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Abstract 
 
The purpose of this dissertation is to draw attention to a long neglected, yet very 

important issue in the statistical modeling of longitudinal data. The issue can arise in 

any analysis in which one variable, measured at a particular time, is modeled as a 

predictor or cause of another variable, measured at some later time. The problem is 

that the magnitude of the variable’s effect can vary with the amount of time that 

elapses between the measurements, or the lag. The dissertation is divided into the 

following sections: 1) a brief discussion of the issue of causality in models for 

longitudinal data; 2) an examination of the fundamental role of time lag in any model 

for longitudinal data in which variables are depicted as predictors or causes; 3) a 

review of the existing solutions regarding the choice of lags for longitudinal models; 

4) the introduction of an alternative strategy to addressing the lag issue: the lag as 

moderator (LAM) approach; and finally, 5) a demonstration of the potential of the 

LAM approach by applying it to the analysis of simulated and empirical data.  
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Where has the time gone? The role of time lags in models for longitudinal data 

 The purpose of this dissertation is to draw attention to a long neglected, yet 

very important issue in the statistical modeling of longitudinal data. The issue can 

arise in any analysis in which one variable, measured at a particular time, is modeled 

as a predictor or cause of another variable, measured at some later time. The problem 

is that the magnitude of the variable’s effect can vary with the amount of time that 

elapses between the measurements, or the lag. The dissertation is divided into the 

following sections: 1) a brief discussion of the issue of causality in models for 

longitudinal data; 2) an examination of the fundamental role of time lag in any model 

for longitudinal data in which variables are depicted as predictors or causes; 3) a 

review of the existing solutions regarding the choice of lags for longitudinal models; 

4) the introduction of an alternative strategy to addressing the lag issue: the lag as 

moderator (LAM) approach; and finally, 5) a demonstration of the potential of the 

LAM approach by applying it to the analysis of simulated and empirical data.  

Description and Explanation 

 Scientists seek to describe and explain the world around them and in 

particular, the social scientist aims to describe and explain the behavior of people. (cf. 

Wold, 1954, 1956). Description relies upon careful observation, measurement, and 

the summarizing of what has been observed, while explanation requires a statement 

of the putative causes of behavior and the systematic evaluation of those causes. 

Prediction, while not usually requiring a formal statement of causation, is more 
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similar to the goal of explanation in that it requires the structuring of an association in 

terms of time (earlier X predicts later Y) and role (X is a predictor and Y is a criterion). 

Given that the explanation of behavior hinges on finding the possible causes for that 

behavior, it follows that one of the primary pursuits of the social scientist, and any 

other scientist, is to discover causal or predictive relationships. 

The Possibility of Causal Inference 

 There is considerable debate regarding what evidence is necessary to establish 

that a causal relationship exists. Philosophers, statisticians, and methodologists 

provide at times divergent guidelines regarding what criteria must be met in order to 

establish the existence of a causal relationship. Due to this longstanding controversy, 

the task of proving the existence of causal relationships seems impossible.  

 The problem with establishing the existence of a causal relationship has been 

described in many ways, but each hinges on the impossibility of ruling out other 

potential causes. Bollen (1989) describes this as the issue of isolation. To definitively 

show that X causes Y would require that Y be isolated from the influence of all other 

possible causes.  

Rubin and Holland (Rubin, 1974, Holland, 1986) describe the problem of 

causal inference in a different way—stating the fundamental problem of causal 

inference as the impossibility of observing an effect both when the cause occurs and 

does not occur. This problem can be traced back at least as far as the work of David 

Hume (1977 [1739]) and is often stated as the problem of the unobservable 

counterfactual.  
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The scientist faces a serious dilemma. The progress of science relies upon the 

finding and evaluation of causal relationships, but it seems that these relationships are 

impossible to establish. The social scientist may be especially troubled as the possible 

determinants of behavior are myriad and there is little hope for complete isolation 

from other plausible causes.  

I propose a pragmatic solution--that support for a causal inference should be 

viewed as a continuum rather than a threshold. We can stipulate that there will always 

be uncertainty regarding the existence of a causal effect, but it is possible to establish 

relative degrees of support for such an effect. The question then becomes not what 

qualifies as evidence of a causal relationship in the sense that either a threshold is 

crossed or not, but instead the question becomes what factors lead to stronger 

evidence for such a relationship. The various criteria proposed for establishing the 

existence of causal relationships may serve to define locations on this continuum. 

 Three of the most common criteria for showing that some variable, X, has a 

causal effect on some other variable, Y, are: 1) that X and Y covary, are associated, or 

co-occur; 2) that there are no other plausible causes for Y other than X; and 3) that X 

occurs prior to Y. (see e.g., Kenny, 1979; Mill, 1843; Shadish, Cook, & Campbell, 

2002). The third criterion, often referred to as the principle of temporal precedence, is 

central to the current emphasis on time lags. In spite of the controversy surrounding 

the issue of causal inference, this principle is widely accepted by philosophers, 

statisticians, and methodologists alike (Holland, 1986; Hume, 1962[1739]; Mill, 

1843; Shadish, Cook, & Campbell, 2002). Even those skeptical of the search for 
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causal relationships, who instead emphasize association and prediction, can still apply 

the principle of temporal precedence to build a stronger case for a predictive 

relationship. 

The Necessity of Longitudinal Data 

Based on the principle of temporal precedence, that a cause must precede its 

effect, it follows that the data we collect to test causal models should be longitudinal. 

Even if one chooses to avoid the issues of causality by focusing instead on predictive 

relationships, measuring the predictor prior to measuring the criterion is necessary to 

make the strongest case for prediction. While it is difficult to formulate a strong 

argument against the necessity for longitudinal data, there has been considerable 

debate in past decades regarding when the analysis of non-longitudinal data or cross-

sectional data will yield the same result as the analysis of longitudinal data (see, for 

example, Heise, 1975 and James, Mulaik, & Brett, 1982). The consensus from the 

examination of such ‘equilibrium’ assumptions is that it is extremely unlikely in 

practice to find a situation in which the analysis of cross-sectional and longitudinal 

data would lead to the same conclusions (see e.g., Cole & Maxwell, 2003; Gollob & 

Reichardt, 1987; Maxwell & Cole, 2007). Further, based only on the assumption that 

causes do not exert instantaneous effects, it can be demonstrated that the use of cross-

sectional data to model longitudinal relationships can result in substantially biased 

estimates of effects (Cole & Maxwell, 2003; Gollob & Reichardt, 1987; Maxwell & 

Cole, 2007).    
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The Importance of Lag 

 To this point I have made the case that it is important to most scientists to 

provide explanations for behavior. Explanations are inextricably tied to causal 

influences. The previously mentioned approach to building a case for a causal 

influence is used here to avoid the pitfalls of the issue of causality. It is also possible 

to re-frame the pursuits of the scientist in terms of finding relationships between 

variables or predicting future behavior based on relevant variables. Regardless of 

wording, if results from the analysis of data are to support the effect of one variable 

(X) on another (Y), longitudinal data are required. The fact that observations must be 

separated by some interval of time leads to the conclusion that time lags play a key 

role in much research.  

The Trouble with Choosing Lags 

It follows from the above arguments that in many if not most investigations, 

some time lag is required. It is unclear just how much time should elapse between the 

measurements of variables. The choice of lag can be viewed from two perspectives: 

1) so long as the principle of temporal precedence is followed, the choice of lag is 

trivial; or 2) the choice of lags can impact the magnitude of the estimated causal 

effect and therefore must be made with care.  

If one argues that any amount of time is sufficient, then it follows that any lag 

between measurements is as good as any other. This view is implicit in the choice of 

lags in applied research when no justification is provided for the choice of lag used in 

a study. It also seems to be implied by the many treatises on causal inference that 
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state the necessity of having a lag but ignore the question of what the length of that 

lag should be. The view that any lag is as good as another, however, carries with it 

some heavy implications. For purposes of illustration, consider a simple regression 

model where X is assumed to be a cause of Y. X is measured at some time (t1) and Y 

can be measured at any subsequent time (t1+ k). To say that any lag will serve equally 

well in testing this relationship, it is implied that the effect of X on Y will be of the 

same magnitude regardless of the interval of time that passes. This would imply that 

either 1) shortly after the X is measured it exerts its effect on Y and the value of Y is 

then unchanging, or 2) that Y continues to change after being measured, but there is 

no interindividual variability in Y so that the individual standing on Y is unchanged 

though the mean level of Y changes. Both of these scenarios seem very unlikely. 

To my knowledge, there are no published claims that the choice of time lag is 

inconsequential. The early descriptions of path models and structural equation models 

show a keen awareness of the possibility that the choice of time lags could be of 

fundamental importance. The father of path analysis, Sewall Wright (1960, p. 423), 

acknowledged that often the effect of a variable on another is not static and the effect, 

“...in most cases rises gradually to a peak and then gradually falls off…” Similarly, 

another early paper on the use of path analysis with cross-lagged panel data notes that 

using a poorly chosen lag can obscure causal relationships (Shingles, 1976). Finally, 

in an early treatment of the use of path analysis to model sociological variables, Heise 

(1970) notes that any such model must assume that the lag chosen corresponds to the 

true lag necessary to observe the causal effect.  
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 This leads to the second view of choosing lags for longitudinal data collection, 

the view that lags matter and that different lags may lead to the finding of different 

effects (Gollob & Reichardt, 1987; Pelz & Lew, 1970; Wright, 1960). From this 

perspective, the collection of longitudinal data without first considering how much 

time should elapse between measurements may lead to serious problems. The effect 

of X on Y when Y is measured one year after X is likely to be different from the same 

effect measured after only one month or one day. This leads to the problem that 

within the context of any single study, the failure to find an expected effect may mean 

that that effect does not exist, or it may mean that the effect does not exist at the 

chosen lag. Similarly, the successful finding of an effect should be interpreted as the 

existence of an effect at the studied lag. 

 There is not, then, a question of whether the use of different lags can yield 

different estimates for a causal effect. This is clear both from the earliest 

examinations of models for longitudinal data and from an examination of the 

conditions required to produce a situation where lag choice did not affect the 

magnitude of the causal effect. In the following section I will expand upon the issue 

that effects may vary with the lag chosen by examining the issue of the choice of lag 

from a selection perspective.  

Lag Choice as a Selection Issue 

The issue of choosing a lag for a study can be usefully examined as a selection 

issue. Selection issues are those arising from the fact that any study, regardless of 

how large or lengthy, selects only a limited set of data values from a much larger 
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possible number of such values (Nesselroade & Jones, 1991). Figure 1 depicts a 

version of Cattell’s data box (1966) with dimensions of persons, variables, and 

occasions. This data box can be thought of as consisting of small cubes. Each cube 

represents a single datum representing a point on each of the respective dimensions—

a person measured at a single occasion on a single variable. A single study can 

sample only a limited range of values from all persons, all variables, and all 

occasions. It is always possible to question whether the results for a study are 

representative because only a limited set of possible values are sampled. So we may 

ask whether the results of a study would apply to all persons in a population, whether 

the results would have been the same if other variables had been used, and whether 

the same results would have been found if different occasions had been sampled. The 

occasions dimension is relevant in at least three ways. First there is the issue of using 

longitudinal data (i.e., whether sampling a single occasion is sufficient). Next, there is 

the issue of effects changing across the lifespan (e.g., whether a relationship that 

exists in early childhood would exist in the same way in adulthood). Finally, the issue 

of lag choice can also be construed as relevant to the occasions sampled.  

Nesselroade (1991) briefly makes this connection in describing how the 

sampling of occasions is related to the selection of intervals, the amount of time that 

elapses between adjacent observations. In fact, for any study the choice of occasions 

is integrally tied to the choice of intervals (lags) so consideration of one entails the 

other. For a two occasion study, one must choose explicitly which two occasions will 

be sampled. By doing so, the lag between observations is also chosen. If choice of 
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occasions sampled is important and inadequate selection of occasions is a problem 

that may lead to different results being found when one pair of occasions are sampled 

rather than another, it follows that selection of lag, or the time that elapses between 

those occasions, is equally important.  

With the exception of this mention by Nesselroade (1991), lag choice has not 

been viewed as a selection issue that could lead to selection bias. In contrast, there 

seem to be stalwart advocates for a full consideration of each of the other selection 

dimensions represented by the data box. For example, single-subject research designs 

are commonly criticized because such designs do not adequately sample individuals. 

Advocates of multivariate measurement strategies critique studies utilizing only a 

single variable to represent a construct. Finally, champions of the importance of 

longitudinal data collection point out that cross-sectional data are in many ways 

inadequate. It is unusual then that although effects may vary across different lags or 

the occasions sampled, the overwhelming majority of longitudinal studies consist of 

data assessed at only one fixed lag. After all, this means that because only some (or 

only one!) lag units were sampled from the many possible, the results may be 

different than they would be if all or different units were sampled. At the very least, 

there should be more concern regarding the question of whether the inferences based 

on the traditional approach to collecting data across only one fixed interval are on any 

stronger footing than inferences based on collecting data from only one person, only 

one occasion, or using only one variable. 
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Exploring How Effects Vary with Lag 

To this point, I have argued that effects can vary with the lag chosen, and 

from the selection perspective that the choice of lag may affect results in the guise of 

selection effects. In the following section I will review the handful of studies that 

examined this variation. These studies include: 1) principled arguments in favor of 

studying varying lags; 2) simulation studies showing the results of using different 

lags; and 3) statistical analysis of models for longitudinal data. To these three, I will 

add analyses of existing data demonstrating how effects change with lag.  

Though, as was previously mentioned, the importance of choosing lags was 

well documented in the early path analysis literature, after such early descriptions the 

issue was largely ignored in the social sciences until it was revived by Gollob and 

Reichardt (1987) nearly three decades later. Gollob and Reichardt proposed a number 

of principles regarding the issue of time and research design. Key among these 

principles is the statement that it should be expected that causal effects will change as 

a function of lag. They present a simple example of the effect of taking aspirin on 

reduction of headache pain. Anyone who has taken aspirin to relieve headache pain 

understands that the effect of the aspirin is not instantaneous (i.e., there is some lag 

between the cause and effect) and the effect is not constant across time (i.e., for a 

long-lasting headache, the pain reduction may slowly reach a peak and then diminish 

until additional aspirin are needed). Building on this example, it seems that the idea 

that effects vary as a function of lag has much intuitive appeal and is consistent with 

our everyday experience of the world. For example, the old adage, “time heals all 
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wounds” reflects the common belief that the effect of a traumatic event on one’s well 

being will diminish as the lag between the event and assessment of well being 

increases.  

Evidence from Simulation and Analysis 

Pelz and Lew (1970) provide the earliest simulation study demonstrating the 

importance of lag choice. Pelz and Lew use a two-variable two-wave panel model. 

For the demonstration, Pelz and Lew assume a particular value for the causal 

interval, or the precise interval required for X to affect Y and for Y to affect X. 

Through analysis and simulation, Pelz and Lew show that the use of lags different 

from the causal interval can lead to incorrect conclusions regarding the direction of 

causation (i.e., whether X causes Y or Y causes X); the magnitude of the causal effect; 

and even the sign of the causal effect (i.e., whether X acts to increase or decrease Y). 

Pelz and Lew note that this issue can be especially problematic when there are 

bidirectional effects (i.e., X causes Y and Y causes X). Therefore, based only on the 

assumption that some causal lag exists, Pelz and Lew demonstrate that the use of 

varying lags can lead to very different conclusions.  

A number of decades later, the importance of time lags was explored by 

Cohen (1991). Cohen designed a simulation study to assess the degree of bias that 

may arise when covariates that change over time are measured at times that vary from 

an ideal interval. Cohen calls the issue the “problem of the premature covariate”. 

Figure 2 depicts the model used by Cohen to describe this problem. In Cohen’s 

scenario there are two variables and two occasions of measurement, Y is measured at 
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time 1 and time 2 (e.g., at the beginning and end of a two-wave study). X is measured 

only at time 2. The variable X is a retrospective measure in that, according to Cohen’s 

hypothetical description, participants report whether an event has occurred or not 

occurred since t1. The focal analysis is the prediction of Y2 by X2. Cohen proceeds 

with the assumption that Y is changing and Y measured just prior to Y2 is the value 

necessary for the estimates from the model to be unbiased (i.e., Y is described by a 

first-order autoregressive process, AR(1)). Thus, Yt (1 < t < 2) measured just prior to 

t2 is the desired value of the covariate; however, that value is not observed, so Y1 will 

be used in its place. To the degree that Y1 is not a good proxy for Yt there will be bias 

in the estimate of the relationship between X and Y, particularly if X2 and Yt are 

correlated (e.g., in a situation where Y does not depend upon X but X depends upon 

Y). Cohen points out, however, that it may not be sufficient to include Y1 in the 

equation predicting Y2 if the autoregressive relationship of Y changes as a function of 

the length of the lag between measurements, as it will for any AR(1) process. In this 

instance, what is really required to eliminate potential bias is Y measured at a more 

proximal occasion, say time t that occurs after time 1 and just prior to time 2.  

Through simulation, Cohen shows that using Y1 as a proxy for the desired value of Yt  

results in biased estimates of the effect of X on Y where the bias increases as Y1 is 

measured at occasions more distal from Yt. Thus, Cohen showed that the choice of lag 

is important in that one’s ability to detect a spurious relationship can be hindered by 

the choice of lag. 
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 Though Cohen’s study focuses on the how the (mis-)timing of a covariate may 

serve to bias estimates of other causal effects in a model, her results generalize to any 

causal relationship estimated using longitudinal data. To see this we can use a simple 

two variable example where X is measured at time 1 and Y measured at some time 

afterwards. We assume that Y can change over time thus the causal effect of X on Y 

may also change over time. Based only on the assumption that the effect of X on Y 

can change with the lag used, it follows that there will be some maximum effect of X 

on Y and for the moment we will assume that this maximum effect is the focus of our 

research. The maximum effect occurs at some time tm when the value of Y is Ym. If 

our goal is to estimate the effect of X on Y at tm, and we measure Y at any other time, 

the quality of our results may be diminished to the degree that the measure Y is not a 

good proxy for the desired value of Ym. 

Collins and Graham (2002) reinforce the above point though the analysis of 

the three variable model depicted in Figure 3. In this model, X is a predictor of 

interest and Y* is the outcome measured at precisely the time that X is said to have its 

effect on Y. The dashed line depicting Y* means that Y* could not be observed due to 

data collection constraints and Y’, or Y measured at some time after Y*, is used as a 

proxy. Collins and Graham use an analysis of the regression model where Y* is 

expressed as a function of Y’. In this way, they show that the focus of the lag issue is 

on how well the desired variable (i.e., the value of Y measured at the time required to 

see the effect) is approximated by the observed Y. Collins and Graham thus show that 

the difference between the relationship of interest (i.e., βY*•X) and the observed 
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relationship (i.e., βY’•X) will vary as a function of the lag between Y* and Y’ because 

more proximal values of Y’ are more highly correlated than more distal values, and 

the degree to which X is related to the residual variance in Y’ not accounted for by Y*.  

Cole and Maxwell (2003) address the issue of poorly choosing lags in the 

context of mediation analysis, but the results apply equally well when direct, rather 

than indirect, relationships are examined. In many ways Cole and Maxwell are 

extending the results of Pelz and Lew (1970) to the case of a three variable panel 

model used to assess mediation hypotheses. Cole and Maxwell examined panel 

models in which three variables (X, M, and Y) are measured repeatedly at some fixed 

interval. The interval (I), similar to the causal interval previously mentioned, is the 

time required for one variable to have its effect on a subsequent variable. Cole and 

Maxwell focus on cross-lagged paths, but their analysis applies as well to 

autoregressive paths, so I will address both here. Figure 4 shows three possible 

scenarios for measurements of only X. In this model, we assume that X is stationary 

and therefore that the stability coefficients relating each X to the subsequent X are 

equal.  In the first scenario X is measured repeatedly at intervals or lags equal to I. In 

the second scenario, the lag between X1 and X2 is lengthened to 2I, and in the third 

scenario the lag is lengthened to 3I.  As the time of measurement of the second 

observation of X becomes more distal relative to the time of measurement of X1, the 

stability coefficient, or the effect of X on itself, diminishes in a predictable way. This 

is also the pattern that would be expected from a series of repeated measures that 

showed a simplex correlation structure (Campbell & Kenny, 1999; Guttman & 
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Guttman, 1965). Therefore, when stationarity is assumed, choosing lags that exceed 

an a priori lag required to observe the effect of interest can lead to autoregressive 

effects that appear too small.  

Figure 5 shows a similar panel model in which both X and Y are repeatedly 

assessed. The focus here is on the cross-lagged prediction of Y by X measured at a 

previous time. The top panel of Figure 5 shows that this relationship is equal to some 

value (βy•x) when the interval (I) is used. However, when a longer interval is chosen, 

the effect of X on Y depends also on the stability of both X and Y so that in some 

instances where X and Y are very stable, the effect of X on Y may appear larger when 

assessed using an interval longer than I. In other instances, when X and Y are only 

moderately stable, the effect of X on Y will likely be smaller when the chosen interval 

is longer than I. 

Empirical Evidence for the Effect of Lag 

It is also possible to find empirical evidence for the fact that effects may vary 

with the use of different lags. Such evidence may come from a systematic review, or 

meta-analysis, of existing studies examining a particular relationship in which it can 

be shown that effects vary as a function of the time that elapses between observations. 

Such evidence is presented in a very early example by Thorndike (1933). Thorndike 

showed that the test-retest correlation for IQ tests, essentially an autoregressive effect, 

from a number of studies showed a systematic decline in magnitude as the interval of 

time between the test and the re-test increased.  
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 The examination of longitudinal data can also show that both autoregressive 

and cross-lagged effects will vary when the lag between two occasions is 

systematically varied. To illustrate I will use a data set from Kanfer and Ackerman 

(1989). These data were collected from 140 United States Air Force Trainees. The 

trainees were asked to complete a set of six air traffic control tasks in which the goal 

was to successfully land as many aircraft as possible in a ten minute session. The 

results from these six trials were used to define six repeated measures variables 

representing the number of successful landings for each respective trial. A seventh 

variable representing each trainee’s intellectual ability was assessed some months 

prior to the collection of the other variables.  

 In order to examine how an autoregressive effect may change as a function of 

lag, I used the first score on the task from each trainee as the predictor in a series of 

five models where the criterion variable was one of the five different repeated 

measures of task success. This is similar to the earlier illustration based on the work 

of Cole and Maxwell (2003). The key difference is that real data are being used and 

no stationarity assumptions are used for this example. Figure 6 shows a plot of the 

standardized autoregressive coefficients from the five models.  The figure shows that 

the standardized autoregressive effect starts at slightly less than 0.8 and declines as 

the number of lags increase to reach a final value of just under 0.5. The rate of decline 

diminishes as more lags are added. While it was not the goal of Kanfer and Ackerman 

(1989) to estimate the autoregressive effect of the trial variable, it is clear that if one 

were interested in such an effect for this set of repeatedly measured variables the 
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amount of time that elapsed between subsequent measurements would affect one’s 

results. In addition to time lag, there is also an issue of practice effects here. The 

diminished relationship between more distal trials can be accounted for by lag or the 

fact that there were intervening trials during which the trainees practiced the task. 

 Turing now to an example using the same data but focusing on an effect of 

one variable predicting another, I used the ability measure as a predictor of task 

performance in a set of six simple regressions where each of the six repeated 

measures of task performance was used as the criterion. Kanfer and Ackerman state 

only that the ability measure was assessed several months prior to the collection of 

the task performance, so the specific lag between the ability measure and the first trial 

is unclear, but assuming approximately equal intervals between the six trials allows 

us to interpret the respective lags from each of the regressions. Figure 7 shows the 

standardized estimates of the causal effect of ability on each of the repeated task 

performance variables. The figure shows that the standardized effect of ability on task 

performance starts at about 0.5 and declines in a very similar manner as the 

autoregressive effect to a value of just under 0.3. Once again, we can see that 

researchers using two-wave measurement strategies who chose different lags could 

come to quite different conclusions. 

Summary of Evidence of the Importance of Lag 

To this point I have reviewed several investigations showing that different 

lags may yield different estimates of effects. This was based on simple examples of 

causes and effects (e.g., Gollob & Reichardt’s aspirin example) and folk wisdom 
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(e.g., time heals all wounds). There is also evidence from simulation and analytical 

investigations showing that varying lags can produce different estimates of causal 

effects. For example, Cole and Maxwell (2003), Collins and Graham (2002), Cohen 

(1991), and Pelz and Lew (1970) took four different approaches to showing that 

choice of lag can have a serious impact on one’s findings regarding causal 

relationships. Pelz and Lew (1970) used analysis and simulation to show that widely 

discrepant findings were possible when the same variables were examined at varying 

lags.   Cohen (1991) approached the problem using a simulation study showing that 

bias occurs when one uses a covariate measured at any time other than the one closest 

to the measurement of the two focal variables. Collins and Graham (2002) 

approached the problem differently by using an algebraic analysis of regression 

models to show what factors are problematic when outcomes are measured at times 

that deviate from some optimal time. Cole and Maxwell (2003) used path models for 

panel data and tracing rules to illustrate that effects can differ substantially when 

measurements of variables are taken at varying times. Starting with only minimal 

assumptions (e.g., that variables can change over time) these studies show that choice 

of lag is very important. Finally, the illustrations using the empirical data from 

Thorndike (1933) and the re-analysis of the Kanfer and Ackerman (1989) data 

showed that both autoregressive and cross-lagged effects can vary when different lags 

are used.  
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Methods for Choosing Lags 

While the various sources of evidence presented to this point provide a clear 

indication that the choice of lag can have an important impact on the results of any 

longitudinal study, it is not clear what steps should be taken to address the potential 

problem. Historically, it seems that the approaches taken to choosing lags can be 

divided into two categories. Individuals taking either of the following two approaches 

are often equally aware of the importance that the choice of lag can have on the 

results of a study. The first approach--the more popular--states that there is some 

single best lag to be used in assessing each causal effect. The single best lag has been 

called by a few different names. Wright (1960, p. 424) calls this the “interval of 

maximum effect”. Shingles (1976, p. 102) simply calls it the “causal lag” and 

contrasts it with the “measurement lag” that may or may not coincide with the causal 

lag.  Cohen (1991, p. 19), calls this lag the “effect period”, and defines it as, “…the 

minimum period over which the predominant effect of a change in one variable on 

change in another takes place…” James, Mulaik, and Brett (1982) denote this optimal 

lag as the “true causal interval”.  In any formulation of this single best lag, it is clear 

that any departure from that optimal lag can lead to incorrect results. Thus, from the 

single best lag perspective, the task of the researcher planning a longitudinal study is 

to use all available resources to determine what the best lag for the study is. 

 The second approach also begins with the assumption that effects can vary 

with the lag chosen, but instead of focusing on finding the single best lag this 

approach places emphasis on studying effects across a variety of lags (Gollob & 
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Reichardt, 1987). The focus of this approach changes from finding a particular lag to 

use, to the study of an effect across a variety of lags. This strategy, at least in part, 

addresses the potential pitfall of poorly choosing a single lag and perhaps more 

importantly suggests a way to conduct future research that will improve the quality of 

findings and deepen our understanding of effects by seeing how such effects evolve 

over time. In many instances, the variable lag approach is superior to the single lag 

approach in that a selected variety of lags used is more likely to reveal information 

about an effect than any single chosen lag, but it is not a panacea in that only a range 

of lag values are used and it is still possible to miss important information that could 

be gotten by using other lags. It is clear that advocates of the variable lag approach 

would proceed in conducting research in a different manner than advocates of the 

single best lag approach. As a means of further exploration of this difference, I will 

next examine the appeal of the single best lag view and some recommendations for 

finding a single lag for a prospective study. 

Finding the Single Best Lag 

 The approach that focuses on finding the single best lag for a study is the most 

common view. This can be shown in part by the fact that each of the analytical and 

simulation studies that examined lag can be classified as subscribing to the first 

strategy of searching for this lag. Pelz and Lew (1970), Cole and Maxwell (2003), 

Collins and Graham (2002), explicitly and Cohen (1991) implicitly begin with the 

premise that there is some optimal lag that will reveal the effect of interest and 

proceed by showing what will happen when we measure at times that differ from the 
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optimal lag. Pelz and Lew do this by specifying the causal lag and then systematically 

deviating from that lag. Cohen does this by simulating data in which there is a first 

order autoregressive effect of Y on subsequent values of Y (i.e., each Y is a function of 

only the previous Y and some random component). In this way the quality of Y as a 

covariate in the X to Y relationship is at its peak when Y is measured just one lag prior 

to the Y of interest. Collins and Graham (2002) state their assumption that there is 

some interval of time that is required for one variable to have its effect on the other. 

For their analysis, this interval is the amount of time that passes between the 

measurement of X and the measurement of Y*. Cole and Maxwell (2003) are also 

very clear on this point when they establish the interval required for one variable to 

have its effect on another (I).  

Appeal of the Single Best Lag 

In one sense, starting from the assumption that there is a single best lag is a 

natural way to proceed. If we assume that many effects (any effects where one or both 

of the variables are changing and there is interindividual variability in change) will 

vary as a function of lag, there will be a lag at which the effect will reach its peak. We 

may assume that a common goal of researchers interested in causal effects is to use a 

lag that will show this maximum effect. Further, all models examined to this point are 

discrete time models, meaning that time is represented in the model only indirectly as 

some fixed interval between measurements. Such models require that one specify one 

and only one interval of time for each causal effect, thereby reinforcing the view that 

it is necessary to find only a single best lag. So from both the perspective of finding 
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the peak effect and the perspective that most models for longitudinal data use only 

one lag, it makes sense to pursue a single best lag.  

Finding the Single Best Lag 

Assuming there is some optimal lag, it is important to review the 

recommendations for choosing this lag . Many authors (e.g., Collins & Graham, 

2002) point out that often the choice of lags for a particular study is based on 

convenience (i.e., this is the easiest time to measure), necessity (i.e., this is the only 

time it is possible to measure), or tradition (this is when the last study measured). 

Rarely is the choice of lags justified with theoretical considerations such as, we 

believe the change we seek will best be observed on this interval. This may be the 

case either because traditionally there is no such expectation for such a justification, 

or because much theory in the social sciences has not reached that level of specificity. 

However, if we assume that the choice of lags is important for any longitudinal 

model, choosing lags based on convenience, necessity, or tradition is not sufficient. 

The two most common recommendations for choosing lags are: 1) to use theory and 

an understanding of the processes under study to choose lag in an informed manner 

(Cole & Maxwell, 2003; Collins & Graham, 2002; Gollob & Reichardt, 1987); and 2) 

to measure very frequently to insure that an effect of interest is not missed due to an 

interval that is too long (Collins & Graham, 1991, 2002). To the first two 

recommendations for identifying the best lag, we can add the possibility of using 

empirical results from many studies using different lags to help in the choice of lag 

for future studies. For example, a meta-analytical study that summarizes the results of 
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many studies or a series of empirical studies using varying lags could examine 

whether varying lags across studies moderates the effect size reported for each study.  

Limitations of Recommendations 

 Of the three possible approaches to choosing lag, each has serious limitations. 

For example, we rarely have theory regarding the amount of time that must elapse for 

a cause to have its effect. Even in the case where there is strong theory and the 

researcher has a deep understanding of the processes of interest, it seems unlikely that 

such information would lead to a specific prediction of the best lag to use in planning 

a study. Therefore, an appeal to strong theory will only rarely be a sufficient basis for 

choosing lags. 

The second strategy of measuring very frequently is a useful approach in that, 

in principle, it could eliminate any problem of poorly choosing lags because it 

includes most of the possible lags between the beginning and the end of the proposed 

study. In terms of selection, nearly all lags in a particular range will have been 

sampled. However, there are several limitations of frequent measurement. First, 

frequent measurements can be very expensive in terms of time and money. In some 

instances frequent measurements may lead to issues such as reactivity or practice 

effects and in the extreme may even change the characteristics of the variables being 

repeatedly measured (Collins & Graham, 1991). So while it is clear that frequent 

measurement is very promising in some respects, it cannot be used in all situations.  

Conducting multiple studies where lags vary can also be very costly. 

Conducting multiple studies will almost always require more resources than 
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conducting a single study and the variety of lags that can be used in a handful of 

studies is limited. In reviewing previous work, it may be quite difficult to find a 

sufficiently large sample of studies examining the same variables across different lags 

to draw any sound conclusions. On a practical note, given the current feeling towards 

the merit of replication studies, it is unlikely that a replication of an earlier finding 

using the same variables but with a different lag would ever be published, and that 

may be reason enough to call such an endeavor impractical.  

Issues with the Single Lag Approach 

In addition to the fact that the possible strategies for finding the single best lag 

are limited, the idea itself that the goal of the researcher is to find a single best lag is 

also problematic. The single best lag view leads researchers to face an inevitable 

quandary regarding the results of any longitudinal study. The issue is that it is never 

clear whether the results are due to the nature of the true relationship between the 

cause and effect or due to the fact that the specific lag chosen in part determined the 

result. In this way, the single best lag perspective will inevitably lead to 

indeterminacy regarding the status of any causal relationships. One may argue that 

this indeterminacy is not specific in any way to the lag issue. For example, there are 

untestable assumptions associated with every statistical model such as whether the 

failure to find the expected result may be due to a low power, measurement error, a 

misspecified model or any of a variety of other factors. The point here is not that the 

lag issue holds some special status in terms of its potential to muddle results, but 

instead that it is on par with these other factors. Therefore, the choice of lag should be 
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given the same level of consideration as the issues of power, measurement error, and 

the specification of one’s model. A key limitation of the single best lag approach is 

that it may severely hinder one's ability to properly consider the role of lag.  

 Further, the single best lag perspective becomes unwieldy when we consider 

the fact that the best lag may be different for: 1) every pair of variables measured 

(Wright, 1960); and 2) for the same variables measured at different time periods 

within the same study. Figure 8 shows a panel model in which two variables, X and Y, 

each are measured on three occasions. If we acknowledge that the single best lag for a 

causal effect can differ for different pairs of variables (e.g., X1→Y2 vs. Y1→X2) and 

for the same variables measured at different periods during the study (e.g., X1→X2 vs. 

X2→X3), there are eights possible best lags for this panel model, one for each causal 

effect. To see what complexity in data collection is implied, imagine modeling the 

effects of only X1. One lag may be required for X1 to affect X2 and a different lag may 

be required for X1 to affect Y2. Thus, the use of the best lag for each causal effect 

could render one’s ability to properly collect data for even a simple two-wave panel 

model impossible in that the relationships between the time one variables (X1 and Y1) 

and the time two variables (X2 and Y2) that are traditionally addressed using only one 

lag may in fact require four different lags in order for each effect to be measured at its 

single best lag.  

 In addition to the practical issues that arise from choosing only the best lag for 

one’s research, the focus on the perfect lag may serve to diminish the overall quality 

of our theorizing by steering investigators away from an empirical examination of 
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how causal effects change over time. For example, Gollob and Reichardt (1987, p. 

82) state that, “Because different time lags have different effects, one must study 

many different lags to understand causal effects fully.” Currently, most theories state 

only that one variable will have an effect on another. A consideration of lag shows 

that what is implied by such a statement is, at some unspecified time, one variable 

will change and after some unspecified amount of time passes the second variable 

will change as a result. Theories will improve dramatically when the lags required for 

such change are specified. There is, however, even more room for theories to expand 

and improve. Imagine the theory that not only states that an effect is expected and 

specifies the time interval that is required for the cause to have its effect, but also 

describes the way in which this effect of one variable on another will evolve over 

time. Granted, theory building takes time and initially evidence from a single lag 

study will contribute to the collective knowledge. The goal here is to point out a 

possible route to continuing to advance such theory.   

In some cases in the social sciences, knowing how the effect of one variable 

on another variable changes over time could be as important as, or more important 

than, knowing whether that effect exists at a single point in time. Intervention studies 

offer the perfect example of a situation in which knowing how long the intervention 

takes to have an effect and how long lasting that effect is may be far more useful than 

showing the existence of the effect at one particular time. 

The Varying Lags Perspective 
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The argument to this point is that the assessment of causal and predictive 

effects should utilize longitudinal data measured at various lags. This is the case 

because the use of many lags ameliorates the possibility that a poorly chosen lag may 

negatively impact the results of a study, and the study of an effect across a variety of 

lags makes it possible to deepen our theoretical understanding of effects. There are 

two alternatives available if one wishes to study an effect across multiple lags. The 

first is similar to one of the proposed strategies presented in the description of the 

single best lag view. It is possible either to conduct or review multiple studies using 

the same variables each with a different lag between the variables. As stated above 

there are several limitations that make this strategy impractical. The other possible 

approach is to allow lags to vary across some range of possible values within a single 

study. Then it is possible, within a single study, to see how the effect of interest varies 

as a function of lag. In this section I will consider the use of statistical models that 

explicitly incorporate varying lags where the length of the lag will serve to moderate 

the causal relationship between variables.  

The concept I present here is straightforward. A problem exists such that 

effects (e.g., the effect of X on Y) will likely vary as a function of the lag between X 

and Y. This is a description of an interaction effect. By choosing touse multiple lags 

in assessing whether X has an effect on Y in a single study, it is possible to directly 

test for such an interaction. In a simple two-variable two-wave study, this would 

mean that lag would be a third variable that could be different for each individual in 

the study. This approach--using the lag as a moderator (LAM) of an effect--has two 
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noteworthy advantages similar in a sense to the respective advantages of the frequent 

measurement and multiple fixed lag approaches. Similar to the frequent measurement 

approach, the LAM strategy uses many lags in a single study; thus effects can be 

studied at a variety of lags, and the chance of problems arising due to using only a 

single lag is greatly reduced. In contrast to the frequent measurement strategy, the use 

of the LAM approach is far less likely to result in problems with attrition, reactivity, 

or the expense of measuring all participants many times.  

 Similar to the multiple fixed-lag studies approach, the LAM approach 

provides useful information regarding how effects may change as a function of the 

interval between measurements, thereby making it less likely that the results are 

misleading due to poor selection of a single lag. However, the LAM approach 

requires only a single study using varying lags to be conducted, thereby significantly 

reducing the costs associated with collecting data; eliminating potential problems that 

may arise when comparing effects from studies that were conducted at different time 

periods using different people; and avoiding the practical problem of not being able to 

publish replication studies where lag is varied. 

Previous Relevant Work 

Both the idea of conducting studies where lags vary across individuals and the 

idea of using lag as a moderator have been mentioned before. McArdle and 

Woodcock (1997), for example, utilize a variable lag design in the context of a latent 

growth model to control for test-retest effects. In this way McArdle and Woodcock 

are able to model ‘true’ change in the test score controlling for the change that would 
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be due to the fact that individuals have recently taken the same test. In contrast to the 

proposed LAM model, McArdle and Woodcock utilize the information arising from 

varying lags to control for a ‘main-effect’ of practice (operationalized as lag) while 

the present suggestion is to focus on an interaction and conditional effects (i.e., either 

the way lag impacts the causal effect of interest or the effect of X on Y conditional 

upon a lag value).  

 In a paper describing the use of Ecological Momentary assessment in 

organizational research, Beal and Weiss (2003) propose the idea of using lag length 

as a moderator of effects for data arising from an intensive longitudinal design where 

times of data collection are randomly spaced. However, Beal and Weiss do not apply 

such a model and I am unaware of any other application of such a model.  

A Multiple Regression LAM Model 

In order to explore the meaning and utility of construing lag as a moderator, 

we can begin with a multiple linear regression model. Of course such a model will not 

be useful for most longitudinal studies in which multiple causes and effects are 

measured, but it serves here as a means of introducing the LAM approach. In general, 

the LAM approach can be adapted for use in any statistical model that can 

accommodate a moderator variable. Again, a key difference between the proposed 

model and any traditional causal model for longitudinal data is that, in the traditional 

model, it is assumed that lags are fixed to some value and that value is the same for 

each individual in the sample. In contrast, treating lag as a moderator of the causal 

effect requires that values of lag will vary across individuals. When treating lag as a 
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variable, the possible values for lag can range from very small values that indicate 

only a short amount of time passed after the initial assessment to a value that is equal 

to the total duration of the study. The following equation is a multiple regression 

example of a lag as moderator (LAM) model. The earlier time subscript is omitted 

here for simplicity of presentation; however, we will assume that all causes are 

measured prior to effects. 

  (1) 0 1 2 3î i i iY b b X b Lag b X Lag     i

 In this model, Xi is the focal predictor or predictor of interest, Y is the outcome of 

interest, and Lagi is the amount of time that elapses between the measurements of Xi 

and Yi for individual i. The regression coefficients can be interpreted as follows: b0 is 

the expected value for Y when both X and Lag take a value of zero; b1 is the expected 

change in Y for a one unit change in X when Lag takes a value of zero; b2 is the 

expected change in Y for a one unit change in Lag when X is equal to zero; and b3 is 

the expected change in the relationship between X and Y for a one unit change of Lag. 

If an analyst has theory supporting a particular lag as being important, the Lag 

variable can be centered so that the b1 coefficient can be interpreted as the effect of X 

on Y at that particular lag. In a situation where Lag is intentionally allowed to vary, b2 

may not be expected to be statistically significant. Exceptions may exist either: 1) 

when lags are assigned by the researcher and there is similar change in Y across 

individuals (i.e., in the case of growth, longer lags would tend to be associated with 

higher values of Y), or 2) when lags vary but are not assigned by the researcher so lag 

may be associated with some unmeasured predictor (e.g., when participants choose 
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the time of the second observation and lag may be a proxy for a variable such as 

procrastination). The coefficient b3 describes how the coefficient b1 (the effect of X 

on Y) is expected to change as a function of Lag. Use of a LAM model such as this 

one does not require the investigator to commit to a single value of lag, but instead a 

range of lag values. It is assumed that the effect of interest will be best observed 

during the interval between the first and last times of observation and that the causal 

effect will vary as a function of lag length. 

 Following Aiken and West (1991) we can rearrange the above equation into 

the following form to focus more explicitly on the changing effect of X as a function 

of lag.  

   (2) 0 2 1 3
ˆ ( ) ( )i i i iY b b Lag b b Lag X   

Now the compound coefficient (b0+b2Lag) can be interpreted as the intercept for the 

simple regression of Y on X, and the compound coefficient (b1+b3Lag) represents the 

simple slope of the effect of X on Y.  

This relatively simple model may be an important step beyond fixed lag 

models in that it explicitly states that the causal effect of interest is expected to vary 

across lags. However, there is no reason to believe that this linear interaction model 

will accurately depict the way in which an effect will change as a function of lag. To 

be fair, there is also no evidence against this linear model. There is very little 

evidence whatsoever regarding how effects will change with lag. 

Functional Forms for the LAM 
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 I begin the investigation of what functional forms are most appropriate to 

model the change in effects with lag by using an example based on the work of Cole 

and Maxwell (2003). As previously mentioned, Cole and Maxwell’s analysis focused 

on a restricted panel model in which variables were repeatedly assessed at fixed 

intervals and the autoregressive and cross-lagged effects were constant across all lags 

of the same length. Since this example is founded on the single best lag perspective, 

we will view the results as a preliminary investigation of what functional forms may 

be useful for the varying lag perspective. Figure 8 shows a similar representation of 

such a model.  In this figure X and Y are repeatedly measured n times with a constant 

lag between measurements. Following Cole and Maxwell we can describe this lag as 

I, the lag required for each cause to have its effect. Focusing only on the 

autoregressive effect for X, when the lag = I, the autoregressive effect is x, when the 

lag is doubled (2I) the autoregressive effect is x2, and when it is tripled (3I) the effect 

is equal to x3. Such a progression of effects could be described by the following 

quadratic LAM model that would allow the value of the causal effect to show 

curvature as lags increased.  

         (3) 2 2
0 1 2 3 4 5î i i i i i iY b b X b Lag b Lag b X Lag b X Lag        i

In this model the coefficient b4 would describe the linear component of the trajectory 

and the coefficient b5 would describe the degree and direction of curvature for the 

line. 

 An exponential function could also provide an accurate description of the size 

of an autoregressive effect as lags increase. Such a function would appear as follows. 
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                                                                ktAe                                                      (4) 

In this expression, A is equal to the value of the autoregressive coefficient across a 

single lag, e is a constant (approximately 2.718), k is a constant describing the degree 

of change in A with change in t, and t represents the number of lags beyond lag I that 

are used to estimate the effect. Such a functional form may be introduced into a 

nonlinear regression model by starting with a very simple model: 

        (5)

And then defining b1, the effect of X on Y, to be a function of lag, so that  

 
0 1Ŷ b b  X

                                                       1
ktb Ae                                                   (6)  

And by substitution the regression model for Y would be the following; 

                                                        Y b                                           (7) 0
ˆ ( )ktAe X 

Cross-lagged effects of the sort where one variable predicts a different 

variable measured at a subsequent time may follow a different pattern. Cole and 

Maxwell (2003) show that in a bivariate system such as the one represented 

previously in Figure 8, again assuming stationarity for the system so that both the two 

autoregressive effects and the cross-lagged effect are the same for all lags of the same 

length, the respective stability of the two variables will impact the change in the 

magnitude of the cross-lagged effect as more than one interval is chosen as the lag. 

The analysis of Cole and Maxwell shows that cross-lagged effects can either increase 

or decrease as lags vary depending upon the magnitude of the autoregressive effects.  
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Forms for Various Contexts 

The cursory examinations of a restricted panel model indicate that non-

linearity may be expected in examining the change in effects across varying lags, but 

there is no reason to believe that this will always be the case. For models where the 

range of lags is not great, the linear interaction model may still adequately capture the 

functional form of change. Given our current state of knowledge, the linear form 

cannot be ruled out. Variations of polynomial regression models (e.g., using Lag2, 

Lag3, or beyond) may be useful for capturing the curvilinearity of the changing 

effects as a function of lag. These models have the advantage that they can be 

estimated in any software package that uses ordinary least squares regression. Cudeck 

and DuToit (2002) presented a re-parameterized variation on the quadratic model that 

may be particularly useful. For example, one of the parameters estimated in their 

version of the quadratic model is the maximum value. In the context of a LAM 

model, this parameter would be very useful in that it would indicate the peak causal 

effect expected over the observed range of lag values. As noted previously, nonlinear 

functions such as the exponential function may be very useful for LAM models in 

that many of the patterns of changing effects arising from idealized models seem to 

be captured well by the exponential function. Other contexts may call for other 

functional forms.  

For example, the effect of an intervention on a desirable outcome may follow 

an S-shaped functional form such that the effect of the intervention is minimal on 

very short lags and as lags increase the effect increases up to some maximum value at 
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which it reaches an asymptote. Such a form could be depicted by either a logistic or 

Gompertz function. We can assume that the effect of some interventions may fade 

even within the window of observation of a particular study, therefore functional 

forms that increase to a maximum and then decrease could be useful. The ubiquitous 

normal distribution could be useful in these situations.  

It is worth stating again that the question of the best functional form to 

describe how an effect changes over time is open. The goal here is not to determine 

exactly which functional forms will be most useful, but instead to suggest that the 

form chosen should be suited to the phenomena studied and that there exist a variety 

of candidate forms.  

Further Examination of the LAM 

Having introduced the theoretical impetus behind the use of varying lag 

models, the LAM approach to analyzing such data, and the possible functional forms 

that may be useful in different modeling contexts, I will further examine the LAM 

approach in two ways. The first is a demonstration of the use of LAM models using 

simulated data. One purpose of the demonstration is to highlight aspects of LAM 

modeling that differ from traditional fixed lag analyses such as choosing the 

functional form for the LAM interaction; the number of lags to sample; and the 

location of the lags sampled. Using simulated data with a known population model 

allowed for the emphasis of the importance of using an analysis model that matches 

or closely approximates the population model. The demonstration was designed to 

show both the advantages and limitations of the LAM approach. 
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The second means of examining the LAM approach was the fitting of various 

LAM models to existing empirical data where lags vary across individuals. To my 

knowledge, no large longitudinal study has implemented a variable-lag research 

design. Therefore, these analyses used data from a fixed-lag research design in which 

lags unintentionally varied across individuals. In some ways this presented a more 

rigorous challenge for the use of the LAM approach because the design was not 

optimal for detecting LAM effects. Due to the fact that the data collection was not 

designed to find lag effects, that there is little theory regarding the type of LAM 

effects to expect, and that no a priori predictions are being made regarding the types 

of effects to be found, the findings should be regarded as preliminary. However, 

significant LAM effects provide evidence that such interactions are readily found and 

should be further examined. These effects also present an opportunity to explore the 

way that relationships between variables change over time and the possible functional 

forms for these changes. 

Demonstration using Simulated Data 

 Data were simulated for two variables: Y and X. Ten values for Y (Y1-Y10) 

were simulated to represent ten repeated measures of the same variable measured at 

ten consecutive equally-spaced waves of data collection. Only one value for X was 

simulated at the ninth wave (X9). In all models, Y had a first-order autoregressive 

relationship in which each Y was affected only by the previous value of Y. The X9 

variable was a function only of the concurrent value of Y. Figure 10 shows a diagram 

of the Y and X variables used in all simulations. A Lag variable used in the 
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simulations represented the number of lags between Y10 and the Yk (1 ≤ k ≤ 9) 

variable used as a predictor. Here the subscript k denotes the location of the Y 

variable used to predict Y10. For ease of interpretation, the Lag variable is centered at 

1 (e.g., Lag of 0 means that Y9 is used as a predictor). Values for the Lag variable 

were assigned based on a random variable from a uniform distribution. For example, 

in the first two-lag condition, each subject was randomly assigned, with equal 

probability, either a 0 or a 1 value for the centered Lag variable. The Lag variable 

then determined which Yk (Y9 or Y8) value was used for that subject.  

Population Models  

 Two models were used to simulate data. The models can be distinguished by 

the way the autoregressive relationship for Y changes as Lag changes. In the first 

model, hereafter referred to as the exponential data model, the autoregressive 

relationship for Yk predicting Yk+1 was set to 0.8 and the effect of Y9 on X9 was set at 

0.5. The following equations were used to simulate these data. 

                                                      1

9 9

0.8
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k k
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Y Y

9
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X Y e
 

 
    (8) 

The values for Y1 were randomly sampled from a standard normal distribution. The 

variables eYk and eX9 are residual terms also drawn from normal distributions with 

variances set to keep the variances for both X and Y equal to 1. This model is titled 

the exponential data model because the relationship between Yk and Y10 follows an 

exponential functional form as k changes. Figure 11 shows this exponential pattern of 

effects. The second model, titled the linear data model, constrained the relationship 
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between Yk and Y10 as lag changes to have a linear form. The relationship between Y9 

and Y10 was set at 0.81 and declined by 0.10 with each change in lag. Figure 12 shows 

this pattern of autoregressive effects with change in lag. The effect of Y9 on X9 in the 

linear data model remained 0.5. The following equations were used to simulate the 

linear population data. 

                                         10 10

9 9 9
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                           (9) 

As with the previous model, values for Y1 were randomly sampled from a standard 

normal distribution and values for the residual terms were sampled from normal 

distributions with variances set to keep X and Y variances equal to 1. For each 

population model, 1,000 data sets containing data for 1,000 subjects were generated. 

Each X and Y variable was simulated to have a mean of 0 and a standard deviation of 

1 in order to facilitate later interpretation. 

Analysis Models 

 All analyses used multiple regression models with Y10 as the dependent 

variable. Two sets of parallel analyses were conducted for all conditions. The first set 

of analyses, the Y models, used Yk, Lag, and interaction terms for Yk and Lag as 

predictors. The Y models were intended to demonstrate the characteristics of simple 

LAM models in which the autoregressive effect of Y changes as the number of lags 

between observations increases. For all Y models, because the Lag variable is 

centered at 1, the object was to correctly estimate the AR coefficient between Y9 and 

Y10. 
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 The second set of analyses, the YX models, also included X9 as a predictor of 

Y10. This scenario was patterned after Cohen's premature covariate study, in that the 

X9 predictor has no effect on Y10 in the population model, but using any Yk value as a 

predictor other than Y9 will make it appear that X9 does in fact have an effect on Y10. 

The aim of the YX models was to see whether the LAM approach can in any way 

remediate the problem identified by Cohen. 

 For the exponential population data, the following analytical models were 

used: 1) traditional fixed lag analyses using values of Yk from only one lag at a time 

as a predictor; 2) linear LAM models using Yk values sampled from variable lags; and 

3) quadratic LAM models also using Yk values sampled from variable lags. The linear 

and quadratic LAM models used a variable-lag sampling strategy which varied by the 

number of lags sampled and the location of the lags sampled. For the linear 

population data, only fixed lag analyses and the linear LAM models were used. 

Number of Lags Sampled. The number of lags sampled for the variable-lag models 

ranged from two to nine for the linear LAM analyses. For example, in one condition 

Yk values used as a predictor of Y10 could come from either time 9 or time 8. A 

variable from a random uniform distribution was used as the Lag variable which in 

turn determined which value (i.e., Y9 or Y8) would be used as the predictor for each 

subject. Given that at least three points are required to fit a quadratic model, the 

quadratic LAM analyses used only conditions sampling four or more lags. 

Location of Sampled Lags. In addition to varying the number of lags sampled, the 

location of the sampled lags was also varied. For example, there were eight possible 
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ways to sample from two contiguous lags (i.e., Y9 and Y8; Y8 and Y7; Y7 and Y6; Y6 and 

Y5; Y5 and Y4; Y4 and Y3; Y3 and Y2; and Y2 and Y1). The number of combinations 

varied with the number of lags sampled so that while there were eight possible 

locations for the two lag condition, there was only one possible location for the nine 

lag condition. 

Results for Exponential Population Data 

 The implied correlations among the eleven simulated variables were found 

using tracing rules for path diagrams and the relationships specified by the data 

generating model. The implied correlations are shown in Table 1.  

Fixed Lag Analyses. In the fixed lag Y models, only lagged Yk values from a 

fixed occasion were used as a predictor of Y10. For the YX models, the lagged Yk 

values and X9 were used as predictors. This resulted in nine Y models, and nine YX 

models. The regression coefficients for the Y models are equal to the implied 

correlations between Yk and Y10 and the standard errors can be calculated with the 

following formula from Cohen and Cohen (1983). 

 (10)  21
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Given that the YX models are two variable regression models with 

predetermined correlations among the variables, the standardized regression 

coefficients and standard errors were computed analytically using the following 

formulas adapted from Cohen and Cohen (1983).  
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The standardized regression coefficients were computed based upon the implied 

correlations among the variables. The standard error for the standardized regression 

coefficient used two R2 values. The first, R2
Y10, is the model R2 when Y10 is the 

criterion and the second, R2
i, is the R2 for a model with the i-th predictor as the 

criterion and the other predictors as the predictors for that model.  

Table 2 shows the analytical estimates for the regression coefficients and 

standard errors for the fixed lag analyses as well as the corresponding empirical 

estimates from the analysis of the simulated data for both the Y, and the YX models. 

The results from the analyses of the simulated data represent the average regression 

coefficients and average standard errors across the 1,000 replications. For the Y 

models, the effect of Yk on Y10 diminishes as more distal values of Y are used as 

predictors. The standard error for the regression coefficient also increases with lag 

because of the decrease in R2
Y10. 

For the YX models, increasing lag results in smaller effects for Yk and larger 

effect for X9. The Yk effects decrease because the correlation between Y10 and Yk 

diminishes with increasing lags. The effect of X9 increases because the more distal 
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values of Yk are not effective in controlling for the effect of Y and therefore the 

variance that X9 shares with Y10, due to their mutual dependence on Y9, results in an 

inflated estimate of the effect of X9 on Y10. In contrast with the Y models, the Yk effect 

for the YX models is even lower than before because the model controls for the effect 

of X9. In essence, this is like having a weak proxy for Y9 in the model. Because Y is 

specified to have an AR(1) relationship, a model with any Yk and Y9 as predictors of 

Y10 would show that only Y9 had an effect. Similarly, having X9 in a model with Yk 

will diminish the effect of Yk. Though X9 has no true regression relationship with Y10, 

only the use of Y9 as a predictor can reveal this.  

 In the next series of models, variable lag sampling (i.e., sampling values of Yk 

for use as a predictor of Y10 from more than one lag) will be used in conjunction with 

two types of LAM models, linear and quadratic. 

Linear LAM Models.  The following equation describes the linear LAM model fitted 

for the Y models. 

                                                                               (13)            10 0 1 2 3
ˆ

kY b bY b Lag b Y La    k g

k

 The linear LAM model for the YX model is the same except for the addition of 

X9 as a predictor. However, the interpretation of the other coefficients is now 

conditional on X. 

                                                               (14) 10 0 1 9 2 3 4
ˆ

kY b b X b Y b Lag b Y Lag    

Results for both the Y models and the YX models using the linear LAM are presented 

in Tables 3 through 10. Intercepts for these models, due to the use of standardized 
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data, are all approximately 0 and therefore not reported. As before, coefficients and 

standard errors are the average values across the 1,000 simulated data sets. 

Y Model Linear LAM Results. The focus of the Y models is the accurate estimation of 

the AR coefficient (labeled bYk in Tables 3 through 10), here set at 0.8. The use of the 

linear LAM model to describe the exponential pattern of change in the AR 

coefficients in the population means the estimates for the AR effect can depend 

heavily upon the location of the sampled lags. Locations closer to Y10 yield estimates 

for the AR effect that are closer to 0.8 than those from more distal locations. Also, 

due to this mismatch between the population and analysis models, sampling only two 

lags at the location closest to Y10 actually outperforms all other models. The 

coefficients for the interaction terms are also dependent upon location because the 

slope of the line needed to describe different locations on the exponential curve 

changes with location.  

 The standard errors for the bYk coefficient increase much faster than those for 

the other coefficients. The increase can be explained by examining the previous 

formula for standard errors. The greater increase is due to the fact that the standard 

errors depend upon both R2
Y10 and R2

i. Because Yk is correlated with Yk×Lag (this 

collinearity could be decreased by mean-centering Lag rather than centering it at a 

meaningful value, however this would change the interpretation of the coefficient for 

Yk to be the effect of Yk at the mean Lag), the R2
i is quite large making the third part 

of the standard error formula large. Thus the increasing standard error due to the 

diminishing R2
Y10 is magnified by this value. 
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YX Model Linear LAM Results. While the Y model analyses show that some of the 

linear LAM analyses yielded reasonable estimates for the AR coefficient for Y, the YX 

models are not as successful. Recall that success for the YX models would be 

estimating the bYk coefficient as 0.8 and the bX9 coefficient as 0. The results in Tables 

3 through 10 however, show that the LAM models were not able to reduce the 

upwardly biased estimates for the effect of X9, nor were they able to accurately 

estimate the AR effect for Y9 on Y10. The reason for this is based on the fact that with 

both X and Y used as predictors, the coefficients now must reflect the unique effect of 

these variables when controlling for the other predictors. The effect of X9 for any 

particular model represents the unique relationship between X9 and Y10. The implied 

correlation for X9 and Y10, regardless of the lagged Y values, is 0.40. As more distal 

lag values are chosen for Y, not only does the effect of Yk diminish, but the shared 

variance between Yk and X9 also diminishes. This makes it appear that X9 is a stronger 

predictor. Because the correlation between Yk and Y10 decreases predictably with lag 

while the implied correlation between X9 and Y10 remains constant, it follows that the 

effect of X9 will increase with lag. 

Quadratic LAM Models. From Figure 11 it is clear that while a straight line may 

describe some parts of this function, it cannot accurately describe the form because of 

the curvature of the line. Therefore, a quadratic LAM model should provide a better 

description of this relationship. The following equation describes the quadratic LAM 

model used for the Y models. 

                                        (15) 2 2
10 0 1 2 3 4 5
ˆ

k kY b bY b Lag b Lag b Y Lag b Y Lag      k
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The equation describing the quadratic YX analyses is as follows. 

                                   (16) 2 2
10 0 1 9 2 3 4 5 6
ˆ

k kY b b X b Y b Lag b Lag b Y Lag b Y Lag       k

As before, the addition of the X predictor changes the interpretation of the other 

coefficients, making them conditional on X. Given that at least three lags are required 

to fit a quadratic model, the quadratic models were fit only to conditions in which 

four or more lags were sampled. Tables 11 through 16 show the results from the 

quadratic LAM analyses. 

Y Model Quadratic LAM Results. The key difference between the previous linear 

LAM result and the current quadratic results is that the estimates for the Yk coefficient 

are much better due to the closer match of the quadratic form to the form in the 

population model. The estimates still depend upon the sampled location; however the 

dependence is notably less than that for the linear LAM models. The same pattern of 

rapidly increasing standard errors as locations become more distal from Y10 is also 

seen here. 

YX Model Quadratic LAM Results. Even the better fit between analysis and 

population models does nothing to remedy the poor estimates for the effect of X9. 

Again, this is due not to the functional form specified, but instead to the fact that 

distal values of Yk will inevitably have lower correlations with Y10 thus inflating the 

bX9 coefficient. 

Results for the Linear Population Data 

 For the linear population data, the functional form for the way the effect of Yk 

on Y10 changes over time was specified and this in turn determined the first order 
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autoregressive effects. Although the functional form for change in the autoregressive 

Y relationship, rather than the autoregressive relationships were specified by the 

model, the autoregressive effect for each pair of Y variables can be solved for 

algebraically and the implied correlations can be found as before. Table 17 shows 

these correlations among the simulated variables. Specifying the functional form has 

interesting implications for the adjacent lag Y correlations. These correlations peak 

for Y8 with Y9 and grow smaller with the smallest being that for Y1 and Y2. This 

population model in which the stability of Y changes across the course of the 

hypothetical study therefore differs markedly from the previous population model in 

which Y showed the same stability across all intervals. Since the functional form is 

predetermined to be linear for these data, only the fixed lag and linear LAM models 

will be examined. 

Fixed Lag Analyses. Table 18 shows the analytical and empirical coefficients and 

standard errors for the fixed lag analyses of the linear population data. The trends 

seen are very similar to those seen for the fixed lag analyses of the exponential 

population data.  For the Y models, with increasing lag, the effect of Yk diminishes. 

For the YX models, the effect of Yk diminishes and the effect of X9 increases. Tables 

19 through 26 show the results from the linear LAM analyses. 

Y Model Linear LAM Results. As expected given the perfect match between the 

population and analysis models, the estimates for the AR effect of Y9 on Y10 are quite 

good. This is the case regardless of the location and the number of lags sampled with 

the possible exception that the effect may be slightly underestimated by the most 
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distal two-lag models. The general pattern for the increasing standard errors for bYk is 

the same as for the previous analyses. In addition, the coefficient for the interaction 

term (labeled bYk×Lag in the tables) is also very close to the value specified by the 

simulation model. 

YX Model Linear LAM Results. Even in this ideal case in which the match between 

population and analysis models is perfect, the estimates for bX9 are still problematic. 

It is clear that the improved point estimate of the AR effect of Y9 on Y10 can in no way 

compensate for the fact that the relationship between Yk and Y10 is not the same as that 

between Y9 and Y10. 

Summary of Results from the LAM Analyses 

 The results for the Y model analyses show that given a reasonable fit between 

the population and analysis models, the LAM was successful at estimating the focal 

AR coefficient for Y. Even in the instances in which the match was not close, some 

estimates were still quite good depending upon the number of lags sampled and the 

location of the lags sampled. In many instances, even using distal locations for the 

sampled lags the LAM analyses yielded better estimates for the AR effect than the 

fixed lag models using similarly distal values of Yk. These results suggest the LAM 

model is performing just as it should in accurately describing the effects as lags vary. 

The results also highlight the importance of the issues of: 1) choosing a functional 

form for the LAM interaction, and 2) always considering the number of lags sampled 

and the location of the sampled lags. 
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 The results from the YX models show that there are some situations in which 

the LAM analysis will not be as useful. In the particular case of using distal values of 

a covariate to control properly for the effect of a proximal variable, the LAM is of no 

use. The failure of the LAM model to solve the problem of the premature covariate is 

in part due simply to the problem of using data from one set of occasions to draw 

inference about relationships at other occasions.  

 The pattern of increasingly large standard errors is of potential concern when 

using the LAM approach. Adding interaction terms that are highly collinear with 

other predictors to the model can make some standard errors quite large. However, 

this may not be as fundamental a problem as it first seems for the following reasons. 

First, part of the inflation in standard errors is due to the fact that the use of the distal 

Yk predictors resulted in a diminished overall model R2. Such a pattern is specific to 

the constraints of the simulation model and may not always be the case. Second, in all 

models Lag was centered at a meaningful value rather than mean-centered. It is well 

documented (see e.g., Cohen & Cohen, 1983) that mean-centering often reduces 

collinearity among variables thus resulting in lower standard errors. Finally, and 

perhaps most importantly, while the standard errors for bYk did increase sharply, the 

standard errors for the interaction terms increased much less. Though not the primary 

focus of this demonstration, usually it is the interaction term that is most important in 

an interaction model.  

 The issues of the number of lags to sample and the location of the lags are in 

some ways closely tied to the match between the analysis and population models. For 
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example, the best estimates using the exponential population data in conjunction with 

a linear LAM model came from the two-lag condition closest to Y10. However, such 

results seem entirely dependent on specific crossings of population and analysis 

models and it may be better just to conclude that the best location to sample will be 

based on the interest of the analyst and for most models using more lags will produce 

a better result because the additional information about the relationship between the 

size of the effect and lag will yield a better estimate of that effect. This is shown by 

the fact that increasing the number of lags used for the quadratic models tended to 

improve the estimate of the AR effect for Y.  

 As a final note on the results of the simulations, it is informative to examine 

the issue of the statistical significance of the interaction terms in the LAM models. 

The ratio of the average regression coefficient to the average standard error is a 

straightforward means of judging whether the interaction terms would likely be 

statistically significant. For the linear LAM models used for the exponential 

population data, most of the interaction terms would appear significant. The 

exception to this is when using Y values from the most distal lags in conjunction with 

sampling smaller numbers of lags. The slope of the lines describing change in the 

simple slopes for these models is rather small and therefore less likely to be 

significant.  

 For the quadratic LAM models fitted to the exponential population data, none 

of the highest order interaction terms would be statistically significant. This suggests 

that even a relatively large sample size of 1,000 yields insufficient statistical power to 
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detect the interaction. Given that the ratio of the regression coefficient to the standard 

error must equal approximately 1.96 in order to be statistically significant, a sample 

size of well over 3,000 would be necessary to find the quadratic interaction terms for 

these analyses statistically significant.  

LAM Analysis of Empirical Data 

The previous demonstration highlighted both the utility of the LAM approach 

and its potential limitations by using simulated data. In the next section I applied the 

LAM model to empirical data. For these analyses, I used data from a large multi-site 

longitudinal study in which lags were planned to be the same for each individual, but 

varied considerably due to the practical issues related to collecting data on a fixed-lag 

schedule. 

The data for the examples are from the Early Head Start Research and 

Evaluation study (EHSRE; Department of Health and Human Services: 

Administration for Children and Families, 1996-2001). The data are available from 

the Inter-university Consortium for Political and Social Research website 

(http://www.icpsr.org/). The intent of this study was to examine the impact of the 

Early Head Start Program on young children and their families. Data from three 

waves of the study were used in the following examples. These three waves were 

timed to coincide with the age of the focal child in each family. The data were to be 

collected when the child was 14, 24, and 36 months of age. The actual age ranges of 

the children at the three waves of data collection were respectively: 11 to 22 months; 

20 to 32 months; and 33 to 54 months. The sample size for the analyses examining 
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relationships between variables at the 14 and 24 month occasions was 1,823 and the 

sample size for the analyses using the 24 and 36 month occasions was 1,740. The 

next section briefly describes each of the measures used in the subsequent LAM 

analyses. 

Measures and Variables 

Home Observation for the Measurement of the Environment (HOME). The HOME 

(Caldwell & Bradley, 1984) is a semi-structured observational instrument that 

assesses the quality of stimulation provided to a child in his/her home. The HOME 

can be used as a total score assessing the overall quality of stimulation in the home, or 

as subscales designed to assess specific aspects of the home environment. For the 

present analyses, only the total HOME score was used. 

Bayley Scales of Infant Development – Mental Development Index (MDI). The MDI 

(Bayley, 1969) can be used to measure the cognitive, language, and social 

development of children under the age of 42 months. Standardized scores can be 

computed based on the child's age. The Bayley was administered to children in the 

EHSRE study when the children were approximately 24 months of age. 

Three-Bag Assessment (Semi-Structured Play). When the focal child in the EHSRE 

study was approximately 14 months of age and again when the child was 

approximately 36 months of age, parents were asked to play with their child using 

three bags of toys. Each play session was video-taped for later coding. Trained 

observers scored the parent and child on a number of subscales with possible scores 

ranging from 1 to 7. One such scale, Child Negativity toward the Parent, rated the 
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child’s negative behavior toward the parent. Negativity included anger, hostility, or 

dislike expressed toward the parent. Higher scores on this scale meant higher levels of 

negativity. Another subscale was called, Parent Negative Regard toward the Child. 

Negative regard could include disapproval, anger, or rejection expressed by the parent 

toward the child. Higher scores on this scale indicate higher levels of negative regard. 

A third subscale, Parent Intrusiveness, assessed the degree to which the parent 

attempted to control the play of the child rather than letting the child guide the play 

activities. Higher scores on this subscale mean that the parent did not allow the child 

much latitude in directing the play during the interaction. Finally, the Child Sustained 

Attention to Objects subscale measures the involvement of the child with the toys 

presented in the three bags. High scores on this subscale meant the child was more 

focused on the toys and explored the toys thoroughly. 

Lag. Two lag variables for these analyses were constructed using the interview dates. 

One lag variable was constructed for the interval between the 14 and 24 month 

interviews, and a second lag variable was constructed for the interval between the 14 

and 36 month interviews. The lag variables represent the number of months that 

elapsed between the waves of data collection. To facilitate interpretation of the 

regression coefficients, each lag was mean-centered. The distributions for the lag 

variables were approximately normal with most values close to the average lag. Table 

27 shows the descriptive statistics for all variables used in the subsequent analyses. 

LAM Models Examined 
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 As previously remarked, there is very little existing theory regarding the 

expected functional forms for lag interactions. Therefore, the following analyses can 

be viewed as exploratory in nature. Using the previously described measures, three 

relationships were examined: 1) the HOME at 14 months predicting the MDI at 24 

months; 2) Parent Intrusiveness at 14 months predicting Child Sustained Attention at 

24 months; and 3) Parent Negative Regard toward Child at 14 months predicting 

Child Negativity toward Parent at 36 months. Each relationship was examined using 

three previously described LAM models: a) the linear LAM model described in 

equation 1; b) the quadratic LAM model described in equation 3; and c) the 

exponential LAM model described in equation 7. Statistically significant models are 

reported and described and when more than one model fit the data, results are 

compared. Due to the fact that these analyses are exploratory and fail to include other 

potentially important predictors, interpretation should be limited to the examination 

of the way the particular relationship changes as a function of lag length.   

Simple Regressions by Lag Group. A statistically significant lag interaction should 

not be the sole evidence that a particular model is accurately describing a changing 

relationship. A similar question often arises when fitting growth curve models to a set 

of repeated measures and the question of the accuracy of the model's description can 

in part be addressed by comparing the means for the repeated measures to the implied 

trajectory from the growth model. Such an option is not available for the LAM 

analyses, however, because the focus is not on change in variables but instead on 

change in relationships.   
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 In order to provide some descriptive measure of whether the interaction 

models provided a good description of the changing relationships between variables, 

a grouping procedure was used to form groups with similar lags values. Simple 

regression models were fitted within each group and the simple slopes from these 

models are plotted against the mean lag value for each group. Thus a scatter plot was 

obtained that describes the simple slopes as a function of lag. 

 Due to the fact that such estimates can be greatly influenced by the arbitrary 

cut points used to assign individuals to groups, two measures were taken to alleviate 

this potential problem. First, two different sets of lag groups were created: one set 

used groups of approximately 300 and the second set used groups of approximately 

150. Second, group membership was not exclusive. Group assignments were made by 

creating an index variable ranging in value from 1 to N (N being the total sample size) 

where 1 represented the smallest value of lag and N represented the largest value of 

lag. For the groups of approximately 300, the first group contained the lowest values 

of lag with index variable scores from 1-300. The second group contained values of 

the index variable ranging from 200-500. The number of groups varied for different 

lags (i.e., 14m to 24m or 14m to 36m) because the last group was created so that it 

would have as close to 300 members as possible. In this way, all adjacent groups 

shared 100 common members. A similar procedure was used to form the groups of 

150. This method was used to make the results from the simple regressions more 

consistent and less sensitive to the fact that group results were determined by the 

specific members of the particular group. The adjacent groups of 300 share 100 
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members in common and the adjacent groups of 150 shared 50 members in common. 

For the 14 month to 24 month lag, there were either eight groups (the first seven with 

300 and the last with 423) or 18 groups (the first 17 with 150 and the last with 123). 

For the 14 month to 36 month lag, there were either 8 groups (the first seven with 300 

and the last with 340) or 17 groups (the first 16 with 150 and the last with 140). For 

all models reported below, scatter plots of the simple regression slopes for these two 

sets of groups are presented in which each point represents the simple regression 

slope for a group plotted at the mean lag for that group. 

HOME at 14 months predicting MDI at 24 months. The first set of analyses 

used a measure of the global quality of stimulation in the home environment from the 

Home Observation for the Measurement of the Environment (HOME, Caldwell & 

Bradley, 1984) assessed when the child was approximately 14 months of age as a 

predictor of the child’s developmental status as measured by the Mental Development 

Index from the Bayley Scales of Infant Development (MDI; 1969) assessed when the 

child was approximately 24 months of age. Both the linear LAM and the exponential 

LAM models showed a statistically significant interaction, but not the quadratic LAM 

model. The following equation shows the parameter estimates from the linear LAM 

model. 

                   24 14 1488.96 1.26 .065 .15MDI HOME Lag HOME Lag                (17) 

All parameters in this model are statistically significant. Initial results from this 

model showed that the Lag variable was a significant predictor of MDI scores. To 

account for the possibility that the Lag effect may be due to the fact that the age-
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standardization of the MDI scores did not completely eliminate age effects (i.e., 

longer Lags meant children were older and thus scored higher on the MDI), mean-

centered child age at the 24 month assessment was added as a covariate and the effect 

of Lag on MDI scores was no longer significant. This highlights an important issue 

for LAM models, that of relative time effects versus absolute time effects, which will 

be addressed later in the dissertation. 

 The following equation shows the parameter estimates from the exponential 

LAM model for this relationship. 

                                  .10
24 1489.37 1.30 LagMDI e HOME                             (18) 

All coefficients were statistically significant for the exponential model. Figure 13 

shows a plot of the lines depicting change in the simple slopes for HOME at 14 

months predicting the MDI score at 24 months for both the linear and exponential 

models. The solid line in the figure depicts the implied simple slopes for the linear 

model while the dashed line represents the simple slopes for the exponential model.  

In addition, the figure shows a scatter plot of simple regression slopes for the 

previously described lag groups. The empty circles represent the slope estimates for 

the eight groups of 300 and the black diamonds represent the slope estimates for the 

18 groups of 150. The mean-centered values along the x-axis represent lags ranging 

from approximately three months to approximately seventeen months. The figure 

shows that for shorter lags the effect of the HOME on the MDI is larger and this 

effect decreases as lags grow longer.  
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 These results may mean that there is a positive effect of stimulation in the 

home on child development, but the effect diminishes over time. Alternatively, these 

two variables may be correlated due to their common reliance on some other factor 

such as family socioeconomic status and their relationship weakens with increased 

lag in the same way that a test-retest correlation diminishes with increased intervals 

between tests. In comparing the lines for the linear and exponential models, it is 

unclear whether the more complex nonlinear model adds substantially to the 

interpretation of the interaction. 

Parent Intrusiveness at 14 months predicting Child Sustained Attention at 24 months. 

The next series of models examines whether the tendency for the parent to control the 

play activities of the child at 14 months predicts the degree to which the child attends 

to and explores the toys available at 36 months. Here again, the linear and exponential 

models yielded statistically significant interactions, but the quadratic model did not. 

The parameter estimates for the linear model are shown below. 

                                     (19) 24 14 145.02 .15 .01 .03CSA PINT Lag PINT Lag    

The coefficients for all predictors are statistically significant except that for Lag. The 

parameter estimates for the exponential model are as follows. 

                                                                     (20) .18
24 145.02 .15 LagCSA e PINT 

All parameters from this model are statistically significant. Figure 14 shows the 

implied simple slopes for the linear (solid line) and exponential (dashed line) models. 

The scatter plots of the simple regression slopes by lag group are also included on the 

figure. These results indicate that there is an effect of how intrusive a parent is at 14 
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months and the ability of the child to attend to toys at 24 months and that this effect 

appears to increase with longer lags. While this phenomenon may seem 

counterintuitive, it is possible that there is a cumulative effect of intrusive parenting 

such that consistently intrusive parenting eventually leads to lower sustained attention 

or that there is a developmental pattern present such that the effect of intrusive 

parenting on sustained attention does not emerge until the child is older than 14 

months. Regardless of the interpretation, it is clear that there is a pattern present such 

that longer lags tend to yield larger slopes; however, as with the previous example the 

necessity of the more complex exponential model is questionable. 

Parent Negative Regard at 14 months predicting Child Negativity at 36 months. The 

next analyses examine the relationship between the parent’s negative regard toward 

the child at 14 months and the child’s negativity towards the parent at 36 months. For 

this relationship both the quadratic and exponential LAM models resulted in 

statistically significant interactions, but not the linear model. The following equation 

shows the parameter estimates from the quadratic model. 

                           (21) 
2

36 14

2
14 14

1.27 .069 .001 .004

.022 .013

CNEG PNEG Lag Lag

PNEG Lag PNEG Lag

   

  



The coefficients for all predictors were statistically significant except those for Lag 

and Lag2. The parameter estimates for the exponential LAM model are as follows. 

                                                   (22) 0.358
36 141.28 0.083 LagCNEG e PNEG 
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All coefficients from this model were statistically significant. Figure 15 shows the 

lines depicting the implied simple slopes for the quadratic (solid line) and exponential 

(dashed line) models. The scatter plot of the simple regression slopes is also included.  

These results show that either: 1) the effect of parental negative regard on child 

negativity is large, decreases, and then increases again, or 2) the effect is very small 

and becomes larger with increasing lag. Based upon the scatter plots it appears that 

the latter explanation may be better. It is interesting to note that this effect too seems 

to increase with longer lags suggesting either a cumulative effect of negative 

parenting or some age-related developmental effect. 

 In contrast to the previous analyses, the information depicted by the points in 

the scatter plot is more ambiguous as to the accuracy of the descriptions provided by 

the interactions. It appears that the majority of the points close to the average lag 

show little relationship between the slope and lag and a very small number of points 

at the extreme lag values are responsible for determining the nonlinear shape. 

Empirical Analysis Conclusions. The results from the analysis of the empirical data 

are very encouraging. It was shown that even in a study not designed for use with a 

LAM approach it is possible to find relationships that are moderated by lag length and 

to find a variety of functional forms for the moderation. The ability to move from 

examining an effect as a single fixed effect to examining the same effect as changing 

according to the length of time that passes between observations is a great advance. 

Given that such results were found in this case in which the research design was not 

ideal for the use of a LAM model, it seems likely that a study designed specifically to 
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test for moderation of effect by lag length would have great potential to better 

understand how such relationships change over time. The ambiguity of some of the 

previous results regarding the pattern of the lag interaction near the extremes of 

sampled lags also suggest that it may be important to sample more heavily at the 

extremes. 

 The results also show that one must be cautious in interpreting the LAM 

interactions to insure the patterns described by the interaction models are supported 

by descriptive analyses of the data. The method of forming lag groups may is not 

ideal in that the results are based on arbitrarily forming groups based on values of a 

continuous variable, however, the information provided by this methods does seem to 

be a valuable addition. 

Relative versus Absolute Time. One very important issue, not addressed in the 

previous empirical analyses but hinted at by the need for the child age covariate in the 

first model is that of relative versus absolute time. The dates for the interviews for 14 

month, 24 month, and 36 month interviews could vary. This variation produced 

variation in the lags between observations (relative time between occasions), but the 

variation also meant that children were different ages when the interviews occurred. It 

is possible that some effects that appear to be due to lag may be due to the differing 

ages of the children. Further investigation is needed in order to insure that LAM 

methods can tease apart these relative and absolute time effects. 
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Conclusions 

  The purpose of this dissertation was to introduce readers to the important role 

that time lags play in models for longitudinal data. Based on a wide variety of 

sources, demonstrations, a simulation study, and several analyses of empirical data, I 

have argued that no longitudinal data collection should be undertaken without a 

careful consideration of time lags. The LAM approach offers a new and potentially 

very useful strategy for addressing the perennial problem of choosing lags for a 

longitudinal study. However, the true appeal of the LAM approach is the fact that it 

provides a straightforward means of extending and enhancing our current 

understanding of phenomena in the social sciences. 

Limitations of the LAM model 

While I argue that treating the lag in a longitudinal study as a moderator of 

any causal effect, there are some clear limitations of this approach. First, while it can 

be argued that the LAM is better than a single lag design in terms of decreasing the 

chance of misrepresenting an effect due to lag choice and in terms of better 

understanding the way an effect changes over time, it would be difficult to use more 

than a small range of lags for any one study. In the context of the previous selection 

argument, it can be said that while we cannot sample the entire population of lags, 

using a few lags is better than using only one. 

A second limitation of the LAM approach is the fact that even simple models 

are made complex by considering the lag as a potential moderator for each effect. For 

the linear LAM regression model, one predictor yields four parameters to estimate, 
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and each additional predictor adds at least two more parameters. When any 

longitudinal effect is an interaction effect, the complexity of any model will be 

considerably greater than a non-LAM model. On the other hand, this sort of 

complexity is not unwarranted if one wishes to accurately describe a relationship and 

the way it changes over time. 

Related to the complexity issue, another potential limitation of LAM models 

is that the sample sizes required for even simple LAM analysis may be quite large. 

The results of the simulation study, particularly those for the quadratic LAM analyses 

underline the fact that even LAM models using only multiple regression can require 

very large sample sizes in order to find statistically significant moderation by lag. 

Finally, the simulation results also make it clear that the LAM approach 

cannot be used to draw inference outside of the range of observed data. Thus, while 

the LAM approach offers a unique way to understand changes in relationships as a 

function of lag length, it cannot be reliably used to understand such change outside of 

the range of observed values. 

Future Directions 

 The present exposition of the LAM model, because it introduces a new way of 

thinking about effects in longitudinal models that entails major changes in the way 

the effects are assessed and in the way longitudinal data are collected, is by necessity 

preliminary and incomplete. Viewing lag as a potential moderator of any effect offers 

many opportunities for further study. LAM models could be used for any existing 

data set in which lags vary to some degree and the lag variable could be constructed. 
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Such secondary analyses may show that previous conclusions regarding relationships 

were either incorrect or at least incomplete. Further, these secondary analyses could 

potentially be the foundation for a growing body of knowledge regarding the 

characteristic way that effect change with lag. However, the range of lags values 

found in fixed lag designs is likely to be limited. 

 LAM models also have the potential to be employed in choosing lags for 

future studies. A LAM model showing the point at which an effect is expected to 

become statistically significant, the point at which an effect reaches its peak, or the 

point at which an effect becomes no longer statistically significant, may provide very 

useful information for an investigator planning a large longitudinal study.  However, 

the very large sample sizes required for many LAM models may make this use 

prohibitively expensive in most instances.   

 In general, the LAM model has the potential to improve virtually any 

longitudinal investigation. Its key limitations, namely that it increases the complexity 

of any model, that it requires a very large sample size, and is most useful when the 

functional form of the interaction is properly specified do not seem to be severe flaws 

of the approach as much as they are coincident with the fact that often we are seeking 

to describe very complex phenomena. 
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Table 2. 
 
Results for fixed lag analyses exponential data 
 Y Models  YX Models          
 Analytical Simulation Analytical Simulation 

Lag 
(Yk) 

bYk 
(SE) 

bYk 
(SE) 

bX9 
(SE) 

bYk 
(SE) 

bX9 
(SE) 

bYk 
(SE) 

0 
(Y9) 

0.800 
(0.019) 

0.801 
(0.019) 

0.000 
(0.022) 

0.800 
(0.022) 

0.001 
(0.022) 

0.801 
(0.022) 

       

1 
(Y8) 

0.640 
(0.024) 

0.640 
(0.024) 

0.171 
(0.026) 

0.571 
(0.026) 

0.173 
(0.026) 

0.571 
(0.026) 

       

2 
(Y7) 

0.512 
(0.027) 

0.513 
(0.027) 

0.263 
(0.027) 

0.428 
(0.027) 

0.265 
(0.027) 

0.428 
(0.028) 

       

3 
(Y6) 

0.410 
(0.029) 

0.410 
(0.029) 

0.316 
(0.028) 

0.329 
(0.028) 

0.318 
(0.028) 

0.329 
(0.028) 

       

4 
(Y5) 

0.328 
(0.030) 

0.329 
(0.030) 

0.347 
(0.029) 

0.257 
(0.029) 

0.349 
(0.029) 

0.257 
(0.029) 

       

5 
(Y4) 

0.262 
(0.031) 

0.263 
(0.031) 

0.367 
(0.029) 

0.202 
(0.029) 

0.369 
(0.029) 

0.203 
(0.029) 

       

6 
(Y3) 

0.210 
(0.031) 

0.211 
(0.031) 

0.379 
(0.029) 

0.160 
(0.029) 

0.381 
(0.029) 

0.162 
(0.029) 

       

7 
(Y2) 

0.168 
(0.031) 

0.169 
(0.031) 

0.387 
(0.029) 

0.127 
(0.029) 

0.389 
(0.029) 

0.128 
(0.029) 

       

8 
(Y1) 

0.134 
(0.031) 

0.135 
(0.031) 

0.391 
(0.029) 

0.101 
(0.029) 

0.394 
(0.029) 

0.102 
(0.029) 
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Table 3. 
 
Results for two-lag, linear LAM models using exponential data 
 Y Models YX Models 

Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1 
(Y9,Y8) 

0.801 
(0.031) 

-0.001 
(0.044) 

-0.161 
(0.044) 

0.091 
(0.024) 

0.756 
(0.033) 

-0.001 
(0.043) 

-0.152 
(0.044) 

        

1,2 
(Y8,Y7) 

0.767 
(0.082) 

0.001 
(0.052) 

-0.127 
(0.052) 

0.221 
(0.027) 

0.662 
(0.080) 

0.001 
(0.050) 

-0.110 
(0.050) 

        

2,3 
(Y7,Y6) 

0.718 
(0.144) 

-0.002 
(0.056) 

-0.103 
(0.056) 

0.292 
(0.028) 

0.588 
(0.137) 

-0.002 
(0.053) 

-0.084 
(0.054) 

        

3,4 
(Y6,Y5) 

0.659 
(0.209) 

0.003 
(0.059) 

-0.083 
(0.059) 

0.334 
(0.028) 

0.520 
(0.196) 

0.003 
(0.055) 

-0.065 
(0.055) 

        

4,5 
(Y5,Y4) 

0.598 
(0.275) 

0.002 
(0.061) 

-0.067 
(0.061) 

0.359 
(0.029) 

0.460 
(0.256) 

0.001 
(0.056) 

-0.051 
(0.056) 

        

5,6 
(Y4,Y3) 

0.529 
(0.341) 

0.000 
(0.062) 

-0.053 
(0.062) 

0.375 
(0.029) 

0.398 
(0.315) 

0.000 
(0.057) 

-0.039 
(0.057) 

        

6,7 
(Y3,Y2) 

0.479 
(0.407) 

0.001 
(0.062) 

-0.044 
(0.062) 

0.385 
(0.029) 

0.366 
(0.375) 

0.001 
(0.057) 

-0.034 
(0.058) 

        

7,8 
(Y2,Y1) 

0.392 
(0.473) 

-0.004 
(0.063) 

-0.032 
(0.063) 

0.391 
(0.029) 

0.298 
(0.435) 

-0.002 
(0.058) 

-0.024 
(0.058) 
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Table 4. 
 
Results for three-lag, linear LAM models using exponential data 
 Y Models YX Models 

Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2 
(Y9,Y8,Y7) 

0.796 
(0.038) 

0.001 
(0.030) 

-0.145 
(0.030) 

0.155 
(0.026) 

0.719 
(0.040) 

0.000 
(0.029) 

-0.131 
(0.029) 

        

1,2,3 
(Y8,Y7,Y6) 

0.753 
(0.073) 

0.000 
(0.034) 

-0.116 
(0.034) 

0.255 
(0.027) 

0.634 
(0.071) 

0.000 
(0.032) 

-0.098 
(0.032) 

        

2,3,4 
(Y7,Y6,Y5) 

0.690 
(0.112) 

0.000 
(0.036) 

-0.091 
(0.036) 

0.312 
(0.028) 

0.556 
(0.106) 

0.001 
(0.034) 

-0.073 
(0.034) 

        

3,4,5 
(Y6,Y5,Y4) 

0.618 
(0.152) 

-0.002 
(0.037) 

-0.071 
(0.037) 

0.346 
(0.029) 

0.482 
(0.143) 

-0.002 
(0.035) 

-0.055 
(0.035) 

        

4,5,6 
(Y5,Y4,Y3) 

0.557 
(0.193) 

0.000 
(0.038) 

-0.058 
(0.038) 

0.367 
(0.029) 

0.430 
(0.180) 

0.000 
(0.035) 

-0.045 
(0.035) 

        

5,6,7 
(Y4,Y3,Y2) 

0.506 
(0.234) 

0.000 
(0.039) 

-0.049 
(0.039) 

0.380 
(0.029) 

0.391 
(0.217) 

-0.001 
(0.036) 

-0.038 
(0.036) 

        

6,7,8 
(Y3,Y2,Y1) 

0.424 
(0.275) 

-0.001 
(0.039) 

-0.036 
(0.039) 

0.388 
(0.029) 

0.318 
(0.254) 

-0.001 
(0.036) 

-0.027 
(0.036) 
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Table 5. 
 
Results for four-lag, linear LAM models using exponential data 

 Y Models YX Models 
Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2,3 
(Y9,Y8,Y7,Y6) 

0.785 
(0.043) 

0.000 
(0.023) 

-0.130 
(0.023) 

0.200 
(0.027) 

0.687 
(0.044) 

0.000 
(0.022) 

-0.114 
(0.023) 

        

1,2,3,4 
(Y8,Y7,Y6,Y5) 

0.733 
(0.069) 

0.001 
(0.025) 

-0.104 
(0.025) 

0.280 
(0.028) 

0.604 
(0.067) 

0.001 
(0.024) 

-0.086 
(0.024) 

        

2,3,4,5 
(Y7,Y6,Y5,Y4) 

0.671 
(0.098) 

0.001 
(0.027) 

-0.084 
(0.027) 

0.327 
(0.028) 

0.534 
(0.093) 

0.001 
(0.025) 

-0.066 
(0.025) 

        

3,4,5,6 
(Y6,Y5,Y4,Y3) 

0.600 
(0.128) 

0.001 
(0.028) 

-0.066 
(0.028) 

0.355 
(0.029) 

0.464 
(0.120) 

0.001 
(0.026) 

-0.051 
(0.026) 

        

4,5,6,7 
(Y5,Y4,Y3,Y2) 

0.530 
(0.158) 

0.001 
(0.028) 

-0.052 
(0.028) 

0.373 
(0.029) 

0.409 
(0.147) 

0.001 
(0.026) 

-0.041 
(0.026) 

        

5,6,7,8 
(Y4,Y3,Y2,Y1) 

0.479 
(0.188) 

-0.001 
(0.028) 

-0.044 
(0.028) 

0.383 
(0.029) 

0.367 
(0.173) 

-0.001 
(0.026) 

-0.034 
(0.026) 
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Table 6. 
 
Results for five-lag, linear LAM models using exponential data 
 Y Models YX Models 

Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2,3,4 
(Y9,Y8,Y7,Y6,Y5)

0.772 
(0.046) 

0.000 
(0.019) 

-0.117 
(0.019) 

0.234 
(0.027) 

0.659 
(0.046) 

0.000 
(0.018) 

-0.100 
(0.018) 

        

1,2,3,4,5 
(Y8,Y7,Y6,Y5,Y4)

0.714 
(0.068) 

0.001 
(0.020) 

-0.094 
(0.021) 

0.299 
(0.028) 

0.580 
(0.065) 

0.001 
(0.019) 

-0.076 
(0.020) 

        

2,3,4,5,6 
(Y7,Y6,Y5,Y4,Y3)

0.643 
(0.091) 

-0.001 
(0.021) 

-0.075 
(0.021) 

0.339 
(0.028) 

0.506 
(0.086) 

-0.001 
(0.020) 

-0.059 
(0.020) 

        

3,4,5,6,7 
(Y6,Y5,Y4,Y3,Y2)

0.579 
(0.114) 

0.000 
(0.022) 

-0.060 
(0.022) 

0.362 
(0.029) 

0.448 
(0.107) 

0.000 
(0.020) 

-0.047 
(0.020) 

        

4,5,6,7,8 
(Y5,Y4,Y3,Y2,Y1)

0.509 
(0.138) 

0.000 
(0.022) 

-0.048 
(0.022) 

0.377 
(0.029) 

0.390 
(0.128) 

-0.001 
(0.021) 

-0.037 
(0.021) 
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Table 7. 
 
Results for six-lag, linear LAM models using exponential data 
 Y Models YX Models 

Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2,3,4,5 
(Y9,Y8,Y7,Y6,Y5,Y4) 

0.756 
(0.049) 

0.000 
(0.016) 

-0.106 
(0.016) 

0.260 
(0.027) 

0.633 
(0.049) 

0.000 
(0.016) 

-0.088 
(0.016) 

        

1,2,3,4,5,6 
(Y8,Y7,Y6,Y5,Y4,Y3) 

0.691 
(0.067) 

0.000 
(0.017) 

-0.085 
(0.017) 

0.314 
(0.028) 

0.555 
(0.064) 

0.000 
(0.016) 

-0.068 
(0.016) 

        

2,3,4,5,6,7 
(Y7,Y6,Y5,Y4,Y3,Y2) 

0.621 
(0.086) 

0.000 
(0.018) 

-0.068 
(0.018) 

0.348 
(0.029) 

0.487 
(0.081) 

0.000 
(0.017) 

-0.053 
(0.017) 

        

3,4,5,6,7,8 
(Y6,Y5,Y4,Y3,Y2,Y1) 

0.553 
(0.105) 

-0.001 
(0.018) 

-0.055 
(0.018) 

0.368 
(0.029) 

0.425 
(0.098) 

0.000 
(0.017) 

-0.042 
(0.017) 
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Table 8. 
 
Results for seven-lag, linear LAM models using exponential data 
 Y Models YX Models 

Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2,3,4,5,6 
(Y9,Y8,Y7,Y6,Y5,Y4,Y3) 

0.742 
(0.051) 

0.000 
(0.014) 

-0.097 
(0.014) 

0.279 
(0.028) 

0.613 
(0.050) 

-0.001 
(0.013) 

-0.080 
(0.014) 

        

1,2,3,4,5,6,7 
(Y8,Y7,Y6,Y5,Y4,Y3,Y2) 

0.667 
(0.066) 

0.000 
(0.015) 

-0.077 
(0.015) 

0.326 
(0.028) 

0.529 
(0.064) 

0.000 
(0.014) 

-0.061 
(0.014) 

        

2,3,4,5,6,7,8 
(Y7,Y6,Y5,Y4,Y3,Y2,Y1) 

0.597 
(0.083) 

0.000 
(0.015) 

-0.062 
(0.015) 

0.355 
(0.029) 

0.464 
(0.078) 

0.000 
(0.014) 

-0.048 
(0.014) 
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Table 9. 
 
Results for eight-lag, linear LAM models using exponential data 
 Y Models YX Models 
Lags  
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2,3,4,5,6,7  
(Y9,Y8,Y7,Y6,Y5,Y4,Y3,Y2) 

0.721 
(0.052)

0.000 
(0.013)

-0.087 
(0.013)

0.295 
(0.028)

0.587 
(0.051) 

0.000 
(0.012) 

-0.071 
(0.012)

        

1,2,3,4,5,6,7,8  
(Y8,Y7,Y6,Y5,Y4,Y3,Y2,Y1) 

0.649 
(0.066)

0.000 
(0.013)

-0.071 
(0.013)

0.336 
(0.028)

0.513 
(0.063) 

0.000 
(0.012) 

-0.056 
(0.012)
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Table 10. 
 
Results for nine-lag, linear LAM models using exponential data 
 Y Models YX Models 

Lags (Yk) bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2,3,4,5,6,7,8 
(Y9,Y8,Y7,Y6,Y5, 

Y4,Y3,Y2,Y1) 

0.707 
(0.053) 

 

0.000 
(0.011) 

 

-0.081 
(0.011) 

 

0.307 
(0.028) 

 

0.572 
(0.052) 

 

0.000 
(0.011) 

 

-0.065 
(0.011) 
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Table 18. 
 
Results for fixed lag analyses linear data 
 Y Models YX Models 
 Analytical Simulation Analytical Simulation 

Lag 
(Yk) 

bYk 
(SE) 

bYk 
(SE) 

bX9 
(SE) 

bYk 
(SE) 

bX9 
(SE) 

bYk 
(SE) 

0 
(Y9) 

0.810 
(0.019) 

0.810 
(0.019) 

0.000 
(0.021) 

0.810 
(0.021) 

0.000 
(0.021) 

0.810 
(0.021) 

       

1 
(Y8) 

0.710 
(0.022) 

0.710 
(0.022) 

0.116 
(0.025) 

0.659 
(0.025) 

0.115 
(0.025) 

0.659 
(0.025) 

       

2 
(Y7) 

0.610 
(0.025) 

0.610 
(0.025) 

0.204 
(0.026) 

0.533 
(0.026) 

0.203 
(0.026) 

0.534 
(0.026) 

       

3 
(Y6) 

0.510 
(0.027) 

0.510 
(0.027) 

0.271 
(0.027) 

0.425 
(0.027) 

0.271 
(0.027) 

0.425 
(0.027) 

       

4 
(Y5) 

0.410 
(0.029) 

0.410 
(0.029) 

0.322 
(0.028) 

0.329 
(0.028) 

0.321 
(0.028) 

0.328 
(0.028) 

       

5 
(Y4) 

0.310 
(0.030) 

0.309 
(0.030) 

0.359 
(0.028) 

0.241 
(0.028) 

0.358 
(0.028) 

0.241 
(0.028) 

       

6 
(Y3) 

0.210 
(0.031) 

0.208 
(0.031) 

0.384 
(0.029) 

0.160 
(0.029) 

0.384 
(0.029) 

0.159 
(0.029) 

       

7 
(Y2) 

0.110 
(0.031) 

0.109 
(0.031) 

0.399 
(0.029) 

0.083 
(0.029) 

0.399 
(0.029) 

0.081 
(0.029) 

       

8 
(Y1) 

0.010 
(0.032) 

0.011 
(0.032) 

0.405 
(0.029) 

0.008 
(0.029) 

0.404 
(0.029) 

0.008 
(0.029) 
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Table 19. 
 
Results for two-lag, linear LAM models using linear data 
 Y Models YX Models 

Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1 
(Y9,Y8) 

0.809 
(0.029) 

-0.001 
(0.041) 

-0.100 
(0.041) 

0.059 
(0.023) 

0.780 
(0.031) 

-0.001 
(0.041) 

-0.096 
(0.041) 

        

1,2 
(Y8,Y7) 

0.808 
(0.075) 

0.001 
(0.047) 

-0.099 
(0.047) 

0.160 
(0.026) 

0.728 
(0.075) 

0.002 
(0.047) 

-0.089 
(0.047) 

        

2,3 
(Y7,Y6) 

0.812 
(0.134) 

-0.001 
(0.052) 

-0.101 
(0.052) 

0.238 
(0.027) 

0.693 
(0.129) 

0.000 
(0.050) 

-0.086 
(0.051) 

        

3,4 
(Y6,Y5) 

0.814 
(0.199) 

-0.002 
(0.056) 

-0.101 
(0.056) 

0.296 
(0.028) 

0.669 
(0.189) 

-0.001 
(0.053) 

-0.084 
(0.053) 

        

4,5 
(Y5,Y4) 

0.807 
(0.267) 

0.001 
(0.059) 

-0.099 
(0.059) 

0.340 
(0.028) 

0.638 
(0.250) 

0.000 
(0.055) 

-0.079 
(0.055) 

        

5,6 
(Y4,Y3) 

0.821 
(0.338) 

0.000 
(0.061) 

-0.102 
(0.061) 

0.371 
(0.029) 

0.626 
(0.313) 

-0.001 
(0.056) 

-0.078 
(0.057) 

        

6,7 
(Y3,Y2) 

0.790 
(0.408) 

-0.002 
(0.062) 

-0.097 
(0.063) 

0.392 
(0.029) 

0.597 
(0.375) 

-0.002 
(0.057) 

-0.073 
(0.057) 

        

7,8 
(Y2,Y1) 

0.798 
(0.475) 

0.001 
(0.063) 

-0.098 
(0.063) 

0.402 
(0.029) 

0.599 
(0.435) 

0.001 
(0.058) 

-0.074 
(0.058) 
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Table 20. 
 
Results for three-lag, linear LAM models using linear data 
 Y Models YX Models 

Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2 
(Y9,Y8,Y7) 

0.811 
(0.035) 

0.001 
(0.028) 

-0.100 
(0.028) 

0.110 
(0.024) 

0.756 
(0.037) 

0.001 
(0.027) 

-0.094 
(0.027) 

        

1,2,3 
(Y8,Y7,Y6) 

0.807 
(0.067) 

0.001 
(0.031) 

-0.099 
(0.031) 

0.199 
(0.026) 

0.708 
(0.067) 

0.001 
(0.030) 

-0.086 
(0.030) 

        

2,3,4 
(Y7,Y6,Y5) 

0.818 
(0.105) 

0.001 
(0.034) 

-0.103 
(0.034) 

0.267 
(0.027) 

0.683 
(0.102) 

0.000 
(0.032) 

-0.086 
(0.032) 

        

3,4,5 
(Y6,Y5,Y4) 

0.812 
(0.147) 

0.000 
(0.036) 

-0.101 
(0.036) 

0.318 
(0.028) 

0.652 
(0.139) 

0.000 
(0.034) 

-0.081 
(0.034) 

        

4,5,6 
(Y5,Y4,Y3) 

0.801 
(0.190) 

0.000 
(0.037) 

-0.098 
(0.037) 

0.355 
(0.028) 

0.627 
(0.177) 

0.000 
(0.035) 

-0.077 
(0.035) 

        

5,6,7 
(Y4,Y3,Y2) 

0.812 
(0.234) 

0.001 
(0.038) 

-0.101 
(0.039) 

0.381 
(0.029) 

0.622 
(0.216) 

0.001 
(0.036) 

-0.077 
(0.036) 

        

6,7,8 
(Y3,Y2,Y1) 

0.809 
(0.276) 

0.002 
(0.039) 

-0.100 
(0.039) 

0.396 
(0.029) 

0.610 
(0.254) 

0.003 
(0.036) 

-0.075 
(0.036) 
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Table 21. 
 
Results for four-lag, linear LAM models using linear data 
 Y Models YX Models 

Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2,3 
(Y9,Y8,Y7,Y6) 

0.810 
(0.040) 

0.001 
(0.021) 

-0.100 
(0.022) 

0.155 
(0.025) 

0.733 
(0.041) 

0.001 
(0.021) 

-0.090 
(0.021) 

        

1,2,3,4 
(Y8,Y7,Y6,Y5) 

0.812 
(0.065) 

-0.001 
(0.024) 

-0.101 
(0.024) 

0.232 
(0.027) 

0.696 
(0.064) 

-0.001 
(0.023) 

-0.086 
(0.023) 

        

2,3,4,5 
(Y7,Y6,Y5,Y4) 

0.818 
(0.094) 

-0.001 
(0.025) 

-0.102 
(0.026) 

0.291 
(0.028) 

0.671 
(0.090) 

-0.001 
(0.024) 

-0.084 
(0.024) 

        

3,4,5,6 
(Y6,Y5,Y4,Y3) 

0.816 
(0.124) 

0.000 
(0.027) 

-0.102 
(0.027) 

0.335 
(0.028) 

0.649 
(0.117) 

0.000 
(0.025) 

-0.081 
(0.025) 

        

4,5,6,7 
(Y5,Y4,Y3,Y2) 

0.820 
(0.156) 

-0.001 
(0.028) 

-0.102 
(0.028) 

0.366 
(0.029) 

0.635 
(0.145) 

-0.001 
(0.026) 

-0.079 
(0.026) 

        

5,6,7,8 
(Y4,Y3,Y2,Y1) 

0.802 
(0.188) 

0.000 
(0.028) 

-0.099 
(0.029) 

0.387 
(0.029) 

0.605 
(0.174) 

0.000 
(0.026) 

-0.075 
(0.026) 
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Table 22. 
 
Results for five-lag, linear LAM models using linear data 
 Y Models YX Models 

Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2,3,4 
(Y9,Y8,Y7,Y6,Y5)

0.809 
(0.044) 

0.001 
(0.018) 

-0.100 
(0.018) 

0.192 
(0.026) 

0.713 
(0.044) 

0.001 
(0.017) 

-0.088 
(0.018) 

        

1,2,3,4,5 
(Y8,Y7,Y6,Y5,Y4)

0.809 
(0.064) 

0.000 
(0.019) 

-0.100   
(0.020) 

0.260 
(0.027) 

0.679 
(0.063) 

0.000 
(0.019) 

-0.084 
(0.019) 

        

2,3,4,5,6 
(Y7,Y6,Y5,Y4,Y3)

0.814 
(0.087) 

0.001 
(0.021) 

-0.101 
(0.021) 

0.311 
(0.028) 

0.658 
(0.084) 

0.001 
(0.019) 

-0.082 
(0.020) 

        

3,4,5,6,7 
(Y6,Y5,Y4,Y3,Y2)

0.808 
(0.112) 

-0.001 
(0.022) 

-0.100 
(0.022) 

0.349 
(0.028) 

0.634 
(0.105) 

0.000 
(0.020) 

-0.078 
(0.020) 

        

4,5,6,7,8 
(Y5,Y4,Y3,Y2,Y1)

0.808 
(0.137) 

-0.001 
(0.022) 

-0.100 
(0.022) 

0.375 
(0.029) 

0.622 
(0.127) 

-0.002 
(0.020) 

-0.077 
(0.021) 
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Table 23. 
 
Results for six-lag, linear LAM models using linear data 
 Y Models YX Models 

Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2,3,4,5 
(Y9,Y8,Y7,Y6,Y5,Y4) 

0.810 
(0.046) 

0.001 
(0.015) 

-0.100 
(0.015) 

0.222 
(0.027) 

0.698 
(0.047) 

0.000 
(0.015) 

-0.086 
(0.015) 

        

1,2,3,4,5,6 
(Y8,Y7,Y6,Y5,Y4,Y3) 

0.811 
(0.064) 

-0.001 
(0.017) 

-0.101 
(0.017) 

0.283 
(0.028) 

0.669 
(0.063) 

-0.001 
(0.016) 

-0.083 
(0.016) 

        

2,3,4,5,6,7 
(Y7,Y6,Y5,Y4,Y3,Y2) 

0.812 
(0.084) 

0.000 
(0.017) 

-0.100 
(0.017) 

0.327 
(0.028) 

0.649 
(0.080) 

0.000 
(0.016) 

-0.080 
(0.016) 

        

3,4,5,6,7,8 
(Y6,Y5,Y4,Y3,Y2,Y1) 

0.814 
(0.104) 

0.000 
(0.018) 

-0.101 
(0.018) 

0.358 
(0.029) 

0.635 
(0.097) 

0.000 
(0.017) 

-0.079 
(0.017) 
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Table 24. 
 
Results for seven-lag, linear LAM models using linear data 
 Y Models YX Models 

Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2,3,4,5,6 
(Y9,Y8,Y7,Y6,Y5,Y4,Y3) 

0.810 
(0.048) 

0.000 
(0.013) 

-0.100 
(0.014) 

0.248 
(0.027) 

0.686 
(0.048) 

0.000 
(0.013) 

-0.085 
(0.013) 

        

1,2,3,4,5,6,7 
(Y8,Y7,Y6,Y5,Y4,Y3,Y2) 

0.812 
(0.064) 

0.000 
(0.014) 

-0.101 
(0.014) 

0.301 
(0.028) 

0.661 
(0.062) 

0.000 
(0.014) 

-0.082 
(0.014) 

        

2,3,4,5,6,7,8 
(Y7,Y6,Y5,Y4,Y3,Y2,Y1) 

0.809 
(0.081) 

0.000 
(0.015) 

-0.099 
(0.015) 

0.339 
(0.028) 

0.639 
(0.077) 

0.000 
(0.014) 

-0.079 
(0.014) 
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Table 25. 
 
Results for eight-lag, linear LAM models using linear data 
 Y Models YX Models 

Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2,3,4,5,6,7 
(Y9,Y8,Y7,Y6,Y5,Y4,Y3,Y2) 

0.811 
(0.050)

0.000 
(0.012)

-0.101 
(0.012)

0.270 
(0.027)

0.677 
(0.050) 

0.000 
(0.012) 

-0.084 
(0.012)

        

1,2,3,4,5,6,7,8 
(Y8,Y7,Y6,Y5,Y4,Y3,Y2,Y1) 

0.809 
(0.064)

0.000 
(0.013)

-0.100 
(0.013)

0.315 
(0.028)

0.652 
(0.062) 

0.000 
(0.012) 

-0.081 
(0.012)
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Table 26.  
 
Results for nine-lag, linear LAM models using linear data 
 Y Models YX Models 

Lags 
(Yk) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

bX 
(SE) 

bYk 
(SE) 

bLag 
(SE) 

bYk×Lag 
(SE) 

0,1,2,3,4,5,6,7,8 
(Y9,Y8,Y7,Y6,Y5, 

Y4,Y3,Y2,Y1) 

0.809 
(0.052) 

 

0.000 
(0.011) 

 

-0.100 
(0.011) 

 

0.287 
(0.028) 

 

0.666 
(0.051) 

 

0.000 
(0.010) 

 

-0.082 
(0.011) 
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Table 27. 
 
Descriptive statistics for variables used in LAM models 
Variable Mean Min. Max. Std. Dev.
Lag 14m-24m 9.67 3.0 17.0 1.92
Lag 14m-36m 22.05 14.0 38.0 2.21
HOME Total 14m 25.98 6.46 31.00 3.61
Child Negativity 14m 2.11 1.00 7.00 1.11
Parent Negative Regard 14m 1.46 1.00 7.00 0.79
Parent Intrusiveness 14m 2.49 1.00 7.00 1.24
MDI 24m 89.08 49.00 134.00 13.68
Child Sustained Attention 24m 5.01 1.00 7.00 0.95
Child Negativity 36m 1.28 1.00 7.00 0.57
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Figure 1. 

A version of Cattell’s data box 
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Figure 2. 

Diagram of Cohen’s premature covariate scenario 
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Figure 3.  
 
Three-variable model from Collins & Graham (2001) 
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Figure 4.  
 
Repeated measures of X 
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Figure 5. 
 
Two cross-lagged panel models using different lags lengths  
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Figure 6.  
 
Standardized autoregressive effects from Kanfer & Ackerman (1989) 
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Figure 7. 
 
Standardized cross-lagged effects from Kanfer & Ackerman (1989) 
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Figure 8.  

Hypothetical multi-wave two-variable panel model 
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Figure 9.  

A two-variable multi-wave panel model 
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Figure 11.  

Change in the autoregressive effect for Y as lag changes 
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Figure 12.  

Change in the autoregressive effect for Y as lag changes 
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Figure 13. 

Home environment and Mental Development Index 
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Figure 14. 
 
Parent intrusiveness and child sustained attention 
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Figure 15. 
 
Parent negative regard and child negativity 
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