EFFECTS OF MULTI-ELECTRON CORRELATION ON
MULTIPHOTON IONIZATION AND HIGH-ORDER
HARMONIC GENERATION OF ATOMIC AND
MOLECULAR SYSTEMS IN INTENSE ULTRASHORT
LASER FIELDS

By
John Thomas Heslar
B.S. Chemistry
Northeastern State University 2001

Submitted to the Department of Chemistry and the Faculty of
Graduate School of the University of Kansas in partial fulfillment of
the requirements for the Degree of Doctor of Philosophy

Advisor:

Shih-I Chu

Committee members:

Thomas E. Cravens

Peter M. Hierl



Krzysztof Kuczera

i

Weizhang Huang

Date defended: May 2009



The Dissertation Committee for John Thomas Heslar certifies

that this is the approved version of the following dissertation:

EFFECTS OF MULTI-ELECTRON CORRELATION ON
MULTIPHOTON IONIZATION AND HIGH-ORDER
HARMONIC GENERATION OF ATOMIC AND
MOLECULAR SYSTEMS IN INTENSE ULTRASHORT
LASER FIELDS

Chairperson

Shih-I Chu

Committee:

Thomas E. Cravens

Peter M. Hierl

Krzysztof Kuczera

Weizhang Huang

Dated approved: ‘May 2009

i



To the Loving Memory of Edward Ray Heslar

1ii



Table of Contents

Table of Contents iv
List of Tables vi
List of Figures viii
Abstract X
Acknowledgements xiii
Introduction 1

1 Generalized Pseudospectral Method (GPS) for Bound and Reso-

nance State Problems in Two-Centered Molecular Systems 7
1.1 Introduction . . . . . . . . . .. 7
1.2 The Generalized Pseudospectral (GPS) Method for Bound State Eigen-

value Problems . . . . . . . ... 9
1.3 Two-Centered Generalized Pseudospectral Method (GPS) for Molecu-

lar Systems . . . . . ..o 11
1.4 Conclusion . . . . . . . . . 22

2 Time-Dependent Density-Functional Theory (TDDFT) for Molecu-

lar Processes in Strong Fields 23
2.1 Introduction . . . . . . . ... 23
2.2  Time-Dependent Generalized Pseudospectral Method for Numerical
Solution of TDDFT Equations . . . . . . . . ... ... ... ..... 25
2.3 TDDFT Method for Diatomic Molecules . . . . . .. ... ... ... 28
2.4 Dirichlet Boundary Conditions for the Hartree Potential in DF'T For-
mulism . . . ... 31

v



2.5 TDDFT for Intense-Field Multiphoton Processes . . . . . . . . .. .. 33
26 Conclusion . . . . . .. . 39

3 High-Order Harmonic Generation of Heteronuclear Diatomic Molecules
in Intense Ultrashort Laser Fields: An All-Electron TDDFT Study 40

3.1 Introduction . . . . . . . . .. .. 40
3.2 Multiphoton Ionization of Ny and CO in Intense Laser Fields . . . . . 42
3.3  Multielectron Effects in HHG Spectra of Diatomic Molecules . . . . . 51
3.4 Conclusion . . . . . . ... 58

4 Ab Initio Study of High-Lying Doubly Excited States of Helium in

Static Electric Fields 63
4.1 Introduction . . . . . . . . . ... 63
4.2 Complex-Scaling Generalized Pseudospectral Method in Hyperspheri-

cal Coordinates . . . . . . . . . . ... ... 65
4.3 Determination of the Doubly Excited Autoionizing Resonances . . . . 72
4.4  Determination of the DC Field Effects on the Doubly Excited Reso-

nance States . . . . .. ... 74
4.5 Conclusion . . . . . . . . . 76

5 Ab Initio 6D Treatment of the Time-Evolution Dynamics for Two-

Electron Systems in Few-Cycle XUV Laser Pulses 89

5.1 Introduction . . . . . . . . ... 89

5.2 Generalized Pseudospectral Method in Hyperspherical Coordinates . 92
5.3 Time-Dependent Generalized Pseudospectral Approach in Hyperspher-

ical Coordinates . . . . . . . . . . ... ... 102

54 Conclusion . . . . . . . ... 112

Bibliography 114



List of Tables

3.1

3.2

4.1

4.2

4.3

4.4

4.5

Comparison of the field-free molecular orbital energy levels of CO and
N,, calculated with the LBa potential, and the experimental ionization
potentials (ina.u.). . . . . . . ..
HOMO energies of Ny and CO molecules in DC electric field (positive
field direction is from Cto O) . . . . . ... ... L.

Energies and widths for doubly excited Rydberg states 'S¢ (2, n, (a, b))
below the N = 2 threshold (in a.u.). Numbers in square brackets
indicate powers of ten. . . . . . . . ...
Energies and widths for doubly excited Rydberg states ' P° (2, n, (a, b, ¢))
below the N = 2 threshold (in a.u.). Numbers in square brackets indi-
cate powersof ten. . . . . . ... L
Energies and widths for doubly excited Rydberg states ' D¢ (2, n, (a, b, ¢))
below the N = 2 threshold (in a.u.). Numbers in square brackets indi-
cate powers of ten. . . . . . ... ..
Energies and widths for doubly excited Rydberg states 1F° (2, n, (a, b, ¢))
below the N = 2 threshold (in a.u.). Numbers in square brackets indi-
cate powersof ten. . . . . ... Lo
Field-peturbed resonant energies F, and widths (in a.u.) for the 'S¢
n = 10 — 20 doubly excited Rydberg states below the N=2 threshold.

Numbers in square brackets indicate powers of ten. . . . . . . . . ..

vi

43



4.6

4.7

4.8

4.9

4.10

5.1

5.2

Field-peturbed resonant energies E, and widths (in a.u.) for the 'P°
n = 10 — 20 doubly excited Rydberg states below the N=2 threshold.
Numbers in square brackets indicate powers of ten. . . . . . . . . ..
(continued) Field-peturbed resonant energies FE, and widths (in a.u.)
for the ' P° n = 10 — 20 doubly excited Rydberg states below the N=2
threshold. Numbers in square brackets indicate powers of ten.

Field-peturbed resonant energies E, and widths (in a.u.) for the ' D¢
n = 10 — 20 doubly excited Rydberg states below the N=2 threshold.
Numbers in square brackets indicate powers of ten. . . . . . . . . ..
(continued) Field-peturbed resonant energies F, and widths (in a.u.)
for the ' D¢ n = 10 — 20 doubly excited Rydberg states below the N=2
threshold. Numbers in square brackets indicate powers of ten.

Given are resonant energies £, and widths (in a.u.) for the n = 10—20
doubly excited Rydberg states below the N=2 threshold in a dc field
of 84.4 kV/cm. Numbers in square brackets indicate powers of ten.

n(a,b)* indicates the comparison with Miheli¢ and Zitnik [44].

Energies of the ground and low-lying excited states of the helium atom.
No effect of finite nuclear mass is included in the present and literature
values. All energies are givenina.u. . . . .. . .. ... ... ... ..
Comparison of the radial expectation and oscillator strengths of the
helium atom. No effect of finite nuclear mass is included. All energies

are given in a.u. . . . . . . . ...

vil

85

87

88

100

101



List of Figures

1.1

2.1

3.1

3.2

3.3

3.4

3.5

A typical grid structure of the spatial coordinates of a diatomic molecule
obtained by the generalized pseudospectral (GPS) discretization tech-

DIQUE.  « « v v v o e e e e e e e

Dirichlet boundary conditions for the Hartree potential (a) interior
portion of the Hartree potential (b) boundary condition for the Hartree

potential at x = +1 0r £ = Ropaze + « « v v v v v e e

Molecular orbital binding energies and orbital structures for N, and
COmolecules. . . . . . . . . ..
The time-dependent population of electrons in different spin orbital’s
of CO and N, in 800 nm, sin? pulse laser field, with 20 optical cycles in
pulse duration. Ny molecule (a) 5 x 10' W/cm?, (b) 1 x 10 W /cm?,
CO molecule (¢) 5 x 10" W/cm?, (d) 1 x 10" W/em?. . . . .. . ..
Comparison of the HHG power spectra of CO and Ny, in 800 nm,
5 x 10® W /cm? sin? pulse laser field. . . . . ... .. ... ... ...
Comparison of the HHG power spectra of CO and N,, in 800 nm,
1 x 10" W/cem? sin? pulse laser field. . . . . . .. ... ... .. ...
Time profiles for (a) Ny and (b) CO. Laser intensity used is 5 x
10" W/cm?, wavelength used is 800 nm, with 20 optical cycles in

pulse duration. . . . . . ...

viil

13

32

47

49

52

53



3.6

3.7

3.8

3.9

3.10

4.1

4.2

5.1

5.2

5.3

5.4

Individual orbital and total high-order harmonic generation power spec-
tra of CO at the peak intensity 1 x 101* W/cm? with a laser frequency
of 800 nm. . . . ...
Orbital dipole moments of CO at the peak intensity 1 x 10 W /cm?
with a laser frequency of 800 nm for 3 optical cycles (10 — 13).

Orbital dipole moments (total, 30,, and 20,,) of Ny at the peak intensity

1 x 10 W/cm? with a laser frequency of 800 nm for 20 optical cycles.

Individual and total orbital high-order harmonic generation power spec-
tra of Ny at the peak intensity 1 x 10 W/cm? with a laser frequency
of 800 nm. . . . ...
Individual and orbital interference power spectra of Ny at the peak

intensity 1 x 101" W/cm? with a laser frequency of 800 nm. . . . . . .

Potential curves of the helium atom for (a) 'S¢, (b) 'P°, (c) 'D¢, and
(d) 'F° manifolds. . . . ... .. ...
Field-free energies and widths of doubly excited Rydberg states as a
function of the principle quantum number 7, in the energy region below
the N = 2 threshold for different symmetries: (a) 'S¢ (2,na), (b) 15¢
(2,nb), (c) 'P° (2,na), (d) *P° (2,nd), (e) 'D® (2,na), and (f) ' D¢

The time-dependent population of He in 800 nm, 1 x 10 W /cm? sin?
pulse laser field with 10 optical cycles in pulse duration. . . . . . . . .
The time-dependent survival probability of He (ground-state 1s?) in
800 nm, 1 x 10* W/cm? sin? pulse laser field with 10 optical cycles in
pulse duration. . . . . . ...
The induced dipole moment of He in 800 nm, 1 x 10 W/cm? sin?
pulse laser field with 10 optical cycles in pulse duration. . . . . . . . .
Harmonic generation of He in 800 nm, 1 x 10 W/cm? sin? pulse laser

field with 10 optical cycles in pulse duration. . . . . . . . . ... . ..

X

95

57

60

61

62

71

78

108

109

110



Abstract

The study of the electron correlation and quantum dynamics of many-electron atoms
and molecules in the presence of intense external fields is a subject of much current
importance in science and technology. While experimental breakthroughs constantly
challenge theorists, the reverse is also true, with theorists suggesting new experi-
mental paths and novel ways to reach exciting regimes where new physics can be
explored. For example, we have recently developed ab initio methods and appli-
cations to study time dependent quantum dynamics of atoms and molecules which
cannot be understood by traditional perturbation theories. Moreover, currently there
exist no adequate methods capable of studying the dynamical role of the individ-
ual valence electron to the high-order harmonic generation (HHG) and multiphoton
ionization (MPI) processes in strong fields. Such a study can provide insights regard-
ing the detailed quantum dynamics and HHG mechanisms, as well as the optimal
control of strong-field processes. To advance this strong-field atomic and molecular
physics, this dissertation aims at the developing new theoretical formalisms and ac-
curate computational methods for ab initio non-perturbative studies of atomic and
molecular processes in intense laser fields. The new methods developed allow in-depth
and precision studies of strong-field phenomena for multielectron systems.

In this dissertation we investigate the role of electron correlation in dynamics of
multielectron systems subject to strong fields. We present a time-dependent density
functional theory (TDDFT), with proper asymptotic long-range potential, for non-
perturbative treatment of multiphoton processes of homonuclear and heteronuclear

diatomic molecules in intense ultrashort laser fields. A time-dependent two-center
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generalized pseudospectral method is presented for accurate and efficient treatment
of the TDDF'T equations in space and time. The procedure allows nonuniform and
optimal spatial grid discretization of the Hamiltonian in prolate spheroidal coordi-
nates and a split-operator scheme in the energy representation is extended for the
time propagation of the individual molecular spin-orbital. The theory is applied to a
detailed all-electron study of multiphoton ionization (MPI) and high-order harmonic
generation (HHG) processes of Ny and CO molecules in intense laser pulses. The
results reveal intriguing and substantially different nonlinear optical response behav-
iors for Ny and CO, despite the fact that CO has only a very small permanent dipole
moment. In particular, we found that the MPI rate for CO is higher than that of Nj.
Furthermore, while laser excitation of the homonuclear Ny molecule can generate only
odd harmonics, both even and odd harmonics can be produced from the heteronuclear
CO molecule.

Next, we present a complex-scaling (CS)-generalized pseudospectral (GPS) method
in hyperspherical coordinates (HSC) for an accurate ab initio and accurate treatment
of the electron structure and quantum dynamics of two-electron systems. The six-
dimensional coupled hyperspherical adiabatic-channel equations are discretized and
solved efficiently and accurately by means of the GPS method. The GPS method al-
lows non-uniform and optimal spatial discretization of the two-electron Hamiltonian
in HSC with the use of only a very modest number of grid points. The procedure
is applied for the precision calculation of the energies and widths of doubly-excited
Rydberg resonance states as well as the ionization rates of He atoms in an external
electric field.

Lastly, we present a time-dependent generalized pseudospectral (TDGPS) ap-
proach in hyperspherical coordinates for fully ab initio nonperturbative treatment
of multiphoton dynamics of atomic systems in intense laser fields. The laser-driven
two-electron system is described by hyperspherical close coupling scheme. A novel 6D
coupled time-dependent generalized pseudospectral method approach in hyperspheri-

cal coordinates are developed for single or double ionization without the use of the
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conventional adiabatic channels.
In conclusion, the present dissertation provides new developments in both theo-
retical and computational techniques, as well as advancements in the essential under-

standing of strong-field atomic and molecular physics.
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Introduction

Atomic, molecular, and optical (AMO) science demonstrates powerfully the ties of
fundamental physics and chemistry to society. Its very name reflects three of 20th
century physics’ greatest advances: the establishment of the atom as a building block
of matter; the development of quantum mechanics, which made it possible to un-
derstand the inner workings of atoms and molecules; and the invention of the laser,
which changed everything from the way we think about light to the way we store and
communicate information. The field encompasses the study of atoms, molecules, and
light, including the discovery of related applications and techniques.

Recently we begin to observe the processes of nature as they play out over times
shorter than a millionth of a billionth of a second (less than 1 femtosecond-that is,
in the attosecond regime). This remarkable new capability is enabled by advances
in ultrafast laser- and accelerator-based x-ray strobes, which can detect the motion
of electrons in atoms and molecules. It will become also feasible to control physical
phenomena on all of the timescales relevant to atomic and molecular physics, chem-

istry, biology, and materials science. These previously unavailable tools of quantum



control could help tailor new molecules for applications in health care, energy, and
security.

New 21st-century tools also place us on the verge of the new discipline of quantum
control. This development is enabled by key advances in laser technology, which let
us generate light pulses whose shape, intensity, and color can be programmed with
unprecedented flexibility. Our ability to control the positions, velocities, and relative
spatial orientations of individual atoms and molecules has led to a broad array of pre-
cision measurement technologies and devices, leading to a wide range of experiments
that reveal qualitatively new phenomena. A new capability to manipulate the inner
workings of molecules is emerging: Lasers can now be used to control the outcome of
selected chemical reactions. This control technology may ultimately lead to powerful
tools for creating new molecules and materials tailored for applications in health care,
nanoscience, environmental science, energy, and national security.

AMO experiments have reached such high levels of sophistication, precision, and
accuracy that they are uniquely positioned to carry out the most demanding tests
ever conducted of some of the most fundamental laws of nature. The grand challenge
for theoretical chemist is to develop more rigorous approaches for probing atomic
and molecular physics in strong fields to explain current experimental observations.
Without the development, application and challenge of new theoretical ideas, atomic

and molecular physics will eventually be reduced to a description of experimental



observations of physical events, supported only because of its intimate connections to
technology.

The study of atomic and molecular processes in intense ultrashort laser fields is
a subject of much current interest in science and technology. In particular, high-
order harmonic generation (HHG) is one of the hottest topics in strong-field atomic
and molecular physics today. To describe such strong-field processes using fully ab
initio wave-function approach, it is necessary to solve the (3n + 1) dimensional time-
dependent Schrodinger equation (TDSE) in space and time, where n is the number
of electrons. Today’s computers are doubling in performance every year or two, but
this is well beyond the capability of current supercomputer technology when n > 2.
Even for the two-electron (n = 2) case, high-precision fully ab initio 6D study of the
HHG of the He atoms was achieved only very recently. Due to the complexity of
many-body processes in intense laser fields, most theoretical approaches in the past
two decades adopt various approximations such as ADK (Ammosov-Delone-Krainov)
model [68], strong field approximations [45], and single-active-electron (SAE) [37],
which do not take into the account the detailed electron structure and electron cor-
relation. Although such models may provide qualitative information in weak laser
fields, there predictions are not reliable in stronger fields as seen in a number of re-
cent experiments. In this thesis, we explore in great detail the development of fully

ab inito and other more rigorous methods for investigation of atomic and molecular



physics in intense laser fields. For many-electron molecular (n > 2) systems, we have
performed self-interaction-free time-dependent density functional theory (TDDFT)
calculations for the non-perturbative treatment of multiphoton ionization (MPI) and
HHG processes of heteronuclear and homonuclear diatomic molecules in intense laser
fields. Here, we extend the TDDFT, with proper long range potentials, to the study
of multi-electron heteronuclear and homonuclear diatomic molecules (N3 and CO in
particular) with an aim to explore the dynamical role and nonlinear response of in-
dividual electron spin orbital as well as the effect of asymmetry of the molecules to
intense laser pulse fields, a subject of largely unexplored area of intense field AMO
physics.

The major problem with DFT is that the exact functionals for exchange and
correlation are not known except for the free electron gas, and must be approximated
for the total energy functional. Development of fully ab initio methods is needed to
describe the exchange and correlation energies exactly, without the use of DFT. Using
the GPS method with our refined DFT approach, we can predict ionization potentials
well within 3 to 5 % of experimental values [30]. New fully ab initio methods mean
now we can have more accurate or nearly exact treatment of electron correlation
of many-electron quantum systems in time-dependent fields which will be able to
reproduce experimental values, where the exchange and correlation can be taken into

account exactly.



Therefore, we have developed a fully ab initio wave function approach for non-
perturbative treatment of two-electron atomic systems in static laser fields. The
method is based on the extension of the TDGPS method to the three-body quantum
systems in hyperspherical coordinates (HSC). Numerous theoretical investigations
have improved our understanding of the e-e correlation and the determination of the
autoionizing resonances of the double excited states of He in the last few decades [55].
In addition to fundamental interest, the energies, lifetimes, and oscillator strengths
of these doubly excited resonance states are also of significance in astrophysics and
plasma physics [23]. More recently there is considerable interest in the study of the
effect of static electric fields on doubly excited states of helium atoms below N = 2
threshold [21, 22, 20, 51, 77, 44]. To advance this field, we present a new computa-
tional method, the complex-scaling generalized pseudospectral (CSGPS) method in
hyperspherical coordinates (HSC), for efficient and accurate non-perturbative calcu-
lation of high-lying doubly excited states of He in the presence of weak and strong dc
electric fields below N = 2 threshold. Comparison with available experimental data
is made. In addition, we also present the energies and widths of field-free doubly
excited resonance states of He for n up to 20 for the first time.

Even for the simplest two-electron atomic system, non-perturbative treatment for
the single or double ionization also presents both practical and formal difficulties.

A 6D coupled time-dependent generalized pseudospectral approach in hyperspherical



coordinates is developed for the ionization of helium without use of conventional adi-
abatic channels. This new method helps us understand the double ionization mech-
anism and explain experimental observations from an ab initio point of view. Also,
due to the short time duration of the xuv pulses, the detailed theoretical description
for this ionization process requires us to develop a fully ab initio time-dependent ap-
proach. In this work, we will present a TDGPS representation of the hyperspherical
coordinates technique, in which most physics in the single and double photoionization
can be comprehensively explored.

Our predicted results are in good agreement with available experimental data,
providing new physical insights regarding the effect of electron correlation on multi-
photon dynamics. However, much still remains to be explored, particularly fully ab
initio 6D calculation of the Hy molecule with use of our hyperspherical coordinates
and polyatomic molecular systems with use of DFT and our generalized pseudospec-
tral method. Further development of the TDGPS algorithm or other new algorithms
for the treatment of multi-center molecular dynamics in intense laser fields, with op-
timal and nonuniform spatial grid discretization around each nuclear center, is the
next challenge. Once this bottleneck can be resolved, it will open up a whole range of
exciting highly nonlinear optical new phenomena and attosecond strong-field AMO

processes to be explored.



Chapter 1

Generalized Pseudospectral
Method (GPS) for Bound and
Resonance State Problems in
Two-Centered Molecular Systems

1.1 Introduction

For atomic and molecular structure calculations involving the Coulomb potential,
one typical problem associated with commonly used equal-spacing grid methods is
the Coulomb singularity at » = 0 and the longrange nature of the potential. Generally
one truncates the semi-infinite (0,00) domain into finite domain [rmin,rmaz| to avoid
the Coulomb singularity at the origin and the infinite domain. For this purpose,
rmin must be chosen sufficiently small and rmax sufficiently large. This results in
the need of a large number of grid points. Further, extreme care must be exercised to

ensure the wave functions obtained from such discretization is of sufficient accuracy for



performing reliable high-order harmonic generation calculations. The first step is to
map the semi-infinite domain [0, co] or [0, rmax] into the finite domain [—1,1] using a
non-linear mapping r = r(x), followed by the Legendre pseudospectral discretization.
This allows for denser grids near the origin, leading to more accurate eigenvalues and
eigenfunctions and the use of a considerably smaller number of grid points than those
of the equal-spacing grid methods.

Here we extend a generalized pseudospectral (GPS) method for optimal discretiza-
tion of the radial and angular coordinates to overcome some of the above mentioned
problems. The GPS method has been recently applied to the study of heteronuclear
diatomic molecules in intense laser fields [30].

We present a new two-center generalized pseudospectral method for numerical
integration of the Schrodinger equation which is computationally efficient and ca-
pable of providing more accurate solutions to the wave function for reliable study
of multiphoton processes in molecular systems. A detailed derivation of the GPS
method, molecular Hamiltonian and molecular Schrodinger equation is given in pro-

late spheroidal coordinates.



1.2 The Generalized Pseudospectral (GPS) Method
for Bound State Eigenvalue Problems

The central part of the pseudospectral method is to approximate the exact function
f(z) defined on the interval [—1,1] by Nth-order polynomial fy(x),
N

f(x) 2 fn(x) = Y fla)gl), (1.2.1)

1=0

and requires the approximation to be exact at the mesh points x;:

fn(@i) = f). (1.2.2)
In the case of the Legendre pseudospectral method which will be employed here,

o = —1, zy = 1, and z; (for i = 1,....N — 1) are the mesh points determined by
the roots of the first derivative of the Legendre polynomial Py(x) with respect to x,

namely,
Py(z;) = 0. (1.2.3)

In Eq. (1.2.1), g;(x) are the cardinal functions defined by

1 (1 — %) Py(z)
9:(w) = " N(N + 1)Py(x;) r—

(1.2.4)

and which satisfy the unique property

gi(xi) = Opi. (1.2.5)
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Consider the 1D eigenvalue problem for the radial Shrodinger equation [60, 8, 4, 5]

defined on the semi-infinite axis [0, co] with Dirichlet boundary conditions:

H(r)p(r) = E¢(r), 1(0) = ¢h(00) =0, (1.2.6)
where
H(r) = —%% +V(r). (1.2.7)

For atomic and molecular structure and dynamics calculations involving the Coulomb

potential, one major problem with the grid methods is the Coulomb singularity at
r = 0 and the long-range nature of the interaction. Here, we map the semi-infinite

domain r € [0, 00| into the finite domain = € [—1, 1] using the mapping transformation

r=r(z), (1.2.8)
and then use the Legendre pseudospectral discretization techniques. Then the follow-

ing algebraic mapping:

1+2x
= =L— 1.2.9
r=rle) = Ly (1.29)

where L is the mapping parameter. Generally the introduction of nonlinear mapping

can lead to an asymmetric or a generalized eigenvalue problem. Such undesirable
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features can be avoided by the following symmetrization procedure. Thus by intro-

ducing
U(r(z)) = vr'(@)f(z), (1.2.10)
we obtain the following transformed Hamiltonian, leading to a symmetric eigenvalue

problem (in atomic units):

Hiz)=———————+V(r(z)) (1.2.11)

We next present a generalized pseudospectral method with prolate spheroidal
coordinates for accurately calculating the bound and resonance states of diatomic
molecules. This technique is based on the extension of the generalized pseudospectral

method.

1.3 Two-Centered Generalized Pseudospectral Method
(GPS) for Molecular Systems

To introduce the concept of a two-centered GPS method we show the simplest case,
the field free one-electron Hamiltonian for the Hy molecule, in atomic units, can be

written as

. 1 Z Z
HO _ __VQ 1 2

2°  |r—=Ry| |r—Ry

(1.3.1)

where r is the electronic coordinate, and Ry = (0,0, —a) and Re = (0,0,b) are the
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foci of the two nuclei in Cartesian coordinates. Z; and Z, are the effective charges
of the nuclei. The internuclear separation R is equal to (a 4+ b). Now consider the
bare electronic Hamiltonian in prolate spheroidal coordinates (£,7,¢), 1 < £ < oo,
-1 <n<1,0< ¢ < 2m, where z, y, and z are transformed from Cartesian

coordinates to prolate spheroidal (shown in Fig. 1.1), namely,

(a+0b)

r = T\/(£2 — 1)(1 —n?)cos ¢, (1.3.2a)
y— w\/(g2 (1= 77 sin 6, (1.3.2b)
R ;r e (1.3.2¢)

Equation (1.3.1) can be recasted into the following form:

- 1 1 0

- 0.9 Y (E-n)
T e (% 1

o€ "o T e T @i p) o
CZE-n)  ZlE+n)
a(§2—n*  a(—n?)’
(1.3.3)

(€ —1)

where a’ = (a+b)/2, and a and b are the two nuclei positions. Due to axial symmetry

of the system, the solutions of the static Shrodinger equation

HU = E, (1.3.4)
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Figure 1.1: A typical grid structure of the spatial coordinates of a diatomic molecule
obtained by the generalized pseudospectral (GPS) discretization technique.

take the form

W&, ) = D(E,me™™, (M =0,£1,42,..). (1.3.5)
Because of the axial symmetry with respect to the z-axis, the projection M of the
angular momentum on the z-axis is conserved.

In the pseudospectral method, we expand ®(§,7n) by @, n,(£,7), the polynomials

of order N¢ and N, in £ and 7, respectively,
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Ne,Ny

(&) ~ Py, (Em) = D b(&. ) gilz(gily ()], (1.3.6)

i=0,j=0

and further require the approximation to be exact, i.e., ®n, n, (&, n;) = ¢(&i,15) = b4y,

where {z(&;)} and {y(n;)} are the two sets of collocation points to be described below.

In Eq. (1.3.6), ¢;(z) and g;(y) are the cardinal functions [73, 76| defined as

—1 (1 —2%)Py (2)

9i(x) = N, (N, + 1)Py, (z;) . T — 2 (1.3.7)
~1 (1—y*)Py,(y)

gj(y) N Ny(Ny + 1)PNy(3/j) . Y—Yj (1.3‘8)

In the case of the Legendre pseudospectral method [73, 76|, which we will use
throughout, the boundary points are o = yo = —1 and 29 = yo = —1 and xy, =
yn, = 1. x(i = 1,...,Ng — 1) and y;(j = 1,..., N, — 1) are the collocation points
determined, respectively, by the roots of the Legendre polynomial Py, with respect

to r and Py, with respect to y, namely,

PNé(xz’) - PN§+1(Q?¢) = 0, (139)
Py, (y;) = 0. (1.3.10)

It follows that the cardinal functions possess the following unique properties:

gi(wir) = i, (1.3.11)
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We shall use the following mapping transformations for the coordinates pseudoradial

¢ and pseudoangular n:

ny) =y, -1<y<1, (1.3.13)
1+
—14+L—— —1<z<l1 1.3.14
§@) =1+ Ly "0 <z <1, (1.3.14)
d€ 1+ o
()= 2> =2L——— 1.3.15
&) dx (1—2z+a)? ( )

L being the mapping parameter. The variables x and y are discretized using Legendre-

Gauss-Radau for x; and Legendre-Gauss scheme for y;. The sets of collocation points
are determined by Egs. (1.3.9) and (1.3.10). Having constructed the mesh structure,

we define a set of discrete weights

S — 1.3.16
Y= N 1 12 P @) (1.3.16)
y 1

(1 =y [Py, ()

and a pair of discrete matrices d* and dY, which generate approximate integrals and
partial derivatives on the mesh according to the relations (where F' is a function of

and y):

Nz+1

/ F(z,y)dx = Z wi F(z;,y), (1.3.18)

1 i=1
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1 Ny
| Fanay =3 wlpiey,), (1.3.19)
1 =
Nx+1 Ny
/ / (x,y)dxdy = Z Zw w Fij, (1.3.20)
i=1 j=1
and
Nap+1
xl, Z D, F(zy,y), (1.3.21)
(x,y;) ZD F(x,y;) (1.3.22)
(1.3.23)

where
(1 + l’y)PNE (IZ)

/
N, (y5)
D;’j, = d?j, I (yj/), (1.3.24)
and the derivative matrices
1 1
dr, = VA L
i in_xi/(l?él), i 2(1_|_x2)7 (1325)
) . .3.
dN§+1 Ne+l = ZN£<N£ +2),
(1.3.26)

1 . Y
(]7&]/ ) d: ! .
" ) 13 1_%2

&, =
27 y] —

Direct pseudospectral discretization of the Hamiltonian in Eq. (1.3.3) leads to an

asymmetric eigenvalue problem. To symmetrize the Hamiltonian discretization, we

consider the alternate but equivalent form of the Shrédinger equation
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0 [ dry*(H — E)p
o*

= 0. (1.3.27)

First, we will solve the unperturbed eigenvalue problem and obtain the eigenvalues

and eigenfunctions:

5V + UEmVE 1, 0) = BU(E 1.). (1329)

Here the kinetic energy operator in prolate spheroidal coordinates reads as:

1, 1 1 0,4 0 0 9 O (€2 —n?) 0?
il v R B0 B Uy § RO Sl
N i N b T T M R M e e e
(1.3.29)
and the coulomb interaction with the nuclei is as follows:
Z(E—m)  Za(€+n)
UE,n) =— - . 1.3.30
(&) a(?—n?)  a(&—n? ( )
The volume element:
dxdydz = a”*(&* — n?)dédnde. (1.3.31)

Since the wave function (£, 7, ¢) can be represented in separable form (Eq. 1.3.5),

and separate eigenvalue problems for different |m| are obtained [58],

g 0 0 2 2
€= Vge+ 5,05 — a1~ 13| n
L&) g Z(E40)

a@—n?) " al&—1)

To solve Eq. (1.3.32), we first convert to equivalent variational forms, different for

11 [0
247 (& —n?) |06

(1.3.32)
®,, = ED,,.
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even and odd m. We have

ad>* 0d,, 0d* 0P
2 1_ 2 m m
5{/ dﬁ/ { e e T

m " 1 ! *
<§2_1+1_n >q> o ]_5/1 dg/_1dn<zl<fs—n>+ZQ<§+n>><I>m<I>m

& [ [ (€ - ?72)%‘1%}

for even |m| and

6{——,/ ds/ A0 (Z(€ — 1) + Za(€ + ) B4,
RIGE N (e

T o¢ o
il i

m? —1 m—l 2 . B
+(§2_1 5_) }—E df/ dn(¢ —77)@@}_0
(1.3.34)

0

(1.3.33)

dg/ dn

for odd |m|. This is done to ensure accurate numerical solutions of the Shrédinger
equation (differential equations) for both even and odd projections of angular mo-

mentum.

The matrix eigenvalue problems which appear after the discretization of Eq. (1.3.32)

can be written can be written as follows for even m values,

Zu(&—my)  Za(&+ )
Te _ S| B = ED.
2.1 { o (a(&?-ﬁ?) a(&f —n3) OO’ | Pt mity's  (1.3.35)
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and odd m values,

0 Z(&—mny)  Za(& +my) 1+&7° ) }
T - 511 5 (I)m'i' i’
2.1 { (a@z =) al@ =) @@ —m)) T g )
= E(I)m;i/j/,

respectively. Next, we construct the kinetic energy matrices T, Loy for even m values,

N,
77/’ <1 ( 2 ) z) ()
7-;6 i/ 5! - (5 J _—D i/
7,07 2&’2[“(1 )klg(l—%) k

N,
i ~ 1 (1 —n)
o DY DY
(1—a7) 2 m(1—yp) " g

X\/(l—x?)(l—y?)\/(l—x)(1—y]) oo m?

51/773(&2 - 77j2) Mj/( i 77]'/) W 2a/? (1 - 77])(5' 1)

(1.3.37)
and odd m values,

o 1 1
533’3’ 2

W7 e e )

(1—a2)(1 — 23)€€ & (@) H(@)
X (5“/ d D D
{”\/54&(5? €@-1) kask S (1.3.38)

Ny
(I =) —y3) 1 (1—n?)? p
\/n}n}/(l —n)) =) = (L —yp) M g

24 e —m)}’

respectively. The kinetic energy matrices in Egs. (1.3.37) and (1.3.38) were derived

from a set of equations that give direct solution to the operator for the kinetic energy,

given by
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o0 1 *
<@—1v2<1>>:2m’3/ dg/ dn ! (52—1)‘9@3—@
2 1 1 2a”? o0& 0
96 00 i (1.3.39)
+(1 —n? — 4+ @*@] )
= o T @A)

In Eq. (1.3.39) the matrix elements derivatives for the pseudoradial and pseudoangular

must be derived from the following set of equations:

Ny

U (& 1) 5 DuOr Y = Dady, 1.3.40

where

0 Ox 0 10

The integration matrix for Eqs. (1.3.33), (1.3.34), and (1.3.39) takes the form,

Ny Ny /

kGd _ o 13 s ez ooy & Tj
/dr@ ® =2ma®) > 05,58 — n)) Y (1.3.42)

i=1 j=1

The matrix element derivatives in the Hamiltonian, Eq. (1.3.32) are constructed below

that define Eqs. (1.3.37-1.3.38), which are represented by

0 I~ (e
a—g(éz — 1)3_5 =-Y (&-1)DYDL), (1.3.43)
k=1
o 1 N i
(& - Doe = SE - D — (€2 — 1D}, (1.3.44)
where
2 (z)
D;i = 1 — ?2/ % (1.3.45)
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To solve Eq. (1.3.32) for odd projections of the angular momentum |m/|, more work
needs to be done to ensure the exact eigenfunctions are calculated at the nuclei. This
is done by a factor of (¢ —1)I™/2(1 —n)I™/2 being multiplied by the wave function ®.
This form of the wave function already takes place in Eqgs. (1.3.34) and (1.3.38). We
will now show the case for |m| = 1, which is a 7 symmetry for a diatomic molecule.

The new wavefunction takes the form:

7
d = . (1.3.46)

V(@ =11 =)

So the new wave function is some factor f times U (& = fU) and the derivative of

the function f:
of ¢

oc -1

f- (1.3.47)
The pseudoradial (§) derivative for Eq. (1.3.46), which is the odd angular momentum

|m| wave function is given by

0 0P 1 o*v
a_g<§2_1)a_§:f<§2—1qj+(§2_1)0_£2>’ (1.3.48)

and similar the pseudoangular (1) wave function derivative is given by

0 0P 1
— (1 —p) 2= =
L 77)877 f(l_n2

00
, U+ (1—1?) ) : (1.3.49)

on?

respectively. The derivatives with respect to the mesh z, and y have the following
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form:
00 oV ¢
Rl (1.3.50)
0> _ 0¥ _m (1.3.51)

dy  dy P -1

Now that we have shown the following forms of the Legendre-Gauss-Radau quadra-

tures and derivatives of the pseudoradial (§) and pseudoangular (n) coordinates it
is straightforward to construct Eqs. (1.3.32)-(1.3.39). This procedure is for accurate
and efficient determination of electronic structure calculations of two-center molecular

systems.

1.4 Conclusion

In this chapter, we presented a new GPS method detailed derivation for the discretiza-
tion of two-center molecular systems with the use of prolate spheroidal coordinates.
This procedure is for accurate and efficient determination of electronic structure and
dynamic calculations of two-center molecular systems. The extension of the GPS
method can be applied to any diatomic molecular systems (homonuclear or heteronu-
clear) to study electron structure and accurate wave functions for the study of dynam-
ics such as HHG and other multiphoton processes in intense laser fields. Extensions
of the present method which are currently in work include the addition of the nuclear

vibrational degree of freedom and three-center molecular systems.



Chapter 2

Time-Dependent
Density-Functional Theory
(TDDFT) for Molecular Processes

in Strong Fields

2.1 Introduction

Since the fundamental work of Hohenberg and Kohn [31] and Kohn and Sham [36],
the density-functional theory (DFT) has undergone significant theoretical and com-
putational advances in recent years. DFT has become a widely used formulism for
electronic-structure calculations of ground-state properties of atoms, molecules, and
solids [47, 18]. In the Kohn-Sham DFT formulism [36], the electron density is de-
composed into a set of orbitals, leading to a set of one-electron like Schrodinger-like

equations to be solved self-consistently. The Kohn-Sham equations are structurally

23
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similar to the Hartree-Fock equations, but include, in principle, exactly the many-
body effects through a local exchange-correlation (xc) potential [61]. Thus DFT is
computational much less expensive than traditional ab initio many-electron wave-

function approaches and this accounts for its great success in large systems.

Here, we extend the TDDFT, with proper long range potentials [6], to the study
of multi-electron heteronuclear diatomic molecules (homonuclear and heteronuclear)
with an aim to explore the dynamical role and nonlinear response of individual elec-
tron spin orbital as well as the effect of asymmetry of the molecules to intense laser
pulse fields, a subject of largely unexplored area of intense field AMO physics. We
describe the TDDFT formalism in great detail for the general treatment of the mul-
tiphoton dynamics of heteronuclear and homonuclear diatomic molecular systems.
Then we outline a generalized pseudospectral (GPS) method for nonuniform and op-
timal spatial discretization of the two-center molecular systems. Finally, we present a
time-dependent GPS method for efficient and accurate solution of TDDFT equations
in space and time. The method can be applied to the nonperturbative investigation of
multiphoton ionization (MPI) and high harmonic generation (HHG) for any diatomic

system in intense linearly polarized laser pulses.
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2.2 Time-Dependent Generalized Pseudospectral
Method for Numerical Solution of TDDFT Equa-

tions

Time dependent density functional theory (TDDFT) is based on the existence of the
one-to-one correspondence between the time-dependent electron density and time-

dependent potential. We consider the quantum action integral

A /t:f dt<\IJ(t)

where within the single determinant approximation, the total N-electron wave func-

z% - H(t)‘ \IJ(t)> , (2.2.1)

tion W(t) can be expressed as

1

Y= A

dettpy -y - - - Yn], (2.2.2)

and the total electron density at time ¢ is determined by the set of occupied single-

electron Kohn-Sham spin-orbital wave functions 1, as

No
p(r, ) =D ) i
=1

o i];g (2.2.3)
= Zzpia(rat) = pT(I',t) + pl(r’t)'
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We choose the set of spin orbitals {1;,(r,t)} which render the total action func-

tional Alp| stationary [71, 62, 63]. From the Euler equation

3A[p(r,t)]
—_— = 2.2.4
Spert) (22.4)
we get (in atomic units)
0 ~ 1,
Za_¢ia(r7 t) = H(I’, t)wia(ra t) = [—=V"+ Ueff,a(ra t) ¢ia(r7 t)7
t 2 (2.2.5)
i=1,2,.. N,

where N,(= N; or N)) is the total number of electrons for a given spin o. The total

number of electrons in the system is N = > N, . The time-dependent effective

potential veg (1, t) is a functional of the electron spin-densities p,(r,t) given by

Veft,o ([p]; 1, 1) = vn (T, 1) 4+ Vext (T, 1) + Ve o (T, 1), (2.2.6)

where vy(r,t) is the Hartree potential

vu(r,t) = Mcl31". (2.2.7)

r— 1|
The "external” potential vex(r,t) is due to the interaction of the electron with the

external laser field and the nuclei. In the case of a diatomic molecule in a linearly

polarized external laser field, we have

Z1 Lo
- - +E
|I‘—R1| |I'—R2|

Vet (T, 1) = (t) - rsinwt. (2.2.8)
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Eq. (2.2.8) discretized in prolate spheroidal coordinates is given by

208 =) ZExn) @D g e (22.9)

Ca@ - a@-n?) 2

Uext(fa n, t) =
where R; = (0,0, —a) and Ry = (0,0,b) are the foci of the two nuclei in Cartesian

coordinates and Z; and Z, are the effective charges of the nuclei, respectively. r is the
electronic coordinate, E(t) the electric field amplitude. The internuclear separation
R is equal to (@ + b)/2. vg(r,t) is the time-dependent exchange-correlation (xc)
potential. Since the exact form of vy, (r, ) is unknown, the adiabatic approximation

is often used [71, 65, 30, 10, 11]

Use,o (T, 1) = ch,a[pzf”pa:pa(r,t)‘ (2.2.10)
Note that if the conventional explicit xc energy functional forms taken from local spin

density approximation (LSDA) or generalized gradient approximation (GGA) [47, 18]
are used, the corresponding xc potential vy ,(r,?) will not possess the correct long-
range asymptotic (—1/r) behavior [61]. Here, we adopt the improved LB potential
[52], vEBewhich contains two empirical parameters o and 3 and has the following

XC,0 )

form, in the adiabatic approximation,

B2 (r,t)pe*(x, 1)
14 3Bz, (r,t) In{a, (r,t) + [22(r, 1) + 1|12}

(2.2.11)

ULBa (I‘, t) — O./ULSDA<I'7 t) + ULSDA(I', t)

XC,0 X,0 c,0

Here, p, is the electron density with spin o, and we use a = 1.19 and § = 0.01
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[11, 30]. The first two terms in Eq. (2.2.11), vf5P* and vf5P* are the LSDA exchange

and correlation potentials that do not have the correct asymptotic behavior. The last

term in Eq. (2.2.11) is the nonlocal gradient correction with z,(r) = [V, (r)|/ps > (r),

LBa

XC,o

which ensures the proper long-range asymptotic potential v — —1/r asr — oo.
For the time-independent case, this exchange-correlation LBa potential has been

found to be reliable for atomic and molecular DFT calculations.

2.3 TDDFT Method for Diatomic Molecules

The central theme of the TDDFT involves a set of time-dependent one-electron
Schrodinger-like Kohn-Sham (KS) equations [36] for N-electron atomic or molecu-
lar systems, outlined in Eq. (2.2.5). In Eq. (2.2.5), Hy(r) is the field-free Hamiltonian

for a diatomic molecule, which in atomic units, can be written as

Z Zy
2 |R1 —I‘| |R2 —I‘|

+ Up(r) + Vg o (T). (2.3.1)

In chapter 1 the GPS method with use of the prolate spheroidal coordinates was used

to discretize the electronic Hamiltonian. There we described the even and odd projec-
tions of angular momentum, and the different forms of the Hamiltonian HS®(€, 7, )

for each of these angular momentum m and orbital o, which has the following form:
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0 0 0 2
€ = Ve + 50~z ToH@E =T

+ UH(S) 77) + U:r:c,o‘(§7 77))

~ 1 1 0
H§(&,m, ) = — 202 (@) | o€

_ ZiE=m)  Z(E+m)
a(&—n?)  a(&®—1n?)

(2.3.2)
for even m and
2 1 1 0 0 0 0 2
AS(€9) =~ gz 6~ Vg gy 2
+ 1 } (2.3.3)
2a2(&* = 1)(1 —n?)

+ UH(£7 77) + ch,0(57 n)a

for odd m, respectively. Now we consider nonuniform and optimal grid discretization

of the spatial coordinates by means of the two-center generalized pseudospectral (GPS)
technique, again explained in chapter 1 with great detail. We shall use the following

mapping transformations for the coordinates ¢ and 7:

ny) =y, -1<y<1, (2.3.4)
1
5(1:):1+L1+x, 1<z <, (2.3.5)
— X

L being the mapping parameter. The variables = and y are discretized using the

Legendre-Gauss-Radau abscissas z; and y; as the collocation points. The Legendre-

Gauss-Radau quadrature can be written as follows:

Ne Ny

/ drd? =2ma®y "N 47, (2.3.6)

i=1 j=1



30

where N¢ and N, are the numbers of collocation points x; and y;, respectively. The

values of ¢;; are related to the function ® at the collocation points z; and y;,

=D =) py bt (060
5/ (52 ) PN§<IZ>PNn(yJ)¢1J' (237)

M&m%ﬂ%ﬁzw

In Eq. (2.3.7), the primes denote the derivatives of the functions with respect to their

arguments. The discretized electronic Hamiltonian for Egs. (2.3.2) and (2.3.3) is a
matrix of order N¢N, x N¢N, which acts on the vector {¢;;}, the matrix elements
being

N,
e 1 77; ~ 1 (5]%_1) (z) ~(z)
iy = ZEFWT‘fZgn_ﬁP“%“

Y3 (

Ny )
DYDY

(1 _ x?) ot n;c (1 y2> kj ~kj

o & 3 11—
oA a) - ) O—w%ﬂ—y%+ﬁ”&'{1 m’
Emy (& — n3) §my(& —n3) T 202 (L) (& - 1)
CZi& =) Za(&+my)
a(&f —n3)  al& —n)

+ H(fuﬁg) +UXCU(£1777]):| 5

(2.3.8)
for even m and
o ]' , ak 1 52 x
sz it 2a’2 [ kZ f_ ((1k )-D](Cil)
g A1(1-n) (1-a3)(1— )
A L =) e — )
it e (1= (2.3.9)
D —yi) m2 —1

(1—=x 2
x%s e >+%%mﬁfj+w@—wuﬂm
_Z(& —my) Zz(§z+77y)
W& —m) (&)

+ UH(SZ? 77]) + Uxc a(&za 77]>:| )
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()

for odd m. The first derivative matrices D;;”’, D](-?) have simple analytical expressions

in the pseudospectral method; a detailed construction is given in chapter 1. Next we
will show in detail how one would solve the Hartree potential vy(&;, n;) in the DFT

method, and the boundary conditions for this potential.

2.4 Dirichlet Boundary Conditions for the Hartree

Potential in DFT Formulism

When solving the Poisson equation for the potential vy (€, n):

V2V = —47p(r), (2.4.1)

where

p(r’)
r—1'|’

V =uvy(r) = / d’r’ (2.4.2)

one must specify the boundary conditions for V. We know that the correct potential

must behave like Z/r as r — oo where Z = [ p(r)dr (the total charge). Then for
Rz = 00 (x = +1 and & = Rye = 00) the boundary condition is V' = 0 (it is
not explicitly imposed since the numerical solution satisfies it anyway). For finite
Rinaz, we need to impose V(Ryae) = Z/Rpmae- In prolate spheroidal coordinates,

we express r through £ and 7; in that case for £ = &4, (§(x = +1)) the boundary
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condition V(Ryaz) = Z/Rmaz Will depend on 7 since R,,,, now depends on 7. In pro-
late spheroidal coordinates the potential V' for a diatomic molecule on the boundary

V(Rmaz,n) has the following form:

(Zl + ZZ)Rma:r
a(Rpee — 1)

max

V(Rmaxan) = (243)

on the boundary we have g4 + g on the boundary we have ¢4 + g1

Poisson’s Equation Poisson’s Equation
a) « Tmaz Trnam b.)

Trnax Tmax

g4+ 4B
r(Emaz, 77j)

2y —
V V -_ 47Tp , we solve this equation in the interior portion

Figure 2.1: Dirichlet boundary conditions for the Hartree potential (a) interior portion
of the Hartree potential (b) boundary condition for the Hartree potential at z = +1
or £ = Ryas-

The boundary problem for the potential at R,,,, needs to be only calculated once
(Fig. 2.1(b)), and inside the boundary V(r < Ry..) is calculated with the new
updated density p(r) (Fig. 2.1(a)) for time-independent or p(r,t) for time-dependent
calculations by use of Eq. (2.4.1). Using Eq. (2.4.1) and knowing V2(&,n) and its

matrix inverse the potential V' is solved by the following expression:
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V(r) = —4m{V?*} 'p(r), (2.4.4)
where

(V2 7IVv? = I (2.4.5)
Therefor, once we discretize VZ(£, 1) once and solve the updated density p(&,n) self-

consistent, then Eq. (2.4.4) is also solved self-consistent with the updated density.

2.5 TDDFT for Intense-Field Multiphoton Pro-

cesses

Now that we have shown explicit representation of the Hartree potential and the
Hamiltonian, Egs. (2.3.2) and (2.3.3) have been diagonalized and we have solved the
time-independent DF'T formulism in a self-consistent manner. We now have the di-
atomic molecules electronic structure (eigenvalues and eigenvectors) which now can be
propagated in time using Eq. (2.2.5). In this section, we outline the time-dependent
generalized pseudospectral (TDGPS) procedure for the solution of the set of time-
dependent equations for two-center molecular systems. The TDGPS is extended for
accurate and efficient non-perturbative treatment of multiple high-order harmonic

generation (HHG) of diatomic molecules in intense laser fields. The advantage of this
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method is that it allows nonuniform and optimal spatial grid discretization (denser
mesh near each nucleus and sparser mesh at larger electron-nucleus separations). This
improves greatly both the accuracy and the efficiency of the electronic structure and
time-dependent calculations. The commonly used procedures for the time propaga-
tion of the Schrodinger equation employ equal-spacing spatial-grid discretization [39].
For processes such as HHG, accurate time-dependent wave functions are required to
achieve convergence since the intensity of various harmonic peaks can span a range
of many orders of magnitude. High precision accuracy is generally more difficult to
achieve by the equal-spacing spatial-grid-discretization time-dependent techniques.
The TDGPS method consist of the following two basic steps. (i) A two-center GPS
technique [58] is used for optimal grid discretization of the pseudoradial (£) and pseu-
doangular (n) coordinates. The number of grid points required is generally consider-
ably smaller than those used by the equal-spacing discretization methods. Yet higher
accuracy in wave functions and therefore HHG spectra can be achieved, since the
physically more important short-range regime is treated accurately by this method.
(ii) A split-operator technique in the energy representation is introduced for efficient
time propagation of the wave functions. In this work, we extend this procedure to

the numerical solution of the two-centered systems in the time-dependent equations.
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Consider the solution of the time-dependent one-electron Kohn-Sham-like equa-

tion [36] for N-electron molecular systems in linearly polarized laser fields,

0 . . .
ia%a(f} m, %, t) = Hw’id(fa 1,9, t) = HO(f? m, QD) + V(£7 7, t)] wia(fa 7,9, t)a
(2.5.1)

i=1,2,....N,,

where o is the spin index. Here Iflo is the time-independent Hamiltonian at ¢ = 0,

and V includes the electron-laser field interaction:

11 [a,, 0 0 ,
TR (@) 6_5(6 —1)—4'—77(1—77)—
Z(E—n)  Ze(+n)

a(@—n?)  a(&—n?)

FIO(&: 1, 90) =

(2.5.2)

We will show the electron-laser field interaction term V' (£, n,t), which includes other

residual time-dependent terms in veg ([p]; €, 7, t):

(CL ;— b) E(t) . 577 sin wt + (UH(£7 7, t) - UH(ga 7, O))
(2.5.3)

+ (UXC,O'<€7 777 t) - UXC,O‘ (f; 777 0))7

where vg(€,n,0) and vy »(£, 7, 0) are the time-independent potentials (¢ = 0). Here

V(& m,t) =

E(t) is the electric field which is parallel to the internuclear (z) axis, and E(t) = F f(t),
where f(t) is the envelope function of the laser pulse. We shall extend the second-
order split-operator technique in prolate spheroidal coordinates and in the energy

representation for propagation of the molecular Schrodinger equation:

¢ia(§v n, ¢, t+ At) = eXp(_iﬁO(ga n, SD)At/Q) : exp(—iVU(f, n, At/Q)At)
(2.5.4)

X eXp(_iH0(€7 m, ¢)At/2)¢za (57 n, e, t) + O(Ats)
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The use of the energy representation in Eq. (2.5.4) allows for the elimination of the

undesirable fast-oscillating high-energy components and speeds up considerably in

time propagation [60].

To pursue the time propagation of the wave function from ¢ to ¢t + At is achieved
by three steps: (i) First the wave function v, (£, 7, ¢, t) is propagated for a half-time
step At/2 in the energy space spanned by Hy(€,7,¢). For this we construct the

time-independent evolution operator

exp(—iHy(&,m, p)At/2) = S, (2.5.5)

by means of GPS discretization and solution of the field-free Hamiltonian, Eq. (1.3.32):

H0(€7777 ()O)Xk(€7777()0) = Eka(fan7 90) (256>

Then the S-matrix can be constructed as

S = > Xk s )Xk (Girs My, ) exp(—ier At /2). (2.5.7)
k
Note that S is a complex symmetric matrix and needs to be constructed only once.

Thus the time propagation in the energy space,

eXp(_iﬁO (£7 n, @)At/zﬁ/}w(g? n, ¥, t) = §¢ia<§7 mn, ¥, t) = %(;) (57 n, ¥, t)? (258>

is reduced to the matrix-vector product [O(N?) operation] which can be performed
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efficiently using the basic linear algebra subroutines (BLAS). (ii) Then the wave
function %(j—) (&,n,p,t) is propagated for a time step At under the influence of the

molecule-field coupling:

exp(—iV, (€, 1, At/2) AL (€ m,0,1) = V2 (€, m, 0,1). (2.5.9)
Since exp(—iV,(&,n, At/2) is a diagonal matrix in the coordinate representation, this

is a fast step as far as the CPU time is concerned. (iii) Finally, the wave function

wg) (&,m, @, t) is propagated another half-time step At/2:

SU (€m0 t) = Vio(€,1m, 0,1 + A). (2.5.10)

This completes one time propagation step in Eq. (2.5.4). After the time-dependent

single electron wave functions {1, } are obtained, the total electron density p(r,1)

can be determined.

Once the time-dependent wave functions and the time-dependent electron den-
sities are obtained, we can calculate the time-dependent (multiphoton) ionization

probability of an individual spin-orbital according to

P,,=1—N;,(t), (2.5.11)
where

Nio(t) = (Wi (Dltso (D), (2.5.12)
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is the time-dependent population (survival probability) of the io-th spin-orbital. After

the time-dependent single-electron wave functions {v;,} are obtained, the induced
dipole moment and dipole acceleration can now be expressed for the molecular system,

respectively as

d(t) = /Zp(r,t)dr = an (Yio (&m0, 1) 2|06 (§, 1, 0, 1))

" + ) (2.5.13)

<¢w(§ ¢, )lfnhbw(ganv §07t)> )

and

- an’a <¢ia(£7777 907t) '_8‘/0(;27777t) + E(t) rSln wt lqu)w 5 n, ¥, )>

- Z<¢w(g,n, p.t) ‘—% + E(t) sin(wt)| o (€, 1, ¢, )>,
(2.5.14)

where n;, is its electron occupation number. The corresponding HHG power spectrum

can now be obtained by the Fourier transformation of the respective time-dependent
dipole moment and dipole acceleration:

2

1 K —iw
Pw) = 'tf_tl/ d(t)e ™| = |d(w)]?, (2.5.15)
i Jt;
1 1 & —iwt ’ 2
Pi(w) = y—— da(t)e | = |da(w)]?. (2.5.16)

The power spectra P(w) and P4(w) should be the same if the wave function ¥, (£, 17, ¢, t)

is fully converged. In the presence of either periodic fields or continuous wave (cw)
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lasers, one can further obtain the time-independent nth-order harmonic generation

emission rate by means of the expression

3,3
_ Awyn

r,= o P(nwy),
or
4wdn3
I, = 3z3 Pa(nwy),

where wy is the fundamental frequency of the laser field.

2.6 Conclusion

(2.5.17)

(2.5.18)

In this chapter, we presented a detailed procedure for diatomic molecules in intense

laser fields by means of a TDDFT with correct asymptotic long-range (—1/7) poten-

tial to ensure individual spin-orbital has the proper ionization potential. We consider

only the case that the molecular axis is aligned with the laser beam direction. This is

justified based on the recent experimental development of the laser molecular align-

ment techniques [40, 54, 48, 49]. Much remains to be explored in this fascinating and

largely unexplored area of strong-field molecular physics. Finally, the nuclear degree

of freedom has not been taken into account so far. This is justified for ultrashort laser

pulse excitation.



Chapter 3

High-Order Harmonic Generation
of Heteronuclear Diatomic
Mbolecules in Intense Ultrashort
Laser Fields: An All-Electron
TDDFT Study

3.1 Introduction

The study of atomic and molecular processes in intense ultrashort laser fields is a
subject of much current interest in science and technology [2]. In particular, high-
order harmonic generation (HHG) is one of the hottest topics in strong-field atomic
and molecular physics today, which is closely related to the recent development of
attosecond laser pulses [1, 70, 28] as well as the frequency comb technology [25,
34, 7]. To describe such strong-field processes using fully ab initio wave-function

approach, it is necessary to solve the (3n+1) dimensional time-dependent Schrodinger

40
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equation (TDSE) in space and time, where n is the number of electrons. This is well
beyond the capability of current supercomputer technology when n > 2. Even for
the two-electron (n = 2) case, high-precision fully ab initio 6D study of the HHG
of the He atoms was achieved only very recently [26]. For many-electron molecular
(n > 2) systems, we have recently performed self-interaction-free time-dependent
density functional theory (TDDFT) calculations for the nonperturbative treatment of
multiphoton ionization (MPI) and HHG processes of homonuclear diatomic molecules

H, [10], Ny [11, 30], O4, and F5 [13] in intense laser fields.

We extend the TDDFT, with proper long range potentials, to the study of multi-
electron heteronuclear diatomic molecules (CO in particular) with an aim to explore
the dynamical role and nonlinear response of individual electron spin orbital as well
as the effect of asymmetry of the molecules to intense laser pulse fields, a subject
of largely unexplored area of intense field AMO physics. In our previous studies
of the MPI of homonuclear diatomic molecules Ny, O,, and Fy, we found that the
highest occupied molecular orbital (HOMO) is not necessary the dominant channel
responding to the strong-field molecular ionization [13]. Furthermore the ac Stark
shift of individual MO and the detailed molecular electronic structure need to be taken
into account for a proper and quantitative treatment of the intense AMO processes.
In the case of Fy, for example, while the HOMO is 17, the dominant MO channel

to ionization in strong fields turns out to be the 30, in intense laser fields [13].
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Approximate models such as ADK [68] and Keldysh [45] etc., which consider only
the HOMO contributing to the molecular ionization and neglect the ac Stark effect,
predicted the ionization suppression of Fy, in disagreement with the experimental
observation [16, 74]. In this chapter, we further explore the effect of the asymmetry of
the molecules to MPI and HHG. We found that the heteronuclear diatomic molecules
can contribute the generation of even harmonics, in addition to the odd harmonics
seen in the atomic and homonuclear diatomic cases. Furthermore, we found that
there is only one dominant (short-trajectory) rescattering event within each optical
cycle. This is different from that seen in the atomic and homonuclear diatomic cases,
where two dominant electron rescattering events, one from the short- and the other
from the long-trajectory, occur within each optical cycle. Comparing the MPI and
HHG behavior of CO with N, it reveals quite dramatic difference in their strong-
field nonlinear responses, despite the fact that CO has only a very small (field-free)

permanent dipole moment.

3.2 Multiphoton Ionization of Ny and CO in In-

tense Laser Fields

The ground-state electronic configurations is

21 .29 20 21 4o 2
loglo, 20,20, 1m,30,,
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for N, and
10%20230%40217*50°2,
for CO, respectively. Ny and CO are isoelectronic molecules, both having 14 electrons

and triple bonds. Since the CO molecule has unequal nuclear charges, its ground
electronic state possesses a permanent dipole moment, calculated here to be 0.149
Debye. The corresponding experimental value is 0.112 Debye [46]. Furthermore, there
is no concept of gerade and ungerade orbital’s for CO (or any other heteronuclear
diatomic molecule) since the inversion symmetry of the potential is broken. Table 3.1
lists the MO energies calculated with the LBa potential, using 50 grid points in &
and 30 grid points in 1. The agreement of the calculated valence MO energies with

the experimental data is well within 0.01 a.u.

Table 3.1: Comparison of the field-free molecular orbital energy levels of CO and
Ny, calculated with the LBa potential, and the experimental ionization potentials (in
a.u.).

CO
Orbital lo 20 30 40 1m 50
Expt. [53] 19.9367 10.8742 1.3964 0.7239 0.6247 0.5144
LB, 19.6142 10.6556 1.2549 0.7071 0.6276 0.5086
Ny
Orbital log 1o, 20, 20, 1m, 304

Expt. [33, 27, 69] 15.0492 15.0492 1.3708 0.6883 0.6233 0.5726
LB, 14.7962 14.7950 1.2162 0.6786 0.6199 0.5682
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Next, we outline the time-dependent generalized pseudospectral (TDGPS) proce-
dure for the solution of the set of time-dependent equations, Eq. (2.2.5), for the CO
and Ny molecules. The advantage of this method is that it allows nonuniform and
optimal spatial grid discretization (denser mesh near each nucleus and sparser mesh
at larger electron-nucleus separations). This improves greatly both the accuracy and
the efficiency of the electronic structure and time-dependent calculations. The com-
monly used procedures for the time propagation of the Schrodinger or TDDFT equa-
tion employ equal-spacing spatial-grid discretization [39]. For processes such as HHG,
accurate time-dependent wave functions are required to achieve convergence since the
intensity of various harmonic peaks can span a range of many orders of magnitude.
High precision accuracy is generally more difficult to achieve by the equal-spacing
spatial-grid-discretization time-dependent techniques. The TDGPS method consist
of the following two basic steps. (i) A two-center GPS technique [57, 58, 30] is used for
optimal grid discretization of the pseudoradial (§) and pseudoangular (1) coordinates.
The number of grid points required is generally considerably smaller than those used
by the equal-spacing discretization methods. Yet higher accuracy in wave functions
and therefore HHG spectra can be achieved, since the physically more important
short-range regime is treated accurately by this method. The TDGPS method also
has been recently applied successfully to the non-Hermitian Floquet studies of the

hydrogen molecular ion Hj in strong fields [57]. (i) A split-operator technique in
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the energy representation is introduced for efficient time propagation of the wave
functions. In this work, we extend this procedure to the numerical solution of the

two-centered systems in the time-dependent equations.

Consider now the solution of the TDDFT equation, Eq. (2.2.5), recasted into the

following form:

A~

i%%‘a(r, t) = Ifl(r,t)ww(r,t) = [Ho(r) + V(T,t)]ibig(r,t),
(3.2.1)

i=1,2,..,N,.
where Hy is the time-independent Hamiltonian whose matrix elements are given in
Eqs. (2.3.8-2.3.9), and V/(r,t) includes the electron-laser field interaction and other

residual time-dependent terms in veg, ([p]; T, ?):

V(r,t) = (B(t) - r)sinwt + (un(r,£) — vn(r, 0)) + (Uxeo (. 1) — Ueen(r, 0)).  (3.2.2)

Here E(t) is the electric field parallel to the internuclear (z) axis, and E(t) = F f(t),

where f(t) is the envelope function of the laser pulse. We shall extend the second-
order split-operator technique in prolate spheroidal coordinates and in the energy

representation [60, 30| for the propagation of individual spin-orbital

wig(r7t + At) ~ efi\h/'(r,t)At/2ef“:[0(1‘)At€fi\7(r,t)Af/Zwia(r7 t) + O(Ati’)) (32?))

Note that such an expression is different from the conventional split-operator tech-

niques [29, 32|, where Hy is usually chosen to be the kinetic-energy operator and V'
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the remaining Hamiltonian depending on the spatial coordinates only. The use of the
energy representation in Eq. (3.2.3) allows the explicit elimination of the undesirable
fast-oscillating high-energy components and speeds up considerably the time propa-
gation [60, 12, 10, 11, 30]. After the time-dependent single electron wave functions

{1y} are obtained, the total electron density p(r,t¢) can be determined.

The time-dependent induced dipole moment can now be calculated as

d(t) = / e, e = 3 (1), (3.2.4)

where

dis(t) = Ny (Vi (r, 1) |2|ir (1, 1)), (3.2.5)
is the induced dipole moment of the io-th spin orbital, and n,, is its electron occupa-
tion number. The power spectrum of the HHG is then acquired by taking the Fourier
transform of the total time-dependent induced dipole moment d(?):

1 b :
/ﬁd@mﬂmﬁ
t;

tr—t;

2

. (3.2.6)

B 4wt

Here c is the speed of light, and P(w) has the meaning of the energy emitted per unit
time at the particular photon frequency w.

Once the time-dependent wave functions and the time-dependent electron den-
sities are obtained, we can calculate the time-dependent (multiphoton) ionization

probability of an individual spin-orbital according to
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Pio=1— Ny, (t), (3.2.7)

where

Nig(t) = (i ()|1hi o (1)), (3.2.8)

is the time-dependent population (survival probability) of the io-th spin-orbital.

4+ 30 '

Figure 3.1: Molecular orbital binding energies and orbital structures for Ny and CO
molecules.
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Figure 5.1 presents the time-dependent population of individual spin orbital, as
defined in Eq. (3.2.8). The slope of the decay of the electron population in time
determines the ionization rate. The laser (electric) field is assumed to be parallel to
the internuclear axis, and the internuclear distance for the CO (R, = 2.132 qy) and
Ny (R, = 2.072 ag) molecules is fixed at its equilibrium distance R.. Results for two
laser intensities (5 x 10" W/cm? and 1 x 10 W/cm?) and a wavelength of 800 nm,

20-optical-cycle laser pulse are shown for CO and Ns.

The orbital structure and ionization potentials of the two molecules under consid-
eration are close to each other (Fig. 3.1). That is why one can expect similar behavior
in the laser field with the same wavelength and intensity. The multiphoton ionization
in the laser field is dominated by HOMO, that is 30, in Ny and 50 in CO. As one can
see from Figs. 5.1(a) and 5.1(c), at lower intensity 5x 10*® W/cm?, the HOMO survival
probabilities of Ny and CO are close to each other. However, at higher intensities, the
difference becomes more pronounced, at the intensity 1 x 10** W /cm?, the ionization
probability of CO is much larger than that of Ny (Figs. 5.1(b) and 5.1(d)). The ex-
planation of the phenomenon can be as follows. In intense low-frequency laser fields,
the multiphoton ionization occurs mainly in the tunneling regime. In this picture,
the ionization takes place in the DC field with slowly varying amplitude from zero

to its peak value. The width of the potential barrier depends on the field strength;
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Figure 3.2: The time-dependent population of electrons in different spin orbital’s of
CO and N, in 800 nm, sin? pulse laser field, with 20 optical cycles in pulse duration.
N, molecule (a) 5 x 10'* W/cm?, (b) 1 x 10 W/ecm?, CO molecule (c) 5 x 103
W/em?, (d) 1 x 10 W/cm?.
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the stronger the field, the narrower the barrier. Thus the ionization occurs mainly
at the peak values of the field strength. The probability of the tunneling ionization
is very sensitive with respect to the HOMO energy. However, in the external field
this energy is changed due to the Stark shift. The nitrogen molecule is symmetric
with respect to inversion, that is why the Stark shift in the DC field is quadratic in
the field strength and its value is quite small. On the contrary, the carbon monoxide
molecule has a permanent dipole moment, and the DC Stark shift is linear in the field
strength; at the peak values of the field, the HOMO energy can differ significantly
from its unperturbed value. We have performed the self-consistent DFT calculations
of Ny and CO in the DC electric field parallel to the molecular axis to see how large
the Stark shift can change the ionization potential of the molecule. On Table 3.2 we
show the HOMO energies computed at the field strength 0.7549 x 1072 a.u. which

2. As one can see, even in the field as

corresponds to the intensity 2 x 102 W/cm
weak as 2 x 10" W/cm?, the shift of the HOMO energy in CO molecule is large.
The shift depends on the direction of the external field with respect to the position of
the carbon and oxygen nuclei. In one direction the energy level becomes higher, and
in the other direction it becomes lower than the unperturbed level. Decrease of the
binding energy will result in the enhanced ionization. In intense low-frequency laser

fields, this effect can be responsible for the enhancement of ionization of CO molecule

as compared with No.
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Table 3.2: HOMO energies of Ny and CO molecules in DC electric field (positive field
direction is from C to O)

Electric field (a.u.) N HOMO energy (a.u.) CO HOMO energy (a.u.)

0 -0.5682 -0.5086
0.7549x1072 -0.5681 -0.5149
-0.7549x 1072 -0.5681 -0.5026

3.3 Multielectron Effects in HHG Spectra of Di-

atomic Molecules

In figures 5.2-5.3 we present the high-order harmonic generation (HHG) power spectra
(HHG power, Eq. (3.2.6)) for the laser field intensities 5 x 10'* W /cm?, and 1 x 10"
W/cm?. An important difference between the Ny and CO spectra is that the latter
contain even as well as odd harmonics. Generation of even harmonics is forbidden in
systems with inversion symmetry, such as atoms and homonuclear diatomic molecules.
This selection rule does not apply to the heteronuclear molecules with no inversion
center (CO). From Figs. 5.2-5.3, one can see that in general HHG is more efficient in
CO than in Ny. However, for higher harmonics (17 and above) the Ny spectra become
dominant at the same laser intensity. As the laser intensity increases, the maximum

in the power spectra is shifted towards higher harmonics.
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Figure 3.3: Comparison of the HHG power spectra of CO and Nj, in 800 nm, 5 x 10'3
W /cem? sin? pulse laser field.

To investigate the detailed spectral and temporal structure of HHG for homonuclear
and heteronuclear systems, we perform the time-frequency analysis by means of the

wavelet transform of the total induced dipole moment d(t) [64, 10, 30, 8, 4],

d,(t) = / d(t)\/gei‘“(ttﬂ)e(w(tto))Q/ZTth. (3.3.1)
T
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Figure 3.4: Comparison of the HHG power spectra of CO and Nj, in 800 nm, 1 x 104
W /ecm? sin? pulse laser field.

The parameter 7 = 15 is chosen to perform the wavelet transformation in the following

study.

The peak emission times, t., represent the instance when the maxima of the dipole
time profile occur, and semiclassically are interpreted as the electron-ion recollision
times [64, 30]. For the case of the Ny molecule, the time profiles of the 19" to 25"

harmonic orders are shown in Fig. 5.4(a).

There are two emissions occurring at each optical cycle, and the most prominent

bursts take place at the center of the laser field envelope. The time profiles of the
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Figure 3.5: Time profiles for (a) Ny and (b) CO. Laser intensity used is 5x 103 W /cm?,
wavelength used is 800 nm, with 20 optical cycles in pulse duration.

superimposed harmonics are rather uniform among themselves implicating that the
harmonics are partially synchronized. More importantly for the CO molecule, a dis-
tinct feature possibly characteristic of all heteronuclear diatomic systems is observed
in Fig. 5.4(b) for the harmonic orders 22 to 26"*. The number of dominant emissions
per optical cycle is now limited to only one. This finding is in contrast with results

normally obtained in the HHG for atoms and homogeneous molecules in which two



55

bursts per optical cycle are observed. The spectral profiles are as uniform as those ob-
tained for Ny, though the CO harmonics appear to be more synchronized than those

of No. For the CO molecule, the highest occupied molecular orbital (HOMO) (50) is

dominant for the whole HHG spectrum Fig. 3.6; other orbitals contribute much less.
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Figure 3.6: Individual orbital and total high-order harmonic generation power spectra
of CO at the peak intensity 1 x 10 W/cm? with a laser frequency of 800 nm. .
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The distinct harmonic peaks are seen up to the order 30, then we can see just a
smooth background distribution. In CO, the 5o dipole is +1.57 which is much larger
than any of the other orbitals. The density for the 50 (and 20) is localized on the
carbon atom, all other orbitals the density is localized on the oxygen atom. Looking
at the orbital dipole’s for the CO molecule Fig. 3.7, we can see that all other orbitals

that are localized on the oxygen are in phase and 50 (carbon) is out of phase in time.

The Ny molecule has a dipole amplitude that follows the trend:

d2o'g < dlﬂ'u < dtotal < d30‘g < d2au

The orbital dipole moments 20, 17,, and 20, are oscillating as that of the total dipole,

the 30, (out of phase). So when we look at the two orbital dipole amplitudes 20,
and 30, with similar amplitudes, they oscillate in time with different sign, canceling

each other out Fig. 3.8, leading to a smaller dipole.

The behavior of the HHG spectrum Fig. 3.9 for Ny is quite different. The HOMO

(30,) is dominant in the middle part of the spectrum (again up to the order 31).
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Figure 3.7: Orbital dipole moments of CO at the peak intensity 1 x 10* W /cm? with
a laser frequency of 800 nm for 3 optical cycles (10 — 13).

However, starting the 33th harmonic, the 20, orbital has a comparable contribution

which interferes destructively with that of 3o,.

Thus the result of interference is much lower than both of the single orbital spectra.
Then this two-orbital spectrum becomes comparable in magnitude with the 204-only

HHG (shown in Fig 3.10). Again, the destructive interference takes place, and the
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result is much lower than any of the single orbital contributions.

We can say that the long HHG spectrum of Ny is a collective multielectron effect.
Destructive interference of orbital contributions makes the resulting spectrum lower
in amplitude with distinct harmonic peaks up to the order 47. Note that single orbital
HHG do not have distinct peaks, just a smooth background, so the peaks in the high
harmonic part of the total HHG spectra are the pure multielectron interference effect.
We think this happens to Ny and does not happen to CO, because of the broken g-u
symmetry in CO such a full interference is not possible. The induced dipole moment
of the HOMO 50 (CO) is so large that no other orbital can make a comparable

contribution.

3.4 Conclusion

In this chapter, we present a detailed comparison of the very high-order nonlinear
optical response of the homonuclear N, and heteronuclear CO diatomic molecules in
intense ultrashort laser fields by means of a TDDFT with correct asymptotic long-
range (—1/r) potential to ensure individual spin-orbital has the proper ionization
potential. We consider only the case that the molecular axis is aligned with the laser

beam direction. This is justified based on the recent experimental development of
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the laser molecular alignment techniques [40, 54, 48, 49]. We found that although
CO has only a very small permanent dipole moment, qualitatively different nonlinear
optical responses are predicted for CO and Ny. First, the MPI rate for the heteronu-
clear diatomic CO molecules is larger than that for the Ny homonuclear diatomic
molecules. Second, while the laser excitation of the Ny molecules can generate only
odd harmonics, both even and odd harmonics can be produced for the CO case. To
our knowledge, this is the first all-electron TDDFT study of the generation of even
harmonics for the heteronuclear diatomic molecules. In this connection, we note that
the even-order harmonics were also predicted in an earlier study of the HHG of a
one-dimensional model HD with unequal nuclear mass [38]. In this model, even-order
harmonics can be produced only by means of the breakdown of the Born-Oppenheimer
approximation. However, in our ab initio 3D study of CO with unequal nuclear mass
and charge, even-order harmonics can still be produced when the internuclear separa-
tion is fixed. Third, from our wavelet time-frequency analysis, we found that there are
two dominant rescattering (and harmonic emission) events within each optical cycle
for the Ny molecules, while there is only one dominant rescattering event for the CO
molecules. Much remains to be explored in this fascinating and largely unexplored
area of strong-field molecular physics. Finally, the nuclear degree of freedom has not
been taken into account so far. This is justified for ultrashort laser pulse excitation.

Research in this direction will be pursued in the future.
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Figure 3.8: Orbital dipole moments (total, 30,, and 20,) of Ny at the peak intensity
1 x 10 W/cem? with a laser frequency of 800 nm for 20 optical cycles.
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Figure 3.9: Individual and total orbital high-order harmonic generation power spectra
of Ny at the peak intensity 1 x 10** W /cm? with a laser frequency of 800 nm. .
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Figure 3.10: Individual and orbital interference power spectra of Ny at the peak
intensity 1 x 10 W/cm? with a laser frequency of 800 nm. .



Chapter 4

Ab Initio Study of High-Lying
Doubly Excited States of Helium
in Static Electric Fields

4.1 Introduction

The helium atom is the simplest two-electron three-body system that has been studied
extensively both theoretically and experimentally since the first experiment by Mad-
den and Codling on doubly excited states in 1963 [42]. From an excitation energy
of 57 €V to the He™ N = 2 threshold at 65.4 eV, the spectrum of helium contains a
number of Rydberg series of autoionizing states embedded in the Het 1sel continuum.
Due to the existence of strong electron-electron correlation, higher members of the
Rydberg series cannot be described by the single-configuration or mean field approxi-

mation. Numerous theoretical investigations have improved our understanding of the

63
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e-e correlation and the determination of the autoionizing resonances of the double ex-
cited states of He in the last few decades [55]. In addition to fundamental interest, the
energies, lifetimes, and oscillator strengths of these doubly excited resonance states
are also of significance in astrophysics and plasma physics [23]. More recently there
is considerable interest in the study of the effect of static electric fields on doubly

excited states of helium atoms below N = 2 threshold [21, 22, 20, 51, 77, 44].

The first observation of the effect of dc electric field on the photoexcitation spec-
trum of He doubly excited states was performed by Harries et al [20] who measured
the Stark shifts and splittings in strong dc fields (up to 84.4 kV /cm) in the region of
the 6a — 8a ! P° resonances below N = 2. Most theoretical works in the recent past
have dealt with dc fields on this strong field regime [24, 14, 66]. With the exception of
the dipole allowed ! P° states, most predicted doubly excited states of He are not ac-
cessible by simple photoabsorption. In the presence of external dc electric fields, these
dark states becomes accessible by means of the Stark mixing with the ' P° states. For
example, the even ! P¢ series of doubly excited states have been recently observed and
measured [21, 22] in weak dc electric fields (F' < 10 kV/cm). In addition, dramatic
electric field effect has been also reported in the fluorescence yield spectrum of the
doubly excited states in He in weak electric dc field regime (~ 1 kV/cm) [51] for
higher quantum number n < 15. To our knowledge, however, nonperturbative theo-

retical investigation of the effect of dc electric field on the high-lying doubly excited
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resonance states (n > 10) is not yet currently available.

To advance this field, we present in this chapter a new computational method,
the complex-scaling generalized pseudospectral (CSGPS) method in hyperspherical
coordinates (HSC), for efficient and accurate nonperturbative calculation of high-
lying doubly excited states of He (n = 10 — 20) in the presence of weak and strong dc
electric fields below N = 2. Comparison with available experimental data is made. In
addition, we also present the energies and widths of field-free doubly excited resonance

states of He for n up to 20.

The chapter is organized as follows. First, we present the detailed CS-GPS-HSC
procedure for accurate treatment of quantum dynamics in two-electron systems. Next,
we present the calculations of the doubly excited states and effects of dc electric
field on the high-lying doubly excited resonance states. Exploration of the effects
of electron correlation and doubly excited states in dc electric field are discussed in

detail.

4.2 Complex-Scaling Generalized Pseudospectral

Method in Hyperspherical Coordinates

The complex-scaling generalized pseudospectral (CSGPS) method was first intro-

duced in 1993 for the study of atomic resonance states [76, 73] in grid representation.
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It has been later extended and extensively used for the accurate treatment of multi-
photon above-threshold ionization (ATI) and high-order harmonic generation (HHG)
of atomic [56] and diatomic molecular [56, 12, 10, 11, 57, 58, 30] systems in intense
laser fields in the last decade, in conjunction with the development of non-Hermitian
Floquet formalisms and self-interaction-free time-dependent density functional the-
ory [9]. The CSGPS approach employs the use of non-uniform and optimal spa-
tial grid discretization of the coordinates and Hamiltonian, allowing high-precision
and efficient calculation of complex quasi-energy eigenvalues and eigenfunctions and

ATI/HHG rates with the use of only a very modest number of grid points.

In this section, we present the extension of the CSGPS method in the framework
of hyperspherical coordinates (HSC) for the ab intio treatment of doubly excited
resonance states of the two-electron atomic systems. We note that time-dependent
generalized pseudospectral (TD-GPS) method in HSC, without the use of complex
scaling transformation, has been recently developed for the treatment of double pho-
toexcitation of He atoms in weak attosecond xuv pulses [67] and the effect of electron
correlation on high-order-harmonic generation (HHG) of helium atoms in intense laser

fields [26].

We first briefly outline the essence of GPS-HSC formalism [26] without the use of
complex scaling transformation. The Schrodinger equation for the field-free He atoms

is given by, in atomic units,
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1 1 2 2 1
BARE

1 Ty |I‘1—I“2| a

E:| w(rl, I'Q) = 0. (421)

In the HSC, Eq. (4.2.1) can be reduced to the form [26]

162 1 1 ( 02 2 2 ) C
-+ + + +—

—— — U = F¥ 4.2.2
20R? 8R? 2R? da?  cos2a  sin®o R ’ ( )

where R = /r} + r3 is the hyperradius, and a = tan~!(ry/r1) is the hyperangle, and

the potential energy term C'is the electron-electron and electron-nucleus potentials,

given by

27 27 2

Cla, b)) = - — )
(o, 012) cosa+81n04 V1 — sin 2 cos ;5

(4.2.3)

In the HSC, the two vectors (ry,rs) are replaced by the six coordinates (R, a, €21, ),
where €; = (0;, ¢;) denotes the spherical angles of electron i.

In the CSGPS approach in HSC, only the hyperradius coordinate R needs to be

complex rotated [75], namely,
R — Re", (4.2.4)
where 6 is the rotation angle. We perform next the algebraic mapping from R to x

and from « to y:

(4.2.5)

aly) = %(1 +y), (4.2.6)
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where v = 2L/Ry0, and x € [—1,1], y € [-1,1], R € [0, Rpnaz), o € [0,7/2], and

L is the mapping parameter. The given space that the two electrons are confined
to is determined by the size of R,,.., and the mapping parameter controls the linear

position of the mesh points [76].

Under the complex-scaling transformation, Eq. (4.2.2)

—i20 52 —i20 —i20 o2 12 12 Ce— ‘
‘ ‘ ° <_ : : ) + < \Ij(Relea «, Qla QQ)

5 oR: SR R R

0a? + cos2a  sin®a
= e\I/(Rew, a, Q,Qs),
(4.2.7)

where € denotes the complex energies of the autoionizing resonance states. We ex-

pand the total two-electron wavefunction ¥ in terms of the complex-scaled adiabatic

channels p,

,é
(R, o, Qy, Q) = = ZF (Re®)D,(Re®, a, Oy, D), (4.2.8)

R2 sin o cos a

where F},(Re®) is to be solved in the hyperradius space and the adiabatic channel

functions @, (Re, a, Qy,$22) describe the radial correlation between the two electrons
[59]. These channel functions are obtained by solving the adiabatic Hamiltonian [26]

at a fixed value of R,

Hoq®,(Re® o, Qy, Q) = U, (Re®)®,(Re® v, Qy, Q). (4.2.9)

Here the channel functions ®,(Re®, a, Qy,s) can be represented in a way to satisfy
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the exchange symmetry 2°T!1L7 either singlet or triplet states, and are expanded in

terms of two-particle spherical harmonics. For fixed L, M, S, and 7, we have

(

\fz [fE (Re®, a) YL (1, )
Ly
) — 1A fLlh(Ret O, Q) , l
(e, a, 0, Qp) = HEDUEA RS = k(0 B 4 A
Zf;f’ll’b( )yh 12(91, Qs), L =1,
\ lil2
(4.2.10)

where we define A = [; + 1, — L + 5. L and S indicate the total orbital and spin

angular momenta respectively. In Eq. (4.2.10) the coefficients f(Re®, a) are the

Gauss-Legendre quadratures.

Once the adiabatic eigenvalue problem is solved we then use these complex-scaled

channel functions to compute the coupling terms [59], hence the overlap matrix

Oilh]ﬂ/ = <(I)M(Ri6i0, a, Ql, Q2)|<I>H/(Rjei9, a, Qb Q2)> (4211)

After mapping the domain of the total wavefunction Eq. (4.2.8), we obtain the fol-
lowing transformation:
Ngr
\Ij(RewaOQQhQZ) Y R/(l’)ZfZ(.%@lg) zTie 7y79179 )

=1
N, (4.2.12)

= VR(x) Y filze”)Cip®(mie”, y, 0, Q)
i
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Inserting the discretized representation of the complex-scaled wavefunction Eq. (4.2.12)

into Eq. (4.2.7), we can rewrite the discretized Schrodinger equation in the form

Z[K(Reﬁ)u’ Oiu,i’w + 511’U‘f/ (RZ/ €i9)(9iu’i/“/] OZ

i

(4.2.13)
=€ Z Oi,u,i’,u’ Ci,uu

iy
where K(Re™)y is the complex-scaled kinetic energy matrix elements and U (Rye™)
is the eigenenergy at fixed R;, and corresponding L and pu.

The first advantage in the present CSGPS-HSC procedure is in that the GPS
method is a nonlinear grid discretization method. This ensures that the short-range
part of the Coulomb interaction is properly represented. Therefore, a dense portion
of grid points are concentrated at the origin. The second advantage, is that in the CS-
GPS approach the complex-rotated coordinate R is discretized on a set of collocation
grid points. The potential matrix elements being diagonal, and equal to the values
of the potential at the grid points. The kinetic energy matrix elements K(Re); in
Eq. (4.2.13) have simple explicit analytical expressions.

As an example of the accuracy of the present GPS procedure, Fig. 4.1 shows
the first fifteen adiabatic potential curves of helium in the singlet 'S¢, 1P° 1De¢
and ' F° (L = 0-3) manifolds converging to the He™ ionization thresholds. We note
that there is a number of avoided crossings even between the low-lying neighboring
potential curves. For example, a sharply avoided crossing point in the 1P° manifold

occurs around the hyperradius of 7.63 a.u and in the 1D¢ manifold occurs around the



71

hyperradius of 5.97 a.u.

0 5 10 15 20 0 5 10 15 20
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Figure 4.1: Potential curves of the helium atom for (a) 15¢, (b) 'P°, (¢) ' D¢, and (d)
L F° manifolds.
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4.3 Determination of the Doubly Excited Autoion-

izing Resonances

To illustrate the accuracy of the present method, we list the energies and widths
for He doubly excited Rydberg states n = 10 — 20 below the N = 2 threshold. In
Tables 4.1-4.4, we compare our results of 15¢, 1P°, 1 D¢ and ! F° with recent theoretical
results [43, 3, 35]. The present calculations listed in Tables 4.1-4.4 compared to the
previous theoretical results for the doubly excited states where n = 10 — 15 which
generally agree well. In the present calculation doubly excited Rydberg states are
calculated to the n = 20 state. Since there is no theoretical or experimental data
to our knowledge to compare the high-lying Rydberg states n = 15 — 20, we expect
experimental measurements of these in the future. Throughout this chapter we use
the (N, n, (a,b, or ¢)) representation for doubly excited states introduced by Lipsky

[41], which is widely used for He.

In Table 4.1 both singlet symmetries of the 1 S¢ states are calculated, hence (2,7, a)
and (2,n,b) where n = 10 — 20. In the 'S¢ calculation fifteen partial waves are used,
(I1,15), with Ry, = 1000 a.u. In Table 4.2 three singlet symmetries of the ! P° states
are calculated, hence (2,n,a), (2,n,b), and (2,n,c) where n = 10 — 20. In the 'P°
calculation twenty partial waves are used, (1, ls), with R, = 1200 a.u. In Table 4.3

three singlet symmetry of the ' D¢ state is calculated, hence (2,n,a), (2,n,b), and
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(2,m,c) where n = 10 — 20. In the D¢ calculation twenty partial waves are used,
(I1,13), with R4z = 1500 a.u. In the ' F° calculation twenty partial waves are used,
(I1,12), with R4 = 2500 a.u. In all of the previous calculations by use of the highly
accurate CSGPS-HSC procedure resonance energies are converged to 107 a.u. and

the widths are converged to 10~* a.u.

Tables 4.1-4.4 shows the resonance energies converging to the He™ ionization
thresholds (—0.5 a.u.). One of the appealing features revealed from Tables 4.1-4.4 is
the common trend of the autoionization rates decreasing as a function of the quantum
number n increasing (Fig. 4.2), this common trend is shown in all states. This is due
to the singlet continuum states 1sel coupling with the doubly excited states 2snl.
Since the doubly excited states are embedded with the singlet continuum states.
The widths are proportional to the coupling strengths between these states (i.e.,
I o< [{W150]1/712|Pasn)|?). As the quantum number n is increased the two electrons
are getting further and further apart from each other. Therefore, making r5 larger,
and thus decreasing the autoionization rates. For example, we can look at the widths
from the ! P° states, 10a being 4.052 x 10~¢ and the high-lying 20a being 4.859 x 10~7.

Such accuracy for Rydberg resonant energies by the CSGPS-HSC procedure can-

not be achieved by traditional basis set expansion methods or B-spline functions.



74

4.4 Determination of the DC Field Effects on the
Doubly Excited Resonance States

In the presence of an external electric-field, the Hamiltonian for a two-electron atom
is

H=Hy+V =Hy+F - (r; +ry) (4.4.1)
where F is a uniform external electric-field. Hj is the field-free Hamiltonian. The

matrix elements of F'z; and Fzy are the same for a given pair of wavefunctions. Here

we only present the matrix element of F'z; explicitly as follows:

F 0.0

Hop” Laslo 115

(UE|F(20)|WE) = > FHRie”) - Rie® - FY (Rie™)w;

7

1
2
{ CDMQL it aj) cos a;j - q)lll/ I(Riew ))‘ @ﬁij;g]\]}/ll (4.4.2)

hizL (R N '
g QP (Rie", /2 — ) - cos

WL 0 HWILL' M
X(I)lt' (Rle 7aj))\j@l2l1LM ,
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where

Ot = (Vi (. )] cos 6| (1, Q). (4.4.3)
Here w; and \; are the corresponding Gauss-Legendre weights to the hyperradial and

hyperangle spatial integrals, respectively. For states in dc field along the z-direction,
the total magnetic quantum number M is a conserved quantity, while the parity
along the z-axis (m,) is not conserved. We will focus our attention on the M = 0
manifolds. Since parity is not conserved, angular momentum states 'S¢, 1P, 1De,
and 'F° are coupled together in Eq. 4.4.2 by the external electric field. This four-
symmetry (L. = 3) calculation is sufficient to compute such doubly excited states
in electric field. We investigate 'S¢ (2,n,a,b), 'P° (2,n,a,b,c), and 1D (2,n,a,b,c)
resonance states where n = 10 — 20 in the electric field. In the present electric field
calculations we have used a mesh of Ny x N, = 400 x 400, and twenty adiabatic
channels (u = 20) to compute the field-free wavefunctions WL where L = 0, 1,2, 3.

Our calculated widths are converged when the angle 6 is varied from 0.1 to 0.3 rad.

In Tables 4.5-4.10 we report electric field effects on resonant energies and widths
for doubly excited Rydberg states of He field strengths F' are varied from 1 to 84.4
kV/cm. Since the autoionization rates in the states of interest are small to begin with
1pe (2,10a) (T = 8.104 x 107%.u.) even small electric field strengths has effects on
these doubly excited states. As the external field increases all resonance energies and

widths of the doubly excited states are changed due to Stark mixing.
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In the present calculation, Tables 4.5-4.10 has a common trend of the resonant
energies being shifted downward as the electric field is increased and widths are de-
creasing for most of the states. This is mainly due to the Stark effect and energy
separation between the states becoming smaller.

In the absence of an electric field only the 'P° state can be achieved from the
18¢ ground-state by single-photon absorption. When the external field is turned on
the nearby 'D¢ resonance is induced by the 'P° state due to Stark mixing of the
two resonances. Therefore, the autoionization rates for the 'P° states are mostly

decreasing due to mixing with other singlet-spin states.

4.5 Conclusion

In summary, we have presented a ab initio complex-scaling generalized pseudospectral

method in hyperspherical coordinates for the accurate treatment of doubly-excited
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Rydberg resonance states and dc-field ionization rates of the two-electron atomic
systems. Our CSGPS approach in hyperspherical coordinates is shown to be capable
of providing accurate resonance energies for 1.5¢, 1P°, 1 D¢ and 'F° Rydberg doubly
excited states with the use of only a modest number of grid points. The affects of
dc-field ionization rates on the 'S¢ (2,n,a,b), *P° (2,n,a,b,c), and ' D¢ (2,n,a,b,c)
states where n = 10 — 20 have been identified. The theory is in good agreement
with the published theoretical results where He doubly excited states range from
n = 10 — 15, and predict the outcome in cases where results are not yet available
n = 15 — 20. This is the first theoretical works to our knowledge for such Rydberg
doubly excited states. We hope that our present data and findings stimulate some

new experimental activities in the near future.
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Figure 4.2: Field-free energies and widths of doubly excited Rydberg states as a
function of the principle quantum number n, in the energy region below the N = 2
threshold for different symmetries: (a) 'S¢ (2,na), (b) 15¢ (2,nb), (c) ' P° (2,na), (d)
Lpo (2,nb), (e) 1 D¢ (2,na), and (f) 1D (2,nb).
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Table 4.1: Energies and widths for doubly excited Rydberg states 15¢ (2,n, (a,b))
below the N = 2 threshold (in a.u.). Numbers in square brackets indicate powers of
ten.

State —FE, r/2 State —FE, ['/2

Present 10a  0.505759011 9.777[—6] | 10b  0.504746220 2.775[—6]
[43] 0.505759052  9.777[—6] 0.504746230  2.776[—6]
3] 0.505759104  9.790[—6] 0.504746388 2.766]—6]

Present 1la  0.504697225 7.131[—6] | 116  0.503940604 2.145[—6]
[43] 0.504697299 7.131]—6] 0.503940615 2.146]—6]
[35] 0.504697187 7.131[—6]

Present 12a  0.503904116 5.362[—6] | 120  0.503324068 1.700[—6]
[43] 0.503904132  5.362[—6] 0.503324031  1.690[—6]
35] 0.503904047  5.360[—6]

Present 13a  0.503206014 4.134[—6] | 13b  0.502841616 1.350[—6]
[43] 0.503296078  4.134]—6] 0.502841626 1.350[—6]
[35] 0.503296011 4.131[—6]

Present 14a  0.502819664 3.251[—6] | 14b  0.502457209 1.137[—6]
[43] 0.502819726  3.253[—6] 0.502457222  1.136]—6]
[35] 0502819669  3.239[—6]

Present 15a  0.502439597 2.613[—6] | 150  0.502145509 8.058[—7]
[43] 0.502439676 2.617[—6] 0.502145517  8.06[—7]
[35] 0502439599  2.689[—6]

Present 16a  0.502131622 2.090[—6] | 160  0.501889058 5.817[—7]

Present 17a  0.501878528 1.681[—6] | 176  0.501676589 4.910[—7]

Present 18a  0.501666988 1.452[—6] | 18b  0.501498052 4.181[—7]

Present 19a  0.501480971 1.274[—6] | 19b  0.501346589 3.647[—7]

Present 20a  0.501341721 1.179[—6] | 200  0.501216515 3.082[—7]
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Table 4.5: Field-peturbed resonant energies FE, and widths (in a.u.) for the 'S¢
n = 10 — 20 doubly excited Rydberg states below the N=2 threshold. Numbers in

square brackets indicate powers of ten.

F(kV/cm) | State —FE, T/2 State —E, r/2
1 10a 0.505761021  8.438[—6] 106 0.504751047  2.022[—6]
2 0.505778231  7.992[—6] 0.504755921  1.521[—6]
3 0.505789074  7.167[—6] 0.504770093  9.889[—7]
4 0.505791002  6.415[—6] 0.504787332  7.375[—7)
5 0.505800284  5.838[—6] 0.504791481  5.563[—7]
6 0.505819926  3.851[—6] 0.504816632  3.662[—7]
1 1la 0.504712391  6.002[—6] 116 0.503950484  1.221[—6]
2 0.504737532  4.394[—6] 0.503965501  9.111[—7]
3 0.504750094  3.873[—6] 0.503972941  7.031[—7]
4 0.504767427  2.529[—6] 0.503990038  6.109[—7]
5 0.504783724  1.988[—6] 0.504039185  5.118[—7]
6 0.504793821  9.774[—7] 0.504042572  3.107[—7]
1 122 0503018813 4.204]—6] | 126 _ 0.503330018  9.889|—7]
2 0.503930052  3.270[—6] 0.503337228  7.001[—7]
3 0.503944385  2.884[—6] 0.503352291  5.032[—7]
4 0.503960296  1.563[—6] 0.503365106  4.664[—7]
5 0.503971031  9.774[—7] 0.503384819  3.914[—7
6 0.503983888  7.401[—7] 0.503399210  2.011[—7]
1 13a 0.503306014  3.997(—6] 13b 0.502855493  9.001[—7]
2 0.503310039  3.559[—6] 0.502866674  6.424[—7]
3 0.503334429  2.502[—6] 0.502880079  5.000[—7]
4 0.503345301  1.473[—6] 0.502894281  3.105[—7]
5 0.503357358  9.412[—7] 0.502908813  2.871[—7]
6 0.503370074  6.317[—7] 0.502920025 1.167[—7]
1 14a 0.502820095  3.008[—6] 14b 0.502468009  8.999[—7]
2 0.502835229  2.510[—6] 0.502478223  6.199[—7]
3 0.502848830  1.996[—6] 0.502482012  4.130[—7]
4 0.502860028  9.891[—7] 0.502498002  2.910[—7]
5 0.502871994  7.428[—7] 0.502500365  1.224[—7]
6 0.502888912  5.221[—7] 0.502520772  9.887[—8§]
1 15a 0.502440492  1.993[—6] 15b 0.502159921  6.050[—7]
2 0.502454783  9.593[—7] 0.502165592  4.992[—7]
3 0.502460081  7.841[—7] 0.502180009  2.889[—7]
4 0.502478009  5.885[—7] 0.502189782  1.023[—7]
5 0.502490000  3.002[—7] 0.502195945 7.80[—8]
6 0.502500243  2.555[—7] 0.502216583 5.52[—8§]
1 16a  0.502148810 1.091]—6] | 166  0.501808000 4.557[—7]
2 0.502152014  1.003[—6] 0.501909901  3.339[—7]
3 0.502161998  8.992[—7] 0.501920018  2.732[—7]
4 0.502181831  6.443[—7] 0.501931142  1.150[—7]
5 0.502198824  4.039[—7] 0.501940021  7.10[—8§]
6 0.502209998  2.483[—7] 0.501956679 4.00[—8]
1 17a 0.501888291  1.002[—6] 17b 0.501684421  3.784[—7]
2 0.501893353  8.992[—7] 0.501690041  2.885[—7]
3 0.501904968  6.034[—7] 0.501709921  1.685[—7]
4 0.501915399  5.392[—7] 0.501719022  8.14[—8]
5 0.501926622  3.118[—7] 0.501729777 6.05[—8]
6 0.501936771  1.922[—7] 0.501733249 4.23[-8]
1 18a 0.501670081  9.662[—7] 18b 0.501509991  3.992[—7]
2 0.501688933  7.008[—7] 0.501511892  2.797[—7]
3 0.501690029  6.662[—7] 0.501528860  1.528[—7]
4 0.501709921  4.849[—7] 0.501530052  1.001[—7]
5 0.501713386  3.244[—7] 0.501544484 8.90[—8]
6 0.501720053  1.860[—7] 0.501560035 6.04[—8]
1 19a 0.501495865  1.004[—6] 196 0.501360037  1.485[—7]
2 0.501507693  9.339[—7] 0.501378003 9.92[—8]
3 0.501510034  7.811[—7] 0.501388635 7.23[—8]
4 0.501527482  5.538[—7] 0.501399001 5.60[—8]
5 0.501537849  3.997[—7] 0.501407458  3.46[—8]
6 0.501549933  2.047[—7] 0.501416550  2.21[—8]
1 20a 0.501357382  9.991[—7] 20b 0.501230062  2.887[—7]
2 0.501360019  7.445[—7] 0.501243943  1.442[-7]
3 0.501387422  5.003[—7] 0.501260032 8.33[—§]
4 0.501399018  3.227[—7] 0.501271965 6.73[—8]
5 0.501443911  1.129[—7] 0.501281628 4.19[-8§]
6 0.501458890 7.72[—8] 0.501299743 2.66[—8]
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Table 4.6: Field-peturbed resonant energies E, and widths (in a.u.) for the 'P°
n = 10 — 20 doubly excited Rydberg states below the N=2 threshold. Numbers in

square brackets indicate powers of ten.

F(kV /cm) —E, T/2 —E, T/2 —E, T/2
10a 10b 10c
1 0.505180929  3.989[—6] | 0.505810092  7.20[—8§] 0.504748831 2.12[-8]
2 0.505193123  3.005[—6] | 0.505825711  7.80[—§] 0.504730029 3.56[—8]
3 0.505206360  2.557[—6] 0.505835579  8.11[—8] 0.504718814 3.89[-8]
4 0.505218842  1.882[—6] | 0.505844214  8.55[—8] 0.504698332 4.67[—8]
5 0.505224428  1.002[—6] | 0.505858819  9.27[—8§] 0.504631388 5.38[—8]
6 0.505236619 9.40[—7] 0.505862374  9.84[—8] 0.504607431 6.22[—8]
1la 116 1llc
1 0.504269921  2.144[—6] | 0.504740013  4.12[—§] 0.503942274 2.01[-8]
2 0.504277374  1.882[—6] | 0.504757436  4.82[—8§] 0.503870024 3.44]-8]
3 0.504280028  1.002[—6] | 0.504767991  5.12[—38] 0.503781838 3.79[-8]
4 0.504298813 9.32[-7] 0.504780023  6.49[—8] 0.503719284  4.53[—§]
5 0.504307633 7.03[-7] 0.504791120  7.83[—8] | 0.5037004532  5.20[—§]
6 0.504317438  5.20(—7] | 0.504802277 8.21[—8] | 0.503690481  6.15[—8]
12a 12b 12¢
1 0.503583386  1.442[—6] | 0.503949921  3.23[—§] 0.503324811 1.72[-8]
2 0.503593472 1.001[—6] 0.503950043  4.10[—8] 0.503310024 2.87[-8]
3 0.503600081 8.05[—7] 0.503969191  4.89[—8] 0.503296609 3.12[-8]
4 0.503619921 6.11[-7] 0.503976362  5.23[—8] 0.503268819 3.76[-8]
5 0.503626462 4.92[—T7] 0.503984622  6.01[—8] 0.503248211 4.64[—8]
6 0.503630028 2.18[-7] 0.503997311  7.27[—§] 0.503210992 5.32[—8]
13a 13b 13¢
1 0.503041992  1.001[—6] | 0.503322991  3.48[—8§] 0.502758811 9.7[-9]
2 0.503059393 8.07[-7] 0.503331382  3.87[—§] 0.502713382 1.26[—38]
3 0.503060011 6.10[—7] 0.503340021  4.11[-8] 0.502690021 2.45[—8]
4 0.503071282 4.33[-7] 0.503352211  4.52[—§] 0.502660119 3.19[-8]
5 0.503082221 3.00[-7] 0.503360219  5.26[—8] 0.502611091 3.99[-8]
6 0.503090033 1.22[-7] 0.503370032  6.17[—8] 0.502560977  4.64[—8]
14a 14b 1l4c
1 0.502620041  9.34[—7] | 0.502840282 2.33[-8] | 0.502410025  8.5[—9]
2 0.502638832 7.04[-7] 0.502850011  3.99[—8] 0.502382281 9.4[—9]
3 0.502648810 5.10[—7] 0.502860028  4.39[—8] 0.502369008 9.9[—-9]
4 0.502650912 3.88[-7] 0.502877821  4.87[—8] 0.502320023 1.56[—8]
5 0.502669083 1.11[-7] 0.502880086  5.26[—8| 0.502291738 2.15[—8]
6 0.502675002 8.03[—8] 0.502894419  6.12[—8] 0.502240033 3.11[-8]
15a 156 15¢
1 0.502282249 7.03[-7] 0.502460089  4.10[—8] 0.502001999 8.1[—9]
2 0.502290023 5.51[—7] 0.502473114  4.88[—8] 0.501967719 8.6[—9]
3 0.502300081 3.44[-T] 0.502489292  5.12[—§] 0.501910097 9.3[-9]
4 0.502320289 1.39[-7] 0.502490955  5.97[—8] 0.501889291 9.9[-9]
5 0.502330071 9.22[—8] 0.502503001  6.25[—8] 0.501848884 1.54[—8]
6 0.502352226 7.40[—8] 0.502517355  7.32[—8] 0.501788161 1.97[—8]
16a 16b 16¢
1 0.502010031 7.28[—7] 0.502150112  2.31[—8] 0.501810063 7.7-9]
2 0.502030000 5.11[-7] 0.502168991  3.49[-8] 0.501782845 8.0[—9]
3 0.502042248 3.04[-7] 0.502177729  3.87[-8] 0.501703959 8.4[—-9]
4 0.502057437 1.05[—7] 0.502188284  4.52[—3§| 0.501679911 8.9[—9]
5 0.502062991 8.23[—8] 0.502190477  5.18[—8] 0.501629933 9.3[—9]
6 0.502074433 5.66]—8] 0.502218831  6.64[—8] 0.501566726 9.9[—9]
17a 17b 17¢
1 0.501770913 5.23[—7] 0.501892919 9.2[—9] 0.501602006 7.1[-9]
2 0.501781091 3.12[-7] 0.501910027  1.33[—§] 0.501574091 7.5[—9]
3 0.501790081  1.40[—7] | 0.501929774 1.55[-8] | 0.501519911  8.2[—9]
4 0.501810058 8.04[—8] 0.501930944  2.13[—8] 0.501482099 8.7[-9]
5 0.501823911 5.11[-8] 0.501941153  2.92[-8] 0.501424002 9.1[—-9]
6 0.501833091 2.40[—8] 0.501950434  3.48[—8] 0.501394933 9.8[—9]
18a 18b 18¢c
1 0.501582091 4.68[—T7] 0.501688099 7.2[—-9] 0.501460919 6.6[—9]
2 0.501593993 2.09[-7] 0.501698553 7.9[-9] 0.501422999 6.9[—9]
3 0.501610071 8.00[—8] 0.501709004  8.22[—§] 0.501384444 7.3[-9]
4 0.501622977 5.44[-8] 0.501718821  8.98[—8] 0.501325002 7.8[-9]
5 0.501639033 2.11[-8] 0.501724022  9.31[—§] 0.501288137 8.1[—9]
6 0.501644747  9.2[—9] | 0.501733441 9.98[—8] | 0.501242007  8.7[—9]
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Table 4.8: Field-peturbed resonant energies E, and widths (in a.u.) for the 'D¢
n = 10 — 20 doubly excited Rydberg states below the N=2 threshold. Numbers in
square brackets indicate powers of ten.

F(kV/cm) —E, r/2 —E, —E, r/2 |
10a 10b 10c
1 0.505330499  4.445[—6] | 0.505029981 0.504808000  5.8[—9]
2 0.505347991  3.359[—6] | 0.505034011 0.504697932  6.7[—9]
3 0.505360005  1.995[—6] | 0.505047772 0.504580931  7.4[-9]
4 0.505372224  8.474[-7] | 0.505052998 0.50447119  7.9[-9]
5 0.505388184  6.555[—7] | 0.505062244 0.504336010  8.3[-9]
6 0.505399910  4.228[—7] | 0.505077911 0.504244057  8.9[—9]
1la 11b 1lc
1 0.504387009  3.865[—6] | 0.504155091 0.503942998  4.7[-9]
2 0.504398755  1.711[—6] | 0.504167999 0.503889919  5.4[—9]
3 0.504416464  8.03[—7] | 0.504173088 0.503816877  5.9[-9]
4 0.504420021  6.65[—7] | 0.504187211 0.503778004  6.3[—9]
5 0.504439383  4.42[-7] | 0.504192005 0.503724662  7.1[-9]
6 0.504444821  2.81[-7] | 0.504209111 0.503647938  7.8[—9]
12a 12b 12¢
1 0.503672259  1.023[—6] | 0.503488019 0.503299101  4.2[-9]
2 0.503680521  8.07[—7] | 0.503497714 0.503210111  4.9[-9]
3 0.503697811  6.44[—7] | 0.503509994 0.503179922  5.5[—9]
4 0.503700089  3.08[—7] | 0.503518348 0.503122818  5.9[-9]
5 0.503719989  1.22[-7] | 0.503520081 0.503060088  6.4[—9]
6 0.503720098  8.88[—8] | 0.503530991 0.503014099  7.0[—9]
13a 13b 13c
1 0.503118881  9.22[—7] | 0.502970891 0.502870091  4.0[—9]
2 0.503128839  7.01[-7] | 0.502987774 0.502808887  4.7[-9]
3 0.503137731  5.88[—7] | 0.502993008 0.502760421  5.3[—9]
4 0.503140096  2.99[-7] | 0.503010621 0.502703772  5.7[-9]
5 0.503156993  9.45[—8] | 0.503020189 0.502669389  6.2[—9]
6 0.503169918  7.02[—8] | 0.503038895 0.502580088  6.9[—9]
14a 14b 1l4c
1 0.502674991  9.00[—7] | 0.502567471 0.502417091  3.7[-9]
2 0.502682255  6.88[—7] | 0.502570093 0.502328009  4.2[—9]
3 0.502690089  4.05[—7] | 0.502582277 0.502294988  4.8[-9]
4 0.502702225  1.99[—7] | 0.502599008 0.502216071  5.3[—9]
5 0.502715585  8.22[—8] | 0.502601029 0.502158899  5.9[-9]
6 0.502726911  6.44[—8] | 0.502619081 0.502063310  6.1[—9]
15a 15b 15¢
1 0.502328009  8.33[—7] | 0.502239777 0.502106114  3.2[—9]
2 0.502331939  6.08[—7] | 0.502245989 0.502058188  3.9[—9]
3 0.502342241  3.12[-7] | 0.502254008 0.501983917  4.3[-9]
4 0.502357838  1.10[—7] | 0.502268887 0.501925949  4.8[-9]
5 0.502370112  7.01[—8] | 0.502272941 0.501887977  5.6[—9]
6 0.502382095  5.99[—8] | 0.502288012 0.501845009  6.0[—9]
16a 166 16¢
1 0.502129443  7.02[—7] | 0.502044557 0.501902255  2.8[—9]
2 0.502138029  5.10[—7] | 0.502057047 0.501876915  3.1[-9]
3 0.502146465  2.04[—7] | 0.502066120 0.501812156  3.7[—9]
4 0.502155172  9.55[—8] | 0.502078795 0.501766322  4.2[-9]
5 0.502162881  6.95[—8] | 0.502082227 0.501723364  4.8[—9]
6 0.502179194  4.43[-8] | 0.502096116 0.501695506  5.3[—9]
17a 17b 17c
1 0.501866142  1.02[—7] | 0.501806175 0.501653143  2.3[—9]
2 0.501873111  8.94[—8] | 0.501817223 0.501602159  2.7[—9]
3 0.501885521  7.56[—8] | 0.501823609 0.501558499  3.4[-9]
4 0.501897490  5.82[—8] | 0.501837747 0.501516471  3.9[-9]
5 0.501908355  3.06[—8] | 0.501848593 0.501471104  4.4[-9]
6 0.501919978  1.11[—8] | 0.501861678 0.501415494  4.9[—9]
18a 18b 18¢c
1 0.501624352  8.99[—8] | 0.501595521 0.501473833  1.8[-9]
2 0.501636115  6.50[—8] | 0.501610017 0.501427586  2.2[—9]
3 0.501644103  3.19[-8] | 0.501623846 0.501389292  2.5[—9]
4 0.501653053  1.17[-8] | 0.501635225 0.501318503  3.1[—9]
5 0.501667027  8.44[—9] | 0.501646493 0.501283500  3.7[-9]
6 0.501674821  7.38[—9] | 0.501653919 0.501195105  4.3[-9]
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Table 4.10: Given are resonant energies F, and widths (in a.u.) for the n = 10 — 20
doubly excited Rydberg states below the N=2 threshold in a dc field of 84.4 kV/cm.

Numbers in square brackets indicate powers of ten. n(a, b)* indicates the comparison

with Miheli¢ and Zitnik [44].

State —E, r/2 State —E, r/2 State —E, T/2
6a TS 0.517409310 3.58]—5] | 126 TP° 0.504100000 2.79[—6] | 16c 'P° 0.501305276  8.27[—7]
6a* 15¢ 0.517409314  3.58][—5] 12b 1 De 0.503622509  1.31[—7] 16¢ 1 D¢ 0.500943288  8.02[—§]
6a 1P°  0.514925658 2.84[—5] | 12¢ 'P°  0.502921101 9.13[—6] | 17a 'S¢  0.502088342  5.99[—8]
6a* 1 P° 0.514925667  2.84[—5] 12¢ 1 D¢ 0.502700813  9.34[—8§] 17a 1P°  0.501939811 8.91[—9]
6a 1D 0515412563 6.47[-5] | 13a 1S¢  0.503522901 2.39[—7] | 17a 'D¢  0.502035355 8.77[—9)
6b 1S 0.512779312 7.23[—6] | 13a 'P° 0503229219 8.11[-8] | 17b 'S¢  0.501800911  9.55[—9]
6b 'P°  0.518215577 1.16]-5] | 13a 'D®  0.503309887 3.01[—8] | 17b 'P°  0.502059991  8.01[—7]
6b* 1P°  0.518215592 1.16]—5] | 13b1S°  0.503037528 8.00[—8] | 17b D¢  0.502034894 1.93[§]
6b 1 D¢ 0.515551648  5.71[—5] 13b 1 pe 0.503589292  2.09[—6] 17¢ 1P° 0.501250981  8.12[—7]
6b* 1D 0.515551667 5.71[—5] | 13b 1D  0.503100877 1.01[-7] | 17c¢ 'D®  0.500821971  7.96]—8]
6c 1 pe 0.512274088  1.74[—5] 13¢ 1pPe 0.502391982  8.99(—7] 18a 1S¢ 0.501855299  5.50[—8]
6c* 1P 0.512274095 1.74[-5] | 13¢ 'D¢  0.501394831 8.76[—8] | 18a 'P°  0.501747771  6.54[—9]
6c DS 0512957138  8.92[-7] | 14a 'S®  0.503000852 1.00[—7] | 18a D 0.501832134  4.03[—9]
6c* 1De 0.512957142  8.92[—7] | 14a 'P°  0.502820915 4.55(—8] | 18b1S°  0.501623239 8.91[—9]
10a 'S¢  0.505921049 8.33[—7] | 14a 'D®  0.502840088 2.35[—8] | 18b 1P°  0.501848888  6.33[—7
10a 1 P° 0.505322941  6.22[—7] 14b 1€ 0.502634442  6.03[—8] 18b 1 De 0.501763682  9.55[—9]
10a 1D 0.505530061 8.45[—8] | 14b1P°  0.503009771 1.54[—6] | 18c 'P°  0.501148181 7.97[—8§|
106 1S¢  0.504957384 7.00[—8] | 14b 'De  0.502774469 9.80[—8] | 18c 'D¢  0.500639271  7.61[8]
106 1 pe 0.506038439  4.90[—6] 14¢ 1 P° 0.501988231  8.65[—7] 19a 15¢ 0.501699956  5.33[—8§]
106 'De  0.505260917  3.22[-7] | 14c 'D¢  0.501143329 8.31[—8] | 19a 'P°  0.501626566 5.32[—9]
10c 1 Pe 0.504299313  9.44[—6] 15a 1Se 0.502688001  8.79[—8] 19a 1D 0.501735460 2.42[-9]
10c 'D¢  0.503881002  2.13[7] | 15a 'P°  0.502471231 2.11[—8] | 196 'S¢  0.501549984  7.48[—9]
11a 'S¢ 0.504900134 4.34[-7] | 15a 'De  0.502500999 1.55[—8] | 196 'P°  0.501799184  4.02[—7]
11la 1 P° 0.504477811  2.88[—7] 15b 15e 0.502304622  1.01[—8] 196 1 De 0.501633447  9.01[—9]
1la 'D¢  0.504562020 7.22[—8] | 156 1P°  0.502688181 3.28/—6] | 19¢ 1P°  0.500860255 7.84]—8]
11b 1Se 0.504119513  8.50[—38] 156 1 De 0.502491120  9.77[—8] 19¢ 1 D¢ 0.500544645  7.36[—8]
116 1 pe 0.504976353  3.63[—6] 15¢ 1 P° 0.501600912  8.41[—7] 20a 15¢ 0.501599589  3.87[—§]
116 'De  0.504383822  2.38[—7] | 15¢ 'D¢  0.501005710 8.17[—8] | 20a 'P°  0.501439183  3.06[—9]
11c 1Pe 0.503546267  9.30[—6] 16a 1S€ 0.502304627  7.03[—8] 20a ' D¢ 0.500419308 7.22[-8]
1le 1De  0.503338182 1.83[—7] | 16a 1P°  0.502297223 1.88]—8] | 20b 1S°  0.501423276  6.41[—9]
12a 1Se 0.504102114  3.22[-7] 16a 1D 0.502309254 9.89[—9] 20b 1 pe 0.501540484  2.24[—7]
12a 1 P° 0.503750991  1.00[—7] 16b 1S€ 0.502100382  1.00[—§] 20b 1 De 0.501511179  6.92[—9]
120 'D¢  0.503845571 5.35[—8] | 16b 1P°  0.502344174 1.05]—6] | 20c 'P°  0.500755592  7.66]—8]
12b 15e 0.503688876  8.10[—§] 16b 1 De 0.502256425  6.83[—8] 20c 1 De 0.500431213  7.07[—§]




Chapter 5

Ab Initio 6D Treatment of the
Time-Evolution Dynamics for

Two-Electron Systems in
Few-Cycle XUV Laser Pulses

5.1 Introduction

Recent experimental progress in the generation of ultrashort xuv laser pulses has
made possible exploration of completely breakup problems of atoms and molecules
in a smaller time scale [50, 2, 72]. Using the xuv pulse in the time level of sub-
attosecond (as) allows us to peer into the exciting processes related to atomic inner-
shell spectroscopy. Complete photon-induced breakup problem of many-electron
atoms presents great challenges not found in single ionization process to theorists.
It is worthwhile to mention the recent theoretical effects to refine ab initio ap-

proaches to achieve the accurate and reliable results of the multiphoton, single, and

89
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double ionization of two-electron systems. Understanding the role of the correlation
effect in the (v,2e) and (27v,2e) process is the key to describing the helium ioniza-
tion mechanism. For the (v,2e) reaction, in the conventional independent-particle
approaches, only one electron is allowed to absorb a dose of the single photon energy.
To depict the dynamics behind the photoionization by absorbing a single photon, we
need to describe the process in a fully correlated picture at the outset. In addition to
the initial ground state, the correlation effect also enters into play for the final dou-
ble continuum states. As a consequence, the whole process shows a typical strongly
correlated characteristic and requires more comprehensive account for the correlation
effect. This sets up an obstacle to explain the experimental observations from an ab
initio point of view. Also, due to the short time duration of the xuv pulses, the de-
tailed theoretical description for this ionization process requires us to develop a fully
ab wnitio time-dependent approach. Describing the system in asymptotic region in
terms of the hyperspherical coordinates partially stimulates us to develop a fully cor-
related hyperspherical coordinates (HSC) approach to deal with the photon-induced
photoionization in xuv pulses. In this picture, the two electrons are treated on equal
footing either for the ground state and also the double continuum state. Here it is
interesting to point out that other approaches either the time-independent of time-
dependent theory, are limited in the so-called ”weak field” approximation. Neglecting

the coupling with other manifolds, only the scattering state with the 'P° symmetry
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is retained in the "weak field” approximation for other approaches. Here we have
developed the whole configuration space spanned by the spherical radius r; and rs is
discretized on the non-uniform spaced two-dimensional (2D) mesh.

In this work, we will develop a time-dependent generalized pseudospectral (TDGPS)
representation of the hyperspherical coordinates (HSC) technique, in which the physics
in the multiphoton, single and double photoionization can be effectively recaptured.
In the present work, the dynamics processes of the system under consideration will

be described in the hyperspherical coordinates system defined by the hyperradius

R=\/ri+r3 (5.1.1)

and hyperangle

o = tan"(ry/r1). (5.1.2)

The radial correlation is depicted by the hyperangle variable, while the angular cor-
relation is described by the coupled spherical harmonic functions. In the conven-
tional hyperspherical coordinates theory, the concept of adiabatic eigenchannel plays
a commanding role on the description of the three-body correlated Coulomb problems.
More recently, we have developed its time-dependent version in energy representation
to explore the fine-structure in the emitted spectrum of high-harmonics generation
of the laser-driven helium atom [26]. However, as we noted, only limited numbers
of the adiabatic eigenchannels, which are converging to the different He™ ionization

thresholds, can be incorporated in a practical calculation. Without combining other
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techniques, this limits us from handing the higher energy regime (F > 0) in which the
double photoionization takes place. This indicates that the double photoionization of
two-electron systems in hyperspherical coordinates can be coped only if the new idea
is introduced.

Mapping technique we have used for the HHG calculations [26] is also applicable
for the present photoionization processes in the Coulomb potential, in which most of
the dynamics processes dominates in the near nuclear region rather than the region far
from the nucleus. The former region can be effectively addressed by imposing a denser
grid distribution in the numerical calculations. The denser mesh near the nuclear
region provides a proper representation for the photoionization process, even for the
multiphoton ionization process. As one of the appealing features, the present strategy
allows to employ only the smaller numbers of mesh to discretize the configuration

space. This leads the practical calculates more manageable.

5.2 Generalized Pseudospectral Method in Hyper-

spherical Coordinates

In the conventional hyperspherical coordinates theory, the concept of the adiabatic
eigenchannel plays a commanding role on the description of the three-body correlated

Coulomb problems. More recently, we have developed its time-dependent version in
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energy representation to explore the fine-structure in the emitted spectrum of high-
harmonic generation of the laser-driven helium atom [26]. However, as we noted,
only limited numbers of the adiabatic eigenchannels, which are converging to the
different He' ionization thresholds, can be incorporated in a practical calculation.
Without combining other techniques, this limits us from handling the higher energy
regime (£ > 0) in which the double photoionization takes place. This indicates that
the double photoionization of the helium atom in hyperspherical coordinates can be
coped only if the new idea is introduced.

Some clues to overpass the above difficulty can be gleaned by recasting conven-
tional wave function in hyperspherical coordinates. After mapping the hyperradius
and hyperangle into the working space through R = R(z) and a = «a(y), the wave
function is not a function of the adiabatic channels. Because no adiabatic channels
are referred in the practical calculations, it allows us to effectively consider the physics

in the higher energy region, for example £ > 0.

We map the hyperradius R in a finite box [0, R4 into the domain [—1, 1] by

1+z
Rlz)=L———, —-1<z<1 5.2.1
(0)=Li—pym —l<e<l, (52.1)

where v = 2L/R,4:, and hyperangle « in a finite angle [0,7/2] into the domain
[_17 1] by

aly)=5(1+y), -1<y<l (5.2.2)
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Mapping technique we have used for the HHG calculations [26] is also applicable

for the present double photoionization process in the Coulomb potential, in which
most of the dynamics processes dominates in the near nuclear region rather than
the region far from the nucleus. The former region can be affectively addressed
by imposing a denser grid distribution in the numerical calculations. The denser
mesh near the nuclear region provides a proper representation for the photoionization
process, even for multiphoton ionization process. As one of the appealing features,
the present strategy allows to employ only the smaller numbers of mesh to discretize

the configuration space. This leads the practical calculations more manageable.

In the HSC formulism, the Schrodinger equation of the helium atom in field-free

case can be written as

1 92 1 1 9? 12 2
e — -+ +—2
20R? 8R? 2R2 da?  cos?a  sin‘a

CAI/)(R, , Ql, QQ) = E%(R, a, Ql, Qg),

L 1 A A . 1
R cosa  sina \/1 — sin(2a) cos 019
(5.2.3)

where here the wave function is (physical space to model space) ®(R, a2y, Q) =

R'(z)®(x,y,,8). Inserting the following equations (physical to model space)
into Eq. (5.2.3):

o 9oy 490
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0? 16 02

Changing Eq. (5.2.3) from physical space (R, «, 2, s) to model space (z,y, 21, $22)
we have the following form:

11 0 15VR (1) 2R(@)R"(x) — 3R (x)R' ()
R( )8£L‘2+ SRQ(ZE) 4R/(ZL‘) R’(I’)

@(CL’, Yy, Qh Qg)

+V R(2)

I
2R?(x) da(y)? = cos?a(y)  sin®a(y)

1 7 7 1
+R($) <_COSOé(y) B Sina(y) + \/1 _ SIH(QO_/(y)) COS 012)] (I)(l‘7y, Q1792)
= B\ R(2)®(z,y, 0, Q).
(5.2.6)

The hyperradial derivative term 2R'(z)R" (x) — 3R"(z)R"(xz) = 0. Then we insert

the hyperangle part of the second derivative which leads to the form:

SRR R S S i n 2
2R?(z) 0z*  8R*(z) 2R*(z) m0y?  costaly) sin®a(y)
! z Z 1 (5.2.7)
TR@ \Tosaly) smalm Bz, ,0,9
R(z) ( cosafy) sina(y) /1 —sin(2a(y))cos 912>] (2,9, 0, 2)

= E@(m,y,Ql, QQ)

After the projection out of the spherical harmonics Vi, i, (1) Viy.m, (€22), in the model

space spanned by (x,y, 21, $s), the total wave function takes the form

Oy, 0, %) = Y D > fil@) W) F (@, 1) Vi () Viy.ms (22), (5.2.8)

il 1 k

and the Schrodinger equation in terms of the hyperspehrical variables takes the form
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R S WS N (N SN SR
2 R?(x)0z? 8R%*(x) 2R?*(x) m0y?  costa(y) sin®a(y)

L1 (_ z __z 1 )]
R(z) cosa(y) sina(y) /1 —sin(2a(y)) cos by
(5.2.9)
X DD fal@) fily lz/l]f/ ¥ Vi () Vi s ()

ll l/ /k/

=L Zz.fz’ fk’ lzlll?’ lell,ml (Ql)ylz,mz(QZ)

ll ll /kl

The discretized Schrédinger equation in terms of the hyperspehrical variables takes

the form

uiy ik Nt L 1 ik N
S |- s SO ~ (s hudw Ol

l/ l/ /k/

8 i i k! N/ ]_ l? i ik N/
_—ﬂ.QRQ (Iz) 5@'@'/ng/ Olil; F}/ l/ + 2R2 (le) COS2 a(yk) 5ii/6kk/ @lilz (1)}7}/ l/
1 12 n o 1 Z Z
+ Sir Ok Ol (2)F) " + - — =
2R2(x;) sin® a(y) o Oy (2) hly R(x;) \ cosa(yr) sina(y)
i ’ 1
X 8iis O O 12 E, ,’? N m&i/%«

1
/1 —sin(2a(y)) cos O19

X <yll,m1 (Ql)yb,mz (QQ)

’LklN/ ll2 ,L/k./N/
XV ()i (00)) iy ™ | = B | 555 b O F ™ |

i, ik
(5.2.10)

where the matrix element of the kinetic energy, K7, in the hyperradius direction and

K},,, in the hyperangular direction is defined by
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T 82f2/($)
% fr (y)
K, 5.2.12
kk ayQ v ( )

",
Here, Oy12 =< Vi my () Vg sy (1) >< Vg my (22) | Vg g (€22) >
= 01,14 011, Ormym, Omomy, 18 the overlap matrix. Throughout the angular momentum M
is conserved M = 0, so therefore we can exclude all angular momentum quantum

number M. In Eq. (5.2.9), we define the angular integrals as follows

St (1) = (Vtuan () Vi ma(22) |2 Vi () Vi (92) ) = (05 + 1y
(5.2.13)

@ﬁ;ﬁ;( 2) = <y11 ma (1) Vigms (£22) ‘l ‘yl’ Q1) m2<QQ)> ly(ly + 1)1, 1,1, -
(5.2.14)

The separation of the total Hamiltonian, H, lljfkk , into the kinetic energy, Y}lllljzlkk , and

///

the potential energy, Vl iy ikk , matrices takes the form

11k 1 1
Ellljik - 2R/2( )IC 6kk 8R2( )517, Kkk’dlll/ 5l21’2, (5215)

and
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ik 1 s s s L L+
hlzik 8R2(z;) MR T * 2R?(x;) cos? a(yy)
1 b +1) 1 ( Z 4 )

84ir Otk Oy 17 Oty — —
2R?(x;) sin® a(y) kOt Oty F R(xz;) \ cosa(yy) sina(yg)

Oiit Ok Oy 11 Ol

— rL(yn) un
X O4ir Ot Ot 17 Oty + Ot Ot Tl L2 (1),
1=0 T> (yk)

(5.2.16)

where the angular quantity L%é(l) is given in terms of the angles of the vectors ry,

and ry by the spherical harmonic addition theorem:

l

4,
Zl myl,myl,m

Ll

Llllg (l) - <yl17m1 (Ql)yZQ,mz (92)

Vit (20) Vi mt, (22) >

m=—

Loan [+ D@+ DRE+1) [+ 120+ )21, + 1)
:mz:;l2l+1\/ A \/ A

Lol A4 L 11, b 11
X .
00 0 0 —m 0 00 0 0 m 0
(5.2.17)

The discretized second derivatives in x, and y for the hyperradius and hyperangle for

the Gauss-Lobatto quadrature is defined by:

. . N(N+1)
ge = Ple@) [ i=T 5 (5.2.18)
[ - i . _1)i+1 ) e
Ox? o=z i £ (—2) (gjii)zil)Q Vwir Jw;
S 1. N(NA1)
v Pl ) TEI (5.2.19)
33’ 2 - . . —1)J+1 ’ -
O lymy, 377" (—%W\/w/%

Another advantage of the present GPS technique is that is does not require to cal-

culate the complicated and time-consuming matrix elements of the Coulomb repulsion
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interaction, since only the values of the Coulomb potentials in the spatial mesh are
needed. Furthermore both the hyperradius R and hyperangle o are discretized in
an optimal and nonuniform fashion, namely, more grid points are placed nearby the
nucleus and sparser grid structure outward, with the use of only a modest number of
grid points. This speeds up considerably the numerical calculation and at the same
time provides an accurate wave function at the grid points.

Once the total wave function is obtained we can use this to determine the radial

expectation values < r >, for the bound states of helium:

< \IJ(rl,r2)|1/2(r1 +T2)|\I/(I'1,I'2> > . (5220)
In Hyperspherical coordinates, Eq. (5.2.20) is recasted into the following form:

< VU(R, o, 0, )|1/2(Rcosa + Rsina)|V(R, a, 24, €s) >

N . N (5.2.21)
=D Fl(ay) - 1/2(R(x;) cos alye) + R(z:) sinaly)) - B, (2, y).

ik Uil

The accuracy of the present HSC technique has been demonstrated through com-
parisons with benchmark energy values of the helium atom. Table 5.1 list the energy
of the ground and low-lying states of helium in the field-free case. Only a modest
number of grid points, for example Nr x N, = 100 x 40, and only a few partial waves
(I; = ly = b), is employed to yield the the results listed in Table 5.1. In most cases,

the present results are accurate up to at least six digits, which accuracy are sufficient
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to explore the dynamical response of the two-electron atoms in the time-dependent

laser pulses.

Table 5.1: Energies of the ground and low-lying excited states of the helium atom.
No effect of finite nuclear mass is included in the present and literature values. All
energies are given in a.u.

States This work Ref. [17]
Singlet state

1s% 15¢ -2.903722 -2.903724
1s2s 'S¢ -2.145974 -2.145974
1s2p 'P° -2.123841 -2.123843
1s3s 15¢ -2.061270 -2.061271
1s3p 1P° -2.055145 -2.055146
1s3d D¢ -2.055620 -2.055620
1s4d D¢ -2.031280 -2.031279

Triplet state

1s2s 38¢ -2.175229 -2.175229
1s3s 3S° -2.068693 -2.068698
1s2p 3P° -2.133163 -2.133164
1s3p 3P° -2.058080 -2.058081
1s3d 3D¢ -2.055636 -2.055636
1s4d 3D¢ -2.031285 -2.031288

The oscillator strength of helium is defined in the dipole-length formula as,

fl = Q(Ef — Ez)‘ < \Iff(rl,rz)]zl —+ Zgl\I’i(I'l,I‘2) > ‘2. (5222)

In Hyperspherical coordinates, Eq. (5.2.22) is recasted into the following form:
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fi=2(Ef — E)| < V(R a,Qy, Q) |Rsinacos ) + Rcos acos 0|V (R, o, Qp, Q) > |
(5.2.23)

While selected radial distributions and oscillator strengths between low-lying states

are listed in Table 5.2. Such an accuracy reported here cannot be achieved by means
of commonly used equal-spacing discretization methods without the use of many-

orders-of-magnitude larger grid points.

Table 5.2: Comparison of the radial expectation and oscillator strengths of the helium
atom. No effect of finite nuclear mass is included. All energies are given in a.u.

States This work Ref. [15]
Radial expectation

11se 0.929451 0.929452

2 15¢ 2.973276 2.973276

2 1pe 2.911075 2.911076

3 D¢ 5.615657 5.615658

Oscillator strengths

1S — 2'P 0.2721 0.2721
21§ — 2'P 0.3761 0.3761
2'P — 3D 0.7098 0.7098
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5.3 Time-Dependent Generalized Pseudospectral

Approach in Hyperspherical Coordinates

Application of hyperspherical coordinates technique to a few-electron atomic systems
in the field-free case is far from new, however, its time-dependent version is still under
development. Numerical stable and accurate algorithms are required for treatment
of the interaction of the atomic system with intense laser fields and the physical
quantities of interest can be then extracted from time-dependent wave functions.
Having obtained the the eigenstates and in the field-free case, the solution of the
time-dependent Schrodinger equation in the linearly polarized laser-driven fields can
be expanded in terms of the field-free eigenstates. The time propagation of the wave
functions in the laser fields can be obtained by the well-known second-order split-

operator technique in energy representation.

We generalize the TDGPS techniques to the hyperspherical coordinates for nonuni-
form spatial discretization of the Hamiltonian and for performing the time propaga-
tion of the wave function by means second-order split-operator technique in energy
representation. The time-dependent wave function, namely

O(x,y, N, Qo t) = Z Z Z fi(x)fk(y)ﬂiﬁ;]v(% Y, t)yll,rrn (Ql)ylg,mg (Q2). (5.3.1)

il 1 k

Equation (5.3.1) is used to propagate the two-electron wave packet in time by the
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second-order split-operator technique in the energy representation. The time evolu-

tion equation

O(R, a, Qy, Dy, t + At) = ¢ oA VIFARAAIDARG (R, o, Oy, Oy, 1) + O(AL?),
(5.3.2)

where Hj stands for the field-free Hamiltonian and V' (¢) is the interaction of the helium

atom with laser pulses. Here the electric field E(t) has a sin? envelope function f(t)
and is linear polarized along the z axis. In the energy representation, we obtain the so
called S matrix in hyperspherical space, which indicates the effect of the exponential
operator e~"H0A/2 on the wave function ®(R, a, Q1,$,t) in Eq. (5.3.2). Here the

S-matrix elements reads

Sl/kkl'lzlfzz' (At) = Ze_w]At/zFZk’]( )F;/l]f Mz, y), (5.3.3)

lilo
J

where ey denotes the energy spectra of the helium atom in the field free case. If we

choose the initial state Fl, 1 () as the ground state of He (1s?) and propagate with the

split operator, therefore, the time propagation can be obtained on the mesh through

the following three successive time steps

ik iklql
FD (. t) = >3 St (A0 Fi (o0, 1)

/k/ l/ l/

ik(2) 11 ik 1) .
Fyy (2,9,1) = ZZlelzl”l” x ?J>At)Fl’l’ (2, 9,1); (5.3.4)

iy U1

k(3 ikl 1 //k//
F}leg )('I’ y7 t + At Z Z SZ,,kl/,l%/l,, llllll )(Iv y7 t)

//k// l//l//
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For our present case, the Z matrix caused by the external laser fields is dependent

on time, while the S-matrix is independent of time and only needs to be constructed

once. The external laser field propagator matrix Z, namely

7 — o IVE+ALY2)AL _ —iB(t4+A/2)Al(z1+22)

—e — efiE(tJrAt/Q)At(R cos acos 01+ R sin a cos 02)

= Z (201 + 1)(2ly + 1)(—4)1H25, (—E(t + At/2) R cos a)

l1l2

X Ji,(—E(t + At/2)Rsin ) Py, (cos 01) P, (cos 65)

— f:(zl1 + 1) (2l + 1)(—4)" 25, (= E(t + At/2) R cos o)

l1ls

X i, (—E(t+ At/2)Rsin )y | ==V, 0(0)y/ =——=Vin.0(Q2),

(5.3.5)

2l1—|—1 212+1

where j is the spherical bessel functions and P are Legendre polynomials which are

expressed as spherical harmonics Y, hence, P(cosf) = \/4m /(21 + 1)V, o( . Here,
we will explain one time propagation of the wave function by the laser field, namely

Eq. (5.3.5) multiplied to the time-dependent wave function defined by
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e—iE(t—l—At/Q)At(R(ac) cos a(y) cos 1+ R(x) sin a(y) cos 62)(13(I, v, Qla 92)

— Z 2l + 1) (2l + 1) (—i)+7

X g (—E(t+ At/2)R(x) cos a(y))ji, (—E(t + At/2)R(z) sin a(y)) am

211+1yll o(Sh)

leO 2) ZEZZ('%.?yvt)yl’l,m’l (Ql>yl’2,m’2(92)

lily

—ZZ (201 + 1)(2l + 1)(—=0)" 25y, (~E(t + At/2)R(x) cos a(y))

Lile 101

X jin(~B(t + At/2)R(z) sin a(y)) Fy (. y.1)

4
- \/%/yzl’ml (Ql)yll’o(Ql)ylll,m’I (Ql)dQl
8 \/%j/yb ma (§22) Vs, O(QQ)yl' (Qg)d92

_ZZ (201 + 1)(2ly + 1)(=1)" 25y, (= E(t + At/2) R(x) cos a(y))

Lile 101

X Ji,(—E(t + At/2)R(x) sin a(y)) fllkjé (z,y,t) /2[141 1 \/(2L1 + 1)(2131: )2 +1)

2R Ly L I 5 [ Am \/(2L2+1)(2l2+1)(2l’2+1)
0 0 0 —ml 0 o, ) TV 20+ 1 A
Ly 1y 1 Ly Iy I

X 5m2m/2.
0 0 0 —mly 0 m

Based on the equation above we can accurately propagate the time-dependent wave

2l2—|—1

(5.3.6)

function by the external laser field, which explicitly depends on time. Once the
time-dependent wave functions are calculated, we can calculate the time-dependent

ionization probability
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P=1-N(t), (5.3.7)

where

N(t) =< &(1)|®(¢) >, (5.3.8)

and the time-dependent survival probability of the 1s? ground-state orbital

S(t) =< By,2(0)|D(t) > . (5.3.9)

Figure 5.1 presents the time-dependent population of the helium atom, as defined in

Eq. (5.3.8). The slope of the decay of the electron population in time describes the
ionization rate. Figure 5.2 presents the time-dependent survival probability of the
helium atoms ground-state orbital (1s?),as defined in Eq. (5.3.9).

Once the time-dependent wave function is obtained the induced dipole moment
(Fig. 5.3) and dipole acceleration can now be expressed in hyperspherical coordinates

on the mesh, respectfully, as

dp(t) = <<1> ) iz o t)>

= (P(z,y, 21, Q9,t)|R(z) cos a(y) cos 0y + R(x) cos a(y) cos Oo|P(x, y, 21,00, 1))
=33 (B cos alu) Frik (e, . ) Bl (2, 9.1)
ik lila U1

X <yl1,m1 (Ql)| COos 91|y1'1,m/ (91)>

1

(R () sin a(yp)) Fos (@, y, ) Gy (2,9, 1) (Vi my (Q2)] cos 2]V m2(92)>} :
(5.3.10)
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where the angular integration over electron-one, hence, cos 6, is the following

Ih+1
(Yismi ()| €0 01V g (1)) = ([(2[/ +1)(2l + 3)]1/25111 {+10my m
l/
5 I 5 /
e =D et mwm) )

(5.3.11)

and

Z {—— + Eof( )sm<w0t>1

=

where V,(1/r) = —z/r3, which is the first derivative of the potential with respect to

<I>(t)> (5.3.12)

The corresponding HHG power spectrum (Fig. 5.4) can now be obtained by the
Fourier transformation of the respective time-dependent dipole moment or dipole

acceleration:

= |dp(w)|% (5.3.13)

and

2

11 [y
= |da(w)*. (5.3.14)

_ dL (t)efiwt
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Figure 5.1: The time-dependent population of He in 800 nm, 1 x 10* W /cm? sin?

pulse laser field with 10 optical cycles in pulse duration.
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Figure 5.2: The time-dependent survival probability of He (ground-state 1s?) in 800
nm, 1 x 101 W/cm? sin? pulse laser field with 10 optical cycles in pulse duration.



110

0.08 ' ' ' ' ' -
0.06- -
0.04- -
0.02- -

0.00

<¥(t)|z|'¥(t)>

-0.02 - -
-0.04 -
-0.06 -

-0.08 -

Time (optical cycle)

Figure 5.3: The induced dipole moment of He in 800 nm, 1 x 10 W /cm? sin? pulse
laser field with 10 optical cycles in pulse duration.
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Power Spectra

O
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Figure 5.4: Harmonic generation of He in 800 nm, 1 x 10 W/cm? sin? pulse laser
field with 10 optical cycles in pulse duration.
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5.4 Conclusion

In summary, we have presented a nonperturbative ab initio time-dependent hyper-
spherical coordinates approach for the exploration of the correlated quantum dynam-
ics and the emitted HHG power spectra of the two-electron atomic systems in intense
laser pulses. The current TDGPS approach developed in hyperspherical coordinates
is shown to be capable of providing accurate time-dependent wave function with only
the use of moderate number of grid points. Extension of the present work for the
treatment of the doubly ionization process is in progress. This will be based on the
competition between the different mechanisms leading to the breakup of the system.
The two channels leading to double ionization are open by adsorption of two photons

with frequency (w = 57 eV.). One is sequential

hw + He — He™ + ¢,

and

hw + Het — He™™ 4+ ¢™.
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And another is nonsequential

2hw + He — Hett 4 2¢7.

Regarding the mechanisms leading to double photoionization, there are many aspects

which are worthwhile to be explored in detail, since experimental progress in the gen-
eration of ultrashort xuv laser pulses has made it possible for exploration of complete

breakup problems of atoms and molecules in a smaller time scale.
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