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Abstract. The distribution of the Anopheles gambiae complex of malaria vectors in Africa is uncertain due to
under-sampling of vast regions. We use ecologic niche modeling to predict the potential distribution of three members
of the complex (A. gambiae, A. arabiensis, and A. quadriannulatus) and demonstrate the statistical significance of the
models. Predictions correspond well to previous estimates, but provide detail regarding spatial discontinuities in the
distribution of A. gambiae s.s. that are consistent with population genetic studies. Our predictions also identify large
areas of Africa where the presence of A. arabiensis is predicted, but few specimens have been obtained, suggesting
under-sampling of the species. Finally, we project models developed from African distribution data for the late 1900s
into the past and to South America to determine retrospectively whether the deadly 1929 introduction of A. gambiae
sensu lato into Brazil was more likely that of A. gambiae sensu stricto or A. arabiensis.

INTRODUCTION

The Anopheles gambiae sensu lato (s.l.) complex contains
the world’s most efficient vectors of human malaria. Consist-
ing of six named and one unnamed morphologically similar
species,1,2 the complex is primarily responsible for the ap-
proximately 80% of global malaria morbidity and mortality
that occurs in sub-Saharan Africa.3 Differences in malaria
vector competence among members of the complex have
been recognized and are attributed primarily to preferences
for feeding on humans versus animals, tendency to enter
houses, and ability to recover in numbers after dry seasons.4

The two members of the complex most responsible for trans-
mission, A. gambiae and A. arabiensis, are broadly sympatric,
although the latter is more broadly distributed in arid re-
gions.4–6

An accurate and predictive understanding of the geo-
graphic distributions of these species would permit efficient
planning of strategies for targeted control or further sam-
pling, detection of competitive interactions, identification of
areas in which particular species are potentially involved in
transmission, and estimation of risk of introduction to other
parts of the world7 for example from ship cargo transport.
Furthermore, intraspecific genetic variation could be associ-
ated with specific ecologic niches: e.g., particular A. gambiae
karyotypes have been correlated with variation in transmis-
sion and climate.8,9

Factors determining the geographic distributions of A.
gambiae complex members have been explored via general
correlations with climatic factors6 and using nonlinear equa-
tions in combination with spatial mapping tools.5,10 These
studies elucidated climatic factors comprising the species’
ecologic niche, but have not demonstrated predictive ability
beyond the input data area. Rather, the strong spatial biases
in the input data has generally been reflected in the results of
previous modeling exercises.10

Herein, we apply a machine-learning algorithm to model
the ecologic niches occupied by three A. gambiae complex
species: A. gambiae s.s., A. arabiensis, and A. quadriannula-
tus, and predict their geographic distributions. The Genetic
Algorithm for Rule-set Prediction (GARP11) models ecologic
niches of species based on relating point-occurrence data to
electronic maps of relevant ecological dimensions, producing
a heterogeneous set of rules that describe the potential dis-
tribution of species in ecological dimensions. The rules defin-

ing the niche can then be used to predict the potential distri-
bution of the species elsewhere in time or space by projecting
these rules onto appropriate ecologic data.12 This approach is
unique in its ability to construct maps that relate several eco-
logic factors simultaneously to point occurrence data and in
its creation of heterogeneous sets of rules to define the niche;
the result is finely resolved distributional predictions at a con-
tinental scale.

MATERIALS AND METHODS

Data and statistical test of predictions. An existing A. gam-
biae s.l. dataset6 was supplemented with additional material
from references for a total of 581, 501, and 86 unique occur-
rence points for A. gambiae, A. arabiensis, and A. quadrian-
nulatus respectively, where an occurrence is equivalent to a
georeferenced collection site for a particular species. Occur-
rence point accuracy was at least to the minute and to the
second where greater resolution information was available.
Fourteen environmental data layers were considered for in-
clusion, of which 12 were selected for final models based on
error patterns in preliminary analyses. The pixel size was 0.1
degrees. Environmental data layers used in the initial assess-
ments of ecologic niche dimensions were annual mean tem-
perature, annual mean maximum temperature, annual mean
minimum temperature, daily temperature range, frost days,
topographic aspect, flow accumulation, topographic index,
annual mean precipitation, wet days, elevation, and vapor
pressure (Intergovernmental Panel on Climate Change,
Geneva, Switzerland), tree cover, land-use/land-cover (De-
partment of Geography, University of Maryland, College
Park, MD). All except elevation and vapor pressure were
used for final models.

We assessed the statistical significance of model predictions
using an extrinsic and independent test data set: a randomly
selected half of 28 African countries containing sufficient data
points was used to build models and to predict species’ dis-
tributions in the other 14 countries. Data points were strati-
fied into datasets for model building (training data) and
model testing (test data) according to an arbitrary criterion:
country. We first selected countries from which sufficient
sampling points were both available and broadly distributed
across the country. Sufficient data points were not available
for A. quadriannulatus for this purpose. From among these 28
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countries, 14 were selected at random for model training or
model testing.

Ecologic niche models were created using GARP, a genetic
algorithm specifically designed for this challenge,11 recently
made publicly available with a simple user interface (beta.l-
ifemapper.org/desktopgarp). After creating 100 GARP mod-
els, a final predicted map was created by summing the five
best-subset models.13 Test data, which were not involved in
model building, were overlaid on predicted distributions, and
model predictions assessed using a chi-square analysis.14 The
test data from the excluded countries thus served the purpose
of independent pseudo-collections to which the predictions of
our models were applied (Figure 1A). The best subset of
models developed, defined as those models with the lowest
training dataset point omission and median commission val-
ues,13 was used to predict species’ occurrences in the 14 ex-

cluded countries. Chi-square tests were performed to assess
the significance of the model’s prediction. In all cases, the
distributional predictions produced highly significant predic-
tions (Table 1 and Figure 1) even though the data points and
environmental characteristics associated with the excluded
countries were ignored in model construction.

RESULTS

Final predictions of the distribution of complex mem-
bers. We derived final predicted distributions using the same
environmental layers, but including all point-occurrence data
(i.e., without subsetting countries for model testing). The
maps predict general sympatry of A. arabiensis and A. gam-
biae, with A. arabiensis being more widely distributed, par-

FIGURE 1. Test of the statistical robustness of predictions derived from ecologic niche models for the Anopheles gambiae complex and final
maps. A, Map of Africa showing countries from which distributional data were used to build models (bold outline) and those from which
distributional data were used to test models (gray shading) showing sample points overlaid. The inset in 1C shows detail of prediction of the
southern range limit of A. arabiensis compared with the final prediction. Predicted distributions of B, A. gambiae, C, A. arabiensis, and D, A.
quadriannulatus. The circles in Ethiopia mark sites from which an unnamed sibling species of A. quadriannulatus was identified.2 The lines drawn
on the maps for A. gambiae and A. arabiensis indicate the approximate limits of the distribution of A. gambiae and A. arabiensis according to the
World Health Organization.15 In all maps, the darker shading indicates greater model predictive agreement of presence.
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ticularly in south-central Africa (Figure 1B and C). This pre-
diction is generally consistent with that of Lindsay and oth-
ers,5 who presented climate suitability zones for these species.
Both their maps and ours (Figure 1) differ from the general-
ized distribution map15 that illustrates the absence of A. ara-
biensis across most of central Africa (e.g., Angola, Congo,
Democratic Republic of Congo, and Gabon). This discrep-
ancy in the central Africa region can be explained in three
ways: 1) both our predictions and those of Lindsay and others
of suitable habitat for A. arabiensis are incorrect, 2) the ex-
isting generalized map is incorrect, or 3) the predictions and
generalized map correctly identify the potential and realized
niches, respectively, but some unidentified biotic or abiotic
factor precludes A. arabiensis from establishing in that area.
Regardless, this area should be sampled intensively to deter-
mine conclusively which species occur. Other differences be-
tween our maps and the World Health Organization distri-
butions are seen in our predictions of suitable environments
for A. gambiae in northeastern Africa, in the lower elevations
of Ethiopia, northern Kenya, southern coastal Somalia, and
southeastern Sudan.

Previously, predictions of the geographic distributions of
these species have been developed based on a similar data set,
but using very different analytical approaches.10 The results
of the two modeling efforts contrast sharply, particularly in
central Africa, where sampling was most sparse (Figure 1A):
our models predicted broad areas of presence for A. gambiae
and A. arabiensis, whereas the previous models did not. We
suggest that this difference results from the inability of the
previous, regression-based inferences to predict into broad
unsampled areas. For example, the regression-based predic-
tions for A. gambiae assigned the same probability of pres-
ence to south-central Africa as the inhospitable Sahara Des-
ert. Also, comparison with historical maps shows large areas
of known occurrence of A. arabiensis in coastal west Africa
not predicted by the regression-based models. Apart from
this dissatisfaction with the result, we note their lack of inde-
pendent validation of model predictions, uneven interpreta-
tion of kappa statistics, and over-reliance on assumptions of
absence based on data not well suited to establish absences
with confidence because 96% of the samples in the database
of Coetzee and others6 consist of 10 individuals or less.

DISCUSSION

In all of our models, two spatial discontinuities appear that
coincide with observed reductions in gene flow between
populations. We predict extensive areas of relative niche un-
suitability in the eastern Rift Valley A. gambiae complex in
Kenya.16 Genetic breaks have also been recognized within A.
quadriannulatus, given the discovery of a sibling species in
Ethiopia.2 Again, our models indicate a corresponding geo-

graphic disjunction in the habitable range of A. quadriannu-
latus separating southern and northern populations. Indeed,
although the sites from which the sibling species was identi-
fied are surrounded by habitats suitable for A. quadriannula-
tus, the distributional area of the sibling species is not pre-
dicted to be habitable. This result thus suggests that the eco-
logic niches of the two A. quadriannulatus forms are distinctly
different. No such potential barriers to gene flow are appar-
ent among mainland A. arabiensis populations.

The relatively large number of occurrence points for A.
gambiae and A. arabiensis makes possible generalizations
about differences between their ecologic niches. Our analysis
generally agrees with previous conclusions that relative to A.
arabiensis, A. gambiae inhabits wetter and warmer environ-
ments (26.7°C versus 24.6°C annual mean temperature; 28 cm
versus 22 cm annual mean precipitation; 0.87 versus 2.57 frost
days annually). Much greater detail of visualization of eco-
logic niches of these forms is possible, but is not presented
herein for reasons of space.

The influence of each environmental data layer on model
predictions was assessed via a jackknifing procedure, which
identifies layers whose exclusion most influenced predictions
(Figure 2).13 Each of the 13 data layers was eliminated from
analyses sequentially, and 10 models developed using GARP
iterations. These maps were summed to produce a composite
map, each pixel of which had a value between 0 and 10, rep-
resenting the number of replicate models predicting presence.
These maps were compared pixel-by-pixel with a similar map
created using all layers. Agreement of maps was calculated as
weighted kappa values17 based on pixels in agreement. Frost
days influenced predictions for A. gambiae particularly
strongly. In contrast, both climatic and topographic charac-
teristics influenced A. quadriannulatus distribution, and no
environmental variables uniquely affected A. arabiensis mod-
els markedly.

We used these models to test the likely role of different
complex member species in a historical event: the establish-
ment of A. gambiae s.l. in northeastern Brazil during the1930s
via accidental introduction, probably from Senegal. This in-
troduction and subsequent spread resulted in tens of thou-
sands of deaths from epidemic malaria. These epidemics
ended after a military style eradication program led by Fred
Soper.18 Because A. gambiae was yet not recognized as a
complex of several species, the identity of the member of the
complex that was responsible remains a mystery. White spec-
ulated that it was A. arabiensis, given its probable origin in
Senegal;4 however, three gambiae complex species occur in
that country: A. gambiae, A. arabiensis, and A. melas.19 Al-
though present in Senegal, A. melas is not a major vector
species of human disease and is believed to breed in brackish
water for which appropriate data layers were unavailable.
Thus, using climate data from 1960 to 1990 to build African

TABLE 1
Statistical tests of distributional predictions for Anopheles gambiae complex species*

Species
Test points

(no.)
Correctly predicted

(no.)
Proportion of area
predicted present

Expected points
correctly predicted (no.) Chi-square P

A. arabiensis 162 123 0.542 87.76 79.528 4.75 × 10−19

A. gambiae 188 172 0.492 83.04 208.066 3.63 × 10−47

Models were based on occurrence data from 14 African countries, and tests were based on the independent test points from the remaining 14 African countries.
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native-range models, we projected the niches of the two pri-
mary vectors among these species to the Americas for
1930−1960 climate regimes. These models indicate that A.
arabiensis would have had an extremely limited potential dis-
tribution (Figure 3A), whereas A. gambiae had widespread
suitable habitat near the point of introduction and broadly
throughout the Americas and Caribbean (Figure 3B). These
results suggest that Soper’s heroic eradication campaign
stopped the spread of this vector at the doorstep of extensive
areas of favorable niche, in which eradication would have
been impossible.

Discrepancies between our predicted distributions and the
believed realized distribution may occur for several reasons
unrelated to either the modeling method or the data ana-
lyzed: local elimination, failure to overcome geographic and
climatic barriers to introduction, and biotic interactions that
were not considered in the model. While the distribution of
species with which a species may interact may be known, the
effect of the interaction often is not. Therefore, we were un-
able to consider these possible factors in modeling the mos-
quitoes we studied. Moreover, our models did not exclude
data points that may have occupied relatively small portions

FIGURE 2. Kappa values calculated from jackknife experiments. Error bars indicate 95% confidence intervals. Layers excluded from model
building are listed on the vertical axis. The open, filled, and hatched bars represent values for Anopheles arabiensis, A. gambiae, and A.
quadriannulatus, respectively. temp. � temperature.

FIGURE 3. Predicted ranges of A, Anopheles arabiensis and B, A. gambiae developed from the native range models (Figure 1) and projected
onto climate data from 1931 to 1960 for South America. In all maps, darker shading indicates greater model agreement in prediction of presence.
The area in which A. gambiae s.l. became established and was eradicated is indicated by the black square in northeastern Brazil.
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of the pixel within which they fall; such error would represent
a pixel as suitable when in reality, only a small portion of it
would be. Easily identifiable examples that are often avail-
able in spatial databases and which could be considered are
rivers, streams, and small standing bodies of water that are
subject to flooding. Including such exceptional data in the
analysis results in over-prediction of potential distribution
when modeling species such as mosquitoes that have re-
stricted flight ranges and do not migrate.

The implications of these new methodologies are numer-
ous. Species’ distributions can be inferred and predicted with
high precision, permitting extrapolation of known informa-
tion to a much broader area and anticipation of distributional
patterns that would be otherwise poorly understood.12,14,20

Species’ native distributions can be used to infer ecologic and
distributional potential in other regions as an invasive spe-
cies.7 Changes to be expected in species’ geographic distribu-
tions that may result from ongoing global climate change can
be predicted.21 Implications for potential bioterrorism appli-
cations are also clear, particularly when disease organisms are
involved.20 In summary, ecologic niche modeling offers a
powerful tool for understanding distributional phenomena re-
lated to biodiversity: in the present case, offering a solution to
the 70-year-old mystery of which Anopheles species caused
one of the most serious malaria outbreaks in the history of the
New World.
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