Bayesian model goodness of fit indices are available. Among them posterior 

predictive model checking (PPMC) is one of the general strategies in the IRT context and it is also 

popular Bayesian model diagnostic tool (Gelman et al., 2003; Kim & Bolt, 2007). Various studies 

showed the applications of this index in several conditions by checking the plausibility of 

posterior predictive replicated data against observed data (Albert & Ghosh, 2000; Glas & Meijer, 

2003; Hoijtink, 2001; Hoijtink & Molenaar, 1997; Janssen, Tuerlinckx, Meulders, & DeBoeck, 

2000; Rubin & Stern, 1994; Scheines, Boomsma, & Hoijtink, 1999; Sinharay, 2005; Sinharay & 

Johnson, 2003; Sinharay et al., 2006; van Onna, 2003).  

Beyond studies of absolute model fit, other approaches can be used for model comparison. 
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Model comparison and selection procedures are implemented without evaluating the degree of fit 

in an absolute sense. There are several criteria that identify which of the models provide a better fit 

to the data. Among several indices, the Deviance Information Criterion (DIC) is easily used and 

calculated as follows: 

( ) ( ) ( ) 2Model D DDIC D p D pθ θ= + = + × ,                        (12) 

where ( )D θ  is a Bayesian measure of fit (posterior mean deviance), ( )D θ  is the deviance of 

the posterior model, and Dp  is the number of free parameter which accounts for the expected 

decrease in deviance attributable to the added parameters of the more complex model. DIC is an 

index for model comparison similar to the Akaike Information Criterion (AIC; Akaike, 1973) and 

the Bayesian Information Criterion (BIC; Schwartz, 1978) (Spiegelhalter, Thomas, Best, & Lunn, 

2003). As with AIC and BIC, the model with the smallest value of DIC would indicate the better 

model to the observed data set. Estimation of the DIC index can be requested within the 

WinBUGS program (Spiegelhalter et al., 2003).  
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Chapter 3.   Methods 

 

In this chapter response time models incorporated in IRT were compared and the 

relationship between item characteristics and examinee ability as well as response time were 

examined using real and simulated data. In study 1, Thissen’s (Thissen, 1983) response time 

model, Wang and Hanson’s (Wang & Hanson, 2005) 4PL RT model, and van der Linden’s (van der 

Linden, 2007) hierarchical framework were applied to the investigation of response time on real 

data through Bayesian estimation using MCMC. In study 2, Wang and Hanson’s (Wang & Hanson, 

2005) 4PL RT model, and van der Linden’s (van der Linden, 2007) hierarchical framework will be 

applied on simulated data. These models are explored further, using simulated data with known 

generating parameters to help understand how they might behave under some different conditions 

typically encountered in applied testing situations: varied test lengths, sample sizes, and the extent 

of relationships between item and examinee speed related parameters.  

 

Study 1 

Data 

Real data from a pool of nationally standardized English verbal tests administered in 2007 

was used. Response data as well as response time for 33 discrete items were collected during 

computer based test administration. Examinees’ responses were coded dichotomously and 

response time data were recorded to 1-second precision on a computer based test. The recorded 

response time for an item was the total time spent on the item during all attempts to that item. The 

test consists of operational and field test items in multiple choice formats.  



35 
 

There were relatively few examinees showed peculiar responses. In order to identify 

potential outliers from the examinees, responding in an extremely short time span (e.g., finishing 

the test within 10 minutes out of 60 minutes), no responses after completing a few items (e.g., 5 

items out of 33) were eliminated from the analysis. Out of the 978, only 3 examinees (0.3%) 

showed peculiar responses, further analyses were conducted on the response and response time 

data collected from 975 examinees. 

  

Estimation methods 

Three response time models were used for estimating item and examinee parameters; (1) 

Thissen’s (1983) log normal response time model, (2) Wang and Hanson’s (2005) 4PL response 

time model, and (3) van der Linden’s (2007) hierarchical framework. All three models based on 

IRT response model for response data, it can be applied either 2PL or 3PL IRT model. In study 1, 

total 6 models (3 response time models with 2PL as well as 3PL IRT sub-model) were 

investigated by using Bayesian posterior parameter estimates.  

In order to implement Bayesian posterior parameter estimation, it needs to specify their 

prior distributions. It is important to choose the strength of the priors in MCMC; if the prior has 

narrower variance, it is more informative in guiding the algorithm. Therefore the priors on item 

and examinee parameters were set to be relatively large and intended as less informative so that 

the given data can drive the posterior distributions. Starting values are also needed for each 

parameter to define the first state of the Markov chain and those values for each model parameters 

were randomly generated using the WinBUGS computer program (Spiegelhalter et al., 2003). The 

following priors were described based on 3PL IRT model for response data in Thissen’s (1983) 
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response time model: 

  (0,1),      1, ,i N i Nθ ∼ = L  

~ (0,1),     1, ,ja LN j J= L  

~ (0,1),     1, ,jb N j J= L  

~ (5,17),     1, ,jc Beta j J= L  

~ (0,1),     1, ,i N i Nτ = L  

~ (0,1),     1, ,j N j Jβ = L  

~ (0,2)Nμ  

0,1Nρ ∼ ( )  

where N is the total number of examinees, J is the total number of items, a, b, and c are the item 

discrimination, difficulty, and pseudo guessing parameters, respectively; θ is the person ability 

parameter; iτ  and jβ  are an item and examinee slowness parameters, respectively; μ  is 

general mean of response time; and ρ  is a regression coefficient of IRT structure on log of 

response time.  

The following priors were used for the Wang and Hanson’s response time model, based on 

the suggestions by Wang and Hanson (2005): 

  (0,1),      1, ,i N i Nθ ∼ = L  

~ (0,1),     1, ,ja LN j J= L  

~ (0,1),     1, ,jb N j J= L  

~ (5,17),     1, ,jc Beta j J= L  
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~ (0,2),     1, ,i U i Nτ = L  

~ (0,10),     1, ,j U j Jβ = L  

where N is the total number of examinees, J is the total number of items, a, b, and c are the item 

discrimination, difficulty, and pseudo guessing parameters, respectively; θ is the person ability 

parameter, as in regular 3PL model; iτ is an item slowness parameter; and jβ is an examinee 

slowness parameter.  

van der Linden’s (2007) hierarchical framework incorporate the 3PL IRT model as a level- 

1 response model as follows: 

1.7 ( )

1
( 1 , , , ) .

1 j i j

j
ij i j j j j a b

c
P x a b c c

e θθ − −

−
= = +

+
                         

For priors for the population and item models in the previous chapter, it is recommended to use 

normal inverse-Wishart prior distributions denoted as follows: 

0 0

1~ ( , ),P P PInverse Wishart v−−∑ ∑  

0 0
~ ( , ),P P P P PMVN kμ μ∑ ∑  

0 0

1~ ( , ),I I IInverse Wishart v−−∑ ∑  

0 0
~ ( , ),I I I I IMVN kμ μ∑ ∑  

where 
0 0 0 0
, , ,  and P P I Iv k v k are corresponding degrees of freedom parameters for respective Wishart 

distributions (Gelman et al., 2003). To reflect low model confidence, corresponding degrees of 

freedom parameters should be set low. In the case of the prior based on other than previous 

documented works, there is one way to treat this as the size of a pseudo sample as the number of 
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parameter estimates such as setting 
0 0 0 0

2, 1, 4,  and 1P P I Iv k v k= = = = . A prior with such a small 

pseudo sample size is quite vague, allowing the data to drive the solution. In addition, the 

following priors were also used based on van der Linden (2007) and Fox et al. (2007): 

( , ) (0,0),P θ τμ μ μ= =                                           

1 1 10
,

10 1P
− ⎛ ⎞

Σ = ⎜ ⎟
⎝ ⎠

 

( , , , ) (1,0,1,0),I a b α βμ μ μ μ μ= =                                   

1

1    10   10   10 
10   1    10   10

.
10  10    1    10 
10  10   10    1

I

−

⎛ ⎞
⎜ ⎟
⎜ ⎟Σ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

                                        

 

Checking model convergence and DIC  

Model convergence diagnostics were used to determine the number of iterations for burn-in 

and the number of post-burn-in. Burn-in iterations were discarded and only post-burn-in 

iterations were used to estimate the posterior distributions for parameter estimates. In this study, 

graphical diagnostics such as monitoring history plots, autocorrelation, and posterior distribution 

of parameter estimates were conducted. The Gelman Rubin convergence diagnostic index was 

also used for checking the model convergence. After model convergences were confirmed, DIC 

values from the models were used for model comparison in this study.  

Followed by checking model convergences and DIC comparisons among different models, 

parameter estimates from the three models were compared and examined through the Pearson 

product-moment correlation. Examining the relationships between related parameter estimates 
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across the models is important in response time data perspective. Because it is hard to examine 

true relationships between parameters in population through real data analysis, consistent results 

from the response time models can be regarded as a proxy of population relationships. Each model 

has speed related parameters as well as typical item and examinee ability parameters, therefore, 

investigation of the relationship between these estimates were also available to give further 

understanding of the given response time data in conjunction with item response analysis.  

 

Study 2 

Data generation  

Simulated data were generated for study 2. The examinee ability parameters were randomly 

generated from (0,1)N , the item discrimination, item difficulty, and lower asymptote parameters 

were generated from distributions as follows: (0,.5),  (0,1),  (5,17)LN N Beta , respectively for each 

item parameter. The generated item parameters are displayed in Table A1 in Appendix.  

Response time data also were generated with Thissen’s model (1985) conjunction with item 

and examinee parameters from the 2PL item response model as follows: 

2

ln ( ) ,

~ (0, ),
ij j i j i j ij

ij j

T a b

LN

μ β τ ρ θ ε

ε σ

= + + − − +
                  

In order to minimize compounding sources of the speed related variables, overall mean 

response time ( )μ , examinee ( )iτ  and item slowness parameter ( )jβ  were set to 0.0s. Natural 

log of response time data were randomly generated from N(0, 0.5).  
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Factors of investigation 

The design of simulation study included two test lengths, 30 and 60 items; four sample sizes, 

100, 500, 1000, and 2000; and three distributions of regression coefficient of Thissen’s model in 

equation (1). Test lengths and sample sizes for examinees reflect that test has moderate to long 

items in the tests; relatively small to large examinee samples for those tests. Seven levels of 

regression coefficients, -0.9, -0.6, -0.3, 0, 0.3, 0.6, 0.9 indicate a range of relationships between 

examinee ability and response time as well as item difficulty and response time. Positive values of 

 indicate that as examinee’s ability increases the response latency decreases; as the item 

difficulty increases the response latency increases. Likewise, negative values of  imply that 

there are reverse relationships between response time and ability, response time and item difficulty.  

A total of 56 different conditions were simulated and two response time models from 

Bayesian estimation methods were implemented. The simulated data were generated and 

calibrated 30 times for each of the fifty six conditions. A typical 3PL IRT model was also 

implemented on the generated data to determine whether there was improvement in estimation 

procedure when the response time data was considered.  

 

Measured criteria 

Assessment of the response time models was based on retrieval of item and examinee ability 

parameters. The degree to which the response time models recovered the known item and 

examinee ability parameters were evaluated through descriptive statistics, bias, root mean square 

error (RMSE) and the Pearson product moment correlation. The means and standard deviation of 

these error indices are computed across 30 replications. Bias and RMSE were calculated for the 
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sets of 30 replications as follows: 

∑                                      (13) 

∑                                   (14) 

The correlations between the true and estimated item parameters were also computed for 

each item parameter for each replication. The means and standard deviation of these correlations 

across replications were computed. 

To compare between response time models the deviance information criteria (DIC) and the 

relative efficiency were calculated. To quantify the amount of improvement attributable to 

simultaneous estimation, relative efficiency was computed. Relative efficiency is available from 

mean squared error (MSE). de la Torre and Patz (2005) used calculated relative efficiency from 

the ratio of MSE from each estimation methods as follows: 

 
∑

∑
 .                    (15) 

A ratio greater than 1 indicates that given interested estimation method, which is the denominator, 

has higher efficiency compared to the other method.  
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Chapter 4.   Results 

 

In this chapter the results from the real data and the simulation study are discussed. In the 

results of Study 1, the three response time models discussed in the previous chapter were applied 

to the real data. To begin with, the overall descriptions of data are presented and item responses 

were analyzed via classical testing theory as well as IRT. The response time models were 

compared through investigations of item and response time parameter estimation. In the results of 

Study 2, Wang and Hanson’s 4PL RT model, and van der Linden’s hierarchical framework were 

applied to the simulated data and item and examinee parameter estimates were examined in 

various conditions.  

 

Study 1 results 

Preliminary Data Analysis 

Table 1 indicated descriptive statistics for responses and response times, and Figure 2 

showed the distribution of total score and total response times from the real data. Approximate 

Normal distributions for those data were assumed. Slightly negatively skewed response times were 

shown, however, this is not an uncommon case when it is a timed testing (Schnipke & Scrams, 

1997; Schnipke, Scramps, & van der Linden, 2001). 

Among 975 examinees, 917 (94.1%) showed complete responses in the test and every item 

was reached by more than 95% of examinees. The proportion of missing responses increased as 

examinees approached the end of the test. The last item of the test showed the biggest proportion 

of missing responses (3.2%). Descriptive statistics for missing responses are displayed in Table 2.  
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Table 1 
Descriptive statistics for responses and response times (n=975, item=33) 

 Mean Median SD Min Max Skewness Kurtosis  

Total Score 20.613 21 4.902 4 32 -0.319 -0.234  

Total Time 1610.39 1604 284.219 694 2888 0.251 0.841  

 
Table 2 
Frequencies for missing responses and response times (n=975) 

Omitted response Frequency Percent Cumulative Percent 
0 917 94.1 94.1 

1 35 3.6 97.7 

2 8 0.8 98.5 

3 3 0.3 98.8 

4 2 0.2 99.0 

5 7 0.7 99.7 

7 3 0.3 100.0 

 
 

(a)                                (b) 

 
Figure 2. Histograms of total score (a) and total response time (b). 
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Table 3 shows the means and the standard deviations for item parameter estimates from the 

CTT and IRT estimation methods. Discrimination index and biserial, point biserial correlation 

were calculated by using the top 27% of the examinees as a high ability group and the bottom 27% 

of the examinees as a low ability group. Overall, more than 62% of the examinees showed correct 

responses to the given items. IRT parameter estimates were obtained from BILOG-MG computer 

program (Zimowsky, Muraki, Mislevy, & Bock, 1996). The mean of the examinee’s true ability 

parameters centered around 0.0 in both 2PL and 3PL models. The item difficulty and 

discrimination indices showed quite different when guessing parameters were estimated. The 

mean of the item discrimination parameter estimates is 0.413; the mean difficulty parameter 

estimate is -0.853 from the 2PL IRT model. The mean item discrimination parameter estimate is 

0.63; the mean difficulty parameter is -0.007 from the 3PL IRT model. 

Table 3 
Means and standard deviations for item parameter estimates from the CTT and IRT methods 

 Parameter Mean SD 

CTT 

Proportion of correct response 0.625 0.156 

Discrimination 0.341 0.092 

Biserial Correlation 0.433 0.985 

Point Biserial correlation 0.326 0.069 

2PL 

IRT 

Examinee true ability (θ) 0.000 0.897 

Item discrimination (a) 0.413 0.143 

Item difficulty (b) -0.856 1.160 

3PL 

IRT 

Examinee true ability (θ) 0.000 0.903 

Item discrimination (a) 0.630 0.339 

Item difficulty (b) -0.007 1.221 

Item guessing (c) 0.254 0.064 
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Figure 3 contains the plot of eigenvalues from the inter item correlation matrix produced by 

factor analysis for the given data. 7.5% of total variance was explained by the first factor. Test 

reliability value from the Chronbach’s alpha was 0.737, and it is also indicated that each item 

contributed to the test evenly; differences in the Cronbach’s alpha values were small when each 

item was deleted as shown in Table 4.  

 

 
          Figure 3. Scree plot of eigenvalues from factor analysis. 
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Table 4 
Item-total score correlation coefficients and reliability indices  

Item Number Corrected Item-Total correlation Chronbach’s alpha if item deleted 

1 .204 .732 
2 .183 .734 
3 .176 .734 
4 .160 .735 
5 .306 .727 
6 .105 .738 
7 .168 .735 
8 .154 .736 
9 .297 .727 
10 .312 .727 
11 .233 .731 
12 .108 .739 
13 .315 .728 
14 .154 .736 
15 .254 .730 
16 .210 .732 
17 .304 .727 
18 .151 .736 
19 .300 .727 
20 .344 .725 
21 .332 .725 
22 .292 .727 
23 .266 .729 
24 .167 .735 
25 .184 .734 
26 .214 .732 
27 .324 .725 
28 .271 .729 
29 .333 .726 
30 .291 .728 
31 .363 .724 
32 .236 .731 
33 .287 .728 

 
 
 

 



47 
 

Each individual item parameter estimates from the CTT and IRT models are presented in 

Table 5, and descriptive statistics for each item response time are also presented in Table 6. 

 

Table 5 
Item parameter estimates from the CTT and IRT models 

Item 
number 

CTT 2PL IRT 3PL IRT 
P disc a b a b c 

1 .81 .20 0.38 -2.47 0.38 -1.91 0.22 
2 .42 .32 0.29 0.73 0.55 1.60 0.25 
3 .75 .23 0.31 -2.21 0.39 -0.98 0.30 
4 .64 .27 0.25 -1.43 0.35 0.23 0.32 
5 .59 .46 0.47 -0.50 0.59 0.08 0.20 
6 74 .19 0.21 -3.13 0.23 -1.44 0.29 
7 .57 .31 0.27 -0.70 0.45 0.93 0.34 
8 .43 .31 0.25 0.67 0.54 1.83 0.30 
9 .53 .48 0.47 -0.16 0.61 0.41 0.19 
10 .80 .31 0.57 -1.71 0.60 -1.28 0.22 
11 .78 .28 0.42 -2.01 0.46 -1.23 0.28 
12 .46 .24 0.20 0.49 0.51 2.24 0.36 
13 .85 .28 0.67 -1.89 0.72 -1.48 0.24 
14 .35 .29 0.25 1.53 0.58 2.20 0.25 
15 .67 .34 0.40 -1.17 0.52 -0.23 0.28 
16 .60 .34 0.31 -0.84 0.40 0.30 0.27 
17 .50 .49 0.47 -0.02 0.60 0.47 0.17 
18 .63 .28 0.24 -1.38 0.31 0.12 0.29 
19 .42 .46 0.46 0.47 0.61 0.87 0.15 
20 .80 .35 0.66 -1.52 0.72 -1.17 0.19 
21 .57 .50 0.51 -0.38 1.79 0.59 0.37 
22 .46 .46 0.44 0.27 1.76 0.92 0.30 
23 .80 .27 0.47 -1.97 0.51 -1.39 0.23 
24 .53 .33 0.26 -0.25 1.11 1.15 0.40 
25 .46 .32 0.29 0.34 0.41 1.23 0.21 
26 .88 .18 0.45 -2.86 0.50 -2.17 0.27 
27 .39 .47 0.52 0.62 0.69 0.92 0.12 
28 .63 .39 0.42 -0.83 0.59 0.11 0.28 
29 .82 .34 0.71 -1.60 0.80 -1.20 0.21 
30 .78 .34 0.55 -1.61 0.60 -1.17 0.19 
31 .73 .46 0.66 -1.12 0.80 -0.62 0.23 
32 .75 .32 0.41 -1.75 0.47 -0.98 0.25 
33 .48 .45 0.42 0.15 0.64 0.82 0.22 
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Table 6        
Descriptive statistics for item response times 

Item 
number 

Response time Log of response time 
Mean (SD) Skewness Kurtosis Mean (SD) Skewness     Kurtosis 

1 61.88 (34.42) 1.34 3.01 3.96 (0.64) -1.29 4.19 
2 63.22 (41.20) 1.62 4.34 3.93 (0.73) -1.17 3.79 
3 57.86 (35.69) 1.50 4.16 3.87 (0.66) -0.83 2.55 
4 32.74 (34.41) 2.07 7.24 2.88 (1.23) -0.43 -0.62 
5 47.48 (35.97) 2.59 11.03 3.62 (0.74) -0.72 2.33 
6 57.30 (36.70) 1.48 3.35 3.84 (0.69) -0.89 3.27 
7 64.09 (42.90) 1.71 4.34 3.94 (0.73) -1.15 4.05 
8 35.44 (34.78) 2.03 6.27 3.03 (1.17) -0.61 -0.23 
9 69.11 (51.40) 2.30 8.65 3.96 (0.84) -1.39 3.93 

10 53.37 (35.67) 2.71 16.33 3.75 (0.79) -1.71 5.30 
11 57.98 (37.45) 1.94 7.42 3.81 (0.87) -1.89 5.07 
12 46.70 (35.37) 2.00 7.03 3.54 (0.89) -1.35 3.41 
13 46.02 (31.41) 2.70 19.34 3.56 (0.87) -1.63 3.71 
14 39.51 (47.32) 2.82 11.41 2.96 (1.37) -0.52 -0.51 
15 51.89 (37.57) 2.31 9.29 3.70 (0.76) -0.98 2.63 
16 50.27 (35.06) 2.25 9.60 3.67 (0.80) -1.55 5.20 
17 55.42 (36.26) 1.60 4.49 3.79 (0.76) -1.21 3.16 
18 42.73 (33.80) 1.82 5.22 3.43 (0.91) -1.09 2.56 
19 26.49 (29.50) 2.86 13.53 2.70 (1.18) -0.37 -0.53 
20 52.66 (39.96) 2.86 15.44 3.71 (0.77) -0.97 2.99 
21 54.79 (32.17) 2.38 12.18 3.84 (0.65) -1.73 7.94 
22 63.17 (37.85) 2.52 17.83 3.96 (0.69) -1.76 6.86 
23 49.48 (29.46) 1.57 6.60 3.69 (0.77) -1.79 5.52 
24 32.23 (33.39) 1.98 6.49 2.82 (1.32) -0.57 -0.57 
25 63.28 (38.94) 1.62 4.62 3.94 (0.74) -1.50 4.19 
26 45.06 (27.58) 2.39 14.10 3.60 (0.75) -1.87 6.38 
27 43.19 (29.75) 2.50 12.57 3.52 (0.80) -1.59 4.84 
28 25.83 (28.15) 2.56 10.53 2.64 (1.24) -0.46 -0.56 
29 45.06 (34.63) 2.34 8.86 3.54 (0.81) -1.04 2.83 
30 42.41 (34.88) 2.99 18.29 3.45 (0.85) -0.98 2.56 
31 51.42 (35.75) 1.54 4.68 3.64 (0.92) -1.48 3.13 
32 45.97 (34.27) 1.59 3.98 3.49 (0.97) -1.31 2.25 
33 41.22 (47.24) 2.73 11.55 3.08 (1.27) -0.45 -0.44 

Total 48.98 (38.02) 2.16 9.21 3.54 (0.99) -1.16 3.07 
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Response time models implementation 

Thissen’s (Thissen, 1983) lognormal response time model, Wang and Hanson’s (Wang & 

Hanson, 2005) 4PL RT model, and van der Linden’s (van der Linden, 2007) hierarchical 

framework were applied to the investigation of response time on the real data through Bayesian 

estimation using the MCMC method. Those six models, three response time models applied in 

both 2PL IRT and 3PL IRT as response data models, were implemented using WinBUGS program. 

First, the model convergence was checked using various graphical methods as well as a diagnostic 

index. Second, the response time models were compared on response data as well as response time 

information.  

Convergence Check 

The model convergence check was conducted by using the Gelman-Rubin diagnostic as well 

as graphical diagnostic methods. The Gelman-Rubin ratios are available when multiple chains are 

applied in the model specification and estimation. This study used two chains to calculate the 

Gelman-Rubin ratios for the item and examinee parameter estimates. Table A2 through Table A4 

in Appendix show the Gelman-Rubin diagnostics for the item parameter estimates calculated as 

the average of the values from 2,000 post burn-in after 8,000 burn-in iterations were discarded. 

Figure 4 and Figure 5 demonstrate representative item parameter estimates and examinee ability 

parameter estimates from all the six response time models after implementing the MCMC 

estimation.  

The Gelman-Rubin ratio indicated that all the values for item parameter estimates were 

around 1.0 which is showing the evidence of the model convergence. The history graphs and the 



50 
 

posterior density plots also showed 2 chains of these six models quickly reached an acceptable 

convergence on the stationary distribution for all the items. Thus, a conservative burn-in of 8,000 

iterations and 2,000 post burn-in iterations were used in implementing all the models in this study. 

Figure B1 through B6 in Appendix show some exemplary posterior density plots for item 

parameter and examinee ability parameter estimates in the six response time models.   
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Figure 4. Some representative history plots of the item difficulty parameter estimates. 
Note. (a) Thissen’s model (2PL); (b) Thissen’s model (3PL); (c) Wang & Hanson’s 4PL RT model 
(2PL); (d) Wang & Hanson’s 4PL RT model(3PL); (e) van der Linden’s hierarchical framework 
(2PL); (f) van der Linden’s hierarchical framework (3PL)  
 

(a) 



52 
 

theta[1] chains 1:2

iteration
1 5000 10000

   -4.0

   -2.0

    0.0

    2.0

 
(b) 

theta[1] chains 1:2

iteration
1 5000 10000

   -4.0

   -2.0

    0.0

    2.0

 
(c) 

theta[1] chains 1:2

iteration
1 5000 10000

   -4.0

   -2.0

    0.0

    2.0

 
(d) 

theta[1] chains 1:2

iteration
1 5000 10000

   -6.0

   -4.0

   -2.0

    0.0

    2.0

 
(e) 
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Figure 5. Some representative history plots of the examinee true ability parameter estimates. 
Note. (a) Thissen’s model (2PL); (b) Thissen’s model (3PL); (c) Wang & Hanson’s 4PL RT model 
(2PL); (d) Wang & Hanson’s 4PL RT model(3PL); (e) van der Linden’s hierarchical framework 
(2PL); (f) van der Linden’s hierarchical framework (3PL)  

Model goodness of fit and comparison 
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The DIC values from the models were obtained from the posterior means after an additional 

1,000 iterations were applied. Table 7 showed the DIC values from the six response time models 

according to the response and response time distribution. Marginally, 3PL application models 

showed better fit by having lower DIC values than 2PL applications; hierarchical framework 

showed the lowest values among three models.  

 

Table 7.  
DIC values from the response time models 

  Response Response time Total 

4PL RT model 
2PL 36983.3 82504.1 119487.4 

3PL 36915.4 82498.7 119414.1 

Hierarchical 
framework 

2PL 36997.9 81504.4 118502.3 

3PL 36896.0 81499.3 118395.3 

Thissen’s model 
2PL 37085.6 85058.4 122144.0 

3PL 37025.0 85189.0 122214.0 

 

Comparison of parameter estimates 

Item parameter estimates from the six response time models are displayed in Tables A5 

through A7 in Appendix. Descriptive statistics for item and examinee parameter estimates from 

the six models are presented in Table 8. The means and standard deviations of these models 

showed similar results across the models.  
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Table 8.  
Means and standard deviations for the item and examinee parameter estimates from the response 
time models 

  Item Examinee 
  a b c alpha beta theta tau 

4PL RT model 
2PL 0.719 

(0.247) 
-0.951 
(1.119)   3.378 

(2.392) 
0.033 

(0.823) 
0.988 

(0.181) 

3PL 0.672 
(0.463) 

-0.249 
(1.127) 

0.245 
(0.069)  4.695 

(2.481) 
0.010 

(0.821) 
0.997 

(0.154) 

Hierarchical 
framework 

2PL 0.745 
(0.261) 

-0.776 
(1.060)  1.492 

(0.527) 
3.422 

(0.043) 
0.024 

(0.831) 
-0.117 
(0.198) 

3PL 0.678 
(0.416) 

-0.051 
(1.062) 

0.245 
(0.060) 

1.492 
(0.527) 

3.423 
(0.043) 

0.004 
(0.838) 

-0.115 
(0.199) 

Thissen’s model 
2PL 0.721 

(0.251) 
-0.729 
(1.073)   0.062 

(0.519) 
0.023 

(0.835) 
0.003 

(0.355) 

3PL 0.622 
(0.248) 

-0.009 
(1.079) 

0.238 
(0.053)  0.056 

(0.438) 
0.002 

(0.833) 
0.001 

(0.285) 
 

Table 9 shows the correlation coefficients between item difficulty parameter estimates. Table 

10 displays the correlation coefficients between examinee ability parameter estimates among the 

models. The item and examinee parameter estimates from the 2PL and 3PL IRT model also 

inserted for comparison with the response time models. Correlations for item parameter estimates 

in the same application among the models ranged as follows: a) .772~.995 for the item 

discrimination; b) .915~.995 for the item difficulty; c) .724~.971 for the lower asymptote. Both 

correlations for item difficulty and correlations for examinee ability were ranged from .915 

through .995 and they showed comparable results among the six models and also indicated that 

these models were pointing the same direction. The results also showed there were higher 

correlations in the same application of the response model (e.g., 3PL applications) than the 

counterpart (e.g., 2PL applications).  
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Table 9.  
Correlations between the item difficulty parameter estimates among the models 

  4PL RT Hierarchical 
framework 

Thissen’s 
model IRT 

 2PL 3PL 2PL 3PL 2PL 3PL 2PL 3PL 

4PL RT model 2PL         

3PL .953        

Hierarchical 
framework 

2PL .993 .934       

3PL .949 .987 .944      

Thissen’s model 
2PL .977 .928 .969 .935     

3PL .946 .983 .938 .994 .942    

IRT model 
2PL .987 .925 .997 .935 .955 .927   

3PL .937 .979 .938 .994 .915 .986 .935  

 
 
Table 10.  
Correlations between the examinee true ability parameter estimates among the models 

  4PL RT Hierarchical 
framework 

Thissen’s 
model IRT 

 2PL 3PL 2PL 3PL 2PL 3PL 2PL 3PL 

4PL RT model 2PL         

3PL .986        

Hierarchical 
framework 

2PL .993 .979       

3PL .983 .989 .990      

Thissen’s model 
2PL .980 .967 .983 .974     

3PL .987 .986 .992 .995 .989    

IRT model 
2PL .990 .976 .997 .988 .980 .989   

3PL .977 .983 .985 .995 .969 .990 .989  
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Examining further the relationships between item response time and other parameter 

estimates, the Person product moment correlations were investigated. Correlations for the speed 

related parameter estimates among the models are shown in A10 and A11 in Appendix. These 

correlations were showing somewhat different directions across the response time models. The 

correlations between the hierarchical framework and Thissen’s model showed high 

ranged .882~.962 in the item speed parameter estimates. The 4PL RT showed relatively lower 

correlations in these speed parameter estimates ( .322~.431). The correlations for the 

examinee ability parameter estimates also showed a similar pattern. The hierarchical framework 

and Thissen’s models showed closer to each other in the magnitude of the relationship; the speed 

parameters from 4PL RT models showed weak correlations with the parameters from the other 

response time models ( .359~.182).  

 

Comparison of response time related parameter estimates 

All the Response time models in this study have item and examinee response speed 

parameters that explain relationship between item difficulty and response time, and relationship 

between the examinee true ability and response speed. Thissen’s model has a rho parameter, a 

regression coefficient of the 2PL IRT structure on response time, which is also indicating overall 

response latency and the item and examinee parameter estimates. Thissen’s models showed that 

0.236 of ρ̂  value from the 3PL application and 0.309 from the 2PL application model. Thus, 

those positive values imply that overall response latency is increased as item difficulty increases; 

response latency is increased as examinee ability decreases.  

Both correlations between the item difficulty and the item speed parameter estimates and the 
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examinee true ability and the examinee speed parameter estimates are displayed in Table 11. The 

correlations between the item difficulty and the item speed indicated that there were negative 

relationships in all of the response time models, however, interpretations of these values showed 

different directions based on the response time models. As the item difficulty increases the item 

slowness decreases in the 4PL RT models and Thissen’s models. However, the hierarchical 

framework has a response time intensity parameter; a negative correlation implies that the more 

difficult items tend to be less time intensive. Scatter plots of item difficulty and item speed 

parameter estimates are displayed in Figure B7 in Appendix. 

Correlations between the examinee true ability and the examinee speed parameter estimates 

showed another complicated results. The hierarchical framework and 4PL RT models showed 

negative correlations, while positive relationships were shown in Thissen’s models. It is pertinent 

to have a positive relationship in Thissen’s models because of an examinee slowness parameter 

instead of an examinee speed. This result is also pointing the same direction as described in the 

overall relationship ( ρ̂ ) of the IRT structure and response time. The hierarchical framework also 

showed the same direction as Thissen’s models did. 4PL RT models showed weak correlations but 

having opposite direction between examinee ability and examinee speed; the more able examinees 

tended to take the exam more faster. Scatter plots of examinee ability and examinee speededness 

(slowness) parameter estimates are displayed in Figure B8 in Appendix. 
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Table 11.  
Correlations between the item difficulty (b) and item speed (β ) parameter estimates (N=33); 
correlations between the examinee true ability (θ̂ ) and speed parameter (τ̂ ) estimates (N=975) 

 4PL RT Hierarchical framework Thissen’s model 

 2PL 3PL 2PL 3PL 2PL 3PL 

(1)
ˆ ˆ   
b

r
β  -.344 -.424 -.273 -.301 -.629 -.575 

(2)
ˆˆ   r
θτ  -.169 -.318 -.291 -.290 .792 .638 

Note. (1) All correlations are significant at .05; (2) all correlations are significant at .01. 
 

In order to investigate further the relationships among response speed, item characteristics 

and examinee ability, average response times on items and examinees are examined. Both 

correlations between item parameter estimates and the mean of item response time and examinee 

parameter estimates and response time are displayed in Table 12.  

Correlations between response time and item difficulty indicated comparable results across 

the response time models. However, correlations between response time and item speed parameter 

estimates indicated contrasting results in the magnitude of relationship across the models. 

Hierarchical framework and Thissen’s models showed strong relationship between the two 

estimates (Hierarchical framework: .950, .950 ; Thissen’s models: 

.767, .873 ), while 4PL RT models indicated a somewhat weak 

relationship ( .234, .233).  

Both correlations between response time and examinee ability and response time and 

examinee speed parameter estimates showed a similar pattern. Comparable results in the 

relationship between response time and examinee ability were shown across the response time 
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models. 4PL RT models showed almost no relationships between examinee speed parameter 

estimates and mean examinee response time .032; .079 .  The 

hierarchical framework showed highest correlations among the models .751; 

.751 . Although Thissen’s models showed positive correlations between examinee 

ability and examinee speed but it indicated the same direction of the relationship when the concept 

of the parameter in the model was considered. Thissen’s models have an examinee slowness 

parameter and it showed the same direction with those results from the hierarchical framework.  

 

Table 12.  
Correlations among the item parameters and mean response time (N=33); correlations among the 
examinee parameters and response time (N=975) 

 4PL RT Hierarchical framework Thissen’s model 

 2PL 3PL 2PL 3PL 2PL 3PL 

b̂RT
r  -.147 -.105 -.127 -.143 -.085 -.179 

ˆRT
r
β  .234 .233 .950 .950 .767 .873 

ˆRT
r
θ  .143 .133 .156 .150 .198 .165 

ˆRTrτ  -.032 -.079 -.751 -.751 .618 .695 

Note. All correlations are significant at .05 
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Study 2 results 

The design of Study 2 included four sample sizes (100, 500, 1,000, and 2,000 examinees), 

two test lengths (30 and 60 items), and seven different conditions of the relationship (ρ = -0.9, -

0.6, -0.3, 0.0, 0.3, 0.6, and 0.9) between the 2PL IRT structure and response time from Thissen’s 

model. All the results are obtained from 2,000 posterior burn-in iterations after 8,000 iterations of 

burn-in. First, obtained DIC values were compared to examine the overall model goodness of fit 

between two response time models. The item and examinee parameter estimates were compared 

through examining bias and RMSE values. The estimates from a typical 3PL IRT model were also 

compared with those of the two response time models to measure improvement from the 

estimation without considering response time data. Finally, the Pearson product-moment 

correlation coefficients were examined to compare parameter estimates in the two response time 

models. 

  

DIC comparison 

Table 13 showed mean DIC values for the 4PL RT model and hierarchical framework in 

various conditions of size of the examinees, number of the items, and strength of the relationships 

between the IRT structure and response time. Overall, the hierarchical framework showed lower 

DIC values than the 4PL RT model throughout the conditions. However, it is obvious that the main 

difference between two models is due to the DIC values from the response time data distributions. 

The DIC values from the response time distributions in 4PL RT models showed about 2~4 times 

more than those of hierarchical framework. When the DIC values from the response data 

distributions were focused, they showed comparable results; the 4PL RT model showed slightly 
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better fit. For response data distributions the 4PL RT model showed better fit in all of the marginal 

conditions of the size of the examinees, the 30 items condition, and negative relationships between 

the IRT structure and response time. The hierarchical framework showed better fit in the 60 items 

condition and the following conditions:ρ =0.0, 0.3, 0.6, and 0.9. Thus, the hierarchical framework 

showed better fit when there are either no or positive relationships between the IRT structure and 

response time.  

 

Table 13.  
DIC values for the 4PL RT model and hierarchical framework 

 

  

  4PL RT Hierarchical Framework 

  Response Response 
time Total Response Response 

time Total 

Examinees 

100 5315.239 42580.988 47896.224 5323.890 10232.769 15556.660 
500 26043.763 210284.195 236327.995 26050.971 50498.912 76549.878 
1000 52311.092 422333.764 474644.857 52316.302 101194.657 153510.933 
2000 104475.890 843590.847 948066.828 104484.028 202254.116 306738.152 

Items 
30 32422.845 243892.942 276315.799 32441.459 59882.469 92323.918 
60 61650.146 515501.955 577152.153 61646.137 122207.758 183853.894 

Rho 

-0.9 46993.025 429504.952 476498.140 47038.308 95413.096 142451.399 
-0.6 47021.172 377520.707 424541.733 47043.109 91408.557 138451.643 
-0.3 47039.833 346780.932 393820.746 47043.929 88280.312 135324.234 
0.0 47047.089 337267.701 384314.896 47047.544 86995.960 134043.488 
0.3 47050.904 348963.497 396014.659 47044.352 88311.975 135356.335 
0.6 47051.715 381887.137 428938.852 47043.878 91443.175 138487.063 
0.9 47051.734 435957.212 483008.805 47045.464 95462.720 142508.179 

Total 47036.496 379697.448 426733.976 47043.798 91045.114 138088.906 
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Parameter recovery analysis 

A series of recovery analyses were conducted to determine the extent to which the generating 

parameters could be recovered from the simulated data sets. The recovery analyses considered two 

issues, recovery of the simulated item parameters and latent ability of the examinees. The 

recoveries of the item parameters and examinee true ability were assessed using bias and RMSE 

values between the generating parameters and parameter estimates. Relative efficiency values 

were also used to measure the efficiency of the given model over the counterpart model by 

applying MSE values.  

 

Item parameter recovery 

Table 14 and Figure 6 indicate the mean bias for item parameters among the two response 

time models and the 3PL IRT model. Overall, hierarchical framework showed the lowest mean 

bias in absolute term in all of the three marginal conditions. A similar pattern is shown in RMSE 

values for item parameters. Figure 7 and Table 15 indicate that the hierarchical framework shows 

the lowest mean RMSE values in all of the three marginal conditions; 4PL RT models showed 

better item parameter recoveries than the 3PL IRT model.  
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Table 14.  
Mean bias for the item parameters in the 3 models 

  4PL RT Hierarchical Framework 3PL IRT 
  a b c a b c a b c 

Examinees 

100 .307 .016 -.050 .286 -.124 -.037 .408 -.283 -.149 
500 .384 .008 -.031 .364 -.087 -.021 .420 -.178 -.159 
1000 .411 .015 -.054 .391 -.109 -.039 .457 -.213 -.156 
2000 .474 .018 -.035 .461 -.057 -.026 .486 -.191 -.156 

Items 30 .317 .036 -.042 .295 -.093 -.031 .390 -.251 -.263 
60 .470 -.007 -.043 .456 -.095 -.031 .495 -.182 -.047 

Rho 

-0.9 .403 .036 .008 .385 -.073 .007    
-0.6 .400 .033 .008 .382 -.076 .007    
-0.3 .396 .024 .007 .377 -.085 .006    
0.0 .391 .015 .007 .373 -.094 .006    
0.3 .389 .002 .007 .371 -.107 .006    
0.6 .389 -.001 .007 .371 -.109 .006    
0.9 .388 -.008 .007 .370 -.117 .006    

Total .394 .014 -.042 .376 -.094 -.031 .443 -.216 -.155 
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(a)                                (b) 

 
(c)                                (d) 

 
(e)                                (f) 

 
Figure 6. Mean bias for the item parameters in the 3 models 
Note. (a)-(b) Mean bias for the item discrimination parameter; (c)-(d) mean bias for the item 
difficulty parameter; (e)-(f) mean bias for the item guessing parameter 
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Table15.  
Mean RMSE for the item parameters in the 3 models 

  4PL RT Hierarchical Framework 3PL IRT 
  a b c a b c a b c 

Examinees 

100 .409 .412 .086 .391 .404 .082 .543 .584 .177 

500 .490 .317 .088 .466 .297 .082 .510 .398 .186 

1000 .529 .300 .084 .508 .307 .078 .529 .401 .182 

2000 .554 .303 .082 .538 .303 .075 .547 .384 .179 

Items 
30 .451 .333 .086 .425 .317 .079 .468 .443 .270 

60 .540 .334 .084 .527 .338 .080 .597 .441 .092 

Rho 

-0.9 .507 .350 .088 .488 .344 .083    

-0.6 .503 .350 .087 .484 .344 .081    

-0.3 .497 .330 .085 .478 .325 .079    

0.0 .492 .333 .084 .473 .327 .078    

0.3 .490 .326 .084 .471 .320 .078    

0.6 .490 .329 .084 .470 .324 .078    

0.9 .489 .316 .084 .469 .310 .078    

Total .496 .333 .085 .476 .328 .079 .532 .442 .181 
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                   (a)                                (b) 

 
                    (c)                                (d) 

 
(e)                                (f) 

 
Figure 7. Mean RMSE for the item parameters in the 3 models 
Note. (a)-(b) Mean RMSE for the item discrimination parameter; (c)-(d) mean RMSE for the item 
difficulty parameter; (e)-(f) mean RMSE for the item guessing parameter 
 

Relative efficiency from MSE values were displayed in Table 16. It also suggested that 

hierarchical framework and 4PL RT models showed better results than the 3PL IRT model in all of 
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Table 16.  
Relative efficiency for the item parameters in the 3 models 

  3PL IRT/4PL RT 3PL IRT/Hierarchical   
       Framework 

4PL RT/ Hierarchical 
         Framework 

  a b c a b c a b c 

Examinees 

100 1.778 1.823 5.571 1.936 1.966 5.571 1.089 1.000 1.000 

500 1.086 1.298 5.375 1.200 1.610 6.143 1.105 1.143 1.143 

1000 1.004 1.630 5.857 1.088 1.482 6.833 1.084 1.167 1.167 

2000 0.977 1.358 5.857 1.034 1.437 6.833 1.058 1.167 1.167 

Items 
30 1.058 1.549 9.125 1.196 1.856 12.167 1.130 1.198 1.333 

60 1.214 1.597 1.143 1.274 1.526 1.333 1.050 0.956 1.167 

Rho 

-0.9       1.078 1.059 1.143 

-0.6       1.079 1.065 1.143 

-0.3       1.081 1.067 1.167 

0.0       1.083 1.073 1.167 

0.3       1.083 1.076 1.167 

0.6       1.084 1.066 1.167 

0.9       1.084 1.089 1.167 

Total 1.073 1.327 2.129 1.118 1.348 2.291 1.042 1.015 1.076 

 

Table 17 through Table 20 show the results from the two three-way multivariate analysis of 

variances to investigate further the recoveries of each of the item parameters. All of the main 

effects of the 3 factors (estimation models, the numbers of examinees, and item numbers) as well 

as the interaction effects indicated statistically significant differences on the two measured criteria 

across the three item parameters. The MANOVA results indicate that the omnibus F-test was 

significant and the model accounted for a very large amount of variance ( : ,

6913.79, .001,  .853;  : , 3853.415, .001,  

.764). For effect size measures, all of the main effects and the interaction effects showed large 
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effects that have values greater than .135, except a 3-way interaction effect ( : ,

21.052, .001,  .034; : , 5.066, .001,  .008 .  

 

Table 17.  
The MANOVA results for the bias of the item parameters 

Source Wilks’ 
Lambda F Hypothesis 

df Error df p-value Partial 
 

Model .022 6913.787 6 7148 <.001 .853 
Examinee .195 924.020 9 8698 <.001 .420 

Item .047 24396.728 3 3574 <.001 .953 
Model*Examinee .626 101.176 18 10109 <.001 .145 

Model*Item .066 3457.934 6 7148 <.001 .744 
Model*Examinee 

*Item .901 21.052 18 10109 <.001 .034 

 

Table 18.  
The post hoc comparison results for the bias of the item parameters 

Dependent 
variable Model Mean difference Standard error p-value 

Bias(a) 
H – 4PL -.018 .0007 <.001 
H – 3PL -.067 .0015 <.001 

4PL – 3PL -.049 .0015 <.001 

Bias(b) 
H – 4PL -.109 .0017 <.001 
H – 3PL .122 .0034 <.001 

4PL – 3PL .231 .0034 <.001 

Bias(c) 
H – 4PL .012 .0003 <.001 
H – 3PL .124 .0005 <.001 

4PL – 3PL .113 .0005 <.001 
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Table 19.  
The MANOVA results for the RMSE of the item parameters 

Source Wilks’ 
Lambda F Hypothesis 

 df Error df p-value Partial 

Model .056 3853.415 6 7148 <.001 .764 
Examinee .414 422.612 9 8698 <.001 .255 

Item .059 19023.672 3 3574 <.001 .941 
Model*Examinee .717 70.049 18 10109 <.001 .105 

Model*Item .068 3470.072 6 7148 <.001 .739 
Model*Examinee 

*Item .975 5.066 18 10109 <.001 .008 

 
Table 20.  
The post hoc comparison results for the RMSE of the item parameters 

Dependent 
variable Model Mean difference Standard error p-value 

RMSE(a) 
H – 4PL -.020 .0009 <.001 

H – 3PL -.057 .0018 <.001 

4PL – 3PL -.037 .0018 <.001 

RMSE(b) 
H – 4PL -.005 .0042 .591 

H – 3PL -.114 .0084 <.001 

4PL – 3PL -.109 .0084 <.001 

RMSE(c) 
H – 4PL -.006 .0002 <.001 

H – 3PL -.102 .0004 <.001 

4PL – 3PL -.096 .0004 <.001 

 

Examinee true ability parameter recovery 

Table 21 and Figure 8 show the bias and RMSE values for the examinee ability parameter in 

the models. Overall, the examinee true ability parameters for hierarchical framework recovered 

better than the other two models by showing the lowest mean bias in absolute term and mean 

RMSE values (bias=-.005; RMSE=.422). Parameters for the 3PL IRT models were recovered 

slightly better than the 4PL RT model. 
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Table.21  
Bias and RMSE for the examinee true ability parameter in the 3 models 

  4PL RT Hierarchical Framework 3PL IRT 

  Bias RMSE Bias RMSE Bias RMSE 

Examinees 

100 -.087 .448 -.040 .422 -.065 .451 

500 .007 .435 .020 .419 -.064 .414 

1000 -.016 .436 -.006 .421 .002 .416 

2000 .005 .443 .006 .426 .003 .417 

Items 
30 -.013 .503 -.001 .480 -.051 .477 

60 -.033 .377 -.010 .363 -.011 .372 

Rho 

-0.9 -.029 .467 -.006 .449   

-0.6 -.027 .450 -.005 .432   

-0.3 -.026 .440 -.006 .421   

0.0 -.023 .433 -.004 .415   

0.3 -.021 .430 -.007 .411   

0.6 -.019 .434 -.004 .416   

0.9 -.017 .428 -.004 .409   

Total -.023 .440 -.005 .422 -.031 .424 
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(a)                                      (b) 

 
                (c)                                     (d) 

 
                (e)                                     (f) 

 
Figure 8. Bias and RMSE for the examinee true ability parameter in the 3 models. 
Note. (a)-(b) Bias and RMSE for the examinee ability parameter; (c)-(d) Bias and RMSE based for 
the examinee ability parameter on the number of the examinees; (e)-(f) Bias and RMSE for the 
examinee ability parameter based on the number of the items 
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Table 22 Shows relative efficiency values from MSE and suggests that the 3PL IRT model is 

the most efficient model overall. MSE values for hierarchical framework were lower than the 3PL 

IRT model in the conditions of the 60 items and the 100 examinees; the hierarchical framework 

was shown better results than the 4PL RT model in all of the conditions. 

 
Table 22.  
Relative efficiency for the examinee ability parameter in the 3 models 

  3PL IRT/4PL RT 3PL IRT/Hierarchical  
       Framework 

4PL RT/Hierarchical 
        Framework 

Examinees 

100 0.972 1.084 1.115 

500 0.888 0.956 1.077 

1000 0.893 0.967 1.082 

2000 0.881 0.957 1.086 

Items 
30 0.888 0.979 1.103 

60 0.945 1.015 1.074 

Total 0.909 0.993 1.092 

 

A three-way MANOVA was conducted to determine the effect of 3 factors (the estimation 

models, the number of the examinees, and the items) on the three measured criteria (bias, MSE, 

RMSE). The MANOVA results confirmed that hierarchical framework was shown to be the best 

model in the examinee parameter recovery. All of the main effects were statistically significant, 

post hoc analyses to the MANOVA for the estimation models were conducted using Bonferroni 

method. Although the relative efficiency indicated the 3PL IRT model was the best recovered 

model, differences from the hierarchical framework were not statistically significant. These results 

are summarized in Table 23 and 24 for the MANOVA and the post hoc procedures respectively.  
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Table 23.  
The MANOVA results for the measured criteria of the examinee true ability 

Source Wilks’ 
Lambda F Hypothesis 

df Error df p-value Partial 
 

Model .022 6913.787 6 7148 <.001 .853 
Examinee .195 924.020 9 8698 <.001 .420 

Item .047 24396.728 3 3574 <.001 .953 
Model*Examinee .626 101.176 18 10109 <.001 .145 

Model*Item .066 3457.934 6 7148 <.001 .744 
Model*Examinee 

*Item .901 21.052 18 10109 <.001 .034 

 

Table 24.  
The post hoc comparison results for the measured criteria of the examinee true ability 

Dependent 
variable Model Mean difference Standard error p-value 

Bias( ) 
H – 4PL -.018 .0007 <.001 
H – 3PL -.067 .0015 <.001 

4PL – 3PL -.049 .0015 <.001 

RMSE( ) 
H – 4PL -.109 .0017 <.001 
H – 3PL .122 .0034 <.001 

4PL – 3PL .231 .0034 <.001 

MSE( ) 
H – 4PL .012 .0003 <.001 
H – 3PL .124 .0005 <.001 

4PL – 3PL .113 .0005 <.001 
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The recovery of the examinee true ability parameter was investigated further by using 10 

 categories. The examinees that have smaller or greater than the absolute value of 2.0 in  were 

grouped in 1 and 10 respectively; eight more  categories were generated in between -2.0 

and 2.0 in step of 0.5. Figure 9 and 10 show bias and RMSE values of these 10  categories. The 

3PL IRT model showed the least bias in absolute term throughout the examinee ability groups. 

RMSE values also displayed a similar pattern, however, the 4PL RT and hierarchical framework 

showed comparable or lower RMSE values in the middle ability groups ( 3 through 7). The 

mean bias and RMSE values of the examinee true ability parameters are displayed in Table A14 

and A15 in Appendix. Figure B7 in Appendix also shows differences in RMSE values of the 3 

models in each of the  groups in more detail. 

 

 

Figure 9. Bias for the examinee true ability parameter based on the examinee ability  
groups. 
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Figure 10. RMSE for the examinee true ability parameter based on the examinee ability  
groups. 

 

A three-way MANOVA was conducted again to determine the effect of 3 factors (the 

estimation models, the number of examinees, and the items) on the RMSE values in the 10  

categories. The results confirmed that the hierarchical framework and 4PL RT model showed 
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of the main effects were statistically significant in the MANOVA results, post hoc analyses to the 
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and the RMSE values favored the 3PL IRT model, most of the differences from the hierarchical 
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Table 25.  
The MANOVA results for the RMSE of the examinee ability based on the ability groups 

Source Wilks’ 
Lambda       F Hypothesis 

df Error df p-value Partial 

Model .883 22.794 20 7134 <.001 .060 
Examinee .259 204.015 30 10470 <.001 .363 

Item .422 488.849 10 3567 <.001 .578 
Model*Examinee .929 4.442 60 18693 <.001 .012 

Model*Item .963 6.873 20 7134 <.001 .019 
Model*Examinee 

*Item .977 1.416 60 18693 .019 .004 
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Table 26.  
The post hoc comparison results for the RMSE of the examinee true ability based on ability groups 

Dependent 
variable Model Mean difference Standard error p-value 

RMSE( 1) 
H – 4PL -.090 .0093 <.0001 
H – 3PL .051 .0186 .0172 

4PL – 3PL .142 .0186 <.0001 

RMSE( 2) 
H – 4PL -.042 .0041 <.0001 
H – 3PL .024 .0082 .0101 

4PL – 3PL .066 .0082 <.0001 

RMSE( 3) 
H – 4PL -.031 .0030 <.0001 
H – 3PL -.005 .0060 1.0000 

4PL – 3PL .027 .0060 <.0001 

RMSE( 4) 
H – 4PL -.026 .0026 <.0001 
H – 3PL -.019 .0051 .0006 

4PL – 3PL .006 .0051 .6220 

RMSE( 5) 
H – 4PL -.011 .0035 .0044 
H – 3PL -.009 .0070 .6483 

4PL – 3PL .002 .0070 1.0000 

RMSE( 6) 
H – 4PL -.016 .0036 <.0001 
H – 3PL -.008 .0072 .8767 

4PL – 3PL .009 .0072 .7203 

RMSE( 7) 
H – 4PL -.012 .0031 <.0001 
H – 3PL -.018 .0062 .0115 

4PL – 3PL -.005 .0062 1.0000 

RMSE( 8) 
H – 4PL -.005 .0023 .0601 
H – 3PL .000 .0046 1.0000 

4PL – 3PL .006 .0046 .6449 

RMSE( 9) 
H – 4PL -.000 .0042 1.0000 
H – 3PL .033 .0084 .0003 

4PL – 3PL .033 .0084 .0002 

RMSE( 10) 
H – 4PL .004 .0033 .5862 
H – 3PL .046 .0066 <.0001 

4PL – 3PL .041 .0066 <.0001 
Note. Mean difference is significant at =.0017.     
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Correlations between item parameters and estimates 

Table 27 and Figure 11 show the Pearson product moment correlation coefficients between 

the item parameters and estimates in the various conditions across 30 replications. Overall the 

mean correlations between the item parameter and estimates from the 3 models were high; the 

highest correlation were shown in hierarchical framework in all of the item parameters (

.761;  .941;  ̂ .496). The hierarchical model also showed consistent results throughout 

various conditions of the  parameter when it was compared to the 4PL RT model. These results 

are displayed in Figure 12. It was also noted that the 3PL IRT model showed lower correlations in 

the 100 examinees condition comparing to response time models. However, in the other 

examinees conditions the results were comparable to those of the response time models.  

 
Table 27.  
Correlation between the item parameters and estimates in the 3 models 

  4PL RT Hierarchical 
Framework 3PL IRT 

  a b c a b c a b c 

Examinees 

100 .600 .895 .419 .619 .905 .410 .512 .871 .366 
500 .738 .941 .496 .773 .950 .487 .745 .947 .443 
1000 .796 .953 .535 .831 .956 .532 .825 .955 .513 
2000 .845 .960 .602 .878 .965 .617 .877 .965 .594 

Items 30 .713 .931 .515 .732 .936 .479 .731 .936 .467 
60 .776 .944 .511 .782 .945 .509 .748 .933 .491 

Rho 

-0.9 .678 .919 .546 .766 .942 .499    
-0.6 .721 .930 .528 .760 .935 .496    
-0.3 .748 .937 .513 .760 .943 .497    
0.0 .762 .941 .507 .760 .940 .499    
0.3 .769 .943 .501 .760 .942 .498    
0.6 .768 .941 .497 .759 .942 .492    
0.9 .767 .949 .497 .760 .944 .492    

Total .745 .937 .513 .761 .941 .496 .740 .934 .479 
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(a)                                 (b) 

 
                    (c)                                 (d) 

 
                    (e)                                  (f) 

 
Figure 11. Correlation between item parameters and estimates in the 3 models 
Note. (a)-(b) Correlation coefficients for the item discrimination parameter; (c)-(d) Correlation 
coefficients for the item difficulty parameter; (e)-(f) Correlation coefficients for the lower 
asymptote 
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                     (a)                                (b) 

 
                     (c)                                (d) 

 
                     (e)                                (f) 

 
Figure 12. Correlation between item parameters and estimates in the 2 response time models 
Note. (a)-(b) Correlation coefficients for the item discrimination parameter; (c)-(d) Correlation 
coefficients for the item difficulty parameter; (e)-(f) Correlation coefficients for the lower 
asymptote 
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Correlation between examinee parameters and estimates 

Table 28 and Figure 13 show the Pearson product moment correlations between the 

examinees true ability parameter and the estimates in the various conditions. Overall the 3PL IRT 

model showed the highest correlation among the models ( .876 ). The hierarchical 

framework showed higher correlation than the 3PL IRT model in the condition of the 2,000 

examinees. When it is compared to the 4PL RT model shown in (c) and (d) of the Figure 13, the 

hierarchical framework showed consistent correlations throughout of the seven conditions of the 

 parameter.  

 
Table 28.  
Correlation between the examinee true ability parameter and estimates in the 3 models 

  4PL RT Hierarchical 
Framework 3PL IRT 

Examinees 

100 .818 .833 .853 
500 .857 .868 .885 

1,000 .856 .867 .884 
2,000 .850 .901 .881 

Items 
30 .798 .815 .837 
60 .893 .898 .914 

Rho 

-0.9 .800 .871  
-0.6 .829 .867  
-0.3 .843 .867  
0.0 .853 .865  
0.3 .860 .871  
0.6 .867 .859  
0.9 .864 .869  

Total .845 .862 .876 
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(a)                                          (b) 

 
                          (c)                                          (d) 

  
Figure 13. Correlation between the examinee true ability parameters and estimates in the 3 
models (a, b); correlation between examinee the examinee true ability parameters and estimates in 
the 2 response time models (c, d). 
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Correlation between response time-related parameters and estimates 

In order to examine the response time related parameters between the response time models, 

the Pearson product moment correlations for the item and examinee parameters were calculated. 

The means of the correlations from parameter estimates are summarized in Table 29. These results 

show that the estimated item parameters from the two response time models are highly correlated. 

The examinee true ability estimates from the two response time models show a perfect correlation. 

However, correlations for response time related parameter estimates ( , ̂) indicate there are no or 

weak relationships between two response time models.  

 

Table 29.  
Correlations between item and examinee parameter estimates from the 2 response time models  

    ̂ ̂    

Examinees 

100 0.951 0.981 0.915 0.246 -0.194 1.000 
500 0.960 0.982 0.917 0.305 -0.122 1.000 
1000 0.958 0.984 0.890 0.319 -0.090 1.000 
2000 0.965 0.984 0.879 0.328 -0.059 1.000 

Items 
30 0.946 0.982 0.892 0.206 -0.023 1.000 
60 0.972 0.984 0.909 0.392 -0.210 1.000 

Rho 

-0.9 0.880 0.967 0.845 0.249 0.052 1.000 
-0.6 0.943 0.973 0.885 0.149 0.063 1.000 
-0.3 0.970 0.988 0.909 -0.029 0.096 1.000 
0.0 0.977 0.987 0.917 0.047 -0.030 1.000 
0.3 0.981 0.992 0.918 0.526 -0.254 1.000 
0.6 0.980 0.982 0.915 0.570 -0.348 1.000 
0.9 0.980 0.989 0.914 0.582 -0.392 1.000 

Total 0.959 0.983 0.900 0.299 -0.116 1.000 
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In order to examine the relationships among parameters from the item response model and 

the response time models, correlations between the item difficulty parameter (b) and the item 

speededness parameter ( ) estimates are examined. Mean correlation between two parameter 

estimates from hierarchical framework is 0.018, which is indicating almost no relationship 

between item difficulty and item speededness overall. 4PL RT model, however, showed somewhat 

positive relationship between two parameter estimates .234 ). When it was further 

examined along with the relationship between response time and the IRT structure, the differences 

from the two models were clearly manifested. The correlations between item difficulty and item 

speediness ( ) in 4PL RT models showed positive relationships( .120) in the 0.3 

condition as well as in the 0.0 condition (  .360). The hierarchical framework showed 

the following results: no relationship ( .022 ) in the 0.0  condition, positive 

relationships ( .901; .910; .921 ) in the 0.3, 0.6, 0.9 conditions, and 

negative relationships ( .900; .898; .821 ) in 0.3, 0.6, 0.9 

conditions.  

Correlations between the examinees true ability ( ) and the examinees speededness 

parameter ( ) also showed a similar pattern across the two models. Correlations from the 4PL RT 

model indicated somewhat negative relationship ( .025) while the hierarchical framework 

showed almost no relationship ( .003 ). Item discrimination (a) and response time 

discrimination parameters (α) in hierarchical framework showed negative correlations throughout 

the condition; as the rho parameter increases, the strength of the correlations between item 

discrimination and response time discrimination also increases. These results are displayed in 
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Figure 14 and summarized in Table 30. 

 
Table 30.  
Correlations between response time related parameter estimates from the 2 response time models  

  4PL RT Hierarchical Framework 
       

Examinees 

100 .411 -.069 .059 .011 -.222 

500 .234 -.023 .005 -.001 -.355 

1000 .173 -.008 .008 .000 -.443 

2000 .119 .000 .000 .001 -.471 

Items 
30 .235 -.007 .007 .001 -.334 

60 .233 -.043 .029 .004 -.411 

Rho 

-0.9 -.313 -.013 -.821 .000 -.525 

-0.6 -.197 -.009 -.898 -.002 -.475 

-0.3 .012 -.026 -.900 .006 -.312 

0.0 .360 -.020 .022 .007 -.012 

0.3 .545 -.029 .901 .002 -.294 

0.6 .600 -.036 .910 .007 -.472 

0.9 .632 -.042 .911 -.002 -.518 
Total .234 -.025 .018 .003 -.373 
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                   (a) 4PL RT model                          (b) Hierarchical framework 

 
                     (c) 4PL RT model                           (d) Hierarchical framework 

 
                 (e) Hierarchical framework 

 
Figure 14. Correlation between the item speed and item difficulty parameters (a), (b); correlation 
between the examinee speed and examinee ability parameters (c), (d);correlation between the 
response time discrimination and item discrimination parameters (e). 
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Chapter 5.   Discussion 

 

The purpose of this study was to examine two different scoring models using response time 

data in conjunction with item response models. Two distinctive response time models, 

incorporated in IRT, were compared, and the relationships both between response time and item 

characteristics and response time and examinee ability were examined using the real and simulated 

data. The research questions addressed in this study are as follows:  

1. Among the 4PL RT model, hierarchical framework, and Thissen’s model, which model is the 

best method for scoring examinees’ item responses when response time data are available in real 

data? 

2. What are the relationships between the response time-related parameters (examinee and item 

speed, time intensity and time discrimination parameters) from different models that explain the 

speed-accuracy trade-off among item characteristics and examinee ability in item responses?  

3. Which model is better to use for scoring examinees’ responses with response time data under 

several conditions such as various numbers of examinees, different numbers of items, and 

different strengths of relationships among item characteristics and examinee ability? 

These research questions will be discussed in order of overall results from the comparison of 

the response time models, the relationships in item and examinee parameter estimates, and the 

relationships between the response speed-related parameter estimates among the models. The 

discussion on these topics will be followed by the limitations of the study. As a conclusion, the 

implication of the study for educational practice and further research will be presented. 
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Model comparison in the real data study 

Overall results of analysis  

Study 1 examined the six response time models and the relationships between the response 

time models to the real data. All of the six models showed the evidence of the model convergence 

in the MCMC estimation method. Graphical diagnostics as well as the Gelman-Rubin ratios were 

applied and it was confirmed that the models were converged after thousands of burn-in iterations. 

The estimated item parameters and the examinee true ability parameter showed high correlations 

across the models. When the estimates from the response time models were compared to the ones 

from typical IRT methods, they did not show much difference. Overall, hierarchical framework 

showed the best model goodness of fit to the given data by showing the lowest DIC values among 

the six response time models. The hierarchical framework also showed the highest correlations 

both between the item speed and item difficulty parameter estimates and the examinee speed and 

examinee true ability parameter estimates. 

The 4PL RT and Thissen’s models also showed high correlations in the item and the 

examinee true ability parameter estimates with the 2PL and the 3PL IRT estimates. However, 

somewhat vague estimates for the response time related parameters were examined. The 4PL RT 

model showed a different direction from the results of hierarchical framework and Thissen’s 

model in both of the item speed and the examinee speed parameters. Item response time-related 

parameters were further examined through investigating the relationship between response times 

and item parameters. It was obvious that those two models did not clearly reflect both 

relationships between response time and item difficulty and response time and examinee ability in 

the models. Thissen’s model showed better results than the 4PL RT model. These results might be 
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related to the sample size of the items; the real data had only 33 items and there were other 

compounding source. For example, the items were relatively easy; overall 62% of the examinees 

responded correctly to the given items, and the mean values of the item difficulty parameter 

estimates from the 2PL and 3PL IRT models were .856 and .007 respectively. 

 

Response time-related parameter estimation 

Different results were shown in the relationships among the response time-related parameter 

estimates across the models. The hierarchical framework indicated negative relationships in both 

the item speed and item difficulty and the examinee speed and examinee ability. Both 4PL RT and 

Thissen’s models showed that there was a positive relationship in the item difficulty and item 

speed. Thissen’s model and the hierarchical framework showed the same direction of the 

relationship between examinee ability and speed; however, the 4PL RT model indicated the 

opposite direction.  

There were two sources of compounding results from the analysis of these parameter 

estimates in the response time models. First, the response time models in this study did not have 

the same response speed-related parameters in the models. As discussed in the previous chapter, 

all of the response time models in this study have the item and examinee response speed 

parameters that explain both relationships between item difficulty and item speed and examinee 

true ability and examinee response speed. However, the 4PL RT and Thissen’s models have 

slowness parameters while the hierarchical framework has a time intensity and an examinee speed 

parameter. The interpretations of these parameters are different depending on the model unless the 

indicators of the parameters were changed initially by the researcher. Some of the researchers 
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modified the original models to evaluate on the same ground. Because of these different 

interpretations of the parameters in the model, the relationships between response time-related 

parameters and the item and examinee parameters also differ across the models.  

The other compounding source of the analysis is the rho parameter ( ), a general indicator 

found in Thissen’s model. It is a regression coefficient of the lognormal response time on the 2PL 

IRT structure . If it is a positive value, it implies that response latency is increased as 

item difficulty increases or examinee ability decrease. A negative value implies a reversal 

relationship between IRT structure and response latency. Thissen’s model showed the complicated 

results because this model had two different measures of the response speed-related parameters as 

well as the  parameter in the same model. An examinee slowness parameter ( ) and an item 

slowness parameter ( ) also reflect the relationships among response time-related parameters. 

Therefore, the relationships captured by correlations between the IRT parameter estimates 

(  and ) and the response speed parameter estimates (  and ̂) may not always indicate the same 

direction as the overall relationship ( ) indicates. In Thissen’s model, the examinee and item 

slowness parameter estimates should be interpreted as ones after taking into account the overall 

relationship of the response time and IRT structure.  

 

Model comparison in the simulated data study 

Overall results of analysis 

In Study 2, the 4PL RT model and hierarchical framework were applied to the simulated data. 

The factors of the study included four sample sizes (100, 500, 1,000, and 2,000 examinees), two 

test lengths (30 and 60 items), and seven different conditions of the relationship 
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( 0.9, 0.6, 0.3, 0.0, 0.3, 0.6, and 0.9) between the 2PL IRT structure and response time 

from Thissen’s model. In order to avoid potential compounding effects from the response time 

model, both correlations between response time and examine slowness and response time and item 

slowness in Thissen’s model are set as 0.0. Therefore the  parameter in Thissen’s model is the 

only source to regulate the relationships between item difficulty and item speed and examinee true 

ability and examinee response speed in the generated response time.   

Obtained DIC values were compared to examine the model goodness of fit between two 

response time models. Overall, the hierarchical framework showed lower values than the 4PL RT 

model consistently throughout marginal conditions. When DIC values for the response data were 

focused, the 4PL RT model showed comparable results. DIC values for the response time data in 

the 4PL RT models were much higher than DIC values in the hierarchical framework. Considering 

model specification procedures in the 4PL RT model, it is natural to have such results. Because the 

4PL RT model does not have a response time distribution in it, a lognormal distribution was 

assigned for the model specification purpose. Implementation of the model in WinBUGS program 

was impossible without assuming a response time data distribution in the model specification 

procedure. Therefore, comparisons in DIC values for selecting the better model need to be focused 

on the response model alone. Although the hierarchical framework showed lower values in overall, 

the 4PL RT showed comparable results in the response model.  

 

Item and examinee true ability parameters recovery 

The item and examinee parameter estimates from the two response time models were 

compared through examining bias, RMSE and relative efficiency values. The estimates from a 
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typical 3PL IRT model were also compared with those of the two response time models to 

measure improvement from the estimation without considering response time data. In the analysis 

of the recovery of the item parameters, the 4PL RT model and hierarchical framework showed 

better results: lower bias in absolute terms and lower RMSE values across marginal conditions. 

Relative efficiency values also indicated that the two response time models were more efficient 

than the 3PL IRT model. The differences in bias and RMSE values from the 3PL IRT model 

showed statistical significance through a three-way MANOVA and a post hoc comparison. Thus, it 

can be stated that recoveries of the item parameters were better when the response times were 

considered in the estimation procedures.  

In the examinee true ability parameter recovery analysis, the hierarchical framework showed 

better mean bias and lower mean RMSE values than the 4PL RT and 3PL IRT models. However, 

when relative efficiency values were applied, the 3PL IRT model was shown more efficient than 

the other two response time models. Results from the three-way MANOVA on the three measured 

criteria (bias, RMSE, and MSE) confirmed that the hierarchical framework was the best recovered 

model for the examinee true ability parameter. The differences between the hierarchical 

framework and the 3PL IRT model in the three measured criteria were statistically significant.  

The examinee parameter recovery was further analyzed through an examinee ability group 

investigation. Examinees were categorized by 10 groups based on the examinee true ability 

parameter. Graphical analyses indicated that the 3PL IRT model showed better results in bias and 

RMSE values. Lower and higher ability groups indicated smaller RMSE values for the 3PL IRT 

model. The hierarchical framework showed lower RMSE values in the middle ability groups; 

however, the 4PL RT model showed comparable results. The RMSE values in 10  groups were 
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examined through a three-way MANOVA and a post hoc comparison. The 3PL IRT model showed 

significant differences against the hierarchical framework in 9 and 10 groups. Against the 

4PL RT model, it showed significant differences in 1 through 3 as well as 9 and 10 

groups. The hierarchical framework showed significant difference against the 3PL IRT model only 

in the 4 group. The 4PL RT model did not show statistically significant difference against the 

other models in the examinee ability group analysis. Considering the relatively smaller numbers of 

the examinees in the lower and higher ability groups, it might be related to the difference of the 

estimation methods. The examinee true ability parameter in the 3PL IRT model was estimated by 

the Bayes expected a posteriori (EAP) method in BILOG-MG program. The EAP estimation 

procedures of the examinee true ability are explained in Baker and Kim (2004) in detail. The 

results of the examinee true ability parameter recovery in this study are not unique from the 

previous studies. Baker and Kim (2004) also mentioned that the EAP estimation of the examinee 

true ability consistently yielded lower RMSE and better bias values than Gibbs sampler.    

The Pearson product-moment correlation coefficients were examined to compare parameter 

estimates in the two response time models. The mean correlations between the item parameters 

and estimates in various conditions across 30 replications showed that overall correlations among 

the 3 models were high. It was also noted that the 3PL IRT model showed lower correlations in the 

100 examinees condition comparing to the response time models. However, in other examinees 

conditions the results were comparable to those of the response time models. As described in the 

results of the examinee true ability parameter recovery, the comparable results were due to the 

difference of estimation methods.  
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Correlation between response time-related parameters 

In order to examine the response time-related parameters between the response time models, 

the Pearson product moment correlations for the item and examinee parameters were examined. 

The means of the correlations from parameter estimates showed that the estimated item parameters 

from the two response time models are highly correlated. However, correlations for response time-

related parameter estimates ( , ̂) indicated that there were no or weak relationships between two 

response time models. When correlations between the item difficulty parameter (b) and the item 

speed parameter ( ) estimates were examined, two response time models showed contrasting 

results. Mean correlation between item difficulty and item speed in the hierarchical framework 

was 0.018, while a somewhat positive relationship was shown in the 4PL RT model .234). 

When the relationship between response time and the IRT structure was considered, the 

differences from the two models were clearly manifested. The 4PL RT models showed positive 

correlations even when there were no or negative relationships in true conditions. Hierarchical 

framework showed clear distinctions based on the direction of the  parameter. However, the 

magnitude of the  parameter was not reflected in the correlations between the item difficulty 

and item speed from the hierarchical framework, while differential magnitude was detected in the 

4PL RT model. 

Correlations between the examinees true ability ( ) and examinees speed parameter ( ) also 

showed a similar pattern across the two models. Overall, the mean correlation from the 4PL RT 

model indicated a somewhat negative relationship ( .025 ) while the hierarchical 

framework showed almost no relationship ( .003). When the  parameter was considered, 

the 4PL RT model showed there were differences in the relationship between examinee true ability 
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and speed; however, the hierarchical framework consistently showed almost no relationships.  

Another interesting result was observed in the relationship between the item discrimination 

(a) and response time discrimination (α) parameters in the hierarchical framework. The response 

time discrimination parameter is a unique among the response time models in this study and the 

correlation between the item discrimination indicated a negative relationship. As the  parameter 

increases from 0.0 to any direction, the strength of the correlations between the item 

discrimination and item response time discrimination decreases. Considering that the item 

discrimination is always affected whenever the item characteristics or the examinee true ability are 

impacted by other compounding sources of the test (e.g., speededness, different pacing, or change 

of test taking strategies), this relationship is quite reasonable in practical situations.  

 

Relationship between response time models  

The response time models examined in this study showed similar results for the item and 

examinee true ability parameter estimates. However, there were also several differences in speed-

related parameter estimates and the direction of the relationships that parameters captured in the 

models. Overall, the 4PL RT and Thissen’s models showed inconsistent results in Study 1. 

Thissen’s model showed somewhat equivocal results in explaining both relationships between the 

item difficulty and item speed and the examinee ability and examinee speed. More elaborate 

explanations are needed in interpreting these relationships, because there are two sources that 

explain the relationships among the related parameters. One solution to resolve this complication 

is explaining item and examinee slowness parameters as unique speed parameters after taking into 

account overall correlation among all the related parameters. Although it is a possible solution in 
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conceptual term, however, there is still an unresolved problem of the interpretation for practical 

testing situations. Thissen (1983) also noticed there was an unresolved ambiguity in the 

relationship of the related parameters. He suggested that the analysis of the two-dimensional 

response space was required to relocate these complex relationships in this model.  

The 4PL RT model showed the opposite directions in explaining the relationships between 

the examinee ability and examinee speed parameter estimates as well as the item difficulty and 

item speed in the real data in Study 1. The 4PL RT model also showed somewhat different 

mechanisms in reflecting item and examinee speed in the model. In Study 2, the examinee ability 

parameter estimates ( ) from the 4PL RT model were shown to be affected by the direction and 

magnitude of the  parameter. The correlation between the examinee true ability parameter and 

the estimates from the 4PL RT model indicated that the  parameter affected the estimation of the 

examinee true ability. The same patterns were shown in both correlations (  and ) between 

the IRT parameter and the speed parameter estimates.  

It is obvious that the hierarchical framework showed clearer relationship with Thissen’s 

model. The generated response time data were analyzed almost precisely in the hierarchical 

framework. When the relationships of the IRT parameter and the speed-related parameter 

estimates were examined in the levels of the  parameter, the hierarchical framework clearly 

differentiated the direction of the relationships. However, the magnitude of the  parameter was 

not reflected in the correlations, while differential magnitudes were detected in the 4PL RT model. 

It seemed that the  parameter in Thissen’s model affected only the direction of the overall 

relationship in the hierarchical framework. If true item slowness ( ) or true examinee slowness ( ) 

parameters were considered when generating response time data, it might have shown clearer 
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magnitude in the correlation analyses.  

 

Limitations of the study and further research questions 

There are several limitations and a number of issues for future studies. First, the 4PL RT 

model assumed that the item response time was independent of the examinee true ability 

parameter in the model. It was a necessary assumption for the EM algorithm to calibrate the item 

parameters in Wang and Hanson’s (2005) study. Therefore, the assignment of the lognormal 

distribution for the response time data in the model specification was a somewhat arbitrary 

decision in this study. However, the model specification in WinBUGS was not available without 

giving a distribution information in the response time data; it was also a necessary step in this 

study. It is recommended to compare alternative response time scoring models that have response 

time modeling. For example, Ingrisone (2008a) introduced a joint distribution of Rasch model and 

a response time modeling with a 2PL Weibull distribution. This model showed improvement from 

the 4PL RT model in Wang and Hanson (2005). A marginal maximum likelihood estimation 

(MMLE) and a maximum a posteriori (MAP) procedures showed that item and examinee 

parameters recovered quite well in this model. 

Second, DIC for the model fit index in this study has shown inconsistent results throughout 

the different conditions. Especially, it is reported that DIC tended to select a more complex model 

in the model fit studies (Kang & Cohen, 2007; Li, Cohen, Kim & Cho, 2009). It is recommended 

to use several other model fit indices to select the best model such as Akaike’s information criteria 

(AIC), Bayesian information criteria (BIC), pseudo Bayes factor (PsBF), posterior model checks 

(PPMC) and cross validation loglikelihood (CVLL). Some model fit studies have shown the 
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application of these indices to various item response models, however, these indices have not 

applied to the item response time. Therefore, the applications of these indices in the response time 

models need to be further studied.  

Third, this study did not consider the content area of the test subject. It was impossible to 

consider the content area in this study because the item content was not accessible to the 

researcher. The analysis of the relationships between cognitive complexity and the response time 

data has been stressed in test validity studies (e.g., Zenisky & Baldwin, 2006). Therefore, further 

research on the relationship between the difference of the cognitive area coverage and the response 

time through the analysis of the contents of test items is also recommended. Application of 

multidimensional item response theory (MIRT) is deemed a well suited method for this area. 

 

Conclusion 

In this study, Bayesian estimation using the MCMC method was applied to compare the 

response time models in the real data as well as the simulated data. Of the response time models 

investigated in the current study, the hierarchical framework yielded the best result among the 

response time models. Different response time models were examined through investigating the 

relationships between the item response theory parameters and the speed related parameters across 

various different conditions. Although there were several practical issues to the current study, there 

has been no comparison study among the response time models in the real data as well as the 

simulated one. Thus, the estimation and the comparison among the response time models in this 

study makes a unique contribution to the field of educational measurement, especially in the 

computer based tests utilizing the item response times. It is hoped that the response time models 
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are explored further and they will contribute to examining human behavior in test taking situations 

in more detail. The test validation and fairness issues also can be addressed through further 

examinations of the response time models in the area.  
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Table A1.  
Generated item parameters in the 30 items and the 60 items 

 Item Parameters (30 items) Item Parameters (60 items) 
Item a b c a b C 

1 0.886 0.062 0.155 0.886 0.062 0.155 
2 0.528 1.226 0.214 0.528 1.226 0.214 
3 0.685 0.509 0.181 0.685 0.509 0.181 
4 1.146 -0.644 0.260 1.146 -0.644 0.260 
5 0.752 0.229 0.290 0.752 0.229 0.290 
6 2.057 0.687 0.218 2.057 0.687 0.218 
7 1.219 -0.901 0.195 1.219 -0.901 0.195 
8 1.400 1.613 0.133 1.400 1.613 0.133 
9 0.954 0.879 0.209 0.954 0.879 0.209 
10 0.877 -1.074 0.234 0.877 -1.074 0.234 
11 0.979 -0.175 0.407 0.979 -0.175 0.407 
12 0.696 -0.592 0.281 0.696 -0.592 0.281 
13 0.719 0.470 0.161 0.719 0.470 0.161 
14 1.339 1.012 0.088 1.339 1.012 0.088 
15 1.182 0.560 0.143 1.182 0.560 0.143 
16 1.731 -1.510 0.265 1.731 -1.510 0.265 
17 0.902 -0.573 0.155 0.902 -0.573 0.155 
18 1.754 1.116 0.114 1.754 1.116 0.114 
19 1.029 1.587 0.290 1.029 1.587 0.290 
20 1.399 -0.397 0.099 1.399 -0.397 0.099 
21 1.021 0.859 0.277 1.021 0.859 0.277 
22 0.628 0.339 0.199 0.628 0.339 0.199 
23 0.698 -0.642 0.306 0.698 -0.642 0.306 
24 0.564 -0.028 0.133 0.564 -0.028 0.133 
25 1.256 -1.607 0.069 1.256 -1.607 0.069 
26 0.780 -0.198 0.160 0.780 -0.198 0.160 
27 1.016 0.549 0.270 1.016 0.549 0.270 
28 0.999 -0.144 0.150 0.999 -0.144 0.150 
29 0.995 0.447 0.091 0.995 0.447 0.091 
30 0.788 0.354 0.286 0.788 0.354 0.286 
31    2.129 1.420 0.125 
32    1.463 -2.289 0.112 
33    1.555 -0.762 0.216 
34    1.594 0.491 0.306 
35    2.341 -2.120 0.246 
36    1.786 1.052 0.350 
37    1.496 -0.255 0.244 
38    0.906 1.248 0.345 
39    0.686 -0.294 0.186 
40    1.122 0.835 0.261 
41    0.931 0.340 0.225 
42    0.963 1.156 0.184 
43    2.031 1.287 0.388 
44    1.099 -1.063 0.189 
45    0.679 0.970 0.244 
46    2.409 -0.609 0.313 
47    0.886 0.308 0.349 
48    0.718 -0.091 0.063 
49    1.476 0.166 0.306 
50    0.654 0.097 0.258 
51    1.213 -1.278 0.409 
52    1.296 0.169 0.128 
53    0.878 -0.632 0.062 
54    0.701 -2.218 0.250 
55    0.871 -1.864 0.210 
56    2.332 -0.480 0.172 
57    1.173 0.997 0.401 
58    0.676 -1.603 0.341 
59    1.126 0.211 0.171 
60    1.181 -0.137 0.202 

Mean 1.033 0.134 0.201 1.156 -1.016 0.221 
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Table A2.  
Average Gelman-Rubin diagnostics for item parameter estimates in 4PL RT models 

 4PL RT (2PL) 4PL RT (3PL) 
Item a b beta a b c beta 

1 1.012 0.994 0.983 0.993 0.992 1.001 1.006 
2 0.999 0.994 1.009 0.992 0.960 1.002 0.993 
3 0.978 0.981 1.009 0.994 1.070 1.000 0.986 
4 1.006 1.004 0.977 0.994 1.025 1.020 1.005 
5 1.015 1.008 1.001 1.006 0.967 0.991 1.009 
6 0.992 1.003 1.000 1.005 1.000 0.990 1.002 
7 1.001 1.014 1.002 1.014 1.029 1.062 1.007 
8 1.001 1.006 1.001 1.067 1.051 1.031 1.000 
9 0.992 0.996 0.988 0.996 0.990 1.000 0.991 

10 0.995 1.001 0.999 0.973 0.920 1.019 0.995 
11 0.997 0.993 0.986 1.004 1.078 1.014 0.994 
12 1.003 0.997 1.006 1.001 0.993 1.064 1.008 
13 0.983 0.989 1.021 0.990 0.930 0.999 1.011 
14 1.009 1.013 0.993 0.992 1.070 0.998 0.988 
15 1.006 0.994 1.019 1.007 1.043 1.016 0.998 
16 1.023 1.005 0.999 0.999 0.983 0.986 0.998 
17 1.001 1.010 1.005 1.002 1.048 1.010 1.008 
18 1.002 0.988 1.015 1.021 1.058 1.022 1.011 
19 0.996 1.002 1.017 0.970 0.987 0.984 1.004 
20 0.996 0.999 0.998 0.982 1.042 1.014 0.987 
21 1.004 0.998 1.002 1.012 1.107 1.035 1.002 
22 1.002 0.992 0.997 1.003 0.966 1.010 1.009 
23 1.019 0.990 0.987 0.988 1.016 1.004 0.992 
24 0.985 1.018 0.993 1.008 1.018 1.017 0.944 
25 1.006 0.990 0.999 0.998 1.028 1.006 1.018 
26 1.014 1.021 1.024 1.003 1.147 1.026 0.992 
27 1.024 1.003 0.970 1.008 1.045 0.992 0.925 
28 0.987 0.982 0.998 1.000 0.909 1.026 0.991 
29 0.999 1.009 1.001 1.008 1.005 1.003 1.013 
30 0.993 0.983 1.021 0.992 1.068 0.997 0.992 
31 1.007 0.998 1.002 1.007 1.074 1.013 0.996 
32 0.997 0.980 1.014 1.016 0.949 1.003 1.000 
33 1.007 1.013 1.003 1.051 1.149 1.070 1.029 

Total 1.002 0.999 1.001 1.003 1.022 1.013 0.997 
Note. The Gelman-Rubin ratios are calculated from the 2,000 post burn-in iterations after the 
8,000 iterations of burn-in were discarded. 
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Table A3.  
Average Gelman-Rubin diagnostics for item parameter estimates in Hierarchical framework 

 Hierarchical Framework (2PL) Hierarchical Framework (3PL) 
Item a b alpha beta a b c alpha beta 

1 0.995 0.973 1.004 1.014 1.005 1.009 0.995 0.979 1.015 
2 0.989 0.980 0.999 0.994 0.996 1.023 0.973 0.980 0.995 
3 0.995 0.998 0.980 0.993 0.997 1.051 1.087 1.011 0.976 
4 1.030 1.021 1.010 1.011 1.040 1.070 1.092 1.001 1.002 
5 0.982 0.981 1.010 0.988 0.991 1.007 1.012 0.999 0.993 
6 0.977 1.015 1.004 0.989 0.998 1.106 1.014 0.999 0.989 
7 1.009 0.985 0.981 0.999 0.993 1.026 0.999 1.031 0.999 
8 1.020 0.994 0.992 0.973 1.002 0.952 0.975 1.000 0.970 
9 0.981 1.011 0.994 1.010 0.995 1.009 0.999 0.994 0.993 
10 0.992 0.977 0.989 0.991 1.010 0.991 0.998 1.006 0.995 
11 1.001 1.005 0.990 0.981 0.961 0.950 1.008 1.019 0.991 
12 0.990 1.003 0.990 1.014 1.037 1.073 1.045 0.997 0.983 
13 1.013 1.002 1.011 0.984 1.031 1.005 1.008 1.004 0.995 
14 0.985 1.016 1.001 1.012 1.060 0.999 1.044 1.011 0.981 
15 0.986 0.985 1.000 1.019 1.003 1.020 1.014 0.996 0.995 
16 1.019 1.017 0.988 0.996 1.016 1.012 1.039 1.012 0.986 
17 1.006 1.010 0.999 1.002 1.007 1.075 0.989 0.998 0.997 
18 1.021 0.991 1.003 0.987 1.017 1.026 1.095 1.010 1.015 
19 1.020 1.038 1.014 1.007 1.013 1.059 1.003 1.008 1.001 
20 1.013 1.001 0.994 0.981 1.050 1.016 1.030 1.002 1.006 
21 1.011 0.992 1.005 1.005 1.013 1.037 1.034 1.002 0.998 
22 0.984 0.997 1.006 0.980 1.037 1.005 1.018 0.995 0.985 
23 1.004 0.998 0.989 1.008 1.051 1.122 1.179 0.989 0.993 
24 0.981 0.997 0.998 1.009 0.984 0.996 0.971 1.010 1.008 
25 0.992 0.998 1.009 1.020 1.006 0.939 1.006 1.001 0.991 
26 1.034 1.028 0.988 1.022 1.041 1.028 0.980 0.997 1.001 
27 0.994 1.006 0.996 0.988 1.004 1.044 0.994 0.990 1.008 
28 0.991 0.993 0.991 1.012 0.986 1.108 0.995 0.996 0.992 
29 1.007 1.024 0.990 1.000 1.028 1.067 1.016 1.006 0.999 
30 1.015 1.004 1.006 0.987 1.002 0.982 1.011 0.990 0.997 
31 1.060 1.020 0.996 0.997 1.042 1.037 1.015 1.007 1.013 
32 1.020 1.011 1.012 0.999 1.030 0.983 1.014 1.020 1.002 
33 0.996 0.991 1.008 0.996 1.006 0.953 1.008 1.009 1.005 

Total 1.003 1.002 0.998 0.999 1.014 1.024 1.020 1.002 0.996 
Note. The Gelman-Rubin ratios are calculated from the 2,000 post burn-in iterations after the 
8,000 iterations of burn-in were discarded. 
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Table A4.  
Average Gelman-Rubin diagnostics for item parameter estimates in Thissen’s lognormal response 
time models 

 Thissen’s lognormal RT (2PL) Thissen’s lognormal RT (3PL) 
Item a b beta a b c beta 

1 1.025 1.005 0.993 1.053 0.996 0.997 1.022 
2 1.004 0.997 0.991 1.018 0.965 1.039 1.000 
3 0.990 0.997 1.003 1.051 1.085 1.108 1.025 
4 1.011 1.013 0.985 0.984 0.985 0.996 0.999 
5 1.001 1.005 1.007 1.012 1.046 1.025 0.989 
6 1.083 1.049 0.994 1.201 1.292 1.221 1.021 
7 1.020 0.997 1.003 1.076 1.001 1.050 0.991 
8 1.012 0.985 1.001 0.988 1.015 1.002 0.998 
9 1.003 0.996 0.990 0.998 0.966 1.041 1.008 

10 1.020 0.983 1.012 1.004 1.040 1.005 0.999 
11 0.972 1.005 0.992 1.051 1.067 1.141 0.999 
12 0.988 1.016 0.995 1.087 0.978 1.108 0.991 
13 1.009 1.005 0.989 0.988 1.109 0.990 1.000 
14 1.023 1.011 0.994 0.999 1.016 1.041 0.988 
15 0.998 0.995 0.986 1.073 1.178 1.203 1.015 
16 0.994 1.013 0.999 1.032 1.094 1.070 1.003 
17 0.997 0.998 0.998 0.991 0.923 1.001 0.993 
18 0.996 1.022 1.006 0.992 1.055 1.038 1.021 
19 1.018 1.036 1.000 0.977 1.063 0.969 0.997 
20 0.999 1.000 1.007 1.037 1.121 0.995 1.009 
21 1.004 0.997 1.009 0.994 1.148 1.065 1.003 
22 0.980 1.012 1.006 1.023 1.067 1.016 0.992 
23 1.018 0.981 0.986 1.006 1.112 1.033 1.023 
24 1.015 1.013 0.994 1.021 1.076 1.046 1.016 
25 1.016 0.994 0.996 1.029 0.997 1.010 0.997 
26 0.988 1.012 0.986 1.029 1.027 1.026 1.010 
27 0.981 1.008 0.978 1.005 0.936 0.972 0.990 
28 1.010 0.988 0.999 1.129 1.198 1.337 1.005 
29 1.006 0.992 1.007 1.223 1.332 1.117 1.022 
30 1.007 0.995 0.991 0.993 1.052 1.041 0.986 
31 1.000 0.995 1.012 1.027 1.006 0.957 1.003 
32 1.019 1.046 1.007 0.999 0.955 0.997 1.007 
33 1.019 0.990 1.001 1.014 1.025 0.982 0.994 

Total 1.007 1.005 0.997 1.033 1.058 1.050 1.004 
Note. The Gelman-Rubin ratios are calculated from the 2,000 post burn-in iterations after the 
8,000 iterations of burn-in were discarded. 
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Table A5.  
Item parameter estimates in 4PL RT models 

 4PL RT (2PL) 4PL RT (3PL) 
Item a b beta a b c beta 

1 0.703 -2.264 1.278 0.414 -1.689 0.262 1.770 
2 0.486 0.715 1.970 0.537 1.367 0.215 2.610 
3 0.605 -1.967 0.948 0.439 -0.929 0.306 1.453 
4 0.410 -1.609 1.465 0.322 -0.153 0.287 1.958 
5 0.832 -0.622 5.057 0.648 -0.184 0.177 6.151 
6 0.451 -2.595 6.611 0.295 -1.279 0.306 6.692 
7 0.461 -0.728 2.549 0.423 0.392 0.253 3.444 
8 0.401 0.617 1.180 0.535 1.494 0.277 4.287 
9 0.821 -0.334 6.935 0.606 0.058 0.142 7.419 

10 1.025 -1.731 2.826 0.693 -1.298 0.274 7.422 
11 0.733 -2.006 1.903 0.550 -0.987 0.390 7.325 
12 0.310 0.223 6.448 0.319 1.292 0.207 6.506 
13 1.166 -2.242 7.476 0.721 -1.943 0.187 8.272 
14 0.431 1.360 1.169 0.591 1.787 0.234 4.497 
15 0.708 -1.219 3.232 0.625 -0.338 0.297 6.315 
16 0.538 -0.865 1.440 0.424 0.100 0.253 3.886 
17 0.835 -0.072 2.293 0.724 0.362 0.201 6.356 
18 0.426 -1.683 6.098 0.309 -0.597 0.227 7.257 
19 0.753 0.196 2.442 0.607 0.521 0.146 3.724 
20 1.167 -1.577 4.457 0.700 -1.301 0.186 4.091 
21 0.945 -0.471 5.055 2.691 0.457 0.357 1.440 
22 0.816 0.252 0.996 1.863 0.756 0.280 2.129 
23 0.817 -2.105 5.412 0.545 -1.537 0.257 7.290 
24 0.453 -0.272 0.225 1.208 1.002 0.391 0.296 
25 0.481 0.137 7.584 0.389 0.774 0.158 7.358 
26 0.850 -2.835 4.770 0.528 -2.283 0.280 5.667 
27 0.936 0.585 0.379 0.740 0.847 0.126 0.974 
28 0.690 -1.029 1.202 0.584 -0.192 0.264 1.539 
29 1.171 -1.874 5.156 0.724 -1.589 0.181 5.572 
30 0.856 -2.112 7.544 0.507 -1.862 0.148 7.518 
31 1.108 -1.214 1.665 0.845 -0.742 0.294 6.745 
32 0.650 -2.112 3.200 0.450 -1.203 0.327 6.275 
33 0.689 0.069 0.495 0.620 0.686 0.207 0.702 

Mean 0.719 -0.951 3.378 0.672 -0.249 0.245 4.695 
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Table A6.  
Item parameter estimates in Hierarchical framework 

 Hierarchical Framework (2PL) Hierarchical Framework (3PL) 
Item a b alpha beta a b c alpha beta 

1 0.728 -2.173 2.222 3.842 0.421 -1.633 0.262 2.231 3.840
2 0.499 0.743 1.864 3.808 0.576 1.436 0.225 1.866 3.810
3 0.591 -1.986 2.279 3.747 0.437 -0.898 0.307 2.282 3.750
4 0.446 -1.336 0.690 2.761 0.357 -0.046 0.270 0.692 2.761
5 0.857 -0.451 1.810 3.497 0.647 0.014 0.175 1.806 3.498
6 0.422 -2.547 2.058 3.726 0.282 -0.880 0.349 2.052 3.724
7 0.475 -0.642 1.934 3.822 0.433 0.496 0.259 1.930 3.821
8 0.434 0.671 0.776 2.911 0.537 1.575 0.251 0.771 2.920
9 0.839 -0.133 1.469 3.843 0.673 0.339 0.176 1.471 3.845
10 1.072 -1.547 1.627 3.629 0.655 -1.178 0.224 1.623 3.631
11 0.766 -1.852 1.399 3.687 0.519 -1.037 0.303 1.400 3.689
12 0.335 0.496 1.314 3.425 0.479 1.698 0.277 1.316 3.428
13 1.239 -1.716 1.333 3.444 0.759 -1.376 0.238 1.336 3.446
14 0.451 1.437 0.564 2.837 0.617 1.973 0.224 0.562 2.841
15 0.735 -1.074 1.755 3.583 0.567 -0.326 0.246 1.743 3.588
16 0.546 -0.787 1.622 3.555 0.421 0.115 0.231 1.629 3.555
17 0.848 -0.006 1.827 3.667 0.653 0.406 0.155 1.823 3.669
18 0.430 -1.358 1.256 3.311 0.332 -0.022 0.266 1.263 3.314
19 0.822 0.451 0.756 2.576 0.656 0.796 0.138 0.753 2.575
20 1.206 -1.394 1.746 3.592 0.740 -1.077 0.203 1.748 3.597
21 0.943 -0.335 2.474 3.717 2.485 0.520 0.363 2.467 3.719
22 0.805 0.274 2.152 3.843 1.731 0.830 0.282 2.150 3.845
23 0.858 -1.806 1.779 3.570 0.547 -1.277 0.242 1.773 3.570
24 0.458 -0.237 0.608 2.701 1.137 1.062 0.389 0.606 2.701
25 0.486 0.340 1.870 3.817 0.429 1.041 0.184 1.872 3.820
26 0.860 -2.572 1.766 3.487 0.538 -1.942 0.305 1.765 3.489
27 0.917 0.595 1.566 3.405 0.729 0.863 0.119 1.565 3.408
28 0.733 -0.785 0.689 2.522 0.615 -0.017 0.252 0.691 2.523
29 1.276 -1.513 1.565 3.415 0.810 -1.175 0.218 1.570 3.418
30 0.945 -1.581 1.435 3.326 0.611 -1.125 0.217 1.437 3.326
31 1.150 -1.090 1.253 3.524 0.826 -0.622 0.229 1.250 3.525
32 0.696 -1.790 1.116 3.373 0.482 -0.964 0.278 1.119 3.372
33 0.720 0.111 0.663 2.953 0.673 0.752 0.219 0.665 2.955

Mean 0.745 -0.776 1.492 3.422 0.678 -0.051 0.245 1.492 3.423
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Table A7.  
Item parameter estimates in Thissen’s lognormal response time models 

 Thissen’s lognormal RT (2PL) Thissen’s lognormal RT (3PL) 
Item a b beta a b c beta 

1 1.013 -1.665 0.797 0.545 -1.369 0.242 0.609 
2 0.619 0.621 0.127 0.570 1.303 0.205 0.282 
3 0.794 -1.543 0.564 0.541 -0.737 0.310 0.479 
4 0.333 -1.740 -0.627 0.308 0.009 0.281 -0.598 
5 0.868 -0.443 0.055 0.672 0.010 0.173 0.083 
6 0.677 -1.688 0.513 0.373 -0.860 0.311 0.435 
7 0.614 -0.506 0.354 0.494 0.500 0.268 0.409 
8 0.280 0.965 -0.727 0.396 1.832 0.229 -0.590 
9 0.881 -0.127 0.319 0.734 0.352 0.188 0.394 

10 1.031 -1.586 0.573 0.716 -1.087 0.232 0.404 
11 0.718 -1.934 0.552 0.518 -1.093 0.288 0.439 
12 0.392 0.430 -0.187 0.477 1.718 0.282 -0.059 
13 0.999 -1.990 0.496 0.738 -1.381 0.245 0.276 
14 0.300 2.029 -0.902 0.543 2.298 0.220 -0.728 
15 0.819 -0.975 0.270 0.605 -0.334 0.235 0.242 
16 0.670 -0.654 0.130 0.464 0.062 0.221 0.158 
17 0.866 -0.007 0.109 0.671 0.370 0.148 0.190 
18 0.454 -1.266 -0.077 0.332 -0.072 0.259 -0.055 
19 0.559 0.616 -1.088 0.542 0.900 0.134 -0.950 
20 1.205 -1.385 0.547 0.843 -0.993 0.199 0.370 
21 0.943 -0.339 0.256 1.597 0.456 0.330 0.320 
22 0.838 0.267 0.214 1.252 0.819 0.258 0.342 
23 0.846 -1.819 0.480 0.564 -1.265 0.236 0.327 
24 0.236 -0.466 -0.829 0.613 1.307 0.342 -0.729 
25 0.570 0.290 0.206 0.449 0.990 0.182 0.327 
26 0.992 -2.278 0.620 0.625 -1.740 0.302 0.353 
27 0.876 0.618 -0.320 0.722 0.847 0.118 -0.152 
28 0.670 -0.850 -0.862 0.627 0.032 0.270 -0.841 
29 1.050 -1.718 0.410 0.795 -1.157 0.236 0.225 
30 0.846 -1.719 0.215 0.593 -1.143 0.225 0.076 
31 0.807 -1.423 0.314 0.685 -0.727 0.225 0.235 
32 0.636 -1.922 0.186 0.446 -1.081 0.267 0.097 
33 0.392 0.164 -0.628 0.484 0.923 0.212 -0.519 

Mean 0.721 -0.729 0.062 0.622 -0.009 0.238 0.056 
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Table A8.  
Correlations between item discrimination parameter (a) estimates among the models 

  4PL RT Hierarchical 
framework 

Thissen’s 
model IRT 

 2PL 3PL 2PL 3PL 2PL 3PL 2PL 3PL 

4PL RT model 2PL         

3PL .356        

Hierarchical 
framework 

2PL .995 .317       

3PL .370 .995 .337      

Thissen’s model 2PL .837 .224 .812 .221     

3PL .584 .923 .545 .931 .528    

IRT model 2PL .986 .309 .995 .334 .772 .530   

3PL .379 .961 .350 .971 .196 .905 .355  
 
 
Table A9.  
Correlations between guessing parameter (c) estimates among the models 

 4PL RT Hierarchical 
framework Thissen’s model IRT model 

4PL RT     

Hierarchical 
framework .848    

Thissen’s model .796 .971   

IRT model .724 .874 .873  
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Table A10.  
Correlations between item speed parameter (beta) estimates among the models 

  4PL RT Hierarchical 
framework Thissen’s model 

 2PL 3PL 2PL 3PL 2PL 3PL 

4PL RT model 2PL       

3PL .717      

Hierarchical 
framework 

2PL .336 .322     

3PL .336 .323 1.000    

Thissen’s model 2PL .413 .431 .882 .882   

3PL .391 .391 .962 .961 .977  
 
Table A11.  
Correlations between examinee speed parameter (tau) estimates among the models 

  4PL RT Hierarchical 
framework Thissen’s model 

 2PL 3PL 2PL 3PL 2PL 3PL 

4PL RT model 2PL       

3PL .815      

Hierarchical 
framework 

2PL .064 .182     

3PL .066 .184 .999    

Thissen’s model 2PL -.178 -.359 -.769 -.770   

3PL -.153 -.315 -.862 -.862 .980  
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12.  
Bias for the exam

inee ability param
eter based on the groups in the 3 m

odels 

 
 

4PL RT 
H

ierarchical Fram
ew

ork 
3PL IRT 

A
bility group 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10 

Exam
inees 

100 
-0.844 

-0.503 
-0.385 

-0.207 
-0.095 

-0.002 
0.096 

0.177 
0.294 

0.000 
-0.701 

-0.457 
-0.344 

-0.170 
-0.047 

0.041 
0.159 

0.240 
0.355 

0.000 
-0.517 

-0.298 
-0.218 

-0.123 
-0.099 

-0.081 
-0.060 

-0.031 
-0.003 

0.000 

500 
-0.510 

-0.332 
-0.195 

-0.080 
-0.017 

0.057 
0.107 

0.170 
0.224 

0.441 
-0.470 

-0.305 
-0.178 

-0.074 
-0.009 

0.067 
0.121 

0.194 
0.253 

0.485 
-0.366 

-0.222 
-0.118 

-0.040 
-0.014 

0.029 
0.062 

0.098 
0.137 

0.353 

1000 
-0.654 

-0.316 
-0.185 

-0.081 
-0.016 

0.036 
0.070 

0.101 
0.166 

0.296 
-0.571 

-0.277 
-0.166 

-0.071 
-0.009 

0.042 
0.074 

0.108 
0.178 

0.316 
-0.514 

-0.228 
-0.130 

-0.058 
-0.017 

0.009 
0.028 

0.038 
0.098 

0.218 

2000 
-0.571 

-0.284 
-0.128 

-0.039 
0.013 

0.039 
0.062 

0.081 
0.141 

0.313 
-0.487 

-0.238 
-0.105 

-0.031 
0.013 

0.033 
0.054 

0.071 
0.131 

0.308 
-0.444 

-0.199 
-0.077 

-0.017 
0.012 

0.016 
0.029 

0.029 
0.082 

0.253 

Item
s 

30 
-0.887 

-0.512 
-0.322 

-0.141 
-0.018 

0.076 
0.145 

0.211 
0.294 

0.362 
-0.742 

-0.424 
-0.269 

-0.117 
-0.007 

0.074 
0.138 

0.202 
0.290 

0.354 
-0.713 

-0.396 
-0.252 

-0.115 
-0.031 

0.029 
0.066 

0.110 
0.179 

0.307 

60 
-0.402 

-0.205 
-0.125 

-0.062 
-0.039 

-0.011 
0.022 

0.054 
0.118 

0.164 
-0.372 

-0.214 
-0.127 

-0.056 
-0.019 

0.017 
0.066 

0.105 
0.168 

0.200 
-0.208 

-0.077 
-0.020 

-0.004 
-0.028 

-0.043 
-0.037 

-0.043 
-0.022 

0.105 

R
ho 

-0.9 
-0.802  

-0.443  
-0.271  

-0.122  
-0.034  

0.044  
0.107  

0.162  
0.260  

0.300  
-0.714  

-0.403  
-0.246  

-0.107  
-0.018  

0.056  
0.125  

0.183  
0.282  

0.315  

 

-0.6 
-0.725  

-0.401  
-0.249  

-0.115  
-0.034  

0.039  
0.094  

0.149  
0.234  

0.287  
-0.637  

-0.362  
-0.224  

-0.100  
-0.018  

0.051  
0.112  

0.171  
0.256  

0.302  

-0.3 
-0.650  

-0.363  
-0.227  

-0.106  
-0.033  

0.034  
0.081  

0.134  
0.209  

0.269  
-0.562  

-0.324  
-0.202  

-0.090  
-0.018  

0.047  
0.099  

0.155  
0.232  

0.284  

0.0 
-0.599  

-0.338  
-0.211  

-0.096  
-0.027  

0.029  
0.077  

0.125  
0.193  

0.255  
-0.511  

-0.298  
-0.185  

-0.080  
-0.011  

0.042  
0.095  

0.147  
0.216  

0.269  

0.3 
-0.584  

-0.327  
-0.204  

-0.094  
-0.027  

0.025  
0.074  

0.119  
0.185  

0.248  
-0.497  

-0.287  
-0.179  

-0.079  
-0.011  

0.038  
0.092  

0.140  
0.207  

0.262  

0.6 
-0.577  

-0.320  
-0.200  

-0.090  
-0.024  

0.031  
0.076  

0.119  
0.184  

0.242  
-0.490  

-0.281  
-0.175  

-0.075  
-0.009  

0.044  
0.094  

0.140  
0.206  

0.256  

0.9 
-0.577  

-0.319  
-0.200  

-0.090  
-0.022  

0.028  
0.076  

0.118  
0.181  

0.237  
-0.489  

-0.279  
-0.175  

-0.074  
-0.006  

0.041  
0.094  

0.139  
0.203  

0.252  

Total 
-0.645 

-0.359 
-0.223 

-0.102 
-0.029 

0.033 
0.084 

0.132 
0.206 

0.263 
-0.557 

-0.319 
-0.198 

-0.086 
-0.013 

0.046 
0.102 

0.153 
0.229 

0.277 
-0.460 

-0.237 
-0.136 

-0.059 
-0.030 

-0.007 
0.014 

0.033 
0.079 

0.206 
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 Table A

13.  
RM

SE for the exam
inee ability param

eter based on the groups in the 3 m
odels 

 
 

4PL RT 
H

ierarchical Fram
ew

ork 
3PL IRT 

A
bility group 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10 

Exam
inees 

100 
0.852  

0.621  
0.547  

0.457  
0.389  

0.387  
0.376  

0.421  
0.460  

0.000  
0.708  

0.569  
0.497  

0.412  
0.370  

0.361  
0.374  

0.433  
0.484  

0.000  
0.601  

0.496  
0.485  

0.451  
0.428  

0.431  
0.424  

0.441  
0.398  

0.000  

500 
0.640  

0.533  
0.460  

0.423  
0.420  

0.413  
0.402  

0.413  
0.429  

0.567  
0.592  

0.499  
0.429  

0.398  
0.413  

0.398  
0.387  

0.407  
0.431  

0.595  
0.547  

0.485  
0.442  

0.420  
0.409  

0.394  
0.395  

0.396  
0.396  

0.496  

1000 
0.793  

0.541  
0.459  

0.430  
0.423  

0.421  
0.409  

0.404  
0.412  

0.457  
0.707  

0.500  
0.435  

0.413  
0.414  

0.412  
0.391  

0.391  
0.403  

0.459  
0.677  

0.494  
0.446  

0.422  
0.409  

0.397  
0.400  

0.392  
0.392  

0.407  

2000 
0.724  

0.530  
0.460  

0.434  
0.435  

0.439  
0.414  

0.411  
0.417  

0.497  
0.641  

0.486  
0.439  

0.420  
0.426  

0.423  
0.401  

0.397  
0.400  

0.484  
0.617  

0.484  
0.446  

0.425  
0.413  

0.402  
0.406  

0.398  
0.401  

0.452  

Item
s 

30 
0.958  

0.669  
0.557  

0.490  
0.462  

0.470  
0.471  

0.487  
0.492  

0.461  
0.816  

0.594  
0.513  

0.464  
0.454  

0.455  
0.455  

0.471  
0.481  

0.451  
0.788  

0.581  
0.517  

0.476  
0.458  

0.456  
0.456  

0.462  
0.430  

0.414  

60 
0.547  

0.443  
0.406  

0.382  
0.372  

0.360  
0.330  

0.338  
0.367  

0.299  
0.508  

0.433  
0.387  

0.357  
0.358  

0.342  
0.321  

0.343  
0.378  

0.318  
0.433  

0.399  
0.392  

0.383  
0.371  

0.356  
0.356  

0.351  
0.363  

0.264  

R
ho 

-0.9 
0.906 

0.629 
0.520 

0.462 
0.429 

0.427 
0.418 

0.436 
0.463 

0.412 
0.815 

0.587 
0.489 

0.437 
0.418 

0.410 
0.405 

0.431 
0.463 

0.416 

 

-0.6 
0.830 

0.593 
0.499 

0.445 
0.422 

0.417 
0.407 

0.424 
0.447 

0.402 
0.739 

0.551 
0.468 

0.420 
0.410 

0.401 
0.395 

0.418 
0.447 

0.406 

-0.3 
0.755 

0.558 
0.482 

0.434 
0.411 

0.421 
0.399 

0.411 
0.430 

0.386 
0.665 

0.515 
0.450 

0.408 
0.400 

0.405 
0.386 

0.406 
0.430 

0.391 

0.0 
0.707 

0.536 
0.470 

0.428 
0.417 

0.409 
0.396 

0.406 
0.421 

0.373 
0.616 

0.494 
0.438 

0.403 
0.406 

0.393 
0.384 

0.401 
0.421 

0.377 

0.3 
0.694 

0.529 
0.467 

0.428 
0.416 

0.403 
0.394 

0.402 
0.415 

0.367 
0.604 

0.487 
0.436 

0.402 
0.405 

0.386 
0.381 

0.397 
0.415 

0.372 

0.6 
0.687 

0.524 
0.465 

0.428 
0.410 

0.421 
0.396 

0.404 
0.416 

0.363 
0.597 

0.481 
0.434 

0.403 
0.399 

0.405 
0.384 

0.398 
0.416 

0.367 

0.9 
0.688 

0.523 
0.467 

0.427 
0.413 

0.405 
0.393 

0.403 
0.414 

0.359 
0.597 

0.481 
0.435 

0.402 
0.402 

0.389 
0.381 

0.397 
0.414 

0.363 

Total 
0.752 

0.556 
0.481 

0.436 
0.417 

0.415 
0.400 

0.412 
0.430 

0.380 
0.662 

0.514 
0.450 

0.411 
0.406 

0.399 
0.388 

0.407 
0.429 

0.385 
0.611 

0.490 
0.455 

0.430 
0.414 

0.406 
0.406 

0.407 
0.396 

0.339 

    



 
 

 

 

 

 

 
 
 
 
 
 
 
 

Appendix B  



 

a[1] chains 1:2 sample: 2000

   0.25     0.5    0.75     1.0

    0.0

    2.0

    4.0

a[2] chains 1:2 sample: 2000

    0.0     0.2     0.4     0.6     0.8

    0.0
    2.0
    4.0
    6.0

a[3] chains 1:2 sample: 2000

    0.2     0.4     0.6     0.8     1.0

    0.0
    2.0
    4.0
    6.0

 

b[1] chains 1:2 sample: 2000

   -4.0    -3.0    -2.0

    0.0
    0.5
    1.0
    1.5

b[2] chains 1:2 sample: 2000

    0.0     0.5     1.0     1.5

    0.0
    1.0
    2.0
    3.0

b[3] chains 1:2 sample: 2000

   -4.0    -3.0    -2.0    -1.0

    0.0
    0.5
    1.0
    1.5

beta[1] chains 1:2 sample: 2000

   -5.0     0.0     5.0    10.0

    0.0
    0.2
    0.4
    0.6

beta[2] chains 1:2 sample: 2000

   -5.0     0.0     5.0    10.0

    0.0
    0.1
    0.2
    0.3
    0.4

beta[3] chains 1:2 sample: 2000

   -5.0     0.0     5.0

    0.0
    0.2
    0.4
    0.6
    0.8

tau[1] chains 1:2 sample: 2000

   -1.0     0.0     1.0     2.0

    0.0
    0.2
    0.4
    0.6

tau[2] chains 1:2 sample: 2000

   -1.0     0.0     1.0     2.0

    0.0
    0.2
    0.4
    0.6
    0.8

tau[3] chains 1:2 sample: 2000

   -1.0     0.0     1.0     2.0

    0.0
    0.2
    0.4
    0.6

theta[1] chains 1:2 sample: 2000

   -4.0    -2.0     0.0

    0.0
    0.2
    0.4
    0.6
    0.8

theta[2] chains 1:2 sample: 2000

   -4.0    -2.0     0.0

    0.0
    0.2
    0.4
    0.6
    0.8

theta[3] chains 1:2 sample: 2000

   -6.0    -4.0    -2.0     0.0

    0.0
    0.2
    0.4
    0.6
    0.8

 

Figure B1. Some of the representative item and examinee parameter estimates from the 4PL RT (2PL ) 
model  
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a[1] chains 1:2 sample: 2000

    0.0     0.2     0.4     0.6

    0.0
    2.0
    4.0
    6.0
    8.0

 

a[2] chains 1:2 sample: 2000

    0.0     0.5     1.0     1.5

    0.0
    1.0
    2.0
    3.0

 

a[3] chains 1:2 sample: 2000

    0.0    0.25     0.5    0.75

    0.0
    2.0
    4.0
    6.0

 
b[1] chains 1:2 sample: 2000

   -4.0    -3.0    -2.0    -1.0     0.0

    0.0
   0.25
    0.5
   0.75
    1.0

 

b[2] chains 1:2 sample: 2000

    0.0     1.0     2.0

    0.0
    0.5
    1.0
    1.5

 

b[3] chains 1:2 sample: 2000

   -3.0    -2.0    -1.0     0.0     1.0

    0.0
   0.25
    0.5
   0.75
    1.0

 
beta[1] chains 1:2 sample: 2000

   -5.0     0.0     5.0    10.0

    0.0
    0.1
    0.2
    0.3
    0.4

 

beta[2] chains 1:2 sample: 2000

   -5.0     0.0     5.0    10.0

    0.0
    0.1
    0.2
    0.3

 

beta[3] chains 1:2 sample: 2000

   -5.0     0.0     5.0    10.0

    0.0
    0.2
    0.4
    0.6

 
c[1] chains 1:2 sample: 2000

   -0.2     0.0     0.2     0.4     0.6

    0.0
    2.0
    4.0
    6.0

 

c[2] chains 1:2 sample: 2000

   -0.2     0.0     0.2     0.4

    0.0
    2.0
    4.0
    6.0
    8.0

 

c[3] chains 1:2 sample: 2000

   -0.2     0.0     0.2     0.4     0.6

    0.0
    1.0
    2.0
    3.0
    4.0

 
tau[1] chains 1:2 sample: 2000

   -1.0     0.0     1.0     2.0

    0.0
    0.2
    0.4
    0.6

 

tau[2] chains 1:2 sample: 2000

   -1.0     0.0     1.0     2.0

    0.0
    0.2
    0.4
    0.6

 

tau[3] chains 1:2 sample: 2000

   -1.0     0.0     1.0     2.0

    0.0
    0.2
    0.4
    0.6

 
theta[1] chains 1:2 sample: 2000

   -6.0    -4.0    -2.0     0.0

    0.0
    0.2
    0.4
    0.6
    0.8

 

theta[2] chains 1:2 sample: 2000

   -6.0    -4.0    -2.0     0.0

    0.0
    0.2
    0.4
    0.6
    0.8

 

theta[3] chains 1:2 sample: 2000

   -6.0    -4.0    -2.0     0.0

    0.0
    0.2
    0.4
    0.6
    0.8

 

Figure B2. Some of the representative item and examinee parameter estimates from the 4PL RT (3PL ) 
model  
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a[1] chains 1:2 sample: 2000

   0.25     0.5    0.75     1.0

    0.0
    1.0
    2.0
    3.0
    4.0

 

a[2] chains 1:2 sample: 2000

    0.0     0.2     0.4     0.6     0.8

    0.0
    2.0
    4.0
    6.0

 

a[3] chains 1:2 sample: 2000

    0.2     0.4     0.6     0.8     1.0

    0.0
    2.0
    4.0
    6.0

 
alpha[1] chains 1:2 sample: 2000

    1.5     2.0     2.5

    0.0
    1.0
    2.0
    3.0
    4.0

 

alpha[2] chains 1:2 sample: 2000

   1.25     1.5    1.75     2.0    2.25

    0.0
    2.0
    4.0
    6.0

 

alpha[3] chains 1:2 sample: 2000

    1.5     2.0     2.5

    0.0
    1.0
    2.0
    3.0
    4.0

 
b[1] chains 1:2 sample: 2000

   -4.0    -3.0    -2.0

    0.0
    0.5
    1.0
    1.5

 

b[2] chains 1:2 sample: 2000

    0.0     0.5     1.0     1.5

    0.0
    1.0
    2.0
    3.0

 

b[3] chains 1:2 sample: 2000

   -4.0    -3.0    -2.0    -1.0

    0.0
    0.5
    1.0
    1.5

 
beta[1] chains 1:2 sample: 2000

    3.6     3.7     3.8     3.9     4.0

    0.0

    5.0

   10.0

 

beta[2] chains 1:2 sample: 2000

    3.6     3.7     3.8     3.9

    0.0
    2.5
    5.0
    7.5
   10.0

 

beta[3] chains 1:2 sample: 2000

    3.5     3.6     3.7     3.8     3.9

    0.0

    5.0

   10.0

 
tau[1] chains 1:2 sample: 2000

   -1.5    -1.0    -0.5     0.0

    0.0
    1.0
    2.0
    3.0

 

tau[2] chains 1:2 sample: 2000

   -1.0    -0.5     0.0     0.5

    0.0
    1.0
    2.0
    3.0

 

tau[3] chains 1:2 sample: 2000

   -1.5    -1.0    -0.5     0.0     0.5

    0.0
    1.0
    2.0
    3.0

 
theta[1] chains 1:2 sample: 2000

   -4.0    -2.0     0.0

    0.0
    0.2
    0.4
    0.6
    0.8

 

theta[2] chains 1:2 sample: 2000

   -4.0    -2.0     0.0

    0.0
   0.25
    0.5
   0.75
    1.0

 

theta[3] chains 1:2 sample: 2000

   -6.0    -4.0    -2.0     0.0

    0.0
    0.2
    0.4
    0.6
    0.8

 

Figure B3. Some of the representative item and examinee parameter estimates from the hierarchical 
framework (2PL ) model  
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a[1] chains 1:2 sample: 2000

    0.2     0.4     0.6

    0.0
    2.0
    4.0
    6.0
    8.0

 

a[2] chains 1:2 sample: 2000

    0.0     0.5     1.0     1.5

    0.0
    1.0
    2.0
    3.0

 

a[3] chains 1:2 sample: 2000

    0.0     0.5     1.0

    0.0
    2.0
    4.0
    6.0

 
alpha[1] chains 1:2 sample: 2000

   1.75     2.0    2.25     2.5

    0.0
    1.0
    2.0
    3.0
    4.0

 

alpha[2] chains 1:2 sample: 2000

    1.4     1.6     1.8     2.0     2.2

    0.0
    2.0
    4.0
    6.0

 

alpha[3] chains 1:2 sample: 2000

   1.75     2.0    2.25     2.5    2.75

    0.0
    1.0
    2.0
    3.0
    4.0

 
b[1] chains 1:2 sample: 2000

   -4.0    -3.0    -2.0    -1.0     0.0

    0.0
   0.25
    0.5
   0.75
    1.0

 

b[2] chains 1:2 sample: 2000

    0.0     1.0     2.0

    0.0
    0.5
    1.0
    1.5

 

b[3] chains 1:2 sample: 2000

   -4.0    -2.0     0.0

    0.0
    0.2
    0.4
    0.6
    0.8

 
beta[1] chains 1:2 sample: 2000

    3.6     3.7     3.8     3.9     4.0

    0.0
    2.5
    5.0
    7.5
   10.0

 

beta[2] chains 1:2 sample: 2000

    3.6     3.7     3.8     3.9

    0.0
    2.5
    5.0
    7.5
   10.0

 

beta[3] chains 1:2 sample: 2000

    3.5     3.6     3.7     3.8     3.9

    0.0
    2.5
    5.0
    7.5
   10.0

 
c[1] chains 1:2 sample: 2000

   -0.2     0.0     0.2     0.4     0.6

    0.0
    2.0
    4.0
    6.0

 

c[2] chains 1:2 sample: 2000

   -0.2     0.0     0.2     0.4

    0.0
    2.0
    4.0
    6.0

 

c[3] chains 1:2 sample: 2000

   -0.2     0.0     0.2     0.4     0.6

    0.0
    1.0
    2.0
    3.0
    4.0

 
tau[1] chains 1:2 sample: 2000

   -1.5    -1.0    -0.5     0.0

    0.0
    1.0
    2.0
    3.0

 

tau[2] chains 1:2 sample: 2000

   -1.0    -0.5     0.0     0.5

    0.0
    1.0
    2.0
    3.0

 

tau[3] chains 1:2 sample: 2000

   -1.5    -1.0    -0.5     0.0

    0.0
    1.0
    2.0
    3.0

 
theta[1] chains 1:2 sample: 2000

   -6.0    -4.0    -2.0     0.0

    0.0
    0.2
    0.4
    0.6
    0.8

 

theta[2] chains 1:2 sample: 2000

   -6.0    -4.0    -2.0     0.0

    0.0
    0.2
    0.4
    0.6
    0.8

 

theta[3] chains 1:2 sample: 2000

   -6.0    -4.0    -2.0     0.0

    0.0
    0.2
    0.4
    0.6
    0.8

 

Figure B4. Some of the representative item and examinee parameter estimates from the hierarchical 
framework (3PL ) model  
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a[1] chains 1:2 sample: 2000

    0.5    0.75     1.0    1.25

    0.0
    2.0
    4.0
    6.0

 

a[2] chains 1:2 sample: 2000

    0.2     0.4     0.6     0.8

    0.0
    2.0
    4.0
    6.0

 

a[3] chains 1:2 sample: 2000

    0.2     0.4     0.6     0.8     1.0

    0.0
    2.0
    4.0
    6.0

 
b[1] chains 1:2 sample: 2000

   -2.5    -2.0    -1.5

    0.0
    1.0
    2.0
    3.0

 

b[2] chains 1:2 sample: 2000

    0.0     0.5     1.0

    0.0
    1.0
    2.0
    3.0
    4.0

 

b[3] chains 1:2 sample: 2000

   -3.0    -2.5    -2.0    -1.5    -1.0
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Figure B5. Some of the representative item and examinee parameter estimates from Thissen’s model 
(2PL )   
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Figure B6. Some of the representative item and examinee parameter estimates from Thissen’s 
model(3PL )   
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                            (a) 4PL RT (2PL)                                                         (b) 4PL RT (3PL)

  
                (c) Hierarchical framework (2PL)                          (d) Hierarchical framework (3PL) 

  
                          (e) Thissen’s model (2PL)                                     (f) Thissen’s model (3PL) 

  
Figure B7. Scatter plots of item difficulty and item speediness (slowness) parameter estimates. 
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     (a) 4PL RT (2PL)                                                         (b) 4PL RT (3PL) 
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                   (c) Hierarchical framework (2PL)                          (d) Hierarchical framework (3PL)  

 
                          (e) Thissen’s model (2PL)                                     (f) Thissen’s model (3PL) 

 
Figure B8. Scatter plots of examinee ability and examinee speediness (slowness) parameter estimates. 
 



 

 

 

 

 

  
 
Figure B9. Mean RMSE values for the examinee true ability parameters based on the examinee 
ability groups. 
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