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Abstract

The study of the electron correlation and quantum dynamics of many-electron atoms

and molecules in the presence of intense external fields is a subject of much current

importance in science and technology. While experimental breakthroughs constantly

challenge theorists, the reverse is also true, with theorists suggesting new experi-

mental paths and novel ways to reach exciting regimes where new physics can be

explored. For example, we have recently developed ab initio methods and appli-

cations to study time dependent quantum dynamics of atoms and molecules which

cannot be understood by traditional perturbation theories. Moreover, currently there

exist no adequate methods capable of studying the dynamical role of the individ-

ual valence electron to the high-order harmonic generation (HHG) and multiphoton

ionization (MPI) processes in strong fields. Such a study can provide insights regard-

ing the detailed quantum dynamics and HHG mechanisms, as well as the optimal

control of strong-field processes. To advance this strong-field atomic and molecular

physics, this dissertation aims at the developing new theoretical formalisms and ac-

curate computational methods for ab initio non-perturbative studies of atomic and

molecular processes in intense laser fields. The new methods developed allow in-depth

and precision studies of strong-field phenomena for multielectron systems.

In this dissertation we investigate the role of electron correlation in dynamics of

multielectron systems subject to strong fields. We present a time-dependent density

functional theory (TDDFT), with proper asymptotic long-range potential, for non-

perturbative treatment of multiphoton processes of homonuclear and heteronuclear

diatomic molecules in intense ultrashort laser fields. A time-dependent two-center

x
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generalized pseudospectral method is presented for accurate and efficient treatment

of the TDDFT equations in space and time. The procedure allows nonuniform and

optimal spatial grid discretization of the Hamiltonian in prolate spheroidal coordi-

nates and a split-operator scheme in the energy representation is extended for the

time propagation of the individual molecular spin-orbital. The theory is applied to a

detailed all-electron study of multiphoton ionization (MPI) and high-order harmonic

generation (HHG) processes of N2 and CO molecules in intense laser pulses. The

results reveal intriguing and substantially different nonlinear optical response behav-

iors for N2 and CO, despite the fact that CO has only a very small permanent dipole

moment. In particular, we found that the MPI rate for CO is higher than that of N2.

Furthermore, while laser excitation of the homonuclear N2 molecule can generate only

odd harmonics, both even and odd harmonics can be produced from the heteronuclear

CO molecule.

Next, we present a complex-scaling (CS)-generalized pseudospectral (GPS) method

in hyperspherical coordinates (HSC) for an accurate ab initio and accurate treatment

of the electron structure and quantum dynamics of two-electron systems. The six-

dimensional coupled hyperspherical adiabatic-channel equations are discretized and

solved efficiently and accurately by means of the GPS method. The GPS method al-

lows non-uniform and optimal spatial discretization of the two-electron Hamiltonian

in HSC with the use of only a very modest number of grid points. The procedure

is applied for the precision calculation of the energies and widths of doubly-excited

Rydberg resonance states as well as the ionization rates of He atoms in an external

electric field.

Lastly, we present a time-dependent generalized pseudospectral (TDGPS) ap-

proach in hyperspherical coordinates for fully ab initio nonperturbative treatment

of multiphoton dynamics of atomic systems in intense laser fields. The laser-driven

two-electron system is described by hyperspherical close coupling scheme. A novel 6D

coupled time-dependent generalized pseudospectral method approach in hyperspheri-

cal coordinates are developed for single or double ionization without the use of the



xii

conventional adiabatic channels.

In conclusion, the present dissertation provides new developments in both theo-

retical and computational techniques, as well as advancements in the essential under-

standing of strong-field atomic and molecular physics.
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Introduction

Atomic, molecular, and optical (AMO) science demonstrates powerfully the ties of

fundamental physics and chemistry to society. Its very name reflects three of 20th

century physics’ greatest advances: the establishment of the atom as a building block

of matter; the development of quantum mechanics, which made it possible to un-

derstand the inner workings of atoms and molecules; and the invention of the laser,

which changed everything from the way we think about light to the way we store and

communicate information. The field encompasses the study of atoms, molecules, and

light, including the discovery of related applications and techniques.

Recently we begin to observe the processes of nature as they play out over times

shorter than a millionth of a billionth of a second (less than 1 femtosecond-that is,

in the attosecond regime). This remarkable new capability is enabled by advances

in ultrafast laser- and accelerator-based x-ray strobes, which can detect the motion

of electrons in atoms and molecules. It will become also feasible to control physical

phenomena on all of the timescales relevant to atomic and molecular physics, chem-

istry, biology, and materials science. These previously unavailable tools of quantum

1
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control could help tailor new molecules for applications in health care, energy, and

security.

New 21st-century tools also place us on the verge of the new discipline of quantum

control. This development is enabled by key advances in laser technology, which let

us generate light pulses whose shape, intensity, and color can be programmed with

unprecedented flexibility. Our ability to control the positions, velocities, and relative

spatial orientations of individual atoms and molecules has led to a broad array of pre-

cision measurement technologies and devices, leading to a wide range of experiments

that reveal qualitatively new phenomena. A new capability to manipulate the inner

workings of molecules is emerging: Lasers can now be used to control the outcome of

selected chemical reactions. This control technology may ultimately lead to powerful

tools for creating new molecules and materials tailored for applications in health care,

nanoscience, environmental science, energy, and national security.

AMO experiments have reached such high levels of sophistication, precision, and

accuracy that they are uniquely positioned to carry out the most demanding tests

ever conducted of some of the most fundamental laws of nature. The grand challenge

for theoretical chemist is to develop more rigorous approaches for probing atomic

and molecular physics in strong fields to explain current experimental observations.

Without the development, application and challenge of new theoretical ideas, atomic

and molecular physics will eventually be reduced to a description of experimental
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observations of physical events, supported only because of its intimate connections to

technology.

The study of atomic and molecular processes in intense ultrashort laser fields is

a subject of much current interest in science and technology. In particular, high-

order harmonic generation (HHG) is one of the hottest topics in strong-field atomic

and molecular physics today. To describe such strong-field processes using fully ab

initio wave-function approach, it is necessary to solve the (3n + 1) dimensional time-

dependent Schrodinger equation (TDSE) in space and time, where n is the number

of electrons. Today’s computers are doubling in performance every year or two, but

this is well beyond the capability of current supercomputer technology when n > 2.

Even for the two-electron (n = 2) case, high-precision fully ab initio 6D study of the

HHG of the He atoms was achieved only very recently. Due to the complexity of

many-body processes in intense laser fields, most theoretical approaches in the past

two decades adopt various approximations such as ADK (Ammosov-Delone-Krainov)

model [68], strong field approximations [45], and single-active-electron (SAE) [37],

which do not take into the account the detailed electron structure and electron cor-

relation. Although such models may provide qualitative information in weak laser

fields, there predictions are not reliable in stronger fields as seen in a number of re-

cent experiments. In this thesis, we explore in great detail the development of fully

ab inito and other more rigorous methods for investigation of atomic and molecular
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physics in intense laser fields. For many-electron molecular (n ≥ 2) systems, we have

performed self-interaction-free time-dependent density functional theory (TDDFT)

calculations for the non-perturbative treatment of multiphoton ionization (MPI) and

HHG processes of heteronuclear and homonuclear diatomic molecules in intense laser

fields. Here, we extend the TDDFT, with proper long range potentials, to the study

of multi-electron heteronuclear and homonuclear diatomic molecules (N2 and CO in

particular) with an aim to explore the dynamical role and nonlinear response of in-

dividual electron spin orbital as well as the effect of asymmetry of the molecules to

intense laser pulse fields, a subject of largely unexplored area of intense field AMO

physics.

The major problem with DFT is that the exact functionals for exchange and

correlation are not known except for the free electron gas, and must be approximated

for the total energy functional. Development of fully ab initio methods is needed to

describe the exchange and correlation energies exactly, without the use of DFT. Using

the GPS method with our refined DFT approach, we can predict ionization potentials

well within 3 to 5 % of experimental values [30]. New fully ab initio methods mean

now we can have more accurate or nearly exact treatment of electron correlation

of many-electron quantum systems in time-dependent fields which will be able to

reproduce experimental values, where the exchange and correlation can be taken into

account exactly.
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Therefore, we have developed a fully ab initio wave function approach for non-

perturbative treatment of two-electron atomic systems in static laser fields. The

method is based on the extension of the TDGPS method to the three-body quantum

systems in hyperspherical coordinates (HSC). Numerous theoretical investigations

have improved our understanding of the e-e correlation and the determination of the

autoionizing resonances of the double excited states of He in the last few decades [55].

In addition to fundamental interest, the energies, lifetimes, and oscillator strengths

of these doubly excited resonance states are also of significance in astrophysics and

plasma physics [23]. More recently there is considerable interest in the study of the

effect of static electric fields on doubly excited states of helium atoms below N = 2

threshold [21, 22, 20, 51, 77, 44]. To advance this field, we present a new computa-

tional method, the complex-scaling generalized pseudospectral (CSGPS) method in

hyperspherical coordinates (HSC), for efficient and accurate non-perturbative calcu-

lation of high-lying doubly excited states of He in the presence of weak and strong dc

electric fields below N = 2 threshold. Comparison with available experimental data

is made. In addition, we also present the energies and widths of field-free doubly

excited resonance states of He for n up to 20 for the first time.

Even for the simplest two-electron atomic system, non-perturbative treatment for

the single or double ionization also presents both practical and formal difficulties.

A 6D coupled time-dependent generalized pseudospectral approach in hyperspherical
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coordinates is developed for the ionization of helium without use of conventional adi-

abatic channels. This new method helps us understand the double ionization mech-

anism and explain experimental observations from an ab initio point of view. Also,

due to the short time duration of the xuv pulses, the detailed theoretical description

for this ionization process requires us to develop a fully ab initio time-dependent ap-

proach. In this work, we will present a TDGPS representation of the hyperspherical

coordinates technique, in which most physics in the single and double photoionization

can be comprehensively explored.

Our predicted results are in good agreement with available experimental data,

providing new physical insights regarding the effect of electron correlation on multi-

photon dynamics. However, much still remains to be explored, particularly fully ab

initio 6D calculation of the H2 molecule with use of our hyperspherical coordinates

and polyatomic molecular systems with use of DFT and our generalized pseudospec-

tral method. Further development of the TDGPS algorithm or other new algorithms

for the treatment of multi-center molecular dynamics in intense laser fields, with op-

timal and nonuniform spatial grid discretization around each nuclear center, is the

next challenge. Once this bottleneck can be resolved, it will open up a whole range of

exciting highly nonlinear optical new phenomena and attosecond strong-field AMO

processes to be explored.



Chapter 1

Generalized Pseudospectral
Method (GPS) for Bound and
Resonance State Problems in
Two-Centered Molecular Systems

1.1 Introduction

For atomic and molecular structure calculations involving the Coulomb potential,

one typical problem associated with commonly used equal-spacing grid methods is

the Coulomb singularity at r = 0 and the longrange nature of the potential. Generally

one truncates the semi-infinite (0,∞) domain into finite domain [rmin,rmax] to avoid

the Coulomb singularity at the origin and the infinite domain. For this purpose,

rmin must be chosen sufficiently small and rmax sufficiently large. This results in

the need of a large number of grid points. Further, extreme care must be exercised to

ensure the wave functions obtained from such discretization is of sufficient accuracy for

7
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performing reliable high-order harmonic generation calculations. The first step is to

map the semi-infinite domain [0, ∞] or [0, rmax] into the finite domain [−1,1] using a

non-linear mapping r = r(x), followed by the Legendre pseudospectral discretization.

This allows for denser grids near the origin, leading to more accurate eigenvalues and

eigenfunctions and the use of a considerably smaller number of grid points than those

of the equal-spacing grid methods.

Here we extend a generalized pseudospectral (GPS) method for optimal discretiza-

tion of the radial and angular coordinates to overcome some of the above mentioned

problems. The GPS method has been recently applied to the study of heteronuclear

diatomic molecules in intense laser fields [30].

We present a new two-center generalized pseudospectral method for numerical

integration of the Schrödinger equation which is computationally efficient and ca-

pable of providing more accurate solutions to the wave function for reliable study

of multiphoton processes in molecular systems. A detailed derivation of the GPS

method, molecular Hamiltonian and molecular Schrödinger equation is given in pro-

late spheroidal coordinates.
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1.2 The Generalized Pseudospectral (GPS) Method

for Bound State Eigenvalue Problems

The central part of the pseudospectral method is to approximate the exact function

f(x) defined on the interval [−1, 1] by Nth-order polynomial fN(x),

f(x) ∼= fN(x) =
N∑

i=0

f(xi)gi(x), (1.2.1)

and requires the approximation to be exact at the mesh points xi:

fN(xi) = f(xi). (1.2.2)

In the case of the Legendre pseudospectral method which will be employed here,

x0 = −1, xN = 1, and xi (for i = 1,...,N − 1) are the mesh points determined by

the roots of the first derivative of the Legendre polynomial PN(x) with respect to x,

namely,

P
′
N(xi) = 0. (1.2.3)

In Eq. (1.2.1), gi(x) are the cardinal functions defined by

gi(x) = − 1

N(N + 1)PN(xi)

(1− x2)P
′
N(x)

x− xi

(1.2.4)

and which satisfy the unique property

gi(xi′) = δi′i. (1.2.5)
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Consider the 1D eigenvalue problem for the radial Shrödinger equation [60, 8, 4, 5]

defined on the semi-infinite axis [0,∞] with Dirichlet boundary conditions:

Ĥ(r)ψ(r) = Eψ(r), ψ(0) = ψ(∞) = 0, (1.2.6)

where

Ĥ(r) = −1

2

d2

dr2
+ V (r). (1.2.7)

For atomic and molecular structure and dynamics calculations involving the Coulomb

potential, one major problem with the grid methods is the Coulomb singularity at

r = 0 and the long-range nature of the interaction. Here, we map the semi-infinite

domain r ∈ [0,∞] into the finite domain x ∈ [−1, 1] using the mapping transformation

r = r(x), (1.2.8)

and then use the Legendre pseudospectral discretization techniques. Then the follow-

ing algebraic mapping:

r = r(x) = L
1 + x

1− x + α
, (1.2.9)

where L is the mapping parameter. Generally the introduction of nonlinear mapping

can lead to an asymmetric or a generalized eigenvalue problem. Such undesirable
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features can be avoided by the following symmetrization procedure. Thus by intro-

ducing

ψ(r(x)) =
√

r′(x)f(x), (1.2.10)

we obtain the following transformed Hamiltonian, leading to a symmetric eigenvalue

problem (in atomic units):

Ĥ(x) = −1

2

1

r′(x)

d2

dx2

1

r′(x)
+ V (r(x)) (1.2.11)

We next present a generalized pseudospectral method with prolate spheroidal

coordinates for accurately calculating the bound and resonance states of diatomic

molecules. This technique is based on the extension of the generalized pseudospectral

method.

1.3 Two-Centered Generalized Pseudospectral Method

(GPS) for Molecular Systems

To introduce the concept of a two-centered GPS method we show the simplest case,

the field free one-electron Hamiltonian for the H+
2 molecule, in atomic units, can be

written as

Ĥ0 = −1

2
∇2 − Z1

|r−R1| −
Z2

|r−R2| (1.3.1)

where r is the electronic coordinate, and R1 = (0, 0,−a) and R2 = (0, 0, b) are the
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foci of the two nuclei in Cartesian coordinates. Z1 and Z2 are the effective charges

of the nuclei. The internuclear separation R is equal to (a + b). Now consider the

bare electronic Hamiltonian in prolate spheroidal coordinates (ξ, η, φ), 1 ≤ ξ < ∞,

−1 ≤ η ≤ 1, 0 ≤ φ ≤ 2π, where x, y, and z are transformed from Cartesian

coordinates to prolate spheroidal (shown in Fig. 1.1), namely,

x =
(a + b)

2

√
(ξ2 − 1)(1− η2) cos φ, (1.3.2a)

y =
(a + b)

2

√
(ξ2 − 1)(1− η2) sin φ, (1.3.2b)

z =
(a + b)

2
ξη. (1.3.2c)

Equation (1.3.1) can be recasted into the following form:

Ĥ0 = − 1

2a′2
1

(ξ2 − η2)

[
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η
+

(ξ2 − η2)

(ξ2 − 1)(1− η2)

∂2

∂φ2

]

− Z1(ξ − η)

a(ξ2 − η2)
− Z2(ξ + η)

a(ξ2 − η2)
,

(1.3.3)

where a′ = (a+b)/2, and a and b are the two nuclei positions. Due to axial symmetry

of the system, the solutions of the static Shrödinger equation

ĤΨ = EΨ, (1.3.4)
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Figure 1.1: A typical grid structure of the spatial coordinates of a diatomic molecule
obtained by the generalized pseudospectral (GPS) discretization technique.

take the form

Ψ(ξ, η, ϕ) = Φ(ξ, η)eiMϕ, (M = 0,±1,±2, ...). (1.3.5)

Because of the axial symmetry with respect to the z-axis, the projection M of the

angular momentum on the z-axis is conserved.

In the pseudospectral method, we expand Φ(ξ, η) by ΦNξ,Nη(ξ, η), the polynomials

of order Nξ and Nη in ξ and η, respectively,
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Φ(ξ, η) ' ΦNξ,Nη(ξ, η) =

Nξ,Nη∑
i=0,j=0

φ(ξi, ηj)gi[x(ξ)]gj[y(η)], (1.3.6)

and further require the approximation to be exact, i.e., ΦNξ,Nη(ξi, ηj) = φ(ξi, ηj) ≡ φij,

where {x(ξi)} and {y(ηj)} are the two sets of collocation points to be described below.

In Eq. (1.3.6), gi(x) and gj(y) are the cardinal functions [73, 76] defined as

gi(x) =
−1

Nx(Nx + 1)PNx(xi)
· (1− x2)P ′

Nx
(x)

x− xi

(1.3.7)

gj(y) =
−1

Ny(Ny + 1)PNy(yj)
· (1− y2)P ′

Ny
(y)

y − yj

(1.3.8)

In the case of the Legendre pseudospectral method [73, 76], which we will use

throughout, the boundary points are x0 = y0 = −1 and x0 = y0 = −1 and xNξ
=

yNη = 1. xi(i = 1, ..., Nξ − 1) and yj(j = 1, ..., Nη − 1) are the collocation points

determined, respectively, by the roots of the Legendre polynomial PNξ
with respect

to x and PNη with respect to y, namely,

PNξ
(xi)− PNξ+1(xi) = 0, (1.3.9)

PNη(yj) = 0. (1.3.10)

It follows that the cardinal functions possess the following unique properties:

gi(xi′) = δi′i, (1.3.11)
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gj(yj′) = δj′j. (1.3.12)

We shall use the following mapping transformations for the coordinates pseudoradial

ξ and pseudoangular η:

η(y) = y, −1 ≤ y ≤ 1, (1.3.13)

ξ(x) = 1 + L
1 + x

1− x + α
, −1 ≤ x ≤ 1, (1.3.14)

ξ′(x) =
dξ

dx
= 2L

1 + α

(1− x + α)2
, (1.3.15)

L being the mapping parameter. The variables x and y are discretized using Legendre-

Gauss-Radau for xi and Legendre-Gauss scheme for yj. The sets of collocation points

are determined by Eqs. (1.3.9) and (1.3.10). Having constructed the mesh structure,

we define a set of discrete weights

wx
i =

1

(Nξ + 1)2

1 + xi

[PNξ
(xi)]2

, (1.3.16)

wy
j =

1

(1− y2
j )[P

′
Nη

(yj)]2
, (1.3.17)

and a pair of discrete matrices dx and dy, which generate approximate integrals and

partial derivatives on the mesh according to the relations (where F is a function of x

and y):

∫ 1

−1

F (x, y)dx =
Nx+1∑
i=1

wx
i F (xi, y), (1.3.18)
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∫ 1

−1

F (x, y)dy =

Ny∑
j=1

wy
j F (x, yj), (1.3.19)

∫ 1

−1

∫ 1

−1

F (x, y)dxdy =
Nx+1∑
i=1

Ny∑
j=1

wx
i w

y
j Fij, (1.3.20)

and

dF

dx
(xi, y) =

Nx+1∑

i′=1

Dx
ii′F (xi′ , y), (1.3.21)

dF

dy
(x, yj) =

Ny∑

j′=1

Dy
jj′F (x, yj′), (1.3.22)

where

Dx
ii′ = dx

ii′
(1 + xi′)PNξ

(xi)

(1 + xi)PNξ
(xi′)

, (1.3.23)

Dy
jj′ = dy

jj′
P ′

Nη
(yj)

P ′
Nη

(yj′)
, (1.3.24)

and the derivative matrices

dx
ii′ =

1

xi − xi′
(i 6= i′), dx

ii =
1

2(1 + xi)
,

dx
Nξ+1,Nξ+1 =

1

4
Nξ(Nξ + 2),

(1.3.25)

dy
jj′ =

1

yj − yj′
(j 6= j′), dy

jj =
yj

1− y2
j

. (1.3.26)

Direct pseudospectral discretization of the Hamiltonian in Eq. (1.3.3) leads to an

asymmetric eigenvalue problem. To symmetrize the Hamiltonian discretization, we

consider the alternate but equivalent form of the Shrödinger equation
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δ
∫

d3rψ∗(Ĥ − E)ψ

δψ∗
= 0. (1.3.27)

First, we will solve the unperturbed eigenvalue problem and obtain the eigenvalues

and eigenfunctions:

[−1

2
∇2 + U(ξ, η)]Ψ(ξ, η, ϕ) = EΨ(ξ, η, ϕ). (1.3.28)

Here the kinetic energy operator in prolate spheroidal coordinates reads as:

−1

2
∇2 = − 1

2a′2
1

(ξ2 − η2)

[
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η
+

(ξ2 − η2)

(ξ2 − 1)(1− η2)

∂2

∂φ2

]
,

(1.3.29)

and the coulomb interaction with the nuclei is as follows:

U(ξ, η) = − Z1(ξ − η)

a(ξ2 − η2)
− Z2(ξ + η)

a(ξ2 − η2)
. (1.3.30)

The volume element:

dxdydz = a′3(ξ2 − η2)dξdηdφ. (1.3.31)

Since the wave function Ψ(ξ, η, ϕ) can be represented in separable form (Eq. 1.3.5),

and separate eigenvalue problems for different |m| are obtained [58],

− 1

2a′2
1

(ξ2 − η2)

[
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η
− m2

ξ2 − 1
− m2

1− η2

]
Φm

− Z1(ξ − η)

a(ξ2 − η2)
Φm − Z2(ξ + η)

a(ξ2 − η2)
Φm = EΦm.

(1.3.32)

To solve Eq. (1.3.32), we first convert to equivalent variational forms, different for
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even and odd m. We have

δ

{
1

2a′2

∫ ∞

1

dξ

∫ 1

−1

dη

[
(ξ2 − 1)

∂Φ∗
m

∂ξ

∂Φm

∂ξ
+ (1− η2)

∂Φ∗
m

∂η

∂Φm

∂η

+

(
m2

ξ2 − 1
+

m2

1− η2

)
Φ∗

mΦm

]
− 1

a′

∫ ∞

1

dξ

∫ 1

−1

dη (Z1(ξ − η) + Z2(ξ + η)) Φ∗
mΦm

−E

∫ ∞

1

dξ

∫ 1

−1

dη(ξ2 − η2)Φ∗
mΦm

}
= 0

(1.3.33)

for even |m| and

δ

{
− 1

a′

∫ ∞

1

dξ

∫ 1

−1

dη (Z1(ξ − η) + Z2(ξ + η)) Φ∗
mΦm +

1

2a′2

∫ ∞

1

dξ

∫ 1

−1

dη

×
[

(ξ2 − 1)2

ξ2

∂

∂ξ

(
ξ√

ξ2 − 1
Φ∗

m

)
∂

∂ξ

(
ξ√

ξ2 − 1
Φm

)

+(1− η2)2 ∂

∂η

(
1√

1− η2
Φ∗

m

)
∂

∂η

(
1√

1− η2
Φm

)

+

(
m2 − 1

ξ2 − 1
+

m2 − 1

1− η2
+ 2 +

2

ξ2

)
Φ∗

mΦm

]
− E

∫ ∞

1

dξ

∫ 1

−1

dη(ξ2 − η2)Φ∗
mΦm

}
= 0

(1.3.34)

for odd |m|. This is done to ensure accurate numerical solutions of the Shrödinger

equation (differential equations) for both even and odd projections of angular mo-

mentum.

The matrix eigenvalue problems which appear after the discretization of Eq. (1.3.32)

can be written can be written as follows for even m values,

∑
i′j′

[
T e

ij,i′j′ −
(

Z1(ξi − ηj)

a(ξ2
i − η2

j )
− Z2(ξi + ηj)

a(ξ2
i − η2

j )

)
δii′δjj′

]
Φm;i′j′ = EΦm;i′j′ , (1.3.35)
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and odd m values,

∑
i′j′

[
T o

ij,i′j′ −
(

Z1(ξi − ηj)

a(ξ2
i − η2

j )
− Z2(ξi + ηj)

a(ξ2
i − η2

j )
+

1 + ξ−2
i

a2(ξ2
i − η2

j )

)
δii′δjj′

]
Φm;i′j′

= EΦm;i′j′ ,

(1.3.36)

respectively. Next, we construct the kinetic energy matrices T e,o
ij,i′j′ for even m values,

T e
ij,i′j′ =

1

2a′2

[
δjj′

η′j
(1− y2

j )

Nx∑

k=1

1

ξ′k

(ξ2
k − 1)

(1− x2
k)

D
(x)
ki D

(x)
ki′

+δii′
ξ′i

(1− x2
i )

Ny∑

k=1

1

η′k

(1− η2
k)

(1− y2
k)

D
(y)
kj D

(y)
kj′

]

×
√

(1− x2
i )(1− y2

j )

ξ′iη
′
j(ξ

2
i − η2

j )

√
(1− x2

i′)(1− y2
j′)

ξ′i′η
′
j′(ξ

2
i′ − η2

j′)
+ δii′δjj′

1

2a′2
m2

(1− η2
j )(ξ

2
i − 1)

,

(1.3.37)

and odd m values,

T o
ij;i′j′ =

1

2a′2
1√

(ξ2
i − η2

j )(ξ
2
i′ − η2

j′)

×
{

δjj′

√
(1− x2

i )(1− x2
i′)ξ

2
i ξ

2
i′

ξ′iξ
′
i′(ξ

2
i − 1)(ξ2

i′ − 1)

Nx∑

k=1

1

ξ′k

(ξ2
k − 1)2

ξ2
k(1− x2

k)
D

(x)
ki D

(x)
ki′

+δii′

√
(1− y2

j )(1− y2
j′)

η′jη
′
j′(1− η2

j )(1− η2
j′)

Ny∑

k=1

1

η′k

(1− η2
k)

2

(1− y2
k)

D
(y)
kj D

(y)
kj′ + δii′δjj′

(
2

η2
i

+2 +
m2 − 1

2a2(ξ2
i − 1)(1− η2

j )

)}
,

(1.3.38)

respectively. The kinetic energy matrices in Eqs. (1.3.37) and (1.3.38) were derived

from a set of equations that give direct solution to the operator for the kinetic energy,

given by
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< Θ

∣∣∣∣−
1

2
∇2

∣∣∣∣ Φ > = 2πa′3
∫ ∞

1

dξ

∫ 1

−1

dη
1

2a′2

[
(ξ2 − 1)

∂Θ∗

∂ξ

∂Φ

∂ξ

+(1− η2)
∂Θ∗

∂η

∂Φ

∂η
+

M2

(ξ2 − 1)(1− η2)
Θ∗Φ

]
.

(1.3.39)

In Eq. (1.3.39) the matrix elements derivatives for the pseudoradial and pseudoangular

must be derived from the following set of equations:

(ξ2 − 1)
∂Θ∗

∂ξ

∂Φ

∂ξ
=

Nx∑
i=1

ξ′i
(1− x2

i )
(ξ2

i − 1)
∑

k=1

1

ξ′i
DikΘk

∑

l=1

1

ξ′i
DilΦl, (1.3.40)

where

∂

∂ξ
=

∂x

∂ξ

∂

∂x
=

1

ξ′
∂

∂x
. (1.3.41)

The integration matrix for Eqs. (1.3.33), (1.3.34), and (1.3.39) takes the form,

∫
drΘ∗Φ = 2πa′3

Nx∑
i=1

Ny∑
j=1

Θ∗
ijΦij(ξ

2
i − η2

j )
ξ′i

(1− x2
i )

η′j
(1− y2

j )
. (1.3.42)

The matrix element derivatives in the Hamiltonian, Eq. (1.3.32) are constructed below

that define Eqs. (1.3.37-1.3.38), which are represented by

∂

∂ξ
(ξ2 − 1)

∂

∂ξ
= −

Nx∑

k=1

(ξ2 − 1)D
(x)
ki D

(x)
ki′ , (1.3.43)

(ξ2 − 1)
∂

∂ξ
=

1

2
{(ξ2

i − 1)D
(x)
ii′ − (ξ2

i′ − 1)D
(x)
i′i }, (1.3.44)

where

Dii′ =

√
1− x2

i′

1− x2
i

D
(x)
ii′√
ξ′iξ

′
i′
. (1.3.45)



21

To solve Eq. (1.3.32) for odd projections of the angular momentum |m|, more work

needs to be done to ensure the exact eigenfunctions are calculated at the nuclei. This

is done by a factor of (ξ− 1)|m|/2(1− η)|m|/2 being multiplied by the wave function Φ.

This form of the wave function already takes place in Eqs. (1.3.34) and (1.3.38). We

will now show the case for |m| = 1, which is a π symmetry for a diatomic molecule.

The new wavefunction takes the form:

Φ =
Ψ√

(ξ2 − 1)(1− η2)
. (1.3.46)

So the new wave function is some factor f times Ψ (Φ = fΨ) and the derivative of

the function f :

∂f

∂ξ
= − ξ

ξ2 − 1
f. (1.3.47)

The pseudoradial (ξ) derivative for Eq. (1.3.46), which is the odd angular momentum

|m| wave function is given by

∂

∂ξ
(ξ2 − 1)

∂Φ

∂ξ
= f

(
1

ξ2 − 1
Ψ + (ξ2 − 1)

∂2Ψ

∂ξ2

)
, (1.3.48)

and similar the pseudoangular (η) wave function derivative is given by

∂

∂η
(1− η2)

∂Φ

∂η
= f

(
1

1− η2
Ψ + (1− η2)

∂2Ψ

∂η2

)
, (1.3.49)

respectively. The derivatives with respect to the mesh x, and y have the following
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form:

∂Φ

∂x
=

∂Ψ

∂x
− ξξ′

ξ2 − 1
Ψ (1.3.50)

∂Φ

∂y
=

∂Ψ

∂y
+

ηη′

η2 − 1
Ψ (1.3.51)

Now that we have shown the following forms of the Legendre-Gauss-Radau quadra-

tures and derivatives of the pseudoradial (ξ) and pseudoangular (η) coordinates it

is straightforward to construct Eqs. (1.3.32)-(1.3.39). This procedure is for accurate

and efficient determination of electronic structure calculations of two-center molecular

systems.

1.4 Conclusion

In this chapter, we presented a new GPS method detailed derivation for the discretiza-

tion of two-center molecular systems with the use of prolate spheroidal coordinates.

This procedure is for accurate and efficient determination of electronic structure and

dynamic calculations of two-center molecular systems. The extension of the GPS

method can be applied to any diatomic molecular systems (homonuclear or heteronu-

clear) to study electron structure and accurate wave functions for the study of dynam-

ics such as HHG and other multiphoton processes in intense laser fields. Extensions

of the present method which are currently in work include the addition of the nuclear

vibrational degree of freedom and three-center molecular systems.



Chapter 2

Time-Dependent
Density-Functional Theory
(TDDFT) for Molecular Processes
in Strong Fields

2.1 Introduction

Since the fundamental work of Hohenberg and Kohn [31] and Kohn and Sham [36],

the density-functional theory (DFT) has undergone significant theoretical and com-

putational advances in recent years. DFT has become a widely used formulism for

electronic-structure calculations of ground-state properties of atoms, molecules, and

solids [47, 18]. In the Kohn-Sham DFT formulism [36], the electron density is de-

composed into a set of orbitals, leading to a set of one-electron like Schrödinger-like

equations to be solved self-consistently. The Kohn-Sham equations are structurally

23
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similar to the Hartree-Fock equations, but include, in principle, exactly the many-

body effects through a local exchange-correlation (xc) potential [61]. Thus DFT is

computational much less expensive than traditional ab initio many-electron wave-

function approaches and this accounts for its great success in large systems.

Here, we extend the TDDFT, with proper long range potentials [6], to the study

of multi-electron heteronuclear diatomic molecules (homonuclear and heteronuclear)

with an aim to explore the dynamical role and nonlinear response of individual elec-

tron spin orbital as well as the effect of asymmetry of the molecules to intense laser

pulse fields, a subject of largely unexplored area of intense field AMO physics. We

describe the TDDFT formalism in great detail for the general treatment of the mul-

tiphoton dynamics of heteronuclear and homonuclear diatomic molecular systems.

Then we outline a generalized pseudospectral (GPS) method for nonuniform and op-

timal spatial discretization of the two-center molecular systems. Finally, we present a

time-dependent GPS method for efficient and accurate solution of TDDFT equations

in space and time. The method can be applied to the nonperturbative investigation of

multiphoton ionization (MPI) and high harmonic generation (HHG) for any diatomic

system in intense linearly polarized laser pulses.
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2.2 Time-Dependent Generalized Pseudospectral

Method for Numerical Solution of TDDFT Equa-

tions

Time dependent density functional theory (TDDFT) is based on the existence of the

one-to-one correspondence between the time-dependent electron density and time-

dependent potential. We consider the quantum action integral

A =

∫ tf

t0

dt

〈
Ψ(t)

∣∣∣∣i
∂

∂t
− Ĥ(t)

∣∣∣∣ Ψ(t)

〉
, (2.2.1)

where within the single determinant approximation, the total N -electron wave func-

tion Ψ(t) can be expressed as

Ψ(t) =
1√
N !

det[ψ1 · ψ2 · · · ψN ], (2.2.2)

and the total electron density at time t is determined by the set of occupied single-

electron Kohn-Sham spin-orbital wave functions ψiσ as

ρ(r, t) =
∑

σ

Nσ∑
i=1

ψ∗iσψiσ

=
∑

σ

Nσ∑
i=1

ρiσ(r, t) = ρ↑(r, t) + ρ↓(r, t).

(2.2.3)
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We choose the set of spin orbitals {ψiσ(r, t)} which render the total action func-

tional A[ρ] stationary [71, 62, 63]. From the Euler equation

δA[ρ(r, t)]

δρσ(r, t)
= 0, (2.2.4)

we get (in atomic units)

i
∂

∂t
ψiσ(r, t) = Ĥ(r, t)ψiσ(r, t) =

[
−1

2
∇2 + υeff,σ(r, t)

]
ψiσ(r, t),

i = 1, 2, ..., Nσ,

(2.2.5)

where Nσ(= N↑ or N↓) is the total number of electrons for a given spin σ. The total

number of electrons in the system is N =
∑

σ Nσ . The time-dependent effective

potential υeff,σ(r, t) is a functional of the electron spin-densities ρσ(r, t) given by

υeff,σ([ρ]; r, t) = υH(r, t) + υext(r, t) + υxc,σ(r, t), (2.2.6)

where υH(r, t) is the Hartree potential

υH(r, t) =

∫
ρ(r′, t)
|r− r′|d

3r′. (2.2.7)

The ”external” potential υext(r, t) is due to the interaction of the electron with the

external laser field and the nuclei. In the case of a diatomic molecule in a linearly

polarized external laser field, we have

υext(r, t) = − Z1

|r−R1| −
Z2

|r−R2| + E(t) · r sin ωt. (2.2.8)
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Eq. (2.2.8) discretized in prolate spheroidal coordinates is given by

υext(ξ, η, t) = − Z1(ξ − η)

a(ξ2 − η2)
− Z2(ξ + η)

a(ξ2 − η2)
+

(a + b)

2
E(t) · ξη sin ωt, (2.2.9)

where R1 = (0, 0,−a) and R2 = (0, 0, b) are the foci of the two nuclei in Cartesian

coordinates and Z1 and Z2 are the effective charges of the nuclei, respectively. r is the

electronic coordinate, E(t) the electric field amplitude. The internuclear separation

R is equal to (a + b)/2. υxc,σ(r, t) is the time-dependent exchange-correlation (xc)

potential. Since the exact form of υxc,σ(r, t) is unknown, the adiabatic approximation

is often used [71, 65, 30, 10, 11]

υxc,σ(r, t) = υxc,σ[ρσ]|ρσ=ρσ(r,t). (2.2.10)

Note that if the conventional explicit xc energy functional forms taken from local spin

density approximation (LSDA) or generalized gradient approximation (GGA) [47, 18]

are used, the corresponding xc potential υxc,σ(r, t) will not possess the correct long-

range asymptotic (−1/r) behavior [61]. Here, we adopt the improved LB potential

[52], υLBα
xc,σ , which contains two empirical parameters α and β and has the following

form, in the adiabatic approximation,

υLBα
xc,σ (r, t) = αυLSDA

x,σ (r, t) + υLSDA
c,σ (r, t)− βx2

σ(r, t)ρ
1/3
σ (r, t)

1 + 3βxσ(r, t) ln{xσ(r, t) + [x2
σ(r, t) + 1]1/2} .

(2.2.11)

Here, ρσ is the electron density with spin σ, and we use α = 1.19 and β = 0.01
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[11, 30]. The first two terms in Eq. (2.2.11), υLSDA
x,σ and υLSDA

c,σ are the LSDA exchange

and correlation potentials that do not have the correct asymptotic behavior. The last

term in Eq. (2.2.11) is the nonlocal gradient correction with xσ(r) = |∇ρσ(r)|/ρ4/3
σ (r),

which ensures the proper long-range asymptotic potential υLBα
xc,σ → −1/r as r → ∞.

For the time-independent case, this exchange-correlation LBα potential has been

found to be reliable for atomic and molecular DFT calculations.

2.3 TDDFT Method for Diatomic Molecules

The central theme of the TDDFT involves a set of time-dependent one-electron

Schrödinger-like Kohn-Sham (KS) equations [36] for N -electron atomic or molecu-

lar systems, outlined in Eq. (2.2.5). In Eq. (2.2.5), Ĥ0(r) is the field-free Hamiltonian

for a diatomic molecule, which in atomic units, can be written as

Ĥ0(r) = −1

2
∇2 − Z1

|R1 − r| −
Z2

|R2 − r| + υH(r) + υxc,σ(r). (2.3.1)

In chapter 1 the GPS method with use of the prolate spheroidal coordinates was used

to discretize the electronic Hamiltonian. There we described the even and odd projec-

tions of angular momentum, and the different forms of the Hamiltonian Ĥe,o
0 (ξ, η, ϕ)

for each of these angular momentum m and orbital σ, which has the following form:
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Ĥe
0(ξ, η, ϕ) =− 1

2a′2
1

(ξ2 − η2)

[
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η
+

m2

(1− η2)(ξ2 − 1)

]

− Z1(ξ − η)

a(ξ2 − η2)
− Z2(ξ + η)

a(ξ2 − η2)
+ υH(ξ, η) + υxc,σ(ξ, η),

(2.3.2)

for even m and

Ĥo
0(ξ, η, ϕ) =− 1

2a′2
1

(ξ2 − η2)

[
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η
+

2

η2
+ 2

+
m2 − 1

2a2(ξ2 − 1)(1− η2)

]

+ υH(ξ, η) + υxc,σ(ξ, η),

(2.3.3)

for odd m, respectively. Now we consider nonuniform and optimal grid discretization

of the spatial coordinates by means of the two-center generalized pseudospectral (GPS)

technique, again explained in chapter 1 with great detail. We shall use the following

mapping transformations for the coordinates ξ and η:

η(y) = y, −1 ≤ y ≤ 1, (2.3.4)

ξ(x) = 1 + L
1 + x

1− x
, −1 ≤ x ≤ 1, (2.3.5)

L being the mapping parameter. The variables x and y are discretized using the

Legendre-Gauss-Radau abscissas xi and yj as the collocation points. The Legendre-

Gauss-Radau quadrature can be written as follows:

∫
d3rΦ2 = 2πa3

Nξ∑
i=1

Nη∑
j=1

φ2
ij, (2.3.6)
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where Nξ and Nη are the numbers of collocation points xi and yj, respectively. The

values of φij are related to the function Φ at the collocation points xi and yj,

Φ(ξ(xi), η(yj)) =

√
(1− x2

i )(1− y2
j )

ξ′iη
′
j(ξ

2
i − η2

j )
P ′

Nξ
(xi)P

′
Nη

(yj)φij. (2.3.7)

In Eq. (2.3.7), the primes denote the derivatives of the functions with respect to their

arguments. The discretized electronic Hamiltonian for Eqs. (2.3.2) and (2.3.3) is a

matrix of order NξNη × NξNη which acts on the vector {φij}, the matrix elements

being

He
ij,i′j′ =

1

2a′2

[
δjj′

η′j
(1− y2

j )

Nx∑

k=1

1

ξ′k

(ξ2
k − 1)

(1− x2
k)

D
(x)
ki D

(x)
ki′

+δii′
ξ′i

(1− x2
i )

Ny∑

k=1

1

η′k

(1− η2
k)

(1− y2
k)

D
(y)
kj D

(y)
kj′

]

×
√

(1− x2
i )(1− y2

j )

ξ′iη
′
j(ξ

2
i − η2

j )

√
(1− x2

i′)(1− y2
j′)

ξ′i′η
′
j′(ξ

2
i′ − η2

j′)
+ δii′δjj′

[
1

2a′2
m2

(1− η2
j )(ξ

2
i − 1)

−Z1(ξi − ηj)

a(ξ2
i − η2

j )
− Z2(ξi + ηj)

a(ξ2
i − η2

j )
+ υH(ξi, ηj) + υxc,σ(ξi, ηj)

]
,

(2.3.8)

for even m and

Ho
ij,i′j′ =

1

2a′2

[
δjj′

η′j
(1− y2

j )

Nx∑

k=1

1

ξ′k

(ξ2
k − 1)

(1− x2
k)

D
(x)
ki D

(x)
ki′

+δii′
ξ′i

(1− x2
i )

Ny∑

k=1

1

η′k

(1− η2
k)

(1− y2
k)

D
(y)
kj D

(y)
kj′

] √
(1− x2

i )(1− y2
j )

ξ′iη
′
j(ξ

2
i − η2

j )

×
√

(1− x2
i′)(1− y2

j′)

ξ′i′η
′
j′(ξ

2
i′ − η2

j′)
+ δii′δjj′

[
+

2

η2
j

+ 2 +
m2 − 1

2a2(ξ2
i − 1)(1− η2

j )

−Z1(ξi − ηj)

a(ξ2
i − η2

j )
− Z2(ξi + ηj)

a(ξ2
i − η2

j )
+ υH(ξi, ηj) + υxc,σ(ξi, ηj)

]
,

(2.3.9)
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for odd m. The first derivative matrices D
(x)
ii , D

(y)
jj have simple analytical expressions

in the pseudospectral method; a detailed construction is given in chapter 1. Next we

will show in detail how one would solve the Hartree potential υH(ξi, ηj) in the DFT

method, and the boundary conditions for this potential.

2.4 Dirichlet Boundary Conditions for the Hartree

Potential in DFT Formulism

When solving the Poisson equation for the potential υH(ξ, η):

∇2V = −4πρ(r), (2.4.1)

where

V = υH(r) =

∫
d3r′

ρ(r′)
|r− r′| , (2.4.2)

one must specify the boundary conditions for V . We know that the correct potential

must behave like Z/r as r → ∞ where Z =
∫

ρ(r)dr (the total charge). Then for

Rmax = ∞ (x = +1 and ξ = Rmax = ∞) the boundary condition is V = 0 (it is

not explicitly imposed since the numerical solution satisfies it anyway). For finite

Rmax, we need to impose V (Rmax) = Z/Rmax. In prolate spheroidal coordinates,

we express r through ξ and η; in that case for ξ = ξmax (ξ(x = +1)) the boundary
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condition V (Rmax) = Z/Rmax will depend on η since Rmax now depends on η. In pro-

late spheroidal coordinates the potential V for a diatomic molecule on the boundary

V (Rmax, η) has the following form:

V (Rmax, η) =
(Z1 + Z2)Rmax

a(R2
max − η2)

. (2.4.3)

Poisson’s Equation

0π

, we solve this equation in the interior portion

on the boundary we have

a.)

Poisson’s Equation

0π

on the boundary we have

b.)

Figure 2.1: Dirichlet boundary conditions for the Hartree potential (a) interior portion
of the Hartree potential (b) boundary condition for the Hartree potential at x = +1
or ξ = Rmax.

The boundary problem for the potential at Rmax needs to be only calculated once

(Fig. 2.1(b)), and inside the boundary V (r < Rmax) is calculated with the new

updated density ρ(r) (Fig. 2.1(a)) for time-independent or ρ(r, t) for time-dependent

calculations by use of Eq. (2.4.1). Using Eq. (2.4.1) and knowing ∇2(ξ, η) and its

matrix inverse the potential V is solved by the following expression:
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V (r) = −4π{∇2}−1ρ(r), (2.4.4)

where

{∇2}−1∇2 = I. (2.4.5)

Therefor, once we discretize ∇2(ξ, η) once and solve the updated density ρ(ξ, η) self-

consistent, then Eq. (2.4.4) is also solved self-consistent with the updated density.

2.5 TDDFT for Intense-Field Multiphoton Pro-

cesses

Now that we have shown explicit representation of the Hartree potential and the

Hamiltonian, Eqs. (2.3.2) and (2.3.3) have been diagonalized and we have solved the

time-independent DFT formulism in a self-consistent manner. We now have the di-

atomic molecules electronic structure (eigenvalues and eigenvectors) which now can be

propagated in time using Eq. (2.2.5). In this section, we outline the time-dependent

generalized pseudospectral (TDGPS) procedure for the solution of the set of time-

dependent equations for two-center molecular systems. The TDGPS is extended for

accurate and efficient non-perturbative treatment of multiple high-order harmonic

generation (HHG) of diatomic molecules in intense laser fields. The advantage of this
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method is that it allows nonuniform and optimal spatial grid discretization (denser

mesh near each nucleus and sparser mesh at larger electron-nucleus separations). This

improves greatly both the accuracy and the efficiency of the electronic structure and

time-dependent calculations. The commonly used procedures for the time propaga-

tion of the Schrödinger equation employ equal-spacing spatial-grid discretization [39].

For processes such as HHG, accurate time-dependent wave functions are required to

achieve convergence since the intensity of various harmonic peaks can span a range

of many orders of magnitude. High precision accuracy is generally more difficult to

achieve by the equal-spacing spatial-grid-discretization time-dependent techniques.

The TDGPS method consist of the following two basic steps. (i) A two-center GPS

technique [58] is used for optimal grid discretization of the pseudoradial (ξ) and pseu-

doangular (η) coordinates. The number of grid points required is generally consider-

ably smaller than those used by the equal-spacing discretization methods. Yet higher

accuracy in wave functions and therefore HHG spectra can be achieved, since the

physically more important short-range regime is treated accurately by this method.

(ii) A split-operator technique in the energy representation is introduced for efficient

time propagation of the wave functions. In this work, we extend this procedure to

the numerical solution of the two-centered systems in the time-dependent equations.
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Consider the solution of the time-dependent one-electron Kohn-Sham-like equa-

tion [36] for N -electron molecular systems in linearly polarized laser fields,

i
∂

∂t
ψiσ(ξ, η, ϕ, t) = Ĥψiσ(ξ, η, ϕ, t) =

[
Ĥ0(ξ, η, ϕ) + V̂ (ξ, η, t)

]
ψiσ(ξ, η, ϕ, t),

i = 1, 2, ..., Nσ,

(2.5.1)

where σ is the spin index. Here Ĥ0 is the time-independent Hamiltonian at t = 0,

and V̂ includes the electron-laser field interaction:

Ĥ0(ξ, η, ϕ) =− 1

2a′2
1

(ξ2 − η2)

[
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η
− m2

ξ2 − 1
− m2

1− η2

]

− Z1(ξ − η)

a(ξ2 − η2)
− Z2(ξ + η)

a(ξ2 − η2)
,

(2.5.2)

We will show the electron-laser field interaction term V (ξ, η, t), which includes other

residual time-dependent terms in υeff,σ([ρ]; ξ, η, t):

V (ξ, η, t) =
(a + b)

2
E(t) · ξη sin ωt + (υH(ξ, η, t)− υH(ξ, η, 0))

+ (υxc,σ(ξ, η, t)− υxc,σ(ξ, η, 0)),

(2.5.3)

where υH(ξ, η, 0) and υxc,σ(ξ, η, 0) are the time-independent potentials (t = 0). Here

E(t) is the electric field which is parallel to the internuclear (ẑ) axis, and E(t) = Ff(t),

where f(t) is the envelope function of the laser pulse. We shall extend the second-

order split-operator technique in prolate spheroidal coordinates and in the energy

representation for propagation of the molecular Schrödinger equation:

ψiσ(ξ, η, ϕ, t + ∆t) ' exp(−iĤ0(ξ, η, ϕ)∆t/2) · exp(−iVσ(ξ, η, ∆t/2)∆t)

× exp(−iĤ0(ξ, η, ϕ)∆t/2)ψiσ(ξ, η, ϕ, t) +O(∆t3).

(2.5.4)



36

The use of the energy representation in Eq. (2.5.4) allows for the elimination of the

undesirable fast-oscillating high-energy components and speeds up considerably in

time propagation [60].

To pursue the time propagation of the wave function from t to t + ∆t is achieved

by three steps: (i) First the wave function ψiσ(ξ, η, ϕ, t) is propagated for a half-time

step ∆t/2 in the energy space spanned by Ĥ0(ξ, η, ϕ). For this we construct the

time-independent evolution operator

exp(−iĤ0(ξ, η, ϕ)∆t/2) ≡ Ŝ, (2.5.5)

by means of GPS discretization and solution of the field-free Hamiltonian, Eq. (1.3.32):

H0(ξ, η, ϕ)χk(ξ, η, ϕ) = εkχk(ξ, η, ϕ). (2.5.6)

Then the S-matrix can be constructed as

Sij,i′j′ =
∑

k

χk(ξi, ηj, ϕ)χ∗k(ξi′ , ηj′ , ϕ) exp(−iεk∆t/2). (2.5.7)

Note that S is a complex symmetric matrix and needs to be constructed only once.

Thus the time propagation in the energy space,

exp(−iĤ0(ξ, η, ϕ)∆t/2)ψiσ(ξ, η, ϕ, t) ≡ Ŝψiσ(ξ, η, ϕ, t) ≡ ψ
(1)
iσ (ξ, η, ϕ, t), (2.5.8)

is reduced to the matrix-vector product [O(N2) operation] which can be performed
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efficiently using the basic linear algebra subroutines (BLAS). (ii) Then the wave

function ψ
(1)
iσ (ξ, η, ϕ, t) is propagated for a time step ∆t under the influence of the

molecule-field coupling:

exp(−iVσ(ξ, η, ∆t/2)∆t)ψ
(1)
iσ (ξ, η, ϕ, t) ≡ ψ

(2)
iσ (ξ, η, ϕ, t). (2.5.9)

Since exp(−iVσ(ξ, η, ∆t/2) is a diagonal matrix in the coordinate representation, this

is a fast step as far as the CPU time is concerned. (iii) Finally, the wave function

ψ
(2)
iσ (ξ, η, ϕ, t) is propagated another half-time step ∆t/2:

Ŝψ
(2)
iσ (ξ, η, ϕ, t) = ψiσ(ξ, η, ϕ, t + ∆t). (2.5.10)

This completes one time propagation step in Eq. (2.5.4). After the time-dependent

single electron wave functions {ψiσ} are obtained, the total electron density ρ(r, t)

can be determined.

Once the time-dependent wave functions and the time-dependent electron den-

sities are obtained, we can calculate the time-dependent (multiphoton) ionization

probability of an individual spin-orbital according to

Pi,σ = 1−Ni,σ(t), (2.5.11)

where

Ni,σ(t) = 〈ψi,σ(t)|ψi,σ(t)〉, (2.5.12)
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is the time-dependent population (survival probability) of the iσ-th spin-orbital. After

the time-dependent single-electron wave functions {ψiσ} are obtained, the induced

dipole moment and dipole acceleration can now be expressed for the molecular system,

respectively as

d(t) =

∫
zρ(r, t)dr =

∑
iσ

niσ 〈ψiσ(ξ, η, ϕ, t)|z|ψiσ(ξ, η, ϕ, t)〉

=
(a + b)

2
〈ψiσ(ξ, η, ϕ, t)|ξη|ψiσ(ξ, η, ϕ, t)〉 ,

(2.5.13)

and

dA(t) =
∑
iσ

niσ

〈
ψiσ(ξ, η, ϕ, t)

∣∣∣∣−
∂Vσ(ξ, η, t)

∂z
+

E(t) · r sin(ωt)

z

∣∣∣∣ψiσ(ξ, η, ϕ, t)

〉

=
∑
iσ

〈
ψiσ(ξ, η, ϕ, t)

∣∣∣− z

r3
+ E(t) sin(ωt)

∣∣∣ψiσ(ξ, η, ϕ, t)
〉

,

(2.5.14)

where niσ is its electron occupation number. The corresponding HHG power spectrum

can now be obtained by the Fourier transformation of the respective time-dependent

dipole moment and dipole acceleration:

P (ω) =

∣∣∣∣
1

tf − ti

∫ tf

ti

d(t)e−iωt

∣∣∣∣
2

= |d(ω)|2, (2.5.15)

PA(ω) =

∣∣∣∣
1

tf − ti

1

ω2

∫ tf

ti

dA(t)e−iωt

∣∣∣∣
2

= |dA(ω)|2. (2.5.16)

The power spectra P (ω) and PA(ω) should be the same if the wave function ψiσ(ξ, η, ϕ, t)

is fully converged. In the presence of either periodic fields or continuous wave (cw)
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lasers, one can further obtain the time-independent nth-order harmonic generation

emission rate by means of the expression

Γn =
4ω3

0n
3

3c3
P (nω0), (2.5.17)

or

Γn =
4ω3

0n
3

3c3
PA(nω0), (2.5.18)

where ω0 is the fundamental frequency of the laser field.

2.6 Conclusion

In this chapter, we presented a detailed procedure for diatomic molecules in intense

laser fields by means of a TDDFT with correct asymptotic long-range (−1/r) poten-

tial to ensure individual spin-orbital has the proper ionization potential. We consider

only the case that the molecular axis is aligned with the laser beam direction. This is

justified based on the recent experimental development of the laser molecular align-

ment techniques [40, 54, 48, 49]. Much remains to be explored in this fascinating and

largely unexplored area of strong-field molecular physics. Finally, the nuclear degree

of freedom has not been taken into account so far. This is justified for ultrashort laser

pulse excitation.



Chapter 3

High-Order Harmonic Generation
of Heteronuclear Diatomic
Molecules in Intense Ultrashort
Laser Fields: An All-Electron
TDDFT Study

3.1 Introduction

The study of atomic and molecular processes in intense ultrashort laser fields is a

subject of much current interest in science and technology [2]. In particular, high-

order harmonic generation (HHG) is one of the hottest topics in strong-field atomic

and molecular physics today, which is closely related to the recent development of

attosecond laser pulses [1, 70, 28] as well as the frequency comb technology [25,

34, 7]. To describe such strong-field processes using fully ab initio wave-function

approach, it is necessary to solve the (3n+1) dimensional time-dependent Schrödinger

40
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equation (TDSE) in space and time, where n is the number of electrons. This is well

beyond the capability of current supercomputer technology when n > 2. Even for

the two-electron (n = 2) case, high-precision fully ab initio 6D study of the HHG

of the He atoms was achieved only very recently [26]. For many-electron molecular

(n ≥ 2) systems, we have recently performed self-interaction-free time-dependent

density functional theory (TDDFT) calculations for the nonperturbative treatment of

multiphoton ionization (MPI) and HHG processes of homonuclear diatomic molecules

H2 [10], N2 [11, 30], O2, and F2 [13] in intense laser fields.

We extend the TDDFT, with proper long range potentials, to the study of multi-

electron heteronuclear diatomic molecules (CO in particular) with an aim to explore

the dynamical role and nonlinear response of individual electron spin orbital as well

as the effect of asymmetry of the molecules to intense laser pulse fields, a subject

of largely unexplored area of intense field AMO physics. In our previous studies

of the MPI of homonuclear diatomic molecules N2, O2, and F2, we found that the

highest occupied molecular orbital (HOMO) is not necessary the dominant channel

responding to the strong-field molecular ionization [13]. Furthermore the ac Stark

shift of individual MO and the detailed molecular electronic structure need to be taken

into account for a proper and quantitative treatment of the intense AMO processes.

In the case of F2, for example, while the HOMO is 1πg, the dominant MO channel

to ionization in strong fields turns out to be the 3σg in intense laser fields [13].



42

Approximate models such as ADK [68] and Keldysh [45] etc., which consider only

the HOMO contributing to the molecular ionization and neglect the ac Stark effect,

predicted the ionization suppression of F2, in disagreement with the experimental

observation [16, 74]. In this chapter, we further explore the effect of the asymmetry of

the molecules to MPI and HHG. We found that the heteronuclear diatomic molecules

can contribute the generation of even harmonics, in addition to the odd harmonics

seen in the atomic and homonuclear diatomic cases. Furthermore, we found that

there is only one dominant (short-trajectory) rescattering event within each optical

cycle. This is different from that seen in the atomic and homonuclear diatomic cases,

where two dominant electron rescattering events, one from the short- and the other

from the long-trajectory, occur within each optical cycle. Comparing the MPI and

HHG behavior of CO with N2, it reveals quite dramatic difference in their strong-

field nonlinear responses, despite the fact that CO has only a very small (field-free)

permanent dipole moment.

3.2 Multiphoton Ionization of N2 and CO in In-

tense Laser Fields

The ground-state electronic configurations is

1σ2
g1σ

2
u2σ

2
g2σ

2
u1π

4
u3σ

2
g ,
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for N2 and

1σ22σ23σ24σ21π45σ2,

for CO, respectively. N2 and CO are isoelectronic molecules, both having 14 electrons

and triple bonds. Since the CO molecule has unequal nuclear charges, its ground

electronic state possesses a permanent dipole moment, calculated here to be 0.149

Debye. The corresponding experimental value is 0.112 Debye [46]. Furthermore, there

is no concept of gerade and ungerade orbital’s for CO (or any other heteronuclear

diatomic molecule) since the inversion symmetry of the potential is broken. Table 3.1

lists the MO energies calculated with the LBα potential, using 50 grid points in ξ

and 30 grid points in η. The agreement of the calculated valence MO energies with

the experimental data is well within 0.01 a.u.

Table 3.1: Comparison of the field-free molecular orbital energy levels of CO and
N2, calculated with the LBα potential, and the experimental ionization potentials (in
a.u.).

CO
Orbital 1σ 2σ 3σ 4σ 1π 5σ

Expt. [53] 19.9367 10.8742 1.3964 0.7239 0.6247 0.5144
LBα 19.6142 10.6556 1.2549 0.7071 0.6276 0.5086

N2

Orbital 1σg 1σu 2σg 2σu 1πu 3σg

Expt. [33, 27, 69] 15.0492 15.0492 1.3708 0.6883 0.6233 0.5726
LBα 14.7962 14.7950 1.2162 0.6786 0.6199 0.5682
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Next, we outline the time-dependent generalized pseudospectral (TDGPS) proce-

dure for the solution of the set of time-dependent equations, Eq. (2.2.5), for the CO

and N2 molecules. The advantage of this method is that it allows nonuniform and

optimal spatial grid discretization (denser mesh near each nucleus and sparser mesh

at larger electron-nucleus separations). This improves greatly both the accuracy and

the efficiency of the electronic structure and time-dependent calculations. The com-

monly used procedures for the time propagation of the Schrödinger or TDDFT equa-

tion employ equal-spacing spatial-grid discretization [39]. For processes such as HHG,

accurate time-dependent wave functions are required to achieve convergence since the

intensity of various harmonic peaks can span a range of many orders of magnitude.

High precision accuracy is generally more difficult to achieve by the equal-spacing

spatial-grid-discretization time-dependent techniques. The TDGPS method consist

of the following two basic steps. (i) A two-center GPS technique [57, 58, 30] is used for

optimal grid discretization of the pseudoradial (ξ) and pseudoangular (η) coordinates.

The number of grid points required is generally considerably smaller than those used

by the equal-spacing discretization methods. Yet higher accuracy in wave functions

and therefore HHG spectra can be achieved, since the physically more important

short-range regime is treated accurately by this method. The TDGPS method also

has been recently applied successfully to the non-Hermitian Floquet studies of the

hydrogen molecular ion H+
2 in strong fields [57]. (ii) A split-operator technique in
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the energy representation is introduced for efficient time propagation of the wave

functions. In this work, we extend this procedure to the numerical solution of the

two-centered systems in the time-dependent equations.

Consider now the solution of the TDDFT equation, Eq. (2.2.5), recasted into the

following form:

i
∂

∂t
ψiσ(r, t) = Ĥ(r, t)ψiσ(r, t) = [Ĥ0(r) + V̂ (r, t)]ψiσ(r, t),

i = 1, 2, ..., Nσ.

(3.2.1)

where Ĥ0 is the time-independent Hamiltonian whose matrix elements are given in

Eqs. (2.3.8-2.3.9), and V̂ (r, t) includes the electron-laser field interaction and other

residual time-dependent terms in υeff,σ([ρ]; r, t):

V̂ (r, t) = (E(t) · r) sin ωt + (υH(r, t)− υH(r, 0)) + (υxc,σ(r, t)− υxc,σ(r, 0)). (3.2.2)

Here E(t) is the electric field parallel to the internuclear (ẑ) axis, and E(t) = Ff(t),

where f(t) is the envelope function of the laser pulse. We shall extend the second-

order split-operator technique in prolate spheroidal coordinates and in the energy

representation [60, 30] for the propagation of individual spin-orbital

ψiσ(r, t +4t) ' e−iV̂ (r,t)4t/2e−iĤ0(r)4te−iV̂ (r,t)4t/2ψiσ(r, t) + O(4t3). (3.2.3)

Note that such an expression is different from the conventional split-operator tech-

niques [29, 32], where Ĥ0 is usually chosen to be the kinetic-energy operator and V̂
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the remaining Hamiltonian depending on the spatial coordinates only. The use of the

energy representation in Eq. (3.2.3) allows the explicit elimination of the undesirable

fast-oscillating high-energy components and speeds up considerably the time propa-

gation [60, 12, 10, 11, 30]. After the time-dependent single electron wave functions

{ψiσ} are obtained, the total electron density ρ(r, t) can be determined.

The time-dependent induced dipole moment can now be calculated as

d(t) =

∫
zρ(r, t)dr =

∑
iσ

diσ(t), (3.2.4)

where

diσ(t) = niσ〈ψiσ(r, t) |z|ψiσ(r, t)〉, (3.2.5)

is the induced dipole moment of the iσ-th spin orbital, and niσ is its electron occupa-

tion number. The power spectrum of the HHG is then acquired by taking the Fourier

transform of the total time-dependent induced dipole moment d(t):

P (ω) =
4ω4

3c3

∣∣∣∣
1

tf − ti

∫ tf

ti

d(t)e−iωtdt

∣∣∣∣
2

. (3.2.6)

Here c is the speed of light, and P (ω) has the meaning of the energy emitted per unit

time at the particular photon frequency ω.

Once the time-dependent wave functions and the time-dependent electron den-

sities are obtained, we can calculate the time-dependent (multiphoton) ionization

probability of an individual spin-orbital according to
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Pi,σ = 1−Ni,σ(t), (3.2.7)

where

Ni,σ(t) = 〈ψi,σ(t)|ψi,σ(t)〉, (3.2.8)

is the time-dependent population (survival probability) of the iσ-th spin-orbital.

Figure 3.1: Molecular orbital binding energies and orbital structures for N2 and CO
molecules.
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Figure 5.1 presents the time-dependent population of individual spin orbital, as

defined in Eq. (3.2.8). The slope of the decay of the electron population in time

determines the ionization rate. The laser (electric) field is assumed to be parallel to

the internuclear axis, and the internuclear distance for the CO (Re = 2.132 a0) and

N2 (Re = 2.072 a0) molecules is fixed at its equilibrium distance Re. Results for two

laser intensities (5× 1013 W/cm2 and 1× 1014 W/cm2) and a wavelength of 800 nm,

20-optical-cycle laser pulse are shown for CO and N2.

The orbital structure and ionization potentials of the two molecules under consid-

eration are close to each other (Fig. 3.1). That is why one can expect similar behavior

in the laser field with the same wavelength and intensity. The multiphoton ionization

in the laser field is dominated by HOMO, that is 3σg in N2 and 5σ in CO. As one can

see from Figs. 5.1(a) and 5.1(c), at lower intensity 5×1013 W/cm2, the HOMO survival

probabilities of N2 and CO are close to each other. However, at higher intensities, the

difference becomes more pronounced, at the intensity 1× 1014 W/cm2, the ionization

probability of CO is much larger than that of N2 (Figs. 5.1(b) and 5.1(d)). The ex-

planation of the phenomenon can be as follows. In intense low-frequency laser fields,

the multiphoton ionization occurs mainly in the tunneling regime. In this picture,

the ionization takes place in the DC field with slowly varying amplitude from zero

to its peak value. The width of the potential barrier depends on the field strength;
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Figure 3.2: The time-dependent population of electrons in different spin orbital’s of
CO and N2 in 800 nm, sin2 pulse laser field, with 20 optical cycles in pulse duration.
N2 molecule (a) 5 × 1013 W/cm2, (b) 1 × 1014 W/cm2, CO molecule (c) 5 × 1013

W/cm2, (d) 1× 1014 W/cm2.
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the stronger the field, the narrower the barrier. Thus the ionization occurs mainly

at the peak values of the field strength. The probability of the tunneling ionization

is very sensitive with respect to the HOMO energy. However, in the external field

this energy is changed due to the Stark shift. The nitrogen molecule is symmetric

with respect to inversion, that is why the Stark shift in the DC field is quadratic in

the field strength and its value is quite small. On the contrary, the carbon monoxide

molecule has a permanent dipole moment, and the DC Stark shift is linear in the field

strength; at the peak values of the field, the HOMO energy can differ significantly

from its unperturbed value. We have performed the self-consistent DFT calculations

of N2 and CO in the DC electric field parallel to the molecular axis to see how large

the Stark shift can change the ionization potential of the molecule. On Table 3.2 we

show the HOMO energies computed at the field strength 0.7549 × 10−2 a.u. which

corresponds to the intensity 2 × 1012 W/cm2. As one can see, even in the field as

weak as 2 × 1012 W/cm2, the shift of the HOMO energy in CO molecule is large.

The shift depends on the direction of the external field with respect to the position of

the carbon and oxygen nuclei. In one direction the energy level becomes higher, and

in the other direction it becomes lower than the unperturbed level. Decrease of the

binding energy will result in the enhanced ionization. In intense low-frequency laser

fields, this effect can be responsible for the enhancement of ionization of CO molecule

as compared with N2.
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Table 3.2: HOMO energies of N2 and CO molecules in DC electric field (positive field
direction is from C to O)

Electric field (a.u.) N2 HOMO energy (a.u.) CO HOMO energy (a.u.)

0 -0.5682 -0.5086
0.7549×10−2 -0.5681 -0.5149
-0.7549×10−2 -0.5681 -0.5026

3.3 Multielectron Effects in HHG Spectra of Di-

atomic Molecules

In figures 5.2–5.3 we present the high-order harmonic generation (HHG) power spectra

(HHG power, Eq. (3.2.6)) for the laser field intensities 5× 1013 W/cm2, and 1× 1014

W/cm2. An important difference between the N2 and CO spectra is that the latter

contain even as well as odd harmonics. Generation of even harmonics is forbidden in

systems with inversion symmetry, such as atoms and homonuclear diatomic molecules.

This selection rule does not apply to the heteronuclear molecules with no inversion

center (CO). From Figs. 5.2–5.3, one can see that in general HHG is more efficient in

CO than in N2. However, for higher harmonics (17 and above) the N2 spectra become

dominant at the same laser intensity. As the laser intensity increases, the maximum

in the power spectra is shifted towards higher harmonics.



52

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Harmonic order

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
H

H
G

 p
ow

er
 (

10
-1

5  a
.u

.)

CO
N

2

Figure 3.3: Comparison of the HHG power spectra of CO and N2, in 800 nm, 5×1013

W/cm2 sin2 pulse laser field.

To investigate the detailed spectral and temporal structure of HHG for homonuclear

and heteronuclear systems, we perform the time-frequency analysis by means of the

wavelet transform of the total induced dipole moment d(t) [64, 10, 30, 8, 4],

dω(t) =

∫
d(t)

√
ω

τ
eiω(t−t0)e−(ω(t−t0))2/2τ2

dt. (3.3.1)
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Figure 3.4: Comparison of the HHG power spectra of CO and N2, in 800 nm, 1×1014

W/cm2 sin2 pulse laser field.

The parameter τ = 15 is chosen to perform the wavelet transformation in the following

study.

The peak emission times, te, represent the instance when the maxima of the dipole

time profile occur, and semiclassically are interpreted as the electron-ion recollision

times [64, 30]. For the case of the N2 molecule, the time profiles of the 19th to 25th

harmonic orders are shown in Fig. 5.4(a).

There are two emissions occurring at each optical cycle, and the most prominent

bursts take place at the center of the laser field envelope. The time profiles of the
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Figure 3.5: Time profiles for (a) N2 and (b) CO. Laser intensity used is 5×1013 W/cm2,
wavelength used is 800 nm, with 20 optical cycles in pulse duration.

superimposed harmonics are rather uniform among themselves implicating that the

harmonics are partially synchronized. More importantly for the CO molecule, a dis-

tinct feature possibly characteristic of all heteronuclear diatomic systems is observed

in Fig. 5.4(b) for the harmonic orders 22th to 26th. The number of dominant emissions

per optical cycle is now limited to only one. This finding is in contrast with results

normally obtained in the HHG for atoms and homogeneous molecules in which two
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bursts per optical cycle are observed. The spectral profiles are as uniform as those ob-

tained for N2, though the CO harmonics appear to be more synchronized than those

of N2. For the CO molecule, the highest occupied molecular orbital (HOMO) (5σ) is

dominant for the whole HHG spectrum Fig. 3.6; other orbitals contribute much less.
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Figure 3.6: Individual orbital and total high-order harmonic generation power spectra
of CO at the peak intensity 1× 1014 W/cm2 with a laser frequency of 800 nm. .
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The distinct harmonic peaks are seen up to the order 30, then we can see just a

smooth background distribution. In CO, the 5σ dipole is +1.57 which is much larger

than any of the other orbitals. The density for the 5σ (and 2σ) is localized on the

carbon atom, all other orbitals the density is localized on the oxygen atom. Looking

at the orbital dipole’s for the CO molecule Fig. 3.7, we can see that all other orbitals

that are localized on the oxygen are in phase and 5σ (carbon) is out of phase in time.

The N2 molecule has a dipole amplitude that follows the trend:

d2σg < d1πu < dtotal < d3σg < d2σu

The orbital dipole moments 2σg, 1πu, and 2σu are oscillating as that of the total dipole,

the 3σg (out of phase). So when we look at the two orbital dipole amplitudes 2σu

and 3σg with similar amplitudes, they oscillate in time with different sign, canceling

each other out Fig. 3.8, leading to a smaller dipole.

The behavior of the HHG spectrum Fig. 3.9 for N2 is quite different. The HOMO

(3σg) is dominant in the middle part of the spectrum (again up to the order 31).
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Figure 3.7: Orbital dipole moments of CO at the peak intensity 1×1014 W/cm2 with
a laser frequency of 800 nm for 3 optical cycles (10− 13).

However, starting the 33th harmonic, the 2σu orbital has a comparable contribution

which interferes destructively with that of 3σg.

Thus the result of interference is much lower than both of the single orbital spectra.

Then this two-orbital spectrum becomes comparable in magnitude with the 2σg-only

HHG (shown in Fig 3.10). Again, the destructive interference takes place, and the
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result is much lower than any of the single orbital contributions.

We can say that the long HHG spectrum of N2 is a collective multielectron effect.

Destructive interference of orbital contributions makes the resulting spectrum lower

in amplitude with distinct harmonic peaks up to the order 47. Note that single orbital

HHG do not have distinct peaks, just a smooth background, so the peaks in the high

harmonic part of the total HHG spectra are the pure multielectron interference effect.

We think this happens to N2 and does not happen to CO, because of the broken g-u

symmetry in CO such a full interference is not possible. The induced dipole moment

of the HOMO 5σ (CO) is so large that no other orbital can make a comparable

contribution.

3.4 Conclusion

In this chapter, we present a detailed comparison of the very high-order nonlinear

optical response of the homonuclear N2 and heteronuclear CO diatomic molecules in

intense ultrashort laser fields by means of a TDDFT with correct asymptotic long-

range (−1/r) potential to ensure individual spin-orbital has the proper ionization

potential. We consider only the case that the molecular axis is aligned with the laser

beam direction. This is justified based on the recent experimental development of
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the laser molecular alignment techniques [40, 54, 48, 49]. We found that although

CO has only a very small permanent dipole moment, qualitatively different nonlinear

optical responses are predicted for CO and N2. First, the MPI rate for the heteronu-

clear diatomic CO molecules is larger than that for the N2 homonuclear diatomic

molecules. Second, while the laser excitation of the N2 molecules can generate only

odd harmonics, both even and odd harmonics can be produced for the CO case. To

our knowledge, this is the first all-electron TDDFT study of the generation of even

harmonics for the heteronuclear diatomic molecules. In this connection, we note that

the even-order harmonics were also predicted in an earlier study of the HHG of a

one-dimensional model HD with unequal nuclear mass [38]. In this model, even-order

harmonics can be produced only by means of the breakdown of the Born-Oppenheimer

approximation. However, in our ab initio 3D study of CO with unequal nuclear mass

and charge, even-order harmonics can still be produced when the internuclear separa-

tion is fixed. Third, from our wavelet time-frequency analysis, we found that there are

two dominant rescattering (and harmonic emission) events within each optical cycle

for the N2 molecules, while there is only one dominant rescattering event for the CO

molecules. Much remains to be explored in this fascinating and largely unexplored

area of strong-field molecular physics. Finally, the nuclear degree of freedom has not

been taken into account so far. This is justified for ultrashort laser pulse excitation.

Research in this direction will be pursued in the future.
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of N2 at the peak intensity 1× 1014 W/cm2 with a laser frequency of 800 nm. .
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Figure 3.10: Individual and orbital interference power spectra of N2 at the peak
intensity 1× 1014 W/cm2 with a laser frequency of 800 nm. .



Chapter 4

Ab Initio Study of High-Lying
Doubly Excited States of Helium
in Static Electric Fields

4.1 Introduction

The helium atom is the simplest two-electron three-body system that has been studied

extensively both theoretically and experimentally since the first experiment by Mad-

den and Codling on doubly excited states in 1963 [42]. From an excitation energy

of 57 eV to the He+ N = 2 threshold at 65.4 eV, the spectrum of helium contains a

number of Rydberg series of autoionizing states embedded in the He+ 1sεl continuum.

Due to the existence of strong electron-electron correlation, higher members of the

Rydberg series cannot be described by the single-configuration or mean field approxi-

mation. Numerous theoretical investigations have improved our understanding of the

63
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e-e correlation and the determination of the autoionizing resonances of the double ex-

cited states of He in the last few decades [55]. In addition to fundamental interest, the

energies, lifetimes, and oscillator strengths of these doubly excited resonance states

are also of significance in astrophysics and plasma physics [23]. More recently there

is considerable interest in the study of the effect of static electric fields on doubly

excited states of helium atoms below N = 2 threshold [21, 22, 20, 51, 77, 44].

The first observation of the effect of dc electric field on the photoexcitation spec-

trum of He doubly excited states was performed by Harries et al [20] who measured

the Stark shifts and splittings in strong dc fields (up to 84.4 kV/cm) in the region of

the 6a − 8a 1P o resonances below N = 2. Most theoretical works in the recent past

have dealt with dc fields on this strong field regime [24, 14, 66]. With the exception of

the dipole allowed 1P o states, most predicted doubly excited states of He are not ac-

cessible by simple photoabsorption. In the presence of external dc electric fields, these

dark states becomes accessible by means of the Stark mixing with the 1P o states. For

example, the even 1P e series of doubly excited states have been recently observed and

measured [21, 22] in weak dc electric fields (F < 10 kV/cm). In addition, dramatic

electric field effect has been also reported in the fluorescence yield spectrum of the

doubly excited states in He in weak electric dc field regime (∼ 1 kV/cm) [51] for

higher quantum number n ≤ 15. To our knowledge, however, nonperturbative theo-

retical investigation of the effect of dc electric field on the high-lying doubly excited
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resonance states (n > 10) is not yet currently available.

To advance this field, we present in this chapter a new computational method,

the complex-scaling generalized pseudospectral (CSGPS) method in hyperspherical

coordinates (HSC), for efficient and accurate nonperturbative calculation of high-

lying doubly excited states of He (n = 10− 20) in the presence of weak and strong dc

electric fields below N = 2. Comparison with available experimental data is made. In

addition, we also present the energies and widths of field-free doubly excited resonance

states of He for n up to 20.

The chapter is organized as follows. First, we present the detailed CS-GPS-HSC

procedure for accurate treatment of quantum dynamics in two-electron systems. Next,

we present the calculations of the doubly excited states and effects of dc electric

field on the high-lying doubly excited resonance states. Exploration of the effects

of electron correlation and doubly excited states in dc electric field are discussed in

detail.

4.2 Complex-Scaling Generalized Pseudospectral

Method in Hyperspherical Coordinates

The complex-scaling generalized pseudospectral (CSGPS) method was first intro-

duced in 1993 for the study of atomic resonance states [76, 73] in grid representation.
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It has been later extended and extensively used for the accurate treatment of multi-

photon above-threshold ionization (ATI) and high-order harmonic generation (HHG)

of atomic [56] and diatomic molecular [56, 12, 10, 11, 57, 58, 30] systems in intense

laser fields in the last decade, in conjunction with the development of non-Hermitian

Floquet formalisms and self-interaction-free time-dependent density functional the-

ory [9]. The CSGPS approach employs the use of non-uniform and optimal spa-

tial grid discretization of the coordinates and Hamiltonian, allowing high-precision

and efficient calculation of complex quasi-energy eigenvalues and eigenfunctions and

ATI/HHG rates with the use of only a very modest number of grid points.

In this section, we present the extension of the CSGPS method in the framework

of hyperspherical coordinates (HSC) for the ab intio treatment of doubly excited

resonance states of the two-electron atomic systems. We note that time-dependent

generalized pseudospectral (TD-GPS) method in HSC, without the use of complex

scaling transformation, has been recently developed for the treatment of double pho-

toexcitation of He atoms in weak attosecond xuv pulses [67] and the effect of electron

correlation on high-order-harmonic generation (HHG) of helium atoms in intense laser

fields [26].

We first briefly outline the essence of GPS-HSC formalism [26] without the use of

complex scaling transformation. The Schrödinger equation for the field-free He atoms

is given by, in atomic units,
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[
−1

2
∇2

1 −
1

2
∇2

2 −
2

r1

− 2

r2

+
1

|r1 − r2| − E

]
ψ(r1, r2) = 0. (4.2.1)

In the HSC, Eq. (4.2.1) can be reduced to the form [26]

[
−1

2

∂2

∂R2
− 1

8R2
+

1

2R2

(
− ∂2

∂α2
+

l̂21
cos2 α

+
l̂22

sin2 α

)
+

C

R

]
Ψ = EΨ, (4.2.2)

where R =
√

r2
1 + r2

2 is the hyperradius, and α = tan−1(r2/r1) is the hyperangle, and

the potential energy term C is the electron-electron and electron-nucleus potentials,

given by

C(α, θ12) =
2Z

cos α
+

2Z

sin α
− 2√

1− sin 2α cos θ12

. (4.2.3)

In the HSC, the two vectors (r1,r2) are replaced by the six coordinates (R,α, Ω1, Ω2),

where Ωi = (θi, φi) denotes the spherical angles of electron i.

In the CSGPS approach in HSC, only the hyperradius coordinate R needs to be

complex rotated [75], namely,

R → Reiθ, (4.2.4)

where θ is the rotation angle. We perform next the algebraic mapping from R to x

and from α to y:

R(x) = L
1 + x

1− x + γ
eiθ, (4.2.5)

α(y) =
π

4
(1 + y), (4.2.6)
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where γ = 2L/Rmax and x ∈ [−1, 1], y ∈ [−1, 1], R ∈ [0, Rmax], α ∈ [0, π/2], and

L is the mapping parameter. The given space that the two electrons are confined

to is determined by the size of Rmax, and the mapping parameter controls the linear

position of the mesh points [76].

Under the complex-scaling transformation, Eq. (4.2.2)

[
−e−i2θ

2

∂2

∂R2
− e−i2θ

8R2
+

e−i2θ

2R2

(
− ∂2

∂α2
+

l̂21
cos2 α

+
l̂22

sin2 α

)
+

Ce−iθ

R

]
Ψ(Reiθ, α, Ω1, Ω2)

= εΨ(Reiθ, α, Ω1, Ω2),

(4.2.7)

where ε denotes the complex energies of the autoionizing resonance states. We ex-

pand the total two-electron wavefunction Ψ in terms of the complex-scaled adiabatic

channels µ,

Ψ(Reiθ, α, Ω1, Ω2) =
e−i 5

2
θ

R
5
2 sin α cos α

∑
µ

Fµ(Reiθ)Φµ(Reiθ, α, Ω1, Ω2), (4.2.8)

where Fµ(Reiθ) is to be solved in the hyperradius space and the adiabatic channel

functions Φµ(Reiθ, α, Ω1, Ω2) describe the radial correlation between the two electrons

[59]. These channel functions are obtained by solving the adiabatic Hamiltonian [26]

at a fixed value of R,

HadΦµ(Reiθ, α, Ω1, Ω2) = Uµ(Reiθ)Φµ(Reiθ, α, Ω1, Ω2). (4.2.9)

Here the channel functions Φµ(Reiθ, α, Ω1, Ω2) can be represented in a way to satisfy
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the exchange symmetry 2S+1Lπ, either singlet or triplet states, and are expanded in

terms of two-particle spherical harmonics. For fixed L, M , S, and π, we have

ΦL,l1,l2
µ (Reiθ, α, Ω1, Ω2) =





1√
2

∑

l1l2

[
fL,l1,l2

µ (Reiθ, α)YLM
l1,l2

(Ω1, Ω2)

+(−1)AfL,l2,l1
µ (Reiθ, π

2
− α)YLM

l2,l1
(Ω1, Ω2)

]
, l1 6= l2

∑

l1l2

fL,l1,l2
µ (Reiθ, α)YLM

l1,l2
(Ω1, Ω2), l1 = l2,

(4.2.10)

where we define A = l1 + l2 − L + S. L and S indicate the total orbital and spin

angular momenta respectively. In Eq. (4.2.10) the coefficients f(Reiθ, α) are the

Gauss-Legendre quadratures.

Once the adiabatic eigenvalue problem is solved we then use these complex-scaled

channel functions to compute the coupling terms [59], hence the overlap matrix

Oiµ,jµ′ = 〈Φµ(Rie
iθ, α, Ω1, Ω2)|Φµ′(Rje

iθ, α, Ω1, Ω2)〉. (4.2.11)

After mapping the domain of the total wavefunction Eq. (4.2.8), we obtain the fol-

lowing transformation:

Ψ(Reiθ,α, Ω1, Ω2) =
√

R′(x)

NR∑
i=1

fi(xeiθ)Ψ(xie
iθ, y, Ω1, Ω2)

=
√

R′(x)

NRNµ∑
iµ

fi(xeiθ)CiµΦ(xie
iθ, y, Ω1, Ω2)

(4.2.12)
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Inserting the discretized representation of the complex-scaled wavefunction Eq. (4.2.12)

into Eq. (4.2.7), we can rewrite the discretized Schrödinger equation in the form

∑

i′µ′
[K(Reiθ)ii′Oiµ,i′µ′ + δii′U

L
µ′(Ri′e

iθ)Oiµ,i′µ′ ]Ciµ

= ε
∑

i′µ′
Oiµ,i′µ′Ciµ,

(4.2.13)

where K(Reiθ)ii′ is the complex-scaled kinetic energy matrix elements and UL
µ′(Ri′e

iθ)

is the eigenenergy at fixed Ri, and corresponding L and µ.

The first advantage in the present CSGPS-HSC procedure is in that the GPS

method is a nonlinear grid discretization method. This ensures that the short-range

part of the Coulomb interaction is properly represented. Therefore, a dense portion

of grid points are concentrated at the origin. The second advantage, is that in the CS-

GPS approach the complex-rotated coordinate R is discretized on a set of collocation

grid points. The potential matrix elements being diagonal, and equal to the values

of the potential at the grid points. The kinetic energy matrix elements K(Reiθ)ii′ in

Eq. (4.2.13) have simple explicit analytical expressions.

As an example of the accuracy of the present GPS procedure, Fig. 4.1 shows

the first fifteen adiabatic potential curves of helium in the singlet 1Se, 1P o, 1De,

and 1F o (L = 0-3) manifolds converging to the He+ ionization thresholds. We note

that there is a number of avoided crossings even between the low-lying neighboring

potential curves. For example, a sharply avoided crossing point in the 1P o manifold

occurs around the hyperradius of 7.63 a.u and in the 1De manifold occurs around the
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hyperradius of 5.97 a.u.
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Figure 4.1: Potential curves of the helium atom for (a) 1Se, (b) 1P o, (c) 1De, and (d)
1F o manifolds.
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4.3 Determination of the Doubly Excited Autoion-

izing Resonances

To illustrate the accuracy of the present method, we list the energies and widths

for He doubly excited Rydberg states n = 10 − 20 below the N = 2 threshold. In

Tables 4.1-4.4, we compare our results of 1Se, 1P o, 1De and 1F o with recent theoretical

results [43, 3, 35]. The present calculations listed in Tables 4.1-4.4 compared to the

previous theoretical results for the doubly excited states where n = 10 − 15 which

generally agree well. In the present calculation doubly excited Rydberg states are

calculated to the n = 20 state. Since there is no theoretical or experimental data

to our knowledge to compare the high-lying Rydberg states n = 15 − 20, we expect

experimental measurements of these in the future. Throughout this chapter we use

the (N,n, (a, b, or c)) representation for doubly excited states introduced by Lipsky

[41], which is widely used for He.

In Table 4.1 both singlet symmetries of the 1Se states are calculated, hence (2, n, a)

and (2, n, b) where n = 10− 20. In the 1Se calculation fifteen partial waves are used,

(l1, l2), with Rmax = 1000 a.u. In Table 4.2 three singlet symmetries of the 1P o states

are calculated, hence (2, n, a), (2, n, b), and (2, n, c) where n = 10 − 20. In the 1P o

calculation twenty partial waves are used, (l1, l2), with Rmax = 1200 a.u. In Table 4.3

three singlet symmetry of the 1De state is calculated, hence (2, n, a), (2, n, b), and
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(2, n, c) where n = 10 − 20. In the 1De calculation twenty partial waves are used,

(l1, l2), with Rmax = 1500 a.u. In the 1F o calculation twenty partial waves are used,

(l1, l2), with Rmax = 2500 a.u. In all of the previous calculations by use of the highly

accurate CSGPS-HSC procedure resonance energies are converged to 10−9 a.u. and

the widths are converged to 10−4 a.u.

Tables 4.1-4.4 shows the resonance energies converging to the He+ ionization

thresholds (−0.5 a.u.). One of the appealing features revealed from Tables 4.1-4.4 is

the common trend of the autoionization rates decreasing as a function of the quantum

number n increasing (Fig. 4.2), this common trend is shown in all states. This is due

to the singlet continuum states 1sεl coupling with the doubly excited states 2snl.

Since the doubly excited states are embedded with the singlet continuum states.

The widths are proportional to the coupling strengths between these states (i.e.,

Γ ∝ |〈Ψ1sεl|1/r12|Ψ2snl〉|2). As the quantum number n is increased the two electrons

are getting further and further apart from each other. Therefore, making r12 larger,

and thus decreasing the autoionization rates. For example, we can look at the widths

from the 1P o states, 10a being 4.052×10−6 and the high-lying 20a being 4.859×10−7.

Such accuracy for Rydberg resonant energies by the CSGPS-HSC procedure can-

not be achieved by traditional basis set expansion methods or B-spline functions.
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4.4 Determination of the DC Field Effects on the

Doubly Excited Resonance States

In the presence of an external electric-field, the Hamiltonian for a two-electron atom

is

H = H0 + V = H0 + F · (r1 + r2) (4.4.1)

where F is a uniform external electric-field. H0 is the field-free Hamiltonian. The

matrix elements of Fz1 and Fz2 are the same for a given pair of wavefunctions. Here

we only present the matrix element of Fz1 explicitly as follows:

〈ΨL
k |F (z1)|ΨL′

k′ 〉 =
1

2
· F ·

∑

µ,µ′

∑

l1,l2

∑

l′1,l′2

[∑
i

FL(Rie
iθ) ·Rie

iθ · FL′(Rie
iθ)ωi

]

×
{∑

j

Φl1l2L
µ (Rie

iθ, αj) · cos αj · Φl′1l′2L′

µ′ (Rie
iθ, αj)λjΘ

l′1l′2L′M ′

l1l2LM

+(−1)A
∑

j

Φl1l2L
µ (Rie

iθ, π/2− αj) · cos αj

×Φ
l′1l′2L′

µ′ (Rie
iθ, αj)λjΘ

l′1l′2L′M ′

l2l1LM

}
,

(4.4.2)
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where

Θ
l′1l′2L′M ′

l1l2LM = 〈YLM
l1,l2

(Ω1, Ω2)| cos θ1|YL′M ′
l′1,l′2

(Ω1, Ω2)〉. (4.4.3)

Here ωi and λj are the corresponding Gauss-Legendre weights to the hyperradial and

hyperangle spatial integrals, respectively. For states in dc field along the z-direction,

the total magnetic quantum number M is a conserved quantity, while the parity

along the z-axis (πz) is not conserved. We will focus our attention on the M = 0

manifolds. Since parity is not conserved, angular momentum states 1Se, 1P o, 1De,

and 1F o are coupled together in Eq. 4.4.2 by the external electric field. This four-

symmetry (Lmax = 3) calculation is sufficient to compute such doubly excited states

in electric field. We investigate 1Se (2, n, a, b), 1P o (2, n, a, b, c), and 1De (2, n, a, b, c)

resonance states where n = 10 − 20 in the electric field. In the present electric field

calculations we have used a mesh of NR × Nα = 400 × 400, and twenty adiabatic

channels (µ = 20) to compute the field-free wavefunctions ΨL
k where L = 0, 1, 2, 3.

Our calculated widths are converged when the angle θ is varied from 0.1 to 0.3 rad.

In Tables 4.5-4.10 we report electric field effects on resonant energies and widths

for doubly excited Rydberg states of He field strengths F are varied from 1 to 84.4

kV/cm. Since the autoionization rates in the states of interest are small to begin with

1P o (2, 10a) (Γ = 8.104 × 10−6a.u.) even small electric field strengths has effects on

these doubly excited states. As the external field increases all resonance energies and

widths of the doubly excited states are changed due to Stark mixing.
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In the present calculation, Tables 4.5-4.10 has a common trend of the resonant

energies being shifted downward as the electric field is increased and widths are de-

creasing for most of the states. This is mainly due to the Stark effect and energy

separation between the states becoming smaller.

In the absence of an electric field only the 1P o state can be achieved from the

1Se ground-state by single-photon absorption. When the external field is turned on

the nearby 1De resonance is induced by the 1P o state due to Stark mixing of the

two resonances. Therefore, the autoionization rates for the 1P o states are mostly

decreasing due to mixing with other singlet-spin states.

4.5 Conclusion

In summary, we have presented a ab initio complex-scaling generalized pseudospectral

method in hyperspherical coordinates for the accurate treatment of doubly-excited
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Rydberg resonance states and dc-field ionization rates of the two-electron atomic

systems. Our CSGPS approach in hyperspherical coordinates is shown to be capable

of providing accurate resonance energies for 1Se, 1P o, 1De, and 1F o Rydberg doubly

excited states with the use of only a modest number of grid points. The affects of

dc-field ionization rates on the 1Se (2, n, a, b), 1P o (2, n, a, b, c), and 1De (2, n, a, b, c)

states where n = 10 − 20 have been identified. The theory is in good agreement

with the published theoretical results where He doubly excited states range from

n = 10 − 15, and predict the outcome in cases where results are not yet available

n = 15 − 20. This is the first theoretical works to our knowledge for such Rydberg

doubly excited states. We hope that our present data and findings stimulate some

new experimental activities in the near future.
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Figure 4.2: Field-free energies and widths of doubly excited Rydberg states as a
function of the principle quantum number n, in the energy region below the N = 2
threshold for different symmetries: (a) 1Se (2, na), (b) 1Se (2, nb), (c) 1P o (2, na), (d)
1P o (2, nb), (e) 1De (2, na), and (f) 1De (2, nb).
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Table 4.1: Energies and widths for doubly excited Rydberg states 1Se (2, n, (a, b))
below the N = 2 threshold (in a.u.). Numbers in square brackets indicate powers of
ten.

State −Er Γ/2 State −Er Γ/2
Present 10a 0.505759011 9.777[−6] 10b 0.504746220 2.775[−6]

[43] 0.505759052 9.777[−6] 0.504746230 2.776[−6]
[3] 0.505759104 9.790[−6] 0.504746388 2.766[−6]

Present 11a 0.504697225 7.131[−6] 11b 0.503940604 2.145[−6]
[43] 0.504697299 7.131[−6] 0.503940615 2.146[−6]
[35] 0.504697187 7.131[−6]

Present 12a 0.503904116 5.362[−6] 12b 0.503324068 1.700[−6]
[43] 0.503904132 5.362[−6] 0.503324031 1.690[−6]
[35] 0.503904047 5.360[−6]

Present 13a 0.503296014 4.134[−6] 13b 0.502841616 1.350[−6]
[43] 0.503296078 4.134[−6] 0.502841626 1.350[−6]
[35] 0.503296011 4.131[−6]

Present 14a 0.502819664 3.251[−6] 14b 0.502457209 1.137[−6]
[43] 0.502819726 3.253[−6] 0.502457222 1.136[−6]
[35] 0.502819669 3.239[−6]

Present 15a 0.502439597 2.613[−6] 15b 0.502145509 8.058[−7]
[43] 0.502439676 2.617[−6] 0.502145517 8.06[−7]
[35] 0.502439599 2.689[−6]

Present 16a 0.502131622 2.090[−6] 16b 0.501889058 5.817[−7]
Present 17a 0.501878528 1.681[−6] 17b 0.501676589 4.910[−7]
Present 18a 0.501666988 1.452[−6] 18b 0.501498052 4.181[−7]
Present 19a 0.501489971 1.274[−6] 19b 0.501346589 3.647[−7]
Present 20a 0.501341721 1.179[−6] 20b 0.501216515 3.082[−7]
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Table 4.5: Field-peturbed resonant energies Er and widths (in a.u.) for the 1Se

n = 10 − 20 doubly excited Rydberg states below the N=2 threshold. Numbers in
square brackets indicate powers of ten.

F (kV/cm) State −Er Γ/2 State −Er Γ/2
1 10a 0.505761021 8.438[−6] 10b 0.504751047 2.022[−6]
2 0.505778231 7.992[−6] 0.504755921 1.521[−6]
3 0.505789074 7.167[−6] 0.504770093 9.889[−7]
4 0.505791002 6.415[−6] 0.504787332 7.375[−7]
5 0.505800284 5.838[−6] 0.504791481 5.563[−7]
6 0.505819926 3.851[−6] 0.504816632 3.662[−7]
1 11a 0.504712391 6.002[−6] 11b 0.503950484 1.221[−6]
2 0.504737532 4.394[−6] 0.503965501 9.111[−7]
3 0.504750094 3.873[−6] 0.503972941 7.031[−7]
4 0.504767427 2.529[−6] 0.503990038 6.109[−7]
5 0.504783724 1.988[−6] 0.504039185 5.118[−7]
6 0.504793821 9.774[−7] 0.504042572 3.107[−7]
1 12a 0.503918813 4.204[−6] 12b 0.503330018 9.889[−7]
2 0.503930052 3.270[−6] 0.503337228 7.001[−7]
3 0.503944385 2.884[−6] 0.503352291 5.032[−7]
4 0.503960296 1.563[−6] 0.503365106 4.664[−7]
5 0.503971031 9.774[−7] 0.503384819 3.914[−7]
6 0.503983888 7.401[−7] 0.503399210 2.011[−7]
1 13a 0.503306014 3.997[−6] 13b 0.502855493 9.001[−7]
2 0.503310039 3.559[−6] 0.502866674 6.424[−7]
3 0.503334429 2.502[−6] 0.502880079 5.000[−7]
4 0.503345301 1.473[−6] 0.502894281 3.105[−7]
5 0.503357358 9.412[−7] 0.502908813 2.871[−7]
6 0.503370074 6.317[−7] 0.502920025 1.167[−7]
1 14a 0.502820095 3.008[−6] 14b 0.502468009 8.999[−7]
2 0.502835229 2.510[−6] 0.502478223 6.199[−7]
3 0.502848830 1.996[−6] 0.502482012 4.130[−7]
4 0.502860028 9.891[−7] 0.502498002 2.910[−7]
5 0.502871994 7.428[−7] 0.502500365 1.224[−7]
6 0.502888912 5.221[−7] 0.502520772 9.887[−8]
1 15a 0.502440492 1.993[−6] 15b 0.502159921 6.050[−7]
2 0.502454783 9.593[−7] 0.502165592 4.992[−7]
3 0.502460081 7.841[−7] 0.502180009 2.889[−7]
4 0.502478009 5.885[−7] 0.502189782 1.023[−7]
5 0.502490000 3.002[−7] 0.502195945 7.80[−8]
6 0.502500243 2.555[−7] 0.502216583 5.52[−8]
1 16a 0.502148819 1.991[−6] 16b 0.501898099 4.557[−7]
2 0.502152014 1.003[−6] 0.501909901 3.339[−7]
3 0.502161998 8.992[−7] 0.501920018 2.732[−7]
4 0.502181831 6.443[−7] 0.501931142 1.150[−7]
5 0.502198824 4.039[−7] 0.501940021 7.10[−8]
6 0.502209998 2.483[−7] 0.501956679 4.00[−8]
1 17a 0.501888291 1.002[−6] 17b 0.501684421 3.784[−7]
2 0.501893353 8.992[−7] 0.501690041 2.885[−7]
3 0.501904968 6.034[−7] 0.501709921 1.685[−7]
4 0.501915399 5.392[−7] 0.501719022 8.14[−8]
5 0.501926622 3.118[−7] 0.501729777 6.05[−8]
6 0.501936771 1.922[−7] 0.501733249 4.23[−8]
1 18a 0.501670081 9.662[−7] 18b 0.501509991 3.992[−7]
2 0.501688933 7.008[−7] 0.501511892 2.797[−7]
3 0.501690029 6.662[−7] 0.501528860 1.528[−7]
4 0.501709921 4.849[−7] 0.501530052 1.001[−7]
5 0.501713386 3.244[−7] 0.501544484 8.90[−8]
6 0.501720053 1.860[−7] 0.501560035 6.04[−8]
1 19a 0.501495865 1.004[−6] 19b 0.501360037 1.485[−7]
2 0.501507693 9.339[−7] 0.501378003 9.92[−8]
3 0.501510034 7.811[−7] 0.501388635 7.23[−8]
4 0.501527482 5.538[−7] 0.501399001 5.60[−8]
5 0.501537849 3.997[−7] 0.501407458 3.46[−8]
6 0.501549933 2.047[−7] 0.501416550 2.21[−8]
1 20a 0.501357382 9.991[−7] 20b 0.501230062 2.887[−7]
2 0.501360019 7.445[−7] 0.501243943 1.442[−7]
3 0.501387422 5.003[−7] 0.501260032 8.33[−8]
4 0.501399018 3.227[−7] 0.501271965 6.73[−8]
5 0.501443911 1.129[−7] 0.501281628 4.19[−8]
6 0.501458890 7.72[−8] 0.501299743 2.66[−8]
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Table 4.6: Field-peturbed resonant energies Er and widths (in a.u.) for the 1P o

n = 10 − 20 doubly excited Rydberg states below the N=2 threshold. Numbers in
square brackets indicate powers of ten.

F (kV/cm) −Er Γ/2 −Er Γ/2 −Er Γ/2
10a 10b 10c

1 0.505180929 3.989[−6] 0.505810092 7.20[−8] 0.504748831 2.12[−8]
2 0.505193123 3.005[−6] 0.505825711 7.80[−8] 0.504730029 3.56[−8]
3 0.505206360 2.557[−6] 0.505835579 8.11[−8] 0.504718814 3.89[−8]
4 0.505218842 1.882[−6] 0.505844214 8.55[−8] 0.504698332 4.67[−8]
5 0.505224428 1.002[−6] 0.505858819 9.27[−8] 0.504631388 5.38[−8]
6 0.505236619 9.40[−7] 0.505862374 9.84[−8] 0.504607431 6.22[−8]

11a 11b 11c
1 0.504269921 2.144[−6] 0.504740013 4.12[−8] 0.503942274 2.01[−8]
2 0.504277374 1.882[−6] 0.504757436 4.82[−8] 0.503870024 3.44[−8]
3 0.504280028 1.002[−6] 0.504767991 5.12[−8] 0.503781838 3.79[−8]
4 0.504298813 9.32[−7] 0.504780023 6.49[−8] 0.503719284 4.53[−8]
5 0.504307633 7.03[−7] 0.504791120 7.83[−8] 0.5037004532 5.20[−8]
6 0.504317438 5.20[−7] 0.504802277 8.21[−8] 0.503690481 6.15[−8]

12a 12b 12c
1 0.503583386 1.442[−6] 0.503949921 3.23[−8] 0.503324811 1.72[−8]
2 0.503593472 1.001[−6] 0.503950043 4.10[−8] 0.503310024 2.87[−8]
3 0.503600081 8.05[−7] 0.503969191 4.89[−8] 0.503296609 3.12[−8]
4 0.503619921 6.11[−7] 0.503976362 5.23[−8] 0.503268819 3.76[−8]
5 0.503626462 4.92[−7] 0.503984622 6.01[−8] 0.503248211 4.64[−8]
6 0.503630028 2.18[−7] 0.503997311 7.27[−8] 0.503210992 5.32[−8]

13a 13b 13c
1 0.503041992 1.001[−6] 0.503322991 3.48[−8] 0.502758811 9.7[−9]
2 0.503059393 8.07[−7] 0.503331382 3.87[−8] 0.502713382 1.26[−8]
3 0.503060011 6.10[−7] 0.503340021 4.11[−8] 0.502690021 2.45[−8]
4 0.503071282 4.33[−7] 0.503352211 4.52[−8] 0.502660119 3.19[−8]
5 0.503082221 3.00[−7] 0.503360219 5.26[−8] 0.502611091 3.99[−8]
6 0.503090033 1.22[−7] 0.503370032 6.17[−8] 0.502560977 4.64[−8]

14a 14b 14c
1 0.502620041 9.34[−7] 0.502840282 2.33[−8] 0.502410025 8.5[−9]
2 0.502638832 7.04[−7] 0.502850011 3.99[−8] 0.502382281 9.4[−9]
3 0.502648810 5.10[−7] 0.502860028 4.39[−8] 0.502369008 9.9[−9]
4 0.502650912 3.88[−7] 0.502877821 4.87[−8] 0.502320023 1.56[−8]
5 0.502669083 1.11[−7] 0.502880086 5.26[−8] 0.502291738 2.15[−8]
6 0.502675002 8.03[−8] 0.502894419 6.12[−8] 0.502240033 3.11[−8]

15a 15b 15c
1 0.502282249 7.03[−7] 0.502460089 4.10[−8] 0.502001999 8.1[−9]
2 0.502290023 5.51[−7] 0.502473114 4.88[−8] 0.501967719 8.6[−9]
3 0.502300081 3.44[−7] 0.502489292 5.12[−8] 0.501910097 9.3[−9]
4 0.502320289 1.39[−7] 0.502490955 5.97[−8] 0.501889291 9.9[−9]
5 0.502330071 9.22[−8] 0.502503001 6.25[−8] 0.501848884 1.54[−8]
6 0.502352226 7.40[−8] 0.502517355 7.32[−8] 0.501788161 1.97[−8]

16a 16b 16c
1 0.502010031 7.28[−7] 0.502150112 2.31[−8] 0.501810063 7.7[−9]
2 0.502030000 5.11[−7] 0.502168991 3.49[−8] 0.501782845 8.0[−9]
3 0.502042248 3.04[−7] 0.502177729 3.87[−8] 0.501703959 8.4[−9]
4 0.502057437 1.05[−7] 0.502188284 4.52[−8] 0.501679911 8.9[−9]
5 0.502062991 8.23[−8] 0.502190477 5.18[−8] 0.501629933 9.3[−9]
6 0.502074433 5.66[−8] 0.502218831 6.64[−8] 0.501566726 9.9[−9]

17a 17b 17c
1 0.501770913 5.23[−7] 0.501892919 9.2[−9] 0.501602006 7.1[−9]
2 0.501781091 3.12[−7] 0.501910027 1.33[−8] 0.501574091 7.5[−9]
3 0.501790081 1.40[−7] 0.501929774 1.55[−8] 0.501519911 8.2[−9]
4 0.501810058 8.04[−8] 0.501930944 2.13[−8] 0.501482099 8.7[−9]
5 0.501823911 5.11[−8] 0.501941153 2.92[−8] 0.501424002 9.1[−9]
6 0.501833091 2.40[−8] 0.501950434 3.48[−8] 0.501394933 9.8[−9]

18a 18b 18c
1 0.501582091 4.68[−7] 0.501688099 7.2[−9] 0.501460919 6.6[−9]
2 0.501593993 2.09[−7] 0.501698553 7.9[−9] 0.501422999 6.9[−9]
3 0.501610071 8.00[−8] 0.501709004 8.22[−8] 0.501384444 7.3[−9]
4 0.501622977 5.44[−8] 0.501718821 8.98[−8] 0.501325002 7.8[−9]
5 0.501639033 2.11[−8] 0.501724022 9.31[−8] 0.501288137 8.1[−9]
6 0.501644747 9.2[−9] 0.501733441 9.98[−8] 0.501242007 8.7[−9]
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Table 4.8: Field-peturbed resonant energies Er and widths (in a.u.) for the 1De

n = 10 − 20 doubly excited Rydberg states below the N=2 threshold. Numbers in
square brackets indicate powers of ten.

F (kV/cm) −Er Γ/2 −Er Γ/2 −Er Γ/2
10a 10b 10c

1 0.505330499 4.445[−6] 0.505029981 2.089[−7] 0.504808000 5.8[−9]
2 0.505347991 3.359[−6] 0.505034011 9.12[−8] 0.504697932 6.7[−9]
3 0.505360005 1.995[−6] 0.505047772 7.01[−8] 0.504580931 7.4[−9]
4 0.505372224 8.474[−7] 0.505052998 6.22[−8] 0.50447119 7.9[−9]
5 0.505388184 6.555[−7] 0.505062244 4.05[−8] 0.504336010 8.3[−9]
6 0.505399910 4.228[−7] 0.505077911 2.10[−8] 0.504244057 8.9[−9]

11a 11b 11c
1 0.504387009 3.865[−6] 0.504155091 1.08[−7] 0.503942998 4.7[−9]
2 0.504398755 1.711[−6] 0.504167999 7.99[−8] 0.503889919 5.4[−9]
3 0.504416464 8.03[−7] 0.504173088 5.39[−8] 0.503816877 5.9[−9]
4 0.504420021 6.65[−7] 0.504187211 3.44[−8] 0.503778004 6.3[−9]
5 0.504439383 4.42[−7] 0.504192005 1.92[−8] 0.503724662 7.1[−9]
6 0.504444821 2.81[−7] 0.504209111 7.3[−9] 0.503647938 7.8[−9]

12a 12b 12c
1 0.503672259 1.023[−6] 0.503488019 9.59[−8] 0.503299101 4.2[−9]
2 0.503680521 8.07[−7] 0.503497714 7.33[−8] 0.503210111 4.9[−9]
3 0.503697811 6.44[−7] 0.503509994 5.03[−8] 0.503179922 5.5[−9]
4 0.503700089 3.08[−7] 0.503518348 3.08[−8] 0.503122818 5.9[−9]
5 0.503719989 1.22[−7] 0.503520081 1.00[−8] 0.503060088 6.4[−9]
6 0.503720098 8.88[−8] 0.503530991 6.2[−9] 0.503014099 7.0[−9]

13a 13b 13c
1 0.503118881 9.22[−7] 0.502970891 8.24[−8] 0.502870091 4.0[−9]
2 0.503128839 7.01[−7] 0.502987774 6.33[−8] 0.502808887 4.7[−9]
3 0.503137731 5.88[−7] 0.502993008 4.73[−8] 0.502760421 5.3[−9]
4 0.503140096 2.99[−7] 0.503010621 1.99[−8] 0.502703772 5.7[−9]
5 0.503156993 9.45[−8] 0.503020189 8.1[−9] 0.502669389 6.2[−9]
6 0.503169918 7.02[−8] 0.503038895 5.7[−9] 0.502580088 6.9[−9]

14a 14b 14c
1 0.502674991 9.00[−7] 0.502567471 7.99[−8] 0.502417091 3.7[−9]
2 0.502682255 6.88[−7] 0.502570093 5.04[−8] 0.502328009 4.2[−9]
3 0.502690089 4.05[−7] 0.502582277 3.09[−8] 0.502294988 4.8[−9]
4 0.502702225 1.99[−7] 0.502599008 1.00[−8] 0.502216071 5.3[−9]
5 0.502715585 8.22[−8] 0.502601029 7.2[−9] 0.502158899 5.9[−9]
6 0.502726911 6.44[−8] 0.502619081 4.3[−9] 0.502063310 6.1[−9]

15a 15b 15c
1 0.502328009 8.33[−7] 0.502239777 7.01[−8] 0.502106114 3.2[−9]
2 0.502331939 6.08[−7] 0.502245989 4.24[−8] 0.502058188 3.9[−9]
3 0.502342241 3.12[−7] 0.502254008 2.05[−8] 0.501983917 4.3[−9]
4 0.502357838 1.10[−7] 0.502268887 9.10[−9] 0.501925949 4.8[−9]
5 0.502370112 7.01[−8] 0.502272941 6.88[−9] 0.501887977 5.6[−9]
6 0.502382095 5.99[−8] 0.502288012 3.43[−9] 0.501845009 6.0[−9]

16a 16b 16c
1 0.502129443 7.02[−7] 0.502044557 5.69[−8] 0.501902255 2.8[−9]
2 0.502138029 5.10[−7] 0.502057047 3.48[−8] 0.501876915 3.1[−9]
3 0.502146465 2.04[−7] 0.502066120 1.61[−8] 0.501812156 3.7[−9]
4 0.502155172 9.55[−8] 0.502078795 8.11[−9] 0.501766322 4.2[−9]
5 0.502162881 6.95[−8] 0.502082227 5.97[−9] 0.501723364 4.8[−9]
6 0.502179194 4.43[−8] 0.502096116 2.65[−9] 0.501695506 5.3[−9]

17a 17b 17c
1 0.501866142 1.02[−7] 0.501806175 1.22[−8] 0.501653143 2.3[−9]
2 0.501873111 8.94[−8] 0.501817223 9.52[−9] 0.501602159 2.7[−9]
3 0.501885521 7.56[−8] 0.501823609 7.57[−9] 0.501558499 3.4[−9]
4 0.501897490 5.82[−8] 0.501837747 5.22[−9] 0.501516471 3.9[−9]
5 0.501908355 3.06[−8] 0.501848593 4.36[−9] 0.501471104 4.4[−9]
6 0.501919978 1.11[−8] 0.501861678 2.47[−9] 0.501415494 4.9[−9]

18a 18b 18c
1 0.501624352 8.99[−8] 0.501595521 9.33[−9] 0.501473833 1.8[−9]
2 0.501636115 6.50[−8] 0.501610017 8.01[−9] 0.501427586 2.2[−9]
3 0.501644103 3.19[−8] 0.501623846 6.71[−9] 0.501389292 2.5[−9]
4 0.501653053 1.17[−8] 0.501635225 4.12[−9] 0.501318503 3.1[−9]
5 0.501667027 8.44[−9] 0.501646493 3.25[−9] 0.501283500 3.7[−9]
6 0.501674821 7.38[−9] 0.501653919 1.03[−9] 0.501195105 4.3[−9]
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Table 4.10: Given are resonant energies Er and widths (in a.u.) for the n = 10− 20
doubly excited Rydberg states below the N=2 threshold in a dc field of 84.4 kV/cm.
Numbers in square brackets indicate powers of ten. n(a, b)∗ indicates the comparison
with Miheliĉ and Ẑitnik [44].

State −Er Γ/2 State −Er Γ/2 State −Er Γ/2
6a 1Se 0.517409310 3.58[−5] 12b 1P o 0.504100999 2.79[−6] 16c 1P o 0.501305276 8.27[−7]
6a∗ 1Se 0.517409314 3.58[−5] 12b 1De 0.503622509 1.31[−7] 16c 1De 0.500943288 8.02[−8]
6a 1P o 0.514925658 2.84[−5] 12c 1P o 0.502921101 9.13[−6] 17a 1Se 0.502088342 5.99[−8]
6a∗ 1P o 0.514925667 2.84[−5] 12c 1De 0.502700813 9.34[−8] 17a 1P o 0.501939811 8.91[−9]
6a 1De 0.515412563 6.47[−5] 13a 1Se 0.503522901 2.39[−7] 17a 1De 0.502035355 8.77[−9]
6b 1Se 0.512779312 7.23[−6] 13a 1P o 0.503229219 8.11[−8] 17b 1Se 0.501800911 9.55[−9]
6b 1P o 0.518215577 1.16[−5] 13a 1De 0.503309887 3.01[−8] 17b 1P o 0.502059991 8.01[−7]
6b∗ 1P o 0.518215592 1.16[−5] 13b 1Se 0.503037528 8.00[−8] 17b 1De 0.502034894 1.93[−8]
6b 1De 0.515551648 5.71[−5] 13b 1P o 0.503589292 2.09[−6] 17c 1P o 0.501250981 8.12[−7]
6b∗ 1De 0.515551667 5.71[−5] 13b 1De 0.503100877 1.01[−7] 17c 1De 0.500821971 7.96[−8]
6c 1P o 0.512274088 1.74[−5] 13c 1P o 0.502391982 8.99[−7] 18a 1Se 0.501855299 5.50[−8]
6c∗ 1P o 0.512274095 1.74[−5] 13c 1De 0.501394831 8.76[−8] 18a 1P o 0.501747771 6.54[−9]
6c 1De 0.512957138 8.92[−7] 14a 1Se 0.503000852 1.00[−7] 18a 1De 0.501832134 4.03[−9]
6c∗ 1De 0.512957142 8.92[−7] 14a 1P o 0.502820915 4.55[−8] 18b 1Se 0.501623239 8.91[−9]
10a 1Se 0.505921049 8.33[−7] 14a 1De 0.502840088 2.35[−8] 18b 1P o 0.501848888 6.33[−7]
10a 1P o 0.505322941 6.22[−7] 14b 1Se 0.502634442 6.03[−8] 18b 1De 0.501763682 9.55[−9]
10a 1De 0.505530061 8.45[−8] 14b 1P o 0.503009771 1.54[−6] 18c 1P o 0.501148181 7.97[−8]
10b 1Se 0.504957384 7.09[−8] 14b 1De 0.502774469 9.80[−8] 18c 1De 0.500639271 7.61[−8]
10b 1P o 0.506038439 4.90[−6] 14c 1P o 0.501988231 8.65[−7] 19a 1Se 0.501699956 5.33[−8]
10b 1De 0.505260917 3.22[−7] 14c 1De 0.501143329 8.31[−8] 19a 1P o 0.501626566 5.32[−9]
10c 1P o 0.504299313 9.44[−6] 15a 1Se 0.502688001 8.79[−8] 19a 1De 0.501735460 2.42[−9]
10c 1De 0.503881002 2.13[−7] 15a 1P o 0.502471231 2.11[−8] 19b 1Se 0.501549984 7.48[−9]
11a 1Se 0.504900134 4.34[−7] 15a 1De 0.502500999 1.55[−8] 19b 1P o 0.501799184 4.02[−7]
11a 1P o 0.504477811 2.88[−7] 15b 1Se 0.502304622 1.01[−8] 19b 1De 0.501633447 9.01[−9]
11a 1De 0.504562020 7.22[−8] 15b 1P o 0.502688181 3.28[−6] 19c 1P o 0.500860255 7.84[−8]
11b 1Se 0.504119513 8.50[−8] 15b 1De 0.502491120 9.77[−8] 19c 1De 0.500544645 7.36[−8]
11b 1P o 0.504976353 3.63[−6] 15c 1P o 0.501600912 8.41[−7] 20a 1Se 0.501599589 3.87[−8]
11b 1De 0.504383822 2.38[−7] 15c 1De 0.501005710 8.17[−8] 20a 1P o 0.501439183 3.06[−9]
11c 1P o 0.503546267 9.30[−6] 16a 1Se 0.502304627 7.03[−8] 20a 1De 0.500419308 7.22[−8]
11c 1De 0.503338182 1.83[−7] 16a 1P o 0.502297223 1.88[−8] 20b 1Se 0.501423276 6.41[−9]
12a 1Se 0.504102114 3.22[−7] 16a 1De 0.502309254 9.89[−9] 20b 1P o 0.501540484 2.24[−7]
12a 1P o 0.503750991 1.00[−7] 16b 1Se 0.502100382 1.00[−8] 20b 1De 0.501511179 6.92[−9]
12a 1De 0.503845571 5.35[−8] 16b 1P o 0.502344174 1.05[−6] 20c 1P o 0.500755592 7.66[−8]
12b 1Se 0.503688876 8.10[−8] 16b 1De 0.502256425 6.83[−8] 20c 1De 0.500431213 7.07[−8]



Chapter 5

Ab Initio 6D Treatment of the
Time-Evolution Dynamics for
Two-Electron Systems in
Few-Cycle XUV Laser Pulses

5.1 Introduction

Recent experimental progress in the generation of ultrashort xuv laser pulses has

made possible exploration of completely breakup problems of atoms and molecules

in a smaller time scale [50, 2, 72]. Using the xuv pulse in the time level of sub-

attosecond (as) allows us to peer into the exciting processes related to atomic inner-

shell spectroscopy. Complete photon-induced breakup problem of many-electron

atoms presents great challenges not found in single ionization process to theorists.

It is worthwhile to mention the recent theoretical effects to refine ab initio ap-

proaches to achieve the accurate and reliable results of the multiphoton, single, and

89
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double ionization of two-electron systems. Understanding the role of the correlation

effect in the (γ,2e) and (2γ,2e) process is the key to describing the helium ioniza-

tion mechanism. For the (γ,2e) reaction, in the conventional independent-particle

approaches, only one electron is allowed to absorb a dose of the single photon energy.

To depict the dynamics behind the photoionization by absorbing a single photon, we

need to describe the process in a fully correlated picture at the outset. In addition to

the initial ground state, the correlation effect also enters into play for the final dou-

ble continuum states. As a consequence, the whole process shows a typical strongly

correlated characteristic and requires more comprehensive account for the correlation

effect. This sets up an obstacle to explain the experimental observations from an ab

initio point of view. Also, due to the short time duration of the xuv pulses, the de-

tailed theoretical description for this ionization process requires us to develop a fully

ab initio time-dependent approach. Describing the system in asymptotic region in

terms of the hyperspherical coordinates partially stimulates us to develop a fully cor-

related hyperspherical coordinates (HSC) approach to deal with the photon-induced

photoionization in xuv pulses. In this picture, the two electrons are treated on equal

footing either for the ground state and also the double continuum state. Here it is

interesting to point out that other approaches either the time-independent of time-

dependent theory, are limited in the so-called ”weak field” approximation. Neglecting

the coupling with other manifolds, only the scattering state with the 1Po symmetry
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is retained in the ”weak field” approximation for other approaches. Here we have

developed the whole configuration space spanned by the spherical radius r1 and r2 is

discretized on the non-uniform spaced two-dimensional (2D) mesh.

In this work, we will develop a time-dependent generalized pseudospectral (TDGPS)

representation of the hyperspherical coordinates (HSC) technique, in which the physics

in the multiphoton, single and double photoionization can be effectively recaptured.

In the present work, the dynamics processes of the system under consideration will

be described in the hyperspherical coordinates system defined by the hyperradius

R =
√

r2
1 + r2

2 (5.1.1)

and hyperangle

α = tan−1(r2/r1). (5.1.2)

The radial correlation is depicted by the hyperangle variable, while the angular cor-

relation is described by the coupled spherical harmonic functions. In the conven-

tional hyperspherical coordinates theory, the concept of adiabatic eigenchannel plays

a commanding role on the description of the three-body correlated Coulomb problems.

More recently, we have developed its time-dependent version in energy representation

to explore the fine-structure in the emitted spectrum of high-harmonics generation

of the laser-driven helium atom [26]. However, as we noted, only limited numbers

of the adiabatic eigenchannels, which are converging to the different He+ ionization

thresholds, can be incorporated in a practical calculation. Without combining other
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techniques, this limits us from handing the higher energy regime (E ≥ 0) in which the

double photoionization takes place. This indicates that the double photoionization of

two-electron systems in hyperspherical coordinates can be coped only if the new idea

is introduced.

Mapping technique we have used for the HHG calculations [26] is also applicable

for the present photoionization processes in the Coulomb potential, in which most of

the dynamics processes dominates in the near nuclear region rather than the region far

from the nucleus. The former region can be effectively addressed by imposing a denser

grid distribution in the numerical calculations. The denser mesh near the nuclear

region provides a proper representation for the photoionization process, even for the

multiphoton ionization process. As one of the appealing features, the present strategy

allows to employ only the smaller numbers of mesh to discretize the configuration

space. This leads the practical calculates more manageable.

5.2 Generalized Pseudospectral Method in Hyper-

spherical Coordinates

In the conventional hyperspherical coordinates theory, the concept of the adiabatic

eigenchannel plays a commanding role on the description of the three-body correlated

Coulomb problems. More recently, we have developed its time-dependent version in
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energy representation to explore the fine-structure in the emitted spectrum of high-

harmonic generation of the laser-driven helium atom [26]. However, as we noted,

only limited numbers of the adiabatic eigenchannels, which are converging to the

different He+ ionization thresholds, can be incorporated in a practical calculation.

Without combining other techniques, this limits us from handling the higher energy

regime (E ≥ 0) in which the double photoionization takes place. This indicates that

the double photoionization of the helium atom in hyperspherical coordinates can be

coped only if the new idea is introduced.

Some clues to overpass the above difficulty can be gleaned by recasting conven-

tional wave function in hyperspherical coordinates. After mapping the hyperradius

and hyperangle into the working space through R = R(x) and α = α(y), the wave

function is not a function of the adiabatic channels. Because no adiabatic channels

are referred in the practical calculations, it allows us to effectively consider the physics

in the higher energy region, for example E ≥ 0.

We map the hyperradius R in a finite box [0, Rmax] into the domain [−1, 1] by

R(x) = L
1 + x

1− x + γ
, −1 ≤ x ≤ 1, (5.2.1)

where γ = 2L/Rmax, and hyperangle α in a finite angle [0, π/2] into the domain

[−1, 1] by

α(y) =
π

4
(1 + y), −1 ≤ y ≤ 1. (5.2.2)
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Mapping technique we have used for the HHG calculations [26] is also applicable

for the present double photoionization process in the Coulomb potential, in which

most of the dynamics processes dominates in the near nuclear region rather than

the region far from the nucleus. The former region can be affectively addressed

by imposing a denser grid distribution in the numerical calculations. The denser

mesh near the nuclear region provides a proper representation for the photoionization

process, even for multiphoton ionization process. As one of the appealing features,

the present strategy allows to employ only the smaller numbers of mesh to discretize

the configuration space. This leads the practical calculations more manageable.

In the HSC formulism, the Schrödinger equation of the helium atom in field-free

case can be written as

[
−1

2

∂2

∂R2
− 1

8R2
+

1

2R2

(
− ∂2

∂α2
+

l̂21
cos2 α

+
l̂22

sin2 α

)

+
1

R

(
− Z

cos α
− Z

sin α
+

1√
1− sin(2α) cos θ12

)]
Φ̃(R,α, Ω1, Ω2) = EΦ̃(R,α, Ω1, Ω2),

(5.2.3)

where here the wave function is (physical space to model space) Φ̃(R, α, Ω1, Ω2) =

√
R′(x)Φ(x, y, Ω1, Ω2). Inserting the following equations (physical to model space)

into Eq. (5.2.3):

∂

∂α
=

∂

∂y

∂y

∂α
=

4

π

∂

∂y
, (5.2.4)
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∂2

∂α2
=

16

π2

∂2

∂y2
. (5.2.5)

Changing Eq. (5.2.3) from physical space (R,α, Ω1, Ω2) to model space (x, y, Ω1, Ω2)

we have the following form:

[
−1

2

1

R′(x)

√
R′(x)

∂2

∂x2
+

15
√

R′(x)

8R2(x)
+

2R′(x)R′′′(x)− 3R′′(x)R′′(x)

4R′(x)
√

R′(x)

]
Φ(x, y, Ω1, Ω2)

+
√

R′(x)

[
1

2R2(x)

(
− ∂2

∂α(y)2
+

l̂21
cos2 α(y)

+
l̂22

sin2 α(y)

)

+
1

R(x)

(
− Z

cos α(y)
− Z

sin α(y)
+

1√
1− sin(2α(y)) cos θ12

)]
Φ(x, y, Ω1, Ω2)

= E
√

R′(x)Φ(x, y, Ω1, Ω2).

(5.2.6)

The hyperradial derivative term 2R′(x)R′′′(x) − 3R′′(x)R′′(x) = 0. Then we insert

the hyperangle part of the second derivative which leads to the form:

[
−1

2

1

R′2(x)

∂2

∂x2
− 1

8R2(x)
+

1

2R2(x)

(
−16

π2

∂2

∂y2
+

l̂21
cos2 α(y)

+
l̂22

sin2 α(y)

)

+
1

R(x)

(
− Z

cos α(y)
− Z

sin α(y)
+

1√
1− sin(2α(y)) cos θ12

)]
Φ(x, y, Ω1, Ω2)

= EΦ(x, y, Ω1, Ω2).

(5.2.7)

After the projection out of the spherical harmonics Yl1,m1(Ω1)Yl2,m2(Ω2), in the model

space spanned by (x, y, Ω1, Ω2), the total wave function takes the form

Φ(x, y, Ω1, Ω2) =
∑

l1l2

∑
i

∑

k

fi(x)fk(y)F ik,N
l1l2

(x, y)Yl1,m1(Ω1)Yl2,m2(Ω2), (5.2.8)

and the Schrödinger equation in terms of the hyperspehrical variables takes the form
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[
−1

2

1

R′2(x)

∂2

∂x2
− 1

8R2(x)
+

1

2R2(x)

(
−16

π2

∂2

∂y2
+

l̂21
cos2 α(y)

+
l̂22

sin2 α(y)

)

+
1

R(x)

(
− Z

cos α(y)
− Z

sin α(y)
+

1√
1− sin(2α(y)) cos θ12

)]

×

∑

l′1l′2

∑

i′k′
fi′(x)fk′(y)F i′k′,N ′

l′1l′2
Yl1,m1(Ω1)Yl2,m2(Ω2)




= E


∑

l′1l′2

∑

i′k′
fi′(x)fk′(y)F i′k′,N ′

l′1l′2
Yl1,m1(Ω1)Yl2,m2(Ω2)


 .

(5.2.9)

The discretized Schrödinger equation in terms of the hyperspehrical variables takes

the form

∑

l′1l′2

∑

i′k′

[
− 1

2R′2(xi)
Kx

ii′δkk′Ol′1l′2
l1l2

F i′k′,N ′
l′1l′2

− 1

8R2(xi)
δii′δkk′Ol′1l′2

l1l2
F i′k′,N ′

l′1l′2

− 8

π2R2(xi)
δii′K

y
kk′Ol′1l′2

l1l2
F i′k′,N ′

l′1l′2
+

1

2R2(xi)

l̂21
cos2 α(yk)

δii′δkk′ Äl′1l′2
l1l2

(1)F i′k′,N ′
l′1l′2

+
1

2R2(xi)

l̂21
sin2 α(yk)

δii′δkk′ Äl′1l′2
l1l2

(2)F i′k′,N ′
l′1l′2

+
1

R(xi)

(
− Z

cos α(yk)
− Z

sin α(yk)

)

×δii′δkk′Ol′1l′2
l1l2

F i′k′,N ′
l′1l′2

+
1

R(xi)
δii′δkk′

×
〈
Yl1,m1(Ω1)Yl2,m2(Ω2)

∣∣∣∣∣
1√

1− sin(2α(yk)) cos θ12

∣∣∣∣∣

×Yl′1,m′
1
(Ω1)Yl′2,m′

2
(Ω2)

〉
F i′k′,N ′

l′1l′2

]
= E


∑

l′1l′2

∑

i′k′
δii′δkk′Ol′1l′2

l1l2
F i′k′,N ′

l′1l′2


 ,

(5.2.10)

where the matrix element of the kinetic energy, Kx
ii′ , in the hyperradius direction and

Ky
kk′ , in the hyperangular direction is defined by
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Kx
ii′ =

∂2fi′(x)

∂x2

∣∣∣∣
x=xi

, (5.2.11)

Ky
kk′ =

∂2fk′(y)

∂y2

∣∣∣∣
y=yk

. (5.2.12)

Here, Ol′1l′2
l1l2

=< Yl1,m1(Ω1)|Yl′1,m′
1
(Ω1) >< Yl2,m2(Ω2)|Yl′2,m′

2
(Ω2) >

= δl1l′1δl2l′2δm1m′
1
δm2m′

2
is the overlap matrix. Throughout the angular momentum M

is conserved M = 0, so therefore we can exclude all angular momentum quantum

number M . In Eq. (5.2.9), we define the angular integrals as follows

Äl′1l′2
l1l2

(1) =
〈
Yl1,m1(Ω1)Yl2,m2(Ω2)

∣∣∣l̂21
∣∣∣Yl′1,m′

1
(Ω1)Yl′2,m′

2
(Ω2)

〉
= l′1(l

′
1 + 1)δl2l′2δl1l′1

(5.2.13)

Äl′1l′2
l1l2

(2) =
〈
Yl1,m1(Ω1)Yl2,m2(Ω2)

∣∣∣l̂22
∣∣∣Yl′1,m′

1
(Ω1)Yl′2,m′

2
(Ω2)

〉
= l′2(l

′
2 + 1)δl1l′1δl2l′2 .

(5.2.14)

The separation of the total Hamiltonian, H
l′1l′2i′k′

l1l2ik , into the kinetic energy, T
l′1l′2i′k′

l1l2ik , and

the potential energy, V
l′1l′2i′k′

l1l2ik , matrices takes the form

T
l′1l′2i′k′

l1l2ik = − 1

2R′2(xi)
Kx

ii′δkk′ − 1

8R2(xi)
δii′K

y
kk′δl1l′1δl2l′2 , (5.2.15)

and
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V
l′1l′2i′k′

l1l2ik =− 1

8R2(xi)
δii′δkk′δl1l′1δl2l′2 +

1

2R2(xi)

l1(l1 + 1)

cos2 α(yk)
δii′δkk′δl1l′1δl2l′2

+
1

2R2(xi)

l2(l2 + 1)

sin2 α(yk)
δii′δkk′δl1l′1δl2l′2 +

1

R(xi)

(
− Z

cos α(yk)
− Z

sin α(yk)

)

× δii′δkk′δl1l′1δl2l′2 + δii′δkk′

∞∑

l=0

rl
<(yk)

rl+1
> (yk)

L
l′1l′2
l1l2

(l),

(5.2.16)

where the angular quantity L
l′1l′2
l1l2

(l) is given in terms of the angles of the vectors r1,

and r2 by the spherical harmonic addition theorem:

L
l′1l′2
l1l2

(l) =

〈
Yl1,m1(Ω1)Yl2,m2(Ω2)

∣∣∣∣∣
l∑

m=−l

4π

2l + 1
Y∗l,mYl,m

∣∣∣∣∣Yl′1,m′
1
(Ω1)Yl′2,m′

2
(Ω2)

〉

=
l∑

m=−l

4π

2l + 1

√
(2l1 + 1)(2l + 1)(2l′1 + 1)

4π

√
(2l2 + 1)(2l + 1)(2l′2 + 1)

4π

×
(

l1 l l′1
0 0 0

)(
l1 l l′1
0 −m 0

)(
l2 l l′2
0 0 0

) (
l2 l l′2
0 m 0

)
.

(5.2.17)

The discretized second derivatives in x, and y for the hyperradius and hyperangle for

the Gauss-Lobatto quadrature is defined by:

Kx
ii′ =

∂2fi′(x)

∂x2

∣∣∣∣
x=xi

=





i = i′; N(N+1)

3(x2
i−1)

i 6= i′; (−2) (−1)i+1

(xi−xi′ )2
√

ωi′/ωi

, (5.2.18)

Ky
jj′ =

∂2fj′(y)

∂y2

∣∣∣∣
y=yj

=





j = j′; N(N+1)

3(y2
j−1)

j 6= j′; (−2) (−1)j+1

(yj−yj′ )2
√

ωj′/ωj

. (5.2.19)

Another advantage of the present GPS technique is that is does not require to cal-

culate the complicated and time-consuming matrix elements of the Coulomb repulsion
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interaction, since only the values of the Coulomb potentials in the spatial mesh are

needed. Furthermore both the hyperradius R and hyperangle α are discretized in

an optimal and nonuniform fashion, namely, more grid points are placed nearby the

nucleus and sparser grid structure outward, with the use of only a modest number of

grid points. This speeds up considerably the numerical calculation and at the same

time provides an accurate wave function at the grid points.

Once the total wave function is obtained we can use this to determine the radial

expectation values < r >, for the bound states of helium:

< Ψ(r1, r2)|1/2(r1 + r2)|Ψ(r1, r2) > . (5.2.20)

In Hyperspherical coordinates, Eq. (5.2.20) is recasted into the following form:

< Ψ(R, α, Ω1, Ω2)|1/2(R cos α + R sin α)|Ψ(R, α, Ω1, Ω2) >

=
∑

ik

∑

l1l2

F ik
l1l2

(x, y) · 1/2(R(xi) cos α(yk) + R(xi) sin α(yk)) · F ik
l1l2

(x, y).
(5.2.21)

The accuracy of the present HSC technique has been demonstrated through com-

parisons with benchmark energy values of the helium atom. Table 5.1 list the energy

of the ground and low-lying states of helium in the field-free case. Only a modest

number of grid points, for example NR×Nα = 100×40, and only a few partial waves

(l1 = l2 = 5), is employed to yield the the results listed in Table 5.1. In most cases,

the present results are accurate up to at least six digits, which accuracy are sufficient
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to explore the dynamical response of the two-electron atoms in the time-dependent

laser pulses.

Table 5.1: Energies of the ground and low-lying excited states of the helium atom.
No effect of finite nuclear mass is included in the present and literature values. All
energies are given in a.u.

States This work Ref. [17]
Singlet state

1s2 1Se -2.903722 -2.903724
1s2s 1Se -2.145974 -2.145974
1s2p 1Po -2.123841 -2.123843
1s3s 1Se -2.061270 -2.061271
1s3p 1Po -2.055145 -2.055146
1s3d 1De -2.055620 -2.055620
1s4d 1De -2.031280 -2.031279

Triplet state

1s2s 3Se -2.175229 -2.175229
1s3s 3Se -2.068693 -2.068698
1s2p 3Po -2.133163 -2.133164
1s3p 3Po -2.058080 -2.058081
1s3d 3De -2.055636 -2.055636
1s4d 3De -2.031285 -2.031288

The oscillator strength of helium is defined in the dipole-length formula as,

fl = 2(Ef − Ei)| < Ψf (r1, r2)|z1 + z2|Ψi(r1, r2) > |2. (5.2.22)

In Hyperspherical coordinates, Eq. (5.2.22) is recasted into the following form:
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fl = 2(Ef − Ei)| < Ψf (R,α, Ω1, Ω2)|R sin α cos θ1 + R cos α cos θ2|Ψi(R,α, Ω1, Ω2) > |2.
(5.2.23)

While selected radial distributions and oscillator strengths between low-lying states

are listed in Table 5.2. Such an accuracy reported here cannot be achieved by means

of commonly used equal-spacing discretization methods without the use of many-

orders-of-magnitude larger grid points.

Table 5.2: Comparison of the radial expectation and oscillator strengths of the helium
atom. No effect of finite nuclear mass is included. All energies are given in a.u.

States This work Ref. [15]
Radial expectation

1 1Se 0.929451 0.929452
2 1Se 2.973276 2.973276
2 1Po 2.911075 2.911076
3 1De 5.615657 5.615658

Oscillator strengths

11S → 21P 0.2721 0.2721
21S → 21P 0.3761 0.3761
21P → 31D 0.7098 0.7098
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5.3 Time-Dependent Generalized Pseudospectral

Approach in Hyperspherical Coordinates

Application of hyperspherical coordinates technique to a few-electron atomic systems

in the field-free case is far from new, however, its time-dependent version is still under

development. Numerical stable and accurate algorithms are required for treatment

of the interaction of the atomic system with intense laser fields and the physical

quantities of interest can be then extracted from time-dependent wave functions.

Having obtained the the eigenstates and in the field-free case, the solution of the

time-dependent Schrödinger equation in the linearly polarized laser-driven fields can

be expanded in terms of the field-free eigenstates. The time propagation of the wave

functions in the laser fields can be obtained by the well-known second-order split-

operator technique in energy representation.

We generalize the TDGPS techniques to the hyperspherical coordinates for nonuni-

form spatial discretization of the Hamiltonian and for performing the time propaga-

tion of the wave function by means second-order split-operator technique in energy

representation. The time-dependent wave function, namely

Φ(x, y, Ω1, Ω2, t) =
∑

l1l2

∑
i

∑

k

fi(x)fk(y)F ik,N
l1l2

(x, y, t)Yl1,m1(Ω1)Yl2,m2(Ω2). (5.3.1)

Equation (5.3.1) is used to propagate the two-electron wave packet in time by the
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second-order split-operator technique in the energy representation. The time evolu-

tion equation

Φ(R, α, Ω1, Ω2, t + ∆t) = e−iH0∆t/2e−iV (t+∆t/2)∆te−iH0∆t/2Φ(R,α, Ω1, Ω2, t) +O(∆t3),

(5.3.2)

where H0 stands for the field-free Hamiltonian and V (t) is the interaction of the helium

atom with laser pulses. Here the electric field E(t) has a sin2 envelope function f(t)

and is linear polarized along the z axis. In the energy representation, we obtain the so

called S matrix in hyperspherical space, which indicates the effect of the exponential

operator e−iH0∆t/2 on the wave function Φ(R,α, Ω1, Ω2, t) in Eq. (5.3.2). Here the

S-matrix elements reads

Sikl1l2
i′k′l′1l′2

(∆t) =
∑

j

e−iεj∆t/2F ik,j
l1l2

(x, y)F i′k′,j
l′1l′2

(x, y), (5.3.3)

where εN denotes the energy spectra of the helium atom in the field free case. If we

choose the initial state F
i′k′(0)

l′1l′2
as the ground state of He (1s2) and propagate with the

split operator, therefore, the time propagation can be obtained on the mesh through

the following three successive time steps

F
ik(1)
l1l2

(x, y, t) =
∑

i′k′

∑

l′1l′2

Sikl1l2
i′k′l′1l′2

(∆t)F
i′k′(0)

l′1l′2
(x, y, t);

F
ik(2)

l′′1 l′′2
(x, y, t) =

∑

l1l2

∑

l′1l′2

Z l′1l′2,ik

l1l2,l′′1 l′′2
(x, y, ∆t)F

ik(1)

l′1l′2
(x, y, t);

F
ik(3)
l1l2

(x, y, t + ∆t) =
∑

i′′k′′

∑

l′′1 l′′2

Sikl1l2
i′′k′′l′′1 l′′2

(∆t)F
i′′k′′(2)

l′′1 l′′2
(x, y, t).

(5.3.4)
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For our present case, the Z matrix caused by the external laser fields is dependent

on time, while the S-matrix is independent of time and only needs to be constructed

once. The external laser field propagator matrix Z, namely

Z = e−iV (t+∆t/2)∆t = e−iE(t+∆t/2)∆t(z1+z2) = e−iE(t+∆t/2)∆t(R cos α cos θ1+R sin α cos θ2)

=
∞∑

l1l2

(2l1 + 1)(2l2 + 1)(−i)l1+l2jl1(−E(t + ∆t/2)R cos α)

× jl2(−E(t + ∆t/2)R sin α)Pl1(cos θ1)Pl2(cos θ2)

=
∞∑

l1l2

(2l1 + 1)(2l2 + 1)(−i)l1+l2jl1(−E(t + ∆t/2)R cos α)

× jl2(−E(t + ∆t/2)R sin α)

√
4π

2l1 + 1
Yl1,0(Ω1)

√
4π

2l2 + 1
Yl2,0(Ω2),

(5.3.5)

where j is the spherical bessel functions and P are Legendre polynomials which are

expressed as spherical harmonics Y , hence, Pl(cos θ) =
√

4π/(2l + 1)Yl1,0(θ, ϕ). Here,

we will explain one time propagation of the wave function by the laser field, namely

Eq. (5.3.5) multiplied to the time-dependent wave function defined by
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e−iE(t+∆t/2)∆t(R(x) cos α(y) cos θ1+R(x) sin α(y) cos θ2)Φ(x, y, Ω1, Ω2)

=
∞∑

l1l2

(2l1 + 1)(2l2 + 1)(−i)l1+l2

× jl1(−E(t + ∆t/2)R(x) cos α(y))jl2(−E(t + ∆t/2)R(x) sin α(y))

√
4π

2l1 + 1
Yl1,0(Ω1)

×
√

4π

2l2 + 1
Yl2,0(Ω2)

∞∑

l′1l′2

F ik
l′1l′2

(x, y, t)Yl′1,m′
1
(Ω1)Yl′2,m′

2
(Ω2)

=
∞∑

l1l2

∞∑

l′1l′2

(2l1 + 1)(2l2 + 1)(−i)l1+l2jl1(−E(t + ∆t/2)R(x) cos α(y))

× jl2(−E(t + ∆t/2)R(x) sin α(y))F ik
l′1l′2

(x, y, t)

×
√

4π

2l1 + 1

∫
Y∗L1,m1

(Ω1)Yl1,0(Ω1)Yl′1,m′
1
(Ω1)dΩ1

×
√

4π

2l2 + 1

∫
Y∗L2,m2

(Ω2)Yl2,0(Ω2)Yl′2,m′
2
(Ω2)dΩ2

=
∞∑

l1l2

∞∑

l′1l′2

(2l1 + 1)(2l2 + 1)(−i)l1+l2jl1(−E(t + ∆t/2)R(x) cos α(y))

× jl2(−E(t + ∆t/2)R(x) sin α(y))F ik
l′1l′2

(x, y, t)

√
4π

2l1 + 1

√
(2L1 + 1)(2l1 + 1)(2l′1 + 1)

4π

×
(

L1 l1 l′1
0 0 0

) (
L1 l1 l′1
−m′

1 0 m′
1

)
δm1m′

1

√
4π

2l2 + 1

√
(2L2 + 1)(2l2 + 1)(2l′2 + 1)

4π

×
(

L2 l2 l′2
0 0 0

) (
L2 l2 l′2
−m′

2 0 m′
2

)
δm2m′

2
.

(5.3.6)

Based on the equation above we can accurately propagate the time-dependent wave

function by the external laser field, which explicitly depends on time. Once the

time-dependent wave functions are calculated, we can calculate the time-dependent

ionization probability
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P = 1−N(t), (5.3.7)

where

N(t) =< Φ(t)|Φ(t) >, (5.3.8)

and the time-dependent survival probability of the 1s2 ground-state orbital

S(t) =< Φ1s2(0)|Φ(t) > . (5.3.9)

Figure 5.1 presents the time-dependent population of the helium atom, as defined in

Eq. (5.3.8). The slope of the decay of the electron population in time describes the

ionization rate. Figure 5.2 presents the time-dependent survival probability of the

helium atoms ground-state orbital (1s2),as defined in Eq. (5.3.9).

Once the time-dependent wave function is obtained the induced dipole moment

(Fig. 5.3) and dipole acceleration can now be expressed in hyperspherical coordinates

on the mesh, respectfully, as

dL(t) =

〈
Φ(t)

∣∣∣∣∣
2∑

i=1

zi

∣∣∣∣∣ Φ(t)

〉

= 〈Φ(x, y, Ω1, Ω2, t)|R(x) cos α(y) cos θ1 + R(x) cos α(y) cos θ2|Φ(x, y, Ω1, Ω2, t)〉

=
∑

ik

∑

l1l2

∑

l′1l′2

[
(R(xi) cos α(yk))F

∗ik
l1l2

(x, y, t)F ik
l′1l′2

(x, y, t)

× 〈Yl1,m1(Ω1)| cos θ1|Yl′1,m′
1
(Ω1)

〉

+(R(xi) sin α(yk))F
∗ik
l1l2

(x, y, t)F ik
l′1l′2

(x, y, t)
〈Yl2,m2(Ω2)| cos θ2|Yl′2,m′

2
(Ω2)

〉]
,

(5.3.10)
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where the angular integration over electron-one, hence, cos θ1 is the following

〈Yl1,m1(Ω1)| cos θ1|Yl′1,m′
1
(Ω1)

〉
=

(
l′1 + 1

[(2l′1 + 1)(2l′1 + 3)]1/2
δl1,l′1+1δm1,m′

1

+
l′1

[(2l′1 − 1)(2l′1 + 1)]1/2
δl1,l′1−1δm1,m′

1

)
,

(5.3.11)

and

dA(t) =

〈
Φ(t)

∣∣∣∣∣
2∑

i=1

[
− zi

r3
i

+ E0f(t) sin(ω0t)

]∣∣∣∣∣ Φ(t)

〉
(5.3.12)

where ∇z(1/r) = −z/r3, which is the first derivative of the potential with respect to

z.

The corresponding HHG power spectrum (Fig. 5.4) can now be obtained by the

Fourier transformation of the respective time-dependent dipole moment or dipole

acceleration:

PL(ω) =

∣∣∣∣
1

tf − ti

∫ tf

ti

dL(t)e−iωt

∣∣∣∣
2

= |dL(ω)|2, (5.3.13)

and

PA(ω) =

∣∣∣∣
1

tf − ti

1

ω2

∫ tf

ti

dL(t)e−iωt

∣∣∣∣
2

= |dA(ω)|2. (5.3.14)



108

0 2 4 6 8 10
9.9999986x10-1

9.9999988x10-1

9.9999990x10-1

9.9999992x10-1

9.9999994x10-1

9.9999996x10-1

9.9999998x10-1

1.0000000x100

1.0000000x100

 

 

<
t)|

t)>

Time (optical cycle)

Figure 5.1: The time-dependent population of He in 800 nm, 1 × 1014 W/cm2 sin2

pulse laser field with 10 optical cycles in pulse duration.
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Figure 5.2: The time-dependent survival probability of He (ground-state 1s2) in 800
nm, 1× 1014 W/cm2 sin2 pulse laser field with 10 optical cycles in pulse duration.
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Figure 5.3: The induced dipole moment of He in 800 nm, 1× 1014 W/cm2 sin2 pulse
laser field with 10 optical cycles in pulse duration.
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Figure 5.4: Harmonic generation of He in 800 nm, 1 × 1014 W/cm2 sin2 pulse laser
field with 10 optical cycles in pulse duration.
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5.4 Conclusion

In summary, we have presented a nonperturbative ab initio time-dependent hyper-

spherical coordinates approach for the exploration of the correlated quantum dynam-

ics and the emitted HHG power spectra of the two-electron atomic systems in intense

laser pulses. The current TDGPS approach developed in hyperspherical coordinates

is shown to be capable of providing accurate time-dependent wave function with only

the use of moderate number of grid points. Extension of the present work for the

treatment of the doubly ionization process is in progress. This will be based on the

competition between the different mechanisms leading to the breakup of the system.

The two channels leading to double ionization are open by adsorption of two photons

with frequency (ω = 57 eV.). One is sequential

~ω + He −→ He+ + e−,

and

~ω + He+ −→ He++ + e−.
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And another is nonsequential

2~ω + He −→ He++ + 2e−.

Regarding the mechanisms leading to double photoionization, there are many aspects

which are worthwhile to be explored in detail, since experimental progress in the gen-

eration of ultrashort xuv laser pulses has made it possible for exploration of complete

breakup problems of atoms and molecules in a smaller time scale.
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