

### Introduction

- Traditional methods for measuring river valley morphology require intensive groundbased surveys
- Traditional methodologies limit our ability to assess river valley morphology for large scale studies and management plans
- We developed an inexpensive GIS-based alternative that uses GIS automation and novel raster modeling techniques to rapidly assess the valley morphology of vast river networks



# River Valley Morphology

- Key Geomorphic Variables
  - Valley Width
  - Valley Floor Width
  - Valley Width : Valley Floor Width
  - Valley Side Slopes
  - River Elevation
  - Down Valley Slope





### **FLDPLN Model**

- The MATLAB® based FLDPLN model uses backfilling and spillover flooding procedures to determine a depth to flood (DTF) value for each pixel in a surface raster
- Required Data
  - DEM or LIDAR data
  - Flow Direction raster
  - Flow Accumulation raster
  - Stream raster
- Ocan be used to identify the extent of the river valley floor



**DEM of Lower Kansas River** 



10m Flood of Lower Kansas River

## Using Micosheds to Locate River Valley Peaks

- We use ArcHydro to generate extremely small watersheds or "microsheds"
- Microshed boundary lines within the FLDPLN valley floor layer are deleted
- The remaining microshed lines give us the location of the major flow divides on either side of the river valley (valley peaks)
- The composite FLDPLN and microshed layer can be used by automated GIS scripts to determine the key valley variables for entire river networks



FLDPLN Valley Floor Layer

Composite FLDPLN / Microshed Layer

# **Automated Valley Morphology Scripts**





## **Applications**

- Other scripts have been written that automatically extract relevant watershed and river channel scale geomorphic variables
- Watershed, river valley, and river channel scale geomorphic variables are used in an objective river classification that identifies geomorphically distinct sections of river termed functional process zones (FPZs)
- FPZs provide the spatial extent for network scale ecological studies and river management plans
- This approach is being used by the U.S. EPA to study and manage a number of U.S. rivers



155

# Acknowledgements

#### Funding Sources

U.S. Environmental Protection Agency

National Science Foundation - EPSCoR Program

Kansas Academy of Science

University of Kansas







#### Other Collaborators

Martin Thoms - University of Canberra