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Abstract 

James P. McParland, Ph. D. 

Department of Chemistry, July 2009 

The University of Kansas 

The utilization and exploration of multifaceted phosphate tethers in synthesis 

is the focus of the dissertation research described herein.  Desymmetrization of a 

readily derived psuedo-C2-symmetric monocyclic phosphate via highly 

diastereoselective anti-SN2’ allylic displacement reactions are reported.  This method 

utilizes a wide variety of zinc-derived organocuprates to afford E-1,2-syn-configured 

phosphate acid building blocks.  Extension of this protocol to unsymmetric 

monocyclic phosphates exclusively yields 1,2-anti-configured products.  Within this 

study stereoelectronic factors coupled with allylic strain ultimately govern regio- and 

diastereoselective cuprate reactions, thus further substantiating the Corey mechanism 

for organocuprate additions into allylic esters. 

An approach towards fostriecin and fostriecin-like libraries utilizing rapid 

functionalization via a bicyclic phosphate methodology was investigated. This 

compact, multifaceted core coupled with an array of selective reactive pathways 

begged the synthetic queries enacted.  Key to unraveling and expanding upon this 

central core of the molecule was realization of an exocyclic olefin oxidation and a 

diastereoselective Grignard addition where the source of Grignard used was found to 

play an important role.  Selective cross-metathesis with subsequent attack of lithium 

thiophenol exploits the orthogonal leaving group ability of the phosphate to reveal the 
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requisite stereo-tetrad of fostriecin.  Not only does this sequence serve as a proof of 

concept approach for the total synthesis of fostriecin, it also serves as an archetype for 

the generation of fostriecin-like and phoslactomycin-like libraries. 

The explorations of two synthetic approaches towards fostriecin from the 

bicyclic phosphate were embarked upon simultaneously.  Intensive studies found the 

deactivating nature of the carboxylate oxygen on the alkene of lactone in conjunction 

with the lethargic protected tertiary allylic alcohol provided unacceptable conversion 

upon metathesis, despite installation of catalyst delivery vehicles.  Attempts to utilize 

the unprotected bicyclic phosphate variant displayed preferential dimerization in the 

cross metathesis, while the relay primed analog was frustrated by competing 

elimination pathways.  Analysis of an organometallic addition of the lactone core 

provided a viable route for future endeavors in the total synthesis. 
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Chapter 1 

Total Syntheses of Several Natural Product Phosphatase Inhibitors: 

Establishing a Paradigm for the Exploration of Phosphate Tethers  
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1.1 Introduction 

 Investigation of phosphatase inhibitors as pharmacologically viable targets is 

relatively new compared to investigations on kinase inhibitors.1  While initially 

phosphatases were regarded as enzymes that “clean-up” after more essential 

regulatory kinases, a large body of evidence dismisses this misconception in light of 

the pivotal role of phosphatases in the body.2  As such, naturally occurring 

phosphatase inhibitors have arisen as potent probes of the mechanisms of 

phosphatases as well as therapeutic agents in and of themselves.1  The following 

review is designed to cover some of the major total synthetic efforts towards 

particularly attractive and representative natural product phosphatase inhibitors.  Of 

the phosphatase inhibitors to be discussed (calyculins A and B, dysidiolide, 

motuporin, tautomycin, phoslactomycin A and B, spirastrellolide A methyl ester, 

okadaic acid, and fostriecin), the notable omissions of the leustroducsins and 

cytostatin are due to their more explicit treatment within the remaining chapters of 

this dissertation, vide infra.  Other omissions (Figure 1) are the cladocorans A and B,3 

coscinosulfate,4 dephostatin,5 the dinophysistoxins,6 glucolipsin A,7 gymnorrhizol,8 

microcystin-LA,9 pulchellalactam,10 thyrsiferol and thyrsiferyl 23-acetate,11 TMC-69 

and TMC-69-6H;12 the references provided for these omissions can provide 

information on these natural product phosphatase inhibitors and their respective 

syntheses. 
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Figure 1 Several Natural Product Phosphatase Inhibitors 

 The purpose of this review is to place into context the utilization of the 

phosphate ester moiety, often ascribed to be a labile, promiscuous functionality, 

within synthesis through comparison and reference to previous total syntheses.  In 
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particular the utility, stability, and efficacy of employing otherwise regarded sensitive 

functionalities in these total synthetic regimes provides a framework within which the 

following chapters’ employment of phosphate tethers can be contemplated. 

1.2 Calyculins 

 Calyculin A was isolated by Fusetani and co-workers from the marine sponge 

Discoderma calyx and its relative stereochemistry was established by subsequent X-

ray crystallographic analysis (Figure 2).13    Further discovery of calyculins B-H, 

which differ primarily in geometric orientation at Δ2 and/or Δ6 and/or an additional 

methyl group at C32, helped prompt investigation into this class of phosphatase 

inhibitor.14 Later, discovery of calyculin J, the caliculinamides A, B, and F, des-N-

methycalyculin A, and dephosphocalyculin A display the diversity and intriguing 

activity of this set of molecules. 

OH OMe

O

O
Me

OH

MeMe
23

15

17
Me

OH

MeMe

MeMe

CN
(HO)2PO

O

13
10

N

O

Me

N
H

30

O

OH

OH

Me2N

MeO
36 34

(–)-Calyculin A

 
Figure 2 Calyculin A 

 The first total synthesis reported was by the Evan’s group in 1992,15,16  where 

auxiliary-based reactions (aldol, alkylation, hydroxylation, conjugate addition) would 

construct 10 of the 15 stereogenic centers (Scheme 1).  The phosphate and the 

tetraene were to be installed late in the synthesis, as the phosphate was deemed a 
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“liability due to the extra reactivity that such an appendage might confer on the 

system” and the tetraene posited to be the locus of instability in the natural product.15  

A schism at the C25-C26 olefin provided two fragments that could be joined via a 

phosphorous-based olefination.  Hydroxyl groups to be protected until the conclusion 

of the synthesis would utilize silicon-based protecting groups, while hydroxyl groups 

to be manipulated would be masked with appropriate non-silicon based protecting 

groups in a strategy they termed the ‘cumulative silicon strategy’. 

Scheme 1 

Me Me

CN Me Me Me
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 Generation of the first stereogenic center of the molecule occurred with 

application of an auxiliary-controlled asymmetric hydroxylation to form alcohol 2.3 

as a single diastereomer (Scheme 2).  Conversion to the Wienreb amide, PMB 

protection of the C17 alcohol and subsequent reduction of the amide to the aldehyde 

allowed for a diastereoselective (methoxyallyl)stannane addition to generate 2.4 as a 

7.5:1 mixture of diastereomers with 71% yield of the desired syn,syn isomer.  Five 

more steps provided silyl enol ether 2.5 ready for Mukaiyama aldol coupling.  The 

coupling partner was assembled using a chiral auxiliary approach to afford the C22 
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and C23 centers (2.7) followed by a two step conversion to aldehyde 2.8.  The 

Scheme 2 
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BF3•OEt2 mediated addition of silyl enol ether 2.5 with aldehyde 2.8 provided 

stereohexad 2.9 as a single diastereomer.  Subjecting the aldol adduct to a 

HF/CH3CN/H2O mixture provided a 5:1 diastereomeric mixture of spiroketals that 

could be separated chromatographically to provide the correct spiroketal 2.10 in 71% 

yield. 

 Formation of the northern hemisphere of calyculin A proceeded with 

formation of the C33-C37 γ-amino acid 3.5 (Scheme 3).  Two step conversion of 

sarcosine to (S)-phenylalanine-derived oxazolidinone 3.1 allowed for asymmetric 

alkylation to append a methoxymethyl unit providing 3.2 in good yield and 

diastereoselectivity.  Removal of the chiral auxiliary followed by oxidation to 

aldehyde 3.3 allowed for addition of the tin (II) enolate of glycolate imide 3.4 to 
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provide anti-aldol product 3.5 in 60% yield  (excluding other diastereomers).  Boc 

removal from oxazole 3.6 followed by trimethyl aluminum-mediated tandem 

coupling with amide 3.5/PMB deprotection generated γ-amino amide 3.7.  A five step 

sequence provided protected C26-C37 phosphonium subunit 3.8 ready for coupling. 

Scheme 3 
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 Spiroketal 2.10 required an 18-step procedure to generate the southern 

segment 4.1 (Scheme 4), involving auxiliary controlled formation of the C12, C13 

centers and appending the cyanotetraene through Horner-Emmons and Stille bond 

constructions.  Wittig olefination of aldehyde 4.1 with the ylide of 3.8 provided fully 

protected calyculin A as a single observable olefin isomer, with subsequent 

deprotection affording (+)-calyculin A.  This product was equal to the natural product 

in all respects except in the sign of the optical rotation, thus confirming the absolute 

configuration calyculin A to be the enantiomer of (+)-calyculin A.17,18 
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 The total synthesis of naturally occurring (–)-calyculin A was reported in 

1994 by the Masamune group.19  Utilizing chiral, non-racemic starting materials, 

rather than chiral auxiliaries, the Masamune group hoped to explore the 

stereoselective coupling of chiral fragments via aldol reactions towards forming the 

southern spiroketal-containing fragment. Scheme 5 illustrates a chelation-controlled 

Mukaiyama-type aldol  of silyl-enol ether 5.1 with aldehyde 5.2 providing aldol 

adduct 5.3 in good yield with 10:1 diastereoselection.  Conversion to 5.4 allowed for 

investigations into the C10,11,12,13 anti,anti,anti stereoisomer 5.6.  Adduct 5.6 was 

the ‘worst’ mismatched pair possible for the aldol product, and achiral addition 

provided a 1:4 distribution of diastereomers with isomer 5.6 as the minor component.  

Overriding substrate control by employing  E(O)-enolate 5.5 allowed for isomer 5.6 
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to be provided in good yield and with 12:1 diastereoselection.  Similarly, construction 

of the carbon skeleton of the southern hemisphere 5.9 relied on coupling ketone 5.7 

with aldehyde 5.8 to selectively generate the C21 stereogenic center.  Surveying a 

variety of achiral boron reagents provided the insight that increasing size of the boron 

ligands enhanced diastereoselectivity, thus utilizing dicyclohexyl boron chloride 

yielded 5.9 as the exclusive isomer. 

Scheme 5 

O

OTES

Me Me

O

MPMO
Me

CHO
BnO

TiCl4, CH2Cl2
-78 ºC

O

O

Me Me

O

MPMO

OH

Me

BnO 13 15

17

15

17

1. Me4NHB(OAc)3

2. Me2C(OMe)2

TsOH, 83% (2 steps)

3. W-2 Raney Ni

4. Swern ox.

89% (2 steps)

O

O

Me Me

O

MPMO

O

Me

13 15

17

O

11

Et3CS

O
B

O

O

Me Me

O

MPMO

O

Me

13 15

17

OH

11Et3CS

O

Me

hexane/CH2Cl2
-78 ºC

8 steps
TESO

OMeO

Me

13 15 17

O

11

OTr

Me

O

Me Me

O

MPM

82%, 11S:11R = 12:1
(Cy)2BCl, Et3N, CH2Cl2
then

OHC

Me

OTES

OBn21 25 TESO

OMeO

Me

13 15 17

O

11

OTr

Me

O

Me Me

O

MPM

OH

Me

OTES

OBn21 25

84%, 13S:13R = 10:1

5.1 5.3 5.4

5.2

5.5

5.6

5.7

5.8

5.9  
 Coupling of the northern and southern fragments is noteworthy, as it 

proceeded via a Julia-Lythgoe olefination in the presence of the protected phosphate 

(Scheme 6).  The total synthesis of Evans group beforehand and the total syntheses 

appearing after the Masamune group report rely on Wittig or Horner-Emmons type 

couplings in the presence of the phosphate.  Utilizing the spiroketal generated from 

5.9, sulfone 6.1 was deprotonated by phenyllithium to subsequently react with 
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oxazole 6.220 (in the presence of the unprotected amide and the phosphate), followed 

by benzoylation and sodium amalgam mediated reductive elimination to provide E-

olefin 6.3 as the major product.  (–)-Calyculin A was provided in 4 more steps to 

yield the first total synthesis of the naturally occurring inhibitor. 

Scheme 6 
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 In 199821 and 1999,22 the Smith group reported their approach to (+)-calyculin 

A as well as the total synthesis of (–)-calyculin B.  The similar splitting of the 

molecule into a northern and southern hemisphere was noted, with the exception that 

the cyanotetraene would be produced in the last two bond forming steps of the 

synthesis (Scheme 7).  
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Scheme 7 
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 The Smith group approach centered on the efficient and large scale production 

of four key advanced synthons, with generation of the spiroketal 7.4 initiating from 

Brown allylboration of 3-benyloxypropanal to yield alcohol 8.1 (Scheme 8).  

Protection as the tert-butyl carbonate followed by IBr-induced diastereoselective 

cyclization produced the desired sterotriad 8.2, which was converted in two steps to 

epoxide 8.3.  (S)-Malic acid derived alcohol 8.4 provided dithiane 8.5 in two steps, 

where coupling of the anion of dithiane 8.5 with epoxide 8.3 provided masked aldol 

product 8.6 to afford 120 g in a single experiment.  Subsequent manipulations 

provided spiroketal epoxide 7.4. 
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Scheme 8 
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Hoping to complete the southern hemisphere, attempts to couple dithiane 9.1 with 

epoxide 7.4 suffered from lack of reactivity, despite multiple studies indicating the 

feasibility of the attempt.  Utilizing a vinyl cuprate addition of bromide 7.3 with 

epoxide 7.4, however, produced alcohol 9.2 in 83% yield on ~2 g scale.  The southern 

hemisphere was completed in 8 more steps to provide 9.3. 
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 Construction of the northern hemisphere engaged upon a short synthesis of the 

γ-amino subunit 7.1, where commercially available isopropylidene-D-

erythronolactone 10.1 was converted into lactam 10.2 (Scheme 10).  The silyl enol 

ether of pinacolone was added to lactam 10.2 to efficiently and selectively generate 

10.3, followed by enolization and ozonolysis to yield alcohol 10.4 in over 4 g. 
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 The requisite subunit 7.1 was provided in three more steps, which was 

eventually coupled with the oxazole subunit 7.2 to generate the northern hemisphere.  

The northern and southern hemispheres were joined via Wittig coupling to yield 11.2, 

which was converted in three steps to ketone 11.3.  Peterson olefination provided a 

1.7:1 E/Z mixture, with radial chromatography separating fully protected (–)-

calyculin B and fully protected (+)-calyculin A, respectively.  Global deprotection 

provided (+)-calyculin A and (–)-calyculin B, where analysis of (–)-calyculin B 

confirmed it to be the enantiomer of the natural occurring phosphatase. 
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Scheme 11 
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 The Armstrong group reported the total synthesis of naturally occurring 

calyculin C in 1998, where their investigations provided interesting insight into 

remote protecting group effects on the diastereoselectivity of Brown 

crotylborations.23  In previous studies, it was found that ozonolysis followed by 

Brown crotylboration of 12.1 (Scheme 12) provided the desired C10, C11, C12 anti-

anti diastereomer 12.2 in 40% isolated yield, separable from a 4:3 mixture of anti-

anti: anti-syn.  Employing this protocol with TBS-protected 12.3, however, provided 

adduct 12.4 as the single, undesired anti-syn diastereomer.  Inferring that this was due 

to the protecting group change at C13, replacement of the C13 as a benzoyl protected 
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alcohol while keeping the synthetically more tenable silyl protecting groups at C21 

and C25 allowed for crotylboration of 12.5.  While the effect of the β-alkoxy 

protecting group on stereoselectivity was evident as formation of the desired product 

12.6 occurred, it was the minor component of the product distribution, the major 

being undesired anti-syn adduct 12.7. 
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 This discrepancy between the diastereomeric ratios of generated from 12.1 

and 12.5 suggested to the Armstrong group that remote effects of the protecting 

groups at C21 and C25 could be at play.  One further experiment illustrated this 

hypothesis, that in which a simple replacement of the C25 TPS group of 12.1 was 
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replaced with a TBS group to generate 13.1.  The two-step ozonolysis/Brown 

crotylboration protocol produced a 35:39 ratio of desired to undesired diastereomers; 

the seemingly simple change of a TPS group to a TBS group at the remote C25 

position changed the product distribution to favor the undesired anti-syn product.  All 

anti-anti diastereomers were taken on to the completion of the molecule, which 

verified the absolute structure of calyculin C. 

Scheme 13 

15

OMeOBz

Me

OH

Me

11
10

O

O
Me

OR2

MeMe

MEMO

23

15

17

OR3

OMeOR1

Me

11

1. O3; PBu3

2. trans-2-butene, n-BuLi

t-BuOK, (+)-(Ipc)2BOMe

BF3•OEt2, THF, -78 ºC 15

OMeOBz

Me

OH

Me

11
10

A, anti-anti

(desired)

B, anti-syn

(undesired)

12.3

12.5

12.1

13.1

Bz

Bz

Bz

Bz

Bz

0:48

22:31

40:30

35:39

yield of A:BR1 R2 R3

TBS TBS TBS

TBS TBS

TPS

TBS

 
1.3 Dysidiolide 

 Dysidiolide is a neo-isolabdanoid sesterterpene isolated from the marine 

sponge Dysidea etheria de Laubenfels collected off the Bahamian islands (Figure 

3).24  It was the first known natural inhibitor of the dual specificity phosphatase 

enzyme Cdc25A (IC50 9.4 µM), inhibiting the growth of A-549 human lung 

carcinoma (IC50 4.7 µM) and P388 murine leukemia cells (IC50 1.5 µM).24  While 

Blanchard and co-workers suggested the inhibition to be caused by an unidentified 

component in the crude extract,25 Shirai and co-workers confirmed the inhibitory 
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activity against Cdc25A (recording IC50 35 µM) and found dysidiolide additionally 

inhibits Cdc25B (IC50 87 µM).26  Given the structural novelty and promising anti-

mitotic properties of dysidiolide, it is not surprising that the first three total syntheses 

were reported almost concurrently, vide infra. 
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11

 
Figure 3 (–)-Dysidiolide 
 Corey’s group reported the first enantioselective total synthesis of the natural 

product in 1997.27  The synthesis initiated from readily available 14.1 (Scheme 14), 

where selective reduction of the α,β-enone forms an enolate that is trapped by allyl 

bromide to provide the geminal methyl allyl ketone 14.2.  The C7-C8 unsaturated 

ketone is then formed followed by axial addition of TMSLi to provide β-TMS ketone 

14.3, a moiety the proved essential in forming the natural product.  A 

methylenation/position selective Sharpless hydroxylation protocol followed by 

periodate mediated glycol cleavage, reduction, TBDPS protection, and 

diastereoselective hydrogenation afforded ketone 14.4.  In generating tertiary alcohol 

14.5, attempts to add the requisite 4-methyl-4-pentenyl group by organolithium, 

magnesium, and cerium reagents returned starting material.  Addition of 

allylmagnesium bromide, however, afforded 99% yield of the axial tertiary alcohol 

14.5. 
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 The necessity of the C8 TMS group is revealed upon conversion of tertiary 

alcohol 15.1 to the fully substituted bicyclic core 15.2 (Scheme 15).  Utilization of 

analogues with a hydrogen or Ph(Me)2Si group instead of TMS provided little, if any, 

desired rearrangement product under myriad conditions.  The BF3(g) mediated 

rearrangement of 15.1 provided rearranged adduct 15.2 in 70% yield, where the β-

silicon group in addition to specific double bond generation facilitates the reaction.  

Elaborating 15.2 to aldehyde 15.3 allows for 3-lithiofuran addition to provide 

epimeric secondary alcohols 15.4 and 15.5 as a 1:1 mixture.  Facile separation 

allowed for conversion of 15.5 to 15.4 via an oxidation/CBS reduction protocol, 

noting that attempts to invert via Mitsunobu conditions only progressed partially and 

attempts at diastereoselective reduction with L-Selectride, NaBH4, and LiBH4 

provided 15.5 as the major product.  Singlet oxygen addition to furan 15.4 provided 

(–)-dysidiolide in 98% yield as a white solid and established the absolute 

stereochemistry. 
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Scheme 15 
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 The Danishefsky group reported the racemic total synthesis two months later 

in 1998,28,29 where a Diels-Alder between dioxolenium activated dienophile 16.1 and 

racemic diene 16.2 was the key step (Scheme 16).  TMSOTf catalyzed the reaction to 

afford 67% of the endo-dioxolane product 16.3 along with 5% of an undetermined 

stereoisomer.  Attempts at performing the same reaction utilizing trisubstituted ester 

analogues, rather than acetal, were ineffective in the Diels-Alder reaction.  

Elaboration of the C4 silyl protected alcohol 16.3 to the racemic natural product 

occurred in five steps to present a 12 step total synthesis of (±)-dysidiolide.  Further 

testing of the racemate showed growth arrest on four cancer cell lines, with PC3, 

TSU-Pr1, and DU145 exhibiting massive apoptosis concurrent with growth arrest. 
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 Seven days after submission of Danishefsky’s racemic synthesis, the 

Boukouvalas group submitted their total synthesis of (+)-dysidiolide (published 

1998).30  Similarly, the key step in the Boukouvalas group sequence was a Diels-

Alder between chiral, non-racemic diene 17.2 and doubly activated dienophile 17.3 

(Scheme 17).  Diene 17.3 was itself available from commercially available ketoester 

17.1, which can be obtained as either antipode.  Utilizing (+)-ketoester 17.1 allowed 

for quick generation of 17.2, which upon cycloaddition with dienophile 17.3 provides 

two  (out of a possible eight) diastereomeric adducts with the major being adduct 

17.4.  Subsequent modification to aldehyde 17.5 allowed for a siloxyfuranyl addition, 

reminiscent of the Corey and Danishefsky approaches with the notable exception that 

addition would occur via the titanium reagent.  This (siloxyfuranyl)titanium reagent 

provided a 2.2:1 desired: undesired mixture of epimeric alcohols, although isolation 
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provided 58% yield of desired 17.6 and 14% yield of the epimer.  Dimethyldioxirane 

oxidation followed by treatment with Amberlyst-1531 provided (+)-dysidiolide in a 

total of 15 linear steps and 5.26% overall yield.  At the time of writing, this 

established the absolute stereochemistry of naturally occurring dysidiolide as the 

enantiomer of (+)-dysidiolide, however, the Corey group’s paper published sixteen 

days after the Boukouvalas report was submitted provided this information. 
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 The Hashimoto-Shirai group’s total synthesis of (–)-dysidiolide in 2000 

explored the Diels-Alder approach towards generating analogs for structure-activity 

relationship inquiries.32  Utilizing ketoester (S)-(–)-17.1, the group synthesized chiral, 

non-racemic diene ent-17.2 (Scheme 18) which was combined with crotonaldehyde 

(18.1) to produce four inseparable adducts in 83% yield, where subsequent reduction 

allowed for identification of the isomeric products 18.2a-d.  Isomer 18.2a was taken 
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on to synthesize (–)-dysidiolide in 8 more steps, with isomers 18.2b-d illustrating the 

method’s flexibility towards analog development. 

Scheme 18 
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 The Forsyth group provided a total synthesis of racemic dysidiolide in 2000 

that relied on highly diastereoselective sequential transfer of stereochemical 

information to install the core stereogenic centers of the bicyclic natural product. 33,34  

Starting with racemic vinylogous acyl chloride 19.1, selective methylation anti to the 

C7 methyl group provided ketoester 19.2 (Scheme 19).  Addition of sodium ethoxide 

to provide the vinylogous ester prior to lithium aluminum hydride reduction allows 

for acid catalyzed rearrangement to form enone 19.3.  TMS protection of the primary 

alcohol allows for cyanocuprate addition to effect a conjugate addition anti to silyl 

protected oxymethyl group at C6 to yield ketone 19.4.  Ketone 19.4 underwent a 

global deprotection followed by Jones oxidation and esterification, allowing for 

annulation to afford bicyclic enone 19.5.  The β,β-disubstituted bicyclic enone 19.5 

underwent an exquisitely stereoselective 1,4-addition by the Gilman cuprate formed 



 23 

from 5-bromo-2-methylpentene, delivering the bicyclic core of dysidiolide (19.6).  

Racemic dysidiolide was then synthesized in 9 more steps. 

Scheme 19 
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 In 2001 Yamada’s group presented the total synthesis of (–)-dysidiolide 

utilizing an intramolecular Diels-Alder reaction to construct the bicyclic core.35,36 

Chiral, non-racemic enone 20.137 was converted to dienone 20.2 in two steps 

(Scheme 20), followed by conjugate addition of thiophenol and DIBAL reduction to 

afford epimeric alcohols 20.3a and 20.3b. Attempting to acylate the alcohol with the 

diene intact provided a 4:17 mixture of tandem acylation/Diels-Alder adduct 20.5 

with SN2’ adduct, thus necessitating thiophenol masking of the diene functionality.  

The readily separated epimers were each oxidized to the sulfoxide, where the correct 

C12 epimer 20.3a was directly acylated with propiolic acid to generate 20.4, while 

the undesired 20.3b was converted to the requisite propionate ester 20.4 via 
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Mitsunobu inversion. Refluxing sulfoxide 20.4 in toluene with the presence of ethyl 

propiolate and pyridine unmasked the diene moiety in situ and provided 

intramolecular Diels-Alder adduct 20.5.  Subsequent stereoselective methylation with 

Me2CuLi provided tricycle 20.6 in 91% yield with a 30:1 C7α:C7β ratio.  This rigid 

tricycle set the stage for selective generation of the C6 quaternary stereogenic center 

by deprotonation of 20.7 and alkylation with THP protected 2-iodoethanol to provide 

20.8 in 92% yield as the sole product.  Subsequent elaboration of the fully 

functionalized core yielded a 27 step synthesis of naturally occurring dysidiolide in 

9.7% overall yield from 20.1. 
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1.4 Motuporin/Nodularin V 

 Motuporin (nodularin-V) is a cyclic pentapeptide isolated in 1992 from the 

marine sponge Theonella swinhoei Gray (Figure 4).38  In addition to containing the 

unusual β-amino acid Adda, motuporin is one of the most potent PP1 inhibitors 

known (IC50 < 1.0 nM) and shows strong cytotoxicity against a variety of human 

cancer cells.38  As motuporin is available from a much less readily accessible source 

than other members of its class (okadaic acid class), much of the information on it has 

been extrapolated from data on nodularin and the microcystins.  While sharing similar 

biological properties, important functional differences exist between the microcystins 

and nodularins (motuporin included) such as microcystin covalent bonding to PP1 

and PP2A.39  As such, motuporin became an attractive target for total synthesis. 
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Figure 4 Motuporin 
 The first total synthesis of (–)-motuporin was unveiled in 1995 by the 

Schreiber group where all the stereocenters arrived from common amino acids or D-

mandelic acid.40  Key to the route was realizing the generation of the C20 amino acid 

(2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid 

(Adda)41 and D-erythro-β-methylaspartate (β-MeAsp),42 which the group chose to 

access via a novel route from D-threonine towards a common intermediate.  To 
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achieve this, protected D-threonine 21.1 (Scheme 21) was converted to tosylaziridine 

21.2, followed by cyanide addition and methanolysis to afford γ-lactone 21.3.  This 

proved to be the common intermediate for formation of the C1-C4 backbone of Adda 

21.4 and for generation of the differentially protected β-MeAsp derivative 21.5. 
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 The key generation of protected Adda continued with conversion of 

mandelaldehyde 22.1 (Scheme 22) through Lewis acid promoted crotylstannane 

addition to produce the C8 and C9 stereogenic centers followed by methylation to 

provide alkene 22.2.  Elaboration to the α,β-unsaturated ester 22.3 allowed for 

conversion to sulfone 22.4.   
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Sulfone 22.4 underwent a stereoselective diene-forming addition with aldehyde 21.4 

by utilizing a modified Julia olefination to provide protected Adda 22.5 as the only 

detectable diene isomer. 

 Given the presence of several amino acid linkages lacking α-amino 

substituents, convergent coupling of the fragments was performed without 

troublesome epimerization.  As such, the linear precursor to the desired natural 

product, 23.1, was quickly in hand (Scheme 23).  Neutralization of an acidic solution 

of 23.1 by Hünig’s base allowed for macrolactamization to yield the desired 

macrocycle 23.2.  The methyl esters of 23.2 were deprotected with aqueous Ba(OH)2 

with the unexpected complete dehydration of the N-methyl-D-threonine subunit to 

produce (–)-motuporin in 52% yield. 

Scheme 23 
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 The Toogood laboratory provided the second total synthesis of (–)-motuporin 

in 1999 along with synthesis of 5-[L-Ala]-motuporin (Figure 5) to investigate the 
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contribution of the N-methyldehyrobutyrine residue, a moiety the authors suggested 

was inessential to activity since it did not undergo covalent modification unlike the 

dehydroalanine in microcystin-LR.43  In these efforts, the Toogood group developed 

another synthesis of Adda they deemed suitable for larger scale generation and 

provided insight into the macrolactamization step. 
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Figure 5 (–)-Motuporin and the 5-[L-Ala] analogue 

 In forming amino acid Adda, Evans aldol adduct 24.1 was converted to 

trisubstituted alkene 24.2 (Scheme 24).  Gem-dimethyl alkene 24.2 was 

regioselectively oxidized to alcohol 24.3 by SeO2, with a Luche reduction of the 

crude mixture to convert minor overoxidized product from SeO2 into alcohol 24.3.  

The C1-C4 fragment originated from (R)-3-pentyn-2-ol, where three chemical steps 

provide 24.4 poised for a highly diastereoselective Claisen rearrangement, followed 

by methylation of the acid, reduction to the alcohol, and subsequent protection to 

afford 24.5.  Conversion of the alkene to the methyl ester followed Marshall’s 

procedure,44 followed by selective silyl deprotection with NBS according to Taylor’s 

method45 and oxidation to aldehyde 24.6.  Despite numerous attempts to circumvent 

the poor E-olefin selectivity of the triphenylphosphonium ylide of 24.7 with aldehyde 
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24.6, the described conditions provided the best results to yield a 2:1 E:Z mixture 

with 41% yield of the desired E-olefin.  Fortunately, the Toogood group found the 

undesired isomer could be converted to E-isomer 24.8a, thus completing the synthesis 

of protected Abba. 
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 Achieving the necessary macrolactamization for completing the phosphatase 

inhibitor proved to be fraught with complications.  Utilizing Schreiber’s cyclization 

conditions provided the cleanest product, by a small degree, but was not reproducible 

(Scheme 25).  Cyclization with pentafluorophenyl diphenylphosphinate (FDPP) 

proceeded smoothly and consistently, while utilizing diphenylphosphoryl azide 

(DPPA)46 provided yields of only 26%.  Investigation of the N-methyldehyrobutyrine 

residue containing variant 25.2 was expected to provide a higher yield of cyclized 

product due to additional conformational constraint enforced by the olefin, yet 

cyclization provided a 1:4 mixture of desired product 25.3 to the C22 epimer.  Similar 
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results were obtained in synthesizing 5-[L-Ala]-motuporin.  Noting additional 

epimerization during saponification to the natural product, the authors suggest that 

future endeavors employ acid labile carboxyl protecting groups.  Subsequent assays 

showed that 5-[L-Ala]-motuporin was a slightly weaker inhibitor of PPA compared to 

(–)-motuporin, indication diastereomers of motuporin and motuporin analogues may 

be effective PP1 inhibitors. 

Scheme 25 
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 Just sixteen days after the publication of the Toogood investigations, the 

Panek group report was revealed to the scientific community,47 with a further 

publication in 200248 providing the synthesis in greater detail with improved 

macrocyclization conditions.  Panek’s report featured introducing six of the eight 

stereogenic centers through asymmetric crotylsilane bond constructions, yet another 

approach to constructing Abba, and a method for late stage introduction of the diene 

within the valine-Abba dipeptide. The valine-Abba dipeptide synthesis initiated with 
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acetal 26.1 (Scheme 26), where BF3•OEt2 promoted addition of (S)-chiral silane 26.2 

to afford homoallylic ether 26.3 in 92% yield with 10:1 syn/anti diastereoselectivity.  

Ozonolysis followed by a dibromo-olefination and a subsequent Corey-Fuchs 

reaction, where the acetylenic anion is trapped by MeI to provide acetylene 26.4.  The 

acetylene was then transformed into dipeptide 26.6 by a hydrozirconation/Negishi 

coupling strategy with iodide 26.5 to generate valine-Abba dipeptide 26.6 in 81% 

yield with exquisite selectivity for the desired diene isomer.  The success of the cross-

coupling was nested in the double transmetallation of a low kinetic barrier 

(Zr→Zn→Pd) versus a single transmetallation (Zr→Pd) of high activation energy. 
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 Also notable was the Panek group’s approach to the penultimate 

macrolactamization.  TFA deprotection of the amine Boc group of acyclic 27.1 

provides an amine ready for HATU coupling with the C26 carboxylic acid, yielding 

adduct 23.2 in 79% yield.  Further treatment with 2 N Ba(OH)2 provided the natural 

product in 52% yield, constituting a 16 linear step synthesis (from chiral crotylsilane 

reagents) with an overall yield of 15.8%. 
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 The Armstrong group reported an Ugi four-component coupling reaction to 

synthesize the 2-(N)-methylaminobutenyl residue and a Matteson dihalo-

methyllithium insertion methodology49 for constructing the C26-C29 3-

methylaspartyl residue in their 1999 total synthesis.50  Use of the Ugi technology was 

postulated to overcome the difficult coupling of a secondary amine and a carboxylic 

acid using standard peptide coupling methods.  Combining protected acid 28.1 

(Scheme 28), aldehyde 28.2, methylamine (28.3), and cyclohexenyl isocyanide (28.4) 

provided cyclohexenamide dipeptide 28.5 as a mixture of separable diastereomers, 

which upon treatment with preheated aqueous hydrochloric acid provided free 

carboxylic acid 28.6 (47% over 2 steps).  The diastereomers were taken through the 

synthesis as elimination in the latter part of the synthesis renders the mixture 

inconsequential.  Compared to the traditional route, which afforded 

diastereomerically pure 28.6 in 21% overall yield in 4 steps, the authors noted the 

significant improvement the Ugi route provided.  
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Scheme 28 
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 Synthesis of the C26-C29 3-methylaspartyl residue began with triisopropyl 

borate 29.1 which was subsequently transformed into protected alcohol 29.2 (Scheme 

29).  Chain extension was affected with dichloromethyllithium followed by 

subsequent ZnCl2 addition to instigate rearrangement of the ate-complex to provide 

α-chloroborate ester 29.3.  Stereospecific chloride displacement generates the α-

methyl borate, followed by homologation to α-bromoborate 29.4.  Conversion to the 

azide 29.5 occurred under phase transfer catalyst conditions, notably the only step 

utilizing this methodology that yielded any detectable amount of diastereomer (in 

accord with Matteson’s observations).  Final homologation followed by oxidative 

removal of boron (where order of addition of the NaOH and H2O2 proved to be 

nontrivial) provided the C26-C29 3-methylaspartyl residue 29.6, which after 

differential protection and two step oxidation yielded aldehyde 29.7. 
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1.5 Tautomycin 

 Tautomycin was reported in 1987 by Isono and co-workers as an isolate from 

soil bacteria Streptomyces spiroverticillatus that exhibited potent antifungal activity 

against Sclerotinia sclerotiolum (Figure 5).51  Later, it was reported that tautomycin 

induced a morphological change in human leukemia cells K56252 and inhibited PP1 

and PP2A with IC50 of 22-32 with a weak preference for PP1.53  It was found that the 

anhydride moiety along with the C18-C26 region was crucial for activity, with the 

C1-C17 spiroketal bearing region varying affinity between PP1 and PP2A.54  Since 

differentiation of the roles of PP1 and PP2A require specific inhibitors of each, and 

specific inhibitors of PP1 are scarce,54 efforts towards to total synthesis of tautomycin 

were greatly desired. 
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Figure 5 Tautomycin 
 The first total synthesis was reported in 1994 by Oikawa and Ichihara’s 

group,55 where derivatizations and degradations of the natural product provided 

insight into the synthetic route they implemented.56  Key to the synthesis was the 

coupling of two large subunits, the western aldehyde 30.1 and the eastern ketone 30.2 

(Scheme 30).  Synthesis of the eastern spiroketal was to be afforded by spiroketal 

templated synthesis of the C1-C10 portion 30.4 of the molecule. 

Scheme 30 
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 Synthesis of the C1-C10 fragment reached a crucial juncture upon coupling 

sulfone 31.1 (Scheme 31) with 2-methyl-δ-valerolactone (31.2) to yield ketone 31.3 

as a mixture of four isomers.  MOM deprotection and concomitant spiroketalization 

occurred with TMSBr, followed by warming to 0 ºC to provided crystalline 
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thermodynamically favored spiroketal 31.4 as a single diastereomer.  Desulfurization 

and subsequent acetal reduction provided tetrahydropyran 31.5 with high regio- and 

stereoselection.  Further elaboration including Mitsunobu inversion of the C6 carbinol 

provided the C1-C10 fragment 30.4, illustrating the utility of the spiroketal templated 

remote stereocontrol process.  
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 Coupling of the C1-C10 fragment 30.4 with the C11-C18 fragment 30.3 

provided western ketone 30.2 after some additional linear modifications.  The 

essential coupling the western ketone 30.2 with the eastern aldehyde 30.1 was then 

investigated (Scheme 32), with the authors noting that the desired product 

necessitated an anti-Felkin aldol to achieve the requisite diastereomer.  Utilizing 

LiHMDS to generate a lithium enolate provided a the undesired C22-(S) epimer 

preferentially, and using Evans’ chlorotitanium enolate method provided only 15% 

desired C22-(R) epimer 32.1 along with 48% of the undesired epimer.  While the 

epimers could be easily separated, the authors extensively explored more efficient 

conditions.  Highly selective coupling was attained by utilizing Mukaiyama aldol 

conditions, where ketone 30.2 is converted to the silyl enol ether followed by 
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treatment with aldehyde 30.1 in the presence of TiCl4 afforded the desired C22-(R) 

32.1 as the sole isomer.  The authors posit that the high diastereoselection arrived 

from chelation of the Lewis acid with the α-ether oxygen versus the β-acyl oxygen.  

Subsequent Wacker oxidation of the C1-C2 olefin followed by optimized TESOTf 

mediated anhydride formation provided (+)-tautomycin, confirming the relative and 

absolute stereochemistry of the phosphatase inhibitor. 

Scheme 32 
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 The Isobe group was next to publish their total synthesis of (+)-tautomycin the 

next year,57 with a full report subsequently detailing their efforts.58  The Isobe group 

divided the molecule into 3 major fragments to facilitate a convergent total synthesis.  

Two key steps stood out towards realizing the total synthesis (Scheme 33): 1. the 

coupling of C17-C26 epoxide 33.1 with C1-C16 sulfone 33.2, and 2. the esterification 

of acid 33.3 with the western portion of the molecule. 
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Scheme 33 
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 The two key events were performed within 3 steps of each other.  First, 

coupling of the sulfone fragment 33.2 with epoxide 33.1 occurred by generating the 

anion of 33.2 with subsequent addition of BF3•OEt2 activated epoxide 33.1.  This 

provided the western carbon skeleton 34.1 in 78% yield as a mixture of epimers at the 

C16 sulfone.  Subsequent desulfonlylation followed by protecting group manipulation 

provided diol 34.2 poised for esterification. 
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 The esterification had been extensively studied with particularly fruitful 

observations.  One was that TBS protection of the C22 alcohol of 34.2 caused a 

serious steric interaction that hampered esterification (28% yield).  Noting that 

selective esterification of model diols proceeded smoothly, the selective esterification 

of diol 34.2 with fully elaborated anhydride acid 33.1 was attempted under 

Yamaguchi conditions (Scheme 35).  Gratifyingly, protected tautomycin 35.1 was 

formed in 88% yield and upon silyl and thioketal deprotection provided (+)-

tautomycin. 

Scheme 35 
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 Shibasaki’s group published their approach to the natural product in 1996.59  

Their approach to the coupling the C16-C17 bond was envisioned to proceed through 

an aldol reaction60 rather than an epoxide addition as Isobe’s report detailed.  Also 

explored was a similar Yamaguchi esterification to append the maleic anhydride 

fragment, with insight as to an appropriate species to employ issuing from the 

investigations.  Generation of the necessary fragments for providing the aldol 

substrates occurred from 2-deoxyglucose to afford C17-C26 fragment 36.1 (Scheme 
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36) and from (+)-diethyl tartrate to provide C1-C16 spiroketal aldehyde 36.2.  The 

essential aldol condensation was accomplished by generating the dianion of keto-

alcohol 36.1, allowing for addition into aldehyde 36.2 to afford the adduct 36.3 as a 

diastereomeric mixture in 82% yield.  Bis-acylation of the diol 36.3 followed by DBU 

promoted elimination at C16-C17 provided the enone.  While hydrogenation with 

Wilkinson’s catalyst failed, mild conjugate reduction using NaTeH afforded saturated 

ketone 36.4 quantitatively.  Subsequent diastereoselective reduction with L-

Selectride® provided the final stereogenic center at C18 in a 2:1 ratio of desired S to 

undesired R, an inseparable mixture until TES protection to afford 36.5. 
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 Rigorous investigation of the key unifying esterification highlighted the 

sensitivity of the reaction to remote steric interactions.  Attempting to couple western 

diester acid 37.1 with eastern spiroketal 37.2 (Scheme 37) was deemed plausible 

based on model studies with acid 37.1 under a variety of coupling conditions, all of 
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which proceeded in good yield.  On the actual spiroketal alcohol 37.2, however, 

attempting to couple utilizing DCC in THF provided no product and instead yielded 

dicyclohexylurea adduct 37.3.  Utilizing Keck’s method (DCC, PhMe) with 

DMAP•HCl yielded no DCC adduct 37.3, but also no desired coupling product.  

When three other methods failed to provide any product, the authors reevaluated the 

synthesis and produced furanyl acid 37.4 to circumvent the severe steric interactions  

Scheme 37 
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implicated in the recalcitrant esterification.  Coupling furanyl acid 37.4 with alcohol 

37.5 (only slightly modified from 37.2 to circumvent an unexpected acyl migration 

during TES deprotection) under modified Yamauchi conditions utilizing a large 
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excess of DMAP provided ester 37.6.  Six additional functional group manipulations 

yielded the natural product. 

 Chamberlin and co-workers expounded upon a different approach to (+)-

tautomycin in 1997.61  Production of the natural product was to originate with (S)-

citronellene and (2R,3S)-geraniol epoxide to form the C1-C21 segment of the 

phosphatase.  In this vein, synthesis of the C1-C8 fragment began with selective 

oxidative cleavage of (S)-citronellene (38.1, Scheme 38) via a two step Ireland 

procedure.62  Attempts to convert aldehyde 38.2 to the anti aldol adduct 38.3 

surveyed several types of enantioselective routes, with the authors choosing the 

Duthaler reagent63 due to its excellent enantioselectivity, convenient scalability, and 

consistency. Silylation of the C6 hydroxyl, DIBAL reduction of the ester, and 

functional transposition of the primary alcohol to the iodide generated C1-C8 

fragment 38.4. 
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 The C1-C8 iodide 38.4 was joined to acetone and C12-C18 iodide 39.1 

(Scheme 39) via a three step, one pot double alkylation procedure to afford the 
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hydrazone, followed by concomitant silyl deprotection and spiroketalization to 

provide ketal 39.2 as a single isomer in 77% overall yield.  While oxidative cleavage 

provided disappointing yields of aldehyde 39.3 (52%) on large scale, the ready 

abundance of 39.2 prevented the step from being insurmountable.  Utilizing the 

Dunthaler reagent once more provided a 7:1 mixture of inseparable isomers, favoring 

adduct 39.4, in 67% yield.  Subsequent saponification (without detectable 

epimerization), Wienreb amide formation and methylation provided the methyl 

ketone homologue of 39.4 that was readily separable from the minor isomer. 
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 To complete the synthesis, anti-Felkin chelation controlled Mukaiyama aldol 

coupling cleanly combined the C1-C21 segment 40.1 with the western ester 40.2 to 

provide a single aldol diastereomer 40.3 after silyl deprotection.  Wacker oxidation 

provided the C1-C2 methyl ketone without notable epimerization, allowing for 

hydrogenolysis to complete the synthesis of the natural product.  In summary, the 

Chamberlin group total synthesis of (+)-tautomycin proceeded in 19 linear steps from 

(2R,3S)-geraniol in 1.5% overall yield. 
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1.6 Phoslactomycins 

 Phoslactomycins A-F and I are a class of polyketide natural products bearing a 

phosphate that exhibit antitumor, antiviral, antibiotic and antifungal properties.64  The 

inhibitory activity selective for human protein phosphatase 2A (PP2A)65 has 

prompted intensive investigations into this class of molecules.  Such investigations 

have yielded the binding site that interacts with the crucial phosphate group,66 the 

cloning and sequencing of the biosynthetic gene cluster,67 and the origin of the 

biosynthetically unusual cis olefins in the natural product.68 

 The first total synthesis of phoslactomycin B was reported by Kobayashi and 

co-workers in 2006,69,70 where the authors initially sought to construct the molecule 

in an analogous manner to the synthetic route utilized for fostriecin.  After 

investigation, however, it was found that certain key transformations such as the 
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RCM of the lactone ring were inefficient in application towards phoslactomycin B, as 

illustrated in Figure 6. 
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Figure 6 Attempted Ring-Closing Metathesis by Kobayashi and co-workers 
 This observation led to a synthesis where the lactone ring would be afforded 

by Lewis acid lactonization of the acyclic γ-hydroxy ester (Figure 7).  Installation of 

the C8 stereocenter would occur by chelation controlled diastereoselective Grignard 

addition governed by the C9 stereocenter.  The key Z,Z-diene would proceed from 

reduction of the enyne, which itself would be formed from a Sonogashira coupling. 
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Figure 7 Kobayashi’s Retrosynthesis 
 The initial C9 stereocenter was provided by kinetic resolution of racemic (E)-

ethyl 3-hydroxyhex-4-enoate by Sharpless asymmetric epoxidation.  Another 14 steps 

provides ketone 41.1 (Scheme 41), where a diastereoselective vinylmagnesium 

bromide addition provided the C8 stereocenter of 41.2 as a single diastereomer, 

ultimately proven to be the desired configuration upon completion of the molecule.  

Protection of the C8 alcohol followed by ozonolysis and Horner-Wadsworth-Emmons 

olefination produced ester 41.3, setting the stage for completion of the carbon 
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skeleton on the natural product.  Enyne 41.5 was afforded through Sonogashira 

coupling of the acetlyenic carbon with Z-vinyl iodide 41.4.  Installation of the lactone 

occurred through an Evans aldol reaction of aldehyde 41.6 to afford C4-C5 syn 

adduct 41.7. 
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 Cleavage of the oxazolidinone followed by aldehyde formation and 

olefination provided the acyclic lactone precursor 42.1 (Scheme 42).  Removal of the 

C8 TES group allowed for titanium(IV) isopropoxide mediated transesterification to 

afford lactone 42.2, again noting that attempts to generate the lactone by RCM to fuse 

the C2-C3 olefin were fruitless.  Generation of the Z,Z-diene then commenced by 

global silyl deprotection and zinc reduction to afford diene 42.3 with exquisite cis 

selectivity. 
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Scheme 42 

PMBO

OTES

TBDPSO

OTBS

6

8

9 11

EtO2C

Et

TESO

1. PPTS (3 mol %)

MeOH:THF (3:1), 86%

2. Ti(Oi-Pr)4 (0.2 equiv.)

PhH, reflux, 94%

OO

PMBO

OTES

TBDPSO

Et
OTBS

6

8

9 11

1. TBAF, 88%

2. Zn, LiCuBr2

EtOH, 88%

OO

PMBO

OH

HO

Et
OH

6

8

9 11

42.1

42.242.3

 
 Completion of the synthesis occurred after Mitsunobu introduction of the 

amine, where deprotection of the C9 PMB group of 43.1 (Scheme 43) in the presence 

of the Z,Z-diene afforded the alcohol in good yield.  Phosphate introduction by the 

phosphoramidite and subsequent oxidation provided fully protected inhibitor 43.2, 

which after acidic deprotection of the silyl groups and palladium mediated 

deallylation yielded (+)-phoslactomycin B.  The total synthesis thus proceeded in 38 

steps from racemic (E)-ethyl 3-hydroxyhex-4-enoate in 0.9% overall yield. 

Scheme 43 
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 The second reported total synthesis came from Hatakeyama’s group in 2008.71  

The authors dissected the molecule as presented in Figure 8 where a Stille-type 

coupling would append the vinylcyclohexyl group onto the carbon skeleton.  RCM 
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would generate the lactone from the acyclic diene, while the amine bearing chain 

from C8 would be incorporated via a Suzuki-Miyaura coupling with a Sharpless 

asymmetric dihydroxylation providing the C8 and C9 stereocenters.  The group 

wished to install the C4 and C5 stereogenic centers through an asymmetric 

pentenylation in a Brown or Roush asymmetric crotylation fashion, a feat that was 

described as unprecedented. 
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Figure 8 Hatakeyama’s Retrosynthetic Dissection 

 The risky asymmetric pentenylation of aldehyde 44.1 was first attempted with 

Brown conditions (Scheme 44).  Initially, the pentenyl borane reagent was prepared 

from 2-pentenylmagnesium bromide and (+)-Ipc2BOMe to provide a 98% yield of a 

1:3 desired syn to undesired anti mixture.  The authors deduced that a partial 

isomerization was occurring when preparing the Grignard from (Z)-2-pentenyl 

bromide, and thus opted to use 2-pentenylpotassium.  The Brown reagent prepared 

from 2-pentenylpotassium yielded highly diastereo- and enantioselective 

pentenylation to provide the syn isomer 44.2 in 82% yield as a sole diastereomer in 

93% ee.  This set the stage for the Suzuki-Miyaura coupling step, where the C8-

aminoethyl group was appended smoothly to provide alcohol 44.3.  Acryloylation of 

alcohol 44.3 allowed for ring-closing metathesis of the resulting acrylate to cleanly 
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cyclize to lactone 44.4 in 76% yield.  This interesting result contrasts with the 

Kobayashi group’s investigations, vide supra.  The C8 and C9 stereocenters were then 

set by utilizing Super-AD-mix with (DHQD)2-PHAL as a chiral ligand to afford a 

87:13 mixture of the C8-C9 dihydroxylated product 44.5 with the minor C6-C7 

dihydroxy isomer.  It was also found that diol 44.5 was generated as an exclusive 

enantiomer, suggesting a concomitant kinetic resolution of 44.4 during the reaction.  

Taking 13 more steps to provide (+)-phoslactomycin B, the total synthesis proceeded 

in 26 steps in 1.3% overall yield. 
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 The only (as of this writing) synthesis of phoslactomycin A, depicted in 

Figure 9, that has been reported is that of the Koert group in 2009.72  The group 

utilized transformations similar to those described for the phoslactomycin B syntheses 

(vide supra) as well as for the synthesis of leustroducsin B,73,74 with key contributions 
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in the synthesis of the C14-C21 cyclic fragment and the coupling of the C13-C14 

bond in the presence of the protected phosphate. 
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Figure 9 Phoslactomycin A 
 Synthesis of the C14-C21 fragment began with conjugate asymmetric addition 

of E-styrylboronic acid to cyclohexenone (45.1) mediated by Hayashi’s catalytic 

conditions75 to afford ketone 45.2 in 96% yield with 94% ee (Scheme 45).   Sodium 

borohydride reduction and subsequent TBS protection provided alkene 45.3, followed 

by ozonolysis, Stork-Zhou olefination, and stannylation to give vinyl stannane 45.4.  

Deprotection followed by esterification provided the C14-C21 fragment 45.5. 

Scheme 45 
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 The final union of the C14-C21 fragment 45.5 to the C1-C14 subunit 46.1 was 

carefully examined (Scheme 46).  While a Pd-catalyzed Stille reaction would be 

suitable for alkenyl iodide couplings with alkenyl stannanes, the presence of the C9 

allyl protected phosphate gives pause to palladium mediated couplings.  Utilizing Cu-



 51 

mediated Liebeskind coupling76 prevents side reactions, and copper(I) thiophene 

carboxylate (CuTC) proved to provided the desired coupling to afford the protected 

inhibitor 46.2 in 61% yield.  The advantage of this method is clear as only a 

protecting group removal remained in the total synthesis, which was enacted with 

Pd(PPh3)4/HCO2H to reveal phoslactomycin A. 

Scheme 46 
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1.7 Spirastrellolide A Methyl Ester 

 The isolation of spirastrellolide A and spirastrellolide A methyl ester (Figure 

10) from Spirastrella coccinea was reported in 2003 by Andersen and co-workers, 

drawn to discover the inhibitor responsible for mitotic arrest in their cell-based 

assays.77  More, although not complete, stereochemical detail was provided in 2004, 

but of interest was the fact that spirastrellolide A was a potent inhibitor of PP2A (IC50 
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= 1 nM) that did not effect tubulin polymerization as did other antimitotic sponge 

macrolides.78  Instead, it accelerates the entry of cells into mitosis from other stages 

of the cell cycle then induces arrest, similar to the okadaic acid class of molecules.78  

The 47 carbon backbone of the molecule contains 21 stereocenters, three cyclic ether 

subunits including the unique DEF chlorosubstituted 5,6,6-trioxadispiroketal, and an 

exocyclic non-conjugated Z,E-diene.  Given the small amount of spirastrellolide 

which was isolated coupled with the unique architecture and biological activity, with 

the added complication of several unresolved stereochemical issues, earnest 

motivation towards completion of the total synthesis was well founded.79 
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Figure 10 Spirastrellolide A and spirastrellolide A methyl ester 
 The first and, as of this writing, only total synthesis of the spirastrellolide 

family was reported in back to back publications by Paterson and co-workers in 2008 

on their work synthesizing spirastrellolide A methyl ester.80  Key to their efforts was 

the efficient and improved synthesis of the C25-C40 bisspiroketal fragment 47.7, 

which had been previously reported (Scheme 47).81 Oehlschlager-Brown 

chloroallylation82 of aldehyde 47.1 followed by methylation enantioselectively 
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provided ketone 47.2 in good yield with excellent diastereoselectivity.  Formation of 

the boron enolate of 47.2 allowed addition to aldehyde 47.3 which, after elimination, 

provided triene 47.4 on 10 gram scale.  Conversion of triene 47.4 to diene dione 47.5 

allowed for the pivotal tandem double-Sharpless asymmetric 

dihydroxylation/spiroketalization tactic, where subsequent TES protection provided 

the C25-C40 DEF domain 47.7. 
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 The crucial coupling of the C17-C24 subunit with the DEF subunit 47.7 could 

be afforded through a modified Julia olefination, however it was rather lengthy and 

faced disappointing yields.  This led the Paterson group to explore an ambitious sp2-

sp3 coupling of iodide 48.1 with hydroborated alkene 48.2 (Scheme 48), which 

afforded the trisubstituted olefin 48.3 in 83% yield.  Substrate controlled bis-

hydroboration of alcohol 48.3 provided the C23 stereocenter, followed by protection 
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and formation of the C17 aldehyde 48.4.  Addition of the lithium anion of C1-C16 

bearing alkyne 48.5 to aldehyde 48.4 provided a mixture of epimeric alcohols, 

rendered inconsequential by the subsequent Lindlar reduction and oxidation of the 

epimeric alcohols to the enone.  All three PMB ethers were cleaved with DDQ (with 

the unexpected TES deprotection at C23) to achieve stereoselective BC 

spiroacetalization affording hexacyclic diol 48.6 and a mere two step oxidation 

removed from the crucial macrolactonization event. 

Scheme 48 
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 The critical macrocyclization of seco acid 49.1 (Scheme 49) was found to 

occur quite readily via the Yamaguchi protocol to rapidly yield the corresponding 

macrolide 49.2.  What seemed to be a simple selective deprotection of the primary 

C40 TBS group turned out to be fraught with difficulty, however, necessitating global 
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deprotection and reprotection followed by transformation to the olefin and a gentle 

cross-metathesis (which did not degrade starting material) to provide allylic carbonate 

49.3.  A crucial π-allyl Stille cross-coupling performed extremely well to append 

stannane 49.4 to provide the desired 40E,43Z diene, where cleavage of the acetonide 

groups yielded (+)-spirastrellolide A methyl ester.  In total, the pioneering synthesis 

comprised 36 linear steps to afford the natural product phosphatase inhibitor. 

Scheme 49 
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1.8 Okadaic Acid 

 Okadaic acid (Figure 11) was first isolated as a potent antitumor agent from 

Pacific and Caribbean marine sponges Halichondria okadai and Halichondria 



 56 

melanodocia (respectively) during a search for chemotherapies.83  The isolation group 

elucidated the structure via X-ray crystallography.  In 1982, Yasumoto and co-

workers identified okadaic acid as the major diarrhetic shellfish toxin in Mytilus 

edulis and concluded the natural product was accumulated from a dinoflagellate, 

Dinophysis fortii, as the original producer.84  It was found that okadaic acid is a 

potent inhibitor of PP1 and PP2A,85 and is the most widely used tool for probing the 

roles of these phosphatases.86  Comprehensive and definitive studies to determine the 

structural basis of inhibition, however, have been limited by lack of designed 

structural variants.87  Combined with the exquisite architecture of the molecule, these 

attributes have provided much impetus in the rational design of synthetic pathways to 

the natural product and analogues thereof. 
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Figure 11 Okadaic acid 

 Isobe and co-workers reported the first synthesis of okadaic acid in 1986.88,89  

The group divided the molecule into three segments: the C1-C14 containing segment 

A, C15-C27 dispiroketal segment B, and C28-C38 segment C.  Segment A was to be 

synthesized from two glucose derivatives, initiating with 2-acetoxy glucal 50.1 

(Scheme 50).  Generation of 50.2 allowed for deprotection and oxidation of C1 

followed by Wittig olefination, formation of epimeric chloroethylglycosides and ester 

reduction to yield allylic alcohol 50.3.  The key acyclic C2 hydroxyl group was 

introduced through selective oxymercuration/demercuration to provided diol 50.4.  
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Acetonide protection of the diol masked the C2 hydroxyl group until the final stages 

of the synthesis, while the chloroethyl glycoside was cleaved with sodium sulfinate to 

provide lactol 50.5, where oxidation to the lactone 50.6 by molecular bromine in a 

buffered media allowed for completion of the C1-C8 fragment of segment A. 

Scheme 50 
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 The C9-C14 fragment of segment A relied on a substrate directed approach to 

introduce the C13 stereogenic center.  Formation of heteroolefin 51.2 from D-glucose 

derivative 51.1 (Scheme 51) occurred in six steps and allowed for application of a 

previously developed methodology.90  Thus, β-chelation control of the  
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heteroconjugate addition of methylmagnesium bromide stereoselectively installed the 

C13 methyl group in alcohol 51.3.  Subsequent acylation provided protected lactol 

51.4 as the necessary precursor for generating segment A. 

 The group approached segment C from lactone 52.1, available in nine steps 

from D-glucose (Scheme 52).  Opening of the lactone by the anion of protected butyl 

sulfone 52.2 provided α-sufinyl ketone 52.3.  Reduction followed by immediate 

treatment with PPTS in refluxing ethanol with 2,2-dimethoxypropane as a 

dehydrating agent provided spiroether 52.4 in 81% yield.  Benzyl deprotection and 

oxidation of the unmasked alcohol produced aldehyde 52.5, which after Peterson 

olefination with PhS(TMS)2CLi and oxidation of the sulfide produced 52.6.  

Chelation controlled heteroconjugate addition afforded the C29 methyl group 

stereoselectively to complete segment C as sulfone 52.7, ready for coupling. 
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 Final elaboration of the molecule was set into motion by the coupling of 

segment C sulfone 52.7 with segment B aldehyde 53.1 to afford sulfonate alcohol 
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53.2 (Scheme 53).  Subsequent oxidation of the C27 alcohol followed by 

desulfurization and sodium borohydride reduction produced BC alcohol 53.3 as a 

single C27 isomer.  Six further modifications allowed for union of the A segment 

53.5 with BC aldehyde 53.4, which after elimination provided the unified molecule 

53.6.  Acetonide deprotection, two step oxidation to the C1 carboxylic acid, and 

benzyl deprotection provided the first totally synthetic okadaic acid, a feat that 

required 106 total steps and proceeded in 0.01% overall yield. 
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O

O

H

Me

Me

PhO2S

O

O

O

H

H

OMOM

OBn

H

H
OH Me

O
H

Me

O

TBDPSO
O

O

O

H

H

OMOM

OBn

H

H
O

n-BuLi, then D.1

1. CrO3•(pyr.)2

2. Al-Hg

92%

PhO2S

3. NaBH4, 0ºC
O

O

O

H

H

OMOM

OBn

H

H
OH Me

O
H

Me

O

OTBDPSOTBDPS

57% (3 steps)

6 steps

O

O

O

H

H

OBn

H

H
OBn Me

O
H

Me

O

O

O

O

Me

OBn

H

H
Me

PhO2S

O

O Me

1. s-BuLi, then 53.4

2. NaBH4, MeOH

3. Ac2O, pyr.

then Na-Hg

O

O

Me

Me

OBn
Me

H

H
O

O

O

H

H

OBn

H

H
OBn Me

O
H

Me

O
O

O

4 steps
okadaic acid

0.01% overall yield

106 total steps

53.1 52.7

53.2
53.3

53.4 53.5

53.6

 
 It was eleven years until the next reported total synthesis of okadaic acid.  The 

Forsyth group synthesis of okadaic acid was published in 1997,91 with additional 

details provided in 1998.87,92  While the authors note the disconnections in their 
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synthesis are similar to Isobe’s work, the authors caution that their route relies upon 

incorporating maximum functionality in each fragment.  These highly functionalized 

fragments were then to be utilized in direct and chemoselective coupling methods to 

minimize post-coupling transformations. 

 The C1-C14 fragment was assembled from alkyne 54.1 (Scheme 54), 

generated from known pentylidene protected triol 54.2, and lactone 54.3 which arises 

from Isobe’s isopropyl glycoside 54.4.  Addition of the lithium acetylide derived from 

54.1 to lactone 54.3 provided the crude ynone that was immediately silylated.  

Subsequent conjugate addition of dimethylcuprate provided β-methyl enone 54.5, 

which upon treatment of the crude enone with TsOH•H2O promoted spiroketalization 

to give 54.6, analogous to Isobe’s work.  Investigations into incorporating the α-

hydroxyl, α-methyl carboxylate at this early stage initially sought to add lactate 

pivalidene enolate 54.8 to C3 through halide or sulfonate displacement, but numerous 

attempts proved unsuccessful, potentially due to the crowded steric environment.  

Addition of enolate 54.8 to the C3 aldehyde 54.7, however, was successful, albeit in 

much lower than anticipated facial selectivity in forming the C2 stereocenter of 54.9.  

The authors reason this may be due to unfavorable double diastereoselection between 

the mismatched pair, where the secondary steric interactions erode the facial 

selectivity based on the t-butyl substituent.  Subsequent deoxygenation of C3 and 

deprotection/oxidation of C14 of 54.9 formed C1-C14 aldehyde 54.10, primed for 

coupling.  This provided an 11 step synthesis of C1-C14 fragment 54.10 from lactone 

54.3 in ~20% overall yield. 
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Scheme 54 
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Realization of the total synthesis relied upon coupling aldehyde 54.10 with 

advanced intermediate 55.1 in order to unify the carbon skeleton (Scheme 55).  The 

Horner-Wadsworth-Emmons reaction was performed under the mildly basic 

Masamune-Roush conditions to fuse the two fragments, providing enone 55.2 as a 

single olefin isomer.  Regio- and stereoselective reduction of enone 55.2 was 

accomplished with (S)-CBS and BH3 to yield the (R)-allylic alcohol 55.3.  Since 

alcohol 55.3 was partially cyclized following acidic workup of the CBS reduction, the 

crude product mixture was directly subjected to acid-catalyzed spiroketalization to 

yield protected okadaic acid 55.4.  A two step deprotection completed the total 
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synthesis of the phosphatase inhibitor as a 26 linear step synthesis with ~2% overall 

yield.  

Scheme 55 
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 Ley and co-workers reported their approach to the total synthesis of the 

inhibitor in 1998,93 where the authors intended to provide a route to the natural 

product by chemical methods developed in their laboratories.  In producing the C1-

C14 fragment, the group chose to employ chemistry specifically developed for the 
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asymmetric synthesis of α-hydroxy acids.  Glycolic acid was reacted with (S,S)-

bis(dihydropyran) 56.1 (Scheme 56) in the presence of Ph3P•HBr to generate 

dispiroketal 56.2 as a diastereomerically pure crystalline solid.  The authors explain 

that the selectivity is governed by the strong equatorial preference of the phenyl 

groups in combination with the optimal anomeric effects at the newly formed spiro-

centers.  Sequential alkylation of dispiroketal 56.2 with methyl iodide and the allyl 

bromide yields 56.3, which following by Sharpless dihydroxylation and Sharpless-

Kolb epoxidation provides epoxide 56.4.  Further vinyl addition, hydroboration, and 

TPAP oxidation provided lactone 56.5 as the C1-C7 component.  Further elaboration 

via an eight step procedure provides the C1-C14 fragment 56.6. 
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 The generation of the C27-C28 fragment employed a Ley protocol for 

spiroketalization.  Reaction of the anion from 2-(phenylsulfonyl)tetrahydropyran with 

iodide 57.1 (Scheme 57) followed by treatment with camphorsulfonic acid in 

methanol produced spiroketal 57.2 in 90% yield.  In the reaction, alkylation of iodide 

57.1 is followed by spontaneous antiperiplanar elimination of sufinic acid.  Upon 

addition of camphorsulfonic acid, acid mediated isopropylidene deprotection and enol 

ether protonation instigate spirocyclization.  Subsequent oxidation to the aldehyde 

followed by Corey-Fuchs elaboration to the alkyne 57.3 provides the necessary C27-

C38 fragment.  This was coupled to the C15-C26 central subunit 57.4 via 

deprotonation of alkyne 57.3 and transmetallation with dimethylaluminum chloride 

provides a Lewis acidic reagent that increases the sulfone reactivity by chelating with 

the ortho-methoxy group on the sulfone aryl ring, providing fused alkyne 57.5 in 70% 

yield.  An additional eight steps provided aldehyde 57.6 for completion of the carbon 

skeleton.  Coupling of aldehyde 57.6 with the anion of 56.6 provides the desired E-

olefin 57.7 as the major product.  Silyl deprotection followed by reductive removal of 

the benzyl group and diphenyldispiroketal provided okadaic acid.  The Ley group 

synthesis proceeded in 60 steps, with 24 step longest linear sequence from (S,S)-

bis(dihydropyran) 56.1 and in 0.7% overall yield from (S,S)-bis(dihydropyran) 56.1. 
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O O

Me

I

Me

O SO2Ph

, BuLi

1.

2. CSA (cat.)

MeOH, 90%

O

O

Me

Me

H
HO

1. TPAP, NMO

2. Ph3P, CBr4

0 ºC, 70%

3. BuLi, 100% O

O

Me

Me

H

PMBO
O

O

O

H

H

OTBDPS

OBn

H
S
O2

H
OMe

n-BuLi

then Me2AlCl

then 57.5

PMBO
O

O

O

H

H

OTBDPS

OBn

H

H

57.5
Me

O

O

Me

H

8 steps

O
O

O

O

H

H

OTBDPS

H

H

TIPSO Me

O
H

Me

O

56.6, NaHMDS

DMF:THF, -60 ºC

then 57.6, 66%

O

O

Me

Me

OBn

H

H
O

O

O

H

H

OTBDPS

H

H

TIPSO Me

O
H

Me

OO
O

Me

O

O

Ph

Ph

O

1. TBAF, 90%

2. Ca, NH3 (l)

Et2O, -33 ºC, 30%

(+)-okadaic acid

57.1
57.2 57.3

57.4

57.6

57.7

29 29 29

26
26

26

29

29

26
29

2
14

 
1.9 Fostriecin 

 Fostriecin (CI-920, Figure 12) is a biologically potent metabolite first isolated 

from Streptomyces pulveraceus in 1983 by workers at Warner Lambert-Parke 

Davis.94  It displays in vitro activity against a broad range of cancerous cell lines 

including lung cancer, breast cancer, and ovarian cancer,95 as well as in vivo 

antitumor activity.  In addition, fostriecin has demonstrated activity against leukemia 

(L1210, IC50 0.46 µM and P338).96  Its mode of action appears to operate via an 

inhibitory pathway of the mitotic entry checkpoint. Evidence of this pathway is 
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shown in fostriecin's potent and selective inhibition of a number of protein 

phosphatases.97,98  In 1997, Boger and coworkers determined the relative and absolute 

stereochemistry in fostriecin that confirmed previous assignments in a family of 

biologically active and structurally related natural products, including leustroducsin 

B, phospholine (phoslactomycin B), and phosphazomycin C.99  It is the most selective 

PP2A inhibitor to date with an IC50 value of 1.5-3.0 nM.2,100 
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Figure 12 

 The Boger group published the first total synthesis of fostriecin in 2001.101  

The synthesis initiated with the generation of the lactone skeleton from 5-hexenoic 

acid (58.1, Scheme 58).  Conversion to the ester followed by Sharpless asymmetric 

dihydroxylation provided the C5 stereocenter in 88-92% ee, which upon 

recrystallization provided the diol 58.2 in 98% ee.  Selective protection of the primary 

alcohol followed by TFA-mediated lactonization and subsequent deprotonation in the 

presence of PhSeBr allowed for formation of α-phenylselenyl lactone 58.3.99 Lactone 

58.3 was summarily oxidized to the corresponding selenoxide followed by in situ 

elimination to generate the internal olefin.  Subsequent Dibal-H reduction and 

protection with isopropanol provided lactol 58.4.  Deprotection of the primary 

TBDPS ether allowed for oxidation to aldehyde 58.5, the necessary partner for 

Wadsworth-Horner-Emmons coupling with the remaining C7-C18 backbone of the 

natural product. 
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Scheme 58 
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 Generation of the C7-C18 backbone realized installation of the C11 hydroxyl 

group via a Sharpless asymmetric dihydroxylation of dihydrofuran 59.1 to produce 

lactol 59.2 (Scheme 59).  The newly formed C11 hydroxyl group was then TBS 

protected and the lactol condensed with the Still-Gennari phosphonate 59.3 to yield 

the Z-olefin bearing ester 59.4.  The authors note that attempts to utilize the Stork-

Zhao protocol102 to afford the Z-iodoalkene were not successful.  The two-step 

reduction/oxidation protocol to generate the aldehyde 59.5 from ester 59.4 proceeded 

smoothly, at which point the authors attempted to form the Z,Z-iododiene only to 

witness modest stereoselectivity, an inability to separate the isomers, and 

interconversion of the isomers during purification.  Instead, selective generation of 

the chromatographically stable Z,Z-bromodiene 59.6 was achieved via Corey-Fuchs 

homologation of aldehyde 59.5 followed by exchange of the PMB group for an acetyl 

group and subsequent selective reduction of the dibromide with Bu3SnH-Pd(PPh3)4.  

Vinyl bromide 59.6 then underwent Stille coupling under rigorously investigated 

conditions to yield triene 59.7 in good yield with excellent preservation of the olefin 

geometries present.  Deaceylation/oxidation of triene 59.7 allowed for addition of the 
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anion of diethyl methylphosphonate, where addition in toluene was found to be far 

superior than addition in THF.  Oxidation of the resulting epimeric mixture provided 

ketophosphonate 59.8.   

Scheme 59 
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 Coupling the ketophosphate 59.8 with aldehyde 58.5 afforded α,β-unsaturated 

ketone 60.1 (Scheme 60).  Installation of the methyl group via an organometallic 

addition proved to be difficult, with the authors discovering the best results required 

introduction of a toluene solution of ketone 60.1 to a MeLi/CeCl3 slurry in THF at -78 

ºC to provide tertiary alcohol 60.2 as a 3:1 mixture of diastereomers.  The TES group 

was selectively deprotected (with concomitant exchange of the isopropoxy group of 

the lactol for ethoxy) under acidic conditions and the C8 alcohol selectively protected 

by addition of TBSOTf at -20 ºC, where at this elevated temperature (versus -78 ºC, 

which provided C9 protection) the C9-to-C8 O-silyl migration presumably occurs to 
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deliver the selectively protected alcohol 60.3.  Deprotection of the lactol followed by 

oxidation with Fetizon’s reagent to provide the lactone allowed for phosphorylation 

to yield protected fostriecin 60.4.  Brief treatment with HF (15 min.) allowed for 

cleavage of the PMB esters followed by addition of pyridine to slowly deprotect the 

silyl ethers under buffered conditions, thereby affording the first total synthesis of the 

natural product (+)-fostriecin in 27 linear steps.  The authors did not provide a yield 

for this final step in either the report or in the supplementary information. 

Scheme 60 
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 The Jacobsen group provided the second total synthesis of the natural product 

later that year,103 embarking upon the synthesis via synthons derived from their 
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hydrolytic kinetic resolution methodology104 and their asymmetric hetero-Diels-Alder 

methodology.105  Application of the former to the epoxide derived from methyl vinyl 

ketone (61.1, Scheme 61) proved to be challenging as under standard conditions the 

catalyst precipitated as the reduced complex with low substrate conversion.  The 

solution to the problem involved running the reaction under O2 atmosphere instead of 

N2 to provide enantiopure epoxide (R)-61.1 in 40% yield, thereby establishing the C9 

stereocenter. 
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Generation of the western lactone skeleton was approached through the 

aforementioned asymmetric hetero-Diels-Alder methodology.  Formation of the 

desired lactol precursor106 in the total synthesis proceeded with a formal hetero-Diels-

Alder annulation of diene 62.1107 and aldehyde 62.2108 mediated by catalyst 62.3 

(Scheme 62) to provide benzylated lactol 62.4 in high enantiomeric excess.  

Subsequent deprotection and epimerization of the anomer leads to terminal alkyne 

62.5, followed by conversion to the isopropyl acetal 62.6.109  This protocol efficiently 
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established the C5 stereogenic center as well as provides a synthon readily available 

for coupling with epoxyketone (R)-61.1. 

Scheme 62 
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 The Jacobsen group desired to directly append the lactone skeleton while 

simultaneously establishing the C8 stereogenic center via a direct hydrometallation of 

the terminal alkyne with subsequent addition of this species into the epoxyketone 

61.1.  This approach was predicated on Wipf’s hydrozirconation110/zinc 

transmetallation protocol111 for addition to aldehydes, where the Jacobsen group 

posited that the enhanced electrophilicity of the α-oxy ketone could exhibit enhanced 

reactivity in contrast to a typical ketone's unreactive nature.  The Jacobsen group 

found that employing equimolar quantities of Schwartz’s reagent, alkyne 62.6, and 

Me2Zn with 1.5 equivalents α-epoxyketone 61.1 at 25 ºC provided 63.1 in >30:1 

diastereoselectivity and 45% yield (Scheme 63).   TES protection of the C8 alcohol 

followed by dithiane addition, two-step lactol oxidation, cleavage of the dithiane and 

C9 PMB protection afforded ketone 63.2.  Ketone 63.2 was transformed 

stereoselectively into the desired C11 alcohol 63.4 by Noyori’s transfer 
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hydrogenation methodology,112 thereby establishing the final stereogenic center. 

Scheme 63 
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Four more steps, including diimide reduction to set the C12-C13 Z-olefin, provided 

vinyl iodide 63.5 which was transformed to the desired Z,Z,E-triene 63.6 via Stille 

coupling.  Phosphate installation and global deprotection were performed in an 

analogous manner to the Boger group synthesis to provide (+)-fostriecin in 19 linear 

steps from commercially available material. 

 The Falck group’s report detailing their total synthesis of the natural product 

appeared in 2002.113  Enantioselective generation of the C11 hydroxyl group occurred 

with asymmetric allylation of propynal 64.1 followed by protection of the alcohol to 
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produce alkyne 64.2.  The terminal alkene was then oxidized to the aldehyde and 

subsequently homologated to (E)-α,β-unsaturated ester 64.3, allowing for Sharpless 

asymmetric dihydroxylation to provide the C8 and C9 stereocenters as a 3:1 mixture 

with the undesired diastereomeric diol.  Acetonide protection allowed for separation 

of the diastereomers to provide alkyne 64.4.  Bromination of the terminal alkyne 

followed by diimide reduction set the C12-C13 Z-olefin, which was subjected to a 

two-step reduction/oxidation protocol to afford aldehyde 64.5. 

Scheme 64 
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 Installation of the final stereogenic center occurred by homologation of 

aldehyde 64.5 to α,β-unsaturated aldehyde, followed by asymmetric allylation to 

stereoselectively afford the C5 alcohol 65.1 (Scheme 65).  Acylation with acryloyl 

chloride provided the ring closing metathesis (RCM) primed ester, where ring closing 

metathesis with Grubbs II catalyst yielded the essential unsaturated lactone 65.2.  

Acetonide deprotection provided the diol, which was summarily modified via Suzuki-

Miyaura coupling to provide triene 65.3.  Protection of the C8 alcohol prevented 

formation of a cyclic phosphate upon phosphorylation, a problem encountered during 
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the authors’ attempts at selective phosphorylation.  Deprotection of the 

trimethylsilylethyl phosphate allowed for the authors to avoid acidic cleavage 

conditions, such that utilizing Olah’s reagent for 5 days provided (+)-fostriecin and 

completion of the total synthesis in 20 linear steps from propargyl alcohol. 

Scheme 65 
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 November of that same year, the Hatakeyama group’s synthesis of fostriecin 

was unveiled to the literary arena.114  The first stereogenic center, the C5 center, was 

set via Brown asymmetric allylation of aldehyde 66.1 to afford alcohol 66.2 (Scheme 

66), where the enantiopurity was not determined due to instability issues.  

Acryloylation allowed for selective RCM of the terminal alkenes to form lactone 

66.3, where the authors noted that no RCM product from participation of the 

conjugated diene was observed.  Diene 66.3 was determined to be a 77% ee mixture 

by chiral HPLC, where the subsequent selective Sharpless asymmetric 

dihydroxylation of the less hindered olefin produced enantiomerically pure C8,C9 
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diol 66.4 as a single regio- and diastereomer in 80% yield.  The authors note that the 

asymmetric dihydroxylation was accompanied by a kinetic resolution, thereby 

providing the desired enantiopure stereotriad. 

Scheme 66 
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 Five steps later, installation of the C12-C13 Z-olefin was attempted on ynone 

67.1 utilizing Kishi’s solventless conditions115 only to afford the thermodynamically 

stable, and undesired, E-isomer.  Experimentation by the authors found that running 

in acetone with 2 equivalents of NaI and 1 equivalent of AcOH at room temperature 

provided the desired Z-iodide 67.2 as the major product of a chromatographically 

separable 91:9 mixture in 63% yield (Scheme 67). Following selective TES 

deprotection of the C9 hydroxyl, generation of the C11 stereogenic center occurred 

via Evan’s anti-selective reduction.116  The desired diol was afforded in 84% de, 

which was selectively TBS protected at the C11 hydroxyl to afford the C9 exposed 

alcohol 67.3.  This was then transformed into the triene via Stille coupling, 

phosphorylated at C9 to yield the bis-allyl phosphate, phosphate deprotected with 

Pd(PPh3)4, and silyl deprotected to provide fostriecin.  Overall, the total synthesis of 

fostriecin by Hatakeyama’s group utilized 21 linear steps from dihydrofuran. 
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 Imanishi’s group reported their approach to the total synthesis in 2003, where 

they include an interesting attempt towards installing the triene via a Wittig reaction 

as well as utilizing a previously unutilized method to install the C9 phosphate.117  

With regard to the Wittig, the group decided to probe whether an ylide conjugated 

with a Z-olefin could form a Z-olefinic bond.118  The group thus attempted 

condensation of their advanced aldehyde intermediate 68.1 with Wittig salt 68.2 

under a variety of conditions, but all attempts provided the E-isomer product 68.3 

(Scheme 68).  The authors postulate that serious steric repulsion prevents the 

formation of the desired C12-C13 Z-olefin in this fashion.  They therefore opted to 

generate the Z-iodide via the Stork-Zhao protocol102 followed by acetonide 

deprotection to afford triol 68.4.  Five more steps provided fostriecin in 7% yield 

from triol 68.4, and overall in 25 steps from commercially available materials. 
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 The Imanishi group attempted selective phosphorylation of the C9 alcohol 

(with a C11 protected alcohol) in the presence of the unprotected C8 tertiary alcohol 

only to yield diphosphate or a cyclic phosphate as explicitly found in similar 

investigations by the Falck group.113  The Imanishi group, however, sought to utilize 

a selective cleavage of the cyclic phosphate to facilitate the synthetic endeavor.  Thus, 

Stille coupling of 68.4 followed by selective TBS protection of the C11 hydroxyl 

provided diol 69.1.  Treatment of diol 69.1 with POCl3 and allyl alcohol provided the 

cyclic triester, which was immediately hydrolyzed to provide monoanion 69.2 as the 

major product.  Deprotection of the allyl phosphate followed by global silyl 

deprotection provided fostriecin, a six step sequence from triol 68.4 in 23% yield 

from triol 68.4, illustrating the efficiency of the cyclic phosphate method. 
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Scheme 69 
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1.10 Conclusions 

 The previous highlights of phosphatase inhibitor total syntheses draws 

attention to a several aspects important to the context of synthetic efforts in phosphate 

tether methodology.  In particular, the incorporation of suspected highly reactive 

functionalities can be realized, and in several cases enhances the overall efficiency 

and success of the total synthesis.  Explicit examples of this are the calyculins 

(various transformations in the presence of the phosphate), Isobe group synthesis of 

tautomycin with the intact anhydride, and the Koert group synthesis of 

phoslactomycin A.  The appeal of a robust methodology to generate stereogenic 

centers and/or facilitate synthetic elaborations is evident.  Danishefsky and 

Boukouvalas’s approach to dysidiolide generated stereochemical complexity in a 

concise fashion, condensing the requisite number of transformations.  It is also 

noticeable, in regard to the Corey’s synthesis of dysidiolide, that engaging 

functionally compact molecular entities in chemospecific, stereoelectronically 

governed transformations elegantly construct complexity in a rigorously defined 
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scenario.  In this light, the previous review of synthetic accomplishments in formation 

of various natural product phosphatase inhibitors provides a lens with which to 

examine the doctoral work presented.  This work embodies two underdeveloped areas 

of phosphate chemistry, namely their use as (i) temporary tethers119 that are capable 

of (ii) multivalent activation (activating one, two or all three of the phosphate ester 

appendages), where the following dissertation provides additional empirical evidence 

that counters historical and traditional views associated with the utilization of 

phosphates in synthesis. 
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Chapter 2 

Phosphate Tethers in Synthesis: 

Divalent Activation and Highly Selective Cuprate Displacement Reactions
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2.1 Introduction 

We have reported the use of tripodal-phosphate tethers for coupling of both 

simple and complex allylic alcohols using ring-closing metathesis (RCM).1  This 

method highlights the ability of a phosphate tether to bestow multivalent activation 

throughout phosphate ester appendages, thereby providing latent leaving group ability 

yet possessing orthogonal stability.  This wetted our interest in developing a new 

strategy employing phosphate tethers, in which a phosphate ester serves a dual role as 

both a tether for coupling two allylic alcohols via ring-closing metathesis (RCM) and 

as a subsequent leaving group in selective anti-SN2’ displacement reactions with 

organocuprate nucleophiles.   

An underlying principle of this approach utilizes the well-documented 

superiority of phosphates as leaving groups in copper mediated anti-SN2’ 

displacement reactions, initially highlighted by Yamamoto and coworkers.2  This 

feature, where the stereochemistry of an allylic phosphate is inverted in an anti-SN2’ 

displacement, has been successfully employed in previous strategies that exploit high 

stereospecificity for chirality transfer.3  Further advances in this area have recently 

uncovered enantioselective anti-SN2’ displacements with chiral Schiff base cuprates 

as a viable means of desymmetrizing meso-1,3-syn allylic phosphates,4 as well as 

reagent-controlled asymmetric allylic phosphate displacements catalyzed by copper.5  

The method we report herein initially focuses on the use of symmetry breaking 

cuprate additions to readily prepared pseudo-C2-symmetric monocyclic phosphate 
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(S,S)-1.1 (Scheme 1).  To the best of our knowledge, this system is the first of its kind 

where a central phosphate tether imparts divalent activation to the unique doubly 

allylic phosphate subunit.  In the discussion that follows, intriguing conformational 

effects led us to extend the study into unsymmetric phosphates, ultimately providing 

experimental insight into the Corey mechanism of cuprate displacements. 

2.2 Reactivity of the pseudo-C2-Symmetric Monocyclic Phosphate 

Our study began with the generation of (S,S)-monocyclic phosphate 1.1, 

which was readily achieved in three steps and in good overall yields (Scheme 1).  

Allylic alcohol (S)-1.3 is readily generated on multi-gram scale using the 

Mioskowski-Christie protocol6 with commercially available glycidol ether (S)-1.2.  

Upon condensation of the alkoxide of 1.3 with (MeO)POCl2, the phosphate triester 

tether mediates coupling of two olefins via RCM in good yield using 

(IMesH2)(PCy3)(Cl)2Ru=CHPh (Grubbs II; cat.-B);7 use of catalyst 

(PCy3)2(Cl)2Ru=CHPh (Grubbs I; cat.-A) gave poor yields of 1.1.  Optimized RCM 

conditions required elevated temperatures (90 ºC in toluene) with continuous argon 

purging.8 

Scheme 1 
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 We first examined a number of conditions as part of our initial probe into 

orthogonal reactivity patterns within cyclic phosphates containing multiple allylic 

phosphate positions.  Attempts to cleave out the phosphate tether using the LiAlH4 
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reduction protocol of Bartlett’s9 successfully generated the C2-symmetric Z-

configured-1,2,5,6-tetraol subunit 2.1 (Scheme 2).  Alternatively, post-RCM 

hydrogenation of 1.1 via the Louie-Grubbs procedure10 led cleanly to formation of 

saturated cyclic phosphate 2.2.  Wilkinson’s catalyst was also found to be a suitable 

hydrogenation partner, but other typical hydrogenation catalysts (Pd/C) lead to 

complete decomposition of starting material.  As anticipated, cleavage of saturated 

phosphate 2.2 afforded the tether-cleaved diol 2.3 in higher yield. 

Scheme 2 
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 We then shifted focus towards anti-SN2'-allylic displacement studies using 

soft organocuprate nucleophiles.  A prerequisite for this reaction requires the leaving 

group to be orthogonal to the π system, i.e. co-planar alignment of the σ* and π* 

orbitals.  Monocyclic phosphate (S,S)-1.1 possesses the ability to align the phosphate 

moiety in two requisite anti-periplanar relationships outlined in Scheme 3.  In both 

conformers it was initially anticipated that energies related to the orthogonally-

aligned phosphate leaving group would be roughly equal in energy, since both are 

secondary allylic phosphates.  When considering only electronic factors, this would 

imply transition states of equal energy as described by the original Corey 

mechanism2b which invokes a bidentate coordination of incoming cuprate to both π* 
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and σ* orbitals, vide infra.  Attack of cuprate nucleophiles on 1.1 can potentially 

occur through any of four diastereotopic olefinic orbitals.  Symmetry, however, 

presents two (not four) stereodivergent pathways for anti-SN2'-allylic displacement, 

ultimately leading to only two possible diastereomeric products.11  Pathway A occurs 

through conformer A with addition anti to the vicinal CH2OBn group generating anti-

(Z) diastereomer 3.2, while pathway B occurs via conformer B with addition syn to 

the vicinal CH2OBn group leading to syn-(E) diastereomer 3.1. 
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 Pleasingly, anti-SN2’ displacement of allylic phosphate 1.1 using 

Et2Zn/CuCN•2LiCl, and after acid workup, led to formation of phosphate acid 3.1b as 

a single diastereomer (>20:1) as witnessed by 31P NMR (Scheme 4).  Subsequent 
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treatment with Red-Al led to good yields of homoallylic alcohol 4.1b.  Initial 

tentative assignment of the relative stereochemistry within phosphate acid 3.1b was 

made based on the proposed model for cuprate addition and the observed olefinic 

coupling constant consistent with an (E)-configured olefin (J = 15.7 Hz).  

Unambiguous determination of relative stereochemical relationship at C(2,3) within 

4.1b was ultimately achieved using Karplus-analysis of vicinal protons contained 

within the six-membered ring derived from reductive ozonolysis/acetonide formation 

of 4.1 (Scheme 5).12  Analysis of JAC, JBC, JCD coupling constants provided small 

coupling values (1.4-2.6 Hz) consistent with the assigned structure.  These values 

were identical to previously reported spectral data when R1 = Me.13 
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 The remarkable selectivity for this transformation can be rationalized using 

Corey’s proposed concerted, asynchronous mechanism2b for cuprate additions as 

highlighted in Figure 1.  In this mechanism, Corey surmises that the reacting cuprate 

simultaneously coordinates both the π* orbital of the olefin and σ* orbital of the 

phosphate ester leaving group.  The asynchronous nature of the transformation 

predicts a transition state in which substantial bond-lengthening occurs with respect 

to the σ* bonding orbital.  When applied to conformers A and B in (S,S)-1.1, it is 

anticipated the σ* orbitals are roughly equal in energy, since both are secondary 

allylic phosphates.  Therefore, the stereoselectivity displayed in the cuprate reaction 
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with 1.1 must ultimately be dictated by the lower steric requirements of conformer B 

to attain the requisite coplanar alignment of π* and σ* orbitals with the cuprate d-

orbital; the greater allylic 1,3-strain (A1,3 strain) within conformer A due to the 

CH2OBn-sidechain disfavors cuprate addition via this conformer (Scheme 3).14 
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Figure 1: Corey Model for Rationalizing Stereoselectivity 

 Additional reactions of 1.1 with an array of zinc-based organocuprates gave 

similar high yields and selectivities when using 4-5 equivalents of dialkylzinc-derived 

organocuprates (entries 1-3, Table 1).  Treatment of 1.1 with 8-9 equivalents of the 

mixed zinc-copper reagents using alkyl halide-derived, functionalized organozinc 

reagents (entries 4-8, Table 1) provided similar yields and diastereoselectivities.  The 

specified excess reagents were used in all cases to ensure complete consumption of 

starting materials and overall provided cleaner post-workup mixtures.15  Following 

acidic workup, the phosphate acids were directly subjected to Red-Al to afford             

the corresponding homoallylic substrates 4.1a-4.1h in good to excellent yields. 
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 While cleavage of the phosphate acid using Red-Al® afforded the majority of 

products 4.1 in good yields, lower yields were observed for reductions in which 

substrates 3.1 contained functionally-sensitive R1 groups.  To circumvent this 

problem, in situ methylation of the crude phosphate acid using TMSCHN2 produced 

6.1, and upon Red-Al® reduction led to overall higher yields of 4.1 (Scheme 6). 
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2.3 Cuprate Additions to Unsymmetric Monocyclic Phosphates 

 We next turned our attention to the construction of unsymmetric monocyclic 

phosphates containing similar steric environments with regards to the incoming 

cuprate, but disparate electronic energies at the σ* orbitals of the leaving phosphate 

ester (i.e., primary versus secondary allylic phosphate ester leaving groups).  In 

contrast to phosphate 1.1, an energetic bias for the corresponding allylic phosphates 

was thus anticipated.  Dioxaphosphacycle 7.1 was generated via the coupling of one 

equivalent of allylic alcohol 1.3 with allyldiphenyl phosphate, followed by RCM to 

afford 7.1 in good yields over two steps (Scheme 7).  Treatment of 7.1 with 3.0 

equivalents of diethyl zinc-derived organocuprates, and subsequent phosphate 

cleavage, led to formation of a single product 7.2 produced via cuprate displacement 

at the secondary allylic phosphate position.  In contrast to (S,S)-1.1, no dominant 
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conformational preferences exist between the two described reactive conformations 

of 7.1, indicating that regioselectivity is dictated by electronic effects, vide infra. 
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 This intriguing result led us to explore yet a third paradigm, the unsymmetric 

cyclic phosphate 8.2, containing both secondary and tertiary allylic phosphate 

positions (Scheme 8).  Phosphate 8.2 was assembled via differential coupling of 

secondary allylic alcohol 1.3 and 2-methylbut-3-en-2-ol (8.1) with dichloromethyl 

phosphate.  The resulting labile acyclic phosphate was immediately subjected to 

metathesis affording phosphate 8.2 in moderate yields over the two-step sequence. 
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Treatment of 8.2 with 3.0 equivalents of diethyl zinc-derived organocuprate at -40 ºC, 

and subsequent phosphate cleavage, led to formation of a single product 8.3.  Using 

the aforementioned Karplus analysis of the resulting acetonide of 8.3, unambiguous 

assignment of anti-relationship was established (Scheme 9). 
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 The regioselectivity of cuprate displacement in 8.2 is most surprising in that 

the requisite conformer F leading to product 8.3 (Scheme 8) contains an unfavorable 

A1,3 interaction generated by the gem-dimethyl moiety.  However, the observed 

selectivity is consistent with the results obtained with 7.1 in which the cuprate 

displaces the more substituted phosphate leaving group.  Since the Corey model for 

cuprate addition predicts significant bond breakage through σ*, the lower energy σ* 

(i.e. the most substituted carbon) in the asynchronous concerted transition state 

dictates the reaction pathway over substantial A1,3 steric interactions. 

 In rationalizing and summarizing regio- and diastereoselective cuprate 

additions with symmetric (S,S)-1.1 and unsymmetric phosphates 7.1 and 8.2, both 

steric and stereoelectronic effects appear to play major roles.  In the case of 7.1 and 

8.2, cuprate displacements proceeded via the more substituted σ* positions, secondary 

and tertiary, respectively.  When σ* energies are equivalent as in (S,S)-1.1, allylic 

strain appears to govern the cuprate addition. 
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2.4 Summary 
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 In conclusion, monocyclic phosphates undergo a highly selective anti-SN2’ 

allylic phosphate displacement.  Subsequent cleavage affords an array of syn-(E)-

homoallylic alcohols when pseudo-C2-symmetric monocyclic phosphates are 

employed.  In extending this method to unsymmetric phosphates, cuprate addition 

proceeded through the more substituted allylic phosphate position (lower σ* energy) 

with the general reactivity pattern being 1º < 2º < 3º, allowing access to anti-

configured homoallylic alcohols, in which the resulting stereochemistry is exclusively 

produced via chirality transfer from a remote stereogenic center.  In probing these 

systems, the Corey mechanism for allylic organocuprate displacements was examined 

and further substantiated, although testing systems with additional dissymmetric 

substitution on the olefin is necessary to rule out nucleophilic avoidance of steric 

interactions as the operative model. 
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Chapter 3 

Phosphate Tethers in Synthesis: 

Generation of the Central Core of Fostriecin Towards Library Development 
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3.1 Introduction 

While the use of phosphates in chemical synthesis is limited, they are 

ubiquitous in nature and provide structural and chemical keystones in dynamic 

biological systems making them ideal targets for both pharmaceutical and agricultural 

applications.1  The ability of phosphates to exist with defined tetrahedral geometry 

and stable anionic charge, present it as a well-suited pharmacophore.  Consequently, 

organophosphates and their analogs have served as surrogates for carboxylic acids, 

amino acids, and anomeric carbons in carbohydrates, to name a few.  Furthermore, 

direct application of the phosphate moiety towards kinase and phosphatase regulation 

is evident and realized in several naturally occurring inhibitors.   

Investigation of phosphatase inhibitors as pharmacologically viable targets is 

relatively new compared to investigations on kinase inhibitors.2  While initially 

phosphatases were regarded as enzymes that “clean-up” after more essential 

regulatory kinases, a large body of evidence dismisses this misconception in light of 

the pivotal role of phosphatases in the body.3  In particular, protein phosphatase 2A 

(PP2A) regulates myriad cellular processes, including: metabolism, transcription, 

translation, cell cycle, signal transduction, differentiation, and oncogenic 

transformation.4  Moreover, recent research has linked PP2A and other phosphatases 

with the mechanism associated with motor learning.5  Given this wide range of 

regulation it is not surprising to find that particular naturally occurring phosphatase 

inhibitors are involved in certain diseases, such as hepatocarcinoma and HIV-1.4  Yet, 

it has also been shown that other phosphatase inhibitors (particularly, selective 
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inhibitors of PP2A)6 can be used to disrupt cancerous cells, thus paving the way 

towards development of this class of inhibitors as viable drug targets.2 

The leustroducsins (1.2) are a class of phosphate-containing molecules that 

were isolated from the culture broth of Streptomyces platensis SANK 60191 

belonging to the phoslactomycin group of antibiotics.7  In particular, leustroducsin B 

has been shown to exhibit an array of biological activities.  The in vitro induction of 

cytokine production through transcriptional and posttranscriptional activation of NF-

kΒ8 and significant in vivo thrombopoietic, anti-infective, and anti-metastatic 

activities of leustroducsin B appear to be due to specific inhibition of PP2A.6,7 
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The most selective inhibitor of PP2A to date is the molecule fostriecin (1.1, 

aka CI-920, NSC 339638, and PD 110,161) with an IC50 value of 1.5-3.0 nM.3,9 

Boger and coworkers determined that the unsaturated α β-unsaturated lactone, 

completely unprotected phosphate and C(11) hydroxyl moieties are essential for 

activity.10  The terminal hydroxyl group on the triene tail was found to play no role in 

the activity of the molecule. 
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Cytostatin (1.3) is yet another phosphate-containing compound and a member 

of the fostriecin family.  It has been shown to prevent metastasis, inhibit tumor cell 

growth, inhibit cell adhesion and cause apoptosis in certain cell lines due to its 

exquisitely selective inhibition of PP2A.6  Analogous to fostriecin, it was found that 

the αβ-unsaturated lactone ring, completely unprotected phosphate and C(11) 

hydroxyl moieties are essential for activity in cytostatin, while the triene was merely 

beneficial for binding but did not drastically effect activity.11  The activity granted by 

the unsaturated lactone ring in cytostatin (as well as fostriecin) is believed to come 

from a nucleophilic conjugate addition in the enzyme,12 while the deprotected 

phosphate ensures a very tight, yet non-covalent, interaction.  The triene, while 

proven to be non-essential, seems to help substrate binding and thereby enhance 

activity.  Indeed, it was shown that the triene moiety could be replaced with a vinyl 

iodide to yield an analog nearly as potent (IC50 39 nM at pH = 8.1) as cytostatin itself 

(IC50 33 nM at pH = 8.1; IC50 210 nM at pH = 7.5).11 

 While the essential features of leustroducsin B, fostriecin, and cytostatin are 

well evidenced, these structurally similar compounds differ in placement of groups 

and functionality on C(6), C(8) and C(10).  In particular, while Boger surmised that 

the C(8) stereocenter of fostriecin might serve to mimic the PP2A substrate 

stereocenter, no systematic study of this center has been performed.  However, in 

Kanai and Shibasaki’s synthesis of fostriecin and 8-epi-fostriecin, they deduced the 

epimer was a more selective PP2A inhibitor.13  The high specificity of cytostatin, 

which bears no C(8) stereocenter but a stereocenter at C(10), begs study of differing 
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substitution in these regions.  The proposed methods towards leustroducsin B, 

fostriecin, and cytostatin allow for developing analogs with differing substitution in 

these areas, particularly at the C(8) position in fostriecin and leustroducsin B, and the 

C(10) position in cytostatin.  The method also allows for substitution of the triene tail 

with groups of similar lipophilicity and geometric disposition.  It has been postulated 

that the triene tail is the culprit for degradation in the storage of fostriecin and 

cytostatin.3,11 

The architecture and SAR of the above molecules have prompted our 

investigation of fostriecin, leustroducsin B, and analogs thereof, starting with our 

bicyclic phosphate system (R,R,PS)-2.1 (Scheme 2). The key feature in these planned 

syntheses revolved around a pivotal terminus differentiation strategy of the C2-

symmetric anti-diol (R,R)-2.2 using a phosphate tether and RCM to derive (R,R,PS)-

2.1.  This desymmetrization step serves to assemble, in a single step, the requisite 
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C(12)/C(13) Z-olefin, the C(7) terminal olefin armed for regioselective oxidation, and 

triol protection at the C(9), C(11), and C(14) carbinol centers.  We deemed the 

potential fruits of such a synthetic investigation to be too enticing to overlook. 

3.2 Selective Oxidation of the Exocyclic Olefin 

Generation of the bicyclic phosphate required has been reported previously in 

our group.14,15 Construction of P-chiral bicyclic[4.3.1]-phosphate triester (R,R,PS)-2.1 

began with coupling of C2-symmetric diene 1,3-diol (R,R)-2.216 with phosphoryl 

trichloride producing the pseudo-C2-symmetric compound 3.1 possessing 

interchangeable, homotopic Cl and P=O groups.  Concurrent addition of lithium 

allyloxide into phosphoryl monochloride 3.1 yields phosphate triester triene 3.2.  

Ring-closing metathesis (RCM) using Grubbs second-generation catalyst17 afforded 

desired phosphate (R,R,PS)-2.1 in good yield. 
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Key to the formation of fostriecin and fostriecin-based libraries was the 

realization of an oxidation of the exocyclic olefin in bicyclic phosphate (R,R,PS)-2.1.  



 114 

Reactions under standard Wacker conditions,18 however, for up to 12-16 hours 

resulted in complete recovery of starting material in 80-90% yield.  This is turns out 

to be unsurprising, as protected allylic alcohols are known to be problematic,19 if not 

completely unreactive, towards Wacker oxidation.  Indeed, the electron withdrawing 

nature of the phosphate may prevent the necessary ligation of PdII.  Upon rigorous 

investigation, it was found that employing modified-Wacker conditions20,21,22 with 

bicyclic phosphate (S,S,PR)-2.1 provided initial yields of 40% of desired ketone 

(S,S,PR)-4.1, whereby structural confirmation was achieved using X-ray 

crystallographic analysis. (Scheme 4).  Optimization of this protocol utilizing 

(R,R,PS)-2.1 yields (R,R,PS)-4.1 in 65% yield on gram scale. 

Scheme 4 
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The reaction was extremely time-dependent, where erring on either side of the 

optimal time23 even slightly resulted in drastic losses in yield.  It was also notable that 

while most transformations utilized warming of the mixture after PdCl2 addition to 

achieve desirable yields, the oxidation of phosphate (R,R,PS)-2.1 was poor at 

temperatures above 40 ºC.  A putative mechanism invoked24 in this process involves 

oxymercuration of the substrate, followed by addition of cupric chloride and PdCl2 
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(traditional reagents utilized for the standard Wacker oxidation) whereby 

transmetallation allows for oxidation to the ketone.  As the reaction is performed 

under strictly anaerobic conditions, cupric chloride is the terminal oxidant for the Pd0 

formed during oxidation of substrate.  This same transient Pd0 species is what we 

postulate to be the detrimental species in the formation of ketone (R,R,PS)-4.1 from 

(R,R,PS)-2.1 (Scheme 5); the intermediacy of Pd-allyl species formed from bicyclic 

phosphate (R,R,PS)-2.1 has been utilized in this lab in the generation of the northern 

hemisphere of the dolabelides.25 

Scheme 5 
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It was hypothesized that if a Pd0 species could be avoided, several problems 

could be circumvented, namely: strict time dependence, large quantities of palladium, 

and starting material/product degradation.  Investigation into several alternatives 

proved to be fruitless.  Recently, however, hope for a catalytic process was 

resurrected by a Sigman group publication that described the conversion of protected 

allylic alcohols into acyloin products via a catalytic Pd complex24 (Scheme 6).  Not 

only did the catalyst avoid the use of mercuric salts altogether and involvement of a 

Pd0 intermediate, the reaction proceeded with good yields on electron deficient 

protected allylic alcohols and with no loss of enantiomeric excess on chiral non-

racemic substrates. 
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Scheme 6 Sigman’s Survey with Pd(quinox)Cl2 
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We enthusiastically employed the requisite conditions on our bicyclic 

phosphate (R,R,PS)-2.1 only to quantitatively recover starting material (Scheme 7).  

Attempts to attenuate the conditions to afford oxidized product, including heating the 

solution, yielded the same initial result. Comparison of the relative pKa’s of acetic 

acid and phosphoric acid is illustrative, as the greater electron withdrawing nature of 

the phosphate appears to provide an inadequate alkene ligand for the Pd(quinox)Cl2 

complex upon which to engage. 

Scheme 7 
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While the use of mercury salts has not been circumvented as of yet, bypassing 

the use of large amounts of palladium was heralded by the observation that cupric 

chloride was demercurating the intermediate generated in the oxymercuration 

reaction.  Initial attempts to perform the classical NaBH4 demercuration led to 
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extensive degradation of the intermediate, thus leading to a reinterpretation of the 

mechanism of the modified Wacker oxidation.  Rather than the transmetallation of 

mercury by palladium, simple addition of cupric chloride to the oxymercuration 

mixture could allow for rapid protonation, followed by slower PdII oxidation of the 

alcohol.  The PdII oxidation of alcohols26 utilizes similar conditions to the those 

utilized in the modified Wacker.  This interpretation was bolstered by performing the 

experiment with the omission of PdCl2, as depicted in Scheme 8, to provide a 

quantitative yield of the hydrated exocyclic olefin (8.1). 

Scheme 8 
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Noting this, the oxidation of alcohol 8.1 was screened using several different 

oxidation conditions detailed in Scheme 13.  Initial attempts at using Swern oxidation 

conditions lead to exclusive dehydration to regenerate (R,R,PS)-2.1. Dess-Martin 

periodinane with pyridine curiously also formed the dehydration adduct as the major 

product.  Upon comparing pyridinium dichromate and pyridinium chlorochromate, 

the desired ketone was generated to a larger extent with PCC.  These observations 

were the basis of the speculation that acidic media is more favorable so as to prevent 

elimination.  Thusly, employing Jones reagent afforded the desired ketone (R,R,PS)-

4.1 without an observable trace (by 1H-NMR) of elimination product.  It should also 

be noted that TPAP oxidation in acetonitrile also provided clean conversion to the 

ketone, albeit with longer reaction duration and with less facile purification. 
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Currently, the most optimized conditions employ oxymercuration followed by 

addition of CuCl2 to relinquish alcohol 8.1, after which the solvent is removed and the 

crude alcohol is directly oxidized via Jones oxidation to provide (R,R,PS)-4.1 in gram 

scale affording yields of 80-95% (Scheme 10).  Not only is the oxidation rapid, but 

purification involves simply passage of the crude mixture through a short silica plug 

to remove any associated metal ions.  This protocol, while more robust than the 

palladium mediated route, also highlights the exquisite acid stability of the bicyclic  

Scheme 10 
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phosphate system. As illustrated in Figure 1, lack of anti-periplanar (app) lone pairs 

in phosphate (R,R,PS)-2.1 imparts increased acid stability.14,27 When oxygen lone 

pairs occupy trans-app to an adjacent polar bond (P-OR), they donate electron 

density from their lone pair orbital, n, to the antibonding P-O σ*, thus weakening the 
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P=O bond and increasing the basicity at O; conversely, lack of app lone pairs imparts 

orthogonal stability to hydrolysis with acid.27 
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Figure 1: Stereoelectronic effects within an acyclic phosphate vs. (S,S, PR)-2.1 

3.3 Probing a Diastereoselective Grignard Addition with the α-Ketophosphate 

Realization of the exocyclic olefin oxidation of (R,R,PS)-2.1 allowed for 

investigation into a diastereoselective Grignard addition of vinyl magnesium bromide 

to yield tertiary alcohol 11.1 (Scheme 11). Previous models of analogous systems 

employing 1,2-stereoinduction under chelating conditions28,29 provided strong 

precedent for such a selective addition.  The vinyl group was chosen as both a handle 

for library development as well as possible employment in the total synthesis of 

fostriecin, where such a handle was anticipated to readily lend itself available to 

incorporation of diverse moieties via cross-metathesis.  Initial attempts employing 5 

equivalents of commercially available vinyl magnesium bromide at -30 ºC pleasingly 

provided the desired addition product 11.1, where tentative assignment of the 

stereochemistry of alcohol 11.1 was made based upon the aforementioned precedent, 

in a ~12:1 ratio based on 31P-NMR. 
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Optimization of this key C8 stereocenter generation entailed investigating 

temperature, equivalents, and chelating additives to potentially enhance 

diastereoselectivity.  The new, commercially obtained vinyl magnesium bromide 

appeared to perform best at -45 ºC in THF, as at lower temperatures the addition 

appeared to occur very sluggishly and at temperatures higher than -30 ºC attack at 

phosphorous appeared to compete.  Illustrative to the screening of additives is the 

investigation of additional MgBr2•OEt2, detailed in Scheme 16. It was observed that 

increasing the equivalents of the chelation reagent appeared to decrease yields by 

forcing the already highly polar substrate out of solution, thus impeding addition. 
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Fortunately, based upon the difference in reactivity with certain substrates of 

commercial vinyl magnesium bromide versus freshly prepared vinyl magnesium 

bromide, we reinvestigated the addition utilizing freshly prepared vinyl magnesium 

bromide.  A very different reactivity was observed; one of the first observations was 

that -45 ºC was too high of a temperature and that -78 ºC was optimal.  This allowed 
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for diastereoselectivities of 15:1 (based on 31P-NMR) and a greater recovery of 

unreacted starting material.  While the yield was not significantly different, the 

presence of MgBr2•OEt2 did not prove to be detrimental unlike with commercial 

vinyl Grignard.  Therefore, utilizing 3 equivalents of freshly prepared vinyl Grignard 

at -78 ºC for 7 hours provides 73% yield of tertiary alcohol 11.1 on gram scale 

(Scheme 13). 

Scheme 13 
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3.4 Generating the Fostriecin Core: Library Proof of Concept 

The next task towards forming the fostriecin core was to engage the newly 

installed olefin of 11.1 in the aforementioned selective cross-metathesis.  The reactive 

nature of the olefin generated, however, was in question, as previous explorations on 

the reactive nature of the exocyclic olefin in (R,R,PS)-2.1 had concluded (R,R,PS)-2.1 

exhibited Type III olefin behavior.15,30 While unprotected tertiary allylic alcohols are 

typified as exhibiting Type II reactivity, protected allylic alcohols are also classed as 

Type II olefins.31  Given that the exocyclic olefin of (R,R,PS)-2.1 is a protected allylic 

alcohol, it’s Type III reactivity profile seems to deviate from a blanket assessment.  

The role the phosphate played in attenuating the reactivity of the unprotected tertiary 

alcohol of 11.1 was also at issue, an assessment that is elaborated upon in Chapter 4 

(vide infra).  At this stage of the investigation the olefin was believed to be Type III 
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given the electron withdrawing nature of the phosphate bearing carbinol in 

combination with the steric interactions presented by the bicyclic system. 

Nevertheless, employing 5 equivalents of glycidol-derived allylic alcohol 14.1 

with phosphate 11.1 in the presence of 10 mol % Hoveyda-Grubbs II catalyst 

generates diol 14.2 with exquisite E/Z selectivity in 70% yield (Scheme 14). 
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O

P
O O

O

OH
H3C

Hoveyda-Grubbs II

CH2Cl2, reflux

70%, E/Z >20:1

O

P
O O

O

OH
H3C

OH

BnO

OH

BnO

OH
H3C

OH

BnO

O
P

O
SPh

O OH
LiSPh

THF, 23 ºC, 10 min

> 99%

11.1

14.1

14.2

14.3

119

7

5

11

97

5

11

97

 
Subsequent attack of lithium thiophenol, as precedented by our earlier work,14 

exploits the orthogonal leaving group ability of the phosphate to reveal the requisite 

stereo-tetrad of fostriecin 14.3 in quantitative yield with a malleable C(14) handle.  

These results also solidify our proposed method in generation of a fostriecin-like 

library, and open the door for use in the synthesis of leustroducsin B. 
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3.5 Summary 
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An approach towards fostriecin and fostriecin-like libraries utilizing rapid 

functionalization of bicyclic phosphate (R,R,PS)-2.1 was investigated. This compact, 

multifaceted core coupled with an array of selective reactive pathways begged the 

synthetic queries enacted.  Key to unraveling and expanding upon this central core of 

the molecule was realization of an exocyclic olefin oxidation to generate (R,R,PS)-4.1.  

Diastereoselective Grignard addition yields 11.1, where the source of Grignard used 

was found to play a non-trivial role.  Selective cross-metathesis of the olefin of 11.1 

with glycidol-derived allylic alcohol 14.1 generates diol 14.2 with exquisite E/Z 

selectivity in good yield.  Subsequent attack of lithium thiophenol exploits the 

orthogonal leaving group ability of the phosphate to reveal the requisite stereo-tetrad 

of fostriecin 14.3 in quantitative yield.  Not only does this sequence serve as a proof 
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of concept approach for the total synthesis of fostriecin, it also serves as an archetype 

for the generation of fostriecin-like and phoslactomycin-like libraries. 
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Phosphate Tethers in Synthesis: 

Routes Towards Fostriecin through Cross Metathesis Investigations 
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4.1 Introduction 

Fostriecin (1.1, CI-920, Scheme 1) is a biologically potent metabolite first 

isolated from Streptomyces pulveraceus in 1983 by workers at Warner Lambert-Parke 

Davis.1  It displays in vitro activity against a broad range of cancerous cell lines 

including lung cancer, breast cancer, and ovarian cancer,2 as well as in vivo antitumor 

activity.  In addition, fostriecin has demonstrated activity against leukemia (L1210, 

IC50 0.46 µM and P338).3  Its mode of action appears to operate via an inhibitory 

pathway of the mitotic entry checkpoint. Evidence of this pathway is shown in 

fostriecin's potent and selective inhibition of a number of protein phosphatases.4,5  In 

1997, Boger and coworkers determined the relative and absolute stereochemistry in 

fostriecin that confirmed previous assignments in a family of biologically active and 

structurally related natural products, including leustroducsin B (LSN-B, 1.2), 

phospholine (1.3), and phosphazomycin C (1.4).6   

Scheme 1 Fostriecin and members of the phoslactomycin family 
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Leustroducsin B (LSN-B) was originally purified as a colony-stimulating 

factor inducer from the broth of Streptomyces platensis by Sankyo in 1993 and has 

been shown to exhibit a variety of biological activities.7  Shibata and coworkers 
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determined the absolute configuration of leustroducsin H (LSN-H) in 1995,8 which 

allowed Matsuhashi in 2002 to confirm the absolute configuration of LSN-B via the 

chemical transformation of LSN-H.9 In vivo, leustroducsin B has been found to 

increase host resistance against Escherichia coli in addition to inducing 

thrombocytosis in mice.  In vitro activity has been shown to induce granulocyte-CSF 

and granulocyte-macrophage-CSF production by KM-102 cells.  Recent studies have 

suggested that LSN-B induces cytokine production via NF-κB activation at the 

transcriptional and post-transcriptional levels.10 In 2003, Fukuyama and coworkers 

reported the first total synthesis of leustroducsin B, achieving this pioneering 

synthesis in 46-linear steps.10  More recently, Imanishi and coworkers achieved the 

total synthesis of leustroducsin B in 2008.11 

Since the first total synthesis by Boger and coworkers in 2001,12 several total 

syntheses13 and synthetic studies14 have been reported for fostriecin.  In 2001 

Jacobsen completed the total synthesis of fostriecin in 17 steps, highlighted by the use 

of a Cr-catalyzed hetero-Diels-Alder followed by a zirconium mediated addition to a 

chiral epoxy aldehyde to set three of the four stereocenters in >99% ee.13a  Imanishi’s 

2002 synthesis utilized Horner-Wadsworth-Emmons chemistry and Stille coupling to 

complete the total synthesis in 24 linear steps.13c,e  More recently in 2005, Trost 

completed dephospho-fostriecin in 14 linear steps employing a direct asymmetric Zn-

catalyzed aldol reaction,15 while Shibasaki’s formal synthesis utilized four 

asymmetric catalysts to set the four stereogenic centers.16,17 
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Key structural features in this class include a C(1)-C(5) α,β-unsaturated δ-

lactone, a central anti-1,3-diol moiety at C(9)/C(11), a C(8) tertiary carbinol 

stereocenter, a C(9) phosphate, a Z,Z,E-triene subunit extending from C(12)-C(17) in 

fostriecin (1.1), and the corresponding Z,Z-diene subunit extending from C(12)-C(15) 

in LSN-B (1.2), 1.3, and 1.4.  In addition, a C(8)-β-ethyl amine functionality and 

added complexity of a C(16)-1,3-disubstituted cyclohexyl system in LSN-B pose 

formidable synthetic challenges.  We are proposing the utilization of versatile bicyclic 

phosphate (R,R,PS)-2.1 for the total syntheses of leustroducsin B (1.2), fostriecin (1.1) 

and potential analogs (Scheme 2). 

4.2 Retrosynthetic Analysis of Fostriecin and Leustroducsin B 

The key feature in these highly convergent syntheses revolves around a 

pivotal terminus differentiation strategy of the C2-symmetric anti-diol (3R,5R)-hepta-

1,6-diene-3,5-diol using a phosphate tether and RCM to derive (R,R,PS)-2.1.  This 

desymmetrization step serves to assemble in a single step the requisite C(12)/C(13) Z-

olefin, the C(7) terminal olefin armed for regioselective oxidation, and triol protection 

at the C(9), C(11), and C(14) carbinol centers. Additional features include a late-stage 

installation of the α,β−unsaturated δ-lactone moiety and setting the C(6)/C(7) E-

configured olefin utilizing a critical CM coupling between the central 1,3-anti-diol 

subunits in 2.5 and 2.10 (assessed as Type III CM partners)18 and 2.4 and 2.11 

(assessed as Type II CM partners).  Wittig olefination of the aldehyde 2.5 with the 

ylide of 2.6, or of 2.10 with the ylide of phosphonium salt 2.9, would install the 

eastern side-chains, respectively.  A key diastereoselective vinyl Grignard addition 
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into ketophosphates 2.2 and 2.7 using literature precedence will set the C(8) tertiary 

carbinol center and insert a “vinyl linchpin” residing in 2.3 or 2.10 for subsequent 

CM.  This addition is preceded by C(8) sidechain installation relying on 

regioselective oxidation of (R,R,PS)-2.1 using a oxidation/enolization/CM sequence to 

derive ketone 2.7.  Overall, this highly convergent pathway (Plan A) encompasses an 

16 linear-step sequence to fostriecin and 19 linear-step sequence to leustroducsin B, 

applicable to other members in this family and unnatural analogs. 

Scheme 2 Retrosynthesis of fostriecin (1.1) and leustroducsin B (1.2) via CM 
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Another possible route (Plan B) involved installation of the lactone at an 

earlier stage via a diastereoselective Grignard addition of isopropyl-protected lactols 

3.1 and 3.2 (Scheme 3).  The most notable change in the synthetic sequence would be 

generation of the lactone via the lactol in the latter part of the synthesis versus cross-

metathesis installation of the intact lactone.  Such a secondary route was envisioned 
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to circumvent promiscuous reactivity of the lactone if such a phenomena was 

witnessed.  The drawback to such a route appeared to be twofold: 1) the operational 

manner of the oxidation, as deprotection to the lactol prior to oxidation or direct 

oxidation of the protected lactol could potentially suffer from functional/protecting 

group compatibility issues that the cross-metathesis route avoids, and 2) the linearity 

of a route utilizing a protected lactol Grignard.  As such, the former synthetic route 

(Plan A) was to be investigated in depth while plausibility of the latter route (Plan B) 

queried concurrently. 

Scheme 3 
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4.3 Generation of the Lactone Precursor and Organometallic Addition Studies 

Generation of the western lactone portion of fostriecin was initially planned 

through use of the chiral, non-racemic glycidol ethers, with the lactone of 

leustroducsin B arriving from an analogous route (Scheme 4). Starting from (R)-THP-

protected glycidol 4.1, Grignard addition in the presence of CuI and acryloylation 

would derive diene 4.2.  Ring-closing metathesis, deprotection, Dess-Martin 

oxidation, and Wittig methylenation would afford lactone 2.4.  In a similar manner, 

asymmetric allylboration with (S,S)-tartrate-derived Z-crotylboronate19 (S,S)-4.3 

would set the requisite C(4)/C(5) syn stereorelationship in lactone 2.11.  Coupling 

with acryloyl chloride presents diene 4.4 which could be followed by subsequent 

RCM as demonstrated by Cossy.14a  Deprotection with DDQ, Dess-Martin oxidation, 
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and Wittig olefination would then afford 2.11 in a concise 6-step sequence.  In 

practice, the proposed route toward lactone 2.4 proceeded well prior to the 

oxidation/methylenation sequence, where the fugacious aldehyde formed via Dess-

Martin oxidation provided a variety of products upon treatment with phosphonium 

ylide, with the desired olefin product only present in trace amounts. 

Scheme 4 
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 Initial attempts at generation of a protected lactol available for organometallic 

addition to the ketone were likewise problematic.  Attempts to generate iodide 3.1 

(Scheme 5) from Trost’s (R,E)-1-iodohexa-1,5-dien-3-ol15 (5.1) were set aside upon 

observation of reluctant ring-closing metathesis of the lactone in the presence of the 

vinyl iodide, where the solution turned black upon addition of Hoveyda-Grubbs II 

catalyst with apparent catalyst inactivation shortly thereafter.  This inactivation and 

decomposition of starting material may be due to initial metathesis of the vinyl iodide 

providing a species capable of deactivating the metathesis catalyst.20 
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 Reassessing the situation we saw an opportunity to capitalize on Jacobsen’s 

hetero-Diels-Alder methodology13,21 towards generating the desired cross metathesis 

and Grignard addition precursors for fostriecin.22  Initiation of the synthetic sequence 

relied upon generation of the precatalyst, a process previously reported by the 

Jacobsen group.21bc Precatalyst preparation commenced through Friedel-Crafts 

adamantylation of p-cresol (Scheme 6).  The 2-adamantyl-1-p-cresol (6.1) is then 

subjected to a net formylation via electrophilic addition of formaldehyde presumably 

with subsequent oxidation by excess formaldehyde through a Oppenauer-type 

oxidation.23  The resulting aldehyde (6.2) is immediately condensed with (1R, 2S)-

(+)-cis-1-amino-2-indanol to form ligand 6.3.  The active precatalyst 6.4 is formed by 

combination of ligand 6.3 with chromium(III) chloride:tris-THF complex. 
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Scheme 6 
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With the necessary precatalyst 6.4 in hand, formation of the desired lactol 

precursor24 proceeded with a formal hetero-Diels-Alder annulation of diene 7.125 and 

aldehyde 7.226 (Scheme 7) to provide benzylated lactol 7.3 in high enantiomeric 

excess.  Subsequent deprotection and epimerization of the anomer leads to terminal 

alkyne 7.4, followed by conversion to the isopropyl acetal 7.5.27 

Scheme 7 
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Not only was 7.5 posited to be a versatile precursor for our studies towards the 

proposed synthesis of fostriecin, but application of the model for catalyst 

enantioselectivity with diene 8.128 (Scheme 8) and aldehyde 7.2 foresaw application 
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towards leustroducsin B, hence discoveries made with lactol 7.5 were anticipated to 

be readily applicable towards leustroducsin B. 

Scheme 8 
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 Investigations into organometallic addition thus started by attempting a 

similar direct hydrometallation of the terminal alkyne as performed by the Jacobsen 

group.  This approach was predicated on Wipf’s hydrozirconation29/zinc 

transmetallation protocol30 for addition to aldehydes, where the Jacobsen group 

posited that the enhanced electrophilicity of the α-oxy ketone could exhibit enhanced 

reactivity in contrast to a typical ketone's unreactive nature.  The Jacobsen group 

found that employing equimolar quantities of Schwartz’s reagent, alkyne 7.5, and 

Me2Zn with 1.5 equivalents α-epoxyketone 9.1 at 25 ºC provided 9.2 in >30:1 

diastereoselectivity and 45% yield (Scheme 9).13a,24 

Prompted by the elegance of this direct approach and encouraged by the 

inertness of our monocyclic phosphates to dialkyl zinc species, we set forth to assess 

this method with regards to our exocyclic ketone 2.2.  We expected the α-phosphoryl 

oxygen of ketone 2.2 to exhibit a greater inductive withdrawing effect on the ketone, 
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if indeed such a rational was operative for this addition on our substrate.  Attempts at 

applying this method to our bicyclic α-phosphoryl ketone 2.2 at a variety of 

temperatures and equivalents of hydrometallated alkyne 7.5 proved fruitless.  At 

lower temperatures (< 0 ºC) no reaction was observed on the ketone, while 

temperatures above 0 ºC proceeded with attack of the organometallate on 

phosphorous without engaging the ketone.31  While the phosphoryl oxygen may 

exhibit a greater inductive withdrawing effect on the ketone, the enhanced 

electrophilicity of the bicyclic phosphate (versus acyclic and our monocyclic systems) 

appears to outcompete any potential ketone addition. 
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 Undaunted, the generation of a hydrometallated version of alkyne 7.5 was 

attempted via a stepwise approach.  Initial trials utilized a hydroboration/iodination 

sequence to provide a species, iodide 3.1, capable of lithium-halogen exchange in 

generating a more reactive hydrometallated variant as originally planned in 

retrosynthetic plan B (Scheme 10).32  Hydroboration was attempted with 
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catecholborane, the Arase system employing catalytic dicyclohexylborane with 

catecholborane,33 and with dicyclohexylborane34 as the sole hydroboration reagent.  It 

was found that the use of dicyclohexylborane exclusively provided the best yield 

following iodination, whereby subsequent iodination with either I2 or N-

iodosuccinimide (NIS) performed equally to form the requisite iodide 3.1. 

Scheme 10 
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Overall, the moderate selectivity of hydroboration on alkyne 7.5 and 

lackluster yield provided motivation for a different approach, where 

hydrostannylation could provide the necessary intermediate.  Utilization of both 

radical35 and Pd-mediated hydrostannylation36 hydrostannylation protocols found that 

radical hydrostannylation provided the E-alkene 11.1 with the highest selectivity as a 

single observable geometric isomer (Scheme 11).  Iodine/stannane exchange via NIS 

provided the desired E-iodide 3.1 in good yield with exquisite retention of geometric 

configuration.37 
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Both E-stannylalkene 11.1 and E-iodoalkene 3.1 were tested for their potential 

vinyl metal congeners to affect selective addition with ketone (R,R)-2.2.  Direct 

lithiation of E-stannylalkene 11.1 by n-BuLi38 provided poor metal exchange, an 
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uninspiring result especially when it was observed that the lithiated species derived 

reacted poorly (Scheme 12).  In contrast, transmetallation of E-iodoalkene 3.1 

proceeded smoothly when 2.2 equivalents of t-BuLi were employed.39  The resulting 

vinyl lithium species, however, exhibited poor chemo- and diastereoselectivity.  

Utilizing a protocol developed by the Oshima group to generate a vinylmagnesium 

ate complex40 for addition into ketones, E-iodoalkene 11.1 was transformed into 

magnesiate via addition of E-iodoalkene 11.1 to a mixture of 1 equivalent 

isopropylmagnesium chloride and 2 equivalents of s-BuLi in THF at 0 ºC.  After 

exchange was assured, this solution was cooled to -78 ºC and subsequently 

cannulated into ketone (R,R,PS)-2.2 preincubated with freshly prepared MgBr2.41  

While this produced the desired addition product 12.1 with excellent 

diastereoselectivity, significant problems associated with the solubility of ketone 

(R,R,PS)-2.2 with MgBr2 and preferential addition of the magnesiate with the 

phosphate of 2.2 made this route unattractive.  Indeed, the problems encountered 

utilizing commercial isopropylmagnesium chloride were almost identical to those 

observed when utilizing commercial vinylmagnesium bromide with ketone (R,R,PS)-

2.2, with the added detrimental phosphate addition attributed to the higher reactivity 

of the magnesiate versus Grignard. 
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Scheme 12 
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Organometallic addition was achieved by conversion of E-iodoalkene 11.1 to 

the Grignard in a two-step process (Scheme 13).  Lithium-halogen exchange with t-

BuLi was followed by cannulation of the organolithium into MgBr2•OEt2 to form the 

corresponding Grignard. Subsequent cannulation into ketone 2.2 at -45 ºC provided 

addition adduct 12.1 as a single observable diastereomer in 69% yield.  Bicyclic 

phosphate 12.1 presented a synthon with the correct stereotetrad and the carbocyclic 

skeleton of the lactone core in place.  While this provided the necessary plausibility 

for retrosynthetic plan B, it was decided the coupling of the intact lactone core late 

stage as planned in retrosynthetic plan A was more convergent, easily amenable to 

modifications for advanced library development and leustroducsin B synthetic efforts, 

and would potentially avoid problems associated with lactone oxidation on an 
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advanced intermediate.  It was this rational that initiated studies investigating the 

cross metathesis of the intact lactone core.  

Scheme 13 
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4.4 Investigation of Lactone Installation Through Cross Metathesis 

Formation of a lactone primed for cross metathesis (Plan A) began with 

conversion of the alkyne of 7.5 to an alkene.  Preparation of the desired alkene was 

thought to be easily performed by a Lindlar hydrogenation of alkyne 7.5, where Pd-

CaCO3 in the presence of freshly distilled quinoline in EtOAc under H2 readily 

reduced the alkyne to alkene 14.1 in 80% yield on gram scale (Scheme 14).  It is 

worth noting that allowing the reaction to proceed longer than 2 hours led to over 

hydrogenation of the exocyclic portion while the endocyclic olefin remained intact.  

At scales smaller than 1 gram poorer yields were obtained, with mixtures of over 

hydrogenated product, remaining starting material, and product necessitating tedious 

separation of the chromatographically similar compounds.  In an attempt to access 

14.1 on smaller scales and to avoid this dilemma, a separate protocol was developed 

where stannane 11.1 was protodemetallated with TFA at 0 ºC in THF to cleanly 

generate alkene 14.1, however with modest yields.  Nevertheless, the investigation 

proved fruitful toward the siphoning of material from retrosynthetic route B to route 

A, vide infra. 
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Cross metathesis of the protected lactol 14.1 with tertiary alcohol 15.1 was 

performed to assess the viability of the coupling, where protected lactol 14.1 was 

added in five-fold excess to tertiary alcohol 15.1 with 10 mol % Hoveyda-Grubbs II 

catalyst (Scheme 15).  Phosphate 12.1 was pleasingly provided in 77% yield with 

excellent selectivity for the E-isomer.  Based on this unoptimized success, generation 

of the central segment of fostriecin was probed with concurrent investigations into the 

oxidation of alkene 14.1. 
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Formation of the central segment of fostriecin proceeded from phosphate 15.1, 

which itself arrives from selective manipulation of bicyclic phosphate (R,R,PS)-2.1 as 

described in Chapter 3.  The tertiary alcohol of phosphate 15.1 was protected as the 

TES ether generating 2.3 prior to phosphate tether removal42 to provide 

monoprotected tetraol 16.1 (Scheme 16).  Utilizing precedent set by Hatakeyama,13d 

the monoprotected tetraol 16.1 was selectively bis-protected at -78 ºC to afford 
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alcohol 16.2, whereby the C9 alcohol was left untouched.  From this differentiated 

synthon, phosphate 16.3 was generated by employing dibenzyl N,N-diisopropyl 

phosphoramidite and subsequent tert-butyl hydroperoxide oxidation.  This sequence 

cleanly generated the core of fostriecin complete with phosphate and primed for cross 

metathesis. 

Scheme 16 
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We concurrently generated the unprotected tertiary alcohol variant of alcohol 

16.2 through an analogous route, where phosphate 15.1 was directly subjected to 

LiAlH4-mediated phosphate tether cleavage to afford tetraol 17.1 (Scheme 17).  

Utilizing the same bis-protection protocol developed in the previous reaction series, 

selectively bis-protected tetraol 17.2 was produced to examine reactivity differences 

between 17.2, alcohol 16.2, and acyclic phosphate 16.3. 

Scheme 17 
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The investigation of the C9 DMB protected alcohol was also envisioned, as 

the DMB group could serve a role in late stage installation of the phosphate should 
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unforeseen modifications to the planned route prohibit early inclusion.  Investigations 

were halted due to two observations: 1) attempts to protect the alcohol with the DMB 

group either yielded no reaction or extensive migration of the silyl groups under basic 

conditions, and 2) attempts to utilize the DMB and PMB groups in previous 

routes13a,15 curiously converted the protecting group to another species without 

comment (adding steps) or removed it prior to triene formation.  While the DMB 

group had been utilized by Yamada to avoid degradation of the α,β,γ,δ-unsaturated 

lactone upon deprotection in the synthesis of aplyronines A, B, and C, 43 the unwritten 

prose of previous synthetic efforts indicated that the deprotection conditions were 

detrimental to the triene of fostriecin. 

Synthesis of the necessary cross metathesis partner involved exploring routes 

towards the oxidation of the protected lactol.  Initially, it was believed deprotection of 

alkene 14.1 to lactol 18.1a would allow for facile oxidation to lactone 2.4 (Scheme 

18).  Acidic deprotection of the isopropyl group provided deprotected 18.1a and a 

mixture of acyclic E (18.1c) and Z (18.1b) isomers at the internal olefin.44 It was 

posited that Lewis and/or Bronsted acids should help interconvert the olefin, with 

generation of the Z-isomer allowing conversion of the acyclic aldehyde 18.1b to 

lactol 18.1a whereby oxidation to desired lactone 2.4 would shift the overall 

equilibrium, ultimately allowing for reclamation of the E-isomer to generate desirable 

yields of lactone 2.4.  In practice, mildly Lewis acidic (Fétizon’s reagent, MnO2) and 

Bronsted acidic (PCC) oxidizing agents failed to appreciably convert the E-isomer 
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into lactone 2.4.  Employing Jones reagent, however, allowed for interconversion and 

afforded significantly better yields of lactone 2.4. 

Scheme 18 
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Avoiding the generation of lactol 18.1a allowed for PCC to directly oxidize 

isopropyl protected lactol 14.1 (Scheme 19) in similarly good yields with some 

acyclic E-isomeric products present,45 but direct oxidation of protected lactol 14.1 to 

lactone 2.4 by Jones reagent was clearly the desired route, affording product in 93% 

yield with very facile purification.  In addition, it was found that vinyl stannane 11.1 

could also be directly converted to lactone 2.4 through the Jones oxidation in 80% 

yield when additional p-toluenesulfonic acid was present, thereby presenting a route 

to lactone 2.4 from alkyne 7.5 on scales less than 1 gram (with respect to alkyne 7.5). 

 



 148 

Scheme 19 
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With lactone 2.4 in hand, attention turned to the desired direct cross 

metathesis with the central fostriecin core to append the western segment (Scheme 

20).  Cross metathesis of the assessed Type II lactone 2.4 with assigned Type III 

phosphate 16.3 utilizing 10 mol % Hoveyda-Grubbs II catalyst provided the desired 

coupling product 20.1 in good selectivity for the E-olefin isomer but in very dismal 

yield, a result that could not be improved despite changes in solvent, concentration 

and catalyst.  While phosphate 16.3 was readily reclaimed, only scant traces of 

dimerized lactone were noticed.  Given the conditions employed, if lactone 2.4 was a 

Type II olefin such as glycidol-derived allylic alcohol 20.2 or alkene 14.1,46 then 

large amounts of dimerized product should be observed.47  Thusly, lactone 2.4 was 

concluded to be a sluggish Type II olefin as it ultimately did cross-metathesize and 

dimerize, albeit over long periods of time. 
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 It was suspected that the highly electron withdrawing nature of the α-

phosphate of 16.3 may be reducing the reactivity of the olefin, providing our 

uninspiring yields.  To test this, alcohol 16.2 was subjected to metathesis with lactone 

2.4, however at this stage no desired reaction product (21.1) was observed.  

Additionally, reclamation of alcohol 16.2 was poor as the substrate appeared to 

undergo olefin migration and elimination reactions to yield a convoluted variety of 

degradation products.  It appeared the phosphate was not the problem, but rather was 

protecting the alcohol from participating in deleterious side reactions with the catalyst 

over the long reaction time. 

Scheme 21 
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Enhanced reactivity was surmised to occur by changing most proximal 

environment to the olefin by utilizing diol 17.2.  The unprotected tertiary allylic 



 150 

alcohol 17.2 is a Type II olefin, and it was postulated reaction of 17.2 with excess 

lactone 2.4 should provide us with a better coupling of the western and central 

segments (Scheme 22).  Empirically, however, it was found that only a slightly better 

coupling product 22.1 was observed, with the notable disadvantage that 22.1 co-elutes 

with lactone 2.4.  While dimerized 17.2 was initially thought to be recyclable, re-

investigation of Grubbs seminal publication18 on cross metathesis types found that 

tertiary allylic alcohols, while Type II, are unique in that the dimers are Type IV and 

therefore unavailable for recycling. 

Scheme 22 
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 The newly acquired data previously outlined necessitated a reassessment of 

lactone 2.4 and the coupling method.  At the outset of the investigations, we were 

apprehensive of the lactone, concerned with potentially promiscuous reactivity.  On 

the contrary, the lactone was very stable to storage and appeared to show reluctant 

reactivity in cross metathesis, likely a result of the inductively withdrawing 

endocyclic α-oxygen of the lactone on the alkene.  The reactivity starkly contrasted 

isopropyl protected lactol 14.2 in metathesis, a classical Type II olefin, such that the 

lactone was a near Type III olefin.  Forming the necessary alkylidene seemed to be 

the issue; if initiation of metathesis on either the reluctant Type II lactone 2.4 or the 
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Type III terminal olefin in 16.3 (or potentially 16.2) could be realized, an effective 

coupling could be affected. 

4.5 Investigation of Lactone Installation via Relay Cross Metathesis 

 Relay metathesis appeared to be a plausible route towards resolving this 

predicament. While the majority of relay metathesis cases providing enhanced 

reactivity/product formation involve intramolecular cyclizations,48 reports on relay 

cross metathesis are extremely sparse.49  In Lee’s investigation, conjugated enynes 

such as 23.1 efficiently underwent cross-metathesis with (Z)-but-2-ene-1,4-diyl 

diacetate (Scheme 23).  Application of the same concept to afford a formal 

methacrylate cross-metathesis, though, found exclusive cross metathesis at the 

terminal olefin to produce 23.4 without catalyst delivery to form the enoate 

alkylidene.  Performing the same reaction without external alkene allowed for the 

formation of methacrylate, thus indicating the cross-metathesis with (Z)-1,4-

bis(benzyloxy)but-2-ene occurred at a significantly greater rate than the 

intramolecular metathesis event. 

Scheme 23 
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 The quandary of deciding upon either the modification of lactone 2.4 or 

phosphate 16.3 by a catalyst delivery vehicle was left to an empirical resolution.  
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Lactone 2.4 was first to be tested, as we postulated that a Fu sp2-sp3 coupling50 

between vinyl stannane 11.1 and 5-iodopentene could readily modify the western 

segment towards formation of the desired relay lactone 24.1 (Scheme 24). 

Implementation of this protocol readily afforded lactone 24.1, which was initially 

tested with phosphate (R,R,PS)-2.1 (a Type III olefin) to determine if our supposition 

had merit.  The relay cross metathesis exceeded our expectations when the 

unoptimized reaction returned phosphate 24.2 quantitatively in a respectable ratio of 

geometric isomers, a pleasing contrast to attempting the reaction without the 

assistance of a catalyst delivery vehicle. 

Scheme 24 
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We then attempted the cross metathesis of our fostriecin core segment 16.3 with the 

relay-primed lactone 24.1, were optimal conditions involved slow introduction of 

lactone 24.1 over the course of 6 hours (Scheme 25).  While this method did provide 

an increased yield of product, the increase was disappointingly slight and certainly 

not useful for viable synthesis of fostriecin in light of previous syntheses of the said 

natural product. 



 153 

Scheme 25 
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 As the previous investigation indicated the sluggish reactivity of the exocyclic 

olefin in phosphate 16.3 may play a more significant role in the cross metathesis, 

construction of the relay analog proceeded with formation of (E)-1-bromo-1,6-

heptadiene (26.1) from 1-hepten-6-yne by slightly modifying a Wolfe group 

procedure (Scheme 26).51  Generation of the Grignard of 26.1 followed by addition 

into ketophosphate 2.2 provided relay analog 26.2, which could be easily protected 

via TESOTf to provide phosphate 26.3.  Syringe pump addition of a solution of 

Scheme 26 
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phosphate 26.3 to refluxing lactone 2.4 in DCE provided none of the desired relay 

cross product (Scheme 27).  Instead, cross metathesis proceeded at the terminal olefin 

of the relay linker to afford the extended chain variant (27.1).  Modification of the 
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exocyclic olefin of phosphate 16.3 to the relay variant 26.3 appears to have produced 

a Type IV olefin, or at the very least a Type III olefin so inhibited towards metathesis 

that intermolecular coupling outcompetes the intramolecular reaction even under the 

dilute conditions applied. 

Scheme 27 
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 To circumvent this, the unprotected tertiary alcohol relay variant 26.2 was 

tested for coupling (Scheme 28).  Unfortunately, the desired coupling product 28.1 

was only obtained in 17% yield, with 20% recovery of phosphate 15.1 a testament to 

the sluggish reactivity of lactone 2.4 and with the remainder of material appearing to 

undergo isomerization/elimination reactions to generate a complex mixture of 

degradation products, indicating the unprotected tertiary alcohol alkylidene is 

problematic over long reaction periods when inadequate coupling partners are  
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Scheme 28 
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present.  Attempted coupling of phosphate 15.1 with lactone 2.4 provided dimerized 

bis-phosphate as the exclusive product, as irreversible self-coupling appeared to be 

the most facile reaction pathway. 

Given these results it appears cross metathesis, either utilizing a catalyst 

delivery vehicle (relay cross-metathesis) or direct coupling, is not a viable option for 

appending the intact lactone 2.4 in realizing a facile route from our compact 

functional synthon (R,R,PS)-2.1. The cross metathesis investigations, however, were 

able to provide enough material to achieve the penultimate intermediate in the 

proposed synthesis (on microgram scale), and therefore allowed the establishment of 

a viable, efficient protocol towards achieving the total synthesis (Scheme 29). 
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Scheme 29 
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While cross-metathesis is a viable route toward library development, the 

research presented indicates that installation of the carbocyclic skeleton of the 

essential lactone of fostriecin in a high yielding, efficient manner may rely on 

implementing retrosynthetic plan B.  The efficient and diastereoselective addition of 

isopropyl lactol 3.1 to ketone (R,R,PS)-2.2 has been demonstrated, thus paving the 

way for implementation.  In addition, upon perusal of the oxidation conditions 

utilized for lactone generation,52 prohibitive protecting group incompatibilities are no 

longer expected to plague the synthetic route proposed (Scheme 30). 
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Scheme 30 
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4.6 Summary 

Exploration of two synthetic approaches from (R,R,PS)-2.1 towards fostriecin 

were embarked upon simultaneously.  Due to the anticipated elegant introduction of 

the western lactone of fostriecin, initial focus of our investigative energies centered 

upon realizing a cross metathesis of the lactone subunit with the central segment of 

fostriecin.  Intensive studies found the deactivating nature of the carboxylate oxygen 

on the alkene of lactone 2.4 in conjunction with the lethargic protected tertiary allylic 

alcohol 16.3 provided unacceptable conversion upon metathesis, despite installation 

of catalyst delivery vehicles (lactone 24.1).  Attempts to utilize the unprotected 

variant 15.1 displayed preferential dimerization of allylic tertiary alcohol 15.1, while 

the relay primed analog 26.2 was frustrated by competing elimination pathways.  

Analysis of Grignard addition of the lactone core 3.1 to ketone 2.2, however, 
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propitiously heralds retrosynthetic plan B’s viability.  Future work in the total 

synthesis of fostriecin is expected to be enabled by application of this synthetic 

option, as well as guide the efforts in the total synthesis of leustroducsin B and other 

members of this class of molecules. 
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Chapter 5 

Experimental Data: 

Chapters 2, 3 and 4 
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5.1 General Experimental Methods 

All air and moisture sensitive reactions were carried out in flame- or oven-dried 

glassware under argon atmosphere using standard gastight syringes, cannulaes, and 

septa.  Stirring was achieved with oven-dried magnetic stir bars.   Et2O, toluene, THF 

and CH2Cl2 were purified by passage through the Solv-Tek purification system 

employing activated Al2O3 (Grubbs, R.H.; Rosen, R.K.;  Timmers, F.J.; 

Organometallics 1996, 15, 1518-1520).  Et3N was purified by passage over basic 

alumina and stored over KOH.  Butyl Lithium was purchased from Aldrich and 

titrated prior to use.  Dialkyl zinc and alkyl zinc halide reagents were purchased from 

Aldrich and were used at the reported molarities.  Grubb’s second-generation olefin 

metathesis catalyst was acquired from Materia and used without further purification.  

Flash column chromatography was performed with Merck silica gel (EM-9385-9, 

230-400 mesh).  Thin layer chromatography was performed on silica gel 60F254 plates 

(EM-5717, Merck).  Deuterated solvents were purchased from Cambridge Isotope 

laboratories.  1H, 13C and 31P NMR spectra were recorded on a Bruker DRX-400 

spectrometer operating at 400 MHz, 100 MHz, and 162 MHz respectively or a Bruker 

Avance operating at 500 MHz and 125 MHz respectively.  High-resolution mass 

spectrometry (HRMS) and FAB spectra were obtained on a VG Instrument ZAB 

double-focusing mass spectrometer.  
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5.2 Experimental Data: Chapter 2 

(S,S)-acyclic diene phosphate triester 

O
P

O

O O

O OMe

 

A solution of allylic alcohol 1.3 (2.05 g, 11.54 mmol) in THF (58 mL) was 

cooled to –30 ˚C.  BuLi (2.47M, 11.02 mmol) was slowly added, followed by ten 

minutes of stirring.  A solution of dichloromethyl phosphate (781 mg, 5.25 mmol) in 

THF (10.5 mL) was slowly cannulated into the reaction vessel containing the 

alkoxide.  The reaction continued to stir at –30 ˚C for 30 minutes, the cold bath was 

removed and the solution was warmed to room temperature and stirred for an 

additional two hours.  Upon completion (monitored by TLC), the reaction was 

quenched with 20 mL of NH4Cl (sat’d aq).  The separated aqueous layer was 

extracted with Et2O (3x) and the combined organic layers washed with brine then 

dried (MgSO4).  Flash chromatography (2:1 hexanes/EtOAc) provided 1.96 g (87% 

yield) of the diene product as a faint yellow oil.  

[α]D = +0.54 (c = 0.37, CH2Cl2) 

IR (neat) 2930, 1452, 1266, 1016, 734, 698 cm-1 

1H NMR (500 MHz, CDCl3) δ 7.4-7.3 (m, 10H), 5.91 (ddd, J = 17.2, 10.6, 6.4 Hz, 

1H), 5.91 (ddd, J = 17.2, 10.6, 6.4 Hz, 1H), 5.45 (d, J = 17.2, 1H), 5.39 (d, J = 17.2, 

1H), 5.30 (d, J = 10.5, 1H), 5.30 (d, J = 10.5, 1H), 4.98-5.09 (m, 2H), 4.59 (dd, J = 
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12.2, 5.1 Hz, 2H), 4.54 (dd, J = 12, 1.4 Hz, 2H), 3.72 (d, J = 11.4 Hz, 3H), 3.62 (dd, J 

= 10.6, 6.3 Hz, 2H), 3.57 (m, 2H) 

13C NMR (125 MHz, CDCl3) δ 138.11, 134.05, 134.02, 133.99, 128.56, 127.89, 

118.84, 118.65, 78.13, 78.10, 78.09, 78.05, 73.44, 73.41, 72.47(d, JCP = 0.8 Hz), 

72.42 (d, JCP = 1.5 Hz), 54.48, 54.44 

31P NMR (162 MHz, CDCl3) δ 0.29 

HRMS calculated for C23H29O6P (M+H)+ 433.1780; found 433.1757 (FAB).  
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(S,S)-monocyclic phosphate: (S,S)-1.1   

O
P

O

O O

O OMe

 

A flask containing the (S,S)-diene phosphate triester (1.45 g, 3.36 mmol) was 

charged with toluene (670 mL) that had been degassed for 20 minutes with argon.  

The solution was brought to reflux while continually sparging with argon, and 

(ImesH2)(PCy3)(Cl2)Ru=CHPh was added (200 mg, 0.235 mmol).  The reaction was 

maintained at reflux under argon sparging for 30 minutes.  Upon completion 

(monitored by TLC) the reaction was cooled to room temperature and concentrated 

under reduced pressure.  Purification via flash chromatography (1:1 hexanes/EtOAc) 

supplied 927 mg (68% yield) of monocylic phosphate 1.1. 

[α]D –52.6 (c = 1.6, CH2Cl2) 

FTIR (neat) 3029, 1454, 1365, 1282, 1027 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.28-7.39 (m, 10H), 5.76 (ddd, J = 12.0, 1.8, 1.6 Hz,  

1H), 5.72 (ddd, J = 12.0, 1.8, 1.6 Hz, 1H), 5.26-5.32 (m, 1H), 5.07-5.14 (m, 1H), 

4.56-4.64 (m, 4H), 3.87 (d, JHP = 11.1 Hz, 3H), 3.67 (dddd, J = 6.4, 5.5, 5.1, 0.9 Hz, 

2H), 3.59 (dddd, J = 5.3, 5.1, 2.1, 0.5 Hz, 2H) 

13C NMR (100 MHz, CDCl3) δ 137.56, 137.48, 129.49, 128.42, 128.09, 127.83, 

127.81, 127.69, 127.63, 73.91, (d, JCP = 7.0), 73.62 (d, JCP = 4.5), 73.49, 73.33, 71.60 

(d, JCP = 11.9), 71.21 (JCP = 12.1), 54.62 (d, JCP = 5.1) 

31P NMR (162 MHz, CDCl3) δ 3.61 

HRMS calculated for C21H25O6P (M+H)+ 405.1467; found 405.1437 (FAB).  
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(2S, 5S, 3Z)-1,6-bis(benzyloxy)hex-3-ene-2,5-diol: 2.1 

OHOH

O O

 

Phosphate 1.1 (30 mg, 0.074 mmol) was taken up in THF (0.20 mL) and 

cooled to 0 ˚C while stirring under argon.  LiAlH4 (0.010 mg, 0.24 mmol) was added 

slowly, and upon complete addition stirring continued for an additional 2 hours while 

warming to room temperature.  The mixture was then cooled to 0 ˚C and slowly 

quenched with H2O (0.1 mL) followed by 10% NaOH aq (0.2 mL).  The layers were 

separated and the aqueous layer extracted with EtOAc (5x).  The combined organic 

layers were concentrated under reduced pressure and dried (Na2SO4).  Column 

chromatography (5:1 heptane:EtOAc) provided 4 (18.3 mg, 75%) as a clear oil. 

[α]D = + 21.7 (c = 1.7, CH2Cl2) 

FTIR (neat) 3417, 3025, 2902, 1493, 1465, 1101, 1075, 737, 698 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.28-7.37 (m, 10H), 5.58-5.64 (m, 2H), 4.63-4.68 (m, 

2H), 4.57 (s, 2H), 3.53 (dd, J = 9.4, 4.4 Hz 2H), 3.46 (dd, J = 9.5, 7.4 Hz, 1H), 2.65 

(bs, 2H) 

13C NMR (100 MHz, CDCl3) δ 137.62, 132.08, 128.47, 127.87, 127.84, 73.48, 73.42, 

67.21.  

HRMS calculated for C20H24O4 (M+Na)+ 351.1572; found 351.1582 (FAB).  



 172 

(S,S)-hydrogenated monocyclic phosphate: 2.2 

O
P

O

O O

O OMe

 

Post ring-closing metathesis (50 mg, 0.123 mmol) with 

(ImesH2)(PCy3)(Cl2)Ru=CHPh (33 mg, 0.040 mmol), the reaction was a concentrated 

under reduced pressure and the resulting brown oil was taken up in dry CH2Cl2 (10 

mL).  The reaction was cannulated to a hydrogen Parr bomb apparatus, followed by 

implementing three quick cycles of evacuation and hydrogen purging.  The bomb was 

capped and charged with H2 (300 psi) while heating at 80 ˚C.  After stirring for two 

hours, the reaction mixture was concentrated under reduced pressure and immediately 

subjected to column chromatography (1:1 heptane:EtOAc) providing 45.4 mg of 2.2 

(90 % yield) as a light brown oil (small ruthenium contamination estimated to be < 

1%). 

[α]D = -2.15 (c = 0.33, CH2Cl2) 

FTIR (neat) 2917, 1279, 1098, 1000, 737, 698 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.25-7.37 (m, 10H), 4.52-4.61 (m, 5H), 4.31-4.35 (m, 

1H), 3.82 (d, JHP = 11.1 Hz, 3H), 3.43-3.65 (m, 4H), 2.06 (dd, J = 11.9, 4.3 Hz, 1H), 

1.98 (dd, J = 10.6, 3.8 Hz, 1H), 1.73-1.82 (m, 2H) 

13C NMR (100 MHz, CDCl3) δ 137.67 (d, JCP = 2.6 Hz), 128.35, 127.72, 127.65, 

127.55, 77.94 (d, JCP = 6.4 Hz), 76.38 (d, JCP = 3.7 Hz), 73.32 (d, JCP = 10.6 Hz), 

72.59 (d, JCP = 11.1 Hz), 72.08 (d, JCP = 11.1 Hz), 54.26 (d, JCP = 4.9 Hz), 30.78, 

30.51 
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31P NMR (162 MHz, CDCl3) δ 3.02 

HRMS calculated for C21H27O6P (M+H)+ 407.1624; found 407.1649 (FAB).  
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(2S, 5S)-1,6-bis(benzyloxy)hexane-2,5-diol: 2.3   

O
O

OH

OH  

Phosphate 2.2 (30 mg, 0.074 mmol) was dissolved in THF (1.2 mL) and 

cooled to 0 ˚C while stirring under argon.  LiAlH4 (0.0084 mg, 0.22 mmol) was 

added slowly, and upon complete addition stirring continued for an additional 2 hours 

while warming to room temperature.  An additional amount of LiAlH4 was added, 

and the solution stirred for an additional hour.  The mixture was then cooled to 0 ˚C 

and slowly quenched with H2O (0.1 mL) followed by 10% NaOH aq (0.2 mL), and 

then H2O (0.1 mL).  The layers were separated and the aqueous layer extracted with 

EtOAc (5x).  The combined organic layers were concentrated under reduced pressure 

and dried (Na2SO4).  Column chromatography (5:1 heptane:EtOAc) provided 6 (21.9 

mg, 90%) as a clear oil. 

[α]D = +7.06 (c = 0.09, CH2Cl2) 

FTIR (neat) 3436, 1096, 737, 698 cm-1 

1H NMR (500 MHz, CDCl3) δ 7.28-7.37 (m, 10H), 4.55 (s, 2H), 3.82-3.88 (m, 2H), 

3.49 (dd, J = 9.0, 3.5 Hz, 2H), 3.49 (dd, J = 9.0, 7.5 Hz, 2H), 2.25 (bs, 2H), 1.56-1.65 

(m, 4H) 

13C NMR (125 MHz, CDCl3) δ 137.93, 128.46, 127.79, 127.75, 74.41, 73.34, 70.38, 

29.53. 

HRMS calculated for C20H24O4 (M+Na)+ 351.1572; found 351.1582 (FAB).  
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General Procedure A for Diakyl Zincate Derived Cuprates:  To a solution of 

CuCN•2LiCl (1 mmol, 1M in THF) cooled to -30 ˚C was added dropwise the dialkyl 

zinc reagent as a solution in THF (1 mmol).  After stirring 30-45 min (Me2Zn 

required longer stirring times) at -25 ˚C  to -30 ˚C, a solution of phosphate 1.1 (0.20 

mmol) in THF (2 mL) was added.  The reaction progress was monitored by TLC 

(products are baseline in EtOAc), and upon completion were quenched with 10% HCl 

aq. (1 mL) and stirred for 30 – 60 min.  The aqueous layer was extracted was 

extracted with EtO2 (4 x 1 mL) and the combined organic layers were subsequently 

washed with H2O (1 x 1 mL) and filtered of the resulting white solids.  The aqueous 

layer was removed and the organic layer was concentrated under reduced pressure.  

The crude acids were used without further purification.   

 

General Procedure B for Alkyl Zinc halide Derived Cuprates:  To a solution of 

CuCN•2LiCl (1 mmol, 1M in THF) cooled to -30 ˚C was added dropwise the alkyl 

zinc halide reagent as a solution in THF (1 mmol, 1.0M).  After stirring for one hour 

at -25 ˚C  to -30 ˚C, a solution of phosphate 1.1 (0.11 mmol) in THF (1.1 mL) was 

added.  The reaction progress was monitored by TLC (products are baseline in 

EtOAc), and upon completion (~ 2 hours) were quenched with 10% HCl aq. (1 mL) 

and stirred for 30-60 min.  The layers were separated and the aqueous layer extracted 

with CH2Cl2 (4 x 1 mL) and the combined organic layers were subsequently washed 

with H2O (1 x 1mL) and the resulting white solids were filtered off.  The aqueous 
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layer was removed and the organic layer was concentrated under reduced pressure.  

The crude acids were used without further purification.  

 

General Procedure for  Making  Alkyl Zinc Iodides (Cy-Zn-I): 

To a heterogeneous mixture of activated Zn dust (288 mg, 4.4 mmol) in THF (330 

µL) under argon was added dibromoethane (15 µL, 0.176 mmol), which was heated 

to 65 ˚C for one minute and then cooled to room temperature.  Trimethylsilyl chloride 

was then added (16 µL, 0.132 mmol) and the mixture was allowed to stir for 15 

minutes, upon which time the appropriate alkyl iodide (4 mmol) in THF (1.6 mL) was 

added and the reaction heated to 40 ˚C with stirring.  Upon completion (monitored by 

GC or Zn disappearance), the reagent was used immediately.  

 

General Procedure for Red-Al® of Phosphate Acids:  A stirring solution of the 

phosphate acid (0.124 mmol) in toluene (1.24 mL) was cooled to 0 ˚C and Red-Al 

(151 µL, 0.495 mmol) was added dropwise.  The reaction was allowed to proceed for 

30 minutes and monitored by TLC.  If necessary, an additional 1 equivalent of Red-

Al was added to ensure completion.  Reaction was quenched with H2O (1 mL) 

followed by slow addition of 10% HCl aq. (1 mL) at 0 ˚C. The layers were separated 

and the aqueous layer extracted with CH2Cl2 (4 x) and the combined organic layers 

were subsequently washed with brine and dried (MgSO4).  
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(2S,3R,E)-1,6-bis(benzyloxy)-3-methylhex-4-en-2-ol: 4.1a  

O

OH

O

 

Following procedure A (100 mg of 1.1) and phosphate acid removal, column 

chromatography (heptane:EtOAc 4:1) afforded 4.1a (67 mg, 83 %) as a clear oil over 

two steps. 

[α]D = +30.4 (c = 1.0, CH2Cl2) 

FTIR (neat) 3461, 2358, 1456, 1361, 1249, 1027 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.35-7.26 (m, 10H), 5.58-5.79 (m, 2H), 4.53 (d, J = 

1.8 Hz, 2H), 4.48 (s, 2H), 3.96-3.97 (m, 2H), 3.64 (ddd, J = 7.2, 7.2, 3.0 Hz, 1H), 

3.55 (dd, J = 9.5, 3.1, 1H), 3.39 (dd, J = 9.7, 7.7, 1H), 2.32-2.39 (m, 1H), 1.09 (d, J = 

6.8 Hz, 3H) 

13C NMR (100 MHz, CDCl3) δ 138.26, 137.90, 135.62, 128.44, 127.77, 127.71, 

127.59, 127.05, 73.53, 73.34, 72.66, 71.98, 70.60, 39.80, 15.9. 

HRMS calculated for C21H26O3 (M+Na)+ 349.1780; found 349.1817 (FAB).  
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(2S,3R,E)-1,6-bis(benzyloxy)-3-ethylhex-4-en-2-ol: 4.1b  

O

OH

O

 

Following procedure A (50 mg of 1.1) and phosphate acid removal, column 

chromatography (heptane:EtOAc 4:1) afforded 4.1b (38 mg, 90%) as a clear oil over 

two steps. 

[α]D = +4.87 (c = 0.58, CH2Cl2) 

FTIR (neat) 3420, 2914, 1457, 1269, 1101, 1073, 737, 699 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.35-7.26 (m, 10H), 5.62 (dt, J = 15.4, 6 Hz, 1H), 5.44 

(dd, J = 15.4, 9.3 Hz, 1H), 4.53 (d, J = 4.4 Hz, 2H), 4.49 (s, 2H), 3.99 (d, J = 5.9 Hz, 

2H), 3.7-3.66 (m, 1H), 3.57 (d, J = 9.5 Hz, 1H), 3.38 (t, J = 9.3 Hz, 1H), 2.48 (s, 1H), 

2.14-2.06 (m, 1H), 1.32-1.21 (m, 2H), 0.88 (t, J = 7.5 Hz, 3H) 

13C NMR (100 MHz, CDCl3) δ 138.26, 137.89, 133.60, 129.01, 128.51, 128.41, 

128.36, 127.75, 127.72, 127.69, 127.57, 126.94, 73.32, 72.94, 72.49, 71.77, 70.50, 

47.92, 23.32, 11.56. 

HRMS calculated for C22H28O3 (M+NH4)+ 358.2382; found 358.2381 (FAB).  
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(2S,3R,E)-1,6-bis(benzyloxy)-3-isopropylhex-4-en-2-ol: 4.1c  

O

OH

O

 

Following procedure A (50 mg of 1.1) and phosphate acid removal, column 

chromatography (heptane:EtOAc 5:1) afforded 4.1c (44.5 mg, 89 %) as a clear oil 

over two steps. 

[α]D = +17.5, (c , 2.1 CH2Cl2) 

FTIR (neat)  3446, 2348, 1101 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.38-7.27 (m, 10H), 5.59 (ddd, J = 15.6, 6.0, 6.0 Hz, 

1H), 5.43 (dd, J = 15.4, 10.0 Hz, 1H), 4.53 (dd, J = 23.0,11.7 Hz, 2H), 4.48 (dd, J = 

12.2, 8.0 Hz, 2H) 3.92 (dd, J = 5.9, 1.0 Hz, 2H), 3.78-3.84 (m, 1H), 3.57 (dd, J = 9.5, 

2.6 Hz, 1H), 3.33 (dd, J = 9.4, 7.6 Hz, 1H), 2.39 (bs, 1H), 2.13-2.21 (m, 1H), 2.07 

(ddd, J = 9.6, 9.6, 3.1 Hz, 1H), 0.88 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H) 

13C NMR (100 MHz, CDCl3) δ 138.28, 137.90, 130.41, 130.11, 128.42, 128.37, 

127.75, 127.72, 127.70, 127.58, 73.49, 73.34, 71.70, 70.46, 70.04, 51.79, 26.66, 

21.38, 16.82. 

HRMS calculated for C23H30O3 (M+Na)+ 377.2093; found 377.2075 (FAB).  
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(2S,3R,E)-1,6-bis(benzyloxy)-3-cyclohexylhex-4-en-2-ol 4.1d: 

O

OH

O

 

Following procedure B (100 mg of 1.1) and phosphate acid removal, column 

chromatography (heptane:EtOAc 5:1) afforded 4.1d (68 mg, 70 %) as a clear oil. 

[α]D = +9.84 (c = 1.58, CH2Cl2) 

FTIR (neat) 3453, 3031, 2922, 2850, 1496, 1450, 1098, 737, 698 cm-1 

1H NMR (500 MHz, CDCl3) δ 7.37-7.28 (m, 10H), 5.57 (dt, J = 15.4, 5.9 Hz, 1H), 

5.44 (dd, J = 15.4, 10 Hz, 1H), 4.53 (dd, J = 11.8, 10.6 Hz, 2H), 4.49 (s, 2H), 3.98 (d, 

J = 5.9 Hz, 2H), 3.86 (td, J = 8.4, 2.5 Hz, 1H), 3.57 (dd, J = 9.5, 2.6 Hz, 1H), 3.32 

(dd, J = 9.4, 7.8 Hz, 1H), 2.42 (d, J = 4 Hz, 1H), 2.07 (td, J = 9.6, 3.9 Hz, 1H), 1.80-

1.70 (m, 4H), 1.65 (d, J = 12.7 Hz, 1H), 1.50 (d, J = 12.8 Hz, 1H), 1.33-1.20 (m, 2H), 

1.14-1.06 (m, 2H), 0.94 (ddd, J = 13, 12.8, 3.1 Hz, 1H) 

13C NMR (125 MHz, CDCl3) δ 138.57, 138.19, 131.42, 130.15, 128.66, 128.62, 

127.99, 127.95, 127.93, 127.83, 73.30, 73.58, 72.01, 70.73, 69.68, 52.07, 37.37, 

32.16, 28.09, 26.90, 26.84, 26.75 

HRMS calculated for C26H34O3 (M+Li)+ 401.2668; found 401.2678 (FAB).  
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(2S,3R,E)-3-benzyl-1,6-bis(benzyloxy)hex-4-en-2-ol: 4.1e  

O

OH

O

 

Following procedure B (100 mg 1.1) and phosphate acid removal, column 

chromatography (heptane:EtOAc 4:1) afforded 4.1e (81.0 mg, 82%) as a clear oil 

over two steps. 

[α]D = –6.2 (c 1.4, CH2Cl2) 

FTIR (neat) 3444, 1494, 1452, 1097 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.38-7.15 (m, 15H), 5.48 (dd, J = 15.7, 8.1 Hz, 1H), 

5.43 (ddd, J = 15.7, 10.6, 5.3 Hz, 1H), 4.56 (dd, J = 11.9, 7.3 Hz 2H), 4.31 (dd, J = 

12.0, 0.1 Hz, 2H), 3.91 (dd, J = 12.8, 4.1 Hz, 1H), 3.87 (dd, J = 12.3, 5.0 Hz, 1H), 

3.78-3.73 (m, 1H), 3.65-3.57 (m, 1H), 3.50-3.43 (m, 1H), 3.12 (dd, J = 13.4, 4.0 Hz, 

1H), 2.68 (dd, J = 13.5, 9.3 Hz, 1H), 2.62-2.52 (m, 2H) 

13C NMR (100 MHz, CDCl3) δ 139.79, 138.31, 137.00, 132.81, 129.52, 129.38, 

128.45, 128.31, 128.07, 127.82, 127.76, 127.67, 127.51, 125.85, 73.37, 72.68, 71.81, 

71.37, 70.27, 47.82, 37.27. 

HRMS calculated for C37H30O3 (M+Na)+ 425.2093; found 425.2083 (FAB).  
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(R,E)-8-(benzyloxy)-5-((S)-2-(benzyloxy)-1-hydroxyethyl)oct-6-enenitrile: 4.1f  

O

OH

O

CN  

Following procedure B (100 mg of 1.1) and methylation/phosphate removal, 

column chromatography (heptane:EtOAc 4:1) afforded 4.1f (78.0 mg, 83%) as a clear 

oil. 

[α]D = -12.0 (c = 1.5, CH2Cl2) 

FTIR (neat) 3463, 3031, 2927, 2246, 742, 702 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.36-7.28 (m, 10H), 5.63 (ddd, J = 15.5, 5.7, 5.7 Hz, 

1H), 5.43 (dd, J = 15.5, 9.5 Hz, 1H), 4.52 (dd, J = 11.8, 7.7 Hz, 2H), 4.48 (dd, J = 

9.1, 0.1 Hz, 2H), 3.97 (d, J = 5.6 Hz, 2H), 3.62 (ddd, J = 7.4, 5.4, 2.3 Hz, 1H), 3.55 

(dd, J = 9.5, 9.4 Hz, 1H), 3.36 (dd, J = 9.4, 7.6 Hz, 1H), 2.47 (bs, 1H), 2.32 (dddd, J = 

14.3, 7.3, 7.0, 2.6 Hz 2H), 2.18 (ddd, J = 18.2, 10.1, 3.3 Hz, 1H), 1.96-1.86 (m, 1H), 

1.78-1.67 (m, 1H), 1.55 (ddd, J = 6.9, 6.0, 4.8 Hz, 1H), 1.34-1.45 (m, 1H) 

13C NMR (100 MHz, CDCl3) δ 138.17, 137.78, 132.42, 129.90, 128.51, 128.46, 

127.91, 127.80, 127.75, 127.72, 119.72, 73.44, 72.71, 72.49, 72.23, 70.30, 45.91, 

29.76, 23.31, 17.27. 

HRMS calculated for C24H29NO3 (M+NH4)+ 397.2491; found 397.2483 (FAB).  
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(2S,3R)-1-(benzyloxy)-3-((E)-3-(benzyloxy)prop-1-enyl)-7-chloroheptan-2-ol: 

4.1g 

O

OH

O

Cl  

Following procedure B (100 mg of 1.1) and methylation/phosphate removal, 

column chromatography (heptane:EtOAc 5:1) afforded 4.1g (84.7 mg, 85 %) as a 

clear oil. 

[α]D = +5.8 (c = 0.625, CH2Cl2) 

FTIR (neat) 3442, 3031, 2921, 2856, 1494, 1452, 1361, 1099, 736, 698 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.32-7.11 (m, 10H), 5.67-5.59 (m, 1H), 5.46 (dd, J = 

15.5, 9.4 Hz, 1H), 4.54 (dd, J = 17.4, 11.9 Hz, 2H), 4.49 (app s, 2H), 3.99 (dd, J = 

5.9, 1.1 Hz, 2H), 3.66 (ddd, J = 7.8, 7.8, 2.9 Hz,  1H), 3.57 (dd, J = 9.5, 2.9 Hz, 1H), 

3.57-3.52 (m, 2H), 3.39 (dd,  J = 9.5, 7.5 Hz, 1H), 2.22-1.88 (m, 3H), 1.84-1.69 (m, 

3H), 1.48-1.24 (m, 4H) 

13C NMR (100 MHz, CDCl3) δ 138.27, 137.86, 133.35, 129.24, 128.45, 128.38, 

127.73, 127.70, 127.61, 73.38, 72.71, 72.85, 72.62, 71.90, 70.34, 46.24, 45.00, 35.59, 

29.70, 24.43. 

HRMS calculated for C24H31ClO3 (M+NH4)+ 420.2305; found 420.2310 (FAB).  



 184 

(2S,3R,E)-1-(benzyloxy)-3-(3-(benzyloxy)prop-1-enyl)oct-7-en-2-ol: 4.1h  

O

OH

O

 

Following procedure B and phosphate acid removal, column chromatography 

(heptane:EtOAc 4:1) afforded 4.1h (61 mg, 65%) as a clear oil. 

[α]D = +3.53 (c = 0.17, CH2Cl2) 

FTIR (neat) 3422, 1274, 750, 699 cm-1 

1H NMR (500 MHz, CDCl3) δ 7.36-7.30 (m, 10H), 5.80 (ddt, J = 17, 10.2, 6.6 Hz, 

1H), 5.62 (dt, J = 15.5, 6 Hz, 1H), 5.46 (dd, J = 15.5, 9.4 Hz, 1H), 5.00 (dd, J = 17.1, 

1.4 Hz, 1H), 4.94 (dd, J = 10.2, 1 Hz, 1H), 4.54 (dd, 18.3, 11.7, 2H), 4.49 (s, 2H), 

3.99 (d, J = 6 Hz, 2H), 3.66 (td, J = 7.7, 3 Hz, 1H), 3.57 (dd, J = 9.5, 3 Hz, 1H), 3.38 

(dd, JHH = 9.3, 7.7 Hz, 1H), 2.40 (d, J = 4.2 Hz, 1H), 2.19 (ddd, J = 9.4, 7.9, 3.6 Hz, 

1H), 2.09-2.00 (m, 2H), 1.77-1.73 (m, 1H), 1.49-1.45 (m, 1H), 1.31-1.27 (m, 2H) 

13C NMR (125 MHz, CDCl3) δ 139.07, 138.53, 138.15, 133.98, 129.20, 128.67, 

128.61, 128.01, 127.95, 127.94, 127.82, 114.65, 73.59, 73.10, 72.94, 72.06, 70.72, 

46.50, 34.03, 30.19, 26.73 

HRMS calculated for C25H32O3 (M+NH4)+ 398.2695; found 398.2696 (FAB).  
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(2S,3R,E)-1,6-bis(benzyloxy)-3-methylhex-4-en-2-yl methyl hydrogen phosphate: 

3.1a 

O

O

O

P

O

OH

OMe

 

Using procedure A (50 mg of 1.1) afforded 3.1a (51.5 mg, 99%) as a clear 

viscous oil (compound was processed without further purification). 

[α]D = +15.6 (c = 4.5, CH2Cl2) 

FTIR (neat) 2331, 1496, 1454, 1232 cm-1 

1H NMR (400 MHz, CDCl3) δ 10.16 (bs, 1H), 7.37-7.26 (m, 10H), 5.71-5.62 (m, 

2H), 4.58-4.49 (m, 2H), 4.48 (s, 2H), 4.36-4.32 (m, 1H), 3.96 (s, 2H), 3.71-3.53 (m, 

5H), 2.73-2.61 (m, 1H), 1.11 (d, J = 6.7 Hz, 3H) 

13C NMR (100 MHz, CDCl3) δ 138.67, 138.30, 134.72, 128.81, 128.80,  128.25, 

128.22, 128.11, 128.05, 81.45, 73.71, 72.44, 71.02, 70.45, 54.61, 38.80, 15.87 

31P NMR (162 MHz, CDCl3) δ 2.67 

HRMS calculated for C22H29O6P (M+Na)+ 443.1599; found 443.1600 (FAB). 
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General Methylation procedure:  

To a stirring solution of phosphate acid (0.295 mmol) in MeOH (0.6 mL) was slowly 

added (trimethylsilyl)diazomethane (2.0M, 1.48 mmol).  Upon addition, the reaction 

was allowed to run for 20 minutes at room temperature with stirring to ensure 

completion (monitored by TLC), then quenched by dropwise addition of acetic acid 

until effervescence ceases.  The reaction was concentrated under reduced pressure 

and pushed through a small plug of silica (4:1 hexanes/EtOAc) to supply the desired 

methyl phosphate ester.  
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(2S,3R,E)-1,6-bis(benzyloxy)-3-methylhex-4-en-2-yl dimethyl phosphate: 6.1a 

O

O

O

P

O

OMe

OMe

 

Using procedure A, methylation followed by column chromatography 

(EtOAc:heptane 2:1) afforded 6.1a (50 mg, 95%) as a clear oil over two steps. 

[α]D = -27.0 (c = 2.0, CH2Cl2) 

FTIR (neat) 3062, 2952, 1454, 1363, 1278, 1041 cm-1 

1H NMR (400 MHz, CDCl3) δ  7.36-7.24 (m, 10H), 5.69-5.62 (m, 2H), 4.58-4.40 (m, 

5H), 3.97-3.94 (m, 2H), 3.73 (d, JHP = 11.2, 2H), 3.69 (d, JHP = 11.2, 2H), 3.64-3.56 

(m, 2H), 2.73-2.64 (m, 1H), 1.10 (d, J = 6.9 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 138.19, 137.79, 134.00, 128.34, 128.31,  127.89, 

127.71, 127.69, 127.65, 127.57, 80.95 (d, JCP = 6.3), 73.16, 71.99, 70.55, 70.07 (d, 

JCP = 1.3), 54.28 (d, JCP = 6.3), 54.23 (d, JCP = 6.3), 38.44 (d, JCP = 5.0), 15.43 

31P NMR (162 MHz, CDCl3) δ 2.06 

HRMS calculated for C23H32O6P (M+H)+ 435.1937; found 435.1967 (FAB).  
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(S)-configured unsymmetrical monocyclic phosphate: 7.1 

O O
P

O

O OPh

 

A flask containing allylic alcohol 1.3 (0.680 g, 3.83 mmol) was diluted up in 

THF (0.2 M, 20 mL) and cooled to -40 ˚C, followed by dropwise addition of BuLi 

(1.53, 2.5M).  After 10 minutes of stirring, allyldiphenyl phosphate (1.45 g, 5 mmol) 

in THF (1M, 5 mL) was cannulated to the flask containing the alkoxide.  The solution 

was stirred for eight hours while slowly warming to room temperature.  The reaction 

was quenched with sat’d aq. NH4Cl- and the layers were separated and the aqueous 

layer extracted with Et2O (2x).  The combined organic layers were concentrated 

under reduced pressure and dried (Na2SO4).  Column chromatography (1:1 

Hex:EtOAc) afforded the acyclic phosphate ester (1.03 g, 71%) as an oil.  To a flask 

containing the phosphate precursor was added degassed CH2Cl2 (0.05 M, 22.6 mL) 

and was subsequently fitted with a reflux condenser and needle, through which a slow 

steady stream of Ar flowed.  Grubbs catalyst (ImesH2)(PCy3)(Cl2)Ru=CHPh (0.034 

mg, 0.04 mmol) was added and the reaction lowered into an oil bath warmed to 50 

˚C.  The reaction was monitored by TLC and after 1.0-1.5 hrs was deemed complete.  

Following cooling to room temperature, the reaction was concentrated and purified 

via column chromatograpy (2:1 hexanes:EtOAc), to yield cyclic phosphate 7.1 as a 

1:1 mixture of diastereomers at phosphorus (0.301 g, 76%). 

1H NMR (400 MHz, CDCl3) δ 7.40-7.17 (m, 10H), 5.89-5.74 (m, 2H), 5.41-5.23 (m, 

1H), 5.14-4.89 (m, 1H), 4.71-4.51 (m, 3H), 3.79-3.62 (m, 2H) 
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13C NMR (100 MHz, CDCl3) δ 150.38 (d, JCP = 16.1), 150.22 (d, JCP = 16.1), 137.44, 

129.68 (d, JCP = 4.0), 128.61, 128.38, 128.23, 127.78, 127.67 (d, JCP = 7.0), 127.42, 

127.08, 125.22, (d, JCP = 6.0), 120.11 (d, JCP = 5.0), 119.87 (d, JCP = 4.0), 74.35 (d, 

JCP = 7.0), 74.01 (d, JCP = 4.0), 73.47, 73.28, 71.58 (d, JCP = 9.1), 71.15 (d, JCP = 

11.1), 64.87 (d, JCP = 7.0), 64.80 (d, JCP = 8.0) 

31P NMR (162 MHz, CDCl3) δ -3.61 and -2.87 

HRMS calculated for C18H19O5P (M+Na)+ 369.0868; found 369.0872 (FAB).  
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(R,E)-5-(benzyloxy)-2-ethylpent-3-en-1-ol: 7.2 

O OH  

Following procedure A (90 mg of 7.1) and methylation/phosphate removal, 

column chromatography (heptane:EtOAc 3:1) afforded 7.2 (42.1 mg, 81%) as a clear 

oil. 

[α]D = + 6.2 (c = 1.6, CH2Cl2) 

FTIR (neat) 3389, 2958, 1454, 1307, 1089, 1049 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.22-7.19 (m, 5H), 5.63 (dt, J = 15.4, 6.0 Hz, 1H), 

5.43 (dd, J = 15.5, 8.7 Hz, 1H), 4.45 (s, 2H), 3.49 (dd, J = 10.6, 5.2 Hz, 1H), 3.36 (dd, 

J = 10.6, 8.0 Hz, 1H) 2.12-2.03 (m, 1H), 1.71 (bs, 1H), 1.45-1.34 (m, 1H), 1.26-1.15 

(m, 1H), 0.83 (t, J = 7.5 Hz, 3H) 

13C NMR (100 MHz, CDCl3) δ 138.24, 135.15, 129.18, 128.43, 127.68, 127.58, 

72.11, 70.67, 65.60, 47.26, 23.78, 11.67 

HRMS calculated for C14H20O2 (M+Na)+ 243.1361; found 243.1361 (FAB). 

  



 191 

(S)-configured unsymmetrical monocyclic phosphate: 8.2  

O O
P

O

O OMe

 

A flask containing allylic alcohol 1.3 (0.239 g, 1.34 mmol) was diluted up in 

THF (0.2 M, 6.7 mL) and cooled to –30 ˚C, followed by dropwise addition of BuLi 

(0.537 mL, 2.5M).  After 10 minutes of stirring, dichloromethyl phosphate (0.147, 

1.47 mmol) was added to the flask containing the alkoxide.  The solution was stirred 

for one hour while slowly warming to room temperature.  The reaction was quenched 

with sat’d aq. NH4Cl- and the layers were separated and the aqueous layer extracted 

with Et2O (2x).  The combined organic layers were concentrated under reduced 

pressure and dried (Na2SO4).  Column chromatography (4:1 Hex:EtOAc) afforded the 

monochloride phosphate ester (0.311 g, 80%) as an oil.  The chloride was 

immediately used.  A flask containing alcohol 8.1 (0.074 mg, 0.861 mmol) was 

charged with THF (0.2 M, 4.31 mL) and cooled to -30 ˚C, followed by dropwise 

addition of BuLi (0.346 mL, 2.4 M).  After 10 minutes of stirring, a solution of the 

previously generated monochloride phosphate ester (0.200 g, 0.688 mmol) in THF 

(0.7 M, 1 mL) was cannulated to the flask containing the alkoxide.  The solution was 

stirred for 1.5 hrs while slowly warming to room temperature.  The reaction was 

quenched with sat’d aq. NH4
+Cl- and the layers were separated and the aqueous layer 

extracted with Et2O (2x).  The combined organic layers were concentrated under 

reduced pressure and dried (Na2SO4).  Due to the instability of the acyclic phosphate, 

the reaction mixture was carried on without chromatography.  To a flask containing 
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the crude phosphate ester (assumed to be 0.688 mmol) was added degassed toluene 

(0.02 M, 34 mL) and was subsequently fitted with a reflux condenser, and needle 

through which a slow steady stream of Ar flowed.  Grubbs catalyst 

(ImesH2)(PCy3)(Cl2)Ru=CHPh (0.029 mg, 0.034 mmol) was added and the reaction 

lowered into an oil bath warmed to 90 οC.  The reaction was monitored by TLC and 

after 1.0 hr was deemed complete.  Following cooling to room temperature, the 

reaction was concentrated and purified via column chromatograpy (2:1 

hexanes:EtOAc), to yield cyclic phosphate 8.2 as a 1:1 mixture of diastereomers at 

phosphorus (0.100 g, 47 %).  One diastereomer could be purified, and was used for 

characterization. 

FTIR (neat) 3029, 2966, 1101, 737, 698 cm-1 

1H NMR (500 MHz, CDCl3) δ 7.35-7.27 (m, 5H), 5.63 (dd, J = 12.1 Hz, JHP = 2.3 

Hz, 1H), 5.53 (dd, J = 12.1 Hz, JHP = 3.1 Hz, 1H), 4.61 (dd, J = 12, 4.1 Hz, 2H), 3.81 

(d, JHP = 11.2 Hz, 3H), 3.67 (dd, J = 10.2, 6.9 Hz, 1H), 3.57 (ddd, J = 10.2, 5.2, 1.9 

Hz, 1H), 1.75 (s, 3H), 1.48 (d, JHP = 2.5 Hz, 3H) 

13C NMR (125 MHz, CDCl3) δ 137.90, 137.66, 128.46, 127.68, 124.16, 82.10 (d, JCP 

= 5.0 Hz), 73.55, 72.79 (d, JCP = 6.3 Hz), 71.86 (d, JCP = 10.1 Hz), 54.13 (d, JCP = 5.0 

Hz), 30.53 (d, JCP = 11.3 Hz), 29.32 

31P NMR (162 MHz, CDCl3) δ 0.07 and -0.90.   
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(2S,3S)-1-(benzyloxy)-3-ethyl-5-methylhex-4-en-2-ol: 8.3 

O Me

OH

Me
Me  

Following procedure A (90 mg of 8.2) and methylation/phosphate removal, 

column chromatography (heptane:EtOAc 3:1) afforded 8.3 (58.0 mg, 81%) as a clear 

oil. 

[α]D = +13.1, (c = 1.5, CH2Cl2) 

FTIR (neat) 3431, 3029, 2966, 1101 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.31-7.22 (m, 5H), 5.02 (d, J = 8.9 Hz, 1H), 4.50 (s, 

2H), 3.81-3.74 (m, 1H), 3.54 (dd, J = 9.6, 3.1 Hz, 1H), 3.45 (dd, J = 9.6, 7.8, 1H), 

2.37-2.28 (m, 1H), 2.24 (bs, 1H), 1.78 (s, 3H), 1.65, (s, 3H), 1.61-1.51 (m, 1H), 1.34-

1.24 (m, 1H), 0.86, (t, J = 7.3, 3H) 

13C NMR (100 MHz, CDCl3) δ 138.15, 134.65, 129.61, 128.44, 127.76, 124.40, 

115.34, 73.40, 73.21, 73.02, 42.61, 26.05, 24.70, 18.45. 



 194 

 

 

O
JAC = 2.6

JBC = 1.4

JCD = 2.4

BnO

OH

OBn

1. 2,2-DMP, TsOH

2. - 78 oC, O3, MeOH 

Sudan III; then LiBH4

BnO

O O

O

Me

Me

HB

HAHC

Et

HD

CH2OBn
 

 

4-(benzyloxymethyl)-5-ethyl-2,2-dimethyl-1,3-dioxane: 

1H NMR (400 MHz, CDCl3) δ 7.37-7.28 (m, 5H), 4.62 (d, J = 12.1 Hz, 1H), 4.48 (d, 

J = 12.1 Hz, 1H), 4.26  (ddd, J = 6.2, 6.2, 2.4 Hz, 1H), 3.97  (ddd, J = 11.9, 2.6, 1.11 

Hz, 1H), 3.82  (dd, J = 11.9, 1.4 Hz, 1H), 3.49  (dd, J = 9.6, 6.6 Hz, 1H), 3.43  (dd, J 

= 9.7, 5.9 Hz, 1H), 1.77-1.65 (m, 1H), 1.46 (s, 3H), 1.38 (s, 3H), 1.35-1.27 (m, 2H), 

0.92 (t, J = 7.2 Hz). 

   

BnO

O O
BnO

OH
1. 2,2-DMP, TsOH

2. - 78 oC, O3, MeOH 

Sudan III; then LiBH4

O
O

Me

Me

HB

HA
Et

HC

HD

CH2OBn

JCD = 11.7

 

(4S,5S)-4-(benzyloxymethyl)-5-ethyl-2,2-dimethyl-1,3-dioxane:   

1H NMR (400 MHz, CDCl3) δ 7.36-7.22 (m, 5H), 4.63 (d, J = 12.3 Hz, 1H), 4.52 (d, 

J = 12.3 Hz, 1H), 3.87 (dd, J = 11.7, 5.4 Hz, 1H), 3.74 (ddd, J = 10.3, 5.0, 2.8 Hz, 

1H),85 (t, J = 7.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 138.42, 128.33, 127.73, 

127.56, 98.19, 73.58, 73.38, 71.50, 63.65, 37.02, 29.38, 21.08, 19.38, 10.05.  HRMS 

calculated for C16H24O3 (M+Na)+ 287.1623; found 287.1628 (FAB).  
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5.3 Experimental Data: Chapter 3 

1-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-8-

yl)ethanone: 4.1 

O

P
O O

O
1. Hg(OAc)2

THF:H2O, rt

2. Jones reagent

Celite, acetone, 0 ºC

80% over 2 steps

O

P
O O

O

O

 

 To a 250 mL round bottom flask under Ar (g) equipped with large stir bar was 

added 8.91 g (27.95 mmol, 2 equiv.) mercuric acetate followed by 35 mL degassed 

deionized H2O.  To this stirring mixture was cannulated a solution of 2.82 g (13.98 

mmol) phosphate 2.11,2 in 105 mL of degassed THF.  The mixture was stirred 

vigorously until completion (24-48 h, monitored by TLC, 100% EtOAc).  A mixture 

of 2.35 g (27.95 mmol, 2 equiv.) solid NaHCO3 and 2.86 g (16.77 mmol, 1.2 equiv.) 

CuCl2•2H2O was then added and the ensuing mixture allowed to stir for 15 minutes. 

100 mL EtOAc was then added, mixed, and the layers separated.  The small aqueous 

layer was extracted 3 more times with 100 mL EtOAc to ensure recovery of the very 

polar product, followed by combination of the organic extracts which were washed 

with brine and dried with Na2SO4.  Filtration into a 250 mL round bottom flask 

followed by solvent removal in vacuo provided 3.09 g of alcohol 8.1, which was used 

immediately in the next reaction. 

 The 250 mL round bottom flask is equipped a stir bar and 140 mL of acetone 

is added to generate a 0.1 M solution followed by 21 g of Celite® (1.5 g/mmol).  The 

stirring solution is cooled to 0 ºC, at which time 6.28 mL of Jones reagent (16.77 

mmol, 1.2 equiv.) is added dropwise.  The reaction is allowed to proceed with stirring 
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at 0 ºC until completion (TLC 20% acetone in ethyl acetate; ~ 2 h).  Upon indication 

of reaction completion, 0.5 mL isopropyl alcohol is added to consume any leftover 

Jones reagent, followed by filtration.  The filtrate is then concentrated to 40 mL, 

followed by addition of 100 mL ethyl acetate and careful addition of 10 mL NaHCO3 

(aq).  The solution is mixed and the layers separated, followed by 3 x 100 mL 

extractions of the aqueous layer.  The combined organic layers are washed with brine, 

dried with Na2SO4, filtered and silica added.  The solvent is then removed and the 

product laden silica added to a very short silica gel column.  Eluting the column with 

100% ethyl acetate (1 column volume) removes any less polar constituents, followed 

by elution with 20% acetone in ethyl acetate to elute product.  Solvent removal 

provides 3.05 g (80% yield) of phosphate 4.1. 

[α]D: -21 (c = 0.63, acetone, 25.6 ºC) 

FTIR: (neat) 2970, 2924, 2893, 2850, 1724, 1292, 1259, 1091, 1058, 991, 946, 921, 

885, 770 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 6.11 (dddd, J = 11.9, 6.5, 3.0, 2.2 Hz, 1H), 

5.65 (ddd, J = 11.9, 4.0, 2.7 Hz, 1H), 5.31 (dddd, J = 24.6, 3.9, 2.1, 1.9 Hz, 1H), 5.05 

(dddd, J = 14.8, 11.2, 5.0, 2.7 Hz, 1H), 4.97 (dt, J = 12.1, 2.3 Hz, 1H), 4.43 (ddd, J = 

28.3, 14.8, 6.7 Hz, 1H), 2.37 (s, 3H), 2.26 (ddddd, J = 14.8, 6.5, 5.2, 3.8, 2.5 Hz, 1H), 

2.15 (dddd, J = 14.8, 2.6, 2.5, 1.5 Hz, 1H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 205.8 (d, JCP = 12.0 Hz), 129.3, 128.7, 79.6 

(d, JCP = 7.2 Hz), 77.4 (d, JCP = 7.1 Hz), 63.5 (d, JCP = 6.4 Hz), 31.3 (d, JCP = 6.0 

Hz), 26.2 
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31P NMR (162 MHz, CHCl3-d) δ ppm -3.64 

HRMS Exact Mass: calculate for C8H11NaO5P (M+Na)+ 241.0242; found 241.0235 

(ESI) 
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1-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-8-yl)ethanol: 

8.1 

O

P
O

O

OH

O

 

To a 10 mL round bottom flask under Ar (g) equipped with stir bar was added 

312 mg (0.98 mmol, 2 equiv.) mercuric acetate followed by 1.25 mL degassed 

deionized H2O.  To this stirring mixture was cannulated a solution of 100 mg (0.49 

mmol) phosphate 2.1 in 3.75 mL of degassed THF.  The mixture was stirred 

vigorously until completion (24-48 h, monitored by TLC, 100% EtOAc).  A mixture 

of 82 mg (0.98 mmol, 2 equiv.) solid NaHCO3 and 100 mg (0.59 mmol, 1.2 equiv.) 

CuCl2•2H2O was then added and the ensuing mixture allowed to stir for 15 minutes. 

20 mL EtOAc was then added, mixed, and the layers separated.  The small aqueous 

layer was extracted 3 more times with 20 mL EtOAc to ensure recovery of the very 

polar product, followed by combination of the organic extracts which were washed 

with brine and dried with Na2SO4 and filtered.  Silica was added followed by solvent 

removal, whereupon the impregnated silica was placed on a silica gel column and the 

product eluted with 20% acetone in EtOAc, which after solvent removal provided 107 

mg (99% yield) of alcohol 8.1. 

FTIR: (neat) 3387, 2928, 1280, 1105, 1068, 1036, 978, 931, 769 cm-1 

1H NMR (500 MHz, acetone-d6) δ ppm 6.09 (dddd, J = 11.9, 5.2, 4.3, 2.2 Hz, 1H), 

5.76 (ddd, J = 11.9, 3.8, 2.6 Hz, 1H), 5.33 (app d, J = 24.7 Hz, 1H), 4.89 (dddd, J = 
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14.1, 6.2, 5.6, 2.7 Hz, 1H), 4.69 (d, J = 5.5 Hz, 1H), 4.45-4.31 (m, 2H), 4.16 (dddd, J 

= 6.3, 5.9, 5.9, 5.8 Hz, 1H), 2.24-2.12 (m, 3H), 2.09 (br s, 2H) 

13C NMR (126 MHz, acetone-d6) δ ppm 131.2, 128.3, 82.0 (d, JCP = 6.9 Hz), 78.6 (d, 

JCP = 6.7 Hz), 72.5 (d, JCP = 10.4 Hz), 63.6 (d, JCP = 6.3 Hz), 34.9, 31.6 (JCP = 5.9 

Hz) 

31P NMR (162 MHz, acetone-d6) δ ppm -4.20 (t, JPH = 25.0 Hz) 

HRMS Exact Mass: calculate for C10H16HgO7P (M+HgOAc)+ 481.0340; 

found 481.0364 (ESI) 
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(R)-2-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-8-yl)but-

3-en-2-ol: 11.1 

O

P
O O

O

O

MgBr

-78 ºC

dr = ~15:1

 73% O

P
O O

O

OH
H3C  

A 25 mL flask containing 280 mg (1.28 mmol) of ketone 4.1 was placed under 

argon atmosphere and 13 mL of THF were added to generate a 0.1 M solution. The 

solution was then cooled to -78 ºC and freshly prepared vinyl magnesium bromide 

(3.86 mL, 1.0M in THF, 3 equiv.) was added slowly along the side of the flask.  The 

reaction mixture was maintained in a cooling bath at -78 ºC for 7 h, after which time 

13 mL of saturated aqueous NH4Cl was added, the flask removed from the cooling 

bath, and the mixture allowed to reach room temperature.   The reaction mixture was 

extracted with 3 x 30 mL EtOAc and the organic layers collected.  The organic layers 

were then washed with 20 mL brine, dried with Na2SO4, filtered, SiO2 added and the 

solvent removed in vacuo.  The substrate impregnated SiO2 was then placed on a 

short column, eluted with 2 column volumes of ethyl acetate, and then eluted with 

10% acetone in EtOAc.  Solvent removal afforded 230 mg (73% yield) of the desired 

tertiary alcohol 11.1. 

 

[α]D: -68.6 (c = 3.45, acetone, 27 ºC)  

FTIR: (neat) 3406, 2981, 2935, 1263, 1224, 1161, 1072, 1031, 983, 921, 883, 771 

cm-1 
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1H NMR (500 MHz, CHCl3-d) δ ppm 6.03 (dddd, J = 6.9, 6.6, 3.7, 1.4 Hz, 1H), 5.80 

(dd, J = 17.3, 10.9 Hz, 1H), 5.58 (ddd, J = 11.85, 3.9, 2.7 Hz, 1H), 5.39 (dd, J = 17.3, 

1.2 Hz, 1H), 5.23 (dddd, J = 25.0, 2.2, 2.0, 1.0 Hz, 1H), 5.21 (dd, J = 10.9, 1.2 Hz, 

1H), 5.00 (dddd, 14.7, 5.6, 5.6, 2.7 Hz, 1H), 4.39 (ddddd, 14.9, 10.3, 6.9, 1.8, 0.8 Hz, 

2H), 2.37 (ddd, J = 14.9, 12.2, 6.4 Hz, 1H), 2.24 (br s, 1H), 1.75 (ddd, 14.8, 3.6, 2 Hz, 

1H), 1.38 (s, 3H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 139.3, 130.1, 128.1, 115.7, 81.6 (d, JCP = 7.2 

Hz), 77.4 (d, JCP = 6.9 Hz), 74.1 (d, JCP = 9.1 Hz), 63.3 (d, JCP = 6.4 Hz), 29.3 (d, JCP 

= 5.5 Hz), 24.6  

31P NMR (162 MHz, CHCl3-d) δ ppm -2.88 (t, JPH = 25.0 Hz) 

HRMS Exact Mass: calculate for C10H15NaO5P (M+Na)+ 269.0555; found 269.0532 

(ESI) 
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(2S,5R,E)-1-(benzyloxy)-5-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-

phosphabicyclo[4.3.1]dec-4-en-8-yl)hex-3-ene-2,5-diol: 14.2 

O

P
O O

O

OH
H3C

Hoveyda-Grubbs II

CH2Cl2, reflux

70%, E/Z >20:1

O

P
O O

O

OH
H3C

OH

BnO

OH

BnO

 

A solution of 11 mg (0.0446 mmol) of phosphate 11.1 and 40 mg (0.223 

mmol, 5 equiv.) of allylic alcohol 14.1 in 1 mL of degassed CH2Cl2 is prepared, thus 

generating a 0.05M solution with respect to phosphate 11.1.  The solution is added to 

a small, flame dried pressure tube containing a stir bar and 3 mg (0.0045 mmol, 0.1 

equiv.) Hoveyda-Grubbs II catalyst, which is immediately flushed with argon, 

capped, and placed in a 48 ºC silicon oil bath.  The reaction is allowed to stir for 12 

hours at 48 ºC and then removed from heat to cool to room temperature.  Addition of 

a slight amount of SiO2 followed by solvent removal provides the impregnated SiO2, 

which is placed on a column and eluted with 10% acetone in ethyl acetate to provide 

12 mg (70% yield) of the desired cross-metathesis product as a single observable 

isomer. 

 

[α]D: -60 (c = 0.10, acetone, 23.8 ºC) 

FTIR: (neat) 3340, 2978, 2860, 1286, 1072, 1035, 987, 923, 742 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 7.34 (m, 5H), 5.99 (dddd, J = 11.9, 5.3, 4.5, 2.2 

Hz, 1H), 5.85 (dd, J = 15.6, 5.1 Hz, 1H), 5.71 (dd, J = 15.6, 1.2 Hz, 1H), 5.45 (ddd, J 

= 11.9, 3.9, 2.5 Hz, 1H), 5.14 (ddd, J = 21.0, 2.1, 1.7 Hz, 1H), 4.99 (dddd, J = 11.9, 

8.4, 5.6, 2.7 Hz, 1H), 4.56 (s, 2H), 4.39 (br s, 1H), 4.36 (ddd, J = 27.5, 12.1, 7.9, 2.0 
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Hz, 2H), 3.58 (dd, J = 9.6, 3.4 Hz, 1H), 3.38 (dd, J = 9.5, 7.6 Hz, 1H), 2.50 (d, J = 3.3 

Hz, 1H), 2.31 (ddd, J = 14.9, 12.2, 6.4 Hz, 1H), 2.21 (s, 1H), 1.69 (ddd, J = 14.9, 3.3, 

2.2 Hz, 1H), 1.37 (s, 3H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 137.9, 132.5, 130.2, 129.5, 128.7, 128.2, 

128.1, 128.0, 81.5 (d, JCP = 7.3 Hz), 77.4 (d, JCP = 6.8 Hz), 74.2, 73.8 (d, JCP = 9.1 

Hz), 73.7, 70.7, 63.4 (d, JCP = 6.4 Hz), 29.3 (d, JCP = 5.5 Hz), 25.2 

31P NMR (162 MHz, CHCl3-d) δ ppm -2.88 (t, JPH = 21.1 Hz) 

HRMS Exact Mass: calculate for C19H25NaO7P (M+Na)+ 419.1236; found 419.1229 

(ESI) 
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Monocyclic Phosphate Acid 14.3 

O

P
O O

O

OH
H3C

OH

BnO

OH
H3C

OH

BnO

O
P

O
SPh

O OH

LiSPh

THF, 23 ºC, 10 min

> 99%  

To a dry 5 mL round bottom flask under argon containing a stir bar and 5 mg 

(0.0126 mmol) of phosphate 14.2 was added 130 µL of THF to generate a 0.1M 

solution.  13 µL (0.013 mmol, 1 equiv.) of a 1.0M solution of LiSPh in THF was 

added dropwise, noting TLC (20% acetone in EtOAc solvent system) to determine 

the endpoint of the reaction via disappearance of starting material. An appropriately 

titrated reaction as described lends to a facile workup: addition of 10 µL of 1.25M 

HCl-methanol followed by solvent removal produces 6.4 mg (>99% yield) of 

phosphate acid 14.3. 

 

[α]D: -13 (c = 0.10, MeOH, 24.4 ºC) 

FTIR: (neat) 3628, 3340, 2978, 2860, 1286, 1072, 1035, 987, 923, 742, 681 cm-1 

1H NMR (500 MHz, MeOH-d4) δ ppm 7.30 (m, 10H), 5.78 (app s, 1H), 5.77 (app s, 

1H), 5.75 (t, J = 9.4 Hz, 1H), 5.56 (dd, J = 18.4, 7.8 Hz, 1H), 4.53 (dd, J = 9.9, 3.0 

Hz, 2H), 4.27 (dd, J = 10.9, 4.3 Hz, 1H), 4.12 (d, J = 5.9 Hz, 1H), 3.65 (dd, J = 13.8, 

8.2 Hz, 1H), 3.56 (dd, J = 13.8, 7.4 Hz, 1H), 3.42 (ddd, J = 9.0, 4.5, 2.9 Hz, 2H), 1.99 

(ddd, J = 12.7, 8.9, 4.9 Hz, 1H), 1.59 (ddd, J = 11.9, 10.2, 3.2 Hz, 1H), 1.31 (s, 3H), 

1.29 (dd, J = 16.6, 10.4 Hz, 1H) 
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13C NMR (126 MHz, MeOH-d4) δ ppm 139.8, 137.4, 136.2, 131.3, 130.6, 130.2, 

130.0, 129.5, 129.0, 128.8, 128.7, 127.6, 80.1, 75.6, 74.4, 72.1, 69.2, 40.3, 32.9, 32.1, 

25.1 

31P NMR (162 MHz, MeOH-d4) δ ppm -2.53 

HRMS Exact Mass: calculate for C25H30O7PS (M-H)– 505.1455; found 505.1446 

(ESI) 
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5.4 Experimental Data: Chapter 4  

(R)-6-vinyl-5,6-dihydro-2H-pyran-2-one: 2.4 

O

O

O

O

SnBu3

Jones Reagent

Celite, TsOH•H2O

acetone, 0 ºC to r.t.

16 h, 80%  

To a 50 mL round bottom flask equipped with comparably large stir bar is 

added 800 mg of stannane 11.1 (1.74 mmol), 2.62g Celite (1.5g/mmol) and 17.5 mL 

of acetone (0.1M with respect to 11.1). The stirring mixture was brought to 0 ºC and 

1.44 mL of Jones reagent (2.67M, 3.84 mmol, 2.2 equiv.) added dropwise, followed 

by addition of 1.99g of TsOH•H2O (10.4 mmol, 6 equiv.).  After 1 hour the reaction 

was allowed to stir at room temperature for 15 hours before the reaction was filtered 

and the solid washed with 10 mL of acetone.  The filtrate was concentrated, 30 mL of 

EtOAc and 10 mL of brine added, and the mixture agitated.  Separation of the organic 

layer followed by extraction of the aqueous layer with 3x 10ml portions of EtOAc 

preceeded combination of all organic layers, to which SiO2 was added and the slurry 

concentrated to dryness.  The impregnated SiO2 was placed on a SiO2 column, 

flushed with 1:1 petroleum ether: diethyl ether to remove more nonpolar components, 

followed by elution with 100% diethyl ether to elute 173 mg (80% yield) of desired 

lactone 2.4. 

 

[α]D: +93 (c = 0.55, CH2Cl2, 26.3 ºC) 
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FTIR: (neat) 2957, 2924, 2854, 1722, 1420, 1385, 1246, 1034, 987, 935, 816, 669 

cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 6.88 (ddd, J = 9.8, 5.4, 3.1 Hz, 1H), 6.06 (ddd, 

J = 9.8, 2.3, 1.3 Hz, 1H), 5.95 (ddd, J = 16.5, 10.6, 5.7 Hz, 1H), 5.41 (dd, J = 16.5, 

0.9 Hz, 1H), 5.30 (dd, J = 10.6, 0.8 Hz, 1H), 4.93 (ddd, J = 10.3, 5.4, 5.3 Hz, 1H), 

2.47 (ttd, J = 18.5, 5.1, 1.3 Hz, 1H), 2.45 (dddt, J = 18.5, 12.8, 10.0, 2.55 Hz, 1H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 164.0, 144.6, 135.0, 121.9, 118.1, 78.0, 29.6 

HRMS Exact Mass: calculate for C7H8O2Na (M+Na)+ 147.0422; found 147.0419 

(ESI) 
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(2R,6R)-2-((E)-2-iodovinyl)-6-isopropoxy-3,6-dihydro-2H-pyran: 3.1 

O

O

SnBu3

CH2Cl2, -45 ºC, 2 h

78%

O

O

I

NIS

 

To a flame dried 100 mL round botton flask under argon containing a stir bar 

is placed 1.99 g stannane 11.1 (4.34 mmol) and 62 mL of CH2Cl2 to generate a 0.07M 

solution.  The mixture is placed in a cold bath and lowered to -45 ºC, at which time 

1.17 g N-iodosuccinimide (5.21 mmol, 1.2 equiv.) is added to the stirring solution in 

the dark.  The reaction is allowed to proceed in the dark until complete by TLC (30:1 

hexane: diethyl ether; about 2 hours), at which time 50 mL 10% NaS2O3 (aq) is added 

and the mixture allowed to achieve room temperature while continuing to protect the 

vessel from light.  The organic layer is separated and the aqueous layer extracted with 

3x 15 mL diethyl ether.  The combined organic layers are dried with MgSO4, filtered, 

and the solvent removed.  The crude mixture is then purified by flash column 

chromatography, initially using 100% petroleum ether to remove any stannane, 

followed by elution with 30:1 petroleum ether: diethyl ether to provide 995 mg (78% 

yield) of the vinyl iodide. 

 

[α]D: +36 (c = 4.46, CH2Cl2, 26.0 ºC) 

FTIR: (neat) 3043, 2968, 2924, 2895, 1464, 1380, 1315, 1180, 1124, 1099, 1059, 

1026, 1002, 947, 783, 717 cm-1 
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1H NMR (500 MHz, CHCl3-d) δ ppm 5.95 (ddt, J = 10.2, 5.7, 1.4 Hz, 1H), 5.70 (dtd, 

J = 10.2, 2.9, 1.3 Hz, 1H), 5.12 (d, J = 0.9Hz, 1H), 4.68 (ddd, J = 11.3, 2.9, 2.3 Hz, 

1H), 4.05 (hept., J = 6.2 Hz, 1H), 2.45 (d, J = 4.5 Hz, 1H), 2.41 (dddt, J = 17.8, 7.7, 

2.8, 1.8 Hz, 1H), 2.21 (dddd, J = 17.8, 5.7, 3.7, 1.3 Hz, 1H), 1.27 (d, J = 6.2 Hz, 3H), 

1.18 (d, J = 6.2 Hz, 3H), 1.05 (s, 1H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 127.8, 126.1, 93.1, 83.0, 72.9, 70.1, 57.1, 31.4, 

24.0, 22.2 

HRMS Exact Mass: calculate for C10H15INaO2 (M+Na)+ 317.0014; found 317.0015 

(ESI) 
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 (R,E)-6-(2-iodovinyl)-5,6-dihydro-2H-pyran-2-one: 5.2 

O

O

I  

 To a 10 mL flame dried flask was added 200 mg (0.85 mmol) of alcohol 5.1,3 

253 µL (1.45 mmol, 1.7 equiv.) i-Pr2NEt, and 4.3 mL of CH2Cl2 (0.2 M w/r 5.1).  The 

solution was cooled to 0 ºC with stirring, at which time 83 µL (1.03 mmol, 1.2 equiv.) 

acryloyl chloride was added dropwise.  The reaction was allowed to stir at 0 ºC until 

completion, typically about 1.5 h.  Upon completion, sat. NH4Cl (aq) was added and 

the mixture extracted with 3 x 10 mL diethyl ether.  The combined organic layers 

were washed with brine, dried with MgSO4, and filtered.  The solvent was removed 

under reduced pressure and the crude material filtered through a silica plug with 20:1 

hexanes: diethyl ether.  Solvent removal provided 199 mg of the ester (0.71 mmol, 84 

% yield), which was used immediately to prevent potential polymerization. 

 The ester was placed in a 100 mL flame dried flask equipped with reflux 

condenser under Ar atmosphere followed by 71 mL dry, degassed dichloroethane to 

generate a 0.01 M solution.  The condenser was fitted with a vent and a long needle 

through which Ar was slowly introduced into the stirring mixture.  The solution was 

heated to 90 ºC before 89 mg (0.14 mmol) Hoveyda-Grubbs II catalyst was 

introduced.  Stirring was continued at 90 ºC until completion of the reaction by TLC 

(20:1 hexane: diethyl ether).  Upon completion, the reaction was cooled and the 

solvent removed under reduced pressure.  The crude material was purified by 
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chromatography (2:1 hexane: diethyl ether) to produce 71 mg (40% yield) of lactone 

5.2 as a faint yellow oil. 

  

[α]D: +68 (c = 0.40, CH2Cl2, 23.6 ºC) 

FTIR: (neat) 2957, 2930, 2857, 1722, 1420, 1386, 1246, 1035cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 6.87 (ddd, J = 9.8, 5.4, 3.1 Hz, 1H), 6.51 (br s, 

2H), 6.06 (ddd, J = 9.8, 2.4, 1.3 Hz, 1H), 4.89 (dt, J = 10.3, 4.3 Hz, 1H), 2.53-2.40 

(m, 2H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 163.2, 144.2, 141.9, 121.9, 81.4, 78.8, 29.1 

HRMS Exact Mass: calculate for C7H7INaO2 (M+Na)+ 272.9388; 

found 272.9402 (ESI) 
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tributyl((E)-2-((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)vinyl)stannane: 

11.1 

O

O

SnBu3

O

O
Bu3SnH

AIBN (10 mol%)

PhH, 90 ºC, 2h

65%  

To a flame dried 100 mL round bottom flask equipped with stir bar, water-

jacketed reflux condenser and under argon was placed 3.76g (22.6 mmol) of alkyne 

7.5,4 12.2 mL of Bu3SnH (45.2 mmol, 2 equiv.) and 23 mL of benzene (1M with 

respect to alkyne 7.5).  To this stirring mixture was added 370 mg (2.26 mmol, 10 

mol %) of AIBN, brought to 90 ºC, and allowed to proceed at this temperature for 2 

hours.  After this duration of time, the reaction was allowed to cool to room 

temperature, the solvent removed, and the mixture placed on a pretreated SiO2 

column (pretreatment involves mixing 1mL Et3N per 100g SiO2), flushed with 100% 

hexanes to remove excess Bu3SnH.  After removal of excess Bu3SnH, the product is 

eluted with a 1% Et3N/ 1:1 hexane:CH2Cl2 system to afford 6.74g (65% yield) of the 

stannane. 

 

[α]D: +25.9 (c = 2.90, CH2Cl2, 26.0 ºC) 

FTIR: (neat) 3043, 2956, 2921, 2871, 2854, 1464, 1420, 1400, 1377, 1315, 1180, 

1126, 974, 959, 946, 864, 717, 690, 665, 594, 501 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 6.22 (dd, J = 19.2, 1.3 Hz, 1H), 6.04 (dd, J = 

19.2, 5.1 Hz, 1H), 6.01 (m, 1H), 5.72 (dddd, J = 10.1, 4.4, 2.8, 1.6 Hz, 1H), 5.13 (dd, 
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J = 1.5, 1.1 Hz, 1H), 4.40 (ddd, J = 9.4, 5.4, 4.3 Hz, 1H), 4.02 (hept., J = 6.2 Hz, 1H), 

2.08 (ddd, J = 10.4, 2.5, 1.4 Hz, 1H), 2.07 (ddd, J = 5.1, 4.7, 1.4 Hz, 1H), 1.49 (dddd, 

J = 8.1, 7.4, 1.9, 1.7 Hz, 6H), 1.30 (dddd, J = 7.4, 7.3, 4.1, 3.3 Hz, 6H), 1.24 (d, J = 

6.2 Hz, 3H), 1.18 (d, J = 6.2 Hz, 3H), 0.89 (q, J = 8.2 Hz, 9H), 0.88 (t, J = 7.3 Hz, 

6H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 148.0, 129.3, 128.9, 126.3, 93.6, 69.9, 69.2, 

30.6, 29.3, 24.0, 22.4, 13.9, 9.6 

HRMS Exact Mass: calculate for C22H42O2NaSn (M+Na)+ 481.2104; 481.2084 found  

(ESI) 

  



 214 

(R,E)-2-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-8-yl)-4-

((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)but-3-en-2-ol: 12.1 

O

P
O

O

OH

O

O

O

 

 To a 5 mL flame dried round bottom flask flushed with Ar (g) and equipped 

with stir bar was added 40 mg (0.138 mmol, 3 equiv.) of iodide 3.1 and 0.34 mL of 

Et2O (0.4 M with respect to 3.1).  This solution was cooled to -78 ºC with stirring, at 

which time 178 µL of t-BuLi (1.7 M in pentanes, 0.303 mmol, 2.2 equiv. with respect 

to 3.1) was added and the reaction warmed to 0 ºC to stir for 30 minutes.  The mixture 

was then cannulated into a -78 ºC solution of 36 mg MgBr2•OEt2 (0.138 mmol, 3 

equiv.) in 0.46 mL of THF (0.3 M with respect to MgBr2•OEt2), warmed to 0 ºC and 

allowed to stir for 30 minutes.   This solution was then slowly cannulated along the 

internal side of the reaction flask into a -45 ºC solution of 10 mg ketone 2.2  (0.046 

mmol) in 0.16 mL of THF (0.3 M with respect to 2.2).  The reaction was allowed to 

stir at -45 ºC for 3 hours, at which time the reaction was quenched at -45 ºC by 

addition of 2 mL sat. NH4Cl (aq) and allowed to warm to room temperature.  The 

mixture was then added to 10 mL EtOAc in a separatory funnel and the layers 

separated, followed by extraction of the aqueous layer with 3 x 10 mL portions of 

EtOAc.  The organic layers were then combined, washed with brine, dried (Na2SO4), 

filtered, and SiO2 added.  The solvent was then removed and the SiO2-bound 

substrate added to a silica gel column, which was subjected to 2 CVs of 3:1 
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hexane:EtOAc followed by elution of the product with 100% EtOAc.  Removal of the 

solvent provided 12 mg (69% yield) of phosphate 12.1 as a single observable 

diastereomer.  [Note: Running the ketone addition reaction at -78 ºC rather than -45 

ºC requires ~7 h reaction time.] 

 

[α]D: –26 (c = 0.10, CH2Cl2, 24.9 ºC) 

FTIR: (neat) 3381, 2970, 2924, 1292, 1180, 1126, 1072, 1031, 997, 924 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 5.99-5.92 (m, 3H), 5.86 (dd, J = 15.7, 5.1 Hz, 

1H), 5.67 (ddd, J = 10.1, 4.9, 2.0 Hz, 1H), 5.61 (d, J = 15.8 Hz, 1H), 5.51 (tdd, J = 

11.9, 3.9, 2.7 Hz, 1H), 5.16 (app d, 24.0 Hz, 1H), 5.04 (d, J = 2.3 Hz, 1H), 4.94 

(dddd, J = 14.8, 5.6, 5.5, 2.9 Hz, 1H), 4.40 (ddd, J = 12.4, 5.7, 1.2 Hz, 1H), 4.32 

(ddddd, J = 14.8, 12.3, 6.7, 2.0, 1.8 Hz, 2H), 3.90 (sept., J = 6.2 Hz, 1H), 2.30 (ddd, 

J= 13.0, 8.5, 5.8 Hz, 1H), 2.10 (d, 12.0 Hz, 1H), 1.98 (tt, J = 4.0, 2.1 Hz, 1H), 1.68 

(dddd, J = 12.8, 11.6, 2.1, 1.8 Hz, 1H), 1.33 (s, 3H), 1.14 (d, J = 6.2 Hz, 3H), 1.11 (d, 

J = 6.2 Hz, 3H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 139.3, 131.3, 130.1, 128.5, 128.1, 126.4, 93.8, 

81.6 (d, JCP = 7.2 Hz), 77.3 (d, JCP = 2.9 Hz), 73.7 (d, JCP = 9.1 Hz), 70.3, 65.9, 63.4 

(d, JCP = 6.3 Hz), 30.8, 29.4 (d, JCP = 5.5 Hz), 25.1, 24.0, 22.5 

31P NMR (162 MHz, CHCl3-d) δ ppm -2.89 (t, JPH = 23.8 Hz) 

HRMS Exact Mass: calculate for C18H27NaO7P (M+Na)+ 409.1392; 

found 409.1393 (ESI) 
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 (R,E)-2-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-8-yl)-4-

((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)but-3-en-2-ol: 12.1 

O

P
O

O

OH

O

O

O

 

 To a small dried Pyrex pressure tube under argon was placed 27 mg (0.16 

mmol, 5 equiv.) of alkene 14.1 , 2.0 mg Hoveyda-Grubbs II catalyst (0.003 mmol, 10 

mol %) and a stir bar.  To this was added 7.8 mg (0.03 mmol) of phosphate 15.1 in 

0.6 mL of degassed CH2Cl2 (0.05M with respect to phosphate 15.1) and the solution 

immediately placed in a 46 ºC oil bath with stirring.  After 12 h, the tube was 

removed from heat to cool, SiO2 added and the solvent removed. Placement of the 

substrate impregnated silica on a column allowed for elution with 100% EtOAc to 

provide 9.4 mg (77% yield) of phosphate 12.1 as a single observable isomer.  
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(2R,6R)-6-isopropoxy-2-vinyl-3,6-dihydro-2H-pyran: 14.1 

O

O

SnBu3

TFA (10 equiv.)

THF, 0 ºC to r.t.

1.5 h, 57%

O

O

 

To a dried 50 mL round bottom flask under argon equipped with stir bar is 

placed 700 mg stannane 11.1 (1.53 mmol) followed by 15 mL THF to generate a 

0.1M solution.  This solution is lowered in temperature to 0 ºC via cold bath, after 

which time 3.06 mL of a 5.0M TFA solution in THF (15.28 mmol, 10 equiv.) is 

added dropwise.  The reaction is allowed to proceed at 0 ºC for 1.5 h with stirring, 

after which time the reaction is quenced by slow addition of sat. aq. NaCO3 (15 mL) 

and 15 mL diethyl ether added.  The layers are separated, the aqueous layers extracted 

with Et2O (3 x 5 mL), and the combined organic layers washed with brine.  The 

organic layers were then dried with MgSO4, filtered, solvent carefully removed via 

reduced pressure over a 0 ºC bath, and the product purified via column 

chromatography (50:1 petroleum ether: diethyl ether) to provide 146 mg (57% yield) 

of alkene 14.1. 

 

[α]D: +59 (c = 0.37, CH2Cl2, 24.8 ºC) 

FTIR: (neat) 3080, 3045, 2970, 2924, 2894, 1647, 1458, 1423, 1398, 1381, 1182, 

1126, 1101, 1034, 1009, 993, 962, 943, 924, 860, 719, 783 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 6.01 (m, 1H), 5.91 (ddd, J = 17.3, 10.6, 5.6 Hz, 

1H), 5.73 (dtd, J = 10.0, 2.8, 1.5 Hz, 1H), 5.30 (dt, J = 17.3, 1.6 Hz, 1H), 5.16 (dt, J = 
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10.6, 1.6 Hz, 1H), 5.12 (ddd, J = 5.7, 1.5, 1.2 Hz, 1H), 4.43 (dddd, J = 10.0, 4.8, 4.6, 

0.6 Hz, 1H), 4.01 (dq, J = 6.3, 6.2 Hz, 1H), 2.08 (dddd, J = 10.8, 4.2, 2.5, 0.9 Hz, 

1H), 2.03 (dddd, J = 17.7, 5.6, 4.2, 1.4 Hz, 1H), 1.23 (d, J = 6.3 Hz, 3H), 1.18 (d, 6.2 

Hz, 3H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 138.5, 128.6, 126.4, 115.6, 93.4, 69.9, 67.0, 

30.5, 24.0, 22.3 

HRMS Exact Mass: calculate for C10H16NaO2 (M+Na)+ 191.1048; 

found 191.1052 (ESI) 
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(2R,6R)-6-isopropoxy-2-vinyl-3,6-dihydro-2H-pyran: 14.1 

O

O
0.01 equiv. 5% Pd-CaCO3

0.05 equiv. qunoline

H2, EtOAc, r.t., 2h

80%

O

O

 

A 100 mL round bottom flask equipped with stir bar is charged with 1.10 g (6.53 

mmol) of alkyne 7.5, 42 mg (0.327 mmol, 0.05 equiv.) freshly distilled quinoline, and 

65 mL degassed EtOAc (0.1M with respect to 7.5) and is placed under a H2 

atmosphere via balloon. To this stirring mixture is added 139 mg 5% Pd-CaCO3 

(0.065 mmol Pd, 0.01 equiv.). The reaction was allowed to proceed for 2 h 

(monitored by GC) at which time the mixture was filtered through Celite and the 

solvent removed gently.  The crude product was passed through a short SiO2 plug, 

eluting with 20:1 petroleum ether: diethyl ether to provide 877 mg (80% yield) of the 

desired alkene 14.1. 
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 (1S,6R,8R)-8-((R)-2-(triethylsilyloxy)but-3-en-2-yl)-1-oxo-2,9,10-trioxa-1-

phosphabicyclo[4.3.1]dec-4-ene  

O

P
O O

O

OH
H3C

CH2Cl2, 0 ºC

99 % O

P
O O

O

OTES
H3C

TESOTf, 2,6-lut.

 

A flame dried 25 mL round bottom flask was charged with 320 mg phosphate 

15.1 (1.3 mmol) and 13 mL of CH2Cl2 to generate a 0.1M solution, followed by 197 

µL of 2,6-lutidine (1.69 mmol, 1.3 equiv.).  The solution was then cooled to 0 ºC and 

323 µL of TESOTf (1.43 mmol, 1.1 equiv.) was added dropwise to the solution with 

stirring.  The solution was allowed to stir at 0 ºC until completion (about 1 hour).  The 

reaction was quenched with 13 mL of saturated aqueous NH4Cl, separated, and the 

aqueous layer re-extracted 3 more times.  The combined organic layers were then 

washed with brine, dried with MgSO4, and filtered.  Addition of SiO2 preceded 

removal of solvent, following which the impregnated SiO2 was loaded onto a short 

column and the desired product eluted with 1:2 hexane: ethyl acetate to provide 468 

mg (99% yield) of the silyl protected phosphate. 

 

[α]D: -36.4 (c = 1.05, CH2Cl2, 26.5 ºC) 

FTIR: (neat) 2955, 2914, 2876, 1294, 1263, 1236, 1220, 1134, 1074, 1061, 1042, 

993, 978, 781, 737, 727, 694, 611, 433 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 6.00 (dddd, J = 11.9, 6.7, 3.6, 2.4 Hz, 1H), 

5.80 (dd, J = 17.3, 10.7 Hz, 1H), 5.56 (ddd, 11.9, 3.9, 2.6 Hz, 1H), 5.30 (dd, J = 17.3, 

1.1 Hz, 1H), 5.21 (dddd, J = 25.0, 2.5, 1.9, 1.7 Hz, 1H), 5.17 (dd, J = 10.7, 1.1 Hz, 
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1H), 4.99 (dddd, J = 14.7, 5.6, 5.5, 2.7 Hz, 1H), 4.34 (ddd, J =  27.7, 14.2, 6.8 Hz, 

1H), 4.24 (ddd, J = 11.9, 1.8, 1.7 Hz, 1H), 2.31 (ddd, J = 14.7, 11.9, 6.4 Hz, 1H), 1.79 

(ddd, J = 13.1, 2.4, 1.8 Hz, 1H), 1.40 (s, 3H), 0.95 (t, J = 8.0 Hz, 9H), 0.61 (qd, J = 

7.2, 1.6 Hz, 6H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 142.0, 130.3, 128.0, 115.7, 81.5 (d, JCP = 7.6 

Hz), 77.4 (d, JCP = 6.6 Hz), 76.4 (d, JCP = 10.0 Hz), 63.2 (d, JCP = 6.4 Hz), 29.0 (d, 

JCP = 5.4 Hz), 22.7, 7.3, 6.9 

31P NMR (162 MHz, CHCl3-d) δ ppm -2.86 (t, JPH = 27.0 Hz) 

HRMS Exact Mass: calculate for C16H29NaO5PSi (M+Na)+ 383.1420; 

found 383.1423 (ESI) 
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(4R,6R,7R,Z)-7-methyl-7-(triethylsilyloxy)nona-2,8-diene-1,4,6-triol: 16.1 

O

P
O O

O

OTES

OH
OH OH

OTES

LiAlH4

Et2O, 0 ºC

68 %  

A 0.06M solution of phosphate (250 mg, 0.70 mmol) in diethyl ether (12 mL) 

is prepared under argon atmosphere and subsequently cooled to 0 ºC with stirring.  To 

this is slowly added LiAlH4 (79 mg, 2.09 mmol, 3 equiv.) and to reaction allowed to 

continue stirring at 0 ºC.  The reaction is monitored by TLC (1:2 hexane: ethyl 

acetate) until substrate appears to be consumed and allowed to continue for 15 more 

minutes at 0 ºC (total reaction time typically about 1 hour).  The reaction is quenched 

by slow, dropwise addition of 79 mg of H2O, followed by slow, dropwise addtion of 

79 mg of 15 % NaOH (aq), and finishing with an addition of 237 mg of H2O.  At this 

point, the mixture is allowed to reach room temperature until all salts appear to have 

become a white color.  SiO2 is then added and the solvent removed, at which point the 

silica complexed product is placed on a short silica gel plug and eluted with a 1:4 

hexane: ethyl acetate mixture, producing 150 mg (68% yield) of mono-protected 

tetraol 16.1. 

 

[α]D: +17.4 (c = 2.20, CH2Cl2, 27.6 ºC) 

FTIR: (neat) 3342, 2955, 2912, 2877, 1458, 1413, 1238, 1099, 1049, 1010, 977, 921, 

873, 740, 727 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 5.93 (dd, J = 17.4, 10.9 Hz, 1H), 5.69 (dddd, J 

= 6.3, 5.0, 1.2, 1.1 Hz, 1H), 5.57 (ddt, J = 11.2, 7.8, 1.3 Hz, 1H), 5.31 (dd, J = 17.4, 
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1.4 Hz, 1H), 5.13 (dd, J = 10.9, 1.4 Hz, 1H), 4.67 (dd, J = 8.4, 8.3 Hz, 1H), 4.28 (ddd, 

J = 7.0, 6.7, 6.1 Hz, 1H), 4.18 (ddd, J = 8.6, 7.1, 5.9 Hz, 1H), 3.82 (dd, J = 7.1, 3.9 

Hz, 1H), 3.77 (br s, 1H),1.80 (ddd, J = 14.8, 6.7, 3.8 Hz, 1H), 1.58 (br s, 2H), 1.54 

(ddd, J = 14.8, 7.0, 2.7 Hz, 1H), 1.27 (s, 3H), 0.99 (t, J = 8.0 Hz, 9H), 0.69 (q, J = 8.0 

Hz, 6H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 142.0, 135.7, 130.0, 113.5, 76.2, 75.7, 65.3, 

59.0, 40.6, 25.0, 7.2, 5.4 

HRMS Exact Mass: calculate for C16H32NaO4Si (M+Na)+ 339.1968; 

found 339.1970 (ESI) 
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(5R,6R,8R,Z)-8-(tert-butyldimethylsilyloxy)-3,3-diethyl-5,13,13,14,14-

pentamethyl-5-vinyl-4,12-dioxa-3,13-disilapentadec-9-en-6-ol: 16.2 

OH
OH OH

OTES

CH2Cl2, -78 ºC

92 %

OTBS
OH OTBS

OTES

TBSOTf, 2,6-lut.

 

A 0.1M solution of triol 16.1 (44 mg, 0.138 mmol) in CH2Cl2 (1.4 mL) is 

generated in a flame dried 5mL flask under Ar atmosphere, followed by addition of 

2,6-lutidine (72 µL, 0.620 mmol, 4.5 equiv.).  The solution is then submerged in a dry 

ice-acetone bath to bring the temperature to -78 ºC, at which time a slow addition of 

TBSOTf (70 µL, 0.303 mmol, 2.2 equiv.) is affected.  The reaction is monitored by 

TLC to ensure the selective bis-protected product is produced, where the mono-

protected species is visualized in a 2:1 hexane: diethyl ether system (Rf = 0.15) to 

note disappearance while the bis-protected species is visible through a 20:1 hexane: 

diethyl ether system (Rf = 0.21).  After disappearance of the mono-protected species 

by TLC, the reaction is allowed to continue for 15 minutes more (total reaction time 

is about 45 minutes). Saturated aqueous NH4Cl is then added and the reaction allowed 

to achieve room temperature, whereby the layers are then separated and the aqueous 

layer extracted with 3x 5mL portions of diethyl ether, the combined organic layers 

washed with brine, and then dried with MgSO4.  Filtration followed by solvent 

removal allows for purification via flash column chromatography utilizing a 20:1 

hexane: diethyl ether solvent system to afford 69 mg (92% yield) of the desired 

product 16.2. 
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[α]D: +4.4 (c = 3.34, CH2Cl2, 25.7 ºC) 

FTIR: (neat) 3464, 3016, 2954, 2929, 2879, 2858, 1471, 1462, 1411, 1362, 1254, 

1080, 1005, 923, 835, 775, 741, 727 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 5.93 (dd, J = 17.4, 10.8 Hz, 1H), 5.48 (ddd, J = 

10.8, 5.1, 5.0 Hz, 1H), 5.37 (ddd, J = 11.2, 6.2, 1.6 Hz, 1H), 5.28 (dd, J = 17.4, 1.6 

Hz, 1H), 5.10 (dd, J = 10.8, 1.6 Hz, 1H), 4.48 (ddd, J = 9.4, 3.8, 3.6 Hz, 1H), 4.29 

(ddd, J = 13.1, 7.0, 1.6 Hz, 1H), 4.13 (ddd, J = 13.1, 5.3, 1.7 Hz, 1H), 3.68 (dd, J = 

5.8, 3.8 Hz, 1H), 2.59 (s, 1H), 1.90 (ddd, J = 14.5, 9.7, 3.8 Hz, 1H), 1.31 (dddd, J = 

9.8, 5.8, 4.9, 3.9 Hz, 1H), 1.21 (s, 3H), 0.98 (t, J = 8.0 Hz, 9H), 0.90 (s, 9H), 0.88 (s, 

9H), 0.66 (qd, J = 8.0,1.9 Hz, 6H), 0.07 (s, 6H), 0.06 (s, 3H), 0.05 (s, 3H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 142.3, 134.0, 129.7, 113.3, 75.9, 75.5, 66.8, 

59.6, 43.0, 26.1, 24.0, 18.5, 18.3, 7.3, 5.7, -3.1, -4.3 

HRMS Exact Mass: calculate for C28H60NaO4Si3 (M+Na)+ 567.3697; 

found 567.3688 (ESI) 
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dibenzyl (5R,6R,8R,Z)-8-(tert-butyldimethylsilyloxy)-3,3-diethyl-5,13,13,14,14-

pentamethyl-5-vinyl-4,12-dioxa-3,13-disilapentadec-9-en-6-yl phosphate: 16.3 

OTBS
OH OTBS

OTES

(BnO)2PNiPr2, tetrazole

CH2Cl2, 0 ºC, 3 h

then tBuOOH, 1.5 h

78%

OTBS
O OTBS

OTES

P

O

BnO
BnO

 

A flame dried 5 mL round bottom flask equipped with stir bar is charged with 

63 mg of tris-protected tetraol 16.2 (0.116 mmol), 49 mg of 1H-tetrazole (0.699 

mmol, 6 equiv.), and 1.2 mL of CH2Cl2 (0.1M with respect to 16.2).  The stirring 

mixture is cooled to 0 ºC at which time 127 µL of dibenzyl N,N-diisopropyl 

phosphoramidite (0.349 mmol, 3 equiv.) was added and allowed to continue stirring 

at 0 ºC.  After completion as indicated by TLC using 20:1 hexane: diethyl ether 

(phosphite Rf = 0.8 vs. alcohol Rf = 0.21), the cloudy reaction mixture was allowed to 

stir for 30 minutes more (total time 3 h) before 70 µL of a 5.0M t-BuOOH in decane 

solution (0.349 mmol, 3 equiv.) was added at 0 ºC generating a clear solution and the 

reaction allowed to stir at 0 ºC for 1.5 h.  The reaction was quenched by addition of 1 

mL of 10% Na2S2O3 (aq.) and allowed to stir for 30 min., at which time it was diluted 

with 5 mL of NaHCO3, extracted with 3x 10 ml portions of CH2Cl2, dried with 

MgSO4, filtered and concentrated.  Purification by column chromatography 

proceeded by elution with 5:1 hexane: diethyl ether to remove more non-polar 

impurities, followed by elution with 2:1 hexane: diethyl ether to provide 73 mg (78% 

yield) of phosphate 16.3. 
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[α]D: +11.8 (c = 0.88, CH2Cl2, 25.6 ºC) 

FTIR: (neat) 2954, 2930, 2881, 2856, 1458, 1411, 1379, 1362, 1254, 1080, 1001, 

835, 775, 735, 696, 598 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 7.32 (m, 10H), 6.09 (dd, J = 17.6, 11.0 Hz, 

1H), 5.45 (ddd, J = 11.8, 6.6, 5.2 Hz, 1H), 5.35 (dddd, J = 11.2, 9.1, 4.1, 1.6 Hz, 1H), 

5.30 (dd, J = 17.6, 0.6 Hz, 1H), 5.26 (dd, J = 11.0, 0.5 Hz, 1H), 4.99 (d, J = 2.6 Hz, 

2H), 4.97 (d, J = 2.7 Hz, 2H), 4.46 (td, J = 9.7, 1.7 Hz, 1H), 4.30 (ddd, J = 13.2, 6.9, 

1.6 Hz, 1H), 4.13 (ddd, J = 13.2, 5.1, 1.7 Hz, 1H), 3.89 (dd, J = 8.3, 1.3 Hz, 1H), 1.72 

(ddd, J = 11.8, 10.4, 1.4 Hz, 1H), 1.46 (ddd, J = 16.5, 3.5, 3.4 Hz, 1H), 1.22 (s, 3H), 

0.94 (t, J = 8.0 Hz, 9H), 0.89 (s, 9H), 0.86 (s, 9H), 0.65 (q, J = 8.0 Hz, 6H), 0.06 (s, 

6H), 0.05 (s, 3H), 0.04 (s, 3H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 138.5, 136.5, 136.4, 134.0, 129.8, 128.62, 

128.6, 128.4, 128.37, 128.0, 117.2, 87.6 (d, JCP = 7.9 Hz), 75.2 (d, JCP = 10.8 Hz), 

69.0 (d, JCP = 5.4 Hz), 68.8 (d, JCP = 5.3 Hz), 66.0, 59.6, 42.8, 30.5, 26.1 (d, JCP = 6.4 

Hz), 19.9, 18.5, 18.3, 7.3, 5.8, -2.8, -4.2, -5.0 

31P NMR (162 MHz, CHCl3-d) δ ppm -4.02 (t, JPH = 8.0 Hz) 

HRMS Exact Mass: calculate for C42H73NaO7PSi3 (M+Na)+ 827.4299; 

found 827.4328 (ESI) 

Note: On larger scales, the minor diastereomer generated during the generation of 

tertiary alcohol 15.1 is separable and can be faintly observed and isolated at this point 

in the 5:1 hexane: diethyl ether elution (Rf = 0.25 in 5:1 hexane: diethyl ether).  It is 

easily distinguishable by 13C NMR from the major isomer: (126 MHz, CHCl3-d) δ 



 228 

ppm 143.2, 136.22, 136.16, 134.3, 129.6, 128.7, 128.64, 128.58, 128.4, 127.9, 125.7, 

114.9, 82.5 (d, JCP = 15.4 Hz), 77.2 (d, JCP = 6.1 Hz), 69.26 (d, JCP = 6.0 Hz), 69.22 

(d, JCP = 9.1 Hz), 65.6, 59.6, 40.2, 30.5, 26.1, 22.5, 18.4, 18.2, 7.3, 6.8, -3.6, -4.5, -4.9 
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 (4R,6R,7R,Z)-7-methylnona-2,8-diene-1,4,6,7-tetraol: 17.1 

O

P
O O

O

OH

OH
OH OH

OH

LiAlH4

Et2O, 0 ºC

64 %  

A 0.06M solution of phosphate 15.1 (38 mg, 0.154 mmol) in THF (2.6 mL) is 

prepared under argon atmosphere and subsequently cooled to 0 ºC with stirring.  To 

this is slowly added LiAlH4 (18 mg, 0.463 mmol, 3 equiv.) and the reaction allowed 

to continue stirring at 0 ºC.  The reaction is monitored by TLC (1:1 EtOAc: acetone) 

until substrate appears to be consumed and allowed to continue for 15 more minutes 

at 0 ºC (total reaction time typically about 1 h).  The reaction is quenched by slow, 

dropwise addition of 18 mg of H2O, followed by slow, dropwise addtion of 18 mg of 

15 % NaOH (aq), and finishing with an addition of 54 mg of H2O.  At this point, the 

mixture is allowed to reach room temperature until all salts appear to have become a 

white color.  SiO2 is then added and the solvent removed, at which point the silica 

complexed product is placed on a short silica gel plug and eluted with a 1:1 EtOAc: 

acetone mixture, producing 20.2 mg (64% yield) of tetraol 17.1. 

 

[α]D: +46 (c = 0.05, acetone, 24.6 ºC) 

FTIR: (neat) 3339, 2951, 2910, 2877, 1458, 1410, 1238, 1099 cm-1 

1H NMR (500 MHz, acetone-d6) δ ppm 5.96 (dd, J = 17.4, 10.9 Hz, 1H), 5.50 (m, 

2H), 5.28 (dd, J = 17.4, 2.0 Hz, 1H), 5.02 (dd, J = 10.8, 2.0 Hz, 1H), 4.68 (dddd, J = 

6.6, 4.6, 2.6, 2.3 Hz, 1H), 4.19 (ddd, J = 12.4, 5.4, 1.7 Hz, 1H), 4.10 (ddd, J = 12.6, 

4.2, 3.8 Hz, 1H), 3.91 (d, J = 4.8 Hz, 1H), 3.73 (d, J = 5.5 Hz, 1H), 3.71 (s, 1H), 3.69 
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(dd, J = 5.7, 1.9 Hz, 1H), 3.54 (s, 1H), 1.67 (ddd, J = 15.0, 9.3, 1.9 Hz, 1H), 1.44 

(ddd, J = 15.0, 7.8, 2.6 Hz, 1H), 1.22 (s, 3H) 

13C NMR (126 MHz, acetone-d6) δ ppm 144.2, 135.9, 130.4, 112.7, 75.6, 74.6, 65.5, 

58.7, 40.3, 24.7 

HRMS Exact Mass: calculate for C10H18NaO4 (M+Na)+ 225.1103; 

found 225.1105 (ESI) 
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(3R,4R,6R,Z)-6,9-bis(tert-butyldimethylsilyloxy)-3-methylnona-1,7-diene-3,4-

diol: 17.2 

OH
OH OH

OH

CH2Cl2, -78 ºC

77 %

OTBS
OH OTBS

OH

TBSOTf, 2,6-lut.

 

A 0.1M solution of tetraol 17.1 (19 mg, 0.093 mmol) in CH2Cl2 (1 mL) is 

generated in a flame dried 5 mL flask under Ar atmosphere, followed by addition of 

2,6-lutidine (49 µL, 0.421 mmol, 4.5 equiv.).  The solution is then submerged in a dry 

ice-acetone bath to bring the temperature to -78 ºC, at which time a slow addition of 

TBSOTf (47 µL, 0.206 mmol, 2.2 equiv.) is affected.  The reaction is monitored by 

TLC to ensure the selective bis-protected product is produced (4:1 hexane: diethyl 

ether, Rf = 0.21), although no mono-protected species was observed during the course 

of the reaction with this substrate After disappearance of the starting material is 

observed by TLC (1:1 EtOAc: acetone), the reaction is allowed to continue for 15 

minutes more (total reaction time is about 45 minutes). 1 mL of sat. aq. NH4Cl  is 

then added and the reaction allowed to achieve room temperature.  The layers are 

then separated and the aqueous layer extracted with 3x 5mL portions of diethyl ether, 

the combined organic layers washed with brine, and then dried with MgSO4.  

Filtration followed by solvent removal allows for purification via flash column 

chromatography utilizing a 4:1 hexane: diethyl ether solvent system to afford 31 mg 

(77% yield) of the desired product. 

 

[α]D: +17 (c = 0.25, CH2Cl2, 25.3 ºC) 
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FTIR: (neat) 3459, 3010, 2954, 2929, 2879, 2858, 1079, 1009, 923 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 5.82 (dd, J = 17.4, 10.9 Hz, 1H), 5.59 (ddt, J = 

11.4, 8.5, 1.5 Hz, 1H), 5.51 (ddd, J = 11.6, 6.2, 0.8 Hz, 1H), 5.29 (dd, J = 17.4, 1.6 

Hz, 1H), 5.12 (dd, J = 10.9, 1.6 Hz, 1H), 4.83 (dt, J = 8.1, 4.4 Hz, 1H), 4.21 (ddd, J = 

11.2, 6.5, 1.3 Hz, 1H), 4.13 (ddd, J = 13.4, 5.2, 1.7 Hz, 1H), 3.78 (ddt, J = 12.1, 8.4, 

2.9 Hz, 1H), 3.77 (br s, 1H), 2.49 (br s, 1H), 1.64 (dd, J = 4.3, 4.2 Hz, 2H), 1.27 (s, 

3H), 0.89 (s, 9H), 0.88 (s, 9H), 0.08 (s, 3H), 0.061 (s, 3H), 0.059 (s, 3H), 0.05 (s, 3H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 141.1, 133.7, 129.1, 114.0, 75.2, 74.6, 68.3, 

59.6, 38.7, 26.1, 26.0, 24.9, 18.5, 18.2, -4.3, -4.98, -5.04, -5.06 

HRMS Exact Mass: calculate for C22H46NaO4Si2 (M+Na)+ 453.2832; 

found 453.2811 (ESI)  
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dibenzyl (5R,6R,8R,Z)-8-(tert-butyldimethylsilyloxy)-3,3-diethyl-5,13,13,14,14-

pentamethyl-5-((E)-2-((R)-6-oxo-3,6-dihydro-2H-pyran-2-yl)vinyl)-4,12-dioxa-

3,13-disilapentadec-9-en-6-yl phosphate: 20.1 

OTBS
O OTBS

OTES

O

O

10 mol %

Hoveyda-Grubbs II

(H-G cat.)

OTBS
O OTBS

OTES

OO

P

O

BnO
BnO

P

O

BnO
BnO

7%

 

 To a small dried Pyrex pressure tube under argon was placed 10 mg (0.012 

mmol) of phosphate 16.3 , 0.6 mg Hoveyda-Grubbs II catalyst (0.001 mmol, 10 mol 

%) and a stir bar.  To this was added 8 mg (0.06 mmol) of lactone 2.4 in 0.12 mL of 

degassed dichloroethane (0.1 M with respect to phosphate 16.3) and the solution 

immediately placed in a 90 ºC oil bath with stirring.  After 12 hours, the tube was 

removed from heat to cool, SiO2 added and the solvent removed. Placement of the 

substrate impregnated silica on a column allowed for elution with 2:1 hexane: diethyl 

ether to provide 0.8 mg (7% yield) of phosphate 20.1. 

[α]D: +9.6 (c = 0.01, CH2Cl2, 24.8 ºC) 

1H NMR (500 MHz, CHCl3-d) δ ppm 7.44-7.20 (m, 5H), 6.93-6.87 (m, 5H), 6.90 

(app dd, J = 5.6, 1.3 Hz, 1H), 6.07 (ddt, J = 16.0, 9.8, 1.9 Hz, 1H), 6.06 (ddd, J = 9.9, 

2.5,1.4 Hz, 1H), 5.96 (ddd, J = 16.5, 10.6, 5.7 Hz, 1H), 5.61 (ddd, J =10.2, 6.9, 1.6 

Hz, 1H), 5.30 (dt, J = 10.6, 1.2 Hz, 1H), 5.10 (ddd, J = 8.1, 7.2, 1.2 Hz, 1H), 4.94 (m, 

[PhCH2O-]2 + C5-H, 5H), 4.87 (dd, J = 7.3, 7.4 Hz, 1H), 4.56 (ddd, J = 6.1, 6.0, 5.9 

Hz, 1H), 4.21 (dt, J = 4.1, 1.4 Hz, 1H), 2.55 (ddd, J = 6.1, 4.2, 1.8 Hz, 1H), 2.49-2.41 
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(m, 2H), 1.75 (ddd, J = 6.6, 1.6, 0.6 Hz, 1H), 1.43 (s, 3H), 0.91 (s, 18H), 0.89 (t, J = 

8.0 Hz, 9H), 0.65 (q, J = 8.0 Hz, 6H), 0.07 (s, 6H), 0.04 (s, 3H), 0.036 (s, 3H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 164.1, 145.0, 144.7, 135.0, 133.7, 129.5, 

129.2, 127.5, 126.0, 125.9, 125.7, 121.88, 121.85, 120.8, 79.2, 78.1, 77.7, 74.2 (d, JCP 

= 6.9 Hz), 71.0, 66.1, 62.8, 42.9, 30.2, 29.9, 29.6, 26.1, 22.40, 22.36, 15.5, 14.3, 7.4, 

5.9, -4.2, -5.1 

31P NMR (162 MHz, CHCl3-d) δ ppm -4.13 (t, JPH = 8.1 Hz) 

HRMS Exact Mass: calculate for C47H77NaO9PSi3 (M+Na)+ 923.4511; 

found 923.4528 (ESI) 
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OTBS
O OTBS

OTES

P

O

BnO
BnO

OTBS
O OTBS

OTES

OO

P

O

BnO
BnO

O

O

10 mol % cat-C, DCE

90 ºC, 10 h

16%

(via syringe pump)

 

To a small dried Pyrex pressure tube bearing a cap with Teflon septa and 

under argon was placed 6.3 mg (0.008 mmol) phosphate 16.3, 0.5 mg Hoveyda-

Grubbs II catalyst (0.0008 mmol, 10 mol %), 0.25 mL degassed dichloroethane and a 

stir bar. The solution is placed in a 90 ºC silicon oil bath and allowed to stir for 10 

minutes.  Another solution containing 3.0 mg of lactone 24.1 (0.016 mmol) in 500 µL 

of degassed dichloroethane is placed in a syringe and the needle of the syringe placed 

through the septa of the Pyrex tube.  The syringe is then injected via syringe pump at 

a rate of 100 µL per hour and the reaction allowed to proceed overnight.  The pressure 

tube is then removed from heat, SiO2 added, and the solvent removed.  The product 

bearing silica gel is then placed on a column for purification utilizing 2:1 hexane: 

diethyl ether to provide 1.1 mg (16% yield) of phosphate 20.1. 
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 (R,E)-6-(hepta-1,6-dienyl)-5,6-dihydro-2H-pyran-2-one: 24.1 

O

O

 

 In a glove box under Ar (g), 107 mg (0.03 mmol, 0.15 equiv.) of 

PCy(pyrrolidinyl)2
5 and 39 mg (0.41 mmol, 1.9 equiv.) Me4NF are added to a 5 mL 

round bottom flask containing 2 mg (0.005 mmol, 0.025 equiv.) of [(π-allyl)PdCl]2 in 

1.1 mL THF.  This mixture is allowed to stir for 5 minutes at 25 ºC.  1.28 g (2.81 

mmol) of stannane 11.1, 1.40 g of freshly dried 3Å molecular sieves (500 mg/mmol 

11.1), and 660 mg of 5-iodo-1-pentene (3.37 mmol, 1.2 equiv.) was then added in that 

particular order.  The vessel was capped with a Teflon lined cap and removed from 

the glove box.  The mixture then stirred vigorously at 25 ºC for 24 h in the absence of 

light.  After 24 h had passed, 1 mL 10% KF (aq) was added and the mixture allowed 

to stir for 30 minutes.  The layers were separated and the aqueous layer extracted 3 

more times with 5 mL diethyl ether.  The combined organic layers were then washed 

with brine, dried with MgSO4, filtered and solvent removed in vacuo.  The residue 

was then placed on a silica gel column, eluted with 80:1 petroleum ether: diethyl 

ether to remove more non-polar species followed by elution with 30:1 petroleum 

ether: diethyl ether to elute the impure coupling product.  The semi-pure product was 

used in the subsequent reaction. 

 To a 50 mL round bottom flask equipped with comparably large stir bar is 

added the semi-pure coupling product, 4.2 g Celite (1.5g/mmol) and 28 mL of 

acetone (0.1M with respect to 11.1). The stirring mixture was brought to 0 ºC and 
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2.32 mL of Jones reagent (2.67M, 6.18 mmol, 2.2 equiv.) added dropwise. The 

reaction is allowed to proceed with stirring at 0 ºC until completion (TLC 2:1 hexane: 

diethyl ether; ~ 2 h).  Upon indication of reaction completion, 0.5 mL isopropyl 

alcohol is added to consume any leftover Jones reagent, followed by filtration, 

addition of silica, and solvent removal.  Placing the product saturated silica on a silica 

column allowed for elution of the desired product with 2:1 petroleum ether: diethyl 

ether, where solvent removal provided 361 mg (67% yield) of lactone 24.1 as a light 

colorless oil. 

[α]D: +65 (c = 0.15, CH2Cl2, 25.7 ºC) 

FTIR: (neat) 2909, 2872, 1722, 1420, 1385, 1294, 1237 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 6.89 (ddd, J = 9.8, 5.7, 2.7 Hz, 1H), 6.05 (ddd, 

J = 9.8, 2.5, 1.1 Hz, 1H), 5.78 (ddddd, J = 17.0, 10.3, 6.7, 6.7, 2.4 Hz, 1H), 5.66 (ddd, 

J = 14.6, 9.7, 4.1 Hz, 1H), 5.58 (dddd, J = 14.4, 8.3, 1.3, 1.2 Hz, 1H), 5.22 (dddd, J = 

10.9, 8.4, 4.5, 0.8 Hz, 1H), 5.01 (ddd, J = 17.2, 3.5, 1.6 Hz, 1H), 4.98 (ddt, J = 10.2, 

2.2, 1.2 Hz, 1H), 2.42 (dddd, J = 18.5, 8.5, 2.7, 2.6 Hz, 1H), 2.34 (dddd, J = 18.4, 5.6, 

4.5, 1.1 Hz, 1H) 2.18-2.04 (m, 4H), 1.50 (dddddd, J = 13.7, 13.4, 6.4, 6.3, 6.3, 6.1 Hz, 

2H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 164.4, 145.0, 138.4, 135.4, 126.9, 121.8, 

115.2, 74.0, 33.3, 30.0, 28.6, 27.3 

HRMS Exact Mass: calculate for C12H17O2 (M+H)+ 193.1229; 

found 192.1231 (ESI)  
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(R)-6-((E)-2-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-8-

yl)vinyl)-5,6-dihydro-2H-pyran-2-one: 24.2 

O

P
O O

O

O

O

O

P
O O

O

OO

10 mol % cat-C, DCE

90 ºC, 24 h 98%

E:Z = 5:1

(2 equiv.)

 

To a small dried Pyrex pressure tube under argon was placed 2.0 mg (0.010 

mmol) phosphate 2.1, 0.6 mg Hoveyda-Grubbs II catalyst (0.001 mmol, 10 mol %) 

and a stir bar.  To this was added a solution of 4.0 mg of lactone 24.1 (0.020 mmol, 2 

equiv.) in 1 mL of degassed dichloroethane (0.01M with respect to phosphate 2.1), 

the tube flushed one more time and capped, and the solution placed in a 90 ºC oil bath 

with stirring for 24 h.  After the allotted time had passed, the tube was removed from 

heat to cool, SiO2 added and the solvent removed. Placement of the substrate 

impregnated silica on a column allowed for elution with 5:1 EtOAc: acetone to 

provide 3.0 mg (99% yield) of phosphate 24.2 in a 5:1 ratio of trans:cis isomers. 

 

[α]D: -12 (c = 0.10, CH2Cl2, 24.5 ºC) 

FTIR: (neat) 2918, 2849, 1717, 1383, 1296, 1250, 1117, 1067, 1036, 966, 924, 820, 

775 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 6.90 (ddd, J = 9.8, 5.7, 2.8 Hz, 1H), 6.09 (ddd, 

J = 6.7, 3.1, 2.1 Hz, 1H), 6.07 (ddd, J = 9.8, 2.4, 1.0 Hz, 1H), 6.03 (ddd, J = 15.5, 4.7, 

1.5 Hz, 1H), 5.92 (dddd, J = 15.5, 4.4, 2.9, 1.5 Hz, 1H), 5.63 (ddd, J = 11.9, 3.9, 2.6 

Hz, 1H), 5.23 (dddd, J = 23.7, 3.1, 2.2, 2.0 Hz, 1H), 5.11 (dddd, J = 12.0, 3.4, 2.0, 1.6 
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Hz, 1H), 5.03 (dddd, J = 14.7, 8.3, 5.6, 2.7 Hz, 1H), 4.99 (dtd, J = 9.5, 4.3, 1.3 Hz, 

1H), 4.40 (ddd, J = 27.9, 14.8, 6.7 Hz, 1H), 2.51 (dddd, J = 18.4, 5.7, 4.3, 1.1 Hz, 

1H), 2.41 (ddt, J = 21.1, 10.9, 2.7 Hz, 1H), 2.22 (ddd, J = 14.7, 12.1, 6.2 Hz, 1H), 

1.83 (ddd, J = 14.7, 3.5, 2.3 Hz, 1H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 163.8, 144.8, 129.6, 129.3 (d, JCP = 10.1 Hz), 

129.1, 128.5, 121.8, 77.3 (d, JCP = 32.0 Hz), 76.2, 74.9 (d, JCP = 6.2 Hz), 63.3 (d, JCP 

= 6.3), 35.3 (d, JCP = 5.7 Hz), 29.7 

31P NMR (162 MHz, CHCl3-d) δ ppm -3.76 (t, JPH = 23.6 Hz) 

HRMS Exact Mass: calculate for C13H15NaO6P (M+Na)+ 321.0504; found 321.0508 

(ESI) 
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(E)-1-bromohepta-1,6-diene: 26.1 

DIBAL-H, 50 ºC, 5 h

then NBS, -30 ºC, 87%
Br

 

 A flame dried 250 mL round bottom flask was purged with Ar, followed by 

addition of a stir bar and 4.7 g (50 mmol) of 1-hepten-6-yne.  55 mL of 

diisobutylaluminum hydride in hexanes (1.0 M, 55 mmol) was slowly added and the 

mixture allowed to stir at room temperature for 30 minutes, followed by warming to 

50 ºC and stirring for 5 h.  The mixture was then cooled to room temperature, 30 mL 

of diethyl ether added, and then cooled to -30 ºC with stirring.  NBS was then added 

and the mixture stirred at -30 ºC for 15 min and then at room temperature for 15 h in 

the absence of light.  The mixture was then poured into 100 mL 6 M HCl (aq) in 

crushed ice.  The resulting solution was then extracted with petroleum ether (3 x 200 

mL), the organic layers washed with 1 M NaOH (aq), then washed with 10% NaS2O3 

(aq) and dried with Na2SO4, filtered, and solvent removed very gently at 22 ºC at 165 

torr.6  The crude material was then passed through a silica plug utilizing 40:1 

petroleum ether: diethyl ether and the solvent carefully removed as indicated before 

to provide 7.65 g (87% yield) of (E)-1-bromohepta-1,6-diene 26.1. 

 

FTIR: (neat) 2975, 2856, 1639, 1620, 1439, 1280, 1230, 991, 935, 912, 706 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 6.17 (dt, J = 13.5, 7.32 Hz, 1H), 6.02 (dt, J = 

13.5, 1.4 Hz, 1H), 5.78 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.01 (ddd, J = 17.1, 3.5, 1.6 

Hz, 1H), 4.97 (ddt, J = 10.2, 2.2, 1.2 Hz, 1H), 2.06 (ddddd, J = 14.7, 7.2, 2.5, 1.5, 1.3 

Hz, 4H), 1.50 (dt, J = 7.6, 7.4 Hz, 2H) 
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13C NMR (126 MHz, CHCl3-d) δ ppm 138.3, 138.1, 115.2, 104.6, 33.1, 32.5, 27.9 
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 (R,E)-2-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-8-

yl)nona-3,8-dien-2-ol: 26.2 

O

P
O O

O

O

THF,-78 ºC

d.r. = >20:1, 70% O

P
O O

O

OH

3

3 MgBr

 

A 10 mL flask containing 30 mg (0.14 mmol) of ketone 2.2 was placed under 

Ar atmosphere and 1.4 mL of THF were added to generate a 0.1 M solution. The 

solution was then cooled to -78 ºC and freshly prepared Grignard of 26.1 (420 µL, 

1.0M in THF, 3 equiv.) was added slowly along the side of the flask.  The reaction 

mixture was maintained in a cooling bath at -78 ºC for 7 h, after which time 2 mL of 

sat. aq. NH4Cl was added, the flask removed from the cooling bath, and the mixture 

allowed to reach room temperature.   The reaction mixture was extracted with 3 x 10 

mL EtOAc and the organic layers collected.  The organic layers were then washed 

with 20 mL brine, dried with Na2SO4, filtered, SiO2 added and the solvent removed in 

vacuo.  The substrate impregnated SiO2 was then placed on a short column, eluted 

with 2 column volumes of 1:1 hexane: EtOAc, and then eluted with 10% acetone in 

EtOAc.  Solvent removal afforded 31 mg (70% yield) of the desired tertiary alcohol 

26.2. 

 

[α]D: -59 (c = 0.94, CH2Cl2, 25.0 ºC) 

FTIR: (neat) 3393, 2976, 2926, 2854, 1290, 1072, 1036, 986, 923, 885, 838, 771, 

711, 678, 650 cm-1 
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1H NMR (500 MHz, CHCl3-d) δ ppm 6.03 (dddd, J = 11.3, 2.7, 2.4, 1.4 Hz, 1H), 

5.80 (ddd, J = 17.3, 10.3, 3.1 Hz, 1H), 5.78 (dt, J = 15.5, 6.8 Hz, 1H), 5.58 (ddd, 11.9, 

3.9, 2.6 Hz, 1H), 5.40 (dt, J = 15.7, 1.4 Hz, 1H), 5.23 (dddd, J = 24.9, 4.2, 2.3, 1.6 

Hz, 1H), 5.00 (ddd, J = 14.9, 5.7, 2.5 Hz, 1H), 4.99 (dd, J = 17.3, 1.7 Hz, 1H), 4.95 

(ddd, 10.2, 2.0, 1.0 Hz), 4.38 (ddd, J = 14.8, 8.1, 4.6 Hz, 1H), 4.34 (dt, J = 12.3, 1.8 

Hz, 1H), 2.35 (ddd, J = 14.7, 12.0, 6.2 Hz, 1H), 2.05 (tt, J = 7.9, 4.1 Hz, 4H), 1.74 

(ddd, J = 14.8, 3.5, 2.1 Hz, 1H), 1.47 (dt, J = 15.0, 7.5 Hz, 2H), 1.42 (s, 1H), 1.36 (s, 

3H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 138.7, 131.6, 131.3, 130.2, 128.1, 115.0, 82.1 

(d, JCP = 7.4 Hz), 77.4 (d, JCP = 6.5 Hz), 73.7 (d, JCP = 9.1 Hz), 63.3 (d, JCP = 6.3 

Hz), 33.4, 31.9, 29.4 (d, JCP = 5.4 Hz), 28.5, 25.0 

31P NMR (162 MHz, CHCl3-d) δ ppm –2.76 (t, JPH = 24.8 Hz) 

HRMS Exact Mass: calculate for C15H23NaO5P (M+Na)+ 337.1181; 

found 337.1160 (ESI) 
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(1S,6R,8R)-8-((R,E)-2-(triethylsilyloxy)nona-3,8-dien-2-yl)-1-oxo-2,9,10-trioxa-1-

phosphabicyclo[4.3.1]dec-4-ene: 26.3 

O

P
O O

O

OTES

3

O

P
O O

O

OH

3 CH2Cl2, 0 ºC, 2 h

96%

TESOTf, 2,6-lut.

 

A flame dried  mL round bottom flask was charged with 16 mg phosphate 

26.2 (0.051 mmol) and  0.5 mL of CH2Cl2 to generate a 0.1M solution, followed by 8 

µL of 2,6-lutidine (0.066 mmol, 1.3 equiv.).  The solution was then cooled to 0 ºC 

and 13 µL of TESOTf (0.056 mmol, 1.1 equiv.) was added dropwise to the solution 

with stirring.  The solution was allowed to stir at 0 ºC until completion (about 1 h 

until complete by TLC, then allowed to proceed another 1 h).  The reaction was 

quenched with 1 mL of sat. aq. NH4Cl, separated, and the aqueous layer re-extracted 

3 more times with 2 mL portions of diethyl ether.  The combined organic layers were 

then washed with brine, dried with MgSO4, and filtered.  Addition of SiO2 preceded 

removal of solvent, following which the impregnated SiO2 was loaded onto a short 

column and the desired product eluted with 1:2 hexane: diethyl ether to provide 21 

mg (96% yield) of silyl protected phosphate 26.3. 

 

[α]D: -34 (c = 0.10, CH2Cl2, 25.2 ºC) 

FTIR: (neat) 2953, 2916, 2879, 1293, 1264, 1237, 1220, 1134, 1074, 1061, 1042, 

994, 978 cm-1 

1H NMR (500 MHz, CHCl3-d) δ ppm 6.00 (dddd, J = 11.8, 3.0, 2.3, 1.3 Hz, 1H), 

5.79 (dddd, J = 17.0, 10.2, 6.9, 6.7 Hz, 1H), 5.67 (dt, J = 15.5, 6.9 Hz, 1H), 5.56 (ddd, 
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11.8, 3.9, 2.6 Hz, 1H), 5.38 (dd, J = 16.7, 1.2 Hz, 1H), 5.21 (app dd, J = 24.4, 1.7 Hz, 

1H), 5.00 (dd, J = 17.2, 1.8 Hz, 1H), 4.96 (ddd, J = 10.3, 1.2, 0.8 Hz, 1H), 4.34 (ddd, 

J = 21.5, 14.7, 6.8 Hz, 1H), 4.20 (dt, J = 10.3, 1.6 Hz, 1H), 2.29 (ddd, J = 14.8, 11.9, 

6.3 Hz, 1H), 2.04 (q, J = 7.2 Hz, 4H), 1.81 (app d, J = 14.5 Hz, 1H), 1.47 (dd, J = 7.9, 

0.9 Hz, 1H), 1.37 (s, 3H), 1.25 (br s, 2H), 0.93 (t, J = 7.9 Hz, 9H), 0.59 (qd, J = 7.9, 

1.3 Hz, 6H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 138.8, 134.1, 131.5, 130.3, 127.9, 114.9, 81.9 

(d, JCP = 7.4 Hz), 77.8 (d, JCP = 6.5 Hz), 75.8 (d, JCP = 10.2 Hz), 63.2 (d, JCP = 6.4 

Hz), 33.4, 31.9, 29.9, 29.1 (d, JCP = 5.3), 28.5, 22.8, 7.3, 6.8 

31P NMR (162 MHz, CHCl3-d) δ ppm -2.81 (t, JPH = 24.4 Hz) 

HRMS Exact Mass: calculate for C21H37NaO5PSi (M+Na)+ 451.2046; 

found 451.2026 (ESI) 
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(R)-6-((R,1E,6E)-8-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-

en-8-yl)-8-(triethylsilyloxy)nona-1,6-dienyl)-5,6-dihydro-2H-pyran-2-one: 27.1 

O

O

O

P
O O

O

OTES

3

O

P
O O

O

OTES

3

O

O

DCE, 90 ºC, 14 h
55 %

,10 mol % cat-C

(via syringe pump)  

To a dry pressure tube equipped with stir bar was added 0.75 mg (0.001 

mmol, 10 mol %) Hoveyda-Grubbs II catalyst, 3 mg (0.023 mmol, 2 equiv.) lactone 

2.4, and 0.8 mL dry, degassed dichloroethane.  The reaction vessel was purged with 

Ar and fitted with a cap bearing a Teflon septa to which a ballon of Ar was affixed 

through a 21 gauge needle, followed by immersion of the vessel in an oil bath at 90 

ºC.  A 0.03 M solution of phosphate 26.3 (5 mg, 0.012 mmol, 0.8 mL) was added by 

syringe pump at a rate of 0.1 mL/h, hence leading to complete addition of substrate in 

8 h.  The reaction was allowed to proceed for 6 more hours before removing the 

vessel from the oil bath and allowing to cool to room temperature.  SiO2 was then 

added to the mixture and the solvent removed, followed by placement of the substrate 

impregnated silica on a column.  Elution with 1:2 hexane: EtOAc provided 4.4 mg of 

a ~3:1 ratio of both product 27.1 and lactone dimer as an inseperable mixture 

discernable by spectroscopy. 

 

FTIR: (neat) 2914, 2876, 1722, 1420, 1385, 1294, 1263, 1236, 1220, 1134, 1074, 

1061, 1042, 993 cm-1 
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1H NMR (500 MHz, CHCl3-d) δ ppm (discernable peaks) 5.82 (dddd, J = 15.7, 9.0, 

6.5, 5.6 Hz, 1H), 5.65 (dtd, J = 15.6 , 6.7, 2.0 Hz, 1H), 5.58 (ddd, J = 16.5, 8.7, 3.6 

Hz, 1H), 5.38 (d, J = 15.6 Hz, 1H), 5.22 (app d, J = 23.4 Hz, 1H), 4.88 (dd, J = 14.4, 

7.0 Hz, 1H), 4.35 (dddd, J = 11.6, 8.0, 6.9, 6.6 Hz, 1H), 4.21 (dd, J = 14.2, 2.0 Hz, 

1H), 2.27 (ddd, J = 14.9, 12.1, 6.8 Hz, 1H), 2.06 (ddd, J =7.5, 7.1, 6.9 Hz, 4H), 1.36 

(s, 3H), 1.21 (dd, J = 7.1, 7.0 Hz, 2H), 0.93 (td, J = 7.8, 1.6 Hz, 9H), 0.58 (qd, J = 

7.4, 2.4 Hz, 6H) 

13C NMR (126 MHz, CHCl3-d) δ ppm 164.4, 145.1, 135.2, 134.3, 131.2, 130.3, 

127.9, 127.4, 121.7, 81.8, 78.4, 75.7, 72.4, 63.2, 31.8, 31.7, 30.0, 29.2, 28.3, 22.6, 7.3, 

6.8 

31P NMR (162 MHz, CHCl3-d) δ ppm -3.11 (t, JPH = 23.1 Hz) 

HRMS Exact Mass: calculate for C26H41 NaO7PSi (M+Na)+ 547.2251; 

found  547.2257 (ESI) 
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(R)-6-((R,E)-3-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-

8-yl)-3-hydroxybut-1-enyl)-5,6-dihydro-2H-pyran-2-one: 28.1 

O

O

O

P
O O

O

OH

3

O

P
O O

O

OHDCE, 90 ºC, 14 h
17 %

,10 mol % cat-C

(via syringe pump)

O

O

 

A small Pyrex pressure tube under Ar atmosphere bearing a cap with Teflon 

septa and stirring bar is charged with 1.5 mg Hoveyda-Grubbs catalyst (0.002 mmol, 

10 mol %), 3 mg of lactone 2.4 (0.0232 mmol, 1 equiv.) and 1.0 mL degassed 

dichloroethane (0.02M with respect to 2.4).  The solution is placed in a 90 ºC silicon 

oil bath and allowed to stir for 10 minutes.  Another solution containing 7.3 mg of 

phosphate 26.2 (0.0232 mmol) and 6 mg lactone 2.4 (0.0464 mmol, 2 equiv.) in 600 

µL of degassed dichloroethane is placed in a syringe and the needle of the syringe 

placed through the septa of the Pyrex tube.  The syringe is then injected via syringe 

pump at a rate of 100 µL per hour and the reaction allowed to proceed overnight.  The 

pressure tube is then removed from heat, SiO2 added, and the solvent removed.  The 

product bearing silica gel is then placed on a column for purification utilizing 100% 

EtOAc to remove the more nonpolar components followed by elution with 50% 

acetone in EtOAc to provide 1.3 mg (17% yield) of lactone appended phosphate 28.1. 

 

 

[α]D: -16.9 (c = 0.07, acetone, 24.1 ºC) 
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FTIR: (neat) 3401, 2919, 2851, 1717, 1383, 1295, 1251, 1117, 1067, 1036, 966, 924, 

820 cm-1 

1H NMR (500 MHz, acetone-d6) δ ppm 7.01 (ddd, J = 9.7, 5.7, 2.8 Hz, 1H), 6.08 (ttd, 

J = 8.9, 2.2, 1.3 Hz, 1H), 6.01 (dd, J = 15.6, 5.9 Hz, 1H), 5.95 (ddd, J = 9.7, 2.5, 1.2 

Hz, 1H), 5.94 (d, J = 15.6 Hz, 1H), 5.73 (ddd, J = 11.9, 3.8, 2.6 Hz, 1H), 5.29 (app d, 

J = 24.3 Hz, 1H), 5.00 (dddd, J = 5.5, 5.4, 5.2, 4.8 Hz, 1H), 4.87 (dddd, J = 14.8, 8.4, 

5.7, 2.7 Hz, 1H), 4.38 (m, 2H), 2.57 (dddd, J = 18.5, 4.4, 1.3, 1.0 Hz, 1H), 2.43 (ddt, 

J = 18.5, 10.8, 2.6 Hz, 1H), 2.28 (ddddd, J = 16.5, 12.1, 7.7, 6.4, 2.7 Hz, 2H), 1.34 (s, 

3H), 1.30 (br s, 1H) 

13C NMR (126 MHz, acetone-d6) δ ppm 164.0, 146.4, 137.1, 131.3, 128.4, 128.3, 

121.8, 82.0 (d, JCP = 7.4 Hz), 78.3 (d, JCP = 7.0 Hz), 78.1, 73.7 (d, JCP = 9.1 Hz), 63.6 

(d, JCP = 6.5 Hz), 30.5 (d, JCP = 3.7 Hz), 29.5, 24.4 

31P NMR (162 MHz, acetone-d6) δ ppm –3.01 (t, JPH = 24.4 Hz) 

HRMS Exact Mass: calculate for C15H19NaO7P (M+Na)+ 365.0766; 

found 365.0756 (ESI) 
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Appendix A 

NMR Spectra and X-Ray Data 
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A.1: Chapter 2 Spectra 

Bis((S)-1-(benzyloxy)but-3-en-2-yl) methyl phosphate 
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(S,S)-Monocyclic phosphate: (S,S)-1.1 
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(2S,5S,Z)-1,6-bis(benzyloxy)hex-3-ene-2,5-diol: 2.1 
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(S,S)-Hydrogenated monocyclic phosphate: 2.2 
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(2S,5S)-1,6-bis(benzyloxy)hexane-2,5-diol: 2.3 
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(2S,3R,E)-1,6-bis(benzyloxy)-3-methylhex-4-en-2-ol: 4.1a 
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(2S,3R,E)-1,6-bis(benzyloxy)-3-ethylhex-4-en-2-ol: 4.1b 
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(2S,3R,E)-1,6-bis(benzyloxy)-3-isopropylhex-4-en-2-ol: 4.1c 
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(2S,3R,E)-1,6-bis(benzyloxy)-3-cyclohexylhex-4-en-2-ol: 4.1d 
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(2S,3R,E)-3-benzyl-1,6-bis(benzyloxy)hex-4-en-2-ol: 4.1e 
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(R,E)-8-(benzyloxy)-5-((S)-2-(benzyloxy)-1-hydroxyethyl)oct-6-enenitrile: 4.1f 
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(2S,3R)-1-(benzyloxy)-3-((E)-3-(benzyloxy)prop-1-enyl)-7-chloroheptan-2-ol: 4.1g 
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(2S,3R)-1-(benzyloxy)-3-((E)-3-(benzyloxy)prop-1-enyl)oct-7-en-2-ol: 4.1h 
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(2S,3R,E)-1,6-bis(benzyloxy)-3-methylhex-4-en-2-yl methyl hydrogen phosphate: 3.1a 
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(2S,3R,E)-1,6-bis(benzyloxy)-3-methylhex-4-en-2-yl dimethyl phosphate: 6.1a 
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Unsymmetric Monophosphate: 7.1 
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(R,E)-5-(benzyloxy)-2-ethylpent-3-en-1-ol: 7.2 
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Unsymmetrical dimethyl monophosphate: 8.2 
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(2S,3S)-1-(benzyloxy)-3-ethyl-5-methylhex-4-en-2-ol: 8.3 

 
 



 277 

4-(benzyloxymethyl)-5-ethyl-2,2-dimethyl-1,3-dioxane 
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(4S,5S)-4-(benzyloxymethyl)-5-ethyl-2,2-dimethyl-1,3-dioxane  
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A.2 : Chapter 3 Spectra 

1-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-8-

yl)ethanone: 4.1 
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1-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-8-yl)ethanol: 

8.1 
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 285 

(R)-2-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-8-yl)but-

3-en-2-ol: 11.1 
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 288 

(2S,5R,E)-1-(benzyloxy)-5-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-

phosphabicyclo[4.3.1]dec-4-en-8-yl)hex-3-ene-2,5-diol: 14.2 
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Monocyclic Phosphate Acid 14.3 
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A.3: Chapter 4 Spectra  

(R)-6-vinyl-5,6-dihydro-2H-pyran-2-one: 2.4 
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 296 

(2R,6R)-2-((E)-2-iodovinyl)-6-isopropoxy-3,6-dihydro-2H-pyran: 3.1 
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(R,E)-6-(2-iodovinyl)-5,6-dihydro-2H-pyran-2-one: 5.2 
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 300 

tributyl((E)-2-((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)vinyl)stannane: 

11.1 
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 302 

(R,E)-2-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-8-yl)-4-

((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)but-3-en-2-ol: 12.1 
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 305 

(2R,6R)-6-isopropoxy-2-vinyl-3,6-dihydro-2H-pyran: 14.1 
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 307 

(1S,6R,8R)-8-((R)-2-(triethylsilyloxy)but-3-en-2-yl)-1-oxo-2,9,10-trioxa-1-

phosphabicyclo[4.3.1]dec-4-ene 
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 310 

(4R,6R,7R,Z)-7-methyl-7-(triethylsilyloxy)nona-2,8-diene-1,4,6-triol: 16.1 
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 312 

(5R,6R,8R,Z)-8-(tert-butyldimethylsilyloxy)-3,3-diethyl-5,13,13,14,14-

pentamethyl-5-vinyl-4,12-dioxa-3,13-disilapentadec-9-en-6-ol: 16.2 
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 314 

dibenzyl (5R,6R,8R,Z)-8-(tert-butyldimethylsilyloxy)-3,3-diethyl-5,13,13,14,14-

pentamethyl-5-vinyl-4,12-dioxa-3,13-disilapentadec-9-en-6-yl phosphate: 16.3 
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 317 

(4R,6R,7R,Z)-7-methylnona-2,8-diene-1,4,6,7-tetraol: 17.1 

 



 318 

 



 319 

(3R,4R,6R,Z)-6,9-bis(tert-butyldimethylsilyloxy)-3-methylnona-1,7-diene-3,4-

diol: 17.2 
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 321 

(R,E)-6-(hepta-1,6-dienyl)-5,6-dihydro-2H-pyran-2-one: 24.1 
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 323 

(R)-6-((E)-2-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-8-

yl)vinyl)-5,6-dihydro-2H-pyran-2-one: 24.2 
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 326 

(E)-1-bromohepta-1,6-diene: 26.1 
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 328 

(R,E)-2-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-8-

yl)nona-3,8-dien-2-ol: 26.2 
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 331 

(1S,6R,8R)-8-((R,E)-2-(triethylsilyloxy)nona-3,8-dien-2-yl)-1-oxo-2,9,10-trioxa-1-

phosphabicyclo[4.3.1]dec-4-ene: 26.3 

 



 332 

 



 333 

 



 334 

(6R,6'R)-6,6'-(ethene-1,2-diyl)bis(5,6-dihydro-2H-pyran-2-one): Dimer of 2.4 
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 336 

(R)-6-((R,1E,6E)-8-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-

en-8-yl)-8-(triethylsilyloxy)nona-1,6-dienyl)-5,6-dihydro-2H-pyran-2-one: 27.1 
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 339 

(R)-6-((R,E)-3-((1S,6R,8R)-1-oxo-2,9,10-trioxa-1-phosphabicyclo[4.3.1]dec-4-en-

8-yl)-3-hydroxybut-1-enyl)-5,6-dihydro-2H-pyran-2-one: 28.1 
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A.4: X-ray Data for (S,S,PR)-4.1 
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Comment 

     The displacement ellipsoids were drawn at the 50% probability level.  

 

Experimental 

     A colorless plate-shaped crystal of dimensions 0.42 x 0.26 x 0.05 mm was selected for 

structural analysis.  Intensity data for this compound were collected using a Bruker 

APEX ccd area detector (1) using graphite-monochromated Mo K! radiation (" = 

0.71073 Å).  The sample was cooled to 100(2) K.  The intensity data were measured as a 

series of # oscillation frames each of 0.3 ° for 20 sec / frame.  Coverage of unique data 

was 98.7 % complete to 26.00 degrees in $.  Cell parameters were determined from a 

non-linear least squares fit of 8023 peaks in the range 3.25 < $ < 26.00°.  A total of 

12193 data were measured in the range 3.25 < $ < 26.00°.  The data were corrected for 

absorption by the semi-empirical method (2) giving minimum and maximum 

transmission factors of 0.884 and 0.986.  The data were merged to form a set of 1764 

independent data with R(int) = 0.0283.   

     The tetragonal space group P43212 was determined by systematic absences and 

statistical tests and verified by subsequent refinement.  The structure was solved by direct 

methods and refined by full-matrix least-squares methods on F2 (3).  Hydrogen atom 

positions were initially determined by geometry and refined by a riding model.  Non-

hydrogen atoms were refined with anisotropic displacement parameters.  Hydrogen atom 

displacement parameters were set to 1.2 (1.5 for methyl) times the displacement 

parameters of the bonded atoms.  A total of 127 parameters were refined against 1764 

data to give wR(F2) = 0.0999 and S = 1.014 for weights of w = 1/[%2 (F2) + (0.0700 P)2 
+ 1.3000 P], where P = [Fo

2 + 2Fc
2] / 3.  The final R(F) was 0.0360 for the  1762 

observed, [F > 4%(F)], data.  The largest shift/s.u. was  0.001 in the final refinement 

cycle.  The final difference map had maxima and minima of 0.514 and -0.211 e/Å3, 

respectively.  The absolute structure was determined by refinement of the Flack 

parameter(4).   
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 Table 1.  Crystal data and structure refinement for 05102. 

 

Empirical formula  C8 H11 O5 P 

Formula weight  218.14 

Crystal system  Tetragonal 

Space group  P43212 

Unit cell dimensions  a = 6.3256(4) Å != 90° 

 b = 6.3256(4) Å &= 90° 

 c = 46.035(6) Å '= 90° 

Volume 1842.0(3) Å3 

Z, Z' 8, 1 

Density (calculated) 1.573 Mg/m3 

Wavelength  0.71073 Å 

Temperature  100(2) K 

F(000) 912 

Absorption coefficient 0.292 mm-1 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.986 and 0.884 

Theta range for data collection 3.25 to 26.00° 

Reflections collected 12193 

Independent reflections 1764 [R(int) = 0.0283] 

Data / restraints / parameters 1764 / 0 / 127 

wR(F2 all data) wR2 = 0.0999 

R(F obsd data) R1 = 0.0360 

Goodness-of-fit on F2 1.014 

Observed data [I > 2%(I)] 1762 

Absolute structure parameter 0.10(14) 

Largest and mean shift / s.u. 0.001and 0.000 

Largest diff. peak and hole 0.514 and -0.211 e/Å3  

----------  
wR2 = { ( [w(Fo

2 - Fc
2)2] / ( [w(Fo 2)2] }1/2  

R1 = ( ||Fo| - |Fc|| / ( |Fo| 
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 Table 2.  Atomic coordinates and equivalent isotropic displacement parameters for 
05102. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

_____________________________________________________________________    

 x y z U(eq) 

_____________________________________________________________________  
 
P(1) 0.41655(9) 0.32242(9) 0.699432(11) 0.01397(18) 
O(2) 0.4293(2) 0.3823(2) 0.66616(3) 0.0167(4) 
C(3) 0.3051(3) 0.5642(3) 0.65674(4) 0.0165(5) 
C(4) 0.3620(3) 0.7566(4) 0.67479(5) 0.0173(5) 
C(5) 0.3157(4) 0.7218(3) 0.70697(4) 0.0157(5) 
C(6) 0.0850(4) 0.7083(4) 0.71416(5) 0.0181(5) 
C(7) -0.0262(4) 0.5432(4) 0.72292(5) 0.0182(5) 
C(8) 0.0514(3) 0.3210(4) 0.72716(5) 0.0180(5) 
O(9) 0.1808(2) 0.2467(2) 0.70304(3) 0.0170(3) 
O(10) 0.4325(2) 0.5342(2) 0.71706(3) 0.0159(4) 
O(11) 0.5774(3) 0.1690(3) 0.70765(3) 0.0203(4) 
C(12) 0.3421(3) 0.5969(4) 0.62437(5) 0.0192(5) 
O(13) 0.3219(3) 0.7730(3) 0.61422(3) 0.0253(4) 
C(14) 0.3920(4) 0.4074(4) 0.60620(5) 0.0253(5) 
_____________________________________________________________________ 
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 Table 3.   Bond lengths [Å] and angles [°] for  05102. 
______________________________________________________________  
 
P(1)-O(11)  1.4561(17) 
P(1)-O(10)  1.5697(16) 
P(1)-O(9)  1.5753(17) 
P(1)-O(2)  1.5800(15) 
O(2)-C(3)  1.459(3) 
C(3)-C(4)  1.517(3) 
C(3)-C(12)  1.522(3) 
C(3)-H(3)  1.0000 
C(4)-C(5)  1.526(3) 
C(4)-H(4A)  0.9900 
C(4)-H(4B)  0.9900 
C(5)-O(10)  1.473(3) 
C(5)-C(6)  1.499(3) 
C(5)-H(5)  1.0000 
C(6)-C(7)  1.322(3) 
C(6)-H(6)  0.9500 
C(7)-C(8)  1.501(3) 
C(7)-H(7)  0.9500 
C(8)-O(9)  1.457(3) 
C(8)-H(8A)  0.9900 
C(8)-H(8B)  0.9900 
C(12)-O(13)  1.215(3) 
C(12)-C(14)  1.495(3) 
C(14)-H(14A)  0.9800 
C(14)-H(14B)  0.9800 
C(14)-H(14C)  0.9800 
 
O(11)-P(1)-O(10) 112.93(9) 
O(11)-P(1)-O(9) 115.56(10) 
O(10)-P(1)-O(9) 105.43(9) 
O(11)-P(1)-O(2) 112.08(9) 
O(10)-P(1)-O(2) 107.05(8) 
O(9)-P(1)-O(2) 102.93(8) 
C(3)-O(2)-P(1) 116.73(13) 
O(2)-C(3)-C(4) 110.01(17) 
O(2)-C(3)-C(12) 108.39(17) 
C(4)-C(3)-C(12) 112.99(18) 
O(2)-C(3)-H(3) 108.4 
C(4)-C(3)-H(3) 108.4 
C(12)-C(3)-H(3) 108.4 
C(3)-C(4)-C(5) 111.75(18) 
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C(3)-C(4)-H(4A) 109.3 
C(5)-C(4)-H(4A) 109.3 
C(3)-C(4)-H(4B) 109.3 
C(5)-C(4)-H(4B) 109.3 
H(4A)-C(4)-H(4B) 107.9 
O(10)-C(5)-C(6) 111.91(18) 
O(10)-C(5)-C(4) 109.04(16) 
C(6)-C(5)-C(4) 114.15(18) 
O(10)-C(5)-H(5) 107.1 
C(6)-C(5)-H(5) 107.1 
C(4)-C(5)-H(5) 107.1 
C(7)-C(6)-C(5) 129.1(2) 
C(7)-C(6)-H(6) 115.5 
C(5)-C(6)-H(6) 115.5 
C(6)-C(7)-C(8) 127.3(2) 
C(6)-C(7)-H(7) 116.4 
C(8)-C(7)-H(7) 116.4 
O(9)-C(8)-C(7) 112.72(17) 
O(9)-C(8)-H(8A) 109.0 
C(7)-C(8)-H(8A) 109.0 
O(9)-C(8)-H(8B) 109.0 
C(7)-C(8)-H(8B) 109.0 
H(8A)-C(8)-H(8B) 107.8 
C(8)-O(9)-P(1) 120.94(13) 
C(5)-O(10)-P(1) 119.48(13) 
O(13)-C(12)-C(14) 122.8(2) 
O(13)-C(12)-C(3) 119.0(2) 
C(14)-C(12)-C(3) 118.1(2) 
C(12)-C(14)-H(14A) 109.5 
C(12)-C(14)-H(14B) 109.5 
H(14A)-C(14)-H(14B) 109.5 
C(12)-C(14)-H(14C) 109.5 
H(14A)-C(14)-H(14C) 109.5 
H(14B)-C(14)-H(14C) 109.5 
______________________________________________________________  



 350 

 Table 4.   Anisotropic displacement parameters (Å2x 103 ) for 05102.  The anisotropic 

displacement factor exponent takes the form: 
-2 )2[ h2 a*2 U11 + ... + 2 h k a* b* U12 ] 

_____________________________________________________________________  
 U11 U22  U33 U23 U13 U12 

_____________________________________________________________________  

 
P(1) 14(1)  14(1) 14(1)  0(1) 0(1)  -1(1) 
O(2) 18(1)  18(1) 14(1)  0(1) 1(1)  1(1) 
C(3) 14(1)  18(1) 18(1)  2(1) -1(1)  1(1) 
C(4) 18(1)  15(1) 19(1)  1(1) 1(1)  -2(1) 
C(5) 18(1)  12(1) 17(1)  -1(1) -1(1)  -1(1) 
C(6) 21(1)  17(1) 16(1)  -2(1) -1(1)  3(1) 
C(7) 16(1)  23(1) 15(1)  -2(1) 2(1)  2(1) 
C(8) 14(1)  22(1) 17(1)  1(1) 4(1)  0(1) 
O(9) 16(1)  17(1) 18(1)  -2(1) 1(1)  -2(1) 
O(10) 17(1)  16(1) 14(1)  -1(1) -2(1)  -1(1) 
O(11) 18(1)  20(1) 23(1)  2(1) 0(1)  0(1) 
C(12) 11(1)  29(1) 18(1)  1(1) -2(1)  -2(1) 
O(13) 26(1)  30(1) 20(1)  7(1) -1(1)  -1(1) 
C(14) 31(1)  32(1) 13(1)  -2(1) 2(1)  -5(1) 

_____________________________________________________________________
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 Table 5.   Hydrogen coordinates and isotropic displacement parameters for 05102. 

______________________________________________________________________  

 x  y  z  U(eq) 

______________________________________________________________________ 
  
H(3) 0.1521 0.5316 0.6598 0.020 
H(4A) 0.2802 0.8799 0.6678 0.021 
H(4B) 0.5141 0.7886 0.6723 0.021 
H(5) 0.3739 0.8463 0.7177 0.019 
H(6) 0.0078 0.8363 0.7121 0.022 
H(7) -0.1713 0.5679 0.7270 0.022 
H(8A) 0.1354 0.3141 0.7453 0.022 
H(8B) -0.0717 0.2258 0.7294 0.022 
H(14A) 0.3651 0.4399 0.5857 0.038 
H(14B) 0.3026 0.2887 0.6122 0.038 
H(14C) 0.5411 0.3694 0.6087 0.038 
______________________________________________________________ 
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 Table 6.  Torsion angles [°] for 05102. 
______________________________________________________________  
 
O(11)-P(1)-O(2)-C(3) -168.14(14) 
O(10)-P(1)-O(2)-C(3) -43.79(16) 
O(9)-P(1)-O(2)-C(3) 67.06(15) 
P(1)-O(2)-C(3)-C(4) 55.1(2) 
P(1)-O(2)-C(3)-C(12) 179.08(14) 
O(2)-C(3)-C(4)-C(5) -60.8(2) 
C(12)-C(3)-C(4)-C(5) 177.93(18) 
C(3)-C(4)-C(5)-O(10) 57.2(2) 
C(3)-C(4)-C(5)-C(6) -68.8(2) 
O(10)-C(5)-C(6)-C(7) -13.4(3) 
C(4)-C(5)-C(6)-C(7) 111.0(3) 
C(5)-C(6)-C(7)-C(8) -1.9(4) 
C(6)-C(7)-C(8)-O(9) -46.0(3) 
C(7)-C(8)-O(9)-P(1) 76.3(2) 
O(11)-P(1)-O(9)-C(8) 104.04(17) 
O(10)-P(1)-O(9)-C(8) -21.42(17) 
O(2)-P(1)-O(9)-C(8) -133.47(16) 
C(6)-C(5)-O(10)-P(1) 77.1(2) 
C(4)-C(5)-O(10)-P(1) -50.2(2) 
O(11)-P(1)-O(10)-C(5) 165.92(14) 
O(9)-P(1)-O(10)-C(5) -67.01(16) 
O(2)-P(1)-O(10)-C(5) 42.10(16) 
O(2)-C(3)-C(12)-O(13) -153.2(2) 
C(4)-C(3)-C(12)-O(13) -31.0(3) 
O(2)-C(3)-C(12)-C(14) 29.6(3) 
C(4)-C(3)-C(12)-C(14) 151.8(2) 
______________________________________________________________  
  
 


