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Collins, Cathy D. (B.A., M.S., Ph.D.) 
Department of Ecology and Evolutionary Biology, University of Kansas 
 

ABSTRACT 

 
 Ecologists are currently faced with the challenge of understanding ecological 
patterns in the context of a rapidly changing planet. Meeting this challenge may 
ultimately enable ecologists to predict the consequences of global change, as well as 
find ways to mitigate human impacts on species and communities. In this dissertation 
I use classic ecological theory, original conceptual models, and a novel analytical tool 
to explore the effects of anthropogenic environmental changes on grassland plants 
and North American birds.   
 Humans continue to increase the amount of nutrients in the environment. 
Nutrient enrichment directly alters plant communities by increasing productivity, 
often at the expense of diversity. In tallgrass prairies, arbuscular mycorrhizal fungi 
(AMF) also mediate diversity because plant species differ in the degree to which they 
rely on AMF for nutrient acquisition. In Chapter 1, I investigate whether soil nutrient 
levels alter the effects that AMF have on plant communities. By manipulating 
phosphorus and AMF in experimental mesocosms containing native prairie grass 
communities, I show that the influence of AMF on plant community diversity and 
productivity depends on soil nutrient levels. Thus, nutrient enrichment imposes 
environmental constraints on plant soil-mutualisms that may have ecosystem- and 
community-level consequences. 
 Habitat fragmentation is thought to be the leading cause of contemporary 
species extinctions. In Chapter 2, I use long-term data from a landscape-scale 
experiment to explore the effects of habitat patch size on rates and patterns of early-
successional plant species declines. I quantify declines with a new metric, the Rank 
Occupancy-Abundance Profile (ROAP), which depicts shifts in both local abundance 
and occupancy. Patch size influenced the rate and spatial pattern of local extinction in 
fragmented grasslands; however, the patch size on which declines were most rapid 
varied among species. I suggest that persistence on a particular patch size may be 
linked with a species’ life history traits. 
 In Chapter 3, I use ROAPs to assess the magnitude and patterns of decline in 
North American breeding birds. I show that 20% of 209 sampled birds have declined 
significantly since 1970, including both rare and common species. Patterns of 
declines varied according to the initial regional abundance of the bird species: rare 
species experienced proportionally higher losses in regional abundance due to local 
extinctions than did abundant species. I also propose a conceptual model for a general 
pattern of decline species experience as they approach extinction.  
 Overall, results from this dissertation confirm that humans are dramatically 
altering the relative abundance of species—at local, landscape, and continental scales. 
Early detection of declines—and the factors driving them—may help preserve 
biodiversity in the face of enduring anthropogenic environmental changes.  
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GENERAL INTRODUCTION 

 

  For more than a century, ecologists have sought to understand the 

distribution, abundance, and diversity of organisms. Pioneering studies such as those 

on species ranges by Elton and Grinnell, on succession by Clements and Gleason, and 

on competition and niches by Gause, Hutchinson, and MacArthur set the conceptual 

and theoretical stage for future community ecologists. We are still refining our 

understanding of the fundamental ecological questions these seminal ecologists first 

addressed; however, our intellectual curiosity has been fueled with a new sense of 

urgency inspired by our rapidly changing planet. Earth’s biodiversity is currently 

threatened by the sixth mass extinction event—the first mass extinction induced by 

humans. In addition to the ethical issues that human-caused extinctions raise, 

maintaining biodiversity is of wide public interest because it provides people with 

vital goods (such as timber) and services (such as prevention of soil erosion). Thus, 

our challenge is no longer to simply understand the nature of organisms, populations, 

and communities; rather, we must expand our goals to identifying (and potentially 

mitigating) the complex interactions and contingencies that global changes impose on 

natural systems. As a result, a framework is emerging in ecology in which humans are 

viewed as an influential and integral component of the ecosystem. The agenda entails 

addressing basic ecological questions in the context of anthropogenic global changes.   

   The main drivers of human-induced environmental changes fall into five 

broad categories (Sala et al. 2001): changes in atmospheric CO2, climate warming, 
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landscape conversion which results in loss and fragmentation of natural habitats, 

nutrient enrichment, and biotic invasions. These changes threaten biodiversity and 

ecosystem function directly and indirectly (Tylianaki et al. 2008), independently and 

synergistically (Brook et al. 2008). In this dissertation I examine these consequences 

of global changes at different spatial scales (local, landscape, and continental), at 

different levels of ecological organization (communities, species, local populations), 

and using different investigative approaches (mesocosm experiment, field 

experiment, and analyzing observational data). In Chapter 1, I use experimental 

mesocosms to investigate whether soil nutrients alter the ability of arbuscular 

mycorrhizal fungi (AMF) to mediate prairie plant diversity and productivity. In 

Chapter 2, I explore the influence of habitat fragmentation on populations of early-

successional plant species in a Kansas grassland and introduce a novel tool (ROAPs) 

for measuring population changes over time. In chapter three, I use ROAPs to 

document the patterns of decline in North American breeding birds. In all of the 

research contained within my dissertation, I use classic ecological theories as a 

foundation from which to make (and test) predictions regarding species interactions 

and species declines in environments shaped by contemporary human impacts. Below 

I briefly describe the global change impetus for my research in each chapter, the 

theoretic framework that guided my inquiry, and a concise summary of the main 

results. 

Chapter 1:  Community-level consequences of mycorrhizae depend on phosphorus 

availability 
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Nutrient deposition continues to increase globally.  Currently, there are places 

in the world where nitrogen (N) deposition rates exceed 10 kg N ha-1yr-1, more than 

an order of magnitude greater than estimated natural deposition rates (Galloway et al. 

2008). Less attention is paid toward phosphorus (P) deposition, despite the fact that 

net P storage in terrestrial and freshwater ecosystems is estimated to be over 75% 

greater then before the industrial age (Bennett et al. 2001).  In terrestrial systems, P-

enrichment is due primarily to P-fertilizer that accumulates in agricultural soils 

(Carpenter 2008).  We know that adding nutrients increases plant productivity, often 

at the expense of diversity; both N and P have been implicated as drivers of local 

extinctions (Tilman 1987; Wassen 2005). 

Historically, research on plant diversity has focused on local competitive 

interactions, the outcome of which is determined by efficient acquisition of limited 

resources, such as nutrients (Tilman, 1982).  Recently, microbes that have mutualistic 

relationships with plants have gained attention as playing a key role in driving plant 

diversity patterns (Reynolds et al. 2003). Arbuscular mycorrhizal fungi (AMF), for 

example, help plants acquire nutrients in exchange for photosynthetic carbon.  The 

presence or absence of AMF alters plant diversity because plant species respond 

differentially to their presence (Hartnett & Wilson 1999). Enhancing the nutrient 

environment in which this plant-fungal symbiosis operates may alter the influence 

that AMF have on plant diversity by changing the degree to which various plant 

species benefit from hosting AMF. 
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 In Chapter 1, I build on recent studies of AMF-mediated plant diversity (e.g. 

Hartnett & Wilson 1999; Van der Hiejden 2002) and basic coexistence theories (e.g. 

Tilman 1985) to generate a conceptual model that predicts community-level outcomes 

of AMF-mediated competition along a P-gradient. Using experimental mesocosms 

and native prairie grass communities, I test the general prediction that AMF mediate 

plant community responses to soil nutrients. I found that the influence of AMF on 

plant diversity, composition, and productivity depended on P-levels. My results 

suggest that anthropogenic changes in soil nutrients could impose environmental 

constraints on AMF-plant mutualisms, and thereby ultimately affect communities and 

ecosystems. 

 

Chapter 2: Patch size effects on plant species decline in an experimentally 

fragmented landscape 

 Land-use change—which typically leads to habitat loss and fragmentation—is 

considered the most acute driver of biodiversity loss (Sala et al. 2001).  

Approximately 40% of the land on earth as has been converted for agricultural use 

(Foley et al. 2005), and estimates for loss of natural habitats in the U.S. exceed 90% 

(World Resources Institute 1998).  Such land-use changes have negatively affected 

the breeding, foraging, and dispersal behaviors of individual species across a wide 

range of taxonomic groups, as well as ecological processes such as species 

interactions and trophic length of food chains (Fahrig et al. 2003).  Researchers 

studying fragmentation have traditionally focused on quantifying rates of species 
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extinctions, and identifying what traits make certain species vulnerable to extinctions 

in fragmented habitats (e.g. Davies 2000; Fréville et al. 2007; reviewed in Fischer & 

Lindenmayer 2007).  In Chapter two of this dissertation, I use data from a long-term, 

large-scale habitat fragmentation experiment in a Kansas grassland to explore the 

influence of patch size on patterns of decline in early-successional plant species. 

 I based my predictions for this chapter on two bodies of theory:  Island 

Biogeography Theory (IBT; MacArthur and Wilson 1967), and general succession 

theory (Pickett et al. 1987).  The two theories make contrasting predictions for the 

habitat patch size (fragment size) on which species will go extinct most quickly: if 

patch size effects dominate (as predicted by IBT), early-successional species should 

persist longer on large patches which allow for larger populations. If successional 

processes dominate, I expect early-successional species to persist longer on small 

patches, where woody species established more slowly. Thus, the interaction between 

habitat fragmentation and old field succession allow me to test the relative importance 

of area effects and successional processes on rates and patterns of decline in early-

seral plant species. 

 To address my questions, I introduce a new metric which can be used to 

visually and statistically assess the distribution of abundance of an organism across a 

landscape.  The metric, called Rank Occupancy-Abundance Profiles (ROAPs), fill a 

gap that existed in our ability to analyze species-level data because it incorporates 

both site occupancy and local abundance.  I used ROAPs to compare patterns of 

decline in large versus small patches for 18 plant species. 
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   I found that patch size influenced patterns of decline in most species; 

however, some species declined faster on small patches, and some declined faster on 

large.  These results emphasize the fact that the relative influence of area on small 

populations (i.e. IBT) and of successional proccesses (i.e. competitive replacement) 

varies among species. Moreover, summarizing community responses to habitat 

fragmentation by a single diversity measure obscures important species-specific 

extinction trajectories. To illustrate this point, I generated a suite of conceptual 

models using ROAPs that propose various trajectories a species might follow as it 

nears extinction.  These models provided the foundation for my research in Chapter 3. 

 

Chapter 3:  Phases of Decline in North American Breeding Birds 

 Populations of many taxa are declining worldwide (Balmford et al. 2003).  

There is little doubt that human activities play a key role; anthropogenic threats such 

as climate change and habitat loss reinforce each other, acting simultaneously and 

additively to drive populations toward extinction (Brooke et al. 2008). The World 

Conservation Union (IUCN) considers population decline a key component of 

assigning species to the Red List; however, little is known about the rate and patterns 

of decline as species approach rarity. What we do know is that reducing local 

population sizes and extirpating local populations increase the probability of entire 

species going globally extinct (Ehrlich & Daily 1993). 

 The observation that local abundance and regional occupancy are positively 

correlated is one of the oldest and most general macroecological patterns (Darwin 
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1859; Brown 1984; Gaston et al. 2000). Typically, this pattern is recorded across 

species (i.e. locally common species occupy many sites and locally rare species 

occupy few sites), although shifts in abundance and occupancy for a single species 

over time also show a positive correlation (though exceptions exist; Gaston et al. 

2000). Abundance-occupancy patterns are of considerable interest because they 

suggest that local and regional processes are linked (Freckleton, 2006). If occupancy 

and local abundance are positively correlated for declining species, we can use one 

measure to estimate the other, predict the consequences of specific threats (e.g. 

habitat loss), and accurately assess the status of imperiled species.     

   In Chapter 3, I explore the patterns of decline in North American breeding 

birds. I chose birds as my focal taxonomic group for several reasons.  First, birds are 

good indicators of global changes. Many species migrate long distances, and 

collectively, bird species occupy most habitats on the globe, as well as various trophic 

levels. Consequently, changes we see in bird populations tend to integrate many 

ecological factors. Second, we know much about the natural history of birds.  They 

have been at the center of ecological studies since ecology emerged as a discipline, 

are highly visible, and frequently observed by amateur naturalists around the world. 

Last, the existence of a unique, long-term, large-scale dataset—the North American 

Breeding Bird Survey (NABBS)—makes it plausible to address questions about 

ecological processes that happen on time scales longer than the tenure of a PhD 

student. Using data from 209 North American birds, and guided by the ROAPs 

models of extinction that emerged from Chapter 2, I found that patterns of declines 
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varied across bird species according to their initial regional abundance. Regionally 

abundant bird species lost more individuals due to declines in their local populations, 

versus local extinctions.  Regionally rare birds lost proportionally more individuals 

due to local extinctions. A primary result from this chapter is a general model of 

decline that I propose depicts time-lags between losses in occupancy and local density 

that a single species may experience as its regional abundance declines. 

 The effects of anthropogenic environmental changes are evident at many 

spatial scales and levels of ecological organization. Moreover, both pattern and 

mechanism play unique and key roles in our ability to assess human impacts on 

ecological processes. My hope is that this dissertation demonstrates that 1) we can 

apply classic ecological theories toward predicting the effects of anthropogenic 

environmental changes and 2) we can combine local, experimental and landscape-

scale, observational approaches to better document and predict the distribution and 

abundance of species in a rapidly changing world. 
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CHAPTER 1:  Community-level consequences of mycorrhizae depend on 

phosphorus availability 

 
 

 

Abstract. 

 
 In grasslands, arbuscular mycorrhizal fungi (AMF) mediate plant diversity; 

whether AMF increase or decrease diversity depends on the relative mycotrophy in 

dominant versus subordinate plants. In this study we investigate whether soil nutrient 

levels also influence the ability of AMF to mediate plant species coexistence. First, 

we present a conceptual model that predicts the influence of AMF on diversity along 

a soil nutrient gradient for plant communities dominated by mycotrophic versus non-

mycotrophic species. To test these predictions, we manipulate phosphorus to create a 

soil nutrient gradient for mesocosm communities comprised of native prairie grasses, 

and compare community properties for mesocosms with and without AMF.  We 

found that where P was limiting, AMF increased plant diversity and productivity, and 

also altered community structure; however, at high P, AMF had little influence on 

above-ground communities. Compositional differences among treatments were due 

largely to a trade-off in the relative abundance of C3 versus C4 species. Our study 

emphasizes how environmental constraints on mutualisms may govern community- 

and ecosystem-level properties.    
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INTRODUCTION 

 Identifying factors that generate and maintain plant diversity and productivity 

remains one of the central goals of ecology. Until recently, microbes have been 

largely ignored as drivers of plant community dynamics (Reynolds et al. 2003; 

Wardle et al. 2004). Given their pivotal role in nutrient cycling and nutrient transfer, 

microbes are gaining attention as key players in ecosystem processes (van der 

Heijden et al. 2008) and the crucial role they may play in mediating plant response to 

global changes (Johnson et al. 2003a; Tylianakis et al. 2008). Human-induced global 

changes such as nutrient deposition alter the environmental context for species 

interactions. In order to predict the above-ground consequences of altering soil 

environments, we must account for biotic interactions below-ground, such as the 

symbiosis between plants and mycorrhizae. We know little about how the changing 

abiotic environment shapes microbial influences on plant communities (Bever 2003; 

van der Heijden et al. 2008). In this paper, we examine how soil nutrient levels 

impact plant-fungal symbioses and, ultimately, plant community diversity and 

productivity.  

Arbuscular mycorrhizal fungi (AMF) are soil organisms that colonize most 

terrestrial plants species (Smith and Read 1997). This symbiosis is typically 

considered mutualistic because the fungus provides soil resources—particularly 

phosphorus—to the plant, and receives photosynthate in return (Smith and Read 

1997). However, environmental conditions can alter the costs and benefits of the 

AMF-plant symbiosis along the spectrum of mutualism to parasitism (Johnson et al. 
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1997). For instance, high phosphorus environments may eliminate resource limitation 

such that AMF impose a carbon drain on plants, depressing plant growth (Koide 

1991; Johnson et al. 1997). Independent of soil nutrient status, not all plants benefit 

equally from AMF symbioses. Reliance on AMF for optimal growth varies among 

plant species (Klironomos 2003), plant functional groups (Wilson and Hartnett 1998), 

and plants characteristic of different successional stages (Janos 1980). Given the 

significant role AMF play in plant resource acquisition, together with observed 

variation among plant species in the benefits derived from AMF colonization, it is no 

surprise that AMF-mediated competition contributes to grassland plant community 

diversity (van der Heijden 2002). 

AMF affect plant diversity positively or negatively, depending on the degree 

to which the dominant plant species depend on AMF (Hartnett and Wilson 2002; 

Urcelay and Diaz 2003).  When the competitively subordinate plants derive 

substantial growth benefits from hosting AMF, the presence of AMF increases 

diversity (e.g. Grime et al. 1987; van der Heijden et al. 1998). By contrast, AMF 

decrease diversity when AMF disproportionately enhance growth in dominant plants 

(e.g. Hartnett and Wilson 1999; O’Connor et al. 2002). In Kansas tallgrass prairie, for 

instance, co-occurring warm-season (C4) and cool-season (C3) grasses and forbs vary 

in their dependence on AMF; the dominant grasses are C4 and rely on AMF for 

optimal growth (Wilson and Hartnett 1998). Suppressing AMF results in competitive 

release of many subordinate C3 grass and forb species which rely less (or not at all) 

on AMF (Hartnett and Wilson 1999). Additionally, AMF can influence ecosystem 
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function both directly and indirectly. In nutrient-deficient substrates, the presence of 

AMF increase primary productivity directly through nutrient acquisition and 

enhanced photosynthesis (Smith and Read 1997). When AMF increase plant 

diversity, this, in turn, may increase plant productivity indirectly by enhancing plant 

complimentarity and community-wide resource use efficiency (Klironomos et al. 

2000; van der Heijden 2002).  

Competition for nutrients plays a major role in governing grassland plant 

community dynamics (Tilman 1982). Adding a single nutrient alters the absolute 

abundance of that nutrient, as well as its abundance relative to other nutrients (e.g. 

N:P), often shifting the identity of the limiting nutrients and ultimately plant 

community composition (Tilman 1985).  For instance, enriching soils with N favors 

N-limited species, and increases plant productivity at the expense of diversity (Tilman 

1987; Foster and Gross 1998). To the extent that AMF mediate competition via 

nutrient acquisition, anthropogenic inputs of N and P will influence the role AMF 

play in mediating plant species coexistence. Indeed, pairwise studies have shown that 

AMF and soil nutrient levels interact to determine the competitive “winner” among 

plant species (Hartnett et al. 1993; Daleo et al. 2008, Johnson et al. 2008).   

 If we link our knowledge of a plant community’s structure—and the degree of 

mycotrophy of plants comprising the community—with knowledge of soil resource 

availability, we can predict the influence of AMF on plant communities in different 

soil environments or under various nutrient deposition scenarios. For example, where 

dominant plant species are highly mycotrophic (e.g. tallgrass prairies), the presence of 
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AMF will depress diversity by reinforcing competitive superiority of a few species; 

however, this effect will be most pronounced where P is limiting (Fig. 1a). Where P is 

abundant, AMF will play a minimal role in governing plant diversity. In communities 

where the subordinate species benefit from AMF more than the dominants (e.g. cool-

season grasslands), AMF will increase diversity; again, this effect will be most 

dramatic where P is limiting (Fig. 1b). Thus, we propose that AMF mediate plant 

diversity, but the influence of AMF at the community level will depend on both soil 

nutrient levels and plant community composition. Specifically, the influence of AMF 

on diversity will be strongest at low nutrient (specifically P) levels; the direction of 

the influence will depend on the relative degree of mycotrophy among plants in the 

community.  

 In this study, we explore the plant community consequences of altering the 

resource environment in which plants and AMF interact. We hypothesize that 1) the 

influence of AMF on plant diversity will depend on soil nutrient levels, 2) the 

influence of AMF on plant communities will be greatest in P-limited environments, 

and 3) shifts in community composition will result from differential responses of C4 

(highly mycotrophic) and C3 (less mycotrophic) species to AMF along the soil 

nutrient gradient. To test these hypotheses, we devised an experiment using 

mesocosm communities comprised of native tallgrass prairie species. By 

manipulating the presence and absence of AMF and soil P, we quantified the effects 

of AMF on plant community diversity, composition and productivity along a soil 

nutrient gradient. 
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METHODS 

 

 This study was conducted at the University of Kansas Ecological Reserves, 20 

km north of Lawrence, Kansas. We chose a mesocosm approach because we could 

have strict control over nutrients and the presence/absence of AMF. Two AMF 

treatments (+ AMF and –AMF) were combined with five nutrient treatments in a 

factorial design, with five replicates for each treatment combination. Initially, each 

mesocosm contained identical plant communities comprised of nine perennial, native 

grass species that coexist in Kansas tallgrass prairies: Agropyron smithii Rydb. (C3), 

Andropogon gerardii Vitman (C4), Bouteloua curtipendula (Michx.) Torr. (C4), 

Elymus canadensis L. (C3), Hordeum jubatum L. (C3), Koleria pyramidata (Lam.) 

Beauv. (C3), Schizachrium scoparium (Michx.) Nash (C4),  Sorgastrum nutans (L.) 

Nash (C4), and Sporobolus heterolepis (A. Gray) A. Gray (C4). We used perennial 

grasses because they dominate native prairies and are targeted for restoration efforts 

in our region.  Species were selected based on frequency of occurrence in our region, 

functional group (five C4 grasses and four C3 grasses to maximize variability in 

response to AMF), and availability (Stock Seed Farms, Murdock, NE, USA; Critical 

Site Products, Inc., Prairie & Wetland Center, Belton, MO, USA). Seeds were planted 

in trays of vermiculite during the first week of March, 2007, and allowed to germinate 

and grow in a greenhouse (LD: 14:10h; 25º:17º C) for 8 weeks. Seedlings were 

watered daily, but no nutrient or AMF treatments were applied until mesocosm 

communities were assembled.   
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 Soil inoculum for +AMF mesocosms was collected from a native prairie in 

northeast Kansas. We sieved freshly-collected soil through 1-cm2 hardware cloth to 

remove large root clumps and rocks. For the –AMF treatment, we autoclaved sieved 

field soil at 121º C for 60 minutes on two consecutive days.  

 Mesocosm (38 cm (diameter) x 29.5 cm (ht)) held 38 L of a 50:50 mixture of 

sand and coarse perlite (Therm-o-Rock Perlite, Hummert InternationalTM, Topeka, 

KS, USA).  In each mesocosm we added a 1 cm-deep layer of field (+AMF) or 

autoclaved (-AMF) soil 10 cm below the substrate surface. To equalize the microbial 

community, we added 500 ml of microbial slurry to each mesocosm (Koide and Li 

1989). We prepared the slurry by passing filtrate from the extra field soil inoculum 

twice through a 20 micron sieve. To ensure that each mesocosm received the same 

amount of liquid, we added 500 ml of water to mesocosms containing field soil 

inoculum. 

 Most seedlings were in the second-leaf stage (~5-7 cm tall) when we 

transplanted them from the greenhouse to mesocosms in the second week of May. 

Mesocosms received four individuals of each species, randomly arranged in a 6 x 6 

grid. We replaced any seedlings that died during the first three weeks. We 

randomized the location of the mesocosms in an outdoor lath house—an open-sided 

structure with wire mesh designed to exclude large herbivores. Throughout the 

summer, we applied nutrient solution every three days; on the two interim days we 

watered each mesocosm to field capacity. Mesocosm buckets were elevated to allow 

for drainage and to prevent nutrient contamination among treatments. 
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We applied nutrients as pH-adjusted aqueous solutions.  The standard recipe 

was an adjusted Hoagland’s solution (Johnson 1993) and contained:  65 mg/L K2SO4; 

72 MgSO4; 0.03 mg/L NaCl; H3BO3; 0.54 mg/L MnCl2·4H20; 0.07 mg/L ZnSO4·7H20; 

0.02 mg/L CuSO4·5H20; 0.011 mg/L FeEDTA; 433 mg/L KNO3; 8.4 mg/L 

Ca(NO3)2·4H20. The pH was adjusted to 6.5 with 0.1M NaOH. To create a gradient in 

P-availability, we calculated four levels of P relative to a “standard P” of 44 mg/L 

KH2PO. We added 0.1, 0.5, 10, or 20 times the standard P (hereafter denoted as 0.1 x 

P, 0.5 x P, 10 x P, 20 x P). Altering P necessarily changes the N:P of the nutrient 

solutions because N was held constant for each treatment. Solutions were added to 

field capacity; the amount of nutrient solution (and water on interim days) was 

adjusted across the summer accordingly.  

 After 15 weeks, we clipped all aboveground biomass from each mesocosm, 

and sorted by species.  Biomass was dried at 74º C for 72 hours. We recorded the 

mass of each species separately, summing across species in a single mesocosm to 

estimate aboveground net community productivity (g). We sampled soils from each 

mesocosm immediately following harvest to verify the efficacy of our +/- AMF 

treatments. Tangled roots prevented us from estimating root colonization for each 

species.  In an effort to minimize the effect of plant species on our estimates of root 

colonization, we analyzed roots sampled directly beneath Andropogon gerardii from 

each mesocosm. We cleared and stained roots following Koske and Gemma (1989) 

and quantified percent colonization following (Giovannetti and Mosse 1980). 
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 Shannon diversity (H′) for plant communities was calculated in PC-Ord, v. 4. 

Because our mesocosms contain the same number of species (and therefore have the 

same value for species richness), H′ reflects only the evenness (relative abundances) 

of species. Shannon diversity was the most appropriate measure because H′ captures 

both richness and evenness components of diversity, both of which may be influenced 

by AMF and nutrients. Thus, expressing diversity as H′ unifies the model, our results, 

and other experiments that manipulate AMF. We used biomass of each species as our 

measure of abundance in all diversity calculations. We tested for treatment effects on 

evenness, biomass, proportion of total community comprised of C4 plants, and single 

species abundances using a balanced 2-way ANOVA with AMF and nutrient levels as 

fixed effects. Residuals were tested for normality using the Ryan-Joiner test (P>0.1) 

and for homogeneity of variance with Bartlett’s test (P>0.1).  We used a one-way 

ANOVA to test for effects of P-level on root colonization of root samples collected 

from +AMF mesocosms.  To characterize plant community composition, we 

conducted a principal components analysis (PCA) using the nine species in each 

community as variables. Our data do not contain zeros, nor are their nonlinear 

relationships associated with the environmental gradient, thus, we felt PCA was an 

appropriate tool for visually comparing communities in multivariate space. We 

statistically compared the locations of the communities in each treatment in 

multivariate space using PERMANOVA (Anderson 2001; McArdle and Anderson 

2001), which relies on permutation methods to compute P-values for distances 

between group centroids. We then compared the degree of dispersion among 
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treatment communities using PERMDISP (Anderson 2004).  For both permutation 

tests we calculated Bray-Curtis distances and used 999 permutations. Parametric 

statistics were performed in Minitab 14.1. 

 

RESULTS 

 

 Roots from mesocosms containing autoclaved soil contained either no AMF, 

or extremely low levels (Fig. 2).  Among the field-soil-inoculated mesocosms, root 

colonization increased as added P decreased; communities receiving the least P 

(highest N:P) had the highest percent colonization (F4,20 = 5.78; P = 0.003). 

Communities with 10xP and 20xP did not differ from one another, but had 

significantly (20% on average) less colonization than both treatments receiving 

reduced amounts of P (Tukey Simultaneous Test, P<0.05). 

 Community structure for plant communities with and without AMF diverged 

as phosphorus became more limiting (Fig. 3a). Diversity at any given nutrient level 

depended on the presence of AMF (Fig. 3b; AMF*nutrient: F4,40 = 4.15; P = 0.007). 

AMF increased diversity where P was less available. By contrast, where P was 

abundant, we detected no difference in diversity between communities with and 

without AMF (Tukey Simultaneous Test, P>0.1).   

 Communities segregated in multivariate space (Fig. 4) illustrating that 

nutrients and AMF interact to determine community composition. The first axis of the 

PCA ordination (Fig. 4) represents the effect of nutrients on the biomass of species in 

each community (P is more limiting on the right-hand side of the graph); the second 
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PC axis reflects species’ growth response to AMF. AMF strongly affected community 

composition, but moreso where P was most limiting (Fig. 4; AMF*nutrient: F4, 40 

PERMANOVA = 4.02, P = 0.001). This is illustrated by the greater separation of +AMF 

and –AMF plots on the right-hand side of the PCA ordination (Fig. 4). By contrast, 

only nutrient levels significantly influenced community dispersion (F4,40,PERMDISP = 4.40 

P = 0.007); although AMF and the interaction between AMF and nutrients both 

influenced dispersion at the α = 0.1 significance level. 

 In all but one nutrient treatment, both mycorrhizal and nonmycorrhizal 

communities were dominated by Elymus canadensis which contributed between 31-

42% of the total community biomass (Fig. 5). Neither of the two species dominant in 

most treatments, E. canadensis and Bouteloua curtipendula, responded significantly 

to AMF. Both species achieved greater biomass in soils with high P levels, regardless 

of AMF treatment (Fig. 6; E. canadensis: Fnutrient 4,40= 18.06, P < 0.001; FAMF 1,40 = 

1.02, P > 0.2;  FAMF*nutrient 4,40 = 1.38, P > 0.2;  B. curtipendula: Fnutrient 4,40 = 15.78, P 

<0.001; FAMF 1,40 = 0.19, P > 0.2; FAMF*nutrient 4,40 = 2.02, P > 0.1). Differences in 

overall community composition we observed among nutrient and AMF treatments 

were manifested primarily through responses by the subordinate species, many of 

which responded dramatically to the presence of AMF (Fig. 5 & 6). 

Although there were some species-specific differences in the degree to which 

AMF influenced biomass across the nutrient gradient (Fig. 6), responses were 

generally consistent among species within a functional group (defined by 

photosynthetic pathway): at low P, maximum growth for most C4 species occurred in 
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the presences of AMF while C3 species performed better in the absence of AMF. 

Consequently, in mesocosms lacking AMF, the proportion of the community 

comprised of C4 grasses declined significantly at low P-levels (AMF * nutrient 

interaction: F4,40 = 5.90, P = 0.001).   

 Total community biomass increased as P-availability increased; however, at 

low P, communities with AMF were significantly more productive than those without 

AMF (Fig. 7; AMF* nutrient: F4,40 = 4.67, P = 0.003). 

 

 

DISCUSSION 

 

 Our study demonstrates that soil nutrient levels and AMF interact to 

determine prairie plant community diversity, composition and productivity. While 

previous work has shown that the presence, abundance, and diversity of AMF (van 

der Heijden 2002 and references therein), as well as AMF species identity 

(Klironomos 2003; Vogelsang et al. 2006) can influence plant communities, our 

results emphasize that contingences of resource supply may govern community-level 

outcomes of AMF-plant interactions.   

 At low P-levels, we found that AMF increased diversity in our mesocosm 

communities. Although we used native tallgrass prairie species, our results contrast 

with Hartnett and Wilson’s (1999) work in tallgrass prairies. They found that AMF 

decreases diversity and proposed that because the dominant C4 grasses are highly 

mycotrophic, removing AMF allowed for competitive release of the subordinate 

(often C3) species. Our results better match those obtained in the European grassland 
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experiments in which the dominant plants were cool-season, relatively non-

mycotrophic species (Grime et al. 1987; van der Heijden et al. 1998). Accordingly, in 

our study, Elymus canadensis (C3 grass) dominated nearly all treatment communities, 

and showed no significant positive growth response to AMF. The fast growth rate of 

E. canadensis, paired with atypically cool spring and summer temperatures in 2007, 

may explain its competitive success over mycotrophic, warm-season plant species 

(e.g. Andropogon gerardii) that typically dominate native prairies. Regardless, our 

results are consistent with the general prediction that the relative mycorrhizal 

dependency of the dominant versus the subordinate plants determines the direction of 

the community diversity response to AMF.  

 Importantly, our results also demonstrate that the effect of AMF on plant 

communities is not uniform across soil nutrient levels (Fig. 3). Where P-availability 

was lowest, AMF were most influential, increasing diversity and biomass relative to 

communities lacking AMF. When P was not limiting, AMF did not influence 

diversity or productivity. These results are consistent with the model presented in Fig. 

1b and suggest that by combining our knowledge of the relative mycotrophy of 

coexisting species with our knowledge of soil resource availability, we may be able to 

predict the influence of AMF on plant communities.  

Previous models that predict the effects of AMF on plant communities have 

also considered soil nutrients. For example, van der Heijden (2002) presented a model 

based on Tilman’s (1982) resource-ratio theory. He suggested that by increasing the 

access of host-plants to P (presumably at the expense of N-acquisition), AMF may 
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increase species richness of a community. Our results are consistent with van der 

Heijden’s model because we found that in a community in which subordinate species 

are mycotrophic, AMF increase diversity at low P (albeit through evenness and not 

richness). However, the resource-ratio modeling approach applies only to low P soils 

in which AMF are necessary to access P, and in communities in which mycotrophic 

species do not dominate. By contrast, we provide a model that takes into account a 

soil nutrient gradient, as well as plant community composition, emphasizing that the 

role of AMF in mediating plant community diversity depends both on nutrient status 

and the degree of mycotrophy of the dominant species.   

 Because our model focuses specifically on the impact of AMF on diversity as 

mediated by P supply, we rely on several implicit assumptions. For instance, we 

assume that P-availability does not directly influence plant diversity (i.e. through 

mechanisms other than via AMF).  In most terrestrial systems, direct effects of P on 

diversity appear to be the exception (e.g. Wilson et al. 1996, Goldberg and Miller 

1990), rather than the rule (Gough et al. 2000). Indeed, we have seen no effect of 

long-term P-addition on diversity in field experiments at our site (B.L. Foster, 

unpublished manuscript). Still, it is worth noting that our model may not fully apply 

to wetland and moist systems where diversity is often sensitive to P-additions (e.g. 

Wassen et al. 2005). 

We also assume that parasitic effects of AMF are not strong (or consistent) 

enough to have community-level consequences. Our results were consistent with this 

assumption: even at the highest amounts of P added, we observed few indications of 
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nutrient-induced parasitism, and no consistent response across functional groups was 

apparent.  For instance, only two species, Bouteloua curtipendula (C4), and Koleria 

pyrimidata (C3), showed significant biomass declines in the presence of AMF when P 

was plentiful (Fig. 6). Agropyron smithii (C3) was negatively affected by AMF at all 

nutrient levels. Notably, violating this assumption would yield data that deviate from 

our model in a predictable way. If, for example, mycotrophic plants were parasitized 

under high-P conditions (in a community with AMF in which mycotrophic plants are 

subordinate), we would have expected their relative abundance to decline, and 

consequently diversity to decline as well. Testing our model in systems where 

parasitism is suspected to occur would likely be very instructive. 

 The last assumption implicit in our model was that the primary benefit to 

plants hosting AMF is P-acquisition. While other benefits of AMF have been 

documented (e.g. pathogen resistance, Newsham et al. 1995), ample evidence 

suggests that AMF play a prominent role in acquiring P in prairies (Hartnett and 

Wilson 2002)—and indeed, in many ecosystems (Smith and Read 1997). Moreover, 

we observed significant growth response in plants hosting AMF at low P-levels. Still, 

it is possible that AMF provided additional benefits to plants in our experiment. For 

instance, AMF are capable of helping plants acquire N (Govindarajulu et al. 2005). If 

AMF increased N-acquisition under high P (and potentially N-limited) conditions, 

this could help explain the relative lack of parasitism we observed. Such functional 

switches by AMF along a nutrient gradient are not well-documented (Reynolds et al. 

2005), although Sylvia and Neal (1990) recorded increases in root colonization when 
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plants were deficient in N relative to P. In their study, P additions only suppressed 

colonization when N was sufficient. We also found that roots of plants in high P 

treatments were colonized, but to a significantly lesser degree than at low P. 

There are other possible explanations for why we didn’t see more evidence of 

parasitism. For example, we might not have added enough phosphorus to discount 

benefits provided by AMF. The fact that adding 20 x P did not increase biomass 

relative to 10 x P suggests that communities were saturated in P at the high P end of 

the gradient. Still, we might not have reached the threshold of P (concurrent with 

carbon limitation) to induce parasitism. Alternatively, although root colonization is 

not consistently linked with growth benefits (McGonigle 1988), it is possible that the 

limited benefit plants derived from AMF in high P treatments is due, at least in part, 

to lower colonization rates. A decline in AMF colonization may be expected if, in the 

presence of additional P, plants allocate photosynthate to growth and AMF become 

C-limited. 

 Because the dominant species in our experiments generally showed no 

response to AMF regardless of nutrient level, the differences in community structure 

we observed were due primarily to shifts in the relative abundance of subordinate 

species. Among the subordinates, a tradeoff existed between the relative and absolute 

abundance of C4 versus C3 species. For example, at low P, maximum growth for most 

C4 species occurred in the presence of AMF, while C3 species performed better in the 

absence of AMF (Fig. 6). Community composition shifted accordingly: in the 

absence of AMF at the lowest P-levels, Hordeum jubatum (C3) became the most 
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dominant species, and Koleria pyrimidata (C3) increased from being the most rare 

(9th) in high P treatments to 5th most common.  The ranks of Bouteloua curtipendula, 

Andropogon virginicus, Schizachyrium scoparium, and Sorgastrum nutans (all C4) 

declined (Fig. 5). We may have seen distinct functional group differences in part 

because we attempted to minimize phenological differences in our experiment by 

germinating seeds in a greenhouse at the same time and providing ample water 

throughout the season. Timing of peak biomass production and flowering vary 

according to functional group, which may decrease competition in the field. Still, 

despite phenological differences, there remains significant overlap in the periods of 

growth activity of C3 and C4 plants in natural prairies (Ode et al. 1980). Field 

experiments in tallgrass prairie provide additional support for the role of AMF in 

mediating competition among functional groups in native prairies, despite 

phenological differences (Hartnett and Wilson 1999). 

 Van der Heijden et al. 2008 proposed that the significance of microbes to 

plant productivity will be greatest in nutrient-poor soils. Our results support this 

hypothesis: although in all communities biomass declined as available P declined, 

plant communities with AMF were significantly more productive relative to those 

without AMF at all but the highest levels of P.  As we described for diversity, this 

result is likely reliant on whether the dominant plants are mycotrophic.  It is worth 

noting that P-limitation can be exacerbated by decreasing P, as in our experiment, or 

by increasing N (e.g. Johnson et al. 2003b; Johnson et al. 2008). The fact that in 

either case AMF enhances plant growth reinforces the idea that from the plant 
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perspective, nutrient availability is not just a matter of absolute abundance. Rather, 

the availability of one vital nutrient can only be understood relative to the available 

amounts of other key nutrients (Tilman 1982). This has important consequences for 

anthropogenic nutrient deposition: regardless of whether we enhance N or P, we 

likely alter community productivity and AMF-mediated competitive outcomes. 

Regardless, the importance of absolute versus relative abundance of nutrients for 

plant-fungal interactions is a research area that deserves more attention. 

We detected significant effects of AMF and nutrients on biomass and 

diversity in only one growing season. The community dymanics we observed do not 

necessarily reflect equilibrium outcomes for competition among the species, nor do 

they reflect the influences of AMF on species richness via effects on plant 

recruitment (van der Heijden 2004). Rather, we may be seeing transient dynamics that 

are strongly influenced by differential growth rates among species (Tilman 1988). It 

is therefore possible that several seasons of growth may alter the competitive 

hierarchies we observed.  However, we believe that because nutrient limitation drives 

competition in grasslands, and because AMF-mediated competition operates 

primarily via nutrient acquisition, the mechanisms driving community outcomes in 

our experiment are relevant regardless of the equilibrium state of the communities. 

Moreover, transient states may have long-lasting effects on the community via 

priority-effects (Fukami 2004) and plant-soil feedbacks (Reynolds et al. 2003). 

 Our results confirm the need to identify conditional outcomes of mutualisms 

(Bronstein 1994) if we are to predict the influence of anthropogenic nutrient 
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deposition on plant communities. Furthermore, given the primary role of nutrient 

competition in prairies, restoring prairies or managing for diversity requires that we 

understand the influence of abiotic environments on plant-fungal symbioses and how 

these, in turn, influence plant diversity and productivity. Johnson et al. (2006) 

proposed a need for “...a synthesis that couples our understanding of the plant-fungal 

symbioses with community-and ecosystem level process in a way that allows us to 

predict the results of mycorrhizal interactions.” We believe that identifying the 

resource contingencies for community level outcomes of AMF-plant interactions 

brings us one important step closer to achieving that goal. 
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Figure 1. Conceptual model illustrating the interactive effects of AMF and soil 
nutrient levels on plant communities dominated by (a) highly mycotrophic or (b) less-
mycotrophic species. As P becomes less available, AMF play a stronger role in 
mediating plant community diversity. If the plant community is dominated by highly 
mycotrophic species, AMF suppress diversity by enhancing growth of dominants.  If 
the subordinate species in the community are relatively more mycotrophic, AMF 
enhance their growth, thereby increasing diversity. For systems in which nutrients are 
the primary host-benefit to AMF, this model predicts that the influence of AMF on 
diversity will be strongest at low nutrient (specifically P) levels.  Whether AMF 
increase or decrease diversity at low P depends on the relative degree of mycotrophy 
among plants in the community.  Note: diversity values are not meant to be compared 
among community types (i.e. Fig. 1a vs Fig 1b).  The influence of AMF across a 
nutrient gradient applies only within community types. 
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Figure 2. Percent root colonization (± 1SE) of roots collected from beneath 
Andropogon gerardii in each mesocosm.  
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Figure 3. (a) Community rank abundance curves for + AMF (●) and – AMF (○) 
mesocosms along a gradient from low to high P availability.  Each point represents 
the mean abundance (n=5, measured as biomass) of a species, ranked in order of 
abundance relative to other species in the community. (b)  Interactive effect of soil P 
and AMF (+ AMF (●) and – AMF (○)) on mean plant diversity (+ 1 SE).  
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Figure 4. Principal Components Analysis for mesocosm communities comprised of 
nine species. Communities are coded for + AMF (shaded) and –AMF (open) 
treatments, as well as nutrient treatments: 20 x P (●), 10 x P (▼), 1 x P (■), 0.5 x P 

(♦) and 0.1 x P (▲).  AMF determined community composition most strongly where 

P was limiting (P<0.001). 
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Figure 5. Shifting ranks of each species within its community across the P gradient 
for both +AMF (a) and –AMF (b) treatments. C3 species are represented by shaded 
symbols and solid lines; C4 species are represented by open symbols and dotted lines. 
Species are ranked in order of their abundance, but to ease interpretation, data are not 
scaled by biomass.    
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Figure 7.  Mean total community biomass (+ 1 SE) for +AMF (●) and –AMF (○) 

mesocosms.  The degree to which AMF influenced biomass depended on nutrient 

levels: AMF increased total biomass, but only where P was limiting (P<0.01). 

 

 

Figure 6. Mean aboveground biomass (+ 1 SE) for each species +/-AMF at each 
phosphorus (Phos) level. The left-hand, dark shaded bars show +AMF; the right-
hand, lighter bars show –AMF treatments.  Values on the ordinate axes differ among 
graphs. P-values from 2-way ANOVAs are presented for statistically significant 
results.  In cases where the interaction is significant, results for main effects are not 
shown. 
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Figure 7.  Mean total community biomass (+ 1 SE) for +AMF (●) and –AMF (○) 
mesocosms.  The degree to which AMF influenced biomass depended on nutrient 
levels: AMF increased total biomass, but only where P was limiting (P<0.01). 
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CHAPTER 2: Patch size effects on plant species decline in an experimentally 

fragmented landscape 

Abstract.   

Understanding local and global extinction is a fundamental objective of both basic 

and applied ecology. Island biogeography theory (IBT) and succession theory provide 

frameworks for understanding extinction in changing landscapes. We explore the 

relative contribution of fragment size versus succession on species’ decline by 

examining distributions of abundances for 18 plant species declining over time in an 

experimentally fragmented landscape in Northeast Kansas. If patch size effects 

dominate, early-successional species should persist longer on large patches, but if 

successional processes dominate, the reverse should hold, because in our system 

woody plant colonization is accelerated on large patches. To compare the patterns in 

abundance among patch sizes, we characterize joint shifts in local abundance and 

occupancy with a new metric: Rank Occupancy-Abundance Profiles (ROAPs). As 

succession progressed, statistically significant patch size effects emerged for 11 of 18 

species. More early-successional species persisted longer on large patches, despite the 

fact that woody encroachment (succession) progressed faster in these patches. Clonal 

perennial species persisted longer on large patches compared to small patches.  All 

species that persisted longer on small patches were annuals that recruit from the seed-

bank each year. The degree to which species declined in occupancy versus abundance 

varied dramatically among species: some species declined first in occupancy, others 

remain widespread or even expanded their distribution, even as they declined in local 
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abundance. Consequently, species exhibited various types of rarity as succession 

progressed. Understanding the effect of fragmentation on extinction trajectories 

requires a species-by-species approach encompassing both occupancy and local 

abundance. We propose that ROAPs provide a useful tool for comparing the 

distribution of local abundances among landscape types, years, and species. 

 

INTRODUCTION 

 The structure of all local communities reflects both colonization from external 

sources and local extinctions (MacArthur and Wilson 1967; Holt 1993). Two major 

areas of ecology explore how extinction influences community organization – island 

biogeography theory (IBT), together with its intellectual descendants metapopulation 

and metacommunity ecology (MacArthur and Wilson 1967; Ovaskainen and Hanski 

2004; Holyoak et al. 2005), and the study of succession (Horn 1981; Pickett et al. 

1987).  IBT asserts that species richness reflects the influences of island area on 

extinction, and island isolation on colonization. Since 1967, additional theory has 

clarified that both island size and distance can influence both immigration and 

extinction processes (Brown and Lomolino 2000; Schoener in press). Spatially 

realistic metapopulation theory likewise emphasizes the joint role of patch area and 

isolation as determinants of spatial occupancy (Ovaskainen and Hanski 2004).  

 Because landscape fragmentation reduces habitable area and isolates 

remaining habitat patches, ecologists have often invoked IBT as the theoretical 

context for examining habitat fragmentation. All else being equal, small islands and 
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patches have small populations, which, in turn, have elevated extinction risks (Gilpin 

and Soule 1986; Holsinger 2000).  Although terrestrial habitat fragments are not 

“true” islands because some species can utilize both the fragments and the matrix 

(Cook et al. 2002; Fischer and Lindenmayer 2006), empirical studies have shown 

that, as predicted by IBT, populations on small fragments often do experience faster 

extinction (e.g. Pimm & Askins 1995 (birds); Schoereder et al. 2004 (ants); Joshi et 

al. 2006 (plants)).    

Colonization and extinction are also fundamental components of ecological 

succession, the directional change in community composition over time (Fig. 1 inset). 

Many mechanisms can contribute to temporal turnover in community composition, 

including plant-soil feedbacks (Kardol et al. 2006), facilitation, inhibition, herbivory, 

life history traits, and competition-colonization trade-offs (Pickett et al. 1987). 

Additionally, landscape features such as proximity to the seed source and size of the 

patch undergoing succession influence the rate at which succession proceeds (Cook et 

al. 2005).  Specifically, sites close to a source of late-successional species undergo 

succession faster than distant sites (e.g. Grashof-Bokdam and Geertsema 1998; Yao 

et al. 1999), and large patches (which may trap more colonists, as well as allow for 

efficient local dispersal once a late-seral species has colonized) undergo succession 

more rapidly than small patches (Yao et al. 1999, Cook et al. 2005).  Most studies of 

succession dynamics emphasize colonization (e.g. Boeken and Shachak 1998; Cutler 

et al. 2008), even though succession clearly involves patterns of declining abundance. 

Although we expect early-successional species to become rare as they approach local 
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extinction (Christensen and Peet 1984), they can linger for surprisingly long periods 

at low density as succession proceeds (Pickett and Cadenasso 2005).   

 In their purest forms, these two bodies of theory — i.e., IBT as a spatial 

explanation for extinction, and succession as a temporal one — provide contrasting 

predictions for the pattern of declining abundance of early-successional species in a 

fragmented landscape.  IBT predicts that in a fragmented landscape, species will 

decline more rapidly on small patches. In a successional system, one expects 

extinction of early-successional species to happen where colonization by late-seral 

species occurs more rapidly (assuming colonization-competition trade-offs). We 

know from earlier work at our site — a landscape-scale experiment focused on the 

successional transition from an abandoned agricultural field to woodland in a 

fragmented landscape (Fig. 1) — that succession (measured by the rate of 

encroachment by woody species) occurs significantly faster on large patches, and on 

patches near an established forest which is the source of late-seral propagules (Yao et 

al.1999; Fig. 3, page 1272 in Cook et al. 2005).   

 Our experimental design thus allows us to assess the relative influence of 

patch size versus successional processes on patterns of species decline toward 

extinction. If early-successional species wane faster on small patches despite slower 

rates of colonization there by late-seral species, then the demographic (or other) 

effects of small patch size emphasized in IBT and metapopulation theory would seem 

to have a relatively greater influence on local extinction. If early-successional species 

instead decline faster on large patches or patches closer to the forest source, factors 
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associated with the more rapid rate of woody plant establishment likely have a strong 

influence on early-seral species’ declines. Prior studies have shown that colonization 

in fragmented old fields is influenced by life history strategies of individual species, 

as well as by fragment size and distance from the colonizing source (Yao et al. 1999), 

and so we consider how the patterns of species’ declines reflect these factors, as well.   

 In this paper, we examine species-specific patterns of plant extinction in an 

experimental system that involves the interplay of succession, patch area, and patch 

distance effects.  Specifically, we address the following questions: (1) As secondary 

succession proceeds, does patch size influence the rate and pattern of decline in 

early-successional plant species? (2) If so, can we infer the relative importance of 

succession (establishment of woody plant species) versus patch size in driving this 

decline? To address these questions, we explore patterns of abundance in both time 

and space of 18 early-successional plant species within an experimentally fragmented 

Kansas grassland undergoing succession. While we do not study regional extinction 

per se (these species are still present somewhere in our landscape), we do observe 

many local extinctions and assume that in this landscape, “extinction is merely the 

end of the path of decline” (Gaston et al. 2000).  

 

A new approach:  Rank Occupancy-Abundance Profiles (ROAPs) 

 Ecologists typically measure abundance in one of two ways: occupancy 

(proportion of sites occupied by a species) or mean local abundance (average number 

of individuals per site, sometimes conditional on occupancy) (Hanski 1982; Gaston 
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2003). During succession, we expect species abundances—by both measures—to 

change; what is needed is a metric capturing both aspects of change. To this end, we 

developed a technique to characterize species’ patterns across time and space that 

includes both occupancy and local abundance.  Though developed for our specific 

study, the approach is generally useful to any ecological study involving changes in 

occupancy and abundance. 

  The technique is based on a graphical representation of abundances across a 

landscape, which we call a “Rank Occupancy-Abundance Profile” (ROAP). ROAPs 

plot abundance data from all sampled locations on a single graphic, thereby providing 

a useful visual representation of the pattern of variation in abundances within a 

species among sampling locations across a landscape. Essentially, ROAPs can be 

viewed as a single-species analog of rank-abundance plots for species abundances in 

community ecology (Preston 1948).   

A ROAP shows three things about a species at a glance (see Fig. 2a): (1) its 

maximum local abundance (2) its pattern of variation of abundances among sampling 

stations, and (3) its occupancy (a measure of distribution). Furthermore, ROAPs 

provide a useful comparative device for examining differences in patterns of 

abundance among landscape types, years, or species. For example, in the Kansas 

experimental fragmentation system, available data come from an array of permanent 

quadrats sampled repeatedly over time.  For any single year, we can compare the 

ROAPs for a species on large versus small patches (e.g. Fig. 2b). Alternatively, for a 

single species and patch size, comparing ROAPs among years allows us to visually 
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assess the relative degree to which local abundance, versus occupancy, changes 

during succession (e.g. Fig. 2c-d).  

This metric makes few assumptions about underlying processes or the 

functional form of spatial patterns in abundance. Using randomization, we can apply 

a non-parametric statistical approach to assess differences in the distribution of 

abundances between experimental treatments. We first use ROAPs to examine how 

patch size influences species’ declines during succession. Then, we use them to 

propose heuristic conceptual models for distinct patterns species show as they decline 

toward extinction.  

 

METHODS 

 Study site:  The system is a large-scale landscape experiment on how habitat 

fragmentation influences succession. Initiated in 1984 in the prairie-forest ecotone of 

eastern Kansas (described in Holt et al. 1995; Cook et al. 2005), this study continues 

to this day (Fig. 1).  The study site is located at the University of Kansas Field Station 

and Ecological Reserves (39˚03’ N, 95˚12’W), 12 km north of Lawrence, Kansas.  In 

1984, an array of patches of three sizes (4 x 8 m, 12 x 24 m, 50 x 100 m; Fig. 1) was 

demarcated in a fallow agricultural field. The patch sizes and separations were 

determined by considering seed shadows and population sizes of early-successional 

plants (see Holt et al. 1995). Patches are maintained by frequent mowing of the 

interstitial (matrix) area; the patches themselves have been left alone to undergo 

natural secondary succession, as documented in earlier publications (Robinson et al. 
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1992; Holt et al. 1995; Yao et al. 1999, Cook et al. 2005). The perimeter of a full 

cluster of medium or small patches collectively spans 50 x 100 m, the same area as a 

large patch (where permitted by the irregular shape of the field). Thus, most clusters 

of small patches contain the same number of permanent sampling quadrats as a single 

large patch. In this analysis, we focused only on the small and large patches because 

there were too few medium sized patches to warrant direct comparison among all 

patch sizes. Within a patch, quadrats are arranged in pairs with 4 m separating 

quadrats in a single pair.  Quadrat pairs are separated by 12-15 m; see Fig. 1). A 

single small patch contains 1 quadrat pair (a cluster of small patches therefore 

contains 30 quadrats), and large patches contain 15 quadrat pairs. Our analyses are for 

abundance and occupancy at the quadrat scale. 

 We analyzed ROAPs to assess effects of both patch size and distance to the 

forest on early-successional species’ declines. Specifically, we compared species’ 

abundances in quadrats which are embedded in large patches, versus those embedded 

in small patches that are clustered together but separated by a minimum of 12 m of 

interstitial habitat (Fig. 1). We also compare abundance values from quadrats 

embedded in patches considered “near” versus “far” from the forest source 

(designated by the solid line in Fig. 1). 

Data collection:  Data were collected most years between 1985 and 2002.  Sampling 

intensity varied between 1985 and 1995 due to funding gaps; in 1990 and 1992 no 

data were taken at all.  Plant richness and cover by individual species were measured 

in permanent 1-m2 quadrats, usually in the month of July. After 1994, all woody 
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stems > 2.0 m in height were identified, counted, and measured in 4 x 4 m quadrats 

centered on the 1-m2 quadrats. Additionally, in 2001, 110 quadrats were established 

and sampled in the interstitial matrix.  We focused our study on three years 

representing different stages of succession (Fig. 1 inset), each with a complete sample 

of quadrats in each year (nS=164 in small patches, nL=180 in large patches). In 1985, 

a mix of grasses, annual and perennial forbs dominated the site. In 1995, perennial 

forbs characterized the landscape, but woody encroachment had begun. By 2000, 

woody species were ubiquitous. 

Nearly 300 plant species were identified during the 18 years of the study. For the 

analyses presented here, we included a plant species if it: (1) was present in >2 

quadrats in at least one large and one small patch in 1985, 1995, and 2000; (2) was 

relatively common in the landscape during early phases of succession (specifically, 

plant species were excluded if their mean abundance in 1985 fell in the bottom 25% 

of all species in the patch type (following the definition of rarity in Gaston 1994)); (3) 

declined in mean density and/or occupancy across the site over time (i.e., many fewer 

plants or quadrats in 2000 than in 1985 or 1995); and (4) showed taxonomic 

consistency among years. For Juncus and Melilotus, the two genera we included for 

which discriminating among species at the time of sampling was challenging, we 

analyze distributions using lumped data for the genus as a whole. Our intent in this 

protocol for species selection was to focus on early-successional species that might be 

expected to disappear as the site shifts from an old field to woodland. We identified 

18 species that met these standards (see Appendix A).  These species were not 
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detected in surveys of the nearby woodland, the source pool for woody plant 

colonization (Holt, pers. obs.). Moreover, all focal species were highly detectable, so 

we have confidence in the accuracy of the data. Nomenclature for plant identification 

and categorization of major functional groups follows Barkley et al. (1986). 

Data analysis:  To generate a ROAP for a single species, we first ranked all 

individual quadrats embedded in the patch size of interest (e.g. all quadrats located in 

large patches in the landscape) by the abundance of the species in that quadrat, from 

most abundant (quadrat of rank 1) to least, including all zero values. We then plotted 

on the ordinate the abundance in each quadrat, against the rank of that quadrat on the 

abscissa (Fig. 2). To standardize the abscissas for comparison among ROAPs 

constructed for two different treatments (e.g. large vs small patch sizes, or year 1995 

vs 2000) that contain different numbers of sampling stations, we divided the rank by 

the total number of quadrats sampled in the landscape treatment (in our case, 180 

quadrats embedded in large or 179 quadrats embedded in small patches). We called 

the measure of a given quadrat along this standardized abscissa its “relative rank.” 

The point at which the curve intersects the abscissa is the occupancy of the species in 

the landscape. Here, we refer to “quadrats” because quadrats were the source of our 

data; however, the technique we present could be useful whenever one has a large 

number of spatially discrete samples (e.g., sweep net draws or point censuses for 

birds at points spaced along transects). 

   We generated ROAPs for each of the 18 species for each patch size in 1985, 

1995, and 2000. We then converted ROAPs to cumulative distribution functions 
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(CDFs); the CDF is essentially a ROAP rotated. To test for differences between the 

distribution of abundances for a single species on large versus small patches within a 

single year, we calculated the total area between the CDFs for small and large patches 

-- the integral of absolute value of the difference between the CDFs over all 

abundances. We call this area D*. This approach resembles a Kolmogorov-Smirnov 

test, only instead of measuring the maximum difference between two distributions 

(Dmax), we measured the entire area between the CDFs to account for differences in 

both maximum abundance (ordinate) and occupancy (abscissa), as well as 

intermediate abundances (Fig. 2b). We used randomization to test for significance of 

D*.  For each pair of CDFs, we re-sampled the data 1,000 times, randomly assigning 

each abundance to large or small patches (without replacement such that nS = 164, nL 

=180), then calculated the corresponding CDFs and D* for each run. This yielded a 

distribution for D* assuming no patch size effect. Finally, we compared the empirical 

D* to the distribution generated by our randomizations, and considered results 

significant at α = 0.05 (i.e., results were significant if less than 5% of the distribution 

exceeded the empirical D*).   

 The area under a ROAP (and above the horizontal axis) or to the left of a CDF 

(and to the right of the vertical axis) is the average abundance across all quadrats. So 

the difference in the areas under two ROAPs or CDFs is the difference in the average 

abundances, and would be equal to the integral of the difference between the 

distributions. However, we were interested in detecting any difference at all in the 

form of the two distributions. Therefore, we used the integral of the absolute value of 
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the difference between the CDFs; this quantity is 0 only if the CDFs are identical, and 

so reflects not only average abundance but also the shape of the distributions.  

We also used D* to test for differences between distributions of abundance for 

species in patches near versus far from the forest source in 1995 and 2000 (Fig. 1); by 

this time, woody plant colonization was well underway, particularly in patches near 

the forest source area.  

  To facilitate comparison of patch size effects over time, we contrasted the 

number of species for which D* was significant with the number of species which 

showed no patch size differences (i.e., D* was not significant) for 1985 versus 1995-

2000. We combined results for 1995 and 2000 because the year when the greatest 

patch sizes differences in abundance occurred depended on whether the species had 

declined initially, or whether it had peaked in 1995 (among our three focal years) but 

declined later (“wax-wane” species). We used binomial tests to test whether the 

probability of a species showing patch size effects or distance effects differed from 

0.5, and Fisher’s exact test to compare the probability of patch size effects in 1985 

and 1995-2000. For statistical analyses, we used Minitab, version 14.1 and Microsoft 

Excel/Visual Basic 2003. 

 

RESULTS 

For most species, the highest local abundance (of the three years considered 

here) was 1985, shortly after initiation of the study; however, consistent with general 

patterns of old field succession (Bazzaz 1996; Fig. 1 inset), five mid-successional 



 47 

forbs (Apocynum cannabinum, Solidago canadensis, Melilotus spp., Helianthus 

annuus, Aster praealtus) increased between the initial survey (1985) and 1995, but 

then showed substantial declines in 2000. For three of those five species (A. 

cannabinum, H. annuus, and Meiliotus spp.), the 2000 mean local abundance, 

occupancy, or both, fell below their 1985 levels.   

In 1985, the majority of species showed no patch size effects (16 of 18, 

binomial probability P<0.01). H. annuus and Ambrosia artemisiifolia. were both 

significantly more abundant on large patches (D* randomization, P<0.01). By chance 

alone, one might expect to see a few species with what appears to be a patch size 

effect, and we suspect that is the case here. By contrast, in 1995 and 2000, patch size 

differentially affected abundance for nine and seven species, respectively (Appendix 

B).  Combining 1995 and 2000 to account for differential timing of peak abundance 

by pioneer and wax-wane species, and counting each species only once, 11 out of 18 

species total showed substantial patch size effects, significantly more than in 1985 

(Fisher’s exact test, P<0.01). Visual inspection of ROAPs in conjunction with D* 

indicate that among these 11 species, the direction of the effect varied: four species 

persisted in greater abundance on the small patches, whereas seven persisted on large 

patches (select cases shown in Fig. 3; summaries in Appendices A & B).  H. annuus, 

a species that was significantly more prevalent on large patches in 1985, persisted in 

greater abundance on small patches by 1995. For A. artemisiifolia, the other species 

with a significant D* in 1985, there was no patch size effect in 1995; however, A. 

artemisiifolia was significantly more abundant in large patches than small by 2000. 
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All four species that persisted longer on small patches are short-lived species that rely 

on seeds for reproduction and dispersal (Appendix A). By contrast, perennial species 

showing patch size effects (all of which also have the capacity to propagate clonally) 

persisted longer on large patches.  

Distance from the forest did not greatly influence the pattern of extinction of 

these species.  For 1995 and 2000, 16 and 14 (respectively) of the 18 species showed 

no significant abundance differences on patches located near and far from the forest 

(16 of 18; binomial probability P<0.01, 14 of 18; binomial probability P=0.01, 

Appendix B).  Cirsium altissimum was more abundant on patches far from the forest 

(and also on small patches overall) in both 1995 and 2000. By contrast, Hypericum 

punctatum was more abundant on near (and large) patches in 1995. In 2000, the 

significant patch size effect for H. punctatum emerged because ROAPs crossed: there 

was greater occupancy on near patches, but higher maximum abundance on far 

patches. Apocynum cannabinum and Melilotus spp. also showed distance effects in 

2000, persisting in significantly greater abundance on near and far patches, 

respectively. For all three species with both patch size and distance effects, the ones 

that persisted better on far patches also persisted better on small patches (Appendix 

B). 

 

DISCUSSION 

 The dynamics of local extinction play a key role during the build-up of island 

communities, during the decay of communities experiencing habitat fragmentation, 
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and during ecological succession. In this paper, we examined patterns of species 

decline for early-successional plant species in an experimentally fragmented 

landscape. To do so, we developed a method of characterizing changes in distribution 

and abundance we refer to as “ROAPs,” for Rank Occupancy-Abundance Profiles. 

Our approach here differs from traditional approaches to intraspecific abundance 

distributions which explore the well-documented observation that species tend to be 

abundant in relatively few sites, and rare in the majority of sites in which they occur 

(Gaston 2003). Much of the literature has focused on the issue of which parametric 

model best describes this distribution (e.g., the negative binomial), on expansions of 

Taylor’s suggestion that the mean and the variance of local densities among sites are 

related (Taylor 1961), and on the problem of elucidating mechanisms that may 

generate this relationship (Holt et al. 1997). We used a nonparametric D* statistic 

applied to ROAPs to explore spatial and temporal shifts in abundance during 

succession. Using ROAPs, we show that the spatial pattern and timing of declining 

abundance varies among species and, in many cases, clearly depends on patch size. 

Moreover, the trajectory toward extinction—as depicted by comparing ROAPs over 

time—qualitatively varies among species. 

 

Patch size effects 

The number of species showing patch size effects increased over the course of 

succession. That we did not detect many patch size effects in 1985 was no great 

surprise, given that early-successional plant communities reflect primarily seed bank 
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and wind-dispersed species, both of which should initially be present independent of 

patch area in our randomized-block, experimental landscape (Glenn-Lewin and van 

der Maarel 1992; Holt et al. 1995).  We do not expect extinction to begin until later in 

succession, when the number of species increased (Cook et al. 2005) and woody, 

competitively-dominant species had become established, albeit at different rates and 

densities on small and large patches. A shift toward dominance by woody species is 

expected to alter the competitive milieu and abiotic environments in ways that 

disfavor species that are highly abundant in early succession (Pickett and Cadenasso 

2005). Thus, as early-successional species declined concurrent with woody 

encroachment, patch size effects on abundance of early-successional species 

emerged. Figure 4 shows an example: white aster (A. pilosus) declined greatly from 

1985 to 1995, but lingered longer on each of the large patches, sometimes at high 

local abundance.   

Interestingly, the particular direction of the patch size effects we observed 

varied among species. On the one hand, consistent with predictions made by IBT and 

metapopulation theory, we identified seven species that declined in abundance more 

rapidly on small patches versus large patches. On the other, consistent with 

succession theory, we found four species that declined faster on large patches, where 

woody encroachment had progressed most rapidly. Similar observations of widely 

ranging species-specific responses to fragmentation have been documented in other 

studies (Margules 1996; Debinski and Holt 2000). Bissonette and Storch (2002) 

suggest that the idiosyncratic effects often reported in fragmentation studies reflect 
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the complex, multi-causal nature of ecological systems. Indeed, fragmentation is a 

“whole-system” experiment, where processes at multiple levels (from ecosystem 

processes, to plant dynamics, to herbivory) are affected in a complex way by 

treatments such as patch area, and these processes play out over different temporal 

scales (Debinski and Holt 2000).  Consequently, the responses of any given species 

are influenced by how its traits respond to this shifting template of causal processes. 

All perennial species that showed significant patch size effects are clonal, and 

persisted longer on large patches. None of the species that persisted on small patches 

are clonal, and neither of the two non-clonal perennial species showed patch size 

effects. This pattern tentatively suggests that clonality (vegetative reproduction) can 

influence persistence.  One mechanism potentially driving persistence of clonal plants 

on large patches is intra-patch dispersal, which links a quadrat to the surrounding 

area.  In large patches, if a clonal species goes locally extinct, the quadrat may be 

recolonized rapidly from the surrounding area, thereby boosting occupancy at small, 

within-patch (i.e., quadrat) scales (Holt 1992). In small patches surrounded by a 

relatively uninhabitable matrix, this “rescue effect” (Brown and Kodrick-Brown 

1977) is much less likely. Further, perenniality may augment this spatial effect, 

permitting long-lived plants to remain in a landscape long after ecological changes (in 

this case, woody encroachment) alter habitat quality (Eriksson 1996), as a kind of 

“extinction debt” (Tilman et al. 1994).  

Environmental heterogeneity within large patches may provide another 

mechanism explaining the persistence of early-successional species, including non-



 52 

clonal species, on large patches. For example, spatial heterogeneity in woody cover 

within large patches of continuous habitat may create local “hotspots,” i.e., well-lit 

gaps among clusters of trees, where early-successional species thrive.  As woody 

species expand, early-successional species may contract toward these optimal habitats 

within large patches and sustain local populations, as has been suggested for 

declining species at the spatial scale of the geographic range (e.g. Rodriguez and 

Delibes 2002).  Alternatively, the persistence of early-successional species on large 

patches in the face of woody encroachment may reflect pre-existing abiotic 

heterogeneity in the landscape that acts to filter colonizing species from the species 

pool (Keddy 1992).  Although our analyses cannot discriminate between these 

hypotheses, we can be relatively certain that unmeasured environmental heterogeneity 

plays a role in the localized persistence of early-successional species. 

Although short-lived species were not restricted to small patches, all species 

which preferentially persisted on small patches were short-lived, and three of the four 

were not found in the matrix habitat. Relative to perennial plants which often 

reproduce vegetatively, annual and biennial species rely less on short-distance 

dispersal over space and more on dispersal through time via seed banks (a ″storage 

effect, ″ Warner and Chesson 1985). The combination of seed banks and frequent 

disturbances that trigger germination may have allowed plant species to avoid 

extinction in small patches—even in the absence of immigration (Stocklin and 

Fischer 1999). For example, early-successional species in a nearby field are more 

abundant in areas disturbed by prairie voles (Questad and Foster 2007). As succession 
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progressed in our system, vole densities increased to higher levels in small patches 

than in large (Schweiger et al. 2000), and may have inflicted higher levels of 

localized disturbances in these patches. 

 

Models of decline 

 Species’ trajectories toward extinction vary in many ways, and for many 

different reasons (Gaston and Kunin 1997). Furthermore, rarity, arguably the last 

stage of persistence, can be expressed in many forms (Rabinowitz 1981). Using 

ROAPs to depict changes in abundance, we propose five conceptual models for 

species declines; they vary in the relative degree to which maximum abundance 

versus occupancy declines during a given time step (Fig. 5).  Followed through to 

their logical conclusions, these models lead to different types of rarity, i.e. species 

that are both regionally and locally rare (Fig. 5a), regionally rare but locally abundant 

(Fig. 5b,e), or regionally common but locally rare (e.g. Fig. 5c,d). As depicted in the 

figure, a species may attain the same type of rarity via different trajectories. Indeed, 

the different “types” of rarity may represent different phases (and to some extent, 

degrees) of rarity on the trajectory toward extinction for a given species. For instance, 

on large patches Aster pilosus experienced a more dramatic drop in occupancy 

relative to maximum abundance from 1985 to 1995, leading us to classify it—in this 

phase—as “locally abundant, regionally rare” (Fig. 5b). By 2000, however, the 

species was both locally and regionally rare (Fig. 2c). The shape of the ROAPs that 

comprise the trajectories could be influenced by variation in intrinsic growth rates (in 



 54 

this case, often negative) across a landscape. Differences between two ROAPs may, 

in turn, emerge from density-independent factors. Which trajectory a species exhibits 

may reflect phylogenetic history, life history traits, competitive ability, dispersal 

ability, or a wide range of environmental drivers; we plan in future work to explore 

the link between underlying population mechanisms and the shape of these curves. 

 Patch size effects on patterns of decline manifested differently among species. 

For some species, the trajectory toward extinction appears similar on both patch sizes, 

but the rate of decline differs. For instance, E. strigosus declines proportionally in 

occupancy and abundance on both large and small patches, but overall, the decline 

occurs faster on small patches (Fig. 6a). By contrast, there are species for which patch 

size appears to influence local abundance and occupancy differently and 

disproportionately. A. pilosus, for example, declines in occupancy and local 

abundance equally and dramatically on small patches; however, on large patches, 

occupancy shows a stronger decrease relative to maximal abundance (Fig 6b). A. 

trifida increases occupancy on small patches, even as numbers decline overall, 

compared to relatively uniform declines in both abundance measures on large patches 

(Fig. 6c). These examples suggest that understanding patch size effects extends 

beyond simply noting the acceleration or slowing of decline. 

 That there appear to be species consistent with each model in Figures 5 and 6 

highlights the idiosyncratic nature of the pattern and timing of declining abundance 

among species. As alluded to above, it is not immediately clear whether any 

particular trajectory of decline is more likely to occur on small versus large patches, 
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irrespective of species identity. Given the variation we found among only 18 species 

declining in our system, it is most likely that a suite of species traits interact 

synergistically with fragment size to determine the independent extinction trajectories 

for each species (Freville et al. 2007). 

 

Conclusions 

 Consistent with Preston’s (1960) observation that space and time are tightly 

linked in ecology, we have shown that in at least one empirical system, habitat 

fragmentation interacts with succession to influence species extinction dynamics.  

Using a novel approach (ROAPs), we show that patch size influences patterns of 

abundance as early-successional species decline toward extinction. If successional 

processes were governing extinction dynamics, we would expect to see declines in 

occupancy and/or abundance first in larger patches and patches near the source, 

where woody plant colonization occurred earlier. Instead, 7 of 11 species showing 

patch size effects persisted on large patches longer, and distance affected relatively 

few species as succession progressed. Moreover, plants that persisted on small 

patches were short-lived plants that may have emerged from long-lived seed banks 

and therefore were potentially less vulnerable to the negative effects of area on 

populations. These lines of evidence argue for patch size being a primary driver of 

plant species declines. Importantly, our results emphasize the fact that the relative 

influence of area on small populations (IBT) and of time (species replacement during 

succession) varies among species. Thus, summarizing community responses to 
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habitat fragmentation by a single diversity measure obscures important species-

specific extinction trajectories.  Effective management in the face of landscape 

change will require that we consider life history attributes of individual species to 

better predict their responses to fragmentation.  ROAPs serve as a useful tool in this 

effort by providing a detailed and visual representation of data that incorporates the 

variation in the distribution of abundance across space into commonly-used 

occupancy-abundance plots.  Moreover, using ROAPs we can statistically compare 

distributions of abundances among landscapes, species, or time periods.  We suggest 

that comparable analyses jointly assessing occupancy and abundance could be 

illuminating in a wide range of ecological studies. 
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Figure 1. The experimentally fragmented landscape in northeast Kansas.  Black dots 
represent sampling quadrats. Patches considered near versus far from the forest 
source on the south side are separated by a solid line. Inset: Temporal shifts in 
relative abundance of life history groups in the fragmentation landscape. AG= Annual 
grasses; PG = Perennial grasses; AF = Annual Forbs; PF = Perennial Forbs; WP= 
Woody plants (adapted from Cook et al. 2005).  Patch size and distance effects both 
emerged by 1998; between 1998-2003, quadrats in large patches contained 20% more 
woody stems >2 m in height, compared to small patches (Cook et al. 2005). 
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Figure 2.a) Sample Rank Occupancy-Abundance Profile (ROAP) for a single species. 
Local abundance was measured as percent cover in a 1-m2 quadrat. Relative rank was 
calculated by dividing the rank order of the quadrat by the number of quadrats 
sampled. Each quadrat in which the species was found is represented by a single point 
on the ROAP. ROAPs describe abundance in three ways: (1) maximum local 
abundance in the landscape, (2) distribution of abundance among quadrats across the 
landscape, and (3) proportion of occupied quadrats; b) ROAPs used to compare two 
patch sizes in a single year: D* was calculated by summing the absolute value of 
differences between the two ROAPs (shaded area); c & d)  Example of how ROAPs 
can be compared across successional time for large patches (c) and small patches (d).  
For clarity, quadrats with zero abundance are not shown 
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Erigeron strigosus 

0.0 0.2 0.4 0.6 0.8 1.0

A
b

u
n

d
a

n
c
e

 (
%

 c
o

v
e

r)

0

20

40

60

80

100

0.0 0.1 0.2 0.3 0.4

A
b

u
n

d
a

n
c
e

 (
%

 c
o

v
e

r 
)

0

10

20

30

40

50

60

Relative Rank

0.00 0.05 0.10 0.15 0.20

A
b

u
n

d
a

n
c
e

 (
%

 c
o

v
e

r 
)

0

5

10

15

20

25

Ambrosia trifida  

0.0 0.1 0.2 0.3 0.4

0

20

40

60

80

100

Large

Small

0.0 0.1 0.2 0.3 0.4

0

2

4

6

8

10

12

Large

Small

Relative Rank

0.00 0.05 0.10 0.15 0.20

0

5

10

15

20

25

1985

1995

2000

 

Figure 3. Examples of ROAPs comparisons between large and small patches for two 
species at three different time periods (1985, 1995, and 2000) during succession. 
Abundance was measured as percent cover in a 1-m2 quadrat. Relative rank was 
calculated by dividing the rank order of the quadrat by the total number of quadrats 
sampled. For both species, ROAPs on large versus small patches differed 
significantly (p<0.05) in 1995 and 2000.  Erigeron strigosus declined in abundance 
more rapidly on small patches; Ambrosia trifida, by contrast, declined in abundance 
more rapidly on large patches.  Zeros were removed to emphasize differences in 
occupancy on the abscissa. Please note that the scale of the axes differs among plots. 
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Figure 4. Visually compelling evidence for patch size effects on abundance during 
extinction of an early successional species. This example shows Aster pilosus, a 
species that persisted preferentially on large patches. Bubble sizes are scaled to reflect 
the percent cover within quadrats of A. pilosus in 1985 (top) and 1995 (bottom).  The 
largest bubbles indicate 100% cover, the smallest bubbles represent 1% cover, and 
intermediate bubble sizes reflect cover estimates in 10% increments. The tiny dots are 
quadrats empty of the species.  
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Figure 5 (previous page). Models comparing ROAPs among years depicting possible 
trajectories of abundance decline. T1 and T2 are respectively early and later snapshots 
in time along the trajectory. Empirical examples were selected based on visual 
congruence to the conceptual models; thus, examples were drawn from both large 
(Lg) and small (Sm) patch sizes. Collectively, they illustrate the diverse patterns of 
decline exhibited by early-successional species in our system.  For empirical 
examples, abundance was measured as percent cover in a 1-m2 quadrat. Relative rank 
was calculated by dividing the rank order of the quadrat by the number of quadrats 
sampled 
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Figure 6 (previous page).  Patch size effects on species declining in abundance may 
emerge due to a) different rates of decline on each patch size (i.e. occupancy and 
local abundance decline proportionally on a given patch size, but the magnitude of 
overall change is greater on one patch size than the other); b) different patterns of 
decline (i.e. relatively greater changes in occupancy than abundance on one patch 
size); or c) differences in both rate and pattern of decline. All plots depict abundance 
on the ordinate and relative rank on the abscissa. For empirical examples, abundance 
was measured as percent cover in a 1-m2 quadrat. Relative rank was calculated by 
dividing the rank order of the quadrat by the total number of quadrats sampled. Scales 
on axes vary to enable detailed examination of ROAPs 
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Appendix A.  Table of focal species and life history characteristics, arranged 
according to the direction of the patch size effect they show in either 1995 or 2000. 
(The timing of the effect depends on the timing of peak abundance for the species; 
species that peaked in abundance in 1985 usually showed patch size effects in 1995; 
”wax-wane” species showed patch size effects in 2000. For a breakdown by year, see 
Appendix B).  Longevity refers to the species’ above-ground duration: annual (A), 
biennial (B), or perennial (P).  Clonal spread refers to the capacity of the plant to 
reproduce vegetatively.  Data for plant species presence (Y) or absence (N) in the 
matrix were collected in July 2001 (methods described in Cook et al., 2002). 
Direction of patch size effects are denoted by L or S depending on whether the 
species persisted at greater abundance on small (S) or large (L) patches; ns denotes 
comparisons that were not statistically significantly different. 
 

 
 

Species 

 
 

Family 

 
Life 
form 

 
 

Longevity 

 
Clonal 
spread 

Found 
in 

matrix 

Persist 
longer 

on: 

Ambrosia artemisiifolia L. Asteraceae Forb A N Y L 
Aster pilosus Willd. Asteraceae Forb P Y Y L 
Aster praelatus Poir. Asteraceae Forb P Y Y L 
Erigeron strigosus Muhl. ex 
Willd. 

Asteraceae Forb A/B N Y L 

Hypericum punctatum Lam. Hypericaceae Forb P Y N L 
Lespedeza stipulacea Maxim. Fabaceae Forb A N Y L 
Oxalis stricta L. Oxalidacea Forb P Y Y L 
Ambrosia trifida L. Asteraceae Forb A N N S 
Cirsium altissimum (L.) 
Spreng. 

Asteraceae Forb B N Y S 

Helianthus annuus L. Asteraceae Forb A N N S 
Melilotus spp. Asteraceae Forb A/B N N S 
Apocynum cannabinum  L. Apocynaceae Forb P N N ns 
Acalypha virginica L. Euphorbiaceae Forb A N Y ns 
Agrostis hyemalis (Walt.) 
B.S.P. 

Poaceae C3 Grass P Y N ns 

Juncus spp. Junacaceae C3 Rush P N Y ns 
Lactuca saligna L. Asteraceae Forb A/B N Y ns 
Solidago canadensis L. Asteraceae Forb P Y N ns 
Convolvulus arvensis L. Convolvulaceae Vine P Y Y ns 
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Appendix B.  Patch size and distance effects on ROAPs for the 18 focal species 
broken down by year.  Direction of patch size effects are denoted by L or S 
depending on whether the species persisted at higher abundance on small (S) or large 
(L) patches. Direction of distance effects are denoted according to whether a species 
was more prevalent on near (N) or far (F) patches. NF reflects a species for which 
ROAPs crossed and were significantly different, indicating higher occupancy on one 
patch type and higher maximum local abundance on the other. 
 

 Patch Size Distance 

 
Species 1985 1995 2000 1995 2000 

Acalypha virginica  ns ns ns ns ns 
Agrostis hyemalis  ns ns ns ns ns 
Ambrosia artemisiifolia L ns L ns ns 
Ambrosia trifida ns S S ns ns 
Apocynum cannabinum ns ns ns ns N 
Aster pilosus  ns L L ns ns 
Aster praealtus  ns L L ns ns 
Cirsium altissimum  ns S S F F 
Convolvulus arvensis ns ns ns ns ns 
Erigeron strigosus  ns L L ns ns 
Helianthus annuus  L S ns ns ns 
Hypericum punctatum  ns L ns N NF 
Juncus spp. ns ns ns ns ns 
Lactuca saligna  ns ns ns ns ns 
Lespedeza stipulacea  ns L ns ns ns 
Melilotus spp ns ns S ns F 

Oxalis stricta  ns L ns ns ns 
Solidago canadensis  ns ns ns ns ns 
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CHAPTER 3:  Patterns of decline in North American breeding birds 

 

Abstract. 
 
 Species extinctions typically occur following dramatic population declines; 

detecting these declines is therefore crucial for biodiversity conservation. Attempts to 

quantify local and global population declines are complicated by the fact that 

abundance at a single time period can be defined in terms of total abundance, local 

density, and occupancy. Traditional approaches to distribution-abundance patterns 

rely on plotting mean values for abundance against occupancy. However, mean 

values obscure variation in abundance across occupied sites. We used a new method 

called Rank Occupancy Abundance Profiles (ROAPs) to estimate declines in North 

American bird species. Using data from the long-term, large-scale North American 

Breeding Bird Survey, we quantify the magnitude of declines for 209 bird species. 

ROAPs allow us to partition losses in regional abundance according to the proportion 

of individuals lost in populations of different densities, as well as the proportion of 

the regional abundance lost due to local extinctions. 

   Nearly 20% of bird species surveyed showed statistically significantly 

declines in regional abundance between 1970 and 2005. The 20 bird species to 

experience the highest proportional losses showed declines between 48% and 89% of 

their initial regional population sizes. Patterns of decline varied according to initial 

regional abundance of the species: very abundant species experienced large 

proportional drops in local density, while species with low regional population sizes 

experienced proportionally higher losses due to local extinctions. Based on patterns 
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we observed across species, as well as those observed in time-series data within 

species, we propose a new model depicting phases of decline a single species 

experiences as it nears extinction. Specifically, we suggest that two time lags exist as 

a species approaches rarity: 1) species lose individuals from intermediate-density sites 

prior to losing individuals from sites with the highest densities, and 2) species lose 

individuals from the highest density sites before local extinctions ensue (i.e. declines 

in occupancy). We also detected threshold regional abundances below which local 

populations can no longer persist. Our results emphasize the interplay between local 

and regional abundance as species decline.  Early detection of declines could alert 

conservationists before the largest populations diminish. Further, monitoring schemes 

that record presence-absence data only will not capture declines until local extinctions 

occur—which we propose is at a late stage of decline.   

  

INTRODUCTION 

 

 There is little doubt that human-induced environmental changes continue to 

threaten biodiversity (Sala et al. 2000; Davies et al. 2006; Pimm et al. 2006).  

Biodiversity loss is typically measured in units of species extinctions; the primary 

extinction-drivers include landscape change and habitat loss, environmental pollution, 

overexploitation, nutrient deposition, spread of exotic species, and changes in 

atmospheric composition and climate (Diamond 1984; Sala et al. 2000; Thuiller 

2007). While each of these threats affects species independently, the synergism 

among threats may be the most influential extinction-driver of all (Mora et al. 2007; 
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Brook et al. 2008). Nearly 30 years ago the field of conservation biology was 

established to better understand and prevent extinction in the face of such 

anthropogenic pressures (Brussard 2000); at present, extinction risk still guides 

conservation management and policy (Gaston and Fuller 2007; Mace et al. 2008). 

 Rate of decline is a key factor for determining extinction risk. Dramatic 

declines alone—even prior to rarity—may warrant a species’ inclusion on the 

International Union for Conservation of Nature’s (IUCN) Red List (Mace et al. 2008). 

We know that for many taxa, human activities have significantly reduced the total 

numbers of individuals by reducing the number and average size of local populations 

(Hughes et al. 1997; Ceballos and Ehrlich 2002; Balmford et al. 2003; Gaston et al. 

2003).  In 1994, Graeme Caughley called for conservation biologists to focus 

resources not just on understanding the dynamics of small populations, but on 

“…detecting, diagnosing, and halting … population decline” (Caughley 1994).  

Recently, Gaston and Fuller (2007) argued that we should pay more attention to the 

decline of common species because they play significant roles in ecosystems, and 

because their declines can ultimately lead to rarity. Indeed, species with larger 

populations may be even more vulnerable than small ones when extrinsic threats are 

driving declines (Mace et al. 2008). The conceptual dichotomy between conservation 

research focused on extinction-prone small populations versus larger, declining 

populations may be somewhat artificial given that “extinction is merely the endpoint 

of decline” (Gaston et al. 2000). In practice, emphasizing the detection and 
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management of declining populations may actually reduce human-induced rarity, and 

ultimately, species extinctions. 

 Attempts to quantify local and global population declines are complicated by 

the fact that abundance can be defined and subdivided in a number of ways. For 

instance, one can measure local abundance (# individuals at a single site), global 

abundance (total of all individuals in all populations), distributional extent (total area 

within a species range), or range occupancy (proportion of occupied patches within a 

species range). Recording multiple aspects of abundance is crucial to conservation 

efforts, because human-induced declines may involve the extirpation of local 

populations, reduced local abundances in persisting populations, or both (Hughes 

1997; Rodriguez 2002; Gaston and Fuller 2007). While local abundance and 

occupancy are positively correlated both inter- and intra- specifically (reviewed in 

Gaston et al. 2000), relying on one measure does not always provide reliable 

estimates of the other (Conlisk et al. 2009). Furthermore, intraspecific abundance-

occupancy relationships show considerably less consistency than inter-specific 

patterns (Gaston et al. 1998), potentially due to time-lags between changes in 

occupancy and local abundance (Gaston et al. 1998; Conrad et al. 2001).  Recent 

evidence suggests that in declining species, local abundance and occupancy are 

decoupled (tiger moth: Conrad et al. 2001; birds: Webb et al. 2007; Zuckerberg et al. 

2009), although we do not yet know the generality of this pattern. 

 The traditional approach to analyzing occupancy-abundance relationships 

involves plotting mean local abundance against occupancy (for many species at a 
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single point in time, or for one species across time; Gaston et al. 2000).  Because 

mean values are used to summarize local abundances, this approach lacks the 

resolution to detect changes in the distribution of abundance across sampling sites 

within a species’ range.  For example, mean abundance for a given number of sites 

can be high due to a single population harboring most individuals, or because 

abundance is distributed at a reduced level—but more equally—across sites.  So, 

although changes in mean abundance are likely driven by changes in the largest 

populations (Gaston et al. 2000), lack of fine-scale resolution have made it 

challenging to detect, visually display, and statistically summarize intra-specific 

dynamics. 

 A new tool, the Rank Occupancy-Abundance Profile (ROAP; Collins et al. in 

press) provides one alternative for tracking intra-specific abundance and occupancy 

patterns. ROAPs, which plot densities from all sampling sites in ranked order, 

simultaneously display the maximum population size, the proportion of occupied 

plots, and the distribution of abundance across sampling points (Fig 1a; Collins et al. 

in press). Thus, no information is lost in calculating a summary statistic, and variation 

in abundance across sites is clearly made visible in the shape of the distribution.  To 

avoid confusion among different aspects of abundance, hereafter we use the term 

regional abundance to refer to the sum total of individuals across all sites. We use the 

term local density or local population size to describe the number of individuals at a 

single site. Declines in occupancy are equivalent to local extinctions, and we use 

these phrases interchangeably. 
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 Using ROAPs, we can hypothesize different patterns of declines in regional 

abundance as a species approaches rarity.  For instance, species may decline first in 

occupancy due to the extirpation of local populations (e.g. in the case of catastrophic 

habitat destruction) (model I in Fig. 2). Alternatively, declines in local density across 

occupied sites may provide the first evidence of regional abundance declines (Hughes 

et al. 1997; Gaston et al. 1998) (model III in Fig. 2).  Declines in regional abundance 

could also be caused by concurrent drops in local density and occupancy (model II in 

Fig. 2). Finally, increasing local density and decreasing occupancy (or vice versa) 

will cause ROAPs to cross (models IV and V in Fig. 2), but unless losses in one 

aspect of abundance overwhelms the gains in the other, declines in regional 

abundance are not likely to be significant. 

 Breeding birds are among the most visible and well-studied groups of 

organisms, making them ideal for addressing long-term, large-scale questions.  

Furthermore, the fact that they occupy diverse habitats and migrate long distances 

means they serve as good indicators of global changes (BirdLife International 2004). 

Collectively, birds have lost an estimated 20-25% of total individuals since 1500 

(Gaston et al. 2003).  It is likely their declines will continue in the face of human-

induced global changes, with measurable negative effects on ecosystem processes 

such as decomposition, pollination, and seed dispersal (Şekercioğlu et al. 2004).  

 In this study, we use ROAPs to quantify the degree to which 209 North 

American (NA) bird species experience losses in local density versus occupancy, as 

well as how these losses influence the magnitude of regional abundance declines. Our 
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analysis is unique because we track declines within and across species using a 

technique (ROAPs) which allows us to identify intermediate phases of decline. 

Specifically, we address the following questions: 1) What proportion of NA bird 

species are significantly declining when occupancy and local density are 

simultaneously taken into account?  2) Which contributes more to regional abundance 

losses: declines in occupancy (local extinctions) or declines in local density? In 

particular, which conceptual model (Fig. 2) best reflects patterns of decline? 3) Does 

initial regional abundance influence patterns of decline?  

 We also examine the patterns of declines for individual species at higher 

temporal resolution to address the question: 4) do patterns we see across many 

declining species inform our understanding of the trajectory a single species may take 

as it declines toward rarity? We addressed these questions using data from the North 

American Breeding Bird Survey (NABBS) 

 

METHODS 
 
NABBS Data 

 The North American Breeding Bird Survey (NABBS) currently comprises 

over 4100 survey routes established along secondary roads throughout the US and 

Canada. The number of routes has increased steadily since the monitoring program 

began in 1966. Surveys are conducted by volunteer naturalists, each of which drives a 

39.4 km route consisting of 50 stops distributed at 0.8 km intervals. At each stop, the 

observer records every bird seen or heard with in a 400-m radius during a 3-minute 
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period (Sauer et al. 2008).  Data are processed and archived by the United States 

Geological Survey (USGS). 

 To calculate local density, we averaged the number of birds recorded across 

sampling points within each route; thus, an occupied “site” in this study is at the 

spatial resolution of routes (39.4 km). We also averaged local densities for each route 

across a five year period to minimize noise caused by different observers or sporadic 

population fluctuations.   

 To compare declines across species, we used the five-year averages that 

maximized the temporal extent of the study without compromising data quality or 

quantity (e.g. prior to 1970, too few routes were sampled to provide data comparable 

to later years). We therefore used 1970-1974 and 2003-2007 as our endpoints.  

Species were included in the sample if they had an initial regional abundance of > 40 

birds, and with ranges comprising > 11 routes.  Placing these constraints on the 

sample meant that our analyses excluded many of the rarest birds in North America 

(Appendix A). Our resulting sample included 209 bird species in 21 families 

(Appendix B). 

 We increased our temporal resolution to examine patterns of decline within a 

single species. Because our original time span did not divide evenly into 5-year 

increments, we analyzed data for the following years: 1976-1980, 1981-1985, 1986-

1990, 1991-1995, 1996-2000, 2001-2005.  Changing the endpoints for the inter-

specific analyses to match these subsets would have reduced the temporal extent of 

the study, also reducing the magnitude of declines we observe and our ability to 
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detect them. Thus, for all interspecific comparisons we use the extended time frame 

(1970:1974 to 2003:2007) and for all intra-specific patterns, we focus on ROAPs 

derived from data during the 5-year increments in intervening years (listed above). 

 

 

ROAPs Analyses 

 
 Constructing a ROAP requires that we know the number of sites sampled and 

the density at each site.  To determine the proportion of occupied sites, we delineated 

the border of each species’ range using a polygon (technically, a convex hull) around 

all sites at which the species was detected during any of the focal years (1970-1974; 

2003-2007). The number of routes within this polygon was considered the maximum 

number of occupiable sites (‘proportional range occupancy’; Hurlbert and White 

2005). 

To generate a ROAP for a single species, we first ranked routes within the 

species’ range by the density of that species at each route (i.e. local density), from 

highest density (rank 1) to lowest. We then plotted the local density on the ordinate 

against its rank on the abscissa. To standardize the abscissas for comparison among 

species that vary in range size (and therefore contain different numbers of routes 

within the range), we divided the rank by the total number of routes sampled in the 

landscape. This yielded a standardized abscissa we called the “relative rank.”  

 We generated ROAPs for all bird species that met our criteria (209 spp). 

Regional abundance for a species in its range is the integrated area underneath the 

ROAP; we calculated this for each species in each time period. (It is important to note 
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here that this value of regional abundance is the total for sampled routes, and 

therefore by definition an underestimate of the bird species’ actual total abundance in 

its range). To test for significant differences between ROAPs for a single species in 

different time periods, we calculated D*: the integral of the difference between the 

two ROAPs (A+B+C in Fig. 1b; Collins et al. in press). D* is therefore equal to the 

change in regional abundance between the two time periods. If ROAPs crossed, the 

area between the ROAPs in all regions between crossovers was calculated and 

determined positive or negative relative to the initial time period (T1). In these cases, 

D* reflects the sum of these integrated areas. We tested for statistical significance of 

D* for each pair of ROAPs by grouping data from the two years, then re-sampling the 

data 1,000 times, each time randomly assigning density values to a time period 

without replacement. We calculated the D* for each run. We then compared the 

empirical D* to the distribution generated by our randomizations, and considered 

results significant at α = 0.05. Because the abundances are in units of individual birds, 

D* represents the total number of birds lost or gained between the two time intervals 

reflected by the ROAPs.  

 To quantify the changes in regional abundance due to changes in maximum 

local density versus occupancy, we divided the area between the two ROAPs (D*) 

into three sections according to where the value for the intercept of the ROAP at T2 

intersects with the ROAP at T1 (A, B, C in Fig 1b).  The area in A estimates the 

number of birds lost or gained due to shifts in maximum local diensity between the 

two years. Area B reflects more uniform declines across occupied patches of 
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intermediate densities. (Together, A and B reflect local declines in density across all 

populations, but for most analyses we partition the abundance to better detect the 

effects of global changes on local populations of different sizes). Area C estimates the 

number of individuals lost or gained due to changes in the proportion of occupied 

patches. Comparing A/(A+B+C) with C/(A+B+C) allowed us to assess the relative 

degree to which declines in maximum local density and declines in occupancy (local 

extinctions) contributed to regional abundance loss.  

 We should clarify here that unlike previous studies which plot mean 

abundance against proportion of occupied patches (e.g. Gaston et al. 2000), we do not 

examine percent occupancy-loss per se.  Although shifts in occupancy are clearly 

visible by comparing the x-intercepts of the ROAPs at two different time periods 

(Fig.1b), our technique is unique in that we quantify the proportional influence, in 

units of individual birds, that changes in occupancy have on regional abundance 

declines.   

  All statistics were calculated using Matlab version 7.3 (R2006b). 

 

Life history traits 

 Because extinction risk can vary with life history traits as well as abundance, 

we collected from the literature data on body size, fecundity, habitat use, and 

migratory behavior. We used average female body mass (g) (Dunning, 2000) as our 

index of body size, and mean number of eggs in a clutch as our index of fecundity 

(Ehrlich et al. 1988). Migratory status was designated as either long-distance 
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(neotropical migrants), short-distance migrants (typically within the continental U.S.), 

or  non-migratory (Sibley 2000).  Preferred breeding habitat was identified as either 

open, forest, woodland, successional shrubland, edge (meaning forest edge), urban, or 

water (adapted from Peet and Bollinger (1997)). 

 

 

 

RESULTS 
 
 Of the 209 bird species we examined, 88 showed overall declines in regional 

abundance from 1970:1974 to 2003:2007; 40 species (45%) showed statistically 

significant declines (1-tailed D* test, p<0.05). By chance we expect at least four 

species of the 90 to be statistically significant; however, that we observed 40 species, 

68% of which yielded p-values less than 0.01 (Table 1) provides convincing evidence 

that our results are not an artifact of performing multiple tests (Moran 2003). 

  The 40 species with significant declines were distributed among 21 families 

(Table 1). Four species (Bachman’s Warbler, Northern Bobwhite, Red-headed 

Woodpecker, and Golden-winged Warbler) were listed as near-threatened by the 

IUCN, while the rest are categorized as species of “least concern” (IUCN 2008). 

 Dramatic drops in regional abundance occurred in both common and rare 

species (Table 2).  Birds with the highest initial regional abundances experienced 

greater absolute declines: four of the ten birds showing the most dramatic declines in 

absolute numbers had more than 20,000 individuals in the initial sample year. By 

contrast, relatively rare bird species (based on initial regional abundances) showed the 

most dramatic proportional declines: nine of the top ten most proportionally-declining 
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species were each represented by fewer than 600 individuals in 1970-1974 (Table 2). 

Proportional losses were substantial: the 20 bird species showing the greatest 

proportional declines lost a minimum of 48% and a maximum of 87% of their sample 

population between 1970:1974 and 2003:2007.  Six of the birds showing the greatest 

absolute declines were among those that also experienced dramatic proportional 

declines (House Sparrow, Eastern Meadowlark, Northern Bobwhite, Field Sparrow, 

Yellow-shafted Flicker, and Loggerhead Shrike; Table 2).   

 Among birds showing statistically significant declines in regional abundance, 

reductions in the maximum local density influenced regional abundance more than 

reductions in site occupancy (Fig. 3). Only six bird species lost a higher proportion of 

individuals due to local extinctions than due to shrinking maximum local population 

sizes (Fig. 2; Models I and IV). Several species experienced significant losses in 

regional abundance but showed little decline in maximum density or site occupancy, 

and thus were clustered around the origin in Fig. 3. For these species, drops in 

abundance were accounted for exclusively by relatively uniform declines across sites 

of intermediate densities (Area B in Fig. 1b). 

  Relative losses due to declines in the maximum density populations versus 

declines in occupancy varied according to initial regional abundance: the smaller the 

initial population size, the greater the proportion of regional abundance decline 

attributed to local extinctions (Figs. 3 & 4). Four of the five species showing the most 

substantial losses due to local extinctions (15-30%; American Black Duck, 
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Bachman’s Sparrow, Golden-winged Warbler, and Spotted Sandpiper) were among 

the five birds with the lowest initial regional population sizes (Fig. 4, Table 1).   

 Regardless of their initial regional abundance, species lost the highest 

proportion of individuals due to local declines in density at intermediate-density sites 

(Fig. 4). However, there appeared to be thresholds in population size at which 

reductions in maximum population sizes contribute notably to regional abundance 

declines (Fig. 4). Declining maximum density contributed to regional abundance 

declines only in species with regional population sizes of fewer than 800 individuals. 

Only species with regional populations of fewer than 200 showed losses due to local 

extinctions (Fig. 4).  

  

 

DISCUSSION 
 
 Declines toward rarity are notoriously difficult to document because there are 

several axes along which abundances vary (Rabinowitz 1981). ROAPs offer a way to 

visually display local density and occupancy simultaneously, while the nonparametric 

D* allows us to test whether the differences we see in regional abundance (comparing 

two ROAPs) are statistically significant. Using this approach, we found that 40 

species (19% of 209 sampled) were significantly declining. Because our analyses 

excluded bird species with exceptionally low regional abundances and those detected 

in only a few BBS routes, our estimate is definitively conservative for North 

American birds overall. Many of the significantly declining species are among the 

most abundant birds in North America. While these species are not yet rare and 
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therefore are not targeted for protection, such substantial declines imply that 

anthropogenic changes have profoundly influenced bird populations in the last 30 

years (Owens and Bennett 2000; Blackburn and Gaston 2002). 

 

Interspecific patterns of decline 

 The relative influence of local abundance and occupancy on regional 

abundance depended on the initial size of the regional population. For the most 

common species, maximum local density and total occupancy remained relatively 

unaffected by regional abundance declines. Instead, moderate losses in population 

density across intermediate-density sites accounted for nearly 100% of declines in 

regional abundance (e.g. Common Grackle, Fig. 5a).  That the collective effect of 

declines across sites was influential is no surprise; species with high regional 

abundances tended to have many large populations, so even marginal losses across 

many sites will have a large combined impact. However, that the rarest populations 

did not experience local extinction is less intuitive. Furthermore, the largest local 

populations initially resisted substantial declines. This suggests that even as regional 

abundance drops, large local populations might be temporarily buffered from 

anthropogenic threats. Although we cannot be sure of the mechanism, we might 

expect this result if large population size reflected superior habitat quality.  If so, high 

birth rates (Holt et al. 1997; Freckleton et al. 2006) or individuals migrating from less 

favorable sites (Fretwell and Lucas 1969) may maintain high densities in the best 
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habitats, even as extrinsic threats (e.g. pollution or loss of migratory habitat) drive 

down regional abundance.   

 Most other bird species reflected a pattern of decline consistent with model III 

(Figs. 2 & 3), i.e. declines in the highest-density populations had greater influence on 

regional abundance than declines in occupancy (e.g. Northern Mockingbird, Fig. 5a). 

Rodriguez (2002) found a similar pattern and suggested that processes operating in 

high-density bird populations were driving range-wide declines. Even if this is the 

case, we find it somewhat surprising that local extinctions play only small role in 

regional declines, given that far more sites host small populations than large ones. By 

contrast, local extinctions contributed substantially to declines in regionally rare 

species (e.g. Chuck-will’s Widow and the American Black Duck; Fig. 5a). 

 Our results suggest that there are thresholds in regional densities at which 

relative contributions of occupancy and local abundance characterize the patterns of 

decline. The regional abundances in this study reflect the total number of birds 

sampled, so they are not analogous to minimum viable population sizes (MVP), or 

other quantitative thresholds for persistence calculated using parameter estimates for 

population growth and environmental factors (Gilpin and Soule 1986). Still, the 

qualitative result is compelling: below a threshold regional population size, small 

local populations cease to persist, implying a strong interaction between regional and 

local population processes.  Although models and computer simulations by 

Freckleton et al. (2005) suggest such thresholds may exist, to our knowledge, we are 

the first to show this empirically. 
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 As expected, some species appear to fit this pattern better than others.  For 

example, two relatively rare species, the Evening Grosbeak and Bachman’s Sparrow 

(outliers in Fig. 3), both lost a substantially greater proportion of their numbers due to 

declines in maximum population size as opposed to local extinctions. Both bird 

species occupied very few sites during the initial time period: the range of Bachman’s 

Sparrow included only 42 routes, the fewest number of any species for which we 

detected statistical declines. Although the Evening Grosbeak’s range included 128 

routes, only 15% of them (~19 routes) were occupied initially.  Consequently, for 

both species, there was little potential for occupancy-losses; individuals lost from the 

highest-density sites thus accounted for the majority of their declines. On the other 

hand, the Vesper Sparrow (a relatively common species) lost proportionally more 

individuals to local extinctions than to declines in maximum local density, a pattern 

characteristic of very rare species.  Habitat loss offers one explanation for why a 

common species might experience proportionally high losses in site occupancy. 

Indeed, the Vesper Sparrow is a grassland-specialist in a region where grasslands 

have suffered dramatic declines due to agricultural practices (With et al. 2008)  

 Although initial regional abundance appears to predict relative losses in local 

density and occupancy, it is possible that other traits linked with density may 

predispose species to a particular pattern of decline. For example, we expect long-

lived species and habitat-specialists to show a time lag between declines in local 

density and loss of occupancy (Blackburn and Gaston 1998).  Similarly, large body 

size and low fecundity are traits typically associated with higher extinction risk 
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(Gaston and Blackburn 1995; Bennett and Owens 1997). Overall, the group of birds 

most influenced by local extinctions (also the most rare) spanned a wide range of 

body weights (and by association, generation times; Calder 1984), fecundities, and 

migration patterns, making it unlikely that any single intrinsic trait explains 

pronounced losses in occupancy. However, these rare bird species are all associated 

with discrete and isolated habitat types, such as bodies of water (Spotted Sandpiper, 

American Bittern, American Black Duck, Belted Kingfisher) and shrubland/forest 

edges (Golden-winged Warbler). Still, other habitat specialists (both water and 

grassland bird species) show very different patterns of decline, so it is unlikely that 

habitat-specialization alone explains the declines in occupancy. Indeed, it is 

impossible to tease apart cause and effect, as rarity may reflect intrinsic traits (habitat-

specialization) or interact with extrinsic traits (habitat loss) to make species more 

prone to local extinctions (Blackburn and Gaston 2002; Davies et al. 2004).  Finally, 

we should also note low detection probability may contribute to the observed local 

extinctions of rare bird species. However, because the sampling protocol has stayed 

constant across time, the relative changes in abundance should not be influenced by 

sampling alone. 

Intraspecific phases of decline 

 The distinct patterns we see across species of varied abundances suggests that 

if we were to observe the entire temporal trajectory of decline for a single species, 

eventually we might see each of these patterns expressed as a phase in the decline 

toward rarity. Interpreting our data in this way is analogous to using a 
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chronosequence or space-for-time substitutions for studying plant communities 

undergoing succession. In Fig.5, we illustrate our approach by pairing hypothesized 

phases of intraspecific decline over time with “snapshots in time” from species that 

differ in regional abundance. Below, we describe our hypothesis, provide examples 

from our dataset, and discuss potential caveats. 

 We propose that for many species, local density declines are the first indicator 

of regional abundance decline (Phase I, Fig. 5b). During this phase, densities of the 

largest populations in the range do not change significantly, nor does occupancy; 

rather, collective losses across many intermediate-density sites result in a substantial 

drop in regional abundance. We had not considered this pattern in our models a priori 

because, taken to its logical conclusion, small declines across many sites do not 

necessarily result in rarity (i.e. a large proportion of sites are still occupied and some 

of them contain large populations); consequently, this pattern is not likely to lead 

directly to a species’ extinction. In very common species, however, this phase may set 

the stage for further declines. 

  A noteworthy decrease in the size of a species’ largest populations signals the 

next phase of decline, although smaller populations also continue losing individuals 

(Phase II, Fig. 5b). Importantly, during this phase, there is an increase in the 

proportion of low-density populations in the range. Phase III is characterized by the 

first significant loss of regional abundance due to local extinctions; however, local 

population declines still contribute proportionately more to total declines than do 

shifts in occupancy. Finally, when a species is both locally and regionally rare 
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(“double jeopardy;” Lawton 1993), all remaining populations are small and the 

primary driver of regional declines is loss of occupancy via local extinctions (Phase 

IV, Fig. 5).  As modeled here, these phases depict simplified snapshots representing 

different stages in a dynamic continuum toward rarity; taken together, they provide a 

heuristic model (and a testable hypothesis) using ROAPs to explore declines in 

abundance (Fig. 5c). 

 Importantly, this model suggests that links between local abundance and 

regional occupancy jointly influence the way a species approaches rarity. For 

example, if the largest populations are sources for other populations in the range, 

declines in large populations may lead to a sort of spatial feedback effect on regional 

population size (Hanski 1982). Reducing the size of populations reduces the number 

of potential colonists, ultimately having a negative effect on occupancy (Gonzalez et 

al. 1998; Freckleton 2005).  It is not necessary to invoke metapopulation dynamics; 

we might see a similar pattern if declines in habitat quality or quantity (e.g. pollution 

in breeding habitat or deforestation in migration habitats) reduce local abundances via 

vital rates (Holt et al. 1997). Resulting smaller populations would be prone to 

stochastic extinction (Gilpin and Soule 1986), eventually reducing occupancy across 

the range. As others have suggested (e.g. Holt et al. 1997, Freckleton et al. 2005), 

these processes likely act in concert, or concurrently in different parts of the species 

range. Thus, we do not suggest that ROAPs discriminate between possible 

mechanisms; rather, they illustrate the general of interplay between local abundance 

and occupancy during decline. 
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 Testing this model explicitly would require having time series data tracking a 

bird species from one extreme level of abundance to another. Despite the dramatic 

declines we observed in our data, no single species shows all four phases that we 

propose in Figs. 5b and 5c. However, examining ROAPs at higher temporal 

resolution, we were visually able to detect a subset of the phase transitions within a 

single species (Figs. 6 & 7). For instance, the Northern Bobwhite’s decline reflects 

Phases I and II: loss in regional abundance between the first two time steps is due 

almost entirely to a uniform decline across occupied plots, with relatively little 

change in maximum population sizes or number of populations. The next several time 

steps are characterized by systematic drops in maximum population sizes in addition 

to the continued reduction of local abundance across occupied plots. As local 

abundance declines continued over time, an increasingly higher proportion of sites 

contained fewer than five individuals (Fig. 6a inset). The House Sparrow provides 

another example, differing from the Northern Bobwhite only in the amount of time 

before high density populations drop dramatically.   

 The Loggerhead Shrike, a less common bird, illustrates the increasing 

influence local population extirpations have on regional abundance in Phases II and 

III (Fig 7a).  The regional population size dwindled over time due to drops in both 

maximum density and occupancy. By the end of the last time step, nearly 100% of the 

local populations supported fewer than five individuals (Fig. 7a inset), and occupancy 

had dropped nearly 50%.  Were we to follow the Loggerhead Shrike for three more 

decades, according to our hypothesis we might see the pattern expressed by the 
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Golden-winged Warbler (Fig. 7b), in which each time step is characterized solely by 

local extinctions.  As a consequence, the proportion of populations with fewer than 

five individuals actually decreases, presumably because the sites with extremely 

small densities experienced local extinction. While we illustrate our point using four 

species, these patterns were found across our dataset, and demonstrate that species 

ranges tend to contract numerically before they contract spatially, pre-disposing sites 

to serial local extinctions, and potentially, global extinction. 

Time lags 

 Time lags are inherent at several different phases of decline depicted in this 

series of conceptual models, as well as evident in our data. First, there is a time lag 

between initial declines in local density (Phase I) and a decline in the size of the 

largest populations (Phase II) (e.g. Northern Bobwhite and House Sparrow, Fig. 6). If 

the highest densities do not decline initially as our data show, abundance-occupancy 

plots which rely on mean values of abundance may not detect this lag. Recognizing 

this initial lag exists has significant implications for conservation: the largest 

populations are temporarily buffered from decline, thus early detection of declines at 

less-dense sites may precede efforts to save the largest populations. Intervention may 

prove particularly important if the largest populations are dispersal sources for other 

populations.  In these cases, preventing their demise would be integral to maintaining 

regional metapopulation “rescue effects.” (Cornutt 1996; Gonzalez et al. 1998; 

Freckleton et al. 2005).  
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 The second lag occurs between the loss of local abundance and occupied sites 

(between Phase II and Phase II). Conrad et al. (2001) were the first to empirically 

demonstrate similar delayed losses in occupancy after drops in local abundance in a 

species of tiger moth. Like Conrad et al. (2001), we found that populations persisted 

at lower abundance prior to their extirpation (e.g. Fig. 6). Webb et al. (2007) observed 

that rare species of European birds tended to have right skewed distributions (i.e. 

most populations were small), although continued monitoring would be necessary to 

see if the tail of the distribution retracts due to extinctions as our model predicts. The 

lag also has conservation significance: if we only assess the status of species using 

presence-absence protocols—an increasing trend among management agencies 

(Marsh and Trenham 2008) —we will not detect species declines until Phase III, 

when regional abundance has already suffered severe losses, and local extinctions 

ensue.   

 As regional populations shrink to smaller and smaller sizes, time lags may 

exist between phases but will likely become less prolonged and therefore less 

detectable; rates of decline tend to increase when species become scarce (Fagan and 

Homes 2006). Thus, during Phases III and IV, conservation efforts become a priority 

and a challenge because regionally and locally small populations are least likely to 

recover from fluctuations, face the highest number of extrinsic threats (Blackburn and 

Gaston 2002), and are more prone to the “extinction vortex” (Gilpin and Soule 1986; 

Fagan and Homes 2006).   

Using ROAPs to study occupancy and abundance 



 90 

 Relationships between local density and distribution, both inter- and intra-

specific, are traditionally depicted using plots of mean abundance versus occupancy 

(reviewed in Gaston et al. 2000).  ROAPs extend beyond this approach in several 

ways.  First, by comparing two ROAPs from different time periods, we can visually 

depict the dynamics of shifting distributions of abundance across sites. Second, we 

can test for statistical significance in regional abundance declines that integrate both 

local abundance and occupancy into a single metric. Third, we can estimate the 

number of individuals (and therefore the proportion of the starting population) lost 

between two time periods.  More specifically, we can partition changes in regional 

abundance into loss due to local declines in maximum- and intermediate-density 

popoulations, versus those attributed to local extinctions. Using means potentially 

obscures the contribution of large populations to slowing overall declines; 

consequently, ROAPs allowed us to identify phases and time lags in this study that 

had not previously been documented.   

  ROAPs are not spatially explicit, i.e. they do not allow us to track individual 

sites over time. We view this as a strength for assessing abundance at landscape and 

regional scales. Local abundances may shift asynchronously across the range because 

of local dynamics or movement of individuals among sites. ROAPs allows for local 

populations to change size (and therefore rank) without necessarily influencing the 

overall shape of the distribution, particularly in cases in which increases in population 

size at one location are compensated for by decreases at another. Whereas maps of 

population increases and decreases reflect specific regions of population change from 
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year to year, it is difficult to assess from them the net effect that local shifts in 

abundance have on regional population size.  ROAPs not only clearly reveal overall 

trends in regional abundance, but they also allow us to include the distribution of 

abundance across sites in our interpretations. 

  Conclusions 

 Abundancy-occupancy relationships have garnered much attention because 

they potentially link local and regional population ecology. In this study, we 

demonstrate that regional abundance predicts the degree to which species lose 

individuals due to declining local density versus local extinctions.  Somewhat 

surprisingly, intermediate density sites were the first to lose abundance; large 

populations experienced a lagged response, as did the smallest populations. Futher, 

local rarity is not the only—or even the best—predictor of local extinction; rather, 

local populations experienced extinction when regional abundance declined. Overall, 

our work demonstrates that species ranges contract numerically before they do 

spatially, and further suggests that human threats impose on species a type of rarity 

(“widespread but locally rare,” sensu Rabinowitz 1981) that may pre-dispose them to 

serial local extinctions, and ultimately, global extinction. 

 Reasons for such dramatic declines in North American birds are numerous, 

making it difficult to assign any single causal factor to these patterns. That the routes 

in the NABBS are located near relatively in-tact habitats, together with our observed 

declines in so many—and such a variety—of bird species, suggests the threats that 

bird species face are likely numerous, diffuse, and synergistic. Although listing 
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species on the basis of declining abundance has stirred controversy (Mace et al. 

2008), our results suggest that early detection of declining local abundance may 1) 

precede our ability to halt declines in a species’ largest populations 2) be imperative 

to preventing local extinctions of sites occupied by only a few individuals. In both 

instances, using presence-absence data would fail to alert us until late in the trajectory 

toward extinction (Phase III in our model), when species are well on their way to 

rarity. 
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Table 2.  The 20 bird species with the highest (a) absolute and (b) proportional 
declines between 1970:1974 and 2003:2007. Highlighted species are those shared 
among both lists. 
 
a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Top 20 Absolute Declines

Species Initial abundance # Birds lost (D*) Total % change

House Sparrow                                     20571.2 -10524 -0.512

Red-winged Blackbird                              28186.8 -8652 -0.307

Common Grackle                                    22034.8 -8219.8 -0.373

Eastern Meadowlark                                9130.2 -5811.6 -0.637

Northern Bobwhite                                 7528 -5646.4 -0.750

European Starling                                 20183.6 -2774.2 -0.137

Western Meadowlark                                5374.6 -2448 -0.455

Northern Mockingbird                              6445.6 -1453.2 -0.225

Field Sparrow                                     2665.6 -1284.6 -0.482

Wood Thrush                                       2633.2 -1079.2 -0.410

Eastern Towhee                                    2744.4 -985.2 -0.359

Chimney Swift                                     2652.8 -728.4 -0.275

Yellow-shafted Flicker                            1282.4 -711.2 -0.555

Bobolink                                          1738.6 -672 -0.387

Blue Jay                                          4319.6 -636.8 -0.147

Yellow-billed Cuckoo                              1570.6 -594.4 -0.378

Brown Thrasher                                    1376.8 -448.4 -0.326

Loggerhead Shrike                                 565.4 -432.4 -0.765

Vesper Sparrow                                    1061 -395.2 -0.372

White-throated Sparrow 750.4 -340.2 -0.453

Top 20 Proportional Declines

Species Initial abundance # Birds lost (D*) Total % change

Evening Grosbeak                                  99.6 -86.6 -0.869

Bachman's Sparrow                                 51.6 -40.8 -0.791

Canada Warbler                                    89.8 -70.6 -0.786

Whip-poor-will                                    95 -74.2 -0.781

Loggerhead Shrike                                 565.4 -432.4 -0.765

Northern Bobwhite                                 7528 -5646.4 -0.750

Northern Pintail                                  57.8 -42 -0.727

American Black Duck                               46.8 -33.6 -0.718

Pine Siskin                                       266.8 -181.6 -0.681

Eastern Meadowlark                                9130.2 -5811.6 -0.637

Golden-winged Warbler                             56.4 -33.2 -0.589

Black Tern                                        149.2 -86.4 -0.579

Yellow-shafted Flicker                            1282.4 -711.2 -0.555

American Bittern                                  84.4 -45.8 -0.543

Spotted Sandpiper                                 72.2 -37 -0.512

House Sparrow                                     20571.2 -10524 -0.512

Chuck-will's-widow                                218.6 -110.4 -0.505

Field Sparrow                                     2665.6 -1284.6 -0.482

Common Nighthawk                                  689.8 -328.2 -0.476

Red-headed Woodpecker 508 -234.8 -0.462
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Figure 1. (a) Rank Occupancy-Abundance Profiles (ROAPs) for a single species at a 
single point in time. ROAPs depict the local abundance of birds (y-axis) ranked in 
order of their density (x-axis). Relative rank is calculated by dividing the rank value 
of the route by the number of routes in the range. ROAPs reveal: 1) maximum 
population size 2) distribution of local abundance across sites and 3) proportion of 
sites occupied. Each point represents the density of the species at a single sampling 
site. The regional abundance is the integral taken beneath the ROAP. (b) Two ROAPs 
from samples taken at two different time periods (T1 and T2). A+B+C = the total 
change in “regional” abundance between the two time periods. We also refer to this 
area as D*. A = the proportion of regional abundance decline due to drops in 
maximum density; B is equal to the proportion of regional abundance loss attributed 
to declines in local density at sites of intermediate densities; C is equal to the 
proportion of regional abundance loss due to decline in occupancy (local extinction). 
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Figure 2. Axes on this plot reflect the proportional change in regional abundance due 
to declines in occupancy (x-axis here, calculated from area C of Fig. 1b) versus 
declines in maximum density (y-axis here; calculated using area A from Fig. 1b). The 
dotted line reflects a 1:1 change due to occupancy and maximum local density. The 
conceptual models depict various patterns of decline, and are situated in the portion of 
the plot in which we expect a species to fall depending on the relative degree to which 
declines in occupancy and maximum density determine regional abundance loss. (I) 
initial declines in occupancy, (II) concurrent declines in maximum population size 
and site occupancy, (III) initial declines in maximum local population sizes, (IV) 
declines in occupancy but an increase in maximum local abundance, and (V) declines 
in maximum population sizes but an increase in occupancy.  
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Figure 3. This plot contains only the species that showed significant declines (p<0.05 
for D*; n=40) Axes reflect the proportional change in regional abundance due to 
declines in occupancy (x-axis here, calculated from area C of Fig. 1b) versus declines 
in maximum density (y-axis here; calculated using area A from Fig. 1b). The dotted 
line reflects a 1:1 change due to occupancy and maximum density. The conceptual 
models are situated in the portion of the plot in which we expect a species to fall 
depending on the relative degree to which declines in occupancy and maximum 
density determine regional abundance loss. Each circle represents a single species; 
circles are coded dark to light according to initial regional abundance of the bird 
species (high to low). Most species appear to best fit Model III. The rarest species 
tended to experience the largest losses due to local extinctions, e.g. SS=Spotted 
Sandpiper, GW= Golden-winged Warbler, ABD=American Black Duck, BS = 
Bachman’s Sparrow, EG = Evening Grosbeak. 
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Figure 4. Initial regional population size predicts the relative contribution of declines 
in maximum local density and occupancy to declines in regional abundance. To 
demonstrate the thresholds, only 27 of 40 birds showing significant declines are 
shown below, excluding bird species with regional population sizes >2000 
individuals.The symbols represent the proportional contribution of declines due to 
changes in occupancy (calculated from area C in Fig. 1b); open symbols represent the 
proportional contribution of declines due to drops in maximum local density 
(calculated from area A in Fig. 1b); X symbols represent the proportional contribution 
of declines across sites of intermediate abundance (calculated from area B in Fig. 1b).  
Because these are proportions, the values (on the y-axis) for the three symbols (e.g. 
those within the circle) are for a single species and total to one. When regional 
abundance fell below 800 individuals, we observe drops in maximum density for 
several bird species (Threshold for A=dotted line).  The threshold for losses due to 
occupancy is lower: species with fewer than 200 individuals in the regional 
populations experience local extinctions (Threshold for C=dotted line).  
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a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. (a) ROAPs that depict the pattern of declines between 1970:1974 (●) and 
2003:2007 (○) for four species of different initial regional abundances.  Values listed  
below the arrow are the initial regional abundances for each species. Scale on the y-
axis varies among plots to emphasize differences among plots. (b) Conceptual models 
using ROAPs to depict phases of decline for a single species. 
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Figure 5c. A model showing what the entire series of ROAPs would look like for a 
single species declining toward extinction. Lines thicken over time, i.e. the thickest 
line represents the time series for a species closes to extinction.  Phases of the model 
from Fig. 5b (above) are noted between the appropriate ROAPs. 
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Figure 6a. Time series of ROAPs for a common species declining between 1976-
2005.  The earliest time period is depicted with hollow symbols, each progressive 
time step is filled with a darker shade. Insets show the proportion of populations 
comprised of fewer than 5 individual birds at each time step. The Northern Bobwhite 
initially shows substantial declines primarily in populations with intermediate 
densities (Phase I), experiences declines in populations with the highest densities 
(Phase II).  In the last time step, local extinctions cause a decline in occupancy (Phase 
III). 
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Figure 6b. Time series of ROAPs for a common species declining between 1976-
2005.  The earliest time period is depicted with hollow symbols, each progressive 
time step is filled with a darker shade. Insets show the proportion of populations 
comprised of fewer than 5 individual birds at each time step. The House Sparrow 
initially shows substantial losses in populations of intermediate densities (Phase I), 
then experiences declines in the populations with the highest density (Phase II).   
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Figure 7a.  Time series of ROAPs between 1976-2005 for a species with intermediate 
initial regional abundance. The earliest time period is depicted with hollow symbols, 
each progressive time step is filled with a darker shade. Insets show the proportion of 
populations comprised of fewer than 5 individual birds at each time step. The 
Loggerhead Shrike appears to match Phases II and III, initially losing maximum 
density, then losing occupancy as well.  
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Figure 7b.  Time series of ROAPs between 1976-2005 for a species with low initial 
regional abundance. The earliest time period is depicted with hollow symbols, each 
progressive time step is filled with a darker shade. Insets show the proportion of 
populations comprised of fewer than 5 individual birds at each time step. The Golden-
winged Warbler appears to match Phase IV, experiencing local extinctions at every 
time step.  Consequently, the proportion of populations with < 5 individuals 
decreases, presumably because small populations are extirpated.  
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Appendix A.  Species discarded from analyses. Species were discarded if they were 
detected at fewer than 12 routes, or if their regional abundance totaled less than 40 
individuals. 
 

 
 
 
 
 
 
 
 
 
 
 

Species

Reason for 

discard Species

Reason for 

discard

Tricolored Blackbird                              < 12 routes Canyon Wren                                       < 40 birds

Rusty Blackbird                                   < 12 routes Calliope Hummingbird                              < 40 birds

Chihuahuan Raven                                  < 12 routes Connecticut Warbler                               < 40 birds

Canyon Towhee                                     < 12 routes Lewis's Woodpecker                                < 40 birds

Red-cockaded Woodpecker                           < 12 routes Blue Grouse                                       < 40 birds

Sprague's Pipit                                   < 12 routes Gray Jay                                          < 40 birds

Pyrrhuloxia                                       < 12 routes Nelson's Sharp-tailed Sparrow                     < 40 birds

Calliope Hummingbird                              < 12 routes Eastern Screech-Owl                               < 40 birds

Chestnut-collared Longspur                        < 12 routes Rusty Blackbird                                   < 40 birds

Pinyon Jay                                        < 12 routes Boreal Chickadee                                  < 40 birds

Bay-breasted Warbler                              < 12 routes Clark's Nutcracker                                < 40 birds

Vermilion Flycatcher                              < 12 routes American Woodcock                                 < 40 birds

Aechmophorus spp                                  < 12 routes Vermilion Flycatcher                              < 40 birds

Scaled Quail                                      < 12 routes Bay-breasted Warbler                              < 40 birds

Lewis's Woodpecker                                < 12 routes Fox Sparrow                                       < 40 birds

Cactus Wren                                       < 12 routes Burrowing Owl                                     < 40 birds

Mottled Duck                                      < 12 routes Henslow's Sparrow                                 < 40 birds

Lesser Nighthawk                                  < 12 routes Tennessee Warbler                                 < 40 birds

Blue Grouse                                       < 12 routes Canyon Towhee                                     < 40 birds

Nelson's Sharp-tailed Sparrow                     < 12 routes Rufous-crowned Sparrow                            < 40 birds

Connecticut Warbler                               < 12 routes Marbled Godwit                                    < 40 birds

Boreal Chickadee                                  < 12 routes Yellow-bellied Flycatcher                         < 40 birds

Tricolored Blackbird                              < 12 routes Pygmy Nuthatch                                    < 40 birds

Chihuahuan Raven                                  < 12 routes Black-crowned Night-Heron                         < 40 birds

Chestnut-collared Longspur                        < 12 routes Wood Stork                                        < 40 birds

Pinyon Jay                                        < 12 routes Lincoln's Sparrow                                 < 40 birds

Scaled Quail                                      < 12 routes Cassin's Finch                                    < 40 birds

Mottled Duck                                      < 12 routes Common Tern                                       < 40 birds

Cactus Wren                                       < 12 routes Rock Wren                                         < 40 birds

Lesser Nighthawk                                  < 12 routes Ruffed Grouse                                     < 40 birds

Philadelphia Vireo                                < 40 birds Greater Prairie-Chicken                           < 40 birds

Sprague's Pipit                                   < 40 birds Green-tailed Towhee                               < 40 birds

Northern Goshawk                                  < 40 birds Curve-billed Thrasher                             < 40 birds

Red-cockaded Woodpecker                           < 40 birds Cassin's Sparrow                                  <12routes

Blackpoll Warbler                                 < 40 birds
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Appendix B.  List of 209 birds included in analysis.  Status indicates whether net 
changes in regional abundance were increasing (I) or decreasing (D); however, status 
here reflects only the population trend, not statistically significant changes as detected 
by D*. Significantly declining species are displayed in Table 1. 
 
 

Status Common Name Latin name Family

I Swainson's Hawk                                   Buteo swainsoni Accipitridae

I Northern Harrier                                  Circus cyaneus Accipitridae

I Red-shouldered Hawk                               Buteo lineatus Accipitridae

I Red-tailed Hawk                                   Buteo jamaicensis Accipitridae

D Bushtit                                           Psaltriparus minimus Aegithalidae

D Horned Lark                                       Eremophila alpestris Alaudidae

D Belted Kingfisher                                 Megaceryle alcyon Alcedinidae

D Blue-winged Teal                                  Anas discors Anatidae

D Northern Pintail                                  Anas acuta Anatidae

D American Black Duck                               Anas rubripes Anatidae

D Redhead                                           Aythya americana Anatidae

I Gadwall                                           Anas strepera Anatidae

I Wood Duck                                         Aix sponsa Anatidae

I Canada Goose                                      Branta canadensis Anatidae

I Mallard                                           Anas platyrhynchos Anatidae

D Chimney Swift                                     Chaetura pelagica Apodidae

D Green Heron                                       Butorides virescens Ardeidae

D Little Blue Heron                                 Egretta caerulea Ardeidae

D American Bittern                                  Botaurus lentiginosus Ardeidae

I Great Egret                                       Ardea alba Ardeidae

I Great Blue Heron                                  Ardea herodias Ardeidae

I Cattle Egret                                      Bubulcus ibis Ardeidae

I Cedar Waxwing                                     Bombycilla cedrorum Bombycillidae

D Common Nighthawk                                  Chordeiles minor Caprimulgidae

D Chuck-will's-widow                                Caprimulgus carolinensis Caprimulgidae

D Whip-poor-will                                    Caprimulgus vociferus Caprimulgidae

D Rose-breasted Grosbeak                            Pheucticus ludovicianus Cardinalidae

D Painted Bunting                                   Passerina ciris Cardinalidae

I Lazuli Bunting                                    Passerina amoena Cardinalidae

I Black-headed Grosbeak                             Pheucticus melanocephalus Cardinalidae

I Blue Grosbeak                                     Passerina caerulea Cardinalidae

I Dickcissel                                        Spiza americana Cardinalidae

I Indigo Bunting                                    Passerina cyanea Cardinalidae

I Northern Cardinal                                 Cardinalis cardinalis Cardinalidae

I Black Vulture                                     Coragyps atratus Cathartidae

I Turkey Vulture                                    Cathartes aura Cathartidae

I Killdeer                                          Charadrius vociferus Charadriidae

D Common Ground-Dove                                Columbina passerina Columbidae  
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Appendix B (cont.) 
 

Status Common Name Latin name Family

D Rock Pigeon                                       Columba livia Columbidae

D Band-tailed Pigeon                                Patagioenas fasciata Columbidae

I Mourning Dove                                     Zenaida macroura Columbidae

D Blue Jay                                          Cyanocitta cristata Corvidae

D Black-billed Magpie                               Pica hudsonia Corvidae

I Steller's Jay                                     Cyanocitta stelleri Corvidae

I Western Scrub-Jay                                 Aphelocoma californica Corvidae

I Common Raven                                      Corvus corax Corvidae

I Fish Crow                                         Corvus ossifragus Corvidae

I American Crow                                     Corvus brachyrhynchos Corvidae

D Yellow-billed Cuckoo                              Coccyzus americanus Cuculidae

D Black-billed Cuckoo                               Coccyzus erythropthalmus Cuculidae

D Field Sparrow                                     Spizella pusilla Emberizidae

D Eastern Towhee                                    Pipilo erythrophthalmus Emberizidae

D Lark Bunting                                      Calamospiza melanocorys Emberizidae

D Savannah Sparrow                                  Passerculus sandwichensis Emberizidae

D Vesper Sparrow                                    Pooecetes gramineus Emberizidae

D White-throated Sparrow                            Zonotrichia albicollis Emberizidae

D Lark Sparrow                                      Chondestes grammacus Emberizidae

D Grasshopper Sparrow                               Ammodramus savannarum Emberizidae

D Black-throated Sparrow                            Amphispiza bilineata Emberizidae

D White-crowned Sparrow                             Zonotrichia leucophrys Emberizidae

D Bachman's Sparrow                                 Aimophila aestivalis Emberizidae

I Spotted Towhee                                    Pipilo maculatus Emberizidae

I Swamp Sparrow                                     Melospiza georgiana Emberizidae

I Brewer's Sparrow                                  Spizella breweri Emberizidae

I Clay-colored Sparrow                              Spizella pallida Emberizidae

I Chipping Sparrow                                  Spizella passerina Emberizidae

I Song Sparrow                                      Melospiza melodia Emberizidae

I American Kestrel                                  Falco sparverius Falconidae

D Pine Siskin                                       Carduelis pinus Fringillidae

D Evening Grosbeak                                  Coccothraustes vespertinus Fringillidae

D Purple Finch                                      Carpodacus purpureus Fringillidae

D Red Crossbill                                     Loxia curvirostra Fringillidae

I Lesser Goldfinch                                  Carduelis psaltria Fringillidae

I House Finch                                       Carpodacus mexicanus Fringillidae

I American Goldfinch                                Carduelis tristis Fringillidae

D Bank Swallow                                      Riparia riparia Hirundinidae

I Violet-green Swallow                              Tachycineta thalassina Hirundinidae

I Northern Rough-winged Swallow                     Stelgidopteryx serripennis Hirundinidae

I Tree Swallow                                      Tachycineta bicolor Hirundinidae

I Purple Martin                                     Progne subis Hirundinidae

I Cliff Swallow                                     Petrochelidon pyrrhonota Hirundinidae

I Barn Swallow                                      Hirundo rustica Hirundinidae

D Red-winged Blackbird                              Agelaius phoeniceus Icteridae

D Common Grackle                                    Quiscalus quiscula Icteridae  
 



 109 

Appendix B (cont.) 
 

Status Common Name Latin name Family

D Eastern Meadowlark                                Sturnella magna Icteridae

D Western Meadowlark                                Sturnella neglecta Icteridae

D Bobolink                                          Dolichonyx oryzivorus Icteridae

D Brown-headed Cowbird                              Molothrus ater Icteridae

D Orchard Oriole                                    Icterus spurius Icteridae

D Brewer's Blackbird                                Euphagus cyanocephalus Icteridae

D Baltimore Oriole                                  Icterus galbula Icteridae

D Yellow-headed Blackbird                           Xanthocephalus xanthocephalus Icteridae

I Bullock's Oriole                                  Icterus bullockii Icteridae

I Boat-tailed Grackle                               Quiscalus major Icteridae

I Great-tailed Grackle                              Quiscalus mexicanus Icteridae

D Herring Gull                                      Larus argentatus Laridae

D Franklin's Gull                                   Leucophaeus pipixcan Laridae

D Black Tern                                        Chlidonias niger Laridae

D Least Tern                                        Sternula antillarum Laridae

D Great Black-backed Gull                           Larus marinus Laridae

D Black Skimmer                                     Rynchops niger Laridae

I Ring-billed Gull                                  Larus delawarensis Laridae

I Laughing Gull                                     Leucophaeus atricilla Laridae

I California Gull                                   Larus californicus Laridae

D Northern Mockingbird                              Mimus polyglottos Mimidae

D Brown Thrasher                                    Toxostoma rufum Mimidae

I Sage Thrasher                                     Oreoscoptes montanus Mimidae

I Gray Catbird                                      Dumetella carolinensis Mimidae

D Northern Bobwhite                                 Colinus virginianus Odontophoridae

I California Quail                                  Callipepla californica Odontophoridae

D Mountain Chickadee                                Poecile gambeli Paridae

I Black-crested Titmouse                            Baeolophus atricristatus Paridae

I Black-capped Chickadee                            Poecile atricapillus Paridae

I Carolina Chickadee                                Poecile carolinensis Paridae

I Tufted Titmouse                                   Baeolophus bicolor Paridae

D Yellow-breasted Chat                              Icteria virens Parulidae

D Prairie Warbler                                   Dendroica discolor Parulidae

D Canada Warbler                                    Wilsonia canadensis Parulidae

D Kentucky Warbler                                  Oporornis formosus Parulidae

D Golden-winged Warbler                             Vermivora chrysoptera Parulidae

D Cerulean Warbler                                  Dendroica cerulea Parulidae

D MacGillivray's Warbler                            Oporornis tolmiei Parulidae

D Prothonotary Warbler                              Protonotaria citrea Parulidae

D Wilson's Warbler                                  Wilsonia pusilla Parulidae

D Black-and-white Warbler                           Mniotilta varia Parulidae

I Black-throated Blue Warbler                       Dendroica caerulescens Parulidae

I Northern Waterthrush                              Seiurus noveboracensis Parulidae

I Louisiana Waterthrush                             Seiurus motacilla Parulidae

I Orange-crowned Warbler                            Vermivora celata Parulidae

I Black-throated Gray Warbler                       Dendroica nigrescens Parulidae

I Blackburnian Warbler                              Dendroica fusca Parulidae  



 110 

Appendix B (cont.) 
 

Status Common Name Latin name Family

I Blue-winged Warbler                               Vermivora pinus Parulidae

I Yellow-throated Warbler                           Dendroica dominica Parulidae

I Black-throated Green Warbler                      Dendroica virens Parulidae

I Mourning Warbler                                  Oporornis philadelphia Parulidae

I Magnolia Warbler                                  Dendroica magnolia Parulidae

I Hooded Warbler                                    Wilsonia citrina Parulidae

I Nashville Warbler                                 Vermivora ruficapilla Parulidae

I Northern Parula                                   Parula americana Parulidae

I Pine Warbler                                      Dendroica pinus Parulidae

I American Redstart                                 Setophaga ruticilla Parulidae

I Chestnut-sided Warbler                            Dendroica pensylvanica Parulidae

I Ovenbird                                          Seiurus aurocapilla Parulidae

I Yellow Warbler                                    Dendroica petechia Parulidae

I Common Yellowthroat                               Geothlypis trichas Parulidae

D House Sparrow                                     Passer domesticus Passeridae

D Ring-necked Pheasant                              Phasianus colchicus Phasianidae

D Yellow-shafted Flicker                            Colaptes auratus Picidae

D Red-headed Woodpecker                             Melanerpes erythrocephalus Picidae

I Ladder-backed Woodpecker                          Picoides scalaris Picidae

I Red-shafted Flicker                               Colaptes auratus Picidae

I Yellow-bellied Sapsucker                          Sphyrapicus varius Picidae

I Hairy Woodpecker                                  Picoides villosus Picidae

I Pileated Woodpecker                               Dryocopus pileatus Picidae

I Downy Woodpecker                                  Picoides pubescens Picidae

I Red-bellied Woodpecker                            Melanerpes carolinus Picidae

I Pied-billed Grebe                                 Podilymbus podiceps Podicipedidae

D Ruby-crowned Kinglet                              Regulus calendula Regulidae

D Spotted Sandpiper                                 Actitis macularius Scolopacidae

D Wilson's Snipe                                    Gallinago delicata Scolopacidae

D Willet                                            Tringa semipalmata Scolopacidae

I Upland Sandpiper                                  Bartramia longicauda Scolopacidae

D Brown-headed Nuthatch                             Sitta pusilla Sittidae

I Red-breasted Nuthatch                             Sitta canadensis Sittidae

I White-breasted Nuthatch                           Sitta carolinensis Sittidae

D Great Horned Owl                                  Bubo virginianus Strigidae

D European Starling                                 Sturnus vulgaris Sturnidae

I Blue-gray Gnatcatcher                             Polioptila caerulea Sylviidae

D Loggerhead Shrike                                 Lanius ludovicianus Thraupidae

I Western Tanager                                   Piranga ludoviciana Thraupidae

I Summer Tanager                                    Piranga rubra Thraupidae

I Scarlet Tanager                                   Piranga olivacea Thraupidae

D White-faced Ibis                                  Plegadis chihi Threskiornithidae

I White Ibis                                        Eudocimus albus Threskiornithidae

D Rufous Hummingbird                                Selasphorus rufus Trochilidae

I Ruby-throated Hummingbird                         Archilochus colubris Trochilidae

I Marsh Wren                                        Cistothorus palustris Troglodytidae

I Winter Wren                                       Troglodytes troglodytes Troglodytidae  
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Appendix B (cont.) 
 

Status Common Name Latin name Family

I Sedge Wren                                        Cistothorus platensis Troglodytidae

I Bewick's Wren                                     Thryomanes bewickii Troglodytidae

I House Wren                                        Troglodytes aedon Troglodytidae

I Carolina Wren                                     Thryothorus ludovicianus Troglodytidae

D Wood Thrush                                       Hylocichla mustelina Turdidae

D Veery                                             Catharus fuscescens Turdidae

D Swainson's Thrush                                 Catharus ustulatus Turdidae

I Hermit Thrush                                     Catharus guttatus Turdidae

I Eastern Bluebird                                  Sialia sialis Turdidae

I American Robin                                    Turdus migratorius Turdidae

D Least Flycatcher                                  Empidonax minimus Tyrannidae

D Scissor-tailed Flycatcher                         Tyrannus forficatus Tyrannidae

D Eastern Kingbird                                  Tyrannus tyrannus Tyrannidae

D Olive-sided Flycatcher                            Contopus cooperi Tyrannidae

D Pacific-slope Flycatcher                          Empidonax difficilis Tyrannidae

I Ash-throated Flycatcher                           Myiarchus cinerascens Tyrannidae

I Alder Flycatcher                                  Empidonax alnorum Tyrannidae

I Western Wood-Pewee                                Contopus sordidulus Tyrannidae

I Willow Flycatcher                                 Empidonax traillii Tyrannidae

I Acadian Flycatcher                                Empidonax virescens Tyrannidae

I Western Kingbird                                  Tyrannus verticalis Tyrannidae

I Eastern Phoebe                                    Sayornis phoebe Tyrannidae

I Eastern Wood-Pewee                                Contopus virens Tyrannidae

I Great Crested Flycatcher                          Myiarchus crinitus Tyrannidae

D Bell's Vireo                                      Vireo bellii Vireonidae

I Cassin's Vireo                                    Vireo cassinii Vireonidae

I Blue-headed Vireo                                 Vireo solitarius Vireonidae

I Yellow-throated Vireo                             Vireo flavifrons Vireonidae

I Warbling Vireo                                    Vireo gilvus Vireonidae

I White-eyed Vireo                                  Vireo griseus Vireonidae

I Red-eyed Vireo                                    Vireo olivaceus Vireonidae  
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GENERAL CONCLUSIONS 
 
 This dissertation explores the effects of anthropogenic changes on plant and 

bird populations, and on plant communities.  Classic ecological theories provide a 

foundation for each chapter, while global changes provide the impetus and the 

context. Additionally, original conceptual models played an integral role for guiding 

my inquiry in each study.  In Chapter 1 the model served as a predictive tool for my 

experiment. In Chapters 2 and 3, the models were outcomes of the study that provide 

hypotheses for future research. Overall, my empirical results indicate that 

anthropogenic environmental changes dramatically alter the relative abundance of 

organisms within communities, landscapes, and on the continent as a whole.  

 The results from my first chapter show that soil nutrient status can indirectly 

influence plant diversity, composition, and productivity via plant-soil mutualisms. 

Although mutualisms are not explicitly incorporated in most classic models of 

coexistence theory, I was able to assimilate AMF into a conceptual model because 

they play a key role in nutrient acquisition for many prairie grasses, and therefore 

influence competition for resources (the basis of many community models). Relying 

on our knowledge of our study organisms’ biology—in this case, AMF—to build 

predictive models is an important step toward generalizing ecological outcomes to 

multiple ecosystems. Consequently, while the ecological result from this work 

suggests that AMF mediate plant community responses to phosphorus in prairies, 

experiments in other systems will be necessary to test the generality of the model. 
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Nonetheless, this chapter reinforces the growing notion that microbes profoundly 

influence aboveground communities.  

 In the second chapter, I found that landscape patch size influenced the rate and 

patterns of landscape-level extinction in early successional plant species. Although 

more plant species persisted on the large patches than on small, I observed species-

specific patterns of decline (with respect to declines in occupancy versus abundance).  

I quantified declines using a new metric, the Rank Occupancy-Abundance Profile 

(ROAP), which allowed me to statistically test for concurrent declines in local 

abundance and occupancy.  Because ROAPs provide a visual depiction of the 

variation in local abundances across a landscape, they may have broad application to 

ecologists who wish to compare shifts in abundance over time, between experimental 

treatments, or among species. 

 In Chapter 3, I applied the ROAPs technique developed in Chapter 2 to assess 

the magnitude and patterns of decline in North American breeding birds.  The results 

from this chapter are alarming given that many bird species have lost over 50% (and 

some have lost up to 89%) of their total population size in the last 30 years. By 

comparing the relative declines in local density and occupancy across species, I 

formulated a conceptual model that hypothesizes a general pattern of decline a single 

species may experience over time. 

 Several general points emerge from my dissertation research. First, humans 

are having a dramatic influence on the abundance of species—evident at both local 

and global scales. In the case of local prairie plant communities (Chapter 1) I found 
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that the rank of individual species in the community shifted depending on soil 

nutrient levels and the presence of AMF. Thus, by removing AMF—by tilling or 

pollution, for example—and adding nutrients, humans may alter the competitive 

hierarchy of a plant community, promoting a plant species from being locally rare to 

being locally abundant. Other human disturbances, such as habitat fragmentation, also 

influence species’ abundances. For instance, many early-successional species 

declined faster on smaller patches, despite more rapid encroachment by (and higher 

abundance of) woody species on large patches (Chapter 2). Finally, in only 30 years, 

bird species have lost as much as 89% of their 1970-sized populations (Chapter 3).  In 

essence, humans are redistributing species in the global community, inducing some to 

be common, while imposing rarity—and even extinction—on others.  

 Second, my work also shows that responses to human-induced environmental 

changes vary markedly among species and functional groups.  In the case of nutrients 

at AMF, I not only observed differential responses among grass species, but also at 

between C3 and C4 grasses. My work in fragmented habitats suggested that clonal, 

long-lived plant species persisted longer in large patches, while short-lived plants that 

relied on seedbanks persisted better in small patches. Results from both studies 

suggest that species traits may be useful for predicting responses to global changes. 

 Third, effects of global changes are often indirect. For instance, in Chapter 1  

I demonstrate that nutrients influence plant communities via their mutualistic fungi, 

AMF. In Chapter 3, I found dramatic declines in bird species that likely reflect both 

direct and indirect effects of global changes. The interconnectedness of ecosystems 
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makes this general result an unsurprising one, and yet it seems that ecologists 

continually underestimate the degree to which cascading effects from human impacts 

will influence organisms and ecosystems.  In part, this is because often the properties 

we measure –such as diversity and productivity–are integrative properties that reflect 

a suite of biochemical, physiological, and community-level processes. In addition, 

microbes likely comprise key biological players that drive indirect effects at the 

community and ecosystem-scale; historically, many plant ecologists appear to have 

lives by the old adage “out of site, out of mind.”  Furthermore, indirect effects may be 

evident only after time lags or at large spatial scales (Chapter 3). 

 Finally, using a combination of approaches to address global change issues at 

different spatial scales and different levels of ecological organization will offer more 

insight on the effects global changes have on ecological systems than any singular 

approach.  For instance, measuring community properties such as diversity and 

productivity reveal key net responses to environmental changes. Community 

approaches also provide an avenue by which we can assimilate biotic interactions 

(such as mutualisms) and indirect effects into our theoretical and conceptual models; 

ultimately, this will increase their predictive power. Moreover, biodiversity and 

ecosystem services have direct application and value for conservation and human 

welfare.  However, focusing solely on community metrics can obscure species-

specific patterns and responses: had I only measured diversity of small patches in a 

fragmented landscape, I would have overlooked the species-specific extinction 

trajectories I observed.  Similarly, examining 209 bird species individually and 
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collectively made clear the magnitude of abundance declines that diversity metrics at 

a given location would not have detected. While biodiversity is often the holy grail of 

conservation, management efforts often target a single species.  In practice, species 

and community approaches should complement one another. 

 Overall, this dissertation uses ecological theory as a framework for 

documenting the dramatic influences humans are having on species and communities. 

My hope is that the conceptual models and tools I developed provide a basis for 

future research in community ecology, landscape ecology, and global change biology. 

Boundaries separating these fields will likely dissolve in the future as ecologists 

continue to recognize the complexity of biotic interactions, and the connection 

between patterns and processes across scales of ecological organization, space, and 

time. 
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