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ABSTRACT 

Amanda R. Falk 
Department of Geology, September 2009 

University of Kansas 
 

 Bird tracks were studied from the Lower Cretaceous Lakota Formation in 

South Dakota, USA, and the Lower Cretaceous Haman Formation, South Korea. 

Behaviors documented from the Lakota Formation included: (1) a takeoff behavior 

represented by a trackway terminating in two subparallel tracks; (2) circular walking; 

and (3) the courtship display high stepping. Behaviors documented from the Haman 

Formation included: (1) a low-angle landing in which the hallux toe was dragged; (2) 

pecking and probing behaviors; and (3) flapping-assisted hopping during walking. 

The invertebrate trace fossil Cochlichnus was associated the avian tracks from the 

Lakota Formation. No traces of pecking or probing were associated with 

Cochlichnus. The invertebrate trace fossils Cochlichnus, Arenicholites, and 

Steinichnus were found associated the bird tracks from the Haman Formation. Probe 

and peck marks associated with the avian tracks and trackways from this Formation 

may indicate interactions between the birds and the invertebrates that produced the 

traces.  

 The distal end of the avian tarsometatarsus affects the angle of divarication of 

the toes and, therefore, how tracks and trackways will be produced. The greater the 

arc angle of the trochlea of the tarsometatarsus, the smaller the angle of divarication 

between the toes. This correlation is true only for anisodactyl birds as the zygodactyl 
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foot structure has a much greater angle of divarication and, therefore, a more complex 

arrangement of trochlea. The relationship between the angle of divarication and the 

arc angle of the trochlea can be used to retrodict the tarsometatarsal morphology and 

avian morphotype of the fossil tracks and trackways. There is no correlation between 

stride length and limb length or digit three length in birds; however, weak correlations 

exist between functional leg length and posture. Weak correlations also exist between 

avian functional leg length (divided by stride length) as compared to arboreality, 

method of locomotion, and method of feeding.  
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CHAPTER ONE. INTRODUCTION 

 

 This thesis provides a behavioral interpretation for two Lower Cretaceous bird 

tracksites and addresses the morphologic and anatomic variation in bird tracks and 

trackways. The thesis is divided into three manuscripts (chapters) and covers two 

main research areas—the Lower Cretaceous Lakota Formation of South Dakota, 

USA, and the Lower Cretaceous Haman Formation of South Korea (Chapter 2, 3). 

The third manuscript (Chapter 4) is on modern bird hindlimb anatomy that relates 

anatomical features surveyed from the University of Kansas Ornithology Collection 

to such diagnostic criteria as angle of divarication of the toes found in avian 

ichnofossils. The objectives of this thesis are to (1) interpret Early Cretaceous bird 

behaviors from examples of tracks and trackways; (2) examine the 

paleobiogeographic distribution of Early Cretaceous bird trace fossils and evaluate 

their geographic pattern with respect to early avian evolution; and (3) determine if 

there is any correlation between the angle of divarication and the different 

morphotypes of birds. Bird morphotypes may have a specific range of divarication 

angles that would help to identify potential tracemakers of Mesozoic and Cenozoic 

avian trace fossil.  

 Fossil tracks have been known in the Western Hemisphere since the middle of 

the 19th century (Hitchcock, 1836). These were large tridactyl tracks, originally 

named Ornithichnites and thought to belong to giant birds. Later studies disputed this, 

as the New Red Sandstone is Lower Jurassic in age (Rainforth, 2005). The first 
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description of a fossil bird track—one that is still disputed today—was based on a 

single track found in the Dakota Sandstone of Ellsworth County, Kansas (Snow, 

1886). Since that time, many localities containing bird tracks have been discovered 

worldwide, from Asia to North America (Lockley et al., 1992, 2006; Lim et al., 2000; 

Azuma et al., 2002; Anfinson et al., 2009). In the last 10 to 15 years, the number of 

known bird tracksites has greatly increased. This is due in part to a greater interest 

being taken in the subject, and also many new localities found in Asia. 

 The majority of avian ichnology research has been primarily concerned with 

distinguishing the tracks of birds from the tracks of dinosaurs. These studies focus on 

ichnotaxonomy—the classification of trace fossils—and overall description. While 

distinguishing criteria and classification are important, they overlook the primary 

purpose and greatest asset of ichnology: the fact that trace fossils—burrows, nests, 

borings, tracks, trackways and other traces—are the only direct record of organism 

behavior in the fossil record. The skeleton of a bird can tell us many things—if it was a 

wader or a bird of prey, if it depended more on flight or on walking—but the skeleton 

cannot always show what foraging methods the bird used, its courtship displays, or its 

interactions with other birds.  

 Bird tracks provide a great deal of insight into the life habits and evolution of 

the birds that created the trackways. Fossil trackways and traces are the only records 

of behavior that exist for extinct animals and plants; particularly for birds in that 

tracks can show evidence of flight, courtship, feeding and other behaviors.  Bird 

tracks and associated traces can tell scientists not only about feeding behavior of the 
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bird, but also such potential courtship displays as high-stepping in charadriiform 

birds, which leaves very clear and precise types of traces (Fig. 1), ground-nesting 

behaviors, territorial displays, or even types of bathing, such as dust wallows. 

Nonsediment interactions include woodpecker holes, cracked seed pods, broken-open 

shells, and arthropod carapaces. Coprolites also should be considered an important 

type of avian trace, if the bird is the type to leave pelleted feces. Owl pellets are well-

known fur-and-bone balls regurgitated by owls after partial digestion. Owl pellets 

have been reported from fossil sites as early as the Miocene (García-Alix et al., 2008) 

and are another important trace fossil left by birds. Most bird traces preserved in the 

fossil record are tracks and trackways, with some secondary features, such as dabble 

marks (Erickson 1967) or probe marks (Genise et al., 2009). Traces of flight are also 

preserved as takeoff and landing traces.  

 

Figure 1. An example of a high-stepping courtship display of a Kildeer. Modified 

from Elbroch and Marks (2001). The overlapping, paired steps terminate in a pair of 

tracks that are much deeper and more defined than the rest of the tracks in this 

sequence, as is typical of high-stepping behavior. 
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 The defining characters for bird tracks include the angle of divarication 

between toes II and IV (110–120o), the slenderness of the digit and claw impressions, 

the direction of curvature of the claws (away from the midline of the foot), foot 

length:foot width ratio, and track density (Lockley et al., 1992). Identification of 

tracks down to the ichnogeneric and ichnospecific level involves a diverse and 

changing set of criteria that has changed over the past two decades. An excellent 

compendium of these historical criteria has been published by de Valais and Melchor 

(2008).  

 There are several different avian morphotypes. Anisodactyl is the most 

common foot configuration for birds, with toes II, III and IV facing forward, and toe I 

reflexed, if it is present (Fig 2A). There are several different kinds of webbed feet, 

including the most common type of webbing, palmate, in which toes II, III and IV are 

joined by skin (Fig 2B), to semipalmate where only two toes are joined by webbing 

that may be restricted to only the proximal toe surface (Fig 2C), to totipalmate, in 

which all four toes are bound together by webbing (Fig 2D). Zygodactyl tracks differ 

from the standard avian foot configuration by having two toes facing forward, and 

two toes facing backwards (Fig 2E). This gives the foot and footprints a distinctive 

appearance—called a “K-shape” in the literature (Elbroch and Marks, 2001)—which 

can be formed in two different ways. In ground-running cuckoos, such as the Greater 

Roadrunner (Geococcyx californianus), the straight line of this K is formed on the 

outside of the foot by toes III and IV. Owls such as the Great-Horned Owl (Bubo 
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virginianus) on the other hand, create the line on the inside of the foot, with toes I and 

II becoming the straight edge (Elbroch and Marks, 2001). 

 

Figure 2. The different types of foot structures of birds and the tracks left by them. 

A.) Anisodactyl. B.) Palmate. C.) Semipalmate. D.) Totipalmate. E.) Zygodactyl. 

 

The earliest undisputed bird tracks are Berriasian in age (Early Cretaceous) 

and are interpreted as anisodactyl shorebird-like tracks (Fuentes Vidarte, 1996). 

Tracks of webbed-footed birds appear in the Aptian–Albian (late Early Cretaceous) 

(Lim et al., 2000, 2002; Kim et al., 2006) based on palynology studies (Kimura, 

2000). Zygodactyl tracks are also known from a single locality in the Lower 
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Cretaceous Tianjialou Formation of northeastern China, which is Aptian–Albian in 

age (Li et al., 2005; Lockley et al., 2007). 

 Probe marks and peck marks are common traces associated with modern 

shorebird tracks and trackways. Certain types of perching birds exhibit similar types 

of behaviors, such as gaping, in which the beak is pressed into sediment and opened 

(Elbroch and Marks, 2001). Swallows and other perching birds also scrape mud off of 

river banks for nest materials. Other modern traces created by birds other than 

shorebirds include dust baths and certain types of nests (Elbroch and Marks, 2001). 

 The avian hind limb is different from the hind limb of any other animal. The 

femur articulates with the pelvis at an angle nearly parallel with the ground, and is 

splayed out from the body, with the splay angle varying between genera (Hertel and 

Campbell, 2007). The fibula is reduced to a thin splint and is fused to the tibia. The 

astragalus and calcaneum have fused to the distal tibia/fibula; this is the tibiotarsus. 

The tarsometatarsus is made up of the fused distal tarsal and the fused metatarsals 

(George and Berger, 1966). The distal end of the tarsometatarsus has a series of three 

trochlea that articulate with the toes. These trochlea can be either arched or straight, 

with a great deal of variation present in their appearance. The variation in this bone 

affects the angle of divarication of the toes. 

 The femur is bound to the abdominal wall with muscle (Heilmann, 1927; Gill, 

1995). The femur is never vertical, as in theropod dinosaurs (Kaiser, 2007), instead 

projecting forward and slightly downward nearly parallel to the pelvis. The femur has 

little impact upon locomotion even in the most cursorially-adapted bird, the ostrich 
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(Struthio camelus). The femur abducts and adducts only at an angle of ~9.5o 

(Rubensen et al., 2007). Therefore birds are not hip-driven locomotors, but rather 

knee-driven (Hutchinson et al., 2008). The knee joint becomes the pivot point for leg 

movement, and nearly all forward motion is supplied by the tibiotarsus-

tarsometatarsus portion of the leg. The ankle joint effectively becomes the knee joint. 

This is unique among bipeds.  

 Ground locomotion among avian morphotypes varies. Some birds walk, 

others run, whereas others hop symmetrically or asymmetrically. Each method of 

locomotion would be preserved differently in the fossil record. The difficulty, 

however, lies with birds that walk and run. The transition between speeds in birds can 

be difficult to see in terms of stride and pace length (Verstappen et al., 1998, Farlow, 

2000). Other indicators of speed could be a reduction in the angle of divarication 

between the toes (Elbroch and Marks, 2001, Genise et al., 2009), however angle of 

divarication can also vary due to sediment grain size (Currie, 1981). Speed and any 

transitions between pace will be very difficult to determine from the fossil record. 

 Mesozoic bird tracks are found worldwide (Lockley et al., 1992) and are 

generally holarctic, with a notable exception of an Argentinean locality from the Late 

Triassic?-Early Jurassic? (Melchor et al., 2002, 2006; de Valais and Melchor, 2008; 

Genise et al., 2009) and a Upper Cretaceous (Campanian) site also found in Argentina 

(Coria et al., 2002). Early Cretaceous bird tracksites are mainly from shorelines 

adjacent to freshwater settings (Lim et al., 2002), with few continental-marine 

transitional zone deposits (Anfinson, 2004). North American bird tracks are found in 
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environments that are interpreted as having been shorelines in humid climates 

(Lockely, 2001). Bird tracks in Asia are found in fluvial or lacustrine environments 

similar to those in North America (Lim et al., 2000). This indicates that these birds 

were likely shorebirds—in this thesis the term shorebird refers to the general gross 

morphology, habitat, and behaviors as being similar to modern Charadriiformes. 

Such tracks probably do not represent true Charadriiform birds, as the earliest 

evidence of that particular order does not appear in the fossil record until the Eocene 

(Feduccia, 1996). 

 North America has only three known ichnogenera of bird tracks (Anfinson, 

2009). The first unquestionable bird tracks to be described from the Mesozoic were 

Ignotornis mcconneli, from the Dakota group of Colorado (Mehl, 1931). 

Aquatilavipes was the second North American avian ichnogenus to be discovered in 

1981, from the Lower Cretaceous Gething Formation in British Columbia, Canada 

(Currie, 1981). There are several sites with tracks attributed to Aquatilavipes in North 

America, including a site in the Lakota Formation (Lockley et al., 2001). A third 

ichnogenus has recently been identified as Koreanaornis from a locality in Utah 

(Anfinson, 2009). 

 The avian ichnofaunas of Asia are much more diverse and abundant than 

those of North America. Nine ichnogenera have been described from China, Japan 

and South Korea (Anfinson et al., 2009). All three North American ichnogenera are 

present, as well as others that include Jingdonornipes (Lockey et al., 1992), and the 

webbed tracks Uhangrichnus and Hwangsanipes (Yang et al., 1995).  
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CHAPTER TWO. A BEHAVIORAL ANALYSIS OF BIRD TRACKS FROM 

THE LOWER CRETACEOUS LAKOTA FORMATION, SOUTH DAKOTA, 

USA 

 
Currently in review as: 

 Falk, A. R., Hasiotis, S. T., Martin, L. D. A behavioral analysis of bird tracks 

from the    Lower Cretaceous Lakota Formation, South Dakota, 

USA: PALAIOS. 

 

 
ABSTRACT 

 
 Cretaceous bird tracks are known from both the eastern and western 

hemispheres. This study documents significant behaviors observed in the shorebird 

track morphotype from the Chilson Member of the Lower Cretaceous Lakota 

Formation near Hermosa, South Dakota. The tracks used in this study were 

previously described by Lockley et al. (2001) and assigned to Aquatilavipes, though 

no behavioral interpretations were made. The birds that produced the Lakota 

Formation tracks were most likely medium-sized, shorebirdlike ornithurine birds 

resembling the extant genus Chadrius, based on morphologic and behavioral 

interpretations.  These tracks and trackways represent such behaviors as feeding, 

flight, and courtship. Invertebrate traces assigned to the ichnogenus Cochlichnus were 

found with the tracks.  No avian feeding traces (e.g. probe or scratch marks) were 

found associated with the tracks. Behavior is an important factor in Mesozoic birds 
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because the criteria used to separate theropod and bird tracks overlap in some 

instances, including the angle of divarication. Many bird behaviors have the potential 

to be preserved as trace fossils, including locomotion and such feeding-related 

behaviors as circular or curvilinear walking or probe marks left by the beak of the 

bird, all of which can be used as proxies for body fossils that represent organisms at 

the class, ordinal, or family level.  The Lakota Formation tracks as well as other Early 

Cretaceous ornithurine tracks and trackways suggest that shorebird-like ornithurines 

were widely distributed by the Early Cretaceous and likely represent an earlier origin 

of this group. 

 

INTRODUCTION 

This paper interprets the behaviors of Early Cretaceous shorebird-like birds 

from a tracksite in the Chilson Member of the Lakota Formation near Hermosa, South 

Dakota (Fig. 3). The tracks and trackways, found on massive sandstone blocks, were 

originally described by Lockley et al. (2001) and assigned to Aquatilavipes, though 

no behavioral analysis was performed. The behavioral interpretations of these tracks 

and trackways presented here provide important clues to the evolution of early 

ornithurine birds and their paleogeographic distribution. 



17 
 

 

Figure 3. Locality map. Star indicates study site. 

 Bird tracks are present worldwide from eastern Asia to central North America 

by the Early Cretaceous (Lockley et al., 1992). Early Cretaceous bird tracksites are 

preserved mainly in freshwater deposits (Lim et al., 2002), with a few transitional-

zone, track-bearing deposits deltaic deposits in South Korea (Anfinson, 2004). Early 

Cretaceous tracks are morphologically similar to modern tracks produced by the order 

Charadriiformes—shorebirds (Kim et al., 2006).  Web-footed birds also appear by the 

Aptian (Kim et al., 2006) and have been attributed to birds that are morphologically 

similar to avocets, which are also in the Charadriiformes (Lim et al., 2002). It is 

possible to infer the behaviors of the Lakota Formation trackways based on the 

morphology of modern and ancient bird tracks, and the similarity of modern and 

ancient environments.  The behavior of the Early Cretaceous birds represented by the 

Lakota Formation trackways, however, may not be identical to the behaviors of such 

modern shorebirds as sandpipers, curlews, and plovers.  Note that in this paper, 

reference to the shorebird morphotype does not imply a relationship to the extant 

order of shorebirds Charadriiformes.  
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 Previous studies of Early Cretaceous bird trackways have focused on 

morphometric measurements and ichnotaxonomy. Studies interpreting behavior from 

fossil bird tracks have been conducted on sites in the Eocene Green River Formation 

(Erickson, 1967; Yang et al., 1995). A recent study by Genise et al. (2009) observed 

modern shorebirds in ephemeral ponds in the mid-eastern Atlantic coast of Argentina 

and provide behavioral criteria for modern shorebirds that can be correlated to ancient 

tracks.  Their study, however, does not extend to such breeding and courtship 

behaviors as the dancing of cranes or the high-stepping display in plovers (Chadrius) 

that produce distinctive track impressions and patterns (Elbroch and Marks, 2001). 

 

GEOLOGIC SETTING 

 In the study area, the Lower Cretaceous Lakota Formation unconformably 

overlies the Upper Jurassic Morrison Formation (Dandavati, 1981).  The Lakota 

Formation consists of three members in the southern and eastern Black Hills: the 

lower Chilson Member, the middle Minnewaste Limestone Member, and the upper 

Fuson Member. The Chilson Member is composed of sandstones that fine upwards 

into thick shale beds, and has been interpreted as a meandering river deposit, with 

broad channels and floodplains. The Minnewaste Limestone Member is a limestone 

that is lacustrine in origin, present only in the southern portion of the outcrops of the 

Lakota Formation. The Fuson Member is composed predominately of mudstones, and 

has been interpreted as a tidal inlet, tidal flat or marsh, depending on locality. The 



19 
 

Minnewaste Limestone Member outcrops only in the southern Black Hills 

(Dandavati, 1981).  

The tracks and trackways used in this study come from the Chilson Member 

near Hermosa, South Dakota, in the extreme southeastern Black Hills (Fig. 3). This 

tracksite is on private property on large sandstone slabs that separated from a vertical 

cliff face and lay on the ground in various orientations. A stratigraphic section was 

measured to place the fallen bird-track-bearing block on the cliff face and determine 

original stratigraphic position (Fig. 4). The original stratigraphic position of the block 

was determined by comparing its thickness and bed forms with the in situ units.  

The track-bearing horizon lies near the top of unit 4 (Fig. 4). Areas of cross-

bedding and wavy bedding are clearly visible within the unit. The sandstone is fine to 

medium grained, rounded and well sorted with small, rounded and oxidized clay-

clasts present. Within the massive sand are very small layers of finer material (fine 

sand or silt) present above the ripple-marked layers. These finer grained layers are 

extremely thin and are not readily visible on the cliff face. Small invertebrate surface 

traces (Haplotichnus) were noted on one of the ripple-marked layers below the track-

bearing horizon. Soft-sediment deformation, especially just below the track-bearing 

horizon, is common.  
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Figure 4. Stratigraphic section of study site. 

 

 

METHODS AND MATERIALS 

Bird tracks and trackways from the float block were molded as three separate 

peels (labeled A, B, and C) using two coats of thixotropic silicon mixed on site in a 

bucket.  The first coat was a thin layer to cover the tracks and capture the fine detail. 

A second coat was applied to thicken and strengthen the original coat. The silicon 
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was allowed to cure for 24 hours before it was removed and returned to the 

University of Kansas Vertebrate Paleontology Division (KUVP 150474).  In the lab, 

master casts from the original silicon peels was created by painting Dynacast© plastic 

on with a small brush. A total of 48 tracks were counted on the peels taken from the 

block with the majority of the bird tracks. 

 The tracks on the master casts and the peels were examined for such 

morphologic details as claw, pad, and skin impressions. The peels and casts were also 

closely examined for invertebrate traces and such bird-feeding traces as dabble marks 

and probe marks. A second set of casts for marking gross morphologic features of the 

tracks and trackways including angle of divarication, stride length, pace angulation, 

and digit length was produced from the peels (Fig. 5). The tracks on this set of casts 

were painted different colors to differentiate recognizable complete bird tracks, 

incomplete bird tracks, dinosaur tracks, and tracks of unknown origin prior to making 

measurements (Fig. 6).  Foot width, foot length, and digit length and angle of 

divarication, stride length, pace angulation, and angle of divarication from midline 

(ADM) (Fig. 5) were established and measured by drawing on the casts with a felt-tip 

marker and straightedge.  Bird tracks were distinguished from dinosaur tracks on the 

basis of divarication angle and foot length:foot width ratios (Currie, 1981; Lockley et 

al., 1992). Divarication angle was measured from the midline of each toe where the 

toe joins with the body out to the first joint; this prevents any rotation of the distal 

ends of the toes from having an effect on the angle of divarication. Foot width was 

measured from the distal end of toe II to the distal end of toe IV. Foot length was 
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measured from the base of the metatarsal pad to the tip of toe III. Digit length was 

measured from the base of the toe impression to the tip of the toe impression for each 

toe. Stride length and pace measurements followed Hasiotis et al. (2007). The 

behaviors that the tracks represent were determined using criteria from Elbroch and 

Marks (2001) and Genise et al. (2009). 
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Figure 5. (Previous page) Morphologic measurements carried out on the plastic casts 

made from the silicon peels. A.) Single-track measurements. B.) Multi-track 

measurements. 
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Figure 6. (Previous page) Photographs of the plastic casts, with the tracks painted 

with acrylic paint for clearer imaging. A.) Peel A, scale= 13 cm. B.) Peel B, scale= 12 

cm. C.) Peel C, scale= 12 cm. 

 

RESULTS 

Of the 48 the tracks studied on the peels, 3 were dinosaur tracks, 27 were 

complete bird tracks, 13 were partial bird tracks, and one track could not be identified 

(Table 1). All tracks are preserved in concave epirelief and were determined to be 

surface traces, because of the clear pad preservation in a theropod track (Fig. 7) and 

the clear claw impressions on several of the bird tracks (Fig. 8).  The invertebrate 

trace fossil Cochlichnus was found on the rock surface from which peel A was taken 

(Fig. 8).  One dinosaur track on Peel A was tentatively identified as a 

hypsilophodontid ornithopod dinosaur (Fig. 5A, track 2); the other tracks were a 

complete track and partial theropod track that could not be specifically assigned to 

any taxon (Fig. 6A, tracks 1, 3). Toe I is absent from all bird tracks present on each 

peel, indicating an elevated, reduced, or absent hallux toe. The metatarsal pad is 

lacking in the majority of tracks (Fig. 8).  
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Figure 7. Theropod track showing the clear outline of the pad. Scale=2 cm. 

 

 

Figure 8. Typical bird track from the studied slab, showing lack of a metatarsal pad 

and toe I, and the clarity of claw impressions. Scale=2 cm. Note the Cochlichnus 

traces surrounding the track. Abbv.— p = pad c = claw, Co = Cochlichnus. 
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Table 1 
(in 
mm) 

       Peel A 
        

Number 
II-III 
(o) III-IV(o) II-IV(o) 

FL 
(mm) FW(mm) II(mm) III(mm) IV(mm) 

1 45 12 57 154* 135 
   4 38 58 96 39* 45 11 25 19 

5 39 75 111 42 49 22 33 24 
6 85 65 150 33* 64 14 27 24 
7 47 68 115 36 43 7 31 22 
8 25 80 105 40* 48 18 33 29 
9 65 58 123 45* 49 15 32 20 

10 61 60 121 47 57 18 34 32 
11 62 45 107 45* 53 11 39 20 
12 34 63 97 47* 50 18 41 30 
13 36 52 88 43* 47 15 27 22 
14 39 46 85 42* 48 17 31 28 
15 27 42 69 46* 46 11 26 16 
16 46 60 106 42* 57 17 25 20 
17 - 48 - - - - 16 13 
18 60 54 114 46* 52 12 34 17 
19 - 65 - - - - 21 16 
20 52 70 122 35* 44 15 27 14 

         
         Peel B 

        Number II-III III-IV II-IV FL FW II III IV 
1 67 69 136 46 55 19 34 22 
2 - 61 - - - - 41 23 
3 54 66 120 37 40 16 26 20 
4 41 49 90 46 49 24 34 29 

         
         Peel C 

        Number II-III III-IV II-IV FL FW II III IV 
1 42 53 95 35 42 16 20 16 
2 94 100 194 39* 47 8 28 19 
3 52 83 135 43* 53 25 31 17 
4 69 69 130 38 46 17 30 21 
5 40 48 88 41* 43 16 40 20 
6 67 - - 35 - 20* 30 - 
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7 43 52 95 43 52 17 40 15 
8 52 - - 39* - 22 31 - 
9 - 39 - - - - 32 24 

10 83 - - - - 23 23 - 
11 - 65 - - - - 30 20 
12 44 57 101 37 53 20 30 29 
13 59 46 105 45* 49 13 30 19 
14 45 62 107 48* 57 28 34 18 
15 - 53 - - - - 25 23 
16 76 - - - - 28 26 - 
17 71 - - - - 31 21 - 
18 50 78 128 40* 49 6 25 24 
19 44 61 105 40* 49 19 29(est) 27 
20 - 70 - - - - - 28 
21 50 51 101 43* 50 22 34 20 
22 50 32 82 45* 57 21 34 25 
23 - 50 - - - - 35 20 

 

Table 1. Single-track measurements taken for all bird tracks used in the study. Track 

1 on Peel A is the complete theropod track. 

 

Peel A 

 Peel A is the largest peel and contains 17 complete and partial bird tracks 

(Fig. 6A). This peel was located in the lower right side of the block. Most tracks are 

either single or in pairs, rendering stride length, pace width, and pace length 

impossible to measure.  The average angle of divarication between toes II and IV was 

107.3°. The average foot length:foot width ratio of the avian tracks is 0.841. The 

theropod dinosaur track foot length:foot width ratio is 1.14.  

 The most interesting trackway is represented by tracks 8–12, which have an 

average stride length of 27.3 cm, a pace length of 13.1 cm, and terminate in a nearly 
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parallel pair of tracks, 4.5 cm apart. The average angle of divarication for tracks 8–12 

is 110.6o. The pace length of tracks 11–12 is 6.2 cm, and the pace width is 4.5 cm, 

compared to an average 2.3 cm pace width of tracks 8–10. No tracks are present after 

the occurrence of these two tracks. The trackway represented by tracks 9–12 has an 

average ADM of 3.5o. Track 8, which appears to be turning into the straight-line 

trackway, has an ADM of 14o. 

 Tracks 13–15 also represent a fairly straight path. The stride length of tracks 

13–15 is 30.5 cm. The angle of divarication for tracks 13–15 is 80.7o. These tracks 

have an average ADM of 22 cm, an average pace length of 17.8 cm, and an average 

pace width of 6.15 cm.  

 

Peel B 

 Peel B is the smallest peel and has only four bird tracks, three complete and 

one partial (Fig 6B). The average angle of divarication for these tracks is 54o, and the 

average foot length:foot width ratio is 0.892. 

 

Peel C 

 Peel C has the largest concentration of bird tracks, with 23 bird tracks: 13 

complete tracks and 10 partial tracks (Fig 6C). Many tracks are either single or 

paired, making stride length a less-commonly used measurement; the most common 

measurements were pace length and pace width. There was also a single track that 

most likely represented an overprinted bird track; the track was not measured due to 
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the lack of clarity in the toe impressions. Overprinted trackways are represented by 

tracks 7–10 and 18–20, but were measurable to a certain extent. The average angle of 

divarication between toes II and IV for the whole peel is 112.8o. The foot width:foot 

length ratio is 0.832. Tracks 2–4 are a straight-path series with a stride length of 10.8 

cm (Table 1). The average pace width is 0.85 cm, and the average pace is 5.55 cm, 

with an average ADM of 10o. The average ADM is highly skewed by the first track, 

which is 27o; the others are 0o and 3o, respectively. Tracks 13–14 had no stride, and 

the pace is 6.8 cm. The pace width is 4.6 cm and the average ADM is 1o. Tracks 15–

16 have a pace of 7.9 cm and the pace width is 2.6 cm. The average ADM is 7o. 

Tracks 5–6 are overstepping each other and directly in line, with toes III overlapping 

and the individual toe III impressions indistinguishable. Tracks 18–20 are very 

similar, but the tracks themselves are more pronounced and deeper in impression. 

Stride length, pace length, pace width and ADM were not measured on these tracks 

due to the difficulty in accurately separating the tracks and determining the midline, 

which may not be present. 

 

DISCUSSION 

Behaviors present 

Many of the behaviors present on Peels A and C do not represent straight-line 

walking. No behavioral patterns can be interpreted from Peel B because of the small 

amount of tracks and their scattered affinity; however, the foot length:foot width ratio 

indicates that the tracks on Peel B are avian in origin.  
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 Tracks 11–12 in trackway 8–12 on Peel A have a pace length of 6.2 cm—a 

much smaller pace length than the other tracks present—and a wider pace width than 

any of the other tracks in the trackway consisting of tracks 8–12. This, coupled with 

the fact that there are no tracks beyond the paired track, suggests that this trackway 

represents a takeoff trackway (Fig 9A). This trackway pattern is similar to the traces 

left by an extant bird that is standing still or taking off (Genise et al., 2009, fig. 7R, 

U). The terminal tracks of a takeoff trackway—termed Volichnia by Müller  (1962)—

are generally deeper than the other tracks present in the trackway (Genise et al., 

2009); however, this can be difficult to determine, especially in the fossil record. 

Birds tend to have their feet nearly horizontal when taking off or landing (Genise et 

al., 2009). This is likely to prevent injury to the legs during landing or to get the 

greatest amount of upward force during the push off of the ground. During a running 

takeoff these paired tracks may not be present (Genise et al., 2009, fig. 7S). The 

presence of side-by side tracks at the end of a trackway is a good indicator of flight. 

 Tracks 13–15 (Fig 9B) on Peel A have a slightly longer stride length than the 

average stride of 8–12. If the stride length of the take-off tracks is excluded from the 

average stride length of tracks 8–12, the stride lengths of 8–12 and 13–15 are 

identical, with a value of 30.5 cm. The average angle of divarication is much smaller 

for tracks 13–15 (Table 1), and the average toe length is also much smaller for tracks 

13–15; these measurements are indicative of running shorebirds (Elbroch and Marks, 

2001; Genise et al., 2009). Stride length usually tells us about the relative speed at 

which an organism was moving; however, the stride length of birds does not always 
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differ with an increase or decrease in speed (Verstappen, 1998; Farlow, 2000). The 

reduction in the angle of divarication of tracks 13–15 suggests an increase in speed 

despite the fact that the stride length does not change significantly.  

 

Figure 9. Schematic drawings of trackways composed of tracks 8–12 and 13–15 from 

peel A. A.) Outline of tracks 8-12. B.) Outline of tracks 13-15. 
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Tracks 7–10 on Peel C represent a series of overstepped tracks made by 

circular walking and one double-step (Fig. 10).  The order of track production is not 

easy to distinguish due to poorer preservation, likely due to coarseness of the 

sediment. It is possible, however, to infer which track came first by determining 

whether it is a right or left foot and, therefore, where the missing toes should be 

located. Track 7 was likely the last track to be produced, as it is relatively the most 

complete track. Track 9 was likely the first track produced, as it is missing toe II.   

Track 10 followed, as toe IV is present and overlaps the position where the toe II of 

track 9 would have been placed. Track 9 is also missing toe II, however, and is 

overlapped by the complete track 7. Track 8 is difficult to determine, as it is almost 

entirely covered by track 7. The toe II of tracks 7 and 8 are nearly indistinguishable. 

Tracks 7–10 is interpreted as a circular feeding trackway, which is common foraging 

method of extant shorebirds and wading birds (e.g., Elbroch and Marks, 2001).   

These birds feed by making circular or back and forth movements while probing or 

sieving the sediment for small crustaceans or other invertebrates, which commonly 

results in overprinted tracks (e.g., Elbroch and Marks, 2001; Genise et al., 2009, fig. 

G). 
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Figure 10. Circular walking trackway from peel C. Tracks are numbered in 

chronologic order with track numbers in parentheses. Scale bar=4 cm. 

 

 On Peel C, tracks 18–20 represent an overstepped trackway produced in a 

different manner than tracks 7-10. This trackway was produced by a bird walking 

over its own tracks, and may preserve a type of shorebird courtship behavior that is 

seen commonly in plovers of the Chadrius genus, including the Killdeer (Chadrius 

vociferous), today (Fig. 11). This behavior is called high stepping, where the male 

bird approaches a female bird with short, stiff steps, raising the feet higher than 

normal (Elbroch and Marks, 2001). After a relatively short distance, the male then 

slams both feet down and leaps up into the air, resulting in noticeably clearer and 

deeper tracks (Fig 11A). In the case of tracks 18-20, 18 was produced first, then 19, 

then 20; the toe III of 19 was partially covered by the metatarsal pad of track 20. The 

trace of high-stepping as seen in the Chadrius plovers is a paired trace. The trace on 

Peel C has only one set of tracks present and is not paired (Fig 11C). It is possible 
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that this trackway was overstepped by a different bird, or the same bird re-walking its 

tracks. It is also possible, however, that the other foot was not preserved or had 

weathered off of the slab.  

 

Figure 11. (Previous page) Examples of the courtship display high stepping and its 

fossil counterpart. A.) High-stepping display as seen in the Killdeer, Charadrius 

vociferous (photo from Elbroch and Marks, 2001). B.) Line drawing of A. C.) Traces 

from Peel C, interpreted as a potential high-step or similar courtship behavior. 

 

 No probe or drag marks are present on any of the peels. This may be due to 

preservation with respect to compaction or coarseness of the sediment. Most birds do 

not probe deeply into the sediment, and only those with the longest bills, such as 

Dowitchers and Curlews, can reach depths of > 4 cm (Gill, 1995). Plovers and other 
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small shorebirds feed mainly by surface pecking or probing < 1 cm into the sediment 

(Gill, 1995). 

 The behaviors present on Peels A and C are consistent with our hypothesis of 

an avian origin for these tracks and trackways.  Traces of flight are the greatest 

indicators of an avian tracemaker (Genise et al., 2009) and the presence of a trackway 

interpreted to represent a take-off also strongly suggests an avian origin. The ground-

to-air takeoff necessary for this type of trackway suggests that the tracemaker was an 

ornithurine bird with a tri-osseal pulley system (Jenkins, 1993). The overstepping of 

tracks and the high-stepping display also indicate a shorebird-like tracemaker. 

Shorebirds and other birds are unique in their ground-based behavior. If a bird is on 

the ground, it is most likely for foraging, feeding, or courtship behaviors. These 

behaviors will be reflected in the tracks and trackways produced by the birds, as well 

as by associated traces of probing and scratching. 

 

Trackmaker Identification 

Ornithurine birds that resembled medium-sized plovers from the genus 

Chadrius likely produced the bird tracks from the Lower Cretaceous Lakota 

Formation. These Early Cretaceous birds likely had similar feeding and courtship 

behaviors to such plovers as the Killdeer. These birds also had to have the complex 

flight mechanism necessary for takeoff from a flat surface. Ornithurine birds 

developed a highly modified dorso-lateral-facing glenoid to permit rotation of the 

wing back over the body and providing space for the downstroke of the wing 
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(Jenkins, 1993), allowing them to take off from a flat surface (e.g., pointbar or lake 

shoreline) without damaging their primary feathers at the wingtips. These tracks and 

trackways were likely not produced by early enantiornthine birds who had a poorly 

developed sternal keel (Zhou, 2002), or lacked one entirely (Zhang et al., 2004), 

indicating that they would were less capable of taking off from flat surfaces. Some 

enantiornithurine birds also have a different foot structure than ornithurine birds, one 

more suited to arboreal living, in which toe IV is often reduced. This morphology 

should be prominent in their tracks and trackways (Lim et al., 2002), making them 

distinct from ornithurine tracks.  

 

Paleobiogeographic and Evolutionary Implications of Early Cretaceous Bird Tracks 

The presence of ornithurine bird tracks in the Early Cretaceous of North 

America (Currie, 1981; Lockley et al., 1992; Lockley et al., 2001; Anfinson, 2004) 

and throughout Asia (Lockley and Matsukawa, 1998; Azuma et al., 2002) show a 

worldwide distribution of these birds at this time. Many of these trackways were 

produced by shorebird-like birds (e.g., Currie, 1981; Lim et al. 2002; Anfinson, 2004; 

Lockley et al., 2006). This implies an early evolution of ornithurine birds (e.g., 

Martin, 1983) to facilitate this distribution or an earlier evolution of long-distance 

migration as part of the behavior of Early Cretaceous birds, which has not yet been 

proposed in the literature.  Baker et al. (2007) suggested that the order 

Charadriiformes arose sometime in the Late Cretaceous based on molecular 
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phylogeny of modern shorebirds.  It might be possible that the Lakota Formation 

avian tracks and trackways are closely related to the Charadriiformes. 

Lower Cretaceous avian tracks and trackways are also important to 

understanding the early evolution of birds because they fill in the gaps that result 

from the lack of avian body fossils.  Birds are divided into two major groups: the 

primitive Sauriurae and the more advanced Ornithurae (Martin, 1983). The most 

basal bird, Archaeopteryx, appears in the Late Jurassic of Germany (Feduccia, 1996) 

and belongs to the Sauriurae. The dichotomy between ornithurine and saurine birds 

would have happened very early in avian evolution (Martin, 1983). This dichotomy 

may have taken place before or during the breakup of Pangea in order to explain the 

presence of highly advanced-appearing shorebird tracks (Ornithurae) worldwide in 

the Early Cretaceous, assuming these that early birds were not capable of long 

distance or migrational flight behavior. Our supposition is supported by Feduccia 

(1996) and Martin (2004), whom suggested that the origin of birds extended back into 

the Triassic.  The birdlike tracks described from Upper Triassic?–Lower Jurassic? 

deposits from Argentina by Melchor et al. (2002), Melchor and deValais (2006) and 

deValais and Melchor (2008) have been interpreted as birdlike theropods despite a 

high angle of divarication (115º), a reflexed hallux, and behaviors indicative of 

ornithurine birds, including locomotion, probing, and flight (landing traces).  

Alternatively the Argentinean tracks and trackways represent: (1) pseudosuchians 

(false reptiles) with foot and hindlimb morphology similar to shorebird-like 

ornithurine birds; (2) traces in rock units that are actually younger than Early Jurassic, 
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and more akin to Early or Late Cretaceous in age; or (3) may actually represent bird 

tracks and support an earlier evolution of birds in the Triassic.  The latter case of trace 

fossils occurring earlier in the rock record than their respective body fossils is more 

common than originally thought and can be useful in reconstructing the evolution and 

radiation of a variety of continental and marine organisms (e.g., Hasiotis, 2003, 2004, 

2008, and references therein). 

 

CONCLUSIONS 

 The bird tracks from the Lakota Formation were made by shorebird-like 

ornithurine birds. The behaviors interpreted from these tracks and trackways—

evidence of flight, feeding and courtship—are consistent with this interpretation, as 

are the morphologic measurements including average angle of divarication and foot 

length:foot width ratio. The evidence of ornithurine birds worldwide in the Early 

Cretaceous implies either the evolution of long-distance migration or an earlier origin 

of ornithurine birds to permit dispersal. 
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CHAPTER THREE. A PRELIMINARY BEHAVIORAL STUDY OF 

EARLY CRETACEOUS BIRD TRACKS FROM SOUTH KOREA 

 
Currently in review as: 

 Falk, A. R., Hasiotis, S. T., Martin, L. D. A preliminary behavioral study of 

Early Cretaceous bird tracks from South Korea: Geologica Croatica. 

 
ABSTRACT 

The bird track localities of South Korea are among the richest and most 

diverse avian tracksites in the world, but no behavioral studies have been conducted. 

This preliminary study interprets avian behaviors from casts (KS001 and KS064) 

from two localities in the Lower Cretaceous Haman Formation. The Haman 

Formation is Aptian–Albian in age, and contains the oldest known tracks of webbed-

footed birds. It also contains thousands of tracks of small, shorebird-like ornithurines. 

Sixty-one non-webbed tracks were measured, with the cast, KS001, containing the 

majority of these tracks. The majority of tracks from KS001 are overprinted. Probing 

and pecking behaviors associated with feeding were interpreted from this cast. These 

behaviors may be associated with invertebrate trace fossils interpreted as those of 

insect larvae and annelids. Cast KS064 is different in that the number of overlapping 

tracks is greatly reduced, and individual trackways can be distinguished. Landing 

trackways are present on this cast including elongated hallux drag marks on several of 

the tracks. Hallux drags while landing represent a low-angle landing. One trackway 

with long hallux marks may represent some sort of pathology or injury as the hallux 
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impressions are found only on the right foot. Flapping-aided hopping is also present 

on KS064. These casts are a window into a much larger picture of an Early 

Cretaceous avian community in South Korea, with a greater opportunity for more 

study on Early Cretaceous avian behavior. 

 

INTRODUCTION 

Early Cretaceous bird tracks from Asia are well known from China (Lockley 

et al., 2006; Zhang et al., 2006; Lockley, 2007), South Korea (Lim et al., 2000, 2002), 

and Japan (Azuma et al., 2002). These deposits are unique because of numerous, 

well-preserved tracks and the expanse of these track-bearing localities. The localities 

of the Haman and Jindong formations in Kyongsang basin, South Korea, have 

extensive outcrops and a high density of bird tracks. Thousands of bird tracks are 

exposed in three localities in the Haman Formation, making them among the largest 

bird tracksites in the world.  Despite the expanse and number of tracks, no behavioral 

studies have been conducted.  This paper provides a preliminary description of some 

of the behavioral aspects of Early Cretaceous bird tracks from Haman Formation 

(Fig. 12) and compares them to a modern analog, Killdeer (Chadrius vociferous) in 

the order Charadriiformes (shorebirds), which exhibit typical shorebird behaviors that 

may be similar to behaviors preserved in Lower Cretaceous deposits.  
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Figure 12. (Previous page) Photographs of the casts used, and corresponding photos 

of the slabs they represent. A.) KS001 B.) KS064 

 

 Here the term shorebird refers to an avian morphotype rather than the order 

Charadriiformes. Modern avian genera do not appear in the fossil record until the 

Eocene (Feduccia, 1996), and it is unlikely that the shorebirds present in the Early 

Cretaceous are the same shorebirds taxonomically. 

 Bird tracks from the Haman and Jindong formations consist of both webbed 

and non-webbed tracks (Lim, 2002). The webbed-footed tracks are interpreted as 

being similar to avocets (Charadriiformes), with the webbing restricted to the 

proximal portion of digits II–IV. These, along with other sites in South Korea (Kim et 

al., 2006), are the oldest webbed-footed bird tracks known (Lim et al., 2000, 2002).  

 

METHODS 
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 The Cretaceous bird tracks used in this study come from two latex casts taken 

from the Haman Formation in South Korea (Lim et al., 2000). Jong-Doeck Lim from 

the National Heritage Museum in Daejeon provided the two casts (specimen numbers 

KS064 and KS001; Fig. 1) to the University of Kansas Vertebrate Paleontology 

division. These casts were photocopied and the tracks were individually numbered 

and outlined on the photocopies. Angles of divarication were measured between toes 

II and III, III and IV, and II and IV (Fig. 13). Foot length:foot width ratios were also 

measured and entered into an excel spreadsheet. Stride length, pace length and pace 

width were measured following Leonardi (1987) and Hasiotis et al. (2007). A total of 

61 tracks were measured, 49 complete tracks and 12 incomplete tracks. 

 

Figure 13. How to measure angle of divarication, stride length, pace length, pace 

width, and angle of divarication from the midline. 

 

Plaster casts of tracks of the Killdeer taken from a floodplain near Lake Erie 

Metropark in Brownstown, Michigan, USA, in the summer of 2008 were used to 

compare modern shorebird track morphology and behaviors to the Early Cretaceous 
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tracks. The cast used measured 32 x 41 cm. Behaviors represented by the Killdeer 

tracks were recorded using a video camera, and temporal and spatial relations of the 

birds with respect to track production and position of the tracks to the grass line were 

documented.  Foot length:foot width ratios were also measured from the cast. 

 Multitrack measurements (stride length, pace length, pace width, and angle of 

divarication from midline) were taken only on KS064. No multitrack measurements 

were taken on KS001 due to the high density of tracks on the casts that precluded the 

identification of individual trackways.  

 The patterns of the Korean bird tracks and their morphologies were compared 

to the patterns produced by specific behaviors of shorebirds recorded in a recent study 

by Genise et al. (2009). Their study of sandpiper behaviors was used primarily to 

examine the casts taken from the Haman Formation. The behaviors that the Korean 

tracks represent were also determined using criteria from Elbroch and Marks (2001) 

as a secondary source. 

 

RESULTS 

 Out of 61 tracks studied 14 tracks had hallux impressions. Five trackways 

were distinguished on KS064, which had a low density of tracks (4 tracks/10 cm2). 

No trackways were distinguished on KS001, however, it had the highest density of 

tracks (11 tracks/10 cm2). 

 

KS064 
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 KS064 contains a total of 19 complete tracks. This cast contains only one 

overlapping track, track 17, which overlaps slightly with track 13. The average angle 

of divarication between toes II and IV is 112o. The average foot length:foot width 

ratio is 0.761. The majority of the tracks have hallux impressions; those tracks are 1, 

3, 4, 5, 6, 7, 9, 13, 14 and 15 (Fig. 14).  

 

Figure 14. Trackways on KS064. 
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 Toe III is the longest toe on average, with a length of 18.7 mm. Toe II has an 

average length of 14.5 mm, and toe IV averages 16.97 mm long. Twelve tracks on 

this cast had hallux impressions, up to 15 mm long (Table 2). 

 

Tabl
e 2 

             KS06
4 

             

  

II-
III 

III
-
IV 

II-
IV I II III IV FL FW 

FL:F
W 

  
1 R 59 

5
8 

11
6 9 22 24 22 32 

40.
7 0.786 

Avg 
angle 112 

  

II-
III 

III
-
IV 

II-
IV I II III IV FL FW 

FL:F
W 

  
2 L 75 

4
2 

11
7 - 16 18.6 21 27 

42.
5 

0.632
3 

Avg 
II 

14.33157
89 

3 L 62 
4
0 

10
2 13 12.5 20 14 30.6 

32.
3 

0.947
4 

Avg 
III 

18.79473
6 

4 R 60 
5
2 

11
2 - 11 22 17 30.7 

31.
7 

0.968
5 

Avg 
IV 16.5 

5 L 60 
4
5 

10
2 6 16 20 19 29.1 

35.
2 

0.826
7 

Avg 
FL/F
W 

0.760594
7 

6 R 70 
6
2 

13
2 - 15.5 19 17.5 24.6 35 

0.702
9 

  
7 L 65 

5
8 

12
3 10 20.2 20.5 18 26.7 

38.
1 

0.700
8 

  
8 L 47 

5
4 

10
1 4 11 18 18.5 22.4 

29.
7 

0.754
2 

  
9 

L
? 56 

4
8 

10
4 ? 12 10.5 14.5 16 

40.
4 0.396 

  
10 L 50 
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6 
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5 
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6
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4
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6 
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6
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42 R - 

5
2 - - 
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0.446
4 

   

Table 2—Measurements taken on KS001 and KS064. 

 

 Track 18 is the smallest track on the cast. While it does not have the smallest 

single measurement (for instance, track 9 has a smaller foot length), its combined 
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measurements show that it was significantly smaller than other tracks. It has the 

smallest foot width of any track, and the second-smallest angle of divarication (Table 

2).  

 There are five discernable trackways on KS064. Trackway I consists of tracks 

3, 5, 6, and 7. Trackway II consists of tracks 4 and 10. Trackway III contains tracks 8, 

9, 12, and 13. Trackway IV consists of tracks 14, 15, and 16. Trackway V contains 

tracks 17, 1, and 2 (Table 3; Fig. 14).  

Table 3 
       KS064 (in mm) 

      Trackway 
numbers 

Stride 
length 

Pace 
Length 

Pace 
Width 

 
Number 

AOD from 
Midline 

(in 
degrees) 

3--7 (3-6): 145 (3-5): 57 (3-5): 19 
 

1 10 
 

 
(5-7): 126 (5-6): 85.5 (5-6): 4 

 
2 5 

 
  

(6-7): 41 (6-7): 4.5 
 

3 22 
 Trackway 

numbers 
Stride 
length 

Pace 
Length 

Pace 
Width 

 
Number 

AOD from 
Midline 

(in 
degrees) 

4--10 - 82 1 
 

4 0 
 8--13 (8-12): 108 (8-9): 56 (8-9): 33 

 
5 20 

 
 

(9-13): 111 (9-12): 55 (9-12): 31 
 

6 0 
 

  
(12-13): 54 

(12-13): 
17 

 
7 1 

 
14--16 85 (14-15):34 

(14-15): 
14.5 

 
8 34 

 

  
(15-16):51 

(15-
16:21.5 

 
9 32 

 17--2 153 (17-1): 85 (17-1): 28 
 

10 0 
 

        
  

(1-2): 55 (1-2) 31 
 

11 - 
 

     
12 17 

 
     

13 3 
 

     
14 2 

 
     

15 11 
 

     
16 3 

 
     

17 35 
  

Table 3. Multi-track measurements taken on KS064. 
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 Trackway I (Fig. 14) has an average stride length of 135.5 mm, an average 

pace length of 61.17 mm and an average pace width of 9.17 mm. The highest pace 

length is 85.5 mm between tracks 5 and 6, and the smallest pace width is 41 mm, 

between tracks 6 and 7. The largest pace width is 19 mm, between tracks 3 and 5 and 

the smallest is 4 mm between tracks 5 and 6. The average angle of divarication from 

midline for all tracks in this trackway is 10.75o. 

 Trackway II (Fig. 14) has no stride length. The pace length is 82 mm and the 

pace width is 1 mm. The angle of divarication from the midline for both tracks is 0o. 

 Trackway III (Fig. 14) has an average stride length of 109.5 mm. The average 

pace length is 55 mm and the average pace width is 27 mm. The largest pace length is 

56 mm between tracks 8 and 9, and the smallest is 54 mm, between tracks 12 and 13. 

The smallest pace width is 17 mm, between tracks 12 and 13, and the largest is 33 

mm, between tracks 8 and 9. The average angle of divarication from the midline for 

all tracks in this trackway is 21.5o.  

 Trackway IV has a stride length of 85 mm, which is the smallest stride length 

present. The average pace length is 42.5 mm, and the average pace width is 18 mm. 

The average angle of divarication from the midline is 5.3o. 

 Trackway V has a stride length of 153 mm, which is the largest stride length 

present. The average pace length is 70 mm, the average pace width is 29.5 mm. The 

average angle of divarication from midline is 16.7o. 
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 This cast has a variety of invertebrate traces alongside the avian tracks. Such 

invertebrate traces as Cochlichnus, Steinichnus, and Arenicolites indicate a high 

diversity of invertebrates present (Fig. 15A–C). In several cases (Tracks 5, 6, 7 and 9) 

the birds overstepped the burrows present. In one case, a Cochlichnus trail crosscuts a 

bird track (Track 11) (Fig. 15A). Steinichnus is preserved in concave epirelief, 

Cochlichnus is preserved in concave epirelief, and Arenicolites is preserved in convex 

epirelief. 
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Figure 15. Traces found on KS064 and KS001. A) Cochlichnus on KS064. Note the 

cross-cutting relations. Scale bar=2 cm. B) Arenicolites on KS064. Scale bar=1 cm. 

C) Bird track overstepping Steinichnus on KS064. Scale bar=1 cm. D.) Arenicolites 

on KS001 (arrows). Scale bar=1 cm. E.) Concave epirelief Cochlichnus on KS001. 
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Scale bar= 1 cm. F.) Convex epirelief Cochlichnus cross-cut by an avian track on 

KS001. Scale bar=1 cm. 

 

KS001 

 KS001 contains 42 tracks, 30 complete and 12 incomplete. The average angle 

of divarication for KS001 is 113.98o. Toe III is the longest toe on average (15.98 

mm). Toes II and IV have averages of 11.96 mm and 12.16 mm, respectively. The 

foot length:foot width ratio is 0.757. 

 KS001 contains tracks with high angles of divarication (tracks 1, 2, 4, and 27) 

as well as tracks with angles < 100o (Table 2). Tracks with an angle of divarication < 

100o, however, still have a foot length:foot width ratio < 1, except for track 41, which 

has a length:width ratio of 1.105. The smallest foot length:foot width ratio present is 

0.446. Semipalmate tracks—tracks with partial webbing between two toes—are 

present (Figs. 12C, 16). 
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Figure 16.  Schematic line drawing showing numbered tracks on KS001. 

 

 There are areas of dense concentrations of tracks (Fig. 17A). Among these 

dense concentrations of tracks are elongate convex marks that are 3–7 mm long and 

as much as 2 mm wide (Fig 17B). A teardrop-shaped mark is directly in front of toe II 

of track 27 (Fig 17C) and is separated into two portions, a smaller, circular portion 

and a larger, oval portion that are < 1 mm apart. Another, more oblong mark is 

directly behind track 5, and another is just in front of toe III of track 22. Also present 

are paired circular traces that are identical in diameter. 
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Figure 17. Probe and peck marks on KS001. A.) Traces interpreted to be clusters of 

peck marks. B.) Individual probe marks. 
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 Only two tracks have hallux impressions, track 20 and track 22 (Fig. 16). The 

hallux on track 20 is 6.5 mm long; the hallux on track 22 is 11 mm long. Both tracks 

that had hallux impressions were larger than average, with some of the largest toe III 

measurements (20.5 mm and 22 mm, respectively) and largest foot width of all tracks 

measured (track 20, 39.8 mm). A third track—track 14—that is much smaller than 20 

or 22 has a potential hallux mark as well, but it is in close proximity to another toe 

mark from a separate footprint (interpreted as a toe III imprint) and is 17 mm long 

and, therefore, has been assigned to that partial track as toe II (Fig. 16). 

 On KS001, many tracks are overstepped, an occurrence that is nearly absent 

on KS064. For example, tracks 16, 17, and 18 are overstepped (Fig 18). It is evident 

from the clarity of the toe II impression on track 18—where it overlaps with the 

metatarsal pad and toe III of track 17—that it was the last track in this sequence to be 

laid down.   
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Figure 18. (Previous page) Tracks 16-18 of KS001, showing details of overstepped 

tracks and identification of which track came first. 

 There are other tracks on this cast that have strange anomalies that cannot be 

attributed to overstepping. Track 10 (Fig. 19) has a bulbous impression in the center 

of its toe that is 9.5 mm wide. The widest toe on KS001 is on track 21, and it is only 7 

mm long at its widest point. This bulbous toe III is not seen elsewhere on the cast.  

 

Figure 19. Track 10 of KS001 showing bulbous toe III. 



64 
 

 

 There are invertebrate traces present alongside the avian traces on this cast. 

Arenicolites is preserved in convex epirelief and found associated with bird tracks 

(Fig. 15D). Cochlichnus is preserved as both convex epirelief and concave epirelief 

(Fig. 15E–F). In one instance, a track is overstepping a Cochlichnus trace (Fig.15).  

 

DISCUSSION 

 There are distinct differences in track morphology and behavior between the 

casts from KS064 and KS001. The most noticeable difference is the variation in 

number of tracks between the two casts. KS064 has only 19 tracks, whereas KS001 

has 42, which may be indicative of (1) a different microenvironment or microhabitat 

varying in moisture or food availability, (2) a variation in the number of birds present, 

or (3) different species or genera of tracemakers with different behavioral patterns.  

The majority of the tracks on KS064 have hallux impressions, whereas only two 

tracks on KS001 have hallux impressions. In modern shorebirds, many sandpipers 

and their relatives have reflexed halluxes. Some plovers, on the other hand, have lost 

their hallux entirely and, therefore, will never show a hallux impression (Elbroch and 

Marks, 2001). The fact that there are tracks both with (larger tracks) and without 

hallux impressions (smaller tracks) present on the same cast in the same area 

indicates, therefore, that two different types of tracemakers were present, likely 

representing two different bird genera.   
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 The tracks of KS001 are more numerous and were often overstepped. The 

overstepping made them more difficult to measure and distinguish than the tracks 

from KS064, and made distinguishing trackways impossible. Some tracks on KS001 

had semipalmate webbing between toes II and III, such as track 8 (Fig. 16), whereas 

semipalmate webbing was not present on the tracks from KS064. This webbing is 

extremely restricted to the proximal one-third of the toe, and is not always preserved. 

 The bulbous impression on toe III of track 10 on KS001 (Fig. 19) may be 

indicative of some type of pathology or growth on the left outside of the toe. This 

bulbous toe III, however, is not seen elsewhere on the cast and, therefore, may 

indicate some type of probing or gaping behavior that was subsequently overstepped 

by the same tracemaker or a different tracemaker. Probing results when the beak is 

pressed straight or nearly straight into the sediment and is drawn back in the same 

direction (Elbroch and Marks, 2001). Gaping occurs when the bird presses its beak 

into the sediment and opens it, leaving a wider impression (Elbroch and Marks, 

2001). The hole produced by one of these behaviors, when overstepped, resulted in a 

deformed track impression of toe III. 

 Overall, the tracks of KS001 are greater in number, smaller, and generally 

lack hallux impressions. The few tracks that have a hallux on KS001 look very 

similar to hallux-bearing tracks on KS064 and may represent a similar or identical 

tracemaker. KS001 tracks overlap with much greater frequency than the tracks from 

KS064, and show more evidence of feeding and foraging. 
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Behaviors present 

 Trackway I on KS064 (Fig. 14) likely shows asymmetrical hopping gait or a 

flapping-aided hop with normal steps. Tracks 3 and 5 have a pace length of 57 mm. 

Tracks 5 and 6 have a pace length of 85.5 mm, and increase of nearly 30 mm. Tracks 

6 and 7 have a pace length of 41 mm, which is short than that between tracks 3 and 5. 

This variation in pace length is most likely produced by a hopping behavior. Ground-

based bird locomotion consists of three major types of movement: running and 

walking, hopping, and asymmetrical hopping. Hopping and asymmetrical hopping 

leave noticeably different trackways than walking or running tracks (Elbroch and 

Marks, 2001). Trackway I is unique, however, in the placement of the feet. Track 3 

represents a left foot, and track 5 represents a right. At this point the bird left the 

sediment surface. Upon landing, the right foot fell first (track 6) then the left (track 7). 

This type of asymmetrical hopping is not commonly seen in birds that utilize this 

locomotion (e.g., American Crow, Elbroch and Marks, 2001). This strongly suggests 

that the hopping behavior was assisted by flapping, to allow the bird to become 

sufficiently airborne, and is associated with a walking trackway, not an asymmetrical 

hopping trackway.  

 Tracks 9 and 13 (trackway III), 14, and 15 (trackway IV) on KS064 (Fig. 14) 

have exceptionally long hallux impressions. Dragging of the hallux likely produced 

the long hallux impression. Long hallux impressions in trackways have previously 

interpreted as part of landing behaviors associated with flight (Genise et al., 2009). In 

trackway III, tracks 9 and 13 are both impressions of the right foot. The impressions 
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of the left feet of this trackway lack hallux impressions.  Perhaps the hallux 

impressions in the right foot tracks only suggest an injury to one of the legs, forcing 

the bird to compensate for or shift its weight to the right side.  Interestingly, the right 

foot impression is also of trackway III is also turned in slightly to the left, implying 

that there very well may have been an injury to this foot or leg. Trackway IV (tracks 

14–16) is interpreted as a landing trackway in which a bird landed at a low angle 

relative to the ground, dragging the first toe for a short distance during landing. The 

pace length of tracks 14–15 is much smaller than that of 15–16. Birds tend to have 

their feet nearly parallel when landing to avoid injury; the greater pace length of 

tracks 15–16 represents the bird taking its first step after landing.  

 The tracks of KS001 show two types of feeding behaviors—traces interpreted 

to be probe marks and peck-mark clusters. The clusters of elongate marks (Fig. 17B) 

and their association with trackways are similar to the clusters of probe marks seen in 

sandpipers in their distribution (Elbroch and Marks, 2001); however, while 

sandpipers constantly probe in between clusters of probes (Elbroch and Marks, 2001), 

there is little evidence for continuous probing in the traces on KS001, and their traces 

are often rounder in shape. These elongate marks could be considered traces of 

pecking rather than probing, as probe marks are generally circular (Elbroch and 

Marks, 2001) and may be associated with invertebrates traces on KS001.  Such traces 

can be produced by insect larvae or annelids (Hasiotis, 2002). During pecking, the 

motion of the beak is not only down into the sediment, but also back towards the 

body in a scraping motion. Modern pecking marks can be up to 10 mm long, though 
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the length is usually variable, and the width can be as great as 5 mm (e.g., Frey and 

Pemberton, 1987, Fig. 12). The length of modern peck marks is consistent with the 

marks from the Haman Formation, which are 3–7 mm long. The Haman Formation 

marks, however, are much thinner, only up to 2 mm wide. The difference between the 

two traces is a result of variation in the manner of sediment-beak interaction. During 

probing, the beak can be closed, open slightly, or open wide; if the beak is closed 

tightly, the depression created would be oval or circular and would not have any 

separation between the upper and lower mandible marks. If the beak is open slightly, 

as much as 2 mm of sediment may be present between the upper and lower mandible 

mark. If the beak is open wide, the area of sediment between the upper and lower 

mandible mark may be much greater. The peck-mark clusters on KS001 cannot be 

identified as belonging to any specific trackway. 

 The presence of both individual probe marks and clusters of pecking marks 

may indicate two separate foraging styles and, therefore, separate species. Structures 

interpreted to be fossil probe marks were noted from the bird tracks of the Santo 

Domingo Formation (Genise et al., 2009); however they are difficult to determine 

from photographs and may be the openings of U-shaped burrows assignable to 

Arenicolites.  

 The presence of invertebrate traces, crosscutting and crosscut by the avian 

tracks suggests that these organisms were interacting with the sediment in the same 

period of time. The invertebrate traces on KS064 are preserved in both convex and 

concave epirelief, which suggests that the invertebrates were both on the surface of 
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the sediment and below the sediment surface. The invertebrate traces of KS001 are 

also preserved in both convex and concave epirelief. Given the prevalence of peck 

and probe marks on KS001, it is likely that the birds were hunting for the 

invertebrates whose traces they had overstepped.  

 The smaller tracks on KS001 overstep and overlap each other in many cases 

(Fig. 20A). This is very similar to the pattern seen in many shorebirds, for example, 

the Killdeer (Fig. 20B). This type of pattern can be made in a short period of time, 

and by a surprisingly few birds. Two Killdeer can fill a 32 x 41 square cm area with 

tracks in 45 minutes to 1 hour while foraging for food, actively feeding, and 

defending their territory from other birds. Such behavior observed in extant birds 

indicates that tracks on KS001 and KS064 may not be indicative of a large number of 

birds, but rather as few as two individuals defending their territory and foraging for 

food. 
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Figure 20. Photographs comparing KS001 to a plaster cast of modern Charadrius 

vociferous. A.) Photograph of the slab KS001 (photo courteously of Jong-Deock 

Lim). B.) Photograph of a 32x41 cm plaster cast of C. vociferous tracks. 

 

Implications for avian diversity and dispersal 

 Recently, tracks assigned to the ichnogenus Koreanaornis have been 

discovered in North America (Anfinson, 2009). There are two other North American 

Cretaceous avian ichnogenera, Ignotornis and Aquatilavipes; Ignotornis is also found 

in Korea, and Aquatilavipes is found in China and Japan as well as in Korea (Lockley 
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et al., 2006). The bird track localities in Asia are, as a whole, much more diverse and 

numerous than the bird track localities in North America; this has been speculated to 

be due not to preservational bias but the paleoecology of these areas (Lockley et al., 

2006). 

 The presence of all three North American avian ichnogenera across the Pacific 

Ocean in Asia has several implications for the early evolution and dispersal of birds. 

The epicontinental seas that covered most of Europe were a significant barrier 

between North America and Asia by the Early Cretaceous (Fig. 21). The Pacific 

Ocean was wider than today’s Pacific by a significant distance. The ichnologic 

evidence implies that, at the very least, similar families or genera of birds existed on 

the separate continents at the same time. This pattern can be explained by using either 

dispersal or migration. 
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Figure 21. (Previous page) Paleogeographic map showing potential localities of 

Early Cretaceous bird trackways. Modified from Northern Arizona University’s 

paleoglobe project. 

 

 Based on paleogeographic reconstructions, dispersal for early avians may 

have been accomplished overland during the Early Jurassic, while the Atlantic Ocean 

was still relatively small and shallow. Alternatively, early ornithurine birds could 

have dispersed at high latitudes and worked their way down the coasts. 

Evolutionarily, it is likely that the split between the more advanced ornithurine birds 

and the more primitive birds of the subclass Sauriurae happened near the base of 

avian evolution (Martin, 1983); this split is thought to be in the Late Triassic-Early 

Jurassic (Feduccia, 1996; Martin, 2004). The Lower Cretaceous bird tracks found 

thus far have been interpreted as those of ornithurine birds; therefore, the Ornithurae 

had a worldwide distribution by the Early Cretaceous. This implies that the evolution 

of birds did not occur in the Late Jurassic, with the appearance of Archaeopteryx, but 

rather much earlier, as primitive avians would not have the capability to disperse 

across wide bodies of water.  

 As an alternative hypothesis, the ornithurine birds of the Early Cretaceous 

may have evolved long-distance migration. Today’s long-distance migration is based 

on seasonal patterns (Steadman, 2005), whereas Cretaceous avian migration may 

have been based around wet-dry seasons, or seasonal variation in sunlight, for 

example, in polar regions. Some highly specialized species of birds such as the Bar-
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Tailed Godwit travel 10,000 km without stopping for a rest (Newton, 2008). A 

detailed comparative study of the anatomy of Early Cretaceous ornithurine birds and 

modern-day long-distance migrants would show if Early Cretaceous ornithurine birds 

were capable of making such long, involved flights. 

 

CONCLUSIONS 

 This study is a preliminary analysis of two casts from the Lower Cretaceous 

Haman Formation of South Korea. Behaviors interpreted include feeding and 

foraging behaviors, landing, and walking with flapping-assisted hopping. Elongate, 

thin marks are interpreted to be pecking marks associated with trampled areas that 

represent feeding with surface scraping of the sediment.  Asymmetrical paired oval 

depressions are interpreted as probe marks that represent surface and subsurface 

feeding. Ichnogenera of invertebrate traces associated with the bird tracks include 

Cochlichnus, Steinichnus, and Arenicolites. These invertebrate traces crosscut and are 

crosscut by the bird tracks. It is likely that the probe and peck marks on KS001 are a 

result of the birds searching for the invertebrates that produced those traces. The 

South Korean Lower Cretaceous tracksites likely contain more clues to the behaviors 

typical of shorebird-like ornithurine birds, and should be studied in greater detail in 

the future. 
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CHAPTER FOUR. A MORPHOLOGIC CRITERION FOR 

DISTINGUISHING BIRD TRACKS 

 
 Currently in review as: 

 Falk, A. R., Martin, L. D. and Hasiotis, S. T. A morphologic criterion for 

distinguishing  bird tracks: The Journal of Ornithology. 

 
ABSTRACT 

There are few anatomical criteria that distinguish bird tracks from dinosaur tracks. 

The angle of divarication is one such criterion. A total of 186 bird tarsometatarsi were 

sampled to test the hypothesis that the morphology of the distal end of the 

tarsometatarsus influences the angle of divarication of the toes. Skeletal limb anatomy 

was also studied for correlations between methods of locomotion (hopping, skipping 

or walking), stride length, and morphotype (shorebirds, wading birds, perching birds, 

zygodactyl birds, birds of prey, ground foragers, webbed-footed birds, and syndactyl 

birds). Analysis shows that the larger the trochlea arc angle, the smaller the angle of 

divarication. The trochlear arc angle and the angle of divarication also correlated with 

such avian morphotypes as shorebirds, waders, ground foragers, and perching birds. 

Correlations between limb proportion, locomotion, stride length, and morphotype 

were difficult to determine and ambiguous. Weak correlation was found between 

avian functional leg length and posture; weak correlations were also found between 

avian functional leg length (divided by stride length) as compared to arboreality, 

method of locomotion, and method of feeding.  
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INTRODUCTION 

There has always been some difficulty in distinguishing the tracks of 

Mesozoic birds from those of small theropod dinosaurs (Lockley et al., 1992). The 

first tridactyl tracks discovered were given the name Ornithichnites by Hitchcock 

(1836), as he thought they belonged to giant, extinct birds. Lockley (1992) was the 

first to establish a set of easily definable criteria for distinguishing bird tracks from 

dinosaur tracks. Although many of the criteria selected were subjective—overall 

resemblance to modern bird tracks and slender digit and claw impressions—they 

included one very important criterion: angle of divarication. Lockley (1992) stated 

that the divarication angle of birds will, in general, be 110–120°, whereas the angle of 

divarication in theropod dinosaurs will always be <100°. This angle of divarication 

has been the criteria upon which studies have based their interpretations. 

The purpose of this paper is to determine if tarsometatarsal morphology 

influences the angle of divarication in the foot of birds and bird tracks. Tarsometatarsi 

of eight different avian morphotypes were examined: shorebirds, wading birds, 

perching birds, zygodactyl birds, birds of prey, ground foragers, webbed-footed birds 

(palmate and totipalmate birds), and syndactyl birds (partly fused toes). This paper 

also examines leg morphology and locomotor patterns in extant birds to retrodict bird 

anatomy and lifestyle from Mesozoic and Cenozoic tracks and trackways.  

 The tarsometatarsus in ornithurine birds results from a fusion of distal tarsal 

III of the ankle and metatarsals II–IV of the foot. In enantiornithine (e.g., 

Iberomesornis) and Saurine (e.g., Archaeopteryx) birds, this structure fuses from 
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proximal to distal (i.e., ankle to toes). In modern birds (Ornithurae), those bones fuse 

from distal to proximal (Martin, 1983). The distal articular surface of the 

tarsometatarsus is formed by three trochlea, where toes II, III, and IV articulate (Fig. 

22). Toe I, the hallux, is articulated to the tarsometatarsus by a splint-like metatarsal I 

further proximal on the bone.  The extensor digitum longus—the muscle that flexes 

the toes—is the main muscle in this distal area of the tarsometatarsus and extends 

from the tarsometatarsus onto the digits (Cracraft, 1971; Verstappen et al., 1998). 

 

Figure 22. Avian tarsometarsus.  A) The stylized tarsometatarsus of a bird, modeled 

after a Herring Gull (Larus argentatus). B) The distal end of the tarsometatarsus, 

looking down the long axis of the bone. Tangent lines indicate how to measure the 
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trochlear arc of the tarsometatarsus. These lines can intersect trochlea III—the line 

should touch the highest point of both condyles present. If only one condyle is 

present, the line should touch the highest point of the trochlea and cover as much of 

the surface of the trochlea as possible without intersecting the bone itself. 

 

 Few studies have been conducted on the functional morphology of the avian 

tarsometatarsi (Ostrom, 1979; Zhang, 2004, 2006). Studies of the hindlimb 

musculature of some avian taxa have examined the movement of toes and the general 

motion of the ankle joint (Berman, 1982, Cracraft, 1971, Verstappen et al., 1998).  

Ostrom (1979) hypothesized that the tarsometatarsus fused to compliment the 

complicated system of flexor muscles used to extend and retract the toes.  Zhang 

(2004, 2006) studied the tarsometatarsus of modern raptors and Mesozoic birds, 

determining function (Zhang, 2004) and running statistical analyses to distinguish 

arboreal from terrestrial birds (Zhang, 2006). No study, however, has ever correlated 

the arc of the distal articular surfaces of the tarsometatarsus with the angle of 

divarication of the toes.  It is this angle of divarication that translates itself into the 

tracks and trackways produced by birds. 

 The three trochlea that comprise the distal end of the tarsometatarsus vary in 

morphology and arrangement at the species level. Some tarsometatarsi have trochlea 

in a straight line, whereas others form an acute to an obtuse angle. No previous 

studies specifically document this variation across bird morphotypes, or its 

implication for the tracks and trackways produced by birds.  
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 There are several different foot structures in birds (Proctor and Lynch, 1993). 

The most common arrangement of toes is called anisodactyl, where toes II, III, and 

IV face forward, and toe I (the hallux) is reflexed (i.e., posterior projecting). The next 

most common type is zygodactyl, with two toes aligned forward and two toes aligned 

backwards. There are two webbed-foot types, the most common webbed type is 

palmate, where toes II, III, and IV are bound by webbing, followed by totipalmate, 

where all four toes are bound together by webbing.  Syndactyl arrangement is found 

in only a few families and is represented by the fusion or partial fusion of two or 

more toes. 

 

HIND LIMB ANATOMY AND METHODS OF LOCOMOTION IN BIRDS 

 It is possible to calculate acetabular (hip socket) height for the majority of 

bipeds and tetrapods based on the stride length of tracks (Hasiotis et al., 2007). 

Measuring the femur, tibia, and metatarsal height can also be used to calculate stride 

length.  It may not, however, be possible to measure acetabular height for birds based 

on stride length because bird legs and their function are fundamentally different than 

other bipeds.  

 The femur of a bird is held nearly parallel to the body (Fig. 23A), rather than 

nearly vertical as in other bipeds (Kaiser, 2007). The functional leg is, therefore, 

composed of only two bones, the tibiotarsus and tarsometatarsus (Farlow, 2000). 

Rubenson et al. (2007) showed that the femur in ostriches, the most cursorial-adapted 

birds, moves in a restricted plane, abducting and adducting in a motion of ~ 9.5o. In 
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theropod dinosaurs (Fig 23B), the functional leg consists of all three limb elements, 

and the femur is oriented nearly vertical with respect to the body (Farlow, 2000). 

Birds have a relatively shorter stride than dinosaurs, based on studies of trackways 

(Farlow, 2000).  

 

Figure 23. A) A skeletal reconstruction of a bird leg based on a Turkey Vulture 

(Cathartes aura). B) Skeletal reconstruction of a ornithomimid dinosaur hindlimb. 

 

 The method of walking used by birds results in different trackways. Wading 

birds have very precise steps that often result in well-defined trackways with a narrow 

pace width and long stride length.  Many webbed-footed birds waddle and produce 

trackways with a wide pace width, short stride length, and inward directed footprints. 

Perching birds and woodpeckers hop when on the ground; some perching birds (e.g., 

thrushes, blackbirds, some sparrows) alternate between walking and hopping 
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(Elbroch and Marks, 2001). Trunk-climbing birds also use hopping as they move up 

and down tree trunks (Norberg, 1981).  While the methods of ground-based 

locomotion amongst birds are diverse, the primary method of locomotion for most 

birds is flight. 

 Fossil bird tracks are known from the Early Cretaceous worldwide (Lockley et 

al., 1992, 2001; Lockley and Matsukawa, 1998; Azuma et al., 2002; Anfinson, 2004). 

These tracks and trackways are interpreted to be shorebird tracks based on their 

overall similarity to tracks of extant shorebirds (Charadriiformes) and their overall 

environment of deposition, interpreted as river banks and other such water-margin 

environments as lakeshores, delta plains and tidal flats (Lim et al., 2002). Since 

shorebirds are the usual inhabitants of these environments today, it is reasonable to 

expect shorebird-like birds in similar environments 120 million years ago. Any 

morphometric criteria for distinguishing trackways of shorebirds from other birds, 

however, have not been available.  

 

METHODS 

 Several species of birds from each morphotype were selected from Elbroch 

and Marks (2001). Birds were separated into morphotypes based on habitat (wading, 

shorebird, bird of prey, perching, ground forager) or anatomy (web-footed, 

zygodactyl, syndactyl). These are used independent of taxonomic classification; 

therefore, shorebird does not necessarily mean the order Charadriiformes. Thirty-two 

species were selected, with the number of examples of their tracks measured varied 
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from two to eight. Skeletons of the species used in this study are from the University 

of Kansas Ornithology collections. Four to six individuals of each species were 

selected, except in the cases where there were fewer than four skeletons in the 

collections.  

 A total of 186 tarsometatarsi were measured. The distal ends of the 

tarsometatarsus from all morphotypes were impressed into thin slabs of clay to obtain 

a measurable image of the trochlea. The impression was made with the 

tarsometatarsus oriented vertically. These clay slabs were then laid on sheets of clear 

plastic and photocopied. The arc angle of the trochlea was measured on the 

photocopies by drawing tangent lines to the tops of the trochlear condyles II and IV 

(Fig 22B). The angle formed where the lines intersect is termed the trochlear arc 

angle. In the case of the Northern Flicker (Colaptes auratus) and the Pileated 

Woodpecker (Dryocopus pileatus), trochlea IV (Fig. 24) is composed of two separate 

trochlea (i.e., trochlea IV and trochlea accesoria). These were labeled i and ii, and 

measured individually (Fig 25). In some species the articular surface for digits II or 

IV was hard to distinguish, such as in the Great Horned Owl (Fig. 25A); therefore, the 

lines tangent to these condyles were approximated. Many species, especially birds of 

prey and zygodactyl birds, had a process extending from trochleas II or IV (Fig. 25A, 

G). This was not measured to determine the trochlea arc angle, as it is only a process 

of the external condyle of these trochlea. 
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Figure 24. Distal end of a Pileated Woodpecker (Dryocopus pileatus) 

tarsometatarsus. Arrow points to the trochlea accessoria. 
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Figure 25. Distal ends of tarsometatarsi and tracks from each morphotype, including 

both types of zygodactyl tracks.  
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 The angles of divarication of the toes were measured from illustrations in 

Elbroch and Marks (2001) and from modern tracks observed on the shoreline of Lake 

Erie at Lake Erie Metropark in Brownstown, Michigan, and the shoreline near the 

dam on Clinton Lake, in Lawrence, Kansas.  Divarication angles were measured 

between toes II and III, III and IV, and II and IV (Fig. 26). The hallux was not 

measured. Angle of divarication is calculated from lines drawn through the midline of 

each toe to where the toe meets the metatarsal pad and follows the midline of the toe 

up to the first joint where it may diverge from the toe if necessary (Fig. 26E–F). 

Drawing the line in this manner prevents distal toe rotation from factoring into the 

angle and prevents the webbing in web-footed birds from having a pronounced effect 

on the angle of divarication, due to the way the toes curl inward (Fig. 26E, F). It has 

also been shown that sediment texture and moisture content can also impact the angle 

of divarication (Curie, 1981).  
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Figure 26. Measuring angle of divarication. A, B) Anisodactyl bird foot. C, D) 

Zygodactyl bird foot. E, F) Palmate bird foot.  Angle of divarication (x) between II 

and III, (y) between III and IV, and (z) between toes II and IV. 

 



90 
 

 The arc angle of the trochlea for each species was averaged with no 

distinction made between left and right tarsometatarsi. The same was done for the 

angle of divarication of the toes. These measurements were imported into an Excel 

spreadsheet and graphed to determine any correlation between angle of divarication 

and trochlea arc (Fig. 27). Standard deviation for both arc angle and angle of 

divarication were calculated using the standard deviation function in Excel.  

 The relationship between the trochlear arc angle and the angle of divarication 

of the toes was applied to two tracksites from the Early Cretaceous in order to 

retrodict the arc angle of the trochlea from the angle of divarication of the toes. 

Tracks from the Lower Cretaceous Lakota Formation from South Dakota, USA and 

tracks from the Lower Cretaceous Haman Formation of South Korea were used in 

this practical application of these data gathered from this study. 

 Limb bones—the femur, tibiotarsus, and tarsometatarsus—from one species 

of each morphotype were measured in order to examine avian skeletal hindlimb 

anatomy and test for correlations with stride length, morphotype, and type of 

locomotion. These data were placed into an Excel spreadsheet and correlations 

between morphotype and limb bone ratios were determined. The formulas used were: 

             1)                  femur + tibiotarsus + tarsometatarsus 
                               tibiotarsus + tarsometatarsus 

2)                     tibiotarsus:tarsometatarsus 

               3)                functional leg length (tibiotarsus+tarsometatarsus) 
                                                Median stride length 
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These formulae provide insight into the correlations between limb element 

length and bird morphotype, as well as any potential to calculate the acetabular height 

for each species in the study. Equation (1) is referred to as the avian functional leg 

length correlation, as it compares total leg length by functional leg length values. 

Equation (2) is a simple ratio that compares the tibiotarsus length to the 

tarsometatarsus length. Equation (3) is modified from Farlow (2000) and attempts to 

correlate functional leg length to median stride length. All measurements are in 

millimeters, and the results for equations (1) and (3) are in millimeters, whereas 

equation (2) results in a dimensionless number. Digit III was used originally in 

equation (3), and was considered a proxy for body size; however, this is a poor 

indicator (Farlow, 2000). In this study, digit III is replaced by the stride length as the 

divisor. Median stride lengths for the species used were taken from Elbroch and 

Marks (2001). Digit III was then placed back in equation (3) to determine if digit III 

was a reliable proxy for stride length.  

 

RESULTS 

 Trochlear arc varied from an average of 58o for the Willet (Tringa 

semipalmatus) to 175o for the Evening Grosbeak (Coccothraustes yespertinus) (Table 

4). Standard deviation varied from 30.0 for the Northern Flicker (Colaptes auratus) to 

2.6 for the Long-billed Curlew (Numenius americanus).    

Table 4 
   Number Troclear arc angle Track Number Divaricaton angle 

1 72 1 118 
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2R 83.5 2 115 
2L 91.5 3 118 
3 64 4 118 
4 85 5 139 

    6 105 

5 70 1 130 
6R 93 2 109 
6L 85 3 32 
7R 91 4 117 
7L 92 5 123 
8 76 6 123 
9 103 7 121 

10 98     

11R 100 1 109 
11L 86 2 86 

Number Troclear arc angle Track Number Divaricaton angle 
12R 110 3 113 
12L 100 4 98 
13R 96 5 108 
13L 110 6 111 
14R 92     
14L 87     
15R 123     
15L 110     
16R 120     

16L 121     

17 107 1 79 
18 139 2 80 

19R 106 3 76 
19L 112 4 83 
20 139 5 81 
    6 68 
    7 78 

    8 73 

21 71 1 100 
22R 91 2 123 
22L 84 3 128 
23 57 4 111 
24 67 5 122 
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25 62 6 120 

26 87     

27 153 1 58 
28 158 2 63 

29R 167 3 39 
29L 163 4 52 
30 164 5 40 

31R 172 6 59 
31L 160 7 47 
32R 173 8 65 

32L 176 9 53 

33R 154* 1 56 
33L 163* 2 49 
34 160 3 58 
35 149 4 68 
36 171 5 57 

    6 59 

Number Troclear arc angle Track Number Divaricaton angle 

37R 76 1 135 
37L 80 2 125 
38R 76 3 125 
38L 78 4 122 
39R 84 5 120 
39L 79     
40R 82     
40L 80     
41R 77     

41L 81     

42R 46 1 120 
42L 60 2 112 
43 68 3 110 
    4 122 
    5 110 

    6 125 

44R 76 1 98 
44L 74 2 94 
45R 78 3 136 
45L 88 4 125 
46R 77 5 91 
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46L 72 6 116 
47R 87 7 97 

47L 95 8 95 

48R 71 1 124 
48L 73 2 118 
49R 65 3 116 
49L 80 4 106 
50R 59 5 112 
50L 58 6 109 
51R 70 7 129 

51L 71     

52R 89 1 98 
52L 83 2 102 
53R 91 3 102 
53L 90 4 108 
54R 81 5 115 

54L 84 6 104 

55 175 1 50 
56 162 2 58 

Number Troclear arc angle Track Number Divaricaton angle 
57 170 3 39 
58 174 4 45 
59 175 5 44 
60 168 6 40 
    7 42 

    8 42 

61 167 1 50 
62 120 2 50 

63R 142 3 38 
63L 142 4 69 

    5 70 

    6 59 

64 167 1 58 
65R 171 2 49 
65L 173 3 70 

    4 70 
    5 52 

    6 42 
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66 156* 1 42 
67 147 2 37 
68 120* 3 41 
69 171 4 44 
    5 46 

    6 47 

70R 177 1 52 
70L 179 2 20 
71 178 3 43 
72 167 4 25 

73R 175 5 50 
73L 175 6 24 

    7 49 

    8 27 

74 161 1 48 
75 175 2 64 
    3 54 

    4 59 

Number Troclear arc angle Track Number Divaricaton angle 

76R 119 1 85 
76L 124 2 85 
77R 112 3 93 
77L 114 4 101 
78R 105 5 97 
78L 121 6 91 
79 116     

80R 121     
80L 117     
81R 112     
81L 117     
82R 143 1 103 
82L 149 2 125 
83R 129 3 95 
83L 128 4 103 
84 128 5 99 

85R 123 6 93 
85L 141     
86R 129     
86L 146     
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87R 110 1 91 
87L 129 2 79 
88R 110 3 85 
88L 118 4 79 
89R 115 5 81 
89L 116 6 84 

90 147 1 86 
91R 122 2 95 
91L 147 3 86 
92R 129 4 90 
92L 139 5 86 
93R 133 6 84 
93L 135     
94R 142     
94L 127     

95R 85 1 112 
95L 96 2 104 
96R 83 3 89 
96L 79 4 95 
97R 101 5 115 

Number Troclear arc angle Track Number Divaricaton angle 
97L 98 6 109 
98R 76     
98L 88     
99R 84     
99L 79     

100R 111 1 93 

100L 114 2 52 
101R 116 3 93 
101L 124 4 93 
102R 118 5 94 
102L 117 6 94 
103R 116     
103L 109     
104R 110     
104L 110     
105R 123     
105L 111     

106R 119 1 98 
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106L 111 2 88 
107R 129 3 95 
107L 126 4 101 
108R 120 5 79 
108L 118 6 87 
109R 116     
109L 109     

110R 108 1 82 

110L 124 2 73 
111 105 3 86 

112R 102 4 85 
112L 118 5 86 
113R 124 6 84 
113L 107     

114 89 1 98 

115R 85 2 112 
115L 83 3 109 
116R 86 4 102 
116L 103 5 98 
117R 85 6 100 
117L 96     

118R 126 1 79 

Number Troclear arc angle Track Number Divaricaton angle 

118L 109 2 86 
119R 120 3 88 
119L 118 4 97 
120R 135 5 100 
120L 125 6 94 
121R 125     
121L 125     
122R 128     
122L 124     
123R 119     
123L 121     

124 136 1 100 
125 133 2 106 

126R 131     
126L 134     
127R 131     
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127L 118     
128R 136     
128L 131     
129R 151     
129L 136     

130R 114 1 91 
130L 107 2 82 

131R 108 3 101 
131L 123 4 105 
132 113 5 95 
133 107 6 101 

134R 114 7 122 
134L 115 8 86 

135R 65 1 62 
135L 71 2 85 

136R 67 3 75 
136L 65 4 62 
137 90 5 76 

138R 94     
138L 86     

139R 75 1 104 
139L 89 2 82 

140R 72 3 76 
140L 75 4 71 

Number Troclear arc angle Track Number Divaricaton angle 
141R 105 5 92 
141L 81 6 91 
142R 88     
142L 106     
143R 97     
143L 90     
144R 98     
144L 90     

145R 81 1 89 
145L 80 2 76 
146R 61 3 71 

146L 72 4 74 
147R 87 5 63 
147L 89 6 84 
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148R 77     
148L 83     

149R 79 1 73 
149L 95 2 62 
150R 92 3 77 

150L 99 4 67 
151R 108 5 69 
151L 109     
152R 109     
152L 97     

153 90 1 101 
154 98 2 76 

155R 95 3 74 

155L 102 4 105 
156 93 5 97 

157R 104 1 136 
157L 85 2 130 
158 109 3 124 

159 114 4 142 
160R 100 5 136 
160L 107 6 146 

    7 134 

161R 93 1 127 
161L 92 2 155 
162 87     

163R 96     
Number Troclear arc angle Track Number Divaricaton angle 

163L 93     
164R 90     
164L 84     

165R 89 1 188 
165L 104 2 176 
166 100 3 205 

167 89 4 213 
168R 102 5 200 
168L 89     
169R 90     
169L 91     

170 130 1 20 
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171R 123 2 15 
171L 139     
172R 142     

172L 156     
173 134     

174Ri 114 1 187 
174Rii 122 2 213 
174Li 68 3 189 
175Ri 148 4 197 

175Rii 151 5 209 
175Li 127 6 197 
175Lii 142 7 180 
176Ri 144 8 213 
176Rii 160     
176Li 131     
176Lii 169     
177i 162     
177ii 180     

178i 143 1 143 
178ii 174 2 135 
179Ri 140     
179Rii 159     

179Li 134     
179Lii 155     
180i 145     
180ii 162     
181i 74     
181ii 98     

Number Troclear arc angle Track Number Divaricaton angle 

182 178 1 19 
183R 171 2 11 
183L 136 3 16 
184 167 4 19 

185R 139 5 19 
185L 137 6 18 
186R 177 7 14 
186L 166 8 26 
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Table 4. (Previous page) Measurements of the angle of divarication and trochlear arc 

by species. 

 

There is a strong correlation (r2 = 0.60) between trochlear arc angle and the 

angle of divarication, if the tracks of zygodactyl birds are removed (Fig. 27). With the 

zygodactyl tracks present, r2 = 0.1882. The typical anisodactyl track has a highest 

average angle of divarication of 119o and an overall average of 82.3o. Zygodactyl 

tracks, however, can have an angle of divarication as high as 213o (Table 2). 

Divarication angle is the factor that skews the graph with respect to the zygodactyl 

tracks, as the arc angle measurements for these tracks are not that unusual.  
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Figure 27. (Previous page) Graph showing the correlation between trochlea arc and 

angle of divarication, with the zygodactyl tracks removed. 

 

 Graphic representation of the measurement of angle of divarication vs. 

trochlear arc angle exhibits a variety of patterns. Perching birds and shorebirds form 

tight clusters (Fig. 27). Ground foragers are much more spread out along the trend 

line.  Two of the ground forager measurements fall within the perching bird cluster: 

the American Crow (Corvus brachyrhynchos) and the Black-billed Magpie (Pika 

pika).  

 Angle of divarication in perching birds varies from 17.75o in the Blue Jay 

(Cyanocitta cristata) to 56.8o in the Spotted Towhee (Pipilo maculatus). Perching 

birds, including C. cristata, have very high angles of trochlear arc as well, with the 

morphotype average of 163.5o (Table 4).  

Shorebirds have an average angle of divarication 106.5o and wading birds 

have an average angle of divarication of 94 o.   The trochlear arc angle for shorebirds 

and wading birds is 75.83o and 118o, respectively (Table 4).  Only one individual of 

webbed-footed birds, the American Avocet (Recurvirostra americana), overlapped 

with the shorebird cluster. Totipalmate birds—birds that have all four toes joined by 

webbing—fall within the cluster of web-footed birds in terms of arc angle and angle 

of divarication (Fig. 27). These birds have similar swimming behaviors relative to the 

different genera of ducks and geese.  
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 Zygodactyl birds generally lie outside the trend, except for the Great Horned 

Owl (Bubo vriginianus), which lies in the middle of the webbed-footed bird cluster 

with an average angle of divarication of 90.6o and an average trochlear arch angle of 

95.6o. The zygodactyl birds that had a split trochlea IV plotted well outside of the 

normal range (Fig. 28).  In terms of trochlea IV, the first condylar region (i) had a 

smaller angle of arc than the second condylar region (ii). This difference between i 

and ii is more pronounced in Colaptes auratus than Dryocopus pileatus, with a 

difference of over 40o. 

 

Figure 28. Graph showing the correlation between trochlea arc and angle of 

divarication with the zygodactyl tracks present. 
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Limb length equations 

 The zygodactyl birds had an avian functional leg length value of 1.45 mm, 

indicating that they had similar leg proportions (Table 2). Bubo virginianus and the 

Red-tailed hawk (Buteo jamaicensis) also had similar values of 1.45 mm and 1.44 

mm, respectively. The shorebird morphotype proxy, Chadrius voiciferus, had the 

smallest value, at 1.31 mm.  

 Buteo jamaicensis had the smallest tibiotarsus:tarsometarsus ratio, at 1.32. 

The highest was Bubo virginianus, at 1.94. Each morphotype showed varying values 

between these numbers, with no two morphotypes giving identical results (Table 5). 

Wading birds have a much smaller tibiotarsus:tarsometatarsus ratio than the short-

legged webbed-footed birds (1.46 to 1.81, respectively, see Table 5), indicating a 

longer tarsometatarsus relative to the tibiotarsus. 

Table 5 
  Equation Species Result 

  Drycopus pileatus 1.45 
  Cyanocitta christata 1.38 

f = femur + tibiotarsus + tarsometatarsus Bubo virginianus 1.45 
 tibiotarsus + tarsometatarsus Phalacocorax auritus 1.35 

  Butoroides virscens 1.38 
  Buteo jamaicensis 1.44 
  Colinus virginianus 1.47 
  Anas platyrhyncos 1.39 
  Charadrius vociferus 1.42 
  Drycopus pileatus 1.46 
  Cyanocitta christata 1.37 
  Bubo virginianus 1.94 

f = tibiotarsus:tarsometatarsus Phalacocorax auritus 1.63 
  Butoroides virscens 1.56 



105 
 

  Buteo jamaicensis 1.32 
  Colinus virginianus 1.69 
  Anas platyrhyncos 1.81 
  Charadrius vociferus 0.769 
  Drycopus pileatus 0.317 
  Cyanocitta christata 0.284 

  functional leg length     
f=(tibiotarsus+tarsometatarsus) Bubo virginianus 1.052 

  Stride length Phalacocorax auritus 0.843 
  Butoroides virscens 0.841 
  Buteo jamaicensis 1.84 
  Colinus virginianus 0.988 
  Anas platyrhyncos 0.888 
  Charadrius vociferus 2.327 
  Drycopus pileatus 2.171 
  Cyanocitta christata 3.275 
  Bubo virginianus 2.297 

functional leg length 
f=(tibiotarsus+tarsometatarsus) Phalacocorax auritus 1.549 

Digit III length Butoroides virscens 1.995 
  Buteo jamaicensis 1.637 
  Colinus virginianus 2.429 
  Anas platyrhyncos 1.982 

 

Table 5. The equations listed in this study and their result by morphotype proxy. 

 

 For equation (3), on average, dividing the functional leg length by digit three 

increased the final quotient significantly. The exception to this is Buteo jamaicensis, 

whose values decreased between using stride length and digit III as the divisor, from 

1.84 mm using stride length, to 1.637 mm using digit III. The species with the 

smallest value for functional leg length divided by stride length, Cyanocitta christata, 

increased to the largest value for functional leg length divided by digit III (0.284 mm 

to 3.275 mm). 
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Practical application to Early Cretaceous bird tracks 

 The Lakota Formation tracks have an average angle of divarication of 107o. 

Their trochlear arc angle is estimated to be ~95o. The average trochlear arc angle for 

the extant shorebirds measured in this study is ~75o. The Lakota Formation tracks’ 

estimated trochlear arc angle is smaller than most wading birds (~118o) with the 

exception of the White Ibis (Eudocimus albus; 87o). The average angle of divarication 

for the extant wading birds used in this study is 94o. 

 The bird tracks from the Haman Formation had an average angle of 

divarication of 113o. Their trochlear arc angle is estimated to be ~85o. The average 

trochlear arc angle for the extant shorebirds used in this study is ~75 o, however the 

average trochlear arc angle measurements by species has a range of 58–88o (Table 4). 

 

DISCUSSION 

 The arc angle of the trochlea of the tarsometatarsus and the angle of 

divarication in birds have a strong correlation based on the high r2 value (without the 

zygodactyl tracks). The separate cluster of zygodactyl tracks indicates their unusually 

high angle of divarication. The exception to this rule, Great Horned Owl (Bubo 

virginianus), did not have a very high angle of divarication (90.6o). Other zygodactyl 

birds, however, including the Snowy Owl (Bubo scandiaca), have a much higher 

average angle of divarication, as high as 198o in Colaptes auratus. The reason for the 

difference between B. scandiaca and B. virginianus is difficult to explain, as both are 
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owls with similar foot structure. In owls, the straight edge of the K shape of the 

zygodactyl foot is formed by toes I and II, whereas in such zygodactyl cuckoos as the 

Greater Roadrunner (Geococcyx californianus) the straight edge is formed by III and 

IV (Elbroch and Marks, 2001). In woodpeckers, the formation of the K shape varies; 

for example, Colaptes auratus has a straight edge composed of III and IV, whereas I 

and II compose the straight edge in Dryocopus pileatus. There is no correlation 

between trochlear arc angle and angle of divarication in zygodactyl birds. 

 The trochlear arc angle has a significant effect on the angle of divarication in 

anisodactyl birds.  In anisodactyl-footed birds, as trochlear arc angle decreases, the 

angle of divarication increases. Perching birds have the smallest angle of divarication, 

whereas shorebirds and waders have the largest angles of divarication. Perching birds 

have reduced the angle of divarication in order to cleanly and tightly grasp branches, 

which allows the toes to be brought close together at all times (Fig 29).  Palmate birds 

were clustered away from the shorebirds and waders with a single exception, 

Recurvirostra americana, and this is likely because their limb proportions and 

behaviors are more like waders than other such webbed-footed bird as ducks and 

geese. Two ground-foraging birds fell within the cluster of perching birds on the 

scatterpoint graph; these were the American Crow (Corvus brachyrhyncos) and the 

Black-Billed Magpie (Pika pika). These are birds that could be considered, based on 

behavior either perching or ground birds, as they spend ~50 percent of the time 

perching in trees and other high objects, and ~50 percent of their time foraging on the 

ground. Based on phylogenetics, however, they must be considered perching birds 
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rather than ground-foraging birds, as they belong in the Passeriformes and have 

inherited the specialized hindlimb musculature that is typical of this order (Raikow, 

1982). 

 

Figure 29. Comparison between a wading bird, the Black-crowned Night Heron 

(Nycticorax nycticorax) (left), and a perching bird, the Pine Siskin (Carduelis pinus) 

(right). 

 

 Correlating foot and limb anatomy to stride length and acetabular height in 

birds is problematic. It is difficult to tell from tracks when birds shift between 

walking and running (Verstappen et al., 1998; Farlow, 2000). Generally, footprints of 

a bird running may have a smaller angle of divarication between the toes (e.g., 

Elbroch and Marks, 2001, Genise et al., 2009). Birds have knee-driven locomotion, 

where forward movement during cursorial locomotion is produced at the knee, rather 

than at the hip joint (Hutchinson, 2009). This is opposite of many modern tetrapods 
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and all known bipeds, in which the femur is vertical or nearly vertical and is 

responsible for much of the forward movement (Kaiser, 2007).  

 The majority of birds, including the Passeriformes and many of the 

Picidiformes, such as woodpeckers, do not walk; instead, they use two different 

methods of hopping—symmetrical hopping, in which the feet are held parallel, and 

asymmetrical hopping (also called skipping in Elbroch and Marks, 2001) in which 

one foot is held forwards relative to the other foot. Using the term stride when 

referring to modern birds is, thus, problematic.  Elbroch and Marks (2001) address 

this issue by referring to the distance between pairs of hopping traces as strides. 

Using the term strides, however, can be misleading since stride refers to the 

measurement of a walking trace (Fig. 30). We recommend that the term jump 

distance be used to refer to pairs of tracks produced by hopping and that a variety of 

measurements be taken between the tracks to understand the motion produced by the 

trackmaker (Fig. 30B–C).  Measurements taken would similar to that outlined in 

Leonardi (1987) and Hasiotis et al. (2007). 
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Figure 30. Measuring stride length and jump distance of bird trackways. A) Stride 

length in a walking bird. B) Jump distance in a symmetrically hopping bird. C) Jump 

distance in an asymmetrically hopping bird. Methods from Hasiotis et al. (2007). 

 

Equation results 

 Correlation between avian morphotype limb-bone elements is difficult to 

determine from the equations used. There is little similarity between the 

tibiotarsus:tarsometatrsus ratio and certain types of feeding behaviors. Hawks and 

owls, for example, are both highly specialized predatory birds. Their 

tibiotarsus:tarsometatarsus ratios, however, are completely different (Table 2). 
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Likewise, there is no clear distinction between differing types of locomotion and 

limb-bone elements.  

 The avian functional leg length correlation equation shows a potential 

relationship with posture (Fig. 31). Dryocopus pileatus, Bubo virginianus and Buteo 

jamaicensis all had values at or very close to 1.45; all of these birds have the same 

posture. Owls are known for their upright posture; it is one of the defining features 

that make an owl recognizable in the field. Hawks have a similar posture, and 

woodpeckers hold themselves vertical while climbing the sides of trees. Such birds as 

shorebirds and perching birds tend to have horizontal or slanted postures. This 

correlation may not be perfect, however, as the Northern Bobwhite, Colinus 

vriginianus has a value of 1.47, and does not necessarily have an upright posture; 

while walking the posture is slanted, whereas the posture is upright while it is 

running.  
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Figure 31. Bar chart showing possible correlation of Equation (1) and posture. The 

species towards the left show a more horizontal posture, while the species towards the 

right show a more vertically-oriented posture. 

 Bubo virginianus has the highest tibiotarsus:tarsmetatarsus ratio (1.94), 

whereas Buteo jamaicensis has the lowest (1.32). This indicates that, despite having 

very similar predatory behaviors, their limb bone lengths are very different. The Blue 

Jay (Cyanocitta christata) has a value of 1.37, and the only bird that has a lower value 

is Buteo jamaicensis; these birds are the only birds with values < 1.40, and use 

completely different methods of feeding. This ratio, therefore, does not correlate to 

method of feeding. This equation does not show a correlation with method of 

locomotion either, as D. pileatus has a value of 1.46, similar to the value of 1.42 of 

Charadrius vociferous. The tarsometatarsus:tibiotarsus ratio does not show any 
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correlations between morphotype, methods of feeding, or methods of ground-based 

locomotion. 

 Storer (1971) states that the tarsometatarsi and tibiotarsi must be nearly equal 

in length, else the center of gravity will shift and make squatting to roost or brood 

impossible. This, however, is the case only in cursorial birds with short toes and long 

legs. Birds that do not rely on running as their primary ground locomotion may have a 

higher difference between the bone lengths. Buteo jamaicensis and the Mallard, Anas 

platyrhynchos, are two examples from this study with the greatest difference between 

their tibiotarsal and tarsometatarsal length. These are birds that do not run often or 

well, if at all. 

 There may be a weak correlation between the different morphotypes when 

using known stride length as the divisor in the case of equation (3). Both types of 

predatory birds (birds of prey and zygodactyl predators) have the highest values for 

this equation (1.84 mm and 1.05 mm, respectively), whereas the perching bird proxy 

has the lowest value (0.284 mm). The perching and arboreal zygodactyl 

(woodpeckers) bird proxies (Cyanocitta christata and Dryocopus pileatus) both have 

very low values, 0.284 mm and 0.317 mm, respectively, which approximate 0.3 mm. 

In comparison, the birds that spend the majority of their time on the ground, such as 

the shorebirds and waders, have values of 0.769 mm and 0.841 mm, respectively. 

These results seem to indicate some correlation between the functional leg length and 

either arboreality (Fig. 32), stride length, or method of feeding behavior. These 
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relationships, however, should be studied in more detail before any definitive 

conclusions are made.  

 

Figure 32. Bar chart relating Equation (3) to arboreality. Species towards the left are 

the least arboreal, while those towards the right are more arboreal. 

When digit III is replaced into equation (3), no relationships are apparent 

(Table 5). There is no correlation of digit III to functional leg length, as all 

morphotypes are highly variable in their results. The variation in results between the 

two versions of equation (3), and the fact that some birds increase, whereas such 

others as Buteo jamaicensis decrease, demonstrates that digit III is not a feasible 

proxy for stride length. 

 The results indicate that the three equations used are not sufficient to 

understand how to measure acetabular height in birds from limb bones and trackways. 
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Acetabular (or pivot) height, cannot be easily determined for birds for multiple 

reasons. A bird’s legs are held at constant angles (Kaiser, 2007). Even wading birds, 

which appear to be able to stand straight on one leg, actually have a slight bend 

between the tibiotarsus and tarsometatarsus. The leg is, effectively, never straightened 

due to the fact that the tibial condyles are on the front of the bone, not the base as 

with other bipeds, including theropod dinosaurs (see Fig. 23). The femur contributes 

very little to the motion of the leg, but it does contribute some motion (Rubenson et 

al., 2007), which will potentially affect the measurement for pivot point height. The 

best way to interpret pivot height in birds is to observe and measure height, 

angulation of joints and stride length, and to determine any correlations or 

discriminant functions that may assist in predicting height from trackways. 

Fossil tracks and the trochlear arc angle 

 The Lakota Formation tracks had a trochlear arc angle (~95o) intermediate 

between shorebirds (~75o) and wading birds (~118o). This result implies that birds 

that produced the Lakota Formation tracks had a foot morphology intermediate to the 

wading bird and shorebird morphotypes. This suggests that a separate intermediate 

morphotype may have been present in the Early Cretaceous of North America. 

 Their trochlear arc angle of the Haman Formation trackways was estimated to 

be ~85o, which is above average for the extant shorebirds used in this study but still 

within the range of shorebird tarsometatarsi measured (Table 4). This indicates that 

shorebird-like ornithurine birds produced the Haman Formation trackways and is 

consistent with the behaviors interpreted from the tracks and trackways . 
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CONCLUSIONS 

 Our study shows that a smaller angle of trochlear arc between the trochlea of 

the tarsometatarsus indicates a wider angle of divarication in the toes based on the 

correlation between the angle of divarication and the trochlear arch. This may have an 

evolutionary influence on the feet of wading and shorebirds.   Such wide angles were 

most likely lost in perching birds to facilitate the grasping of limbs.  The length of 

avian limb bones, however, and any correlation to method of locomotion, length of 

distance traveled between steps, method of feeding, or posture is much more difficult 

to determine and requires further research into the functional morphology of avian 

limbs and the function of the joints in living birds. 

 There is no apparent mathematical relationship that can confidently correlate 

stride length to leg length. More importantly, there is no mathematical relationship 

that can correlate stride length to digit III to leg length, or any combination thereof.  

This is especially important because: (1) the avian functional leg length differs from 

other bipeds in that it is knee-based, not hip-based, and (2) different birds have 

different styles of musculature that affect the way the leg is attached to the body, 

which is most evident in birds that spend much of its time foraging on the ground 

(e.g., pheasant) compared to a foot-propelled swimmer or diver (e.g., loon).  In loons, 

the hindlimb musculature is extensive and complicated, binding not only the femur 

but also the tibiotarsus to the body (Heilmann, 1927; Gill, 1995).  This allows only 

the tarsometatarsus to contribute to any walking motion and results in poor walking 
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abilities; however, it is excellent for swimming motion. Musculature, therefore, 

affects any type of morphometric equation dealing with limb length and stride length.  

If a mathematical relationship could be developed that correlates stride length to 

functional limb length, the position where foot-propelled divers plot on the line would 

be a major concern. 

 There are many possible evolutionary implications for the increase or decrease 

in trochlear arc angles in ornithurine birds. Birds that walk across soft media require a 

method to keep them from sinking into the mud. Recurvirostra americana and the 

flamingos have achieved this by evolving webbing between their short toes (Storer, 

1971). Herons and other wading birds, however, evolved a different solution with 

elongated toes that create greater surface area (Storer, 1971). Similarly, a wide angle 

of divarication causes the weight of the bird to spread out over a larger area. The 

combination of wide angle of divarication and toe length has evolved to an extreme in 

the Jacanidae in the order Charadriiformes, which have exceptionally long toes and a 

wide angle of divarication; this allows it to walk across marshy ground and floating 

vegetation without sinking (Beletsky, 2006). This snowshoe effect, creating wider 

spaced toes, is a possible reason for the evolution of wider angles of divarication 

compared to other morphotypes of ornithurine birds. Early Cretaceous ornithurine 

birds lived in water-margin environments where the sediment was saturated. 

Spreading out the toes while walking across saturated mud would allow a bird to 

walk, run, or take off without having to pull its feet out of the mud. This type of foot 
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morphology, however, would not be useful for a perching bird as a wide angle of 

divarication would be a problem when perching in trees.  
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CHAPTER FIVE. SUMMARY AND CONCLUSIONS 

 

The avian trace fossils from Lower Cretaceous deposits studied for this thesis 

exhibit similar styles of preservation. The tracks of the Lakota Formation (Chapter 2) 

are surface tracks rather than undertracks; undertracks are tracks where the foot 

deforms the layers of sediment layers underneath the interactive surface (Platt and 

Hasiotis, 2006). The tracks from the Haman Formation in Korea (Chapter 3) are also 

surface tracks, and are better preserved in terms of overall morphology; however, the 

Lakota Formation tracks have better-preserved claw and pad impressions (Fig. 33). 

The Lakota Formation tracks are more difficult to distinguish from each other in 

terms of overstepping, and it can be difficult to determine which track was laid down 

first. In the case of the Haman Formation tracks, overlapping tracks are generally 

easy to distinguish and easy to interpret (Fig. 34). 

 

Figure 33. Comparison between the Lakota Formation tracks (A) and the Haman 

Formation tracks (B). Note the claw and pad impressions of the Lakota Formation 

track. (A) scale bar=2 cm. (B) scale bar= 3 cm. 
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Figure 34. Overstepped tracks from the Lakota Formation (A) and the Haman 

Formation (B). 

 

The bird tracks from the Lakota Formation (Chapter 2) were made by 

shorebird-like ornithurine birds. These Early Cretaceous birds likely had similar 

feeding and courtship behaviors to such extant plovers as the Killdeer as no probe or 

peck marks were found associated with the tracks and trackways. These birds also 

had to have the complex flight mechanism necessary for takeoff from a flat surface 

based on the evidence of flight represented by a trackway terminating in nearly 

parallel tracks. 

Behaviors interpreted from the Haman Formation tracks and trackways 

include feeding and foraging behaviors in the form of peck and probe marks, landing, 

and walking with flapping-assisted hopping. Ichnogenera of invertebrate traces 

associated with the bird tracks include Cochlichnus, Steinichnus, and Arenicolites, 

and these invertebrate traces crosscut and are crosscut by the bird tracks. It is likely 

that the probe and probe and pecking marks associated with these tracks and 
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trackways are a result of the birds searching for the invertebrates that produced those 

traces.  

 Avian hindlimb anatomy affects the morphology of the tracks and trackways 

produced by the bird. The trochlear arc angle of the tarsometatarsus correlates with 

the angle of divarication of the toes of anisodactyl birds (Chapter 4). There is no 

correlation between the arc angle of the trochlea and the angle of divarication of 

zygodactyl birds; this is most likely due to their foot structure in which two toes are 

pointed forward and two backwards, resulting in a high angle of divarication. The 

length of avian limb bones and any correlation to length of distance traveled between 

steps, method of locomotion, speed of the bird, or method of feeding is difficult to 

determine and requires further research into the functional morphology of avian limbs 

and the function of the joints in living birds. 

 There is no apparent mathematical relationship that can confidently correlate 

stride length to leg length. The avian functional leg length differs from other bipeds in 

that it is knee-based, not hip-based. Shifts between gaits are difficult to determine 

from the tracks and trackways of birds (Verstappen et al., 1998; Farlow, 2000). It is, 

therefore, likely that the trackway measurements related to calculating speed will not 

function for bird trackways and studies should instead focus on generalized 

behavioral interpretations. This is especially true for birds that use hopping as their 

primary means of ground-based locomotion, including the Passeriformes.  

 There are many possible evolutionary implications for the increase or decrease 

in trochlear arc angles in ornithurine birds. Birds that walk across soft media require a 
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method to keep them from sinking into the mud. Some birds, including the Avocets 

(Recurvirostridae), have achieved this by evolving webbing between their short toes 

(Storer, 1971). Wading birds have evolved a different solution with elongated toes 

that create greater surface area (Storer, 1971). Similarly, a wide angle of divarication 

causes the weight of the bird to spread out over a larger area.  

 Early Cretaceous ornithurine birds lived in environments where the sediment 

was saturated. Spreading out the toes while walking across saturated mud would 

allow a bird to walk, run, or take off without having to pull its feet out of the mud, 

making escape from predators much easier. This type of foot morphology, however, 

would not be useful for a perching bird as a wide angle of divarication would be a 

problem when perching in trees.  

 It is difficult to determine which came first in avian evolution; a high angle of 

divarication or a low angle of divarication. By the Early Cretaceous it is clear that a 

high angle of divarication is present in the ornithurine birds. The angle of divarication 

of Archaeopteryx, however, is much more difficult to determine as there are no 

known trackways of Archaeopteryx. A study of the arc angle of the trochlea of 

Archaeopteryx may assist in interpreting its life habits and indicate its angle of 

divarication of toes II and IV. Bird origins are most likely from the trees-down 

(Martin, 1983; Xu et al., 2003; Burnham, 2007) and, therefore, it seems likely that 

birds started with a small angle of divarication and a wide trochlear arc angle and 

evolved a wider angle of divarication as they moved into water-margin environments. 

A wide angle of divarication in Early Cretaceous ornithurine birds suggests that the 
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small angle of divarication in extant perching birds is a derived condition of the 

Ornithurae. 

 The angle of divarication between toes II and IV is an important measurement 

in the classification of fossil bird tracks. This thesis demonstrates that there is a 

correlation between the angle of divarication and the ecology and life habits of the 

bird. This may be useful in distinguishing avian ichnogenera, as well as shorebird-like 

birds from wading-like birds, and webbed-footed birds from other anisodactyl birds. 

Falkingham et al. (2008) discussed the issues with distinguishing webbed tracks from 

falsely-webbed tracks created by the slumping of sediment between the toes. The 

angle of divarication as it relates to morphotype of foot could be helpful in these 

situations; however, this study has shown that there is some overlap in the case of 

such webbed-footed birds as the American Avocet (Recurvirostra americana). Future 

studies could elaborate on the morphologic difference between the tracks of modern 

bird morphotypes and compare this to webbed-footed tracks in the fossil record. 

 It is possible to make interpretations on the hindlimb anatomy of the Early 

Cretaceous bird tracks from the Lakota and Haman Formations, based on the data 

from Chapter 4 that relates angle of divarication to the trochlear arc angle of different 

bird morphotypes. The Lakota Formation tracks have an average angle of divarication 

of 107o. Their trochlear arc angle is estimated to be ~95o, which is higher than the 

average trochlear arc angle for the extant shorebirds measured in this study— ~75o. 

The Lakota Formation trochlear arc angle is smaller than most wading birds (~118o) 

with the exception of the White Ibis (Eudocimus albus; 87o). The average angle of 
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divarication for the Lakota Formation tracks, however, is greater than those of the 

extant wading birds used in this study (94o; see Chapter 4, Table 4). The Lakota 

Formation tracks, therefore, likely had a trochlear arc angle (~95o) intermediate 

between shorebirds (~75o) and wading birds (~118o). This result implies that birds 

that produced the Lakota Formation tracks had a foot morphology intermediate to the 

wading bird and shorebird morphotypes. 

 The bird tracks from the Haman Formation had an average angle of 

divarication of 113o. Their trochlear arc angle is estimated to be ~85o, which is above 

average for the extant shorebirds used in this study but still within the range of 

shorebird tarsometatarsi measured (58–88o, see Chapter 4, Table 4). This indicates 

that shorebird-like ornithurine birds produced the Haman Formation trackways.  

The Early Cretaceous ornithurine birds were water-margin birds that likely 

lived in small-to-large flocks similar to modern shorebirds. They show typical 

shorebird feeding behaviors in probing the sediment, either singly or in clusters, and 

in the repetitive overlapping tracks and trackways including circular or curvilinear 

walking. Other behaviors indicate flight in the form of takeoffs and low-angle 

landings. The tracks tend to overlap, making directionality even more difficult to 

determine. Using these sets of criteria, other such trackways as Trisauropodiscus 

(Lockley et al., 1992) can be re-examined and perhaps re-interpreted based on 

behavior as well as morphologic evidence. 

 Mesozoic bird trackways may hold a wealth of information on the origin and 

early evolution of birds. Many tracksites have not been examined from a behavioral 
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aspect. Behavior can lend insight into specific morphotypes of birds present and 

social interactions between birds. Trackways and associated traces show evidence of 

flight and interactions between birds and prey species including insect larvae and 

annelids. By looking at the tracks of Mesozoic birds from both a taxonomic and 

behavioral standpoint, a more complete picture of the Early Cretaceous ornithurine 

bird community can be obtained.  
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