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ABSTRACT 

Calibration of Rutile (U-Th)/He Thermochronology: assessing the thermal evolution 
of the KTB drill hole, Germany and adjacent Bohemian Massif 

 

By 

Melissa R. Wolfe, M.S. 
Department of Geology, May 2009 

University of Kansas 
 

 This study empirically calibrates zircon and rutile (U-Th)/He dating by 

evaluating the experimentally-derived He diffusion kinetics and their extrapolation 

over geological time by (U-Th)/He dating a suite of borehole samples with a well-

defined thermal history. Age dating is coupled with cycled step-heating diffusion 

experiments and thermal modeling of zircon and rutile. The German Continental 

Deep Drilling Project (KTB) is ideally suited for this approach given its depth and 

zircon- and rutile-bearing metamorphic rocks. Results from zircon (U-Th)/He 

analyses display a helium partial retention zone between ~140-210°C which agrees 

well with laboratory-derived He diffusion kinetics.  While regional rutile (U-Th)/He 

age data confirm the feasibility of rutile (U-Th)/He thermochronometry (Tc ≈ 220°C) 

in eclogites and granulites, anomalous rutile (U-Th)/He ages from the KTB drill hole 

illustrate the implications of retrograde rutile breakdown to titanite and the 

importance of petrographic characterization of rutile for obtaining reliable and 

meaningful thermochronometric data. 
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CHAPTER 1: INTRODUCTION 

 

The research presented here utilizes down-hole sampling of the German 

Continental Deep Drilling Project (KTB) to assess in-situ He diffusion kinetics over 

geologic time scales and temperatures in zircon, a well-established 

thermochronometer (Chapter 2), and rutile (Chapter 3), a developing 

thermochronometer.  This project was initially funded under an NSF grant awarded to 

Daniel Stockli and J.D. Walker on the Development and Calibration of Rutile (U-

Th)/He Geo- and Thermochronometry.  Additional funding, awarded to Melissa 

Wolfe was provided through a DOSECC Internship, a GSA Student Scholarship, a 

AWG Osage Chapter Scholarship, and University of Kansas Department of Geology 

graduate summer research support.  This work represents part of a larger efforts of the 

development, calibration, and applications of rutile (U-Th)/He dating and builds on 

initial calibration and development of rutile (U-Th)/He geo- and thermochronometry 

at the University of Kansas undertaken by Terry Blackburn (Blackburn, 2006).   

Empirical calibration studies of a (U-Th)/He thermochronometer evaluates 

whether laboratory-derived diffusion kinetics can be accurately extrapolated to 

temperatures and timescales pertinent in nature. Such studies are best completed on 

samples from either exhumed crustal sections (e.g., Stockli, 2005) or on drill holes 

that have a well-characterized thermal history and temperature profile (e.g., House et 

al., 1999; Stockli and Farley, 2004). The KTB drill hole offers a unique opportunity 

to study the diffusive behavior of He in a thermochronometer in nature.  The well-
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studied KTB drill hole, Germany, samples a series of alternating fault-bound 

Variscan metamorphic blocks and reaches a final depth of 9100 m with a bottom hole 

temperature of ~260°C (Emmerman and Lauterjung, 1997; Clauser et al., 1997; Coyle 

et al., 1997; Hejl et al., 1997; Wagner et al., 1997; Stockli and Farley, 2004).  We 

have utilized down-hole sampling to assess the He diffusion in zircon and rutile.  In 

addition to down-hole (U-Th)/He analysis, we have performed step-heating diffusion 

experiments on zircon and rutile samples from the KTB drill hole. Thermal modeling 

of laboratory diffusion kinetics measured at the University of Kansas and those 

widely used in the (U-Th)/He community, with the thermal history of the KTB drill 

hole provides a direct test if laboratory diffusion kinetics accurately reflect the down-

hole (U-Th)/He age distribution.   

The second chapter of this thesis is titled Zircon (U-Th)/He 

thermochronometry in the KTB drill hole, Germany, and its implications for He 

diffusion in zircon.  Zircon, a well established (U-Th)/He thermochronometer, is 

routinely utilized to characterize thermal histories in igneous, volcanic, and 

sedimentary basins with an estimated closure temperature (Tc, Dodson, 1973) 

between 175-210°C (10°C/m.y.) (e.g., Reiners, 2005).  However, recent 

investigations and mechanistic modeling of He diffusion in zircon indicated that He 

diffusion in a perfect zircon lattice should be strongly anisotropic along the c-axis and 

affected by structural defects within zircon lattice (Reich et al., 2007; Saadoune et al., 

2009). Utilizing the well-constrained setting of the KTB drill hole, down-hole zircon 

(U-Th)/He analysis will assess He diffusion of zircon in nature.  
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KTB Down-hole zircon (U-Th)/He results from this study display consistent 

and systematic ages which largely agree with titanite (U-Th)/He results from the KTB 

drill-hole (Stockli and Farley, 2004). Zircon ages steadily decrease in age over the 

temperature range ~130-200°C, which we define as the helium partial retention zone 

(HePRZ).  This study confirms projection of laboratory diffusion data to accurately 

reflect zircon (U-Th)/He results to geologic timescales and temperatures.  This thesis 

chapter is as a journal manuscript to be submitted to Earth and Planetary Science 

Letters with Daniel Stockli as co-author. 

The third and final chapter, entitled Rutile (U-Th)/He thermochronometry on 

poly-metamorphic rocks from the KTB drill hole, Germany, furthers the development 

of rutile (U-Th)/He thermochronometry.  Rutile is a common U-bearing accessory 

mineral that occurs in a wide range of geologic settings and can be found as a 

metamorphic, hydrothermal, and detrital mineral phase. It is extremely resistant to 

chemical and mechanical weathering. Rutile presents a unique opportunity to 

understand the intermediate temperature history of high pressure (HP) and high 

temperature (HT) metamorphic rocks, particularly blueschists, eclogites and 

granulites. This study presents down-hole (U-Th)/He analysis and He diffusion 

experiments on rutile from the KTB drill hole to evaluate the diffusivity of He in 

rutile over geologic timescales and temperature ranges, particularly by comparison of 

thermal modeling of rutile He-diffusion kinetics to down-hole RHe results.  Trace 

element geochemical analysis and petrographic characterization performed on rutile 

from the KTB drill hole studies the effects of metamorphic breakdown. Application 
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of rutile (U-Th)/He analysis to regional high-grade metamorphic rocks assesses the 

influence of metamorphic assemblage and metamorphic grade and suggests high 

grade metamorphic rocks that have not undergone extensive retrograde 

metamorphism can provide information on the timing of exhumation of such terranes. 

The third chapter is a journal manuscript that will be submitted to Earth and 

Planetary Science Letters and the co-authors are Daniel Stockli and Chris Hager. 

All zircon and rutile (U-Th)/He analysis and cycled step-heating diffusion 

experiments were performed at the University of Kansas Isotope Geochemistry 

Laboratory (KU-IGL).  Thermal modeling and alpha ejection code was written by 

Chris Hager in MATLAB® (MATHWORKS, The, 2008b) following equations from 

Ketcham (2005).  KTB samples were obtained from Dr. Grauert’s collection from the 

University of Muenster (provided by Dr. Mezger) and the Bavarian Geological 

Survey (in collaboration with Dr. Ulrich Harms, Dr. J. Rohrmueller, Dr. Josef 

Schwarzmeier). Samples from the Bavarian Geological Survey were collected by 

Wolfe and Stockli during a trip to the KTB drill site and core repository in the fall 

2007. Regional rutile samples were collected by Wolfe and Stockli in the Erzgebirge, 

Germany, and the Bohemian Massif (Czech Republic) or provided by Dr. Luvizotto 

and Dr. Zack (Univ. Heidelberg). 

Rutile trace element geochemistry analyses were conducted by solution 

inductively coupled plasma mass spectrometry (ICP-MS) with input in methodology 

by Dr. Gwen Macpherson.  Detailed petrographic investigations using BSE-SEM 

imaging and EDAX were conducted on LEO Field scanning electron microscope at 
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the University of Kansas Microscopy and Imaging Laboratory in the Chemistry 

Department.  Procedures for anion exchange columns utilized for rutile (U-Th)/He 

thermochronometry were developed by J.D. Walker and T. Blackburn (Blackburn, 

2006) and rutile alpha stopping distance calculations by Daniel Stockli.
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CHAPTER 2: Zircon (U-Th)/He thermochronometry in the KTB drill hole, 
Germany, and its implications for He diffusion in zircon 
 
ABSTRACT 

We present down-hole zircon (U-Th)/He ages, laboratory derived diffusion 

kinetics, and thermal modeling on zircon from the Continental Deep Drilling Project 

(KTB), Germany as an in situ investigation of the diffusion kinetics controlling He 

diffusion in zircon in nature over geologic timescales.   Single grain laser (U-Th)/He 

ages, corrected by standard alpha-ejection correction, display a decrease in ages from 

~112-<1 Ma with reproducibility of ±8%.  Down-hole results display consistent ages 

of ~85±10 Ma in the upper 4700 m, which largely agree with previous studies from 

the KTB drill hole.  Beginning at 5000 m zircon ages begin a steady decrease in age 

until they are nearly reset (<1 Ma) at 7200 m.  The manner and temperature range 

(~130-200°C) in which zircon (U-Th)/He ages systematically decrease resembles the 

helium partial retention zone (HePRZ).  We also present cycled-step heating 

experiments on two zircon samples from the KTB drill hole.  Results from 

ZKTB4050-DE diffusion kinetics indicate Ea 160 kJ/mol and D0 0.03 s-1/cm2 with an 

estimated closure temperature (Tc) of 181°C, which agree with published diffusion 

kinetics for zircon.  Diffusion kinetics for ZKTB1516-DE indicate Ea 82.5 kJ/mol and 

D0 0.55 s-1/cm2, with a Tc 215°C, which is higher than previous studies. To compare 

the ZrHe results and bulk diffusion kinetics, we modeled diffusion parameters with an 

established thermal history of the KTB drill hole.  The predicted zircon HePRZ based 

on thermal modeling is consistent with down-hole zircon (U-Th)/He ages and 

laboratory-derived diffusion kinetics from ZKTB4050-DE on zircon from the KTB 
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drill hole.  Diffusion kinetic results from sample ZKTB1516-DE are more retentive 

than down-hole ZrHe results, which suggests that in general bulk diffusion kinetics 

correspond to diffusivity of He in zircon in nature, but can vary from sample to 

sample.  Recent computational studies on a perfect zircon lattice indicate He diffusion 

is strongly anisotropic, preferring to diffuse parallel to the c-axis (Farley et al., 2007; 

Reich et al., 2007; Saadoune et al., 2009).  Results from ZrHe analysis from the KTB 

drill hole may suggest that He diffusion of zircon in nature is not dominantly 

controlled by anisotropic diffusion but instead coincides with laboratory-derived 

diffusion kinetics. 

 

INTRODUCTION 

Zircon (ZrSiO4) occurs as a common accessory mineral in a variety of 

sedimentary, igneous and metamorphic rock types and geologic environments.  It is 

widely used in the geological sciences for geochemical and isotopic studies because 

of its affinity to retain minor and trace elements including actinides, lanthinides and 

radiogenic elements (Finch and Hanchar, 2003).   Zircon’s incorporation of U and Th 

in combination with its highly refractory nature, often surviving multiple geologic 

cycles, has made zircon the primary mineral utilized in U-Pb dating (Finch and 

Hanchar, 2003).  Geochronologic investigations of zircon bearing rock types are 

diverse and include crystallization (Solar et al., 1998); provenance studies (Watson 

and Harrison, 2005; Fedo et al., 2003 [References therein]); timing of metamorphic 

events (e.g., Gibson and Ireland, 1995); and refining the stratigraphic record (e.g., 
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Bowring et al., 1998).  As a result of the decay of U to Pb zircon is also a carrier of 

radiogenic He, and more recently it has been established as a (U-Th)/He 

thermochronometer (Farley, 2002; Reiners et al., 2004, Tagami et al., 2003; Reiners, 

2005).  

With practical development of its analytical technique and ubiquitous 

presence in multiple rock types, zircon (U-Th)/He (ZrHe) thermochronology has 

become a routine procedure applied in the geosciences (Reiners et al., 2002; 2004).  It 

has been employed on quickly cooled volcanic samples as a chronometer (e.g., 

Tagami et al., 2000; Tincher and Stockli, in press), to establish thermal histories for a 

temperature window between 150-210°C (Reiners et al., 2002; Stockli, 2005) and in 

combination with in situ U-Pb dating in sedimentary provenance studies (e.g., 

Campbell et al., 2005; Reiners et al., 2005; Rahl et al., 2003).  Laboratory diffusion 

experiments (Reiners et al., 2002; 2004) and empirical studies on exhumed fault 

blocks (Reiners et al., 2002; Tagami et al., 2003; Stockli, 2005) have estimated a 

closure temperature (Tc, Dodson, 1973) between 175-210°C (with cooling rate of 

10°C/my).  Many aspects of ZrHe thermochronometry are well studied: the effect of 

grain size on diffusivity (Reiners et al., 2004), U/Th zonation (Hourigan et al., 2005; 

Dobson et al., 2008) and radiation damage or metamictization (e.g., Nasdala et al., 

2004; Reiners et al., 2004).  Consequently ZrHe thermochronometry is widely applied 

to zircon-bearing lithologies as a source of thermal information.   

Although ZrHe thermochronometry is commonly implemented, aspects of He 

diffusion in zircon are not fully understood, particularly laboratory diffusion 
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experiments that display non-Arrhenius behavior in the early pro-grade steps (Reiners 

et al., 2002; 2004).  Fundamentally, laboratory diffusion experiments extrapolate 

diffusive behavior at high temperatures and short time steps to geologically pertinent 

temperatures (<250°C) and timescales (millions of years).  Due to the magnitude of 

extrapolation, potential errors are large and can be problematic in understanding 

diffusion in (U-Th)/He thermochronometry (Farley et al., 1999).  

In this study we utilize natural zircon from the Continental Deep Drilling 

Project (KTB) in Germany to assess the in situ diffusivity of He in zircon. The KTB 

drill hole has a well-characterized thermal regime, petrologic, geochemical, and 

tectonic history and offers a unique opportunity to study the effect of temperature on 

a thermochronometer over geologic time scales (e.g., Coyle and Wagner, 1998, Coyle 

et al., 1997; Warnock et al., 1997; Stockli and Farley, 2004).   With down-hole ZrHe 

analyses from a temperature range of ~7-265°C we seek to expand on previously 

published work that empirically calibrates ZrHe thermochronometry in exhumed fault 

blocks, further constrain the intermediate thermal history of the KTB drill hole, and 

determine if in fact anisotropic diffusion and structural defects significantly impact 

ZrHe thermochronometry over geologic time scales and temperatures. 

 

Zircon (U-Th)/He Thermochronology 

 (U-Th)/He thermochronometry is based on the accumulation of radiogenic 

4He produced by the decay of 238U, 235U, 232Th, and 149Sm. (The contribution of Sm in 

zircon is minor in comparison to U and Th).  It is now a well-established 
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thermochronometric technique for apatite, titanite, and zircon dating (e.g. Reiners and 

Farley, 1999; Farley, 2000; Reiners et al., 2002; Stockli and Farley, 2004) and has 

filled in the thermochronometric gap between apatite fission track closure 

temperature, Tc ~110°C and 40Ar-39Ar, Tc >150°C (e.g., Wagner et al., 1997; 

Harrison, 1985; Harrison, 2005 [References therein]).  Since its recent resurgence 

(Zeigler et al., 1987; Farley, 1996), (U-Th)/He thermochronology has been applied to 

an extensive range of geologic, tectonic, and geomorphologic processes (House et al., 

1999; Farley, 2000; Reiners et al., 2000, 2007; Stockli, 2005; Mitchell & Reiners, 

2003).   

Specifically, ZrHe thermochronology is appealing because of its high U and 

Th concentrations, which are typically an order(s) of magnitude higher than 

established thermochronometers apatite and titanite, and its presence in a diverse 

range of lithologies.  High U and Th concentrations make it conducive for application 

to young earth processes, and even Quaternary geochronology using disequilibrium 

corrected ZrHe ages (Farley et al., 2002; Schmidtt et al., 2006).  The resistance of 

zircon to chemical and physical weathering makes ZrHe dating applicable on 

silisiclastic sedimentary rocks to investigate the thermal history of orogenic source 

terranes in which apatite and titanite are not found (Rahl et al., 2003; Reiners et al., 

2005; Campbell et al., 2005).  The understanding and application of ZrHe studies is 

based primarily on results from step heating experiments that determine He diffusion 

in zircon.  Established laboratory-derived diffusion kinetics for zircon range in 

activation energies (Ea) from 163-173 kJ/mol (30-41 kcal/mol) and diffusivity at 
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infinite temperature (Do) from 0.09-1.5 cm2/s (Reiners et al., 2002; 2004, 2005).  

These studies yield a closure temperature between 175-193°C (average 183°C) for 

grains 40-100 µm in width.  It was also noted that diffusivity scales with grain size 

(Reiners et al., 2002; 2005). ZrHe analysis of old, highly radiogenic zircons also 

determined that large doses of radiation damage lowers He diffusivity in zircon.  The 

approximate threshold of damage that affects zircon diffusivity typically occurs at 

alpha levels >2-4x108 α/g (Nasdala et al., 2004; Reiners, 2005).  He diffusion 

experiments in zircon have displayed anomalously high diffusivities in the prograde 

heating steps; for these experiments well-behaved Arrhenius diffusivity typically 

begins at temperature steps between 425-520°C (Reiners, et al., 2004).  The cause of 

erratic behavior is unknown, but proposed causes include zones of radiation damage, 

crystallographically anisotropic diffusive behavior, or unevenly distributed He 

(Reiners et al., 2004, 2005).  Ultimately, the implications of this behavior on 

application to ZrHe analysis are not fully known. 

Recent studies have sought to address the potential cause of non-Arrhenius 

behavior in early steps of diffusion experiments on zircon, through computational 

studies at the atomic level.  Reich and others (2007) studied anisotropic diffusion in 

zircon along the c-axis while Saadoune and others (2009) investigated the affect of 

structural defects on He diffusivity.  Results found He diffusivity in a perfect zircon 

lattice is strongly anisotropic and a tracer He atom preferentially diffuses along the c-

axis [001] (Reich et al., 2007).  They also note that diffusion in zircon did not behave 

isotropically until temperatures >580°C, well above the published closure 
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temperature.  In order to approximate the influence of anisotropic diffusion, they use 

the difference between the two most energetically favorable diffusion pathways [001] 

and [100] (~31% or 31 kJ/mol) as the uncertainty of bulk diffusion measurements 

(Reich et al., 2007).  On the lower end, corrected Ea for anisotropic diffusion is 138 

kJ/mol, which is significantly lower than bulk diffusivities that estimate Ea 169 

kJ/mol (Table 4- Reich et al., 2007; Reiners et al., 2004; Reiners, 2005). The 

implication of anisotropic diffusivity could produce a range of closure temperatures 

between 54-323°C.  If true, any thermal history, exhumation rate or magnitude of 

exhumation based on bulk diffusion kinetics (Tc of ~180°C) could be significantly 

miscalculated (Reich et al., 2007).  Another study examined the effect of point defects 

in a zircon crystal structure on He diffusivity (Saadoune et al., 2009).  They 

calculated an effective Ea of 40 kJ/mol in a perfect zircon lattice, but found the 

presence of point defects along the c-axis produced ‘He traps,’ which effectively 

doubled the Ea of the dominant He c-axis pathways.  To quantitatively understand the 

large error produced by extrapolation of laboratory-derived diffusion kinetics to 

geologic timescales and temperatures, both of these studies modeled the diffusion 

behavior in zircon at the atomic level, demonstrating that He diffusivity in zircon is 

anisotropic, preferentially diffusing out of the c-axis, and largely affected by 

structural defects in the zircon lattice.  To accurately understand and apply ZrHe 

thermochronometry, constraining the rate and timing of geologic processes, it is 

essential to have accurate and precise understanding of He diffusivity at temperatures 

and timescales that apply to geologic events.   
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Laboratory derived diffusion kinetics are determined by in-vacuum 

experiments that utilize high temperatures (>400°C) and consequently shorter time 

steps to assess how 4He moves through, and eventually escapes, the mineral grain.  

Such experiments are a necessity since diffusivity under natural conditions occurs on 

time scales far too slow for laboratory studies.  Once determined, diffusion kinetics 

are extrapolated to lower, geologically pertinent temperatures by assuming simple 

thermally activated Arrhenius behavior.  Uncertainty depends on the accuracy and 

precision of the laboratory diffusion data and assumes the behavior seen at higher 

temperatures also occurs at the lower extrapolated temperatures (House et al., 1999).  

The goal of empirically calibrating a (U-Th)/He thermochronometer is to validate if 

experimentally determined diffusion kinetics are consistent in nature.   Preservation 

of diffusion kinetics is displayed in the helium partial retention zone (HePRZ), a 

mineral specific temperature range in which helium is partially (<10%) to completely 

(>90%) retained (Wolf et al., 1998).  Empirical calibration is best completed on 

samples from drill holes that have a well-known thermal history and temperature 

profile and the down-hole age variation (defining the HePRZ) should coincide with 

modeled diffusion kinetics (House et al., 1999; Stockli and Farley, 2004). 

Previous empirical calibration studies on zircon (U-Th)/He dating have 

utilized exhumed fault blocks in the Basin and Range (Reiners et al., 2002; Tagami et 

al., 2003; Stockli, 2005). Zircon (U-Th)/He analysis along the exhumed fault block in 

Gold Butte, Nevada identified the lower inflection point of the ZrHePRZ at an 

estimated paleodepth of 10 km, in the temperature range of 180-250°C (Reiners et al., 
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2002).  A similar study from the Wassuk Range, Nevada displayed a lower inflection 

point at reconstructed paleodepth of 6.5 km and paleotemperature of ~180°C (Tagami 

et al., 2003; Stockli, 2005).  These studies agree well with the established Tc for 

zircon which is based on laboratory-derived diffusion kinetics.  This study utilizes 

sampling at a closer interval of the well-constrained thermal regime and tectonic 

history of the KTB drill hole to improve our understanding of the in situ He 

diffusivity of zircon in nature over geologic timescales   

 

REGIONAL GEOLOGIC SETTING: KTB drill hole 

In Europe the Variscan Orogen is exposed as a series of east-west trending 

massifs, the easternmost being the Bohemian Massif (BM).  The BM, located in 

eastern Germany, western Czech Republic and portions of Austria and Poland is 

composed of Variscan fault-bounded metamorphic terranes, each with a distinct 

tectonic and metamorphic history (Hirschmann et al., 1997). The Zone of Ebendorf-

Vohenstrauss (ZEV) sits on the western border of the BM and is a small distinct 

gneiss-metabasic complex unit (O’Brien et al., 1997). The ZEV is a series of 

alternating metapelite paragneiss, metabasic, and amphibolite metamorphic blocks 

that are bound by zones of reverse faulting (O’Brien et al., 1997) (Figure 1). The 

KTB borehole is located on the western margin of the ZEV and drilled to a depth of 

~9.1 kilometers.  The South German Sedimentary Basin lies west of the KTB 

borehole and is separated from the BM by the Franconian Lineament (SE1/FL).  The 

FL is a major reverse fault that dips ~45-50º to the NW and intersects the KTB drill 
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hole at a depth of ~7000 m (Wagner et al., 1997) (Figure 1 and Figure 2).  Two other 

major fault zones were identified in the KTB drill hole, the Nottersdorf Fault Zone 

(NFZ) between 500-1600 m and SE2 between 3200-4000 m.  Since the Cretaceous, 

the KTB region has been largely quiescent and the most recent tectonic activity 

produced late Tertiary Eger graben and basaltic volcanism, approximately 30 km to 

the northwest (Figure 2) (Schroder, 1997).  The thermal regime of the KTB drill hole 

has been well studied with an undisturbed equilibrated geothermal gradient of 

~27.5°C/km (Clauser et al., 1997).   

 

Thermal Evolution of KTB drill hole 

The KTB drill hole, having been well-characterized in its thermal regime, 

petrologic, geochemical, and tectonic context, has provided a unique opportunity to 

study the in situ behavior of various thermochronometers over geologic time scales 

and temperatures.  Previous thermochronometric studies include apatite (AFT- 

Wagner et al., 1997) and titanite fission track (TFT- Coyle and Wagner, 1998), and 

titanite (U-Th)/He (THe- Stockli and Farley, 2004) (Figure 3).  AFT results 

confirmed the apatite partial annealing zone (PAZ) between 60-110°C, exhibited by a 

systematic decrease in ages from 50-6.2 Ma from 2000 m down to 4000 m.  Analysis 

of titanite fission track interpreted a paleo-PAZ between 265-310 ± 5-10°C, but no 

present day PAZ was documented in the TFT data (Coyle and Wagner, 1998).  TiHe 

results record the HePRZ between ~115-195°C by a systematic decrease in ages from 

~80-5 Ma beginning at 4500 m down to 7000 m (Stockli and Farley, 2004).  
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These studies also assessed the tectonic history of the KTB drill hole.  The 

combination of thermochronometric results and depositional history of the South 

German Sedimentary Basin (Schroder et al., 1997), adjacent to the ZEV and offset by 

the FL (Figure 2), records two major periods of rapid cooling.  The earliest cooling 

episode is recorded in the Triassic by K-feldspar 40Ar-39Ar cooling age of ~225 Ma at 

7762 m depth (Warnock and Zeitler, 1997) and the invariant down-hole TFT ages 

from 0-4000 m of ~245 Ma (Coyle and Wagner, 1998).  Although TFT annealing 

kinetics are not well constrained denudation between 225-245 Ma is confirmed by 

coincident alluvial fan deposits in the South German Sedimentary Basin (Schroder et 

al., 1997).  The second cooling episode is recorded in the Late Cretaceous by all the 

thermochronometric studies. 40Ar-39Ar results from samples at 0 m and 3203 m were 

quickly cooled between 125-95 Ma and again at 70-60 Ma (Warnock and Zeitler, 

1998).  TiHe results record invariant down-hole ages from ~75-85 Ma in the upper 

four kilometers (Stockli and Farley, 2004). AFT results (Coyle et al., 1997) document 

cooling between ~58-70 Ma from 120°C to ~45°C by ~25 Ma.  Surface AFT data 

near the KTB drill site range from 70-60 Ma (Wagner et al., 1989).  TiHe data 

suggest the upper portion cooled rapidly in the late Cretaceous from ~180-210°C to 

>110°C (Stockli and Farley, 2004).  This event is also recorded in the depositional 

history of the South German Sedimentary Basin with ~500 m of Cretaceous alluvial 

fan deposits.  Down-hole muscovite and amphibole K-Ar ages exhibit invariant ages 

between 300-350 Ma for the entire KTB drill hole (Wemmer, 1993).   
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Thermo-tectonic reconstructions of the KTB drill hole divide the KTB into 

four metamorphic blocks (A-D), which are bound by zones of reverse faulting 

(Wagner et al., 1997) (Figure 3).  All four blocks were a single ~2000 km thick 

crustal layer, which slowly cooled through the Permian, evidenced by the invariant K-

Ar muscovite ages.  Down-hole thermochronometric studies from the KTB record the 

subsequent faulting of the crustal layers into a ~ 9000 m thick antiformal stack.  

Movement on the SE2 fault zone (3200-4000 m) in the Triassic separated blocks A 

and B from C and D.  The FL was active during the early Cretaceous separating 

blocks C and D and continued through the Eocene, which is largely recorded in AFT 

and THe ages (Coyle et al., 1997; Stockli and Farley, 2004).  The Nottersdorf Fault 

Zone (NFZ) became active in the Eocene, thickening blocks A and B, recorded in 

AFT results (Coyle et al., 1997).  This South German Sedimentary Basin records 

these events by deposition of more than 15 km of exhumed rock since the end of the 

Permian (Schroder et al., 1997).  Early studies attributed this rapid cooling and 

subsequent deposition in the Cretaceous to onset of the Alpine orogeny (Warnock and 

Zeitler, 1998; Coyle et al., 1997).  More recent assessments attribute Late Cretaceous 

shortening in Central Europe to the onset of Africa-Iberia-Europe convergence and 

postpone the coupling of the Alps and Europe to the Cenozoic (Kley and Voight, 

2008; Bosworth et al., 2008s). 

 
 
Zircon (U-Th)/He Thermochronometry in the KTB drill hole 
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Building on previous empirical calibration studies (Reiners et al., 2002; 

Tagami et al., 2003; Stockli, 2005; Stockli and Farely, 2004), this research seeks to 

understand if laboratory derived diffusion kinetics are representative of He diffusivity 

in nature.  In contrast to previous work, we sample at a more closely spaced interval 

with accurate in situ temperature-depth knowledge, along side a well-documented 

tectonic history to provide a more quantitative comparison of published zircon 

diffusion kinetics to a known geologic history.  Recent studies raise caution in ZrHe 

thermochronometry by investigating interactions of He in the zircon lattice at the 

atomic level with computer simulations (Reich et al., 2007; Saadoune et al., 2009), 

but similar to laboratory derived diffusion kinetics, modeling does not accurately 

reflect natural geologic conditions.  Down-hole ZrHe analysis from the KTB drill 

hole, in contrast, provides a natural setting to measure zircon He diffusion kinetics. 

Zircon is present as an accessory mineral in amphibolite, metagabbro and 

paragneiss units throughout the KTB borehole.    The KTB is uniquely suited for in 

situ calibration of zircon diffusion kinetics because the total depth of 9.1 km and 

bottom hole temperature reaches ~265°C (Clauser et al., 1997).  At bottom hole 

temperatures (~265°C) zircon (Tc ~180°C) should not retain He and therefore down 

hole (U-Th)/He analysis should document a complete zircon HePRZ.   In addition, 

ZrHe results will provide further data on the intermediate temperature evolution of 

the KTB drill hole, and can be directly compared to titanite (U-Th)/He and 40Ar/39Ar 

thermochronometric studies. 
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ANALYTICAL METHODOLOGY 

Zircon (U-Th)/He Analysis 

 All ZrHe analysis was performed in the Isotope Geochemistry Laboratory at 

the University of Kansas.  After routine mineral separation zircon, grains were hand 

selected based on similarity in morphology, clarity and size (between ~65-120 µm in 

width). Morphometric analysis of each grain measured length and width to calculate 

the alpha ejection correction factor (FT, Farley et al., 1996; Farley, 2000).   

 Helium was extracted by a Nd:YAG laser heated to ~1290°C for ten minutes 

and reheated to ensure complete degassing of the sample (>99%). The liberated gas 

was spiked with 3He and cryogenically purified. The 4He/3He ratio was measured by 

isotope dilution on a quadrapole noble gas mass spectrometer that is calibrated 

against a manometerically-determined 4He standard.  After He extraction, zircon 

grains were unwrapped from Pt tubing and dissolved by pressure vessel dissolution 

procedures (e.g., Stockli et al., 2000).  Samples were spiked with an enriched 230Th, 

235U, 149Sm and REE tracer and subsequently dissolved using an HF-HNO3 mixture 

heated for 72 hours at 225°C in the dissolution vessel.  This was followed by dry 

down and resdissolution in 6N HCl for 12 hours at 200°C to remove Th-F salts.  In 

preparation for ICP-MS, the HCl was dried down and the dissolved zircon was 

brought up in concentrated HNO3 and diluted with 1000 µL of water.  All parent 

nuclide concentrations were measured by isotope dilution on VG PQII quadrapole 

ICP-MS.  Comparing the spike against a gravimetric 1 ppb U-Th-Sm-REE normal 

solution.  (U-Th)/He ages were calculated using standard FT corrections (Farley et al., 
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1996).  Estimated analytical uncertainty of ~8% (2σ) is based on replicate analysis 

and all ZrHe ages are reported as such unless otherwise noted.  

 

Cycled Step-Heating Experiments 

Two cycled step-heating experiments were completed on zircon from the KTB 

drill hole, samples ZKTB1516 and ZKTB4050.  Experiments were completed at the 

University of Kansas, Isotope Geochemistry Laboratory and ran on a fully automated 

diffusion experiment apparatus as described by Farley (1999).  Multiple zircon grains 

(2-4), based on grain size, morphology and clarity, were packaged in a Pt jacket and 

Cu-foil envelope.  The packaged sample was wrapped around the thermocouple, to 

assure that the thermocouple was in direct contact with the sample.  The package was 

suspended in a vacuum chamber and heated by a 350W light bulb through a sapphire 

window.  The estimated accuracy of the thermocouple temperature reading was ± 5°C 

per step with stability of ± 1-2°C per step.  The diffusion experiment begins with a set 

of isothermal steps at 400°C followed by a cycle of prograde, retrograde, and 

prograde steps.  Each temperature stepped up or down in 10°C increments and each 

cycle finished with a blank (0°C) measurement.   The first prograde sequence 

increased in temperature from 420-590°C, followed by a retrograde sequence from 

575-485°C.  The final prograde sequence increased in temperature from 492-640°C 

(see Appendix A for complete data set).  After each step, the 4He liberated from the 

sample was measured by isotope dilution of 3He on a quadrapole mass spectrometer. 

Calculation of bulk diffusion kinetics required subsequent complete degassing of the 
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sample to determine total grain gas in order to compare the cumulative fraction of gas 

released in each step.   A Nd:YAG laser heated the sample to ~1285°C for 10 minutes 

repeatedly to attain the total gas fraction (>99%).   

 

RESULTS  
 

KTB Zircon (U-Th)/He Results 

 ZrHe ages (N =120) were obtained from 37 samples from the KTB borehole. 

Six samples, between the depths of 1230 and 1740, are from the pilot hole (VB), and 

the final 31 are from the main hole (HB).   Zircon separates are mostly from 

amphibolites and garnet amphibolites, but a handful are from paragneiss units (from 

depths 52-525, 1575-1740, 2020-3268, 7790-8380).  Down-hole ZrHe data display a 

spread in ages from 112-0.8 Ma (Table 1, Figure 5).  In the upper portion of the KTB 

drill hole (0-4668 m depth), there is a range of ZrHe ages from 71.2 ± 5.7 Ma 

(ZKTB1575) to 111.7 ± 8.1 Ma (ZKTB1230). There are three groups of ages in upper 

~4700 m that vary in ZrHe age 71-76 Ma, 81-87 Ma and 93-96 Ma.  This spread in 

ages produces an average age interval of 85 ± 15 Ma (MSWD).  Sample ZKTB1230 

is anomalously, but reproducibly, old with an average age of 111.7 ± 8.1 Ma.  There 

is a marked decrease beginning at 5008 m (ZKTB5008 57.5 ± 4.6 Ma) and the 

younging trend continues with depth.  By 7200 m, zircon no longer retains He and 

ZrHe ages are near zero (ZKTB7200 0.9 ± 0.1 Ma).  Reset ages continue with depth 

except for an outlier ZKTB7553 at 17.7 ± 1.4 Ma.  Based on a uniform geothermal 
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gradient of ~27°C/km and a mean annual surface temperature of ~7°C, the marked 

slope of decreasing ZrHe ages occurs over the temperature range ~130 - 210°C. 

 

Cycled step-heating experiment results 

Two step heating experiments on zircon from different amphibolite units 

(ZKTB1516-DE and ZKTB4050-DE) yielded well-defined Arrhenius behavior and 

excellent linear correlations (Figure 5; Table 2).  Calculated diffusion kinetics for 

sample ZKTB1516-DE Ea = 43.6 kcal/mol (182.5 kJ/mol) and log(D/a2) = 4.21 s-

1/cm2 and ZKTB4050-DE Ea = 38.2 kcal/mol (159 kJ/mol) and log(D/a2) = 2.99 s-

1/cm2.  Data from ZKTB1516 do not display anomalously high diffusivities or erratic 

behavior in the first prograde series as noted in previously published zircon diffusion 

data (Reiners et al., 2002; 2004).  The calculated closure temperature for ZKTB1516 

is 215°C, based on 10°C/m.y. cooling rate.  Results from diffusion experiment 

ZKTB4050 display higher diffusivities in the first prograde steps from 400-520°C 

(not displayed in Figure 5, see Appendix B).  Bulk diffusion kinetics calculations are 

based on steps after 520°C.  From measured kinetics the estimated Tc is ~181°C 

based on a cooling rate of 10°C/m.y.  Diffusion kinetics and closure temperature for 

ZKTB4050 agree well with published ranges for bulk diffusion kinetics, while results 

from ZKTB1516 are distinctly higher than the range of published Tc for zircon (171-

193°C; Reiners et al., 2002, 2004). The average equivalent sphere radius of 3 grains 

for diffusion experiments ZKTB1516-DE and ZKTB4050-DE is 59.1 µm and 51.1 

µm respectively.  In summary, the zircon diffusion experiments from the KTB 
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borehole display varying results.  ZKTB1516 is extremely well behaved but 

calculates a Tc of 215°C, which is higher than expected for zircon by 20°C.  

ZKTB4050-DE on the other hand displays a Tc of ~181°C, which is in excellent 

agreement with previously published bulk diffusion kinetics.   

 

IMPLICATIONS 
 

KTB Zircon (U-Th)/He Ages 

In general, ZrHe results from the KTB drill hole decrease in age with 

increasing depth and temperature from ~112 to <1 Ma.  Although there is notable 

scatter in ZrHe ages (72 - 112 Ma) from 0-4700 m, ZrHe results document a mean 

down-hole age of 85 ± 15 Ma (stdev) for this depth range.  Beginning at 5000 m ZrHe 

results display a controlled and uniform decrease in ages through a depth of 7200 m, 

from ~58 - <1 Ma.  The temperature range of this decrease in ages occurs between  

~130°C and ~210°C (Figure 5).  We suggest the straightforward explanation for the 

distinctive shape and corresponding temperature range is the zircon HePRZ.  A zircon 

HePRZ between 130-210°C is in agreement with previous studies that have sought to 

document zircon diffusion kinetics in nature.  These studies sampled along exhumed 

fault blocks in the Basin and Range region of Nevada (Reiners et al., 2002; Tagami, 

2003; Stockli, 2005).  In these studies, zircon data display the characteristic shape of 

the lower half of a HePRZ with an inflection point at paleotemperatures predicted 

between 180-210°C.  ZrHe results from the KTB drill hole not only confirm these 

results but provide a more comprehensive study of zircon diffusion kinetics by 
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sampling with greater resolution and because depth-temperature values of KTB 

samples are known with certainty. Additionally, ZrHe results agree with previous 

thermochronometric studies on the KTB drill hole, particularly TiHe results.  TiHe 

results display invariant ages of ~85 Ma through the first 4 km and the titanite HePRZ 

between ~115-195°C, which agrees with a Tc of 200 ±10°C (Reiners and Farley, 

1999; Stockli and Farley, 2004). Bulk laboratory-derived diffusion kinetics for zircon 

estimate a Tc between ~170-195°C.  ZrHe data from the KTB drill hole display 

similar results, but push He diffusivities toward the higher Tc > ~200°C for zircon in 

the KTB drill hole.  A precursory comparison of ZrHe results from the KTB drill hole 

to previous empirical calibration studies of ZrHe thermochronometry, THe results 

from the KTB drill hole, and laboratory derived diffusion kinetics confirm that a Tc > 

~200°C is consistent over geologic timescales and temperatures for the studied 

samples.  These results support extrapolation of the well-behaved Arrhenius behavior 

measured in bulk laboratory diffusion kinetics, which is often disputed because of the 

difference in timescale and temperature from laboratory to nature.  

 

Thermal Modeling 

Because the shape and slope of the HePRZ is a function of both diffusion 

kinetics and the thermal history, we compare model predictions to ZrHe results from 

the KTB drill hole.  This exercise provides a more comprehensive test if bulk 

laboratory diffusion kinetics control ZrHe ages from the KTB drill hole and if ZrHe 

results are congruent with established thermal histories.  Forward modeling results are 
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based on published thermal histories of four metamorphic fault blocks (A-D), which 

have been established with previous thermochronometric studies of the KTB drill 

hole (Wagner et al., 1997; Stockli and Farley, 2004) and a geothermal gradient of 

27°C/km (Clauser et al., 1997).  To assess the effects of diffusivity on down-hole 

ZrHe results, we modeled a range of published diffusion parameters that encompass 

the least to the most retentive results (Reiners et al., 2004; 2005) and the measured 

diffusion kinetics from cycled step heating experiments from the KTB drill hole 

(Table 2).  Forward modeling results were produced with a MATLAB® (2008b, The 

MathWorks, Natick, MA) code developed at KU following equations outlined by 

Ketcham (2005).  Comparison of results from HeFTY (Ketcham, 2005) in 

comparison to results from code developed at KU agree within ± 2%.  

Figure 8 compares the thermal history of four coherent fault blocks modeled 

with the range of published diffusion kinetics (hatched envelope), and diffusion 

parameters from zircon KTB diffusion experiments (square ZKTB1516-DE and circle 

ZKTB4050-DE) with ZrHe results.  Not including the scatter seen in the first 4 km of 

ZrHe data (71-112 Ma), the ZrHe results fall within the envelope of published 

diffusion parameters through the HePRZ (130-210°C).  ZrHe results sit low in the 

hatched envelope indicating that higher diffusivities control the bulk of ZrHe ages 

from the KTB drill hole.  Diffusion kinetics from ZKTB4050-DE, Tc ~180°C, 

delineate the top edge of ZrHe results within the HePRZ, while diffusion kinetics 

from ZKTB1516-DE, Tc 215°C, sit well below the hatched envelope.  The difference 

in diffusivity and consequent Tc between the two diffusion experiments is not 
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understood but may demonstrate natural variation within zircon.  Interestingly, the 

high diffusion kinetics from ZKTB1516-DE can account for anomalously old ages in 

ZrHe data, for example ZKTB7553 and ZKTB4668, which are outside the predicted 

results. With a higher Tc, modeled results for ZKTB1516-DE also produce a ‘tail’ of 

older ages in the first ~1000 m of Block A and Block B as He is retained prior to the 

rapid uplift at ~85 Ma (Figure 8).  This tail or more accurately, higher diffusion 

kinetics, could account for the group of ZrHe ages between 93-96 Ma for samples in 

the upper 4700 m (ZKTBQ, ZKTB52, ZKTB125, ZKTB1358, ZKTB1516 - see 

Table 1).  Thus modeling predictions can account for two groups within the ZrHe 

ages which vary between ~85-94 Ma.  The five paragneiss samples that group 

together with ZrHe ages between 71-76 Ma (ZKTB525, ZKTB1575, ZKTB3059, 

ZKTB3269, ZKTB3575) are not predicted by the modeled results.  Although all of 

these samples are from paragneiss units except ZKTB3575, other paragneiss samples 

do not display similarly young ages (e.g., ZKTB525 77.2 ± 6.2 Ma and ZKTB125 

93.2 ± 7.5 Ma).  To produce a (U-Th)/He age of ~75 Ma, diffusion kinetics would 

reflect a Tc near ~150°C, which seems unlikely for zircon.  Zoning was not 

considered for zircon from the KTB, and it has been shown that a U-, Th-enriched 

rim will produce a young ZrHe age due to an inaccurate α-ejection correction 

(Hourigan et al., 2005, Dobson et al., 2008). 

ZrHe data agree well with modeled results from a fault block tectonic history 

as noted in Stockli and Farley (2004).  The range of diffusion kinetics that best match 

the ZrHe ages have a lower PRZ inflection point at ~200-210°C.  The diffusion 
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experiments ran on zircon from the KTB drill hole may indicate that a wide range of 

diffusion kinetics can influence samples from the KTB drill hole.  Experiment 

ZKTB4050-DE, with a measured Tc of 180°C, outlined the youngest ZrHe ages from 

the KTB drill hole.  Experiment ZKTB1516-DE, with a measured Tc of 215°C, sat 

well below the hatched envelope of published bulk diffusion kinetics (Reiners et al., 

2004), but did predict anomalously old ZrHe ages, which were more retentive than 

modeled results from bulk diffusion kinetics (e.g., ZKTB7553, ZKTB4668).    Higher 

diffusivities may also account for ~93 Ma ZrHe ages in Block A and B.  In summary, 

the bulk of ZrHe data can be accounted for by variations in sample-by-sample 

diffusion kinetics.  The hatched envelope of Figure 8, represents the range of 

published diffusion parameters (Reiners et al., 2004; 2005) utilized in ZrHe 

thermochronometry to deduce cooling ages and geologic rates in ZrHe studies.  

Modeling results (Figure 7) also display an offset in predicted ages near the 

three main fault zones, which delineate fault blocks A-D.  ZrHe ages from the upper 

4700 m of the KTB borehole do not appear to be controlled by faulting.    Samples 

within the NFZ display the largest scatter in ZrHe data with a range from 72 Ma to 

112 Ma (Figure 7).  The unusually old ages seen at 1230 m depth (five aliquots yield 

an average age of 112 ± 9 Ma) could be associated with faulting in the NFZ and 

sampling of a faulted sliver.  Rutile (U-Th)/He ages (see Chapter 3) display a 

similarly old age from the same sample (RKT1230 ~118 ± 46 Ma).  There is no 

evidence of older ages in Block A from AFT (Coyle et al., 1997) or TiHe KTB results 

(Stockli and Farley, 2004), however these studies did not sample within 45 m of 1230 
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m.  Tectonic activity in the early Cretaceous is recorded in down-hole TFT results, 

which display invariant ages between 97-112 Ma from 5500 to 6500 m (Coyle and 

Wagner, 1998).  Similarly, 40Ar-39Ar results document a cooling event between ~95-

125 Ma on microcline from 0 m and 3203 m depth (Warnock and Zeitler, 1998).  

Although we cannot fully account for early Cretaceous ZrHe ages at 1230 m, we do 

not interpret them as irrelevant nor erroneous, the ages are reproducible and not 

unrelated to other thermochronometric results from the KTB drill hole.  

Recent studies that employed computational studies at the atomic level 

reported that diffusion of He in zircon is anisotropic, and controlled by diffusion 

along the c-axis at geologically pertinent temperatures (Reich et al., 2007).  They 

suggested that anisotropic diffusion could alter bulk diffusion kinetics by ~30% or ± 

31 kJ/mol.  Figure 8 also compares results from this study to the calculated diffusion 

kinetics which are proposed to “evaluate the potential effect of anisotropy on the bulk 

experimental Ea and D0” (Reich et al., 2007- Table 4).  The high and low estimates of 

anisotropic diffusivities are far too retentive (Tc 272°C) and conversely not 

sufficiently retentive (Tc 104°C) to reflect ZrHe results from the KTB drill hole.  

Saadoune and others (2009) reported that the presence of point defects along the c-

axis effectively doubled diffusivity in zircon by producing ‘He traps’ in their 

computer simulated zircon lattice.  Down-hole ZrHe results from the KTB drill hole 

suggest that anisotropic diffusion in natural zircon is negated by the presence of 

defects along the c-axis to the extent in which diffusivity reflects a Tc of ~200°C.  
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It has also been suggested that the magnitude of anisotropic He diffusion in 

zircon will be influenced by the extent of radiation damage in the mineral (Reich et 

al., 2007).  ZrHe data do not display a major correlation between the effective 

uranium concentration (e[U] = [238U] + 0.235*[232Th]) and ZrHe age (Figure 9).  

Effective uranium concentration has recently been utilized as a proxy to measure 

radiation damage for apatite (U-Th)/He thermochronometry (e.g., Shuster et al., 2006; 

Flowers et al., 2008).  Figure 9a displays the effective uranium concentration of ZrHe 

ages from the upper 5000 m, and no correlation is seen with age and eU 

concentration.  Particularly older than expected ZrHe ages do no correlate with 

increased eU concentration (e.g., ZKTB1230 112 ± 9 Ma larger squares).  Figure 9b 

displays the eU concentration of ZrHe ages from the lower portion of the KTB drill 

hole.  Within these data, sample ZKTB7553 displays anomalously old ZrHe ages 

(17.7 ± 7 Ma) at temperatures of ~215°C.  This is the only sample that displays a 

possible correlation for radiation damage to produce these old ZrHe ages.  No other 

samples appear to show a positive correlation with eU concentration.  Similarly, 

measured bulk diffusion kinetics from laboratory step-heating experiments from the 

KTB drill hole are not controlled by eU concentration.  Based on zircon analyzed for 

ZrHe analysis, the more retentive ZKTB1516-DE, with a Tc 215°C, has an average 

eU concentration of 30 ± 20 ppm (stdev n = 4).  ZKTB4050-DE, with a Tc of 180°C, 

has a higher eU concentration of 300 ± 200 ppm (stdev n = 3). As far as we know, 

there is no study that positively correlates diffusivity to scale with radiation 

damage/effective uranium concentration for zircon.  Previous studies on the subject 
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suggest radiation damage in zircon is a complex relationship between He retention, 

fractional crystallinity and radiation damage (Nasdala et al., 2004; Reiners, 2005).   

From ZrHe results we interpret a zircon HePRZ between ~130-210°C, this 

temperature range agrees with previous empirical calibrations on exhumed fault 

blocks. The shape and slope of the zircon HePRZ can be accurately predicted by 

published thermal histories and laboratory derived diffusion kinetics measured from 

zircon within the KTB drill hole and published bulk diffusivities. Approximated 

diffusivities based on anisotropic diffusion in zircon were compared against ZrHe 

data from the KTB and results suggest that anisotropic diffusion does not control He 

diffusion of zircon in this setting.  Instead bulk laboratory-derived diffusion kinetics 

more accurately reflects the thermal sensitivity of ZrHe results from the KTB drill 

hole. 

 

 
CONCLUSION 

 
Recently the application of utilizing bulk laboratory-derived diffusion kinetics 

to determine geologic time scales and temperatures has been under investigation. This 

comes from a need to better understand atomic level interactions between He and the 

crystal lattice and possibly explain non-Arrhenius behavior often seen in laboratory-

derived diffusion data.  In this study we present down-hole ZrHe results from the 

KTB drill hole, which provide significant information on the diffusion kinetics that 

control He diffusion in the natural zircon studied.  ZrHe results from 37 samples 

display ages from ~112 to <1 Ma from down-hole analysis of the 9-km deep KTB 
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drill hole.  There is a marked decrease in ages beginning at ~130°C that continues 

through 210°C where ages are nearly reset.  We define this temperature range as the 

zircon HePRZ.  The base inflection point of the HePRZ corresponds well with 

laboratory measured diffusivities that measure higher diffusivities, ~Tc 190°C.  This 

study complements previous attempts to identify the zircon HePRZ from exhumed 

fault blocks, which predict a lower inflection point between 180-210°C (e.g., Reiners 

et al., 2002; Tagami et al., 2003; Stockli, 2005).  Concurrently, ZrHe results 

strengthen our knowledge of the laboratory derived diffusion kinetics that operate in 

nature, by removing uncertainty of projecting paleodepths and paleotemperatures and 

replaces uncertainty with well constrained temperatures and depths of each sample in 

the KTB drill hole.  ZrHe results also help confirm and refine the well-established 

thermal history of the KTB drill hole, recording rapid movement on the FL in the 

Cretaceous followed by protracted cooling, as seen in THe results (Stockli and Farley, 

2004).   

This study confirms that projection of laboratory diffusion data (e.g., diffusion 

experiment ZKTB4050-DE Ea 159.9 kJ/mol, D0 0.03 s-1, Tc 181°C) accurately 

reflects down-hole ZrHe ages, and ZrHe ages in turn reflect conditions over geologic 

timescales and temperatures.  But this study also displays the degree of variation that 

is possible within laboratory bulk diffusion results (ZKTB1516-DE Ea 182.5 kJ/mol, 

D0 0.55 s-1, Tc 215°C).  Although ideal, it is not reasonable to perform weeklong 

cycled step-heating experiments for every ZrHe analysis.  But we suggest it should be 

considered, particularly in studies when estimating the rate and magnitude of 
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exhumation, when laboratory derived diffusion kinetics are directly used in 

predictions.  Although we believe this study confirms bulk diffusion kinetics apply to 

geologic timescales and temperatures, it does not attempt to specify why the effects of 

anisotropic diffusion (i.e. lower diffusivities) are not seen in natural zircon.  It seems 

likely that structural defects and radiation damage produces a sufficient number of 

‘He traps’ to constipate the preferred diffusion pathways [001], which has been 

suggested by Saadoune and others (2009).  Further research is needed to 

systematically analyze the effect of radiation damage and its influence on anisotropic 

diffusion.  Additional ZrHe studies on well-constrained drill holes with bottom hole 

temperatures greater than ~210°C in combination with intra-sample laboratory 

diffusion experiments, possibly on more samples than conducted here, will provide 

further evidence if published diffusion kinetics can be accurately applied to constrain 

thermal histories. 
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Figure 1.  Down-hole profile of KTB drill hole, including the pilot hole, vorbohrung 
(VB) and main drill hole, hauptbohrung (HB).  Simplified lithologic columns (after 
Hirschmann et al., 1997), displays repetition of gneissic (g), variegated (v) and 
metabasic (b) units.  Major fault zones, noted on the far left identify boundaries which 
produce the stacked and repeated metamorphic blocks.  Depth of sampled zircon (U-
Th)/He analysis is noted to left of HB column, with  and sampled depth.  
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Figure 2.  Simplified regional geologic map of KTB region and surrounding BM 
(modified from Franke, 1989).  The Franconian Line (FL) delineates the western 
border of the BM with the South German sedimentary Basin to the west.   
.  
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Figure 3. Depth array of age data collected for various thermochronometers in 
previous studies apatite FT (Coyle et al., 1997), titanite FT (Coyle and Wagner, 
1998), titanite (U-Th)/He (Stockli and Farley, 2004) that reveal partial 
annealing/retention zone of each low temperature thermochronometer.  Large grey 
boxes define reverse fault zones encountered during down-hole drilling.  Offset due 
to faulting, is seen in apatite FT data by repetition in the Nottersdorf Fault Zone, 
while faulting along the FL is seen in titanite FT data. 
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Figure 4. Plot of the thermal history of the four fault blocks from the KTB drill hole 
for the past 250 Ma, as proposed by Wagner et al., (1998) and later modified by 
Stockli and Farley (2004) with down-hole titanite (U-Th)/He analysis.  Thermal 
history utilized in modeling of laboratory derived diffusion kinetics of hatched 
envelope in Figure 7. 
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Figure 5.  Arrhenius plot of post-high temperature steps of cycled step-heating 
diffusion experiments from two zircon samples from KTB drill hole, ZKTB1516-DE 
and ZKTB4050-DE. Plot does not display initial prograde steps between 400-520°.  
Both samples come from amphibolite units and analyze three grains to ensure 
sufficient gas yields. ZHe results for ZKTB1516 and ZKTB4050 are 94.9 ± 7.6 Ma 
and 81.4 ± 1.4 Ma, respectively.  Diffusion kinetics for ZKTB1516-DE indicate Ea 
182.5 kJ/mol (43.6 kcal/mol) and D0  0.55 cm2/s and ZKTB4050-DE indicate Ea 
159.9 kJ/mol  (38.2 kcal/mol) and D0  0.03 cm2/s.  For an effective grain radius of 60 
µm and a cooling rate of 10°C/m.y., the Tc is 215°C and 181°C.  ZKTB4050-DE (Tc 
180°C) results agree with previously published laboratory-derived diffusion 
experiments on zircon, which range in Tc from 171-196°C (Reiners et al., 2004; 
Reiners, 2005), but ZKTB1516-DE with Tc of 215°C is much higher.  
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Figure 6.  Diagram displaying both individual (open square) and average (filled 
square) zircon (U-Th)/He age plotted with depth and down-hole temperature, 
assuming an equilibrated geothermal gradient of ~27.5°C (Clauser et al., 1997). Large 
grey boxes define reverse fault zones encountered during down-hole drilling.  Zircon 
data define a well-constrained helium partial retention zone (HePRZ) beginning at 
~130°C with a systematic decrease in ages until ~210°C, when ages are reset.  
Analytical errors displayed are 8% error. 
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Table 1.  Average zircon (U-Th)/He age from down-hole analysis of KTB drill hole.  
Single grain laser heating, mineral dissolution and parent analysis completed at the 
Isotope Geochemistry Laboratory at the University of Kansas (For more detailed 
methodology see text). 
 
 

 

 

 

 



 

 71 

 

1
 N

o
m

in
al

 c
lo

su
re

 t
em

p
er

at
u

re
 b

as
ed

 o
n
 1

0
°C

/m
.y

. 
co

o
li

n
g

 (
D

o
d

so
n

, 
1

9
7

2
) 

 
2

 T
h

e
 i

n
it

ia
l 

te
m

p
er

at
u
re

 f
ro

m
 h

ea
ti

n
g

 s
te

p
s 

th
at

 u
se

d
 i

n
 E

a
 a

n
d

 D
0
 c

al
cu

la
ti

o
n

s,
 d

u
e 

to
 a

n
o

m
al

o
u

sl
y

 h
ig

h
 d

if
fu

si
v

it
ie

s 
in

 e
ar

ly
 s

te
p

s 
3
 A

v
e
ra

g
e
 e

q
u

iv
al

en
t 

sp
h

e
re

 r
ad

iu
s 

 
4
 V

al
u

es
 f

ro
m

 R
ei

n
er

s 
et

 a
l.

, 
2

0
0

4
, 

R
ei

n
er

s,
 2

0
0

5
 

5
 V

al
u

es
 f

ro
m

 R
ei

c
h

 e
t 

al
.,

 2
0

0
7

 (
T

ab
le

 4
) 

g
iv

e
n

 t
o
 a

p
p

ro
x

im
at

e 
an

is
o

tr
o

p
ic

 d
if

fu
si

o
n

 a
lo

n
g

 c
-a

x
is

 i
n

 n
at

u
ra

l 
zi

rc
o
n
 (

es
ta

b
li

sh
ed

 E
a 

1
6

9
 k

J/
m

o
l 

 

  
 f

ro
m

 R
ei

n
er

s 
et

 a
l.

, 
2

0
0

4
 ±

 3
1

 k
J/

m
o

l 
  

 

S
a

m
p

le
 

R
o
c
k

 T
y

p
e
 

E
a
 

(k
c
a

l/
m

o
l)

 

D
0
  

(s
-1

) 

T
c
  

(°
C

) 
R

2
 

T
in

it
ia

l 

(°
C

)1
 

a
 

(
m

)2
 

 

Z
H

e 
A

g
e
 

±
 s

td
e
v

 

(M
a

) 

e[
U

] 
±

 

st
d

e
v

 

(p
p

m
) 

#
 

g
r
a

in
s 

Z
K

T
B

1
5

1
6

 
G

rn
t 

A
m

p
h

 (
V

B
) 

4
3

.6
 

0
.5

5
 

2
1

5
 

0
.9

9
9

 
N

/A
 

5
7

.9
 

9
4

.9
 ±

 1
7

.8
 

2
9

.8
 ±

 

1
8

.1
 

3
 

Z
K

T
B

4
0

5
0

 
A

m
p
h
 (

H
B

) 
3

8
.2

 
0

.0
3

 
1

8
1

 
0

.9
9

8
 

5
2

0
 

5
1

.9
 

8
1

.4
 
±

 

2
.2

 

3
3

5
 ±

 

2
2

8
.5

 
3

 

P
u

b
li

sh
ed

 d
if

fu
si

o
n

 k
in

et
ic

s3
 

3
9

-4
1

 
0

.0
9

-1
.5

 
1

7
1

-1
9

6
 

 
4

2
5

-5
2

0
 

 
 

 
 



 

 72 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.  Results from cycled step heating diffusion experiments on zircon from the 
KTB drill hole run in the Isotope Geochemistry Laboratory at the University of 
Kansas and pertinent information which could control diffusivity, grain size, eU 
concentration and the effect of diffusivity of the ZHe age.  Both of these samples, 
based on modeling results, suggest that ZHe age should be ~85 Ma.  The more 
diffusive ZKTB1516, results in ZHe age of ~95 Ma, which we assume is a product of 
high diffusivities.  Also listed are published bulk laboratory derived diffusion kinetics 
from Reiners et al., 2004 and Reiners, 2005, which are modeled with thermal history 
of KTB drill hole (Wagner et al., 1997; Stockli and Farley, 2004). Also the published 
range of Ea corrected for the effect of anisotropic diffusion, which are modeled within 
the thermal history of the KTB drill hole in order to compare results to measured 
results (Reich et al., 2007). 
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Figure 7. Displays predicted down-hole zircon ages from modeling the thermal 
history seen in Figure 4 (based on Wagner et al., 1997; Stockli and Farley, 2004) in 
comparison to ZrHe results from KTB drill hole from this study. ZrHe ages are 
plotted as individual ages (small grey square) and average ages (large grey square) 
with maximum age spread plotted as error.  Hatched envelope models zircon bulk 
laboratory derived diffusion kinetics in a range from Ea 165-171 kJ/mol and D0 0.09-
0.46 cm2/s (Reiners et al., 2004; Reiners, 2005).  White shapes (circle and square) 
reflect modeled results from laboratory derived diffusion kinetics from cycled step 
heating experiments on zircon from KTB drill hole.  ZKTB4050-DE with Tc of 
~181°C fits well with ZrHe ages, while ZKTB1516-DE with Tc of 215°C sits well 
below ZHe ages but can account for anomalously old ZrHe ages that sit outside of 
bulk diffusion envelope. ZKTB4050-DE appears to cap the ZrHe results within the 
HePRZ. 
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Figure 8. Displays predicted down-hole zircon ages from modeling the thermal 
history seen in Figure 4 (based on Wagner et al., 1997; Stockli and Farley, 2004) in 
comparison to ZrHe results from KTB drill hole from this study. ZrHe ages are 
plotted as individual ages (small grey square) and average ages (large grey square) 
with maximum age spread plotted as error.  Hatched envelope models zircon bulk 
laboratory derived diffusion kinetics in a range from Ea 165-171 kJ/mol and D0 0.09-
0.46 cm2/s (Reiners et al., 2004; Reiners, 2005). Grey circle and square represent 
modeled results of Ea published by Reich and others (2007) as an approximation of 
anisotropic diffusion in natural zircon using 169 kJ/mol as the established Ea of zircon 
+31 kJ/mol and -31 kJ/mol.  Comparing the effect of anisotropic diffusion on zircon 
by ~30% (-31 kJ/mol) to ZrHe results from KTB drill hole clearly shows that such a 
degree of anisotropic diffusion is not affecting ZrHe ages. Instead ZrHe ages sit low 
is bulk diffusion envelope, as more retentive diffusion parameters control ZrHe ages 
from KTB.   
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Figure 9.  Zircon samples (gray diamond) from the KTB drill hole plotted as effective 
uranium concentration [eU] (U + 0.235*Th) by ZrHe age broken up into the upper 
~5450 m (20a) and lower portion of KTB drill hole data (10b).  There is no major 
correlation between eU concentration and age, suggesting radiation damage did not 
influence ZrHe ages, except for a single sample.  One sample ZKTB7553, should be 
reset due to an approximate down-hole temperature of 230°C.  In contrast, it displays 
a precise age of 18 ± 1.4 Ma, at eU concentrations which may lead to speculate 
radiation damage influencing the unexpectedly old ZrHe age.  But no other sample, 
including ZKTB1230 (black square), which is anomalously old, ZrHe 112 ± 9 Ma, 
have no correlation with eU concentration.  Similarly eU concentration does not 
directly influence diffusion kinetics, as ZKTB1516-DE (white circle), with Tc 215°C, 
has the lower eU concentration, compared to ZKTB4050-DE (black triangle) with Tc 
181°C. 
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CHAPTER 3: Rutile (U-Th)/He thermochronometry on poly-metamorphic rocks 
from the KTB drill hole, Germany 
 

ABSTRACT 

 This study presents rutile (U-Th)/He (RtHe) results from a suite of poly-

metamorphic rocks in their geochemical and petrographic context from the German 

Continental Deep Drilling Project (KTB).  Down-hole RtHe ages and a He diffusion 

experiment on KTB rutile were carried out as part of an effort to develop rutile (U-

Th)/He thermochronometry and to investigate He diffusion kinetics in rutile. RtHe 

ages in the KTB generally decrease in age with increasing depth from ~120 Ma to 

<10 Ma over a depth range of 1230-9000 m, but are characterized by significant age 

scatter and low degrees of aliquot reproducibility. Lower portions of the KTB exhibit 

more reproducible RtHe ages that are anomalously young compared to corresponding 

zircon and titanite (U-Th)/He ages and numerical models of expected down-hole 

RtHe age variations, based on new laboratory-derived He diffusion kinetics. Age 

scatter and anomalous RtHe ages do not appear to be the result of low-temperature 

alteration or recrystallization, as trace element geochemical analysis suggest rutile is 

in its primary state. Detailed petrographic analysis of KTB rutile, however, 

documents progressive rutile breakdown to ilmenite and titanite, resulting in a 

ubiquitous thin titanite overgrowth on rutile. High U and Th reaction rims of titanite 

on rutile is problematic for (U-Th)/He analysis as it invalidates the homogeneous U 

and Th distribution assumption applied by the standard α-ejection correction. 

Application of an α-ejection correction that accounts for a U- and Th- enriched rim, 
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based on observed rim widths and estimates of titanite rim U and Th concentrations, 

yields more accurate RtHe ages for most KTB rutile that are younger than expected. 

In contrast to KTB rutile, regional RtHe ages from high-grade metamorphic rocks in 

the Erzgebirge (250-270 Ma) and Bohemian Massif (~200 Ma) yield RtHe ages that 

are consistent with the thermal evolution of these regions. We attribute this to the 

metamorphic grade and lack of widespread retrograde metamorphism influencing the 

stability of rutile.  While regional RtHe results and KTB rutile He diffusion data are 

consistent with a He closure temperature of ~200-220ºC and illustrates the potential 

of RtHe thermochronometry of high-grade metamorphic rocks, results from the KTB 

drill hole illustrates the importance of detailed petrographic and geochemical 

characterization in order to obtain meaningful and reliable age data.  

 

INTRODUCTION 

 (U-Th)/He thermochronometry is based on the accumulation of radiogenic 

4He produced by the decay of 238U, 235U, 232Th, and 149Sm and is a well-established 

technique on apatite, titanite, and zircon (e.g. Reiners and Farley, 1999; Farley, 2000; 

Reiners et al., 2002; Stockli and Farley, 2004). It is commonly used to reconstruct the 

time-temperature histories to an extensive range of geologic, tectonic, and 

geomorphic events (House et al., 1999; Farley, 2000; Reiners et al., 2000; Stockli, 

2005; Mitchell & Reiners, 2003; Reiners et al., 2007).  Other U- and Th-bearing 

phosphate, silicate, and oxide minerals such as monazite, xenotime, fluorite, 

magnetite, and goethite have been investigated as potential geo- and 
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thermochronometers (e.g., Farley and Stockli, 2002; Boyce et al., 2006; Blackburn et 

al., 2007; Shuster et al., 2005).  The addition of a new (U-Th)/He chronometer, 

characterized by distinct He diffusion kinetics and closure temperatures, offers the 

capability to constrain different portions of a rock’s low-temperature thermal history, 

often coupled with the potential to date alternate lithologies and geologic processes.  

For example, the recent development of magnetite as a (U-Th)/He geochronometer, 

can be utilized on intermediate to mafic volcanic rocks with the potential to date 

processes of the oceanic and continental crust (Blackburn et al., 2007).  

In this study we present new developments of rutile as a (U-Th)/He 

thermochronometer.  Rutile is an appealing candidate as a thermochronometer as it is 

a widely occurring oxide with U and Th contents similar to apatite with a documented 

range of 3-130 ppm of U (Mezger et al., 1989).  Rutile can be found in a variety of 

geologic settings including alkali-rich plutonic rocks and as ore-deposits.  Similar to 

zircon, it is extremely resistant to weathering and is a common detrital mineral in 

sedimentary rocks.  Rutile is also found as a primary mineral in high-grade 

metamorphic rocks such as blueschists, eclogites and granulites (Deer et al., 1966; 

Mezger et al., 1989; Zack et al., 2002). The main attraction of calibrating rutile as a 

(U-Th)/He thermochronometer is its presence in these rocks, with the objective to 

reconstruct the rates and timing of metamorphic terrain exhumation.  Initial studies 

have presented preliminary He diffusion data for rutile and its ability to accurately 

date quickly cooled rutile-bearing xenoliths and minettes  (Crowhurst et al., 2002; 
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Stockli et al., 2005; 2007).  These results strongly suggest the feasibility of rutile (U-

Th)/He dating. 

This study presents down-hole rutile (U-Th)/He (RtHe) analysis and results 

from a cycled step-heating experiment from amphibolites from the Continental Deep 

Drilling Project (KTB), Germany.  Down-hole RtHe analysis provides an in situ 

measurement of He diffusivity in rutile over geologic timescales and temperatures.  

Modeling of laboratory-derived diffusion kinetics to the well-established thermal 

history of the KTB drill hole (Wagner et al., 1997; Stockli and Farley, 2004) in 

combination with down-hole titanite and zircon (U-Th)/He analysis (Stockli and 

Farley, 2004; Chapter 2, respectively) provides a direct reference to compare RtHe 

results.  As a consequence of rutile being a primary mineral in metamorphic rocks, 

and not an accessory phase like zircon and apatite, this study also investigates the 

effect of metamorphic breakdown reactions on RtHe thermochronometry through 

trace element geochemistry and petrographic investigations of rutile in the KTB drill 

hole.  Additionally, we present RtHe ages of regional surface samples from high-

grade metamorphic rocks from Erzgebirge, Germany, and the Blanksy les Granulite 

Massif, Czech Republic in order to compare RtHe analysis to rocks of varying 

protolith and metamorphic grade.  This study expands on previous RtHe 

thermochronometric studies with down-hole (U-Th)/He analysis to assess in situ 

diffusion kinetics, the application of RtHe to the slowly cooled high-grade 

metamorphic rocks, and draws attention to the crucial need for thorough petrographic 

context when analyzing primary minerals by (U-Th)/He thermochronometry. 
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Empirical He Diffusion Calibration  

Development of a thermochronometer requires accurate knowledge of He 

diffusion kinetics and mineral-specific physical or chemical parameters that may 

affect diffusivity (e.g., Farley et al., 1998, Reiners and Farley, 1999; House et al., 

Wolf et al., Reiners et al., 2004); successful geochronometric application to quickly 

cooled volcanic samples of a known age to demonstrate reliability as a chronometer 

and refine analytical technique (e.g., Farley et al., 199-; Tagami et al., 2003; 

Blackburn et al., 2007); and empirical calibration to validate experimentally-

determined diffusion kinetics and their extrapolation to geologic temperatures and 

time scales (>106 years) (e.g., House et al., 1999; Reiners et al., 2002; Stockli and 

Farley, 2004; Stockli, 2005).  

Laboratory diffusion kinetics are determined by in-vacuum experiments that 

utilize high temperatures (>400 °C) and consequently shorter time steps to assess how 

He moves through, and eventually leaves, the mineral grain.  Such experiments are a 

necessity as diffusivity under natural conditions occurs on time scales far too slow for 

laboratory studies (House et al., 1999).  Once calculated, diffusion kinetics are 

extrapolated to lower, geologically pertinent temperatures by assuming simple, 

thermally activated ArRtHenius behavior. Uncertainty depends on the accuracy and 

precision of the laboratory diffusion data and presumes the behavior seen at higher 

temperatures occurs at lower geologically pertinent temperatures (House et al., 1999).  

Empirical calibration of a (U-Th)/He thermochronometer hypothetically tests if 



 85 

laboratory-measured diffusion kinetics behave similarly in nature.  Ideal results 

document the helium partial retention zone (HePRZ), which is the temperature range 

in which helium is partially (<10%) to entirely (>90%) retained (Wolf et al., 1998). 

Therefore an empirical calibration study is best completed on samples from drill holes 

that have a well-known thermal history and temperature profile.  If assumptions from 

laboratory results are valid the down-hole age variation (defining the HePRZ) should 

coincide with modeled diffusion kinetics (House et al., 1999). 

 

RUTILE 

Rutile Mineralogy and Petrology  

 Rutile (TiO2) is one of the major Ti-phases and occurs as a polymorph with 

the anatase and brookite.  Of the polymorphs, it is the densest and most common 

natural form (Deer et al., 1966). The rutile (TiO2) structure is based on the hexagonal 

closest packing arrangement with significant distortion, which produces tetragonal 

symmetry.  The Ti in rutile exists in six-fold coordination with O (Waychunas, 1991). 

Rutile is known to be a carrier of high-field-strength elements (HFSE) because of the 

charge and size of Ti (4+ and ~0.6 Å).  Elements such as Nb, Ta, V, Fe, Cr, Sb and W 

are readily substituted into the crystal lattice and can be common up to the percent 

level (Deer et al., 1992; Zack et al., 2002).  Other elements with an ionic charge of 

4+, including U and minimally Th, can also substitute in for Ti.   Concentrations of U 

in rutile can very between ~0.1 and 100 ppm which has made it accessible to U-Pb 

dating (Mezger et al., 1989; Zack et al., 2002).   
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 Rutile is common in many rock types including alkali-rich plutonic rocks, 

hydrothermal ore deposits, detrital mineral suite in sedimentary rocks and in 

metamorphic rocks.  As a primary mineral in high-grade metamorphic rocks, 

particularly in blueschists, eclogites and granulites, it typically can be the main carrier 

of Ti and Nb in the whole rock (Zack et al., 2002; Luvizotto et al, 2008).  The 

stability of rutile in metamorphic rocks is directly tied to the stability of other Ti 

phases, mainly ilmenite and titanite, and whole rock composition.  On approximation 

titanite is the low temperature and low-pressure Ti phase, ilmenite is the high-

temperature Ti phase and rutile is the high-pressure Ti phase (Zack et al., 2002).  

Rutile is stable in conditions up to 1.3-1.5 GPa in MORB within the eclogite and 

high-pressure granulite facies (Ernst and Liu, 1998) but it has also been identified 

stable under in conditions 0.6 GPa in metabasite rocks (Bohlen and Liotta, 1986). The 

stability of rutile is largely dependent on whole rock composition.  

 

Rutile Thermochronometry 

Because rutile is U bearing, present as a primary mineral in a wide range of 

lithologic and geologic settings, and resistant to weathering it offers potential as a (U-

Th)/He thermochronometer.  Preliminary assessments of cycled step-heating 

experiments and RtHe geochronology on quickly cooled volcanic samples have 

displayed the potential feasibility rutile as a (U-Th)/He thermochronometer.  Initial 

laboratory diffusion experiments display ArRtHenius diffusion behavior and estimate 

a rutile He closure temperature based on 10°C/m.y. (Tc, Dodson, 1973) of ~210-235 
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ºC and Ea of 45-50 kcal/mol (Crowhurst et al, 2002; Stockli et al., 2005, 2007).  

Successful dating of kimberlitic rutile from Chino Valley, Arizona by RtHe 

thermochronometry resulted in ages of 23.1 ± 1.4 Ma, which agree well with 

established hornblende inverse 40Ar/39Ar eruption ages of 22.3 ± 0.6 Ma (Blackburn, 

2005; Stockli et al., 2007).  The presence of rutile in high pressure (HP) and high 

temperature (HT) metamorphic rocks provides an excellent opportunity to assess the 

thermal history of these often, difficult lithologies.  Primarily, reconstruction of the 

thermal histories of these rocks has been constrained by 40Ar/39Ar method, which is 

an extremely powerful technique but for HP metamorphic rocks, excess 40Ar has been 

problematic producing 40Ar/39Ar that are difficult to interpret (e.g., McDougall and 

Harrison, 1999; Kelley, 2002). 

This study aims to further develop rutile as a (U-Th)/He thermochronometer. 

Down-hole (U-Th)/He analysis and He diffusion experiments on rutile from the KTB 

drill hole evaluates the diffusivity of He in rutile over geologic timescales and 

temperature ranges, particularly by comparison of thermal modeling of rutile He-

diffusion kinetics to down-hole RtHe results.  Trace element geochemistry and 

petrography on rutile from the KTB drill hole studies the effects of metamorphic 

breakdown and potential implications of (U-Th)/He analysis of minerals that carry 

portion of the whole rock’s elemental budget, in the case of rutile- Ti. Application of 

RtHe analysis to high-grade metamorphic rocks assesses the influence of 

metamorphic assemblage and metamorphic grade on RtHe results.   
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GERMAN CONTINENTAL DEEP DRILLING PROJECT (KTB)  

Regional geology of KTB drill hole 

The Bohemian Massif (BM), located in eastern Germany and western Czech 

Republic, is composed of tectonically juxtaposed Variscan metamorphic terrains, 

which include the Saxothuringicum, Moldanubicum, and Bohemicum (Figure 1).  

Each terrain experienced a different tectonic and metamorphic history prior to 

amalgamation during Variscan orogeny (e.g., Hirschmann et al., 1997).  The 

Saxothuringicum terrain defines the northern extent of the BM and contains the 

region of Erzgebirge, large antiformal structures with medium to high-grade Variscan 

basement rocks (Mingram, 1998; Rotzler et al., 1998).  The Moldanubicum terrain 

delineates the southern border of the BM and is largely composed of three major 

units.  The first two, Monotonous and Varied units are largely composed of 

amphibolite grade sequences that underlay the Gföhl unit, which is composed of 

granulite massifs, including the Blanskey les granulite massif (Franke, 1989; Fiala, 

1995).  The Bohemicum metamorphic terrain is situated in the middle of the BM and 

is composed of a complexly imbricated stack of alternating metamorphic slices.  

Along the western border of the BM, the Zone of Ebendorf-Vohenstrauss (ZEV) is 

situated and has been identified as a portion of the Bohemicum terrain (O’Brien et al., 

1997).  The ZEV is characterized by medium pressure, high temperature 

metamorphic rocks and granitic intrusions that postdate widespread Variscan 

metamorphism (Kontny et al., 1997). 
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Geology of the KTB drill hole 

The ZEV was chosen as the site for the KTB project because of its locality 

near the boundary of these three major metamorphic units (Figure 1) (O’Brien et al., 

1997), with the objective to study the properties and architecture of the deep 

continental crust (Emmerman and Lauterjung, 1997).  The KTB consists of two 

boreholes, a pilot hole (VB- Vorbohrung) that reaches 4000 m in depth and the main 

hole (HB- Hauptborung) that reaches a final depth of 9100 m.  The metamorphic 

rocks of the VB and HB are tectonically stacked and lithologically alternating 

sequences of gneiss, variegated, and metabasic units (Figure 2).  The gneiss unit is 

primarily composed of monotonous paragneisses with minor intercalations of 

hornblende gneiss and amphibolite.  Paragneiss units contain a mineral assemblage of 

biotite, muscovite, garnet, kayanite and/or sillimanite, Na-rich plagioclase, and 

quartz.  Paragneiss units have pelitic greywackes and grewackes protolith signature 

(e.g., Hirschmann et al., 1997).  Variegated units are characterized by the alternation 

of amphibolite, garnet-amphibolite, and paragneiss.  The paragneiss layers within the 

variegated units are identical to those of the gneiss unit, while amphibolites have a 

volcano-sedimentary association of intra-plate basalts and andesites. (e.g., O’Brien et 

al., 1997).  The metabasite units dominate the KTB drill hole and are primarily 

comprised of coarse- and fine-grained garnet-amphibolites, amphibolites, and 

metagabbros.  Mineralogically garnet-amphibolites and amphibolites consist of 

hornblende, plagioclase ± garnet, quartz, rutile, ilmenite, titanite and biotite.  

Mineralogically, metagabbros contains garnet, clinopyroxene, kayanite, zoisite, 
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quartz and rutile (O’Brien et al., 1992).  Geochemically rocks from the metabasite 

units are tholeiitic and have an enriched mid-ocean ridge basalt (MORB) character.  

In summary, the KTB drill hole penetrated through tectono-metamorphic assemblage 

of an ancient active continental margin (O’Brien et al., 1997). 

There are three major fault zones identified in the KTB borehole the 

Nottersdorf Fault Zone (NFZ), SE2, and SE1. The NFZ sits between 500-1600 m. 

The second zone of reverse faulting is between 3200-4000 m (SE2).  The third fault 

zone, SE1, between 6800-7300 m, was identified as the Franconian Lineament 

(SE1/FL).  The FL is the major reverse fault zone that offsets the BM from the South 

German Sedimentary Basin to the west.  The primary surface exposure of the FL lies 

approximately 5 km west of the KTB drill site, dips ~45-50º to the NW (Figure 2).   

The temperature profile of the KTB is well documented by down-hole 

temperature logs and long-term equilibration measurements (e.g. Burkhardt et al., 

1991; Clauser et al., 1997).  The HB measures a bottom-hole temperature of ~260ºC 

at 9100 m with a mean annual surface temperature of 7°C.  This corresponds to an 

equilibrated geothermal gradient of ~27.5ºC/km (Clauser et al., 1997). 

 

Metamorphic Evolution of KTB 

The metamorphic history of these stacked units is complex and both the 

paragneiss and metabasite units record multiple metamorphic events (O’Brien et al., 

1992, 1997; Kontny et al., 1997).  O’Brien and others (1997) suggested a two cycle 
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metamorphic history (Figure 3).  The earliest metamorphic event is recorded in the 

metabasite units by rare eclogitic and granulitic lenses. These relict lenses suggest 

burial to depths >40 km with estimated temperatures and pressures between 600-

700°C and > 1 GPa (Figure 3).  This event appears to be associated with Ordovician 

high pressure (HP) and high temperature (HT) metamorphism recorded in the 

surrounding ZEV (O’Brien et al., 1992).  After HP/HT metamorphism, the entire unit 

was exhumed back to mid-crustal levels when pegmatites intruded the paragneiss and 

metabasic units.  The second metamorphic event occurred in the Devonian and is 

associated with the Variscan orogeny. Metamorphic conditions attained amphibolite 

facies grade at temperatures between 620-720°C and pressures <0.8 GPa (Figure 3), 

which largely overprinted the first HP/HT event (O’Brien et al., 1997).  After peak 

amphibolite metamorphism at ~400 Ma, retrograde metamorphism persisted until 

~360 Ma, when the entire KTB drill hole resided at temperatures below 300-350°C 

(Figure 4) (O’Brien et al., 1997).   

 

Post-Variscan Thermal Evolution of KTB 

Previous thermochronometric studies which assessed the tectonic history of 

the KTB drill hole include apatite (AFT- Wagner et al., 1997) and titanite fission 

track (TFT- Coyle and Wagner, 1998), 40Ar/39Ar (Warnock and Zeitler, 1998), titanite 

(TiHe- Stockli and Farley, 2004), and zircon (U-Th)/He analysis (Chapter 2). There 

are two major periods of rapid cooling recorded in thermochronometric results and 

depositional history of the South German Sedimentary Basin (Schroder et al., 1997), 
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adjacent to the ZEV (Figure 2).  The earliest cooling episode is recorded in the 

Triassic by K-feldspar 40Ar/39Ar cooling age of ~225 Ma at 7762 m depth (Warnock 

and Zeitler, 1997) and invariant down-hole TFT ages from 0-4000 m of ~245 Ma 

(Coyle and Wagner, 1998).  Although TFT annealing kinetics are not well 

constrained, denudation between 225-245 Ma is confirmed by coincident alluvial fan 

deposits in the South German Sedimentary Basin (Schroder et al., 1997). A minor 

cooling event between 130-95 Ma is recorded in 40Ar/39Ar samples at 0 m and 3203 

m (Warnock and Zeitler, 1998) and TFT results between 5000-7000 m (Coyle and 

Wager, 1998). The second prominent cooling event is recorded in all 

thermochronometric studies except TFT.  TiHe and ZrHe results record invariant 

down-hole ages from ~75-90 Ma in the upper four kilometers (Stockli and Farley, 

2004; Chapter 2). Apatite fission track (AFT) results (Coyle et al., 1997) document 

rapid cooling between ~58-70 Ma from 120°C to ~45°C by ~25 Ma. 40Ar/39Ar 

samples record cooling between 70-60 Ma on samples from 0 m and 3203 m 

(Warnock and Zeitler, 1998).  Surface AFT data near the KTB drill site range from 

70-60 Ma (Wagner et al., 1989).  TiHe data suggest the upper portion cooled rapidly 

in the late Cretaceous from ~210°C to >110°C (Stockli and Farley, 2004).  This event 

is also recorded in the depositional history of the South German Sedimentary Basin 

with ~500 m of Cretaceous alluvial fan deposits.  Down-hole muscovite and 

amphibole K-Ar ages exhibit invariant ages between 300-350 Ma for the entire KTB 

drill hole (Wemmer, 1993).  
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Thermo-tectonic reconstructions of the KTB drill hole divide the KTB into 

four metamorphic blocks A-D, which are bound by the zones of reverse faulting; 

NFZ, SE2, and FL/SE1 (Wagner et al., 1997) (Figure 2).  All four blocks were a 

single ~2000 km thick crustal layer, which slowly cooled through the Permian, 

evidenced by the invariant K-Ar muscovite ages.  Down-hole thermochronometric 

studies from the KTB record the subsequent faulting of the crustal layer into a ~9000 

m thick antiformal stack.  Movement on the SE2 fault zone (3200-4000 m) in the 

Triassic separated blocks A and B from C and D.  The FL was active during the early 

Cretaceous through the Eocene separating blocks C and D, which is largely recorded 

in AFT, THe and ZrHe ages (Coyle et al., 1997; Stockli and Farley, 2004; Chapter 2).  

The NFZ became active in the Eocene, thickening blocks A and B, recorded in AFT 

results (Coyle et al., 1997).  The South German Sedimentary Basin records these 

events by deposition of more than 15 km of exhumed rock since the end of the 

Permian (Schroder et al., 1997). Since the Eocene, the KTB region has been largely 

quiescent and the most recent tectonic activity produced late Tertiary Eger graben and 

basaltic volcanism, approximately 30 km to the northwest (Figure 1) (Schroder, 

1997).  Early studies attributed the rapid cooling and subsequent deposition in the 

Cretaceous to onset of the Alpine orogeny (Warnock and Zeitler, 1998; Coyle et al., 

1997).  More recent assessments attribute Late Cretaceous shortening in Central 

Europe to the onset of Africa-Iberia-Europe convergence and postpone the coupling 

of the Alps and Europe to the Cenozoic (Kley and Voight, 2008; Bosworth et al., 

2008). 
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Previous thermochronometric studies on KTB 

The KTB drill hole, having been well characterized in its thermal regime, 

petrologic, geochemical, and tectonic context, has provided a unique opportunity to 

study the in situ behavior of various thermochronometers over geologic time scales 

and temperatures.  AFT results confirmed the apatite partial annealing zone (PAZ) 

between 60-110°C, exhibited by a systematic decrease in ages from 50-6.2 Ma from 

2000 m down to 4000 m.  Analysis of titanite fission track interpreted a paleo-PAZ 

between 265-310 ± 5-10°C, but no present day PAZ was documented in the TFT data 

(Coyle and Wagner, 1998).  THe results record the HePRZ between ~115-195°C by a 

systematic decrease in ages from ~80-5 Ma beginning at 4500 m down to 7000 m 

(Stockli and Farley, 2004). ZrHe results display invariant ZrHe ages of 85±10Ma 

from 0-5000 m followed by a decrease in ages to <1 Ma at ~7200m, to document a 

HePRZ between ~130-210°C. 

 

 

ANALYTICAL METHODOLOGY 

(U-Th)/He Thermochronology 

 Rutile was selected primarily from amphibolite and garnet-amphibolite units, 

as paragneiss samples did not yield rutile.  Twenty-three samples, a total of 97 

aliquots from 1230-9000 m depth, were analyzed by RtHe thermochronometry.  After 

routine mineral separation, rutile grains were selected from the zircon mineral 

separate.  Rutile from the KTB drill hole was typically deep red to red-brown in color 
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and exhibited an adamantine luster on the original grain surface.  Rutile from the 

KTB was often identified as subhedral to anhedral grains or fragments.  Due to the 

low parent and daughter nuclide concentrations, 2-4 grains of appropriate size (~60-

100 µm in width) and morphology were selected per aliquot.  The sub-opaque to 

opaque nature of rutile can hinder identification of inclusions and fractures that are 

not exposed on the surface.  Some fractures and inclusions were detected and avoided 

by utilizing 180x magnification and intense transmitted and reflected light. 

 Helium was extracted by a Nd:YAG laser heating the Pt packaged rutile to 

~1290°C for ten minutes and reheated to ensure complete degassing of the sample 

(>99%). The liberated gas was spiked with 3He and cryogenically purified. The 

4He/3He ratio was measured by isotope dilution on a quadrapole noble gas mass 

spectrometer, which is calibrated against a manometerically-determined 4He standard. 

After He extraction, rutile grains were unwrapped from Pt tubing and dissolved by 

pressure vessel dissolution procedures (e.g., Stockli et al., 2000).  Samples were 

spiked with an enriched 230Th, 235U, 149Sm and REE tracer and subsequently dissolved 

using an HF-HNO3 mixture heated for 72 hours at 225°C in the dissolution vessel.  

This was followed by dry down and resdissolution in 6N HCl for 12 hours at 200°C 

to remove Th-F salts.  The HCl was dried down and redissolved in ~60 µL of 

concentrated HNO3 in preparation for anion exchange columns.   

 Before ICP-MS analysis, all rutile samples are purified by a two-step anion 

exchange column procedure that was developed by Blackburn (2005- Appendix C for 

details). Anion exchange columns separate the parent nuclides from major elements, 
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such as Ti4+, which can decrease the accuracy of parent nuclide (U, Th, Sm) analysis 

by ICP-MS.  Major elements with high ionization potentials can saturate the argon 

plasma and produce isobaric interferences and matrix effects (Baker et al., 2002; 

Tsuyoshi et al., 2003).  

The first ion chromatography step separates Sm then purifies and collects U 

and Th (Table 1).  Micro-columns are loaded with AGIx8 resin, which is cleaned with 

a sequence of water, 6N HCl, water and conditioned with 7N HNO3.  The sample is 

loaded into the column in ~60 µL of 7N HNO3.  The Sm is collected with a 7N HNO3 

wash.  In a separate beaker Th and U are collected together by adding 6N HCl and 

water.  The second step purifies the Sm (+REE) from Ti and other major elements by 

bringing the Sm through an AG50Wx8 resin.  The resin is cleaned with 6N HCl, 

water wash and conditioned with 2.5 N HCl.  The Sm is loaded in 2.5 N HCl and 

purified during an elution of 2.5 N HCl. Collection of the Sm occurs with additional 

2.5 N HCl.  After the second anion exchange column, the purified U, Th and Sm are 

recombined, dried down, and brought back in a solution of 100 µL of concentrated 

HNO3.  The enriched solution is subsequently heated at 90°C for 45 minutes, and 

diluted with 500 µL of water in preparation for ICP-MS. 

 All rutile parent nuclide concentrations were measured by isotope dilution by 

using a mixed 235U-230Th-149Sm-REE spike solution calibrated against a 

gravimetrically determined 1ppb U-Th-Sm-REE solution.  All parent analyses are 

performed on a VG PQII quadrapole ICP-MS at the Isotope Geochemistry Laboratory 

(IGL) at the University of Kansas.   Estimated analytical uncertainty for (U-Th)/He 
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ages in IGL is ~8% based on propagated error and analytical uncertainty of replicate 

zircon standards, but all RtHe ages are reported as the range of age unless otherwise 

noted.   

 

Rutile alpha-ejection correction 

The decay energy of 238U, 235U, 232Th, and minimally 147Sm, is up to ~8 MeV, 

and is taken up in recoil of the parent nucleus and emission of the alpha particle 

(Farley et al., 1996).  The total distance traveled by the alpha particle varies for each 

mineral, but can lead to the alpha particle being ejected from the grain, depending on 

the location of the parent in relation to the grain boundary.  Thus (U-Th)/He ages 

must be corrected for alpha ejection (FT, Farley et al., 1996). This calculation assumes 

a homogeneous distribution of U and Th within the crystal grain; if this assumption is 

violated the estimated retentivity will be miscalculated and can produce gross biases 

in (U-Th)/He ages (Farley, 2002; Hourigan et al., 2005; Dobson et al., 2008).  

The rutile FT correction follows after Farley and others (1996), utilizing a 

density of 4.25 g/cm3 and alpha particle stopping distances in rutile (Ziegler, 2003).  

To determine the fraction of He atoms retained within rutile, morphometric grain 

dimensions (length, width and depth) were measured to calculate the surface to 

volume ratio (β).  Assuming a grain with equal width and depth, the surface to 

volume ratio can be calculated by β = (4L+2W)/(L*W), where L is the measured 

length and W is the measured width of the grain.  For grains with varying width (W1) 
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and depth (W2), β = (2LW1+2LW2+2W1W2)/(LW1W2).  Therefore the alpha ejection 

correction can be calculated with the following equation: 

                                     FT = 1 – 4.55*β + 5.2β2      (1) 

 

 

Cycled Step-Heating Diffusion Experiment 

A cycled step-heating experiment was completed on rutile from the KTB drill 

hole from sample RKTB1464-DE.  The experiment was completed at the University 

of Kansas, Isotope Geochemistry Laboratory and ran on a fully automated diffusion 

experiment apparatus as described by Farley (1999).  Multiple rutile grains (8), 

selected by similar grain size and morphology, were packaged in a Pt jacket and Cu-

foil envelope. The packaged sample was wrapped around the thermocouple, to assure 

temperature measurement by the thermocouple was in direct contact with the sample.  

The package was suspended in a vacuum chamber and heated by a 350W light bulb 

through a sapphire window.  The estimated accuracy of the thermocouple temperature 

reading was ± 5°C per step with stability of ± 1-2°C per step.  The first steps of the 

diffusion experiment involved isothermal steps held at 400°C, which was followed by 

a cycle of prograde, retrograde, and prograde steps.  Each temperature stepped up or 

down in 10°C increments and each cycle finished with a blank (0°C) measurement.   

The first prograde sequence increased in temperature from 420-590°C, followed by a 

retrograde sequence from 575-485°C.  The final prograde sequence increased in 

temperature from 492-640°C, which is followed by a short retrograde sequence from 
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630-600°C (see Appendix B for complete data set).  After each step, the 4He liberated 

was measured by isotope dilution of 3He on a quadrapole mass spectrometer. 

Calculation of bulk diffusion kinetics required complete degassing of the sample to 

measure the cumulative fraction of gas released in each step.   Total gas values were 

measured with a Nd:YAG laser heating the sample to ~1285°C for 10 minutes 

repeatedly to completely degas the sample (>99%).  

 

Trace Element Geochemistry  

 Trace element geochemistry analysis by Solution ICP-MS was performed on 

rutile grains from down-hole KTB samples analyzed for RtHe thermochronometry.  

These samples were primarily from garnet-amphibolite and amphibolite units from 

depths between 1230-9000 m. Two aliquots of a single grain or fragment were 

analyzed for each sample, except 7154, when four aliquots were analyzed.   Rutile 

was selected based on purity and size, selecting largest available grains or fragments 

to maximize concentrations.  Preparation for trace element geochemistry analysis by 

solution ICP-MS required the sample digestion and ICP-MS preparation as described 

above for RtHe analysis, except rutile grains did not undergo column chemistry.  

Samples were run on VGQ ICP-MS with a matrix-matched drift correcting solution 

(Chetcham et al., 1993).  Drift correction and standard solutions were prepared from 

10 ppm Claritas SPEX Mutli-element Solutions 2A, 3, and 4 by serial dilution in 0 

ppb, 0.1 ppb, 1 ppb and 10 ppb concentrations.  A 10 ppm Ti solution was added to 

each standard solution in order to matrix match.  Drift was monitored throughout the 
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run by two techniques.  The first method analyzed a 1 ppb standard solution every 

sixth sample in order to calculate a drift correction factor.  The second method 

measured an internal standard, 147Sm, which was added with the HNO3 based 230Th, 

235U, 149Sm and REE spike. 

 

RESULTS 

KTB Rutile (U-Th)/He Results 

 (U-Th)/He analysis on rutile from amphibolites and garnet-amphibolites 

display a general decrease in ages from ~120-10 Ma between 1230-9000 m (Figure 5; 

Table 2).  There are two large gaps in RtHe results, the first from 0-1200 m and the 

second from 1516-3575 m, which are due to non rutile-bearing paragneiss blocks.  

All RtHe age results are subsequently discussed by fault block (A-D) as distinguished 

by thermo-tectonic reconstructions (Wagner et al., 1998; Stockli and Farley, 2004). 

The majority of RtHe ages from Block A, 0-1600 m, sit within the NFZ and display 

irreproducible ages with standard deviations ranging from 10-55 m.y.  RtHe ages 

between 1230-1464 m vary from RKTB1239 100 ± 40 Ma to 160 ± 40 Ma at 1464 m.  

In comparison, one sample RKTB1516 displays a younger RtHe age of 62 ± 27 Ma.  

Block B is from 1600-4300 m in depth.  Sample RKTB3575 in the SE2 fault zone 

and resulted in a reproducible RtHe age of 136 ± 8.2 Ma. Four closely spaced 

samples, between 4050-4172 m, display variation in individual RtHe age from 27.3 ± 

2.7 Ma (1σ) to 134 ± 13 Ma (1σ) with standard deviations of the average RtHe 

between 16-50 m.y.  These samples sit just below the SE2 fault zone and are 
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significantly younger than samples above.  RtHe ages from Block C, between 4300-

6800 m, display a marked decrease in RtHe ages with depth and temperature. The 

down-hole trend of RtHe ages is not systematic and there appear to be two clusters of 

RtHe ages, each decreases in a similar slope.  The first cluster of RtHe ages is 

considerably younger than the second group (e.g., RKTB4050 40 ± 30 Ma; 

RKTB4496 40 ± 10 Ma; RKTB5975 11 ± 6 Ma).  The second cluster of RtHe ages 

display RKTB5608 70 ± 13 Ma; RKTB6002 61 ± 15 Ma; RKTB6750 32 ± 4.5 Ma.  

Generally RtHe ages in Block C are more reproducible, with smaller standard 

deviations compared to RtHe ages in Block A and B.  Block D, 6800-9100 m, 

displays a continued decrease in RtHe age with increasing depth, from RKTB7153 38 

± 4.7 Ma to RKTB9000 9.9 Ma ± 4.4 Ma in the deepest sample.  

 In summary, RtHe results generally decrease in age with increasing depth as 

expected, but are characterized by intra-sample age scatter.  RtHe data lack 

reproducibility and do not show well-behaved down-hole behavior when compared to 

titanite and zircon (U-Th)/He results from the KTB drill hole (Stockli and Farley, 

2004; Chapter 2).  In particular, a significant number of RtHe ages are substantially 

younger than corresponding zircon and titanite (U-Th)/He ages.  RtHe ages did not 

behave as anticipated and therefore trace element geochemistry and petrographic 

investigations aimed to identify the cause(s) of inaccurate RtHe ages, such as He-

implantation due to U- Th- bearing neighbors, breakdown of rutile during retrograde 

metamorphism, fluid mobilization caused by faulting or resetting due to intense 

reverse faulting seen throughout the KTB borehole. 
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Cycled Step-Heating Diffusion Experiment Results 

One step-heating experiment on rutile from a garnet-amphibolite RKTB1464-

DE yielded a well-defined Arrhenius behavior and excellent linear correlations on 

heating steps after 535°C (R2 = 0.996) (Figure 4- Appendix B for complete dataset).  

Calculated diffusion kinetics for sample RKTB1464-DE yield Ea 203.1 kJ/mol (48.5 

kcal/mol) and D0 5.79 cm2/s. Bulk diffusion kinetics calculations are based heating 

steps 535°C through 615°C (black squares).  Data from the first prograde cycle (400-

590°C- grey squares) initially display high diffusive behavior, which begins to roll 

over between 480-500°C and decreases in diffusivity.  Well-behaved Arrehnius 

begins during the first regtrograde series at steps 535°C.  This ‘roll over’ behavior has 

been documented in previous rutile diffusion experiments and its cause and affect on 

RtHe thermochronometry are under investigation (Stockli et al., 2007; Wolfe et al., 

2008).  The calculated closure temperature for RKTB1464-DE is 246°C, based on 

10°C/m.y. cooling (Dodson, 1973).  Diffusion kinetics agree relatively well with 

ranges for bulk diffusion kinetics previously measured at KU, except the Ea is 

slightly lower than previous analyses, which produces a closure temperature for 

RKTB1464-DE that is ~10-40°C higher than the average range measured at KU IGL 

~210-235°C. 

 

Rutile trace element geochemistry  

Geochemical characterization of rutile by solution ICP-MS analysis was 

employed to investigate the potential influence of variations in rutile composition on 
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RtHe age in the KTB drill hole.  Dissolved rutile samples were analyzed for a range 

of high field strength elements (HFSE) and highly charged trace elements that readily 

substitute in for Ti4+ that could distinguish if rutile is primary or seen significant 

recrystallization.  The list also included major element constituents of possible 

inclusions (e.g., zircon) and major Ti-bearing minerals grow with rutile in 

metamorphic reactions (ilmenite and titanite).  Similar elemental lists have been 

utilized in recent studies that assess trace element geochemistry of rutile  (Luvizotto 

and Zack, 2008; Luvizotto et al., 2007; Zack et al., 2004; Zack et al., 2004) (Table 4).  

Samples were analyzed in three separate experimental runs.  Mean detection 

limits ranged from <5 ppm for Mn, Nb, Mo, Sn, Sb, Hf, Ta, W and U; >5-20 ppm for 

V, Cr, Mn, Ni, Zr and 30-1000 ppm for Al, Ca and Fe.  Concentrations below the 

detection limits are not listed and those less than twice the detection limit are grey 

(Table 4).  No systematic variations were identified for Al, Ca, V, Mn, Ni, Mo, Sn, 

Sb, W or U.  Typically 57Fe, Re, and Th concentrations were below detection limit for 

most samples.  Samples are displayed in groups of metamorphic fault blocks (A-D), 

as subdivided in terms of their tectonic and thermal history (Wagner et al., 1997).  No 

major correlation was seen by age behavior. 

Trace element results (see Appendix C for complete results), do not exhibit a 

pronounced geochemical signature that evidence a possible explanation for 

irreproducible RtHe ages.  There is a lack of consistency between particularly in Al, 

Ca, V, Mo and W. There is a moderate intra-sample reproducibility in Nb, Ta, Cr, Zr, 

and Hf concentrations (Table 4).  Rutile Nb and Ta concentrations (Figure 6a) show a 
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moderate correlation with increasing concentration and samples from Block A and 

one sample in Block B, RKTB3575, have distinctly higher Ta concentrations 

compared to the rest of the results.  There is a distinct linear correlation between Zr 

and Hf concentrations, which are incorporated into the lattice together (Figure 6b) 

(Zack et al., 2002).  Paired (Zr-Hf and Nb-Ta) substitutions in rutile have been 

previously documented (Zack et al., 2002).  Figure 7 plots Nb and Cr concentrations 

of rutile and rutile samples agree with the ‘rutile from mafic rocks’ category (Zack et 

al., 2002), except one or two outliers with high Nb concentrations.  The geochemical 

signature of rutile from the KTB drill hole is consistent with a mafic protolith and the 

designation of the variegated units as backarc volcanic rocks and the metabasite units 

as oceanic crust (O’Brien et al., 1997).   

Recent studies have investigated the effect of temperature (Zack et al., 2004; 

Treibold et al., 2007) and pressure (Tomkins et al., 2007) on the Zr incorporation into 

rutile and calibrated Zr in rutile as a trace element geothermometer in rutile-bearing 

high-grade metamorphic rocks (e.g. Treibold et al., 2007; Luvizotto et al., 2008). 

Metamorphic temperature conditions for rutile from the KTB were determined from 

Zr concentrations measured by solution ICP-MS.  Assuming rutile was in equilibrium 

with zircon and quartz during metamorphism temperatures for each sample was 

calculated using the pressure dependent equation (Eq. 8 Tomkins et al., 2007). 

Figure 8 displays individual temperatures for single grain rutile samples 

grouped by metamorphic block using estimated minimum and maximum pressures, 6 

kbar and 14 kbar, of the two major metamorphic events experienced by rocks of the 



 105 

KTB, eclogite-granulite phase and widespread amphibolite phase metamorphism 

(Box A and B in Figure 3).  Average calculated temperatures of ~650°C for 6 kbar 

(Box B) and ~685°C for 14 kbar (Box A) are in good agreement with previously 

documented temperature conditions of the KTB drill hole (Kleeman and Reinhardt, 

1994; O’Brien et al., 1992).  Peak temperature and pressure conditions of 620-720°C 

and 14 kbar were determined for HP facies metamorphism preserved in relict eclogite 

and granulite lenses of the KTB metabasite units (O’Brien et al., 1992).  Peak 

Variscan amphibolite facies conditions for the variegated units using petrological 

phase equilibrium gave temperature and pressure estimates of 700-750° C and 6-<10 

kbar in (O’Brien et al., 1992).  Temperatures estimates of this study appear to be in 

excellent agreement with previous temperature conditions of the KTB drill hole. 

These data, trace element geochemistry and thermometry, suggest that rutile 

analyzed from the KTB drill hole is still primary and have not been altered. Results 

are consistent with published geochemical studies from the KTB drill hole as Cr and 

Nb concentrations suggest a mafic protolith signature and Zr concentrations in rutile 

estimate peak temperature conditions between 600-700°C.  There is no geochemical 

signature that indicates rutile experienced hydrothermal alteration, recrystallization or 

fluid mobilization due to faulting, which we suspect would be problematic for RtHe 

analysis. 
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Petrography of rutile in the KTB drill hole 

 Because rutile can be a primary mineral or a main carrier of the Ti budget in 

high-grade metamorphic rocks, its stability and presence is largely controlled by 

temperature and pressure conditions, metamorphic assemblage, and the stability of 

other Ti phases, ilmenite and titanite (Ghent and Stout, 1984; Zack et al., 2002; 

Luvizotto et al., 2008).  Unlike zircon, which is an accessory mineral and can survive 

multiple metamorphic cycles, rutile breakdown occurs under greenschist facies 

conditions (Zack et al., 2004).  To assess the mineralogical and petrographic context 

of rutile from the KTB drill hole and any possible affects on RtHe ages, polished 

thick sections and grain mounts were investigated using backscattered secondary 

electron imaging on a LEO Field scanning electron microscope (SEM).  The complex 

metamorphic history of the rutile-bearing metabasite units of the KTB drill hole 

makes this an essential investigation. 

Polished thick sections were made from core samples KTB1230, 1252, 1464, 

1516, 3575, and 3595. In thick section, rutile occurs intergrown with ilmenite as 

anhedral aggregates and as individual subhedral grains.  Oxide aggregates of rutile 

and ilmenite are quite large (up to 500 µm in diameter) and can also contain 

subhedral rutile grains ~80 µm in width (Figure 11c, 13a).  Individual rutile grains are 

typically subhedral and can vary in size from <10 µm to >80 µm in width. Rutile 

commonly displays breakdown textures from rutile to ilmenite in both aggregate and 

individual grains.  Breakdown textures include growth of ilmenite lamellae or 

ilmenite growth at rutile grain boundaries.  The presence of ilmenite as an inclusion 
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in rutile is rare and most often ilmenite growth occurs near grain boundaries.  Besides 

ilmenite lamellae rutile display inclusions of zircon and less commonly pyrite, which 

are typically <5 µm in width.  The nearly ubiquitous texture observed in every thick 

section on both aggregate and individual rutile grain, is a titanite rim ranging from 

<1-4, in some cases up to 10 µm, in width (Figure 11-14).  Titanite rims commonly 

display undulating surfaces that vary in width around the grain, but most often 

surround the entire aggregate or rutile grain (Figure 11c, 13d).  The sequence of Ti 

mineral phase growth can be distinguished by breakdown of rutile to ilmenite 

(formation of ilmenite lamellae), followed by growth of titanite rims (Figure 11b, 

13c, 14a, 14c, 14d).  In aggregates of rutile and ilmenite the titanite rim is thicker 

when surrounding ilmenite.  Within most thick sections, rutile is identified in an 

amphibole, albite ± garnet, ilmenite, titanite, pyrite, zircon, ± apatite matrix or rarely 

as an inclusion within garnet (Figure 11a).  In sample KTB1252, rutile occurs as an 

inclusion within titanite, indicating rutile breakdown to titanite was almost complete 

(Figure 12a).  Notably, rutile also occurs in proximity (<20 µm) to zircon and apatite 

grains (Figure 9f, 11a, 11b, 13e).   

Rutile grains from samples analyzed for RtHe thermochronometry were 

imaged in polished grain mounts.  Subhedral-anhedral rutile grains or fragments were 

selected for the mount and vary from 50-80 µm in width.  Some rutile contain micro-

inclusions, <5 µm in diameter, of ilmenite and zircon (Figure 9a, 9b, 9f, 10b).  Zircon 

inclusions can be located near the center or near the grain boundary (<20 µm).  

Similar to thick section a titanite rim, ranging from <1-4 µm in width, is present on 
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many of the imaged grains.  The titanite rim never encompasses the entire rutile grain 

but more commonly the rim abruptly ends or is minimally preserved. Some rutile 

grains imaged in grain mount have matrix of plagioclase and amphibole attached, 

these grains preserve the titanite rim best (Figure 9, 10). 

Previous petrographic studies on the KTB drill hole attribute rutile growth to 

different metamorphic events, depending on protolith and tectonometamorphic 

history (Kontny et al., 1997; O’Brien et al., 1997).  (Along with an overview of the 

metamorphic history of the KTB drill hole, Figure 3 also estimates the timing of 

oxide growth).  In the metabasites that preserve eclogitic and/or granulitic lenses, 

rutile growth is attributed to igneous Fe-Ti oxides (Box A in Figure 3) (Kontny et al., 

1997; Hirschmann et al., 1997).  This HP/HT event is largely overprinted by the 

succeeding amphibolite grade metamorphism during the Variscan orogeny.  The 

breakdown of rutile to ilmenite and rutile growth are both noted during the Variscan 

event in the metabasite and variegated units (Box B Figure 3) (Kontny et al., 1997).  

The growth of titanite rims is associated with the breakdown of ilmenite and rutile 

during post-Variscan retrograde zeolite-greenschist metamorphism and fluid 

infiltration (Kontny et al., 1997) (Box C Figure 3).   

Harlov and others (2006) investigated the presence of a titanite rim on 

ilmenite from various amphibolite facies localities, including the Variscan Oztal 

Complex. They document that the titanite-rimmed ilmenite is typically surrounded by 

plagioclase and occasionally in contact with amphibole. In most cases, they attributed 
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the presence of a titanite rim to the following hydration reaction (Eq. 4 Harlov et al., 

2006): 

                   7 Fe-Cpx + 3 Ilm + 5 Qtz + 2 H2O = 2 Fe-Amph + 3 Tnt          (2) 

In KTB samples titanite rims display phase relations that imply comparable 

reactions, except rutile participates in the reaction.  Harlov and others (2006) 

observed rutile in the Oztal Complex as an inclusion within ilmenite but not in 

contact with the titanite rim (KTB1252 displays a similar reaction Figure 10a).  In 

KTB samples, rutile, not associated with ilmenite aggregates, is also rimmed by 

titanite (Figure 11c, 12a-d).  Therefore, the growth of titanite rims on rutile in KTB 

cannot be explained by ilmenite breakdown alone (Eq. 3) and requires coincident 

rutile breakdown.  The following reaction replaces ilmenite with rutile as the Ti 

source:         

 5 Fe-Cpx + 3 Rut + Qtz + H2O = Fe-Amph + 3 Tnt         (3) 

Although the growth of titanite rims directly on rutile in amphibolite grade 

metamorphic rocks has been identified in retrogressed mafic granulites from Saxony, 

Germany (Figure 3d, Romer and Rotzler, 2003) and the amphibolite unit of the 

Frankenberg Massif, Germany (Rotzler et al., 1999), no reaction was provided to 

account for its presence. It should be noted that rutile-titanite assemblages are stable 

again at ultrahigh- to high-pressure conditions, particularly when carbonates are 

present (e.g., Frank and Spear, 1985; Manning and Bohlen, 1991; Frost et al., 2000; 

Castelli and Rubatto, 2002; Tropper et al., 2008). Growth of titanite rims on rutile is 

also a common decompression reaction in high-pressure rocks (Ghent et al., 1993, 
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Klemd et al., 1994).  Although titanite-rutile assemblages are found in high-pressure 

and ultrahigh-pressure assemblages, such reactions do not pertain to the amphibolite 

facies metamorphism experienced by samples in the KTB drill hole.  Therefore, we 

suggest the combination of equations 2 and 3 may be the primary reactions 

responsible for the growth of titanite rims on rutile and ilmenite, which grew during 

widespread amphibolite phase metamorphism in the Devonian and subsequent 

retrograde metamorphism.  The effect of titanite rims on RtHe analysis will be 

discussed in subsequent sections. 

 

DISCUSSION 

Interpretation of rutile (U-Th)/He results 

Interpretation of RtHe results is conditional on comparison to modeled 

predictions and previous thermochronometric studies, zircon and titanite (U-Th)/He 

analysis (Chapter 2; Stockli and Farley, 2004).  Forward modeling results are based 

on published thermal histories of four metamorphic fault blocks (A-D), which have 

been established with previous thermochronometric studies of the KTB drill hole 

(Wagner et al., 1997; Stockli and Farley, 2004) and a geothermal gradient of 

27°C/km (Clauser et al., 1997).  To assess the effects of diffusivity on down-hole 

RtHe results, we modeled a range of bulk diffusion parameters measured at KU-IGL 

that encompass diffusion kinetics with a Tc range of 220-240°C (Stockli et al., 2007) 

and the results from RKTB1464-DE.  Forward modeling results were produced with a 
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MATLAB® (2008b, The MathWorks, Natick, MA) code developed at KU following 

equations outlined by Ketcham (2005).  

Figure 15 compares the thermal history of four coherent fault blocks modeled 

with the range of measured diffusion kinetics, Ea 207-213 kJ/mol (49.5-51 kcal/mol) 

log(D0/a2) 6.5-7.1 s-1 (hatched envelope), and diffusion parameters from rutile KTB 

diffusion experiment (diamond RKTB1464-DE).  Modeled RtHe ages are calculated 

employing a traditional α-ejection correction based on homogeneous U and Th 

distribution (Farley et al., 1996).  The expected down-hole RtHe results display 

consistent ages between 85-95 Ma in Block A and Block B, with slight offset due to 

reverse faulting at the block boundaries.  In Blocks C and D there is a systematic 

decrease in ages between a temperature range of ~160-230°C, which represents the 

rutile HePRZ.  RtHe ages at temperatures >220°C or ~7500 m are reset and do not 

retain He.  

 

Comparison of rutile (U-Th)/He results to previous studies 

Due to a closure temperature for rutile between ~220-240°C, which is similar 

to zircon (~185°C) and titanite (~200°C), RtHe ages from the KTB drill hole were 

expected to be systematically older but mimic zircon and titante (U-Th)/He results.  

Ideally, RtHe results should also correspond to modeling results from bulk laboratory 

derived diffusion kinetics (Stockli et al., 2007) and a step-heating experiment on 

rutile from the KTB drill hole (RKTB1464-DE).  
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Although, RtHe results display a general decrease in ages from ~120-10 Ma 

between 1230-9000 m, they require a differentiated evaluation because significant 

portions of down-hole RtHe ages do not agree with model predictions based on 

laboratory-derived rutile He kinetics or corresponding rutile and zircon (U-Th)/He 

ages. ”Poorly” behaved RtHe ages can be subdivided into three different categories: 

1) inaccurate ages within a sample, resulting in large standard deviations; 2) precise 

ages that are either (a) younger or (b) older than expected results; 3) ages that 

accurately reflect expected down-hole rutile results based on previous studies and 

laboratory derived diffusion kinetics (Figure 15).  From the 97 aliquots analyzed by 

RtHe analysis, ~15% yielded RtHe ages within 2σ of the predicted results, while most 

of the RtHe ages that were >2σ different expected results, ~40% were too old and 

~60% too young. 

A majority of the samples with large standard deviations occur in or near the 

fault zones.  For example, samples in Block A sit within the NFZ and all ages are 

imprecise with standard deviations from 10-55 m.y. RtHe ages, except RKTB1516, 

are anomalously older than model predictions of ~85 ± 10 Ma.  Instead, average RtHe 

ages vary from ~100-160 Ma, which is ~20-85% older than the expected.  In contrast 

RKTB1516 is anomalously younger than expected with RtHe age of 62 Ma, which is 

~35% younger than the expected value.  In Block B, RKTB3575 is significantly older 

(60%) than model predictions RtHe age 136 ± 8.2 Ma. Just below the SE2 fault zone 

there is a cluster of four RtHe samples, RKTB4050-4172, which are significantly too 

young.  The expected RtHe age is still 85 Ma, and average RtHe ages range from 30–
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63 Ma.  RKTB4050 with RtHe age of 30 ± 4 Ma is 65% younger than expected and 

very reproducible. The other three samples RKTB4070, 4124 and 4172 have large 

standard deviations of 46, 50 and 16 m.y. each.  RtHe ages for these samples are 

slightly older, 55-64 Ma, but still ~25-30% younger than expected. 

In Block C the overall trend of RtHe samples display decreasing age with 

increasing depth, which are younger than predicted by diffusion kinetics and previous 

studies, but RtHe ages are also more reproducible compared to RtHe ages in Block A 

and B.  Best seen in Figure 15, beginning at the bottom of Block B, there are two 

groups that decrease in age with increasing depth at different rates. The first set yield 

RtHe ages that are significantly too young compared to expected results by 50-80%.  

The first set begin to decrease at ~120°C (4050 m) and are nearly reset by ~180°C or 

6000 m.  The second set of RtHe ages is in better agreement with modeled diffusion 

kinetics- although still younger, 10-40%, with a decrease of ages at ~160°C (5600 m) 

that continue to decrease with depth through Block C and sample RKTB6750 RtHe 

ages are 32.4 ± 4.5 Ma.    

The decreasing age with increasing depth trend is continued in Block D when 

RtHe ages are youngest at the bottom of the borehole.  In Block D, ages are again 

older than expected, as modeled results display completely reset RtHe ages from 

~7500 – 9000 m.  RtHe ages in Block D, RKTB7153, 8380, and 9000 are 38 ± 5 Ma, 

20 ± 7 Ma and 12 ± 7 Ma, all significantly older than expected.  

 

Potential causes of inaccurate rutile (U-Th)/He results 
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The combination of widespread RtHe ages in the upper 5000 m and two sets 

of decreasing RtHe ages in the lower 4 km, do not yield a data set that can be used to 

reliably define a rutile HePRZ, which is one of the significant goals of down-hole (U-

Th)/He analysis of the KTB drill hole.  As illustrated above, there are three groups of 

ages within the wide scatter of down-hole RtHe results: large standard deviations, 

RtHe ages anomalously younger and anomalously older than expected.  RtHe results 

that are younger than expected are the most prevalent (60%) and most difficult to 

explain. Faulting is widespread throughout the KTB drill hole, and it is known that 

along with faulting fluids were present in the KTB drill hole (Zulauf et al., 1999). 

Initial speculation included recrystallization or resetting of RtHe ages due to fluid 

infiltration.  Rutile trace element geochemistry results from the KTB drill hole still 

have primary signatures, including mafic rock protolith and peak metamorphic 

temperatures.  As primary minerals, RtHe results do not appear to be caused by to 

widespread faulting and hydrothermal alteration documented in KTB drill hole.   

Throughout petrographic investigation the presence of zircon as inclusions in rutile 

and <20 µm away from rutile or the presence of a thin (<1-4 µm) titanite rim and was 

identified in thick section, either scenario could affect RtHe ages.   

The presence of U- and Th-rich mineral, particularly zircon, as an inclusion or 

as a neighbor <20 µm from the rutile grain could influence RtHe ages and account for 

both too old and too young ages (Figure 9b, 13b).  Because rutile has exceptionally 

low parent nuclide concentrations and zircon is highly radiogenic RtHe ages will be 

sensitive to micro-inclusions or even a small zircon sitting adjacent to a rutile grain.  
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The case of a zircon inclusion situated in the center of rutile will simulate an enriched 

core.  RtHe ages corrected by a standard FT correction will overestimate the amount 

of He ejected, resulting in ages older than expected.  In contrast, a zircon inclusion 

situated near the edge of the grain (<20 µm) will eject He produced by the zircon 

while retaining the U and Th concentrations.  Standard FT corrections will 

underestimate the He lost and the resulting age will be too young.  Another scenario, 

the presence of zircon or apatite (Figure 7f, 11a, 11b, 13a, 13c) situated outside the 

rutile grain, but within the alpha stopping distance will implant He into the rutile, 

producing erroneously old ages.  Thus the presence of zircon, or other alpha emitting 

minerals, as an inclusion or as a neighbor, could potentially lead to ages that are 

younger or older than expected.   

Zonation in grains analyzed by (U-Th)/He analysis is another documented 

phenomenon which can produce deviant ages. Investigations on the effects of 

zonation on zircon (U-Th)/He thermochronometry have noted that enriched rims 4-5 

µm thick at the grain boundary can cause age bias up to ~30% with a 20% increase in 

U and Th concentration from the grain to the rim (Hourigan et al., 2005). The 

ubiquitous presence of the titanite rim on rutile throughout thick section and grain 

mount petrographic investigation suggests that this is a likely explanation of the 

consistent source of RtHe ages that are dramatically younger than expected. 

Old (U-Th)/He ages are often explained by the presence of U and Th rich 

mineral <20 µm distance to the analyzed grain, which can be a source of He 

implantation due to alpha ejection (Farley, 2002).  Analysis of such a grain will lead 
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to parentless He and anomalously old (U-Th)/He ages.  Rutile will be especially 

prone to He implantation due to the low parent nuclide concentrations and subsequent 

low He concentrations.  Bad neighbors, most often zircon and some apatite, which 

would be a mildly bad neighbor, were seen throughout thick section and even in grain 

mount investigations. Similarly the presence of titanite, enriched in U and Th, 

surrounding the rutile grain, will implant He into the rutile grain.  If the titanite rim is 

not analyzed during (U-Th)/He analysis, the resulting age will be too old.  

Although the presence of a bad neighbor or U, Th rich inclusion cannot be 

ruled out as part of the inconsistent RtHe ages from the KTB drill hole, we suggest 

that the ubiquitous presence of rutile coated by a titanite rind is a more widespread 

occurrence and accounts for the majority of poor RtHe results, young or old. The 

presence of a titanite rim also serves as the source of large standard deviations within 

RtHe ages, which is prevalent throughout down-hole RtHe results from the KTB drill 

hole.  

 

Effect of titanite overgrowth on rutile (U-Th)/He results 

It has been demonstrated that U- and Th- zonation on (U-Th)/He 

thermochronometry can produce significant age inaccuracies by the presence of an 

enriched rim (Farley et al, 1996; Farley, 2002; Tagami, 2003; Hourigan et al., 2005; 

Dobson et al., 2008).  The main complication caused by U- and Th- zonation is 

application of an alpha ejection correction that assumes homogeneous U and Th 

distribution.  For example, a rim with increased U and Th concentrations will cause 
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preferential loss of He by alpha ejection.  If zonation is not identified, the standard FT 

correction will not account for the total amount of He lost and the resulting He age 

will be too young. 

The presence of a titanite rim surrounding rutile will have an analogous affect 

as a zoned grain that has a U- Th-enriched rim as described above.  A titanite rim 

(most often <1-4 µm) was identified ubiquitously throughout thick section and on a 

large proportion of rutile in grain mounts.  Titanite is highly enriched in U and Th, 

and is utilized in fission track (e.g., Coyle and Wagner, 1998) and (U-Th)/He 

thermochronology (e.g., Reiners and Farley, 1999; Stockli and Farley, 2004) and in 

U-Pb geochronology (e.g, Frost et al., 2000).  The low parent nuclide concentrations 

of rutile and the presence of U- and Th-rich titanite encapsulating rutile produces a 

large uncertainty due to He implantation and rim removal.   

The effective uranium concentration (eU) accounts for the total radiogenic 

parent that contributes to He production eU = [238U] + 0.235 × [232Th]).  The eU 

concentration of titanite from the KTB drill-hole analyzed for (U-Th)/He 

thermochronology averages ~130 ppm, ranging from 3.4 - 758 ppm (Stockli and 

Farley, 2004).  The average eU concentration of rutile in this study is 4.53 ppm and 

ranges between 0.64 - 22.53 ppm. The maximum values of calculated eU 

concentrations for rutile (22.53 ppm), may include U and Th concentrations from a 

titanite rim or zircon inclusions, as ~80% of eU concentrations are ≤ 5 ppm.  From 

the minimum and maximum values of calculated eU concentrations in titanite and 

rutile from the KTB drill hole, the concentration difference could span 0.2 - 1,100 
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increase from rutile grain to titanite rim.  These values are based on end member 

values and instead we estimate a 5-75 fold increase in concentration difference 

between rutile and titanite is more probable based 90% of observed eU 

concentrations. 

The effect of an enriched U and Th bearing rim on RtHe ages could result in 

two scenarios (Figure 16).  The first scenario is (U-Th)/He analysis of a rutile grain 

with a complete or partial titanite rim preserved, resulting in a young (U-Th)/He age 

because of improper alpha ejection correction (Figure 16b). The second scenario is 

analysis of a rutile grain from which the titanite rim was completely removed.  This 

would result in an erroneously old age due to implantation of parentless He from the 

titanite rim.   

The first scenario, (U-Th)/He analysis with an intact titanite rim, accounts for 

RtHe ages that are younger than expected, which applies to ~60% of individual RtHe 

ages.  In this scenario, an enriched rim will produce a corrected age that is younger 

than expected as the bulk retentivity of the grain is underestimated (Hourigan et al., 

2005).  This scenario assumes the rim is intact during RtHe analysis.  Images of rutile 

in thick section always display a titanite rim surrounding the entire rutile grain, but 

images of rutile in grain mount typically display a partial rim.  We assume the rim 

was removed during mechanical rock separation.  This seems likely with the abrupt 

termination and heterogeneous widths observed in titanite rims on rutile grain mounts 

(Figure 10a, 11c, 13d).  The low parent nuclide concentrations of rutile will make it 

particularly sensitive to even partial preservation of the titanite rim.   
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The second scenario, removal of the titanite rim, would account for RtHe ages 

that are older than model predictions.  If the rim is removed during mechanical rock 

separation, the resulting rutile will have experienced He implantation over its entire 

surface area and produce a RtHe age older than expected.  The presence of a titanite 

rim can also explain the inaccurate and imprecise RtHe results from the KTB, which 

result in larges standard deviations.  For example, RKTB1230 yields an average RtHe 

age of 126 ± 55 Ma.  Out of 6 total aliquots analyzed, 4 are older than expected and 

vary in RtHe age from ~157-200 Ma, we hypothesize such ages are produced by 

complete removal of the titanite rim.  The remaining two aliquots are younger than 

expected and yield RtHe ages of 60-63 Ma, which we hypothesize are produced by 

analysis of an intact titanite rim. Therefore we conclude that the presence of a titanite 

rim could produce either young or old ages within a sample. 

The pervasive presence of titanite rims in thick section and grain mount, 

irreproducible RtHe ages and extensive amphibolite grade metamorphism throughout 

the ZEV strongly suggest that titanite rims affect rutile utilized for this study. 

 

Effect of titanite rims on alpha ejection correction 

Application of an alpha ejection correction factor (FT, Farley et al., 1996) for 

(U-Th)/He thermochronometry is common practice as it is well established that 

production of an alpha particle accompanies separation from the parent nuclide.  The 

total distance traveled by the alpha particle varies from mineral to mineral, but 

depending on the location of the parent nuclide in relation to the grain boundary and 
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trajectory of the alpha particle, it can be ejected from the grain (Farley et al., 1996). 

The proportion of He lost is calculated based on mineral specific grain dimensions, 

density, and alpha ejection energy assuming a homogeneous U and Th distribution 

(Farley et al., 1996).  Standard procedure of (U-Th)/He thermochronometry is to 

calculate an FT correction for each grain based on morphometric analysis.  Previous 

studies have investigated the effect of U and Th zonation on alpha ejection 

corrections and obtaining accurate and reproducible (U-Th)/He ages (Hourigan et al., 

2005).  The age bias (γ) calculation compares the zoned alpha ejection correction 

(FTzoning) to the standard FT correction or the He age produced from a standard 

correction to the He age produced from a zoned correction (HeAgezoning):   

                          γ = (FTzoning/FT) -1 = (HeAge/HeAgezoning) -1   (4) 

In an attempt to evaluate the impact of a titanite rim on rutile and account for 

RtHe ages that are younger than expected, we have used an analogous approach.  

Figure 16 displays the percent age discrepancy possible if the standard FT correction 

is applied to rutile with an enriched rim, which results in ages that are younger than 

expected.  Modeling is based on spherical crystals of varying radii (40-60 µm) in 

which the concentration gradient, from grain to rim, ranges from a 5-75 fold 

concentration increase. Evident in Figure 16d, the greatest age bias discrepancy 

occurs from enriched rims ~3.5-5 µm in width with the maximum increase in U and 

Th concentrations from grain to rim, which is consistent with those made on enriched 

rims in zircon (Hourigan et al., 2005).  For example, the percent age bias of a rim 2 

µm wide with a 50 fold increase in U and Th concentration produces a (U-Th)/He age 
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that is ~50% too young. Our numerical FTzoning calculation accounts for redistribution 

within the grain (Ketcham, 2005) and is based on grain morphology, rim width, and 

the concentration gradient from grain to rim (Crim/Cgrain). Our modeling, however, 

does not take into account the different alpha stopping distances between rutile and 

titanite, alpha particles travel ~3 µm (15%) less in rutile than titanite.  For simplicity 

we assume the enriched rim is rutile and thus underestimate the total impact of the 

titanite rim. 

 In an attempt to account for RtHe ages that are older than expected, based on 

the hypothesis of removing the titanite rim before (U-Th)/He analysis, we modeled 

He diffusion and redistribution in a rutile grain with an enriched rim over an 

established time temperature history, but excluded the parent and daughter 

concentrations within the width of the enriched rim to calculate the RtHe age, in order 

to simulate removal of the enriched rim.  To display the effect of removing an 

enriched rim on the He age, we produced an age bias plot similar to Figure 16.  The 

age bias, or percent difference (γRR), of a grain that experienced rim removal, was 

calculated by modeling a He age for a grain with an enriched rim and comparing that 

to the modeled He age for the same grain but removing the enriched rim (HeAgeRR):  

                                     γRR = 1-(HeAge/He AgeRR)    (5) 

Figure 17a displays the effect of removing the rim on the (U-Th)/He age with 

increasing grain to rim concentration for a grain with an equivalent spherical radius of 

50 µm.  The γRR increases the age by ~10% with removal of a 2 µm rim and the 

percent age bias continues to increase as the rim width increases.  If the titanite rim 
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width is less than 99.25% of the grain’s total equivalent spherical radius the age bias 

correction is similar to the standard FT correction, or below it, depending on grain to 

rim concentration difference.  For example, a rim <0.25 µm in width on a 50 µm 

grain would produce a He age that was ‘too young’, but not significantly.  From 

Figure 17a, it is evident that the effect of removing an enriched rim can have a 

significant effect on (U-Th)/He age.   

 

Corrected rutile (U-Th)/He data from KTB drill hole 

 One of the fundamental assumptions in (U-Th)/He thermochronometry is a 

homogenous distribution of U, Th, and He concentrations.  These assumptions 

influence the amount of He lost by alpha ejection, the He concentration gradient and 

thus the rate of He diffusion.  When U, Th and He concentrations are not 

homogeneously distributed and unaccounted for (U-Th)/He ages are erroneous, 

largely due to application of an inaccurate alpha ejection correction.  Therefore, a key 

to obtaining correct (U-Th)/He ages, when zoning is present, is knowledge of the 

distribution of parent and daughter throughout the grain.   

To test if ‘zonation’ in rutile from the KTB drill hole could account for RtHe 

results, we calculated FTzoning corrections based on observed and approximated 

parameters, rim width and rim to grain concentration difference, and applied them to 

raw RtHe ages.  FTzoning corrections are applied because expected RtHe results for the 

KTB drill-hole are well constrained.  RtHe results should mimic zircon and titanite 

(U-Th)/He results from the KTB drill hole, two established thermochronometers with 
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closure temperatures similar to rutile (Chapter 2; Stockli and Farley, 2004) and 

correspond to modeling predictions of down-hole RtHe behavior.  FTzoning corrections 

are based on observed parameters in rim width and the concentration gradients.  Rim 

width estimates are well constrained by petrographic investigations of titanite rim 

thickness, which ranged from <1 to ~10 µm, with the majority of rims being thin, <1-

4 µm in thin section and grain mount.  Concentration gradients from grain to rim are 

based on measured U and Th concentrations from this study and titanite (U-Th)/He 

analysis (Stockli and Farley, 2004).  We model a range from 5 to 75 times increase in 

U and Th concentration. Corrections are calculated on a grain with an equivalent 

sphere radius of 50 µm.  With these parameters, FTzoning corrections were calculated 

and applied to RtHe ages that were too young compared to modeled predictions. 

The corrected RtHe ages are displayed on a scatter plot of concentration 

gradient vs rim width (Figure 19-21).  Each point on the scatter plot represents the 

corrected RtHe age produced by the FTzoning correction based on that point’s rim width 

and concentration gradient.  If the corrected RtHe age is within 10% of the modeled 

age it is plotted in a grey circle and light grey contour and within 5% it is plotted by a 

black circle and medium grey contour. Often times many FTzoning corrections calculate 

RtHe ages that were within 10% and 5% of the modeled ages, i.e. a range of rim 

widths and concentration gradients correct to the modeled age.   Based on 

petrographic observations, titanite rims most commonly ranged from <1-4 µm in 

width (dashed lines). Therefore, we assume corrected RtHe ages within 10% or 5% of 

the expected age that are corrected by rims between <1-4 µm in width, are the most 
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probable conditions which produced the too young RtHe age.  The parameters that we 

estimate to be most likely are marked in a dark grey box.  

Figure 19 displays the FTzoning corrections on aliquots from sample 

RKTB1516.  From seven aliquots the average RtHe age is 62 ± 27 Ma while 

modeling predicts a RtHe age of ~85 Ma.  Six out of seven aliquots in RKTB1516 

yield RtHe ages younger than modeled ages and are corrected by the FTzoning 

corrections.  RKTB1516-1 (Figure 19a) is corrected by many variations in rim width 

and concentration difference.  We estimate rim widths varying from 1-5 µm in width 

with concentration gradients of 30-50 fold are the most suitable corrections.  Aliquots 

1516-5, -6, -7 (Figure 19b-d) display similar patterns and are corrected by thin 

enriched rims, <2 µm in width and concentration increase between 20-50 fold. 

Samples RKTB1516-3 and -4 could not be corrected to the modeled age by FTzoning 

corrections with the modeled parameters as the individual aliquots were 60-67% too 

young (34 ± 4 Ma (1σ) and 27 ± 3 Ma (1σ) respectively).  In an attempt to correct 

these aliquots to modeled RtHe age of ~85 Ma, extreme rim to grain concentration 

differences were tested, e.g., a 3 µm width rim with 5000 x greater concentration 

difference does not correct to a RtHe age.  There appears to be a plateau, as FTzoning 

corrections never become <0.40.  RKTB1516-2 was not corrected by FTzoning as the 

individual RtHe age based on homogeneous U and Th concentrations was 107 ± 11 

Ma (1σ).   Samples that were older than expected were not corrected by at FTzoning that 

accounted for the removal of the titanite rim.  
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Figure 20 displays the FTzoning applied to three out of four aliquots of sample 

RKTB4172 with an average RtHe age for 55 ± 16 Ma based on the standard FT 

correction.  Modeled RtHe age for rutile at 4172 m depth in the KTB drill hole is ~84 

Ma, which is ~35% discrepancy between ages.  All three aliquots corrected (Fig20a-

c), RKTB4172-1, -2 and -3 display a similar “tornado” shape, and we assume that a 

thin (0.75-2 µm) rim with 20-40x increase in concentration best corrects for rutile 

from sample RKTB4172.  Aliquot RKTB4172-4 was too young, RtHe 31 ± 3 Ma 

(2σ) and could not be corrected to the modeled age by the FTzoning corrections tested.  

With similar shapes and parameters that correct to the expected RtHe age, such 

samples demonstrate that one process may be influencing RtHe ages. 

Figure 21 displays the FTzoning correction for the three aliquots of RKTB5720. 

RKTB5720 yields an average RtHe age of 46 ± 5.8 Ma (1σ) using a standard FT 

correction, while modeled results estimate a RtHe age of ~72 Ma. The range of 

FTzoning corrections that calculate a RtHe age of 72 ± 7.2 (10%) Ma and 72 ± 3.6 Ma 

(5%) for the three aliquots varies from sample to sample as seen in the difference 

between grey contour shapes.  RKTB5720-1 (Figure 21a) can be corrected by many 

FTzoning corrections, but the most plausible corrections are produced with a rim 

ranging from 1-3 µm in width with a concentration gradient between 20-40.  In 

contrast, RKTB5720-2 is corrected with either a thin (<0.5 µm) highly enriched rim 

or thick poorly enriched rim.  The thick rim is less probable based on petrographic 

observations (Figure 21b).  RKTB5720-3 is corrected from a rim 1.5-4 µm enriched 

rim with a 50-75 fold concentration increase (Figure 22c).  All aliquots from 
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RKTB5720 can be corrected by thin rims <1-2 µm with concentration gradients 

ranging from a 20-75 fold increase. 

Although examples RKTB1516, RKTB4172, and RKTB5720 display a wide 

range of parameters in rim width and concentration difference that could affect the 

RtHe results, it also demonstrates that rim widths observed in petrographic 

investigations can account for anomalously young RtHe ages in some cases.  But it 

should be noted that FTzoning corrections are based on assumptions.  One assumption is 

complete rim preservation but from inspection of grain mounts, no rutile grain ever 

preserved a complete rim.  By applying a single FTzoning correction, we also assume 

that the 2-4 rutile grains within an aliquot have the same Crim/Cgrain concentration 

difference and rim thickness, when each grain could vary considerably.  Therefore, 

these assumptions do not permit this correction to tease out applicable down-hole 

RtHe results nor a RtHePRZ.  In general, we recognize that FTzoning corrections are 

limited in their extent and are only applied as a test.  Even though we cannot rectify 

every aliquot to the modeled age or make corrections with specific parameters, the 

expected RtHe results are accurately constrained and therefore we believe these 

results demonstrate that the presence of a titanite rim is the most likely explanation 

for the inaccurate and imprecise RtHe ages seen in the KTB drill hole. Ages that 

cannot be corrected may be influenced by multiple processes such as a titanite rim 

and zircon inclusions near the grain boundary. 
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Regional rutile (U-Th)/He results 

Rutile is a primary mineral in some metamorphic assemblages, particularly 

eclogites, and typically controls a large percentage of the Ti budget in high-grade 

metamorphic rocks.  The stability of rutile depends upon mineral assemblage and 

metamorphic history (Luvizotto et al., 2008; Zack et al., 2002). In order to assess if 

RtHe results are influenced by differing metamorphic rock type, metamorphic grade, 

or metamorphic history, we utilized high-grade metamorphic rocks from the BM.  

These include two eclogite and one diamond-bearing garnet gneiss from the 

Erzgebirge region in the Saxothuringicum terrain (~65 km NE of KTB) and two 

granulite samples from the Blanksy les Granulite Massif in the Moldanubicum terrain 

(~85 km SE of KTB). As exposed cores of the Variscan orogen the sampled high-

grade metamorphic rocks have not experienced widespread amphibolite facies 

metamorphism.  Petrographic studies on samples from Erzgebirge (Luvizotto et al., 

2008) and the Blansky les Granulite Massif (Fiala et al., 1987; O’Brien, 1996) do not 

record rutile with a pervasive titanite rim.  

 RtHe ages from Erzgebirge ranged from ~275-290 Ma.   EGB R1A, the 

diamond-bearing garnet gneiss, yielded a RtHe age of 273 ± 31 Ma.  EGB R2b and 

EGB R4d, the two eclogitic samples yielded RtHe ages of 292 ± 16 Ma and 248 ± 17 

Ma, respectively.  Granutlies from the Blanksy les Granulite Massif ranged from 

~190-215 Ma.  The average RtHe age for sample T5A is 189 ± 32 Ma and T8C is 216 

± 8 Ma (Table 3).  
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RtHe ages of ~200 Ma in the Blansky les Granulite Massif may be associated 

with exhumation of the Moldanubicum terrain in the Late Triassic/Early Jurassic, 

which is documented by concurrent alluvial fan deposits in the Bohemian 

sedimentary basin (Schroder et al., 1997). RtHe ages from Erzgebirge document 

Permian cooling between 275-290 Ma in the Saxothuringicum terrain.  This is 

consistent with zircon fission track (ZFT) ages of 248-283 Ma from granites located 

approximately 30 km east of Erzgebirge (Hejl et al., 1997) and an average ZFT track 

age of 278 ± 19 Ma from the Ruhla Crystalline Complex, northwest of Erzgebirge 

(Thomas & Zeh, 2000).  ZFT ages were attributed to Permian unroofing and possibly 

initiation of uplift of the Bohemian Massif along the Franconian Lineament.   

Although RtHe ages from regional studies have large standard deviations, 

between 16-30 m.y., results agree with accepted thermal histories of the region and 

provide successful results from RtHe thermochronology on high-grade metamorphic 

rocks. Rutile from high-grade metamorphic rocks typically has higher U and Th 

concentrations in comparison to amphibolitic rutile.  Regional RtHe age averaged a U 

concentration of 11.5 ppm compared to 5 ppm for KTB rutile, which enhances the 

success of RtHe analysis. When compared to rutile results from the KTB drill hole, 

regional results are in accordance with the existing thermal histories of each region.  

This is attributed to the rock type and lack of a retrograde overprint that could affect 

RtHe ages.  Therefore, we conclude that RtHe thermochronometry can be viable 

when applied to high-grade metamorphic rocks, as seen in RtHe ages from 

Erzgebirge and the Blansky les Granulite Massif.  
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Implications for rutile (U-Th)/He thermochronometry 

 As rutile is subject to breakdown during retrograde metamorphism, it will thus 

be pertinent for successful RtHe analysis to have a thorough understanding of rutile in 

its petrographic and mineralogical context to assure it has not been subjected to 

extensive retrogression.  The petrographic context of rutile can be easily investigated 

with SEM and BSEM analysis and we suggest both thick section and grain mount 

analysis. A second preliminary assessment of rutile should include U and Th 

concentrations, in order to determine the approximate mass that will yield parent and 

daughter concentrations above detection limits. 

From this study it is evident that a thorough petrographic investigation of 

rutile in its metamorphic context is crucial to obtain reliable and accurate RtHe dates.  

Rutile from high-grade metamorphic rocks, which have not seen major retrograde 

metamorphism (amphibolite or greenschist facies), should be mineralogically stable 

and suitable for RtHe analysis, as seen in regional RtHe results.  Amphibolite facies 

metamorphic rocks or rutile bearing rocks that have seen pervasive retrograde 

metamorphism should be analyzed petrographically for breakdown of rutile to 

ilmenite or the presence of a titanite rim, both are easily detected with BSEM 

analysis.  

 It is plausible that RtHe analysis could be performed on rutile with a titanite 

rim, if rim thickness, grain to rim concentration difference, and rim preservation can 

be measured to calculate an FTzoning correction.  Previous studies which have 

investigated U- and Th- zoning in zircon suggested application of different methods 
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to retrieve a (U-Th)/He age which accounted for U and Th distribution.  One 

approach uses a quantitative grain-by-grain method, while the second method uses a 

qualitative population statistic (Hourigan et al., 2005; Dobson et al., 2008).  The 

grain-by-grain method proposes to measure the U and Th distribution with a single 

depth profile of the grain, by laser ablation inductively coupled plasma mass 

spectrometry (LA-ICP-MS).  This method is not yet a standard procedure in the He-

thermochronometry community, but is the most explicit method to obtain zoning 

parameters and apply a grain-specific FTzoning correction (Hourigan et al., 2005).  

Alternatively, Dobson and others (2008) suggest a qualitative population-based 

method to determine if zoning is the cause of age dispersal in zircon standard Fish 

Canyon Tuff.  Their study utilizes cathode luminescence (CL) imaging as a proxy to 

map U and Th concentrations for a sample population and then applies a zonation 

population statistic to estimate if scatter in (U-Th)/He ages can be associated with 

zoning of U and Th concentrations. However, in light of the observed variations in 

titanite rim thickness and titanite to rutile U and Th concentration difference and the 

sensitivity of the ejection correction to these parameters, it seems that only an 

accurate determination of these parameters on same grains as analyzed for bulk U, 

Th, and He would ensure reproducible and reliable rutile (U-Th)/He ages. 

Determination of titanite and rutile concentrations and measurement of variation in 

rim thickness on the same rutile sample could be carried out either in 1-D (depth 

profile) or in 2-D (internal polish grain surface) by ion microprobe or LA-ICP-MS 

prior to conventional (U-Th)/He analysis. While this overgrowth and zoning 
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complication does not apply to all rutile, a semi-quantitative population approach, as 

employed in this study, or quantitative in situ approach on the same rutile grain in a 

detailed petrographic context appears to be crucial in rutile-bearing lithologies that 

have experienced a metamorphic overprint resulting in rutile breakdown and complex 

phase relationships.   

 

CONCLUSION 

 In high-grade metamorphic rocks, rutile can be part of the primary mineral 

assemblage, as in eclogites, or a major source of the whole rock Ti budget (Zack et 

al., 2002). Its stability is largely dependent upon pressure, temperature and mineral 

assemblage conditions.  This is in contrast to zircon and apatite, common accessory 

minerals utilized in (U-Th)/He thermochronometry, which are less influenced by 

pressure and temperature conditions.  Although rutile is extremely resistant to 

weathering in sedimentary rocks, under retrograde metamorphic conditions rutile 

stability is volatile and breakdown to other Ti-bearing phases, such as ilmenite and 

titanite, is not uncommon (Zack et al., 2004).  This study assesses the development of 

rutile as a (U-Th)/He thermochronometer and essential considerations required for 

successful RtHe analysis.  

Investigations include down-hole RtHe analysis and a step-heating cycled 

diffusion experiment on rutile-bearing amphibolites from the KTB drill hole, 

Germany, along with RtHe analysis of high-grade metamorphic rocks from 

surrounding BM.  The goal of down-hole RtHe analysis is to understand in situ 
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diffusion kinetics of rutile in comparison to the well constrained thermal history of 

the KTB drill hole and previous thermochronometric studies, zircon and titanite 

(Chapter 2, Stockli and Farley, 2004). From RtHe results from the KTB drill hole, it 

became evident that a primary consideration of RtHe analysis should be the 

petrologic context of rutile in the sample.     

Although down-hole RtHe analysis displayed a general younging trend with 

increasing down-hole temperature, large standard deviations and ages that were much 

older and younger than expected persisted throughout the RtHe results (Figure 14b).  

We attributed inaccurate RtHe results to the presence of a titanite rim on rutile 

identified in thick section and grain mount, which acted as an enriched rim when 

preserved and analyzed by RtHe analysis, producing ages that were too young.  And 

when the rim was removed acted as a ‘bad family member’ implanting He, producing 

ages that were too old.  Correction of RtHe ages that were younger than modeled 

RtHe results by an FTzoning factor suggested that the titanite rim could be responsible 

for some of the RtHe results.  There are many factors which are poorly constrained on 

a sample-by-sample basis (rim thickness, partial or complete preservation, grain-rim 

concentration difference, etc.), which limits our ability to apply RtHe ages.  

Nonetheless, we believe that such a correction could be made if a titanite rim was 

documented and persistent in future RtHe analysis, by either depth profiling 

(Hourigan et al., 2005).  A population approach could determine the range of the 

grain to rim concentration differences and rim widths of the sample population and 

apply a range of FTzoning corrections, if the expected RtHe age is constrained.  RtHe 
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results from KTB drill hole accentuate the need for thorough understanding of the 

petrographic context, particularly if the metamorphic rocks have experienced any 

retrograde metamorphism in which rutile breakdown could occur. 

 Successful RtHe results from regional high-grade metamorphic rocks in 

Erzgebirge and the Blansky les Granulite Massif as well as quickly cooled xenolithic 

rutile from Chino Valley, AZ from previous studies (Stockli et al., 2007) encourage 

further studies of RtHe thermochronometry.  RtHe dating will provide a medium 

temperature thermochronometer to assess the thermal history of high-grade 

metamorphic terrains and as a geochronometer on rutile-bearing volcanic rocks as 

previously applied, while new avenues include application to ore deposits and 

sedimentary basins.  Recent interest in rutile as a geothermometer and carrier of trace 

element signatures motivates further investigation of rutile as a (U-Th)/He 

thermochronometer as a diverse source of information of the sample’s metamorphic 

history.  
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Figure 1. Regional geologic map of KTB region and surrounding western extent of 
the Bohemian Massif (modified from Franke, 1989).  Sample localities of rutile 
bearing high-grade metamorphic rocks from the Blanksy les Granulite Massif in 
southern Bohemia and Erzgebirge in Saxony utilized for regional RtHe analysis.    
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Figure 2. Down-hole profile of the KTB drill hole, including both the pilot hole (VB) 
and main drill hole (HB).  The simplified lithologic columns (after Hirschmann et al., 
1997) display repetition of gneissic (g), variegated (v) and metabasic (b) units.  Major 
fault zones are noted on the far left and identify boundaries between stacked 
metamorphic units.  Numbers next to HB column represent rutile samples analyzed 
for (U-Th)/He analysis for this study. 
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Figure 3.  Estimated double-loop pressure-temperature path and ore mineral growth 
throughout metamorphic history of ZEV, modified and combined from (O’Brien et 
al., 1997 and Kontny et al., 1997).  Box A- Peak HP conditions from eclogitic lenses 
preserved in metabasic rocks calculate 1.3-1.4 GPa and 650-700°C (O’Brien et al., 
1992).  Rutile growth from Fe-Ti oxides (Kontny et al., 1997).  Box B- Widespread 
amphibolite facies metamorphism record PT conditions 0.6-0.8 GPa 660-720 °C 
(Reinhardt et al., 1989).  Rutile breakdown to ilmenite and some rutile growth. Box 
C- Low-amphibolite to greenschist facies retrograde conditions along with fluid 
emplacement caused growth of pyrite and other sulfide assemblages and breakdown 
of ilmenite and rutile to titanite in thin rims. 
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Figure 4.  Arrhenius plot of complete cycled step-heating diffusion experiment from 
RKTB1464 in the KTB drill hole.  First prograde heating steps display the typical 
behavior of He diffusivity in rutile, a lower diffusivity up to ~500°C when a rollover 
occurs.  The proceeding retrograde and prograde steps are well-behaved and display 
simple Arrhenius behavior.  Diffusion kinetics calculated from the dashed line yield 
an activation energy of 50.3 kcal/mol (210 kJ/mol) and ln(D/a2) = 13.8 s-1.  A closure 
temperature of 247°C, based on dt/dT 10°C/m.y. (Dodson, 1973) is higher than 
previous unpublished rutile diffusion experiments, which vary from ~210-235°C.   
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U-Th micro column chemistry Reagent Vol (µ l) 
Resin AG1x8 resin 100 
Clean H2O 200 
Clean 6N HCl 200 
Clean H2O 100 
Condition 7N HNO3 150 
Load Sample  7N HNO3 60 
Collect Sm 7N HNO3 350 
Collect U-Th 6N HCl 250 
Collect U-Th H2O 250 
 

Sm Column Chemistry Reagent Vol (ml) 
Resin AG 50Wx8 resin 2 
Clean 6N HCl 6 
Clean H2O 5 
Condition 2.5N HCl 2 
Load Sample 2.5N HCl 1 
Wash (Elute Ti, major elements) 2.5N HCl 12 
Collect Sm 2.5N HCl 10 
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Table 1. Column chemistry procedure utilized to purify parent U, Th, and Sm 
concentrations from major elements, which can impede ionization during ICP-MS 
analysis. 
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Figure 5.  Rutile (U-Th)/He (RtHe) ages from the KTB drill hole corrected by alpha-
ejection correction factor based on homogeneous distribution of U and Th.  Error on 
RtHe age spans from oldest to youngest individual RHe age in each sample.  Gaps (0-
1200m and 1516-3575 m) between rutile (U-Th)/He ages can be attributed to the 
presence of paragneiss blocks, which did not yield rutile.  Large standard deviations 
can be seen in samples within the NFZ and samples just below SE2 fault zone (4050-
4172 m).  Marked decrease in RtHe age can be seen below ~4000 m depth with youn-
gest samples at 9000 m.  
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Table 2.  Average rutile (U-Th)/He ages from KTB drill hole, corrected based on 
traditional alpha ejection correction, assuming a homogeneous distribution of U and 
Th.  All rutile are from amphibolite and garnet-amphibolite metabasite units. 
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Table 3.  Selected trace element geochemistry results, for complete elemental list and 
results see Appendix D.  
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Figure 6.  Trace element geochemistry plots of Nb, Ta, Zr, Hf concentrations in rutile 
from the KTB drill hole, measured by solution ICP-MS on single grains.  Samples are 
grouped into metamorphic fault blocks delineated by Wagner and others (1997).  (a)  
Nb vs. Ta concentrations display a modest compatibility.  Samples from Block A and 
one from Block B have increased Nb and Ta concentrations.  (b) Zr vs. Hf 
concentrations display a strong correlation as they are incorporated into the crystal 
lattice together (Zack et al., 2002).   
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Figure 7. Nb vs. Cr concentrations can be utilized to determine protolith of the rutile 
bearing host rock (see inset for modified Fig 6. Zack et al., 2002).    In general, rutile 
from the KTB drill hole, utilized for this study have a mafic signature, except for an 
outlier from Block C, which has Nb concentrations ~1500 ppm, and two samples 
which have high Cr concentrations from Block B and C.  Results are in good 
agreement with previous geochemical studies that assign metabsic units to oceanic 
crust and variegated units to back arc volcano-sedimentary units (O’Brien et al., 
1997).  Rutile have retained parent trace element concentrations and do not indicate 
recyrstallization or rutile growth from a different source (Luvizotto et al., 2008). 
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Figure 8.  Calculated peak metamorphic temperatures are based on Zr concentrations 
(ppm) measured by solution ICP-MS (Table 3).  Zr concentrations (φ) were put into 
Eq. 2 (Tomkins et al., 2007). Maximum (14 kbar) and minimum (6 kbar) pressure (P) 
parameters utilized in calculations were taken from published pressure conditions for 
the two major metamorphic events experienced by the KTB drill hole. Temperatures 
for the HP/HT event (14 kbar) and amphibolite facies metamorphism (6 kbar) events 
were calculated for each sample, with the average temperature for each metamorphic 
block displayed near the black symbol.  Error on average is the standard deviation 
from average temperature.  Temperatures calculations are in surprisingly good 
agreement with published data (O’Brien et al., 1992) in consideration of technique 
and number of grains analyzed. Temperatures estimates for the HP eclogite/granulite 
facies (a. dark grey box) event range from ~575-700°C and at least 14 kbar.  For the 
amphibolite facies (b. light grey box) event, temperature estimates range from 620-
720°C and 6-8 kbar pressure conditions (O’Brien et al., 1992).  
 



pl
ag

ru
t

ilm
tn

t

K
T

B
12

39
-3

20
 u

m

tn
t

K
T

B
 1

23
9-

2

gr
nt

py
r

ru
t

ru
t

am
ph

pl
ag

ap

20
 u

m
tn

t

ilm

ilm

tn
t

ilmpy
r

tn
t

2 
um

tn
t

ru
t

ru
t

zi
r

K
T

B
 1

23
9-

1

10
 u

m

gr
nt

3 
um

ru
t

tn
t

ilm

gr
nt

pl
ag

ru
t

tn
t

K
T

B
 1

23
9-

4

20
 u

m

a
b

c

d

169



 
170

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Backscatter secondary electron microscope images from thin sections of 
KTB1239 analyzed by (U-Th)/He analysis, which yielded an average RtHe age of  
100 ± 40 Ma (std dev).  (a) Rutile is found as an inclusion within garnet, (b) as 
grains in an amphibole, plagioclase, garnet matrix and (c, d) growing with ilmenite as 
an aggregate of oxides.  All rutile seen in thin section was surrounded with a thin 
titanite rim.  (c) Displays intergrowth between titanite and rutile, which suggests 
recrystallization and not only a breakdown reaction.  9b displays primary breakdown 
of rutile to ilmenite and later growth of a thin titanite rim as a breakdown reaction.  
Rutile was also situated near zircon (a) and apatite (b). 
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Figure 10. Backscatter secondary electron microscope images from thin sections of 
KTB1252 analyzed by (U-Th)/He analysis, which yielded an average RtHe age of 
104 ± 10 Ma (std dev).  Rutile was not identified as a free grain in thin section, 
but only as a former grain, which is broken down to titanite (a).  Figure 10b, displays 
a ring of zircon, which appear to be exsolved from a previous grain(?).    
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Figure 11. Backscatter secondary electron microscope images from thin sections of 
KTB1464 analyzed by (U-Th)/He analysis, which yielded an average RtHe age of 
160 ± 40 Ma.  As seen in previous thin sections, rutile occurs as an aggregate with 
ilmenite (a) and individual grains (b-d) and a similar thin titanite rim is persistent 
throughout the thin section.  Inclusions of zircon and ilmenite are found as inclusions 
(b,c).  Bad neighbors of zircon and apatite (a, c) could provide a source of excess He 
along with implantation from titanite rim.  
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Figure 12. Backscatter secondary electron microscope images from thin sections of 
3575 and 3595 m (3595 was not analyzed for (U-Th)/He), but sample 3575 yielded an 
average RHe age of 135 ± 9.  Ilmenite lamellae and a thin titanite rim is persistent 
throughout the thin section, as well as being situated near bad neighbors.  The growth 
of ilmenite lamellae surrounded by a titanite rim suggests that rutile breakdown 
occurred first, followed by further breakdown when rutile reacted to produce titanite. 
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Figure 13.  Secondary backscatter images of grain mounts from depths 1230-4070 m 
analyzed by (U-Th)/He analysis.  Throughout grain mounts thin titanite rim is 
partially preserved.  Zircon inclusions are seen in 13b, while a zircon grain is situated 
closely to a rutile in matrix, which would be a source of implanted He and produce an 
erroneously old age.   
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Figure 14. Secondary backscatter images of grain mounts from depths 4668-9000 m 
analyzed by (U-Th)/He analysis.  Throughout grain mounts thin titanite rim is 
partially preserved, except for KTB7154 (e). 
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Figure 15.  Plot of average down hole RtHe and zircon (U-Th)/He results (Chapter 2) 
from the KTB drill hole.  Error on RtHe age reaches to the maximum and minimum 
RtHe age (small grey boxes). Error on zircon data is the largest error measured, either 
standard analytical error (± 8%) or standard deviation of sample.  Zircon (U-Th)/He 
results are well behaved displaying a defined zircon HePRZ between ~140-210 °C. 
RtHe results are compared to modeled down hole RHe results (lined envelope) based 
on tT History proposed by Wagner and others (1998) and refined by Stockli and 
Farley (2004) with varying diffusion kinetics based on laboratory cycled step-heating 
experiments on rutile from the KTB drill hole Ea  207-213 kJ/mol (49.5-51 kcal/mol) 
log(D0/a2) 6.5-7.1 s-1 for a grain  with a req = 60 µm.   Modeled results display older 
ages in the upper most samples of Block A and Block B and not the invariant ~85 Ma 
from surface to ~4000 m depth seen in modeling results for zircon (Chapter 2).  This 
is due to the higher closure temperature of rutile (220-240 °C), which allows it to 
retain He before movement along the FL at 85 Ma. 
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Figure 16.  Depicts the possible scenario of rutile analyzed by (U-Th)/He analysis for 
this study from the KTB drill hole. Diffusion profile of rutile affected by the titanite 
rim displays various rim to grain concentration differences (5x, 10x, and 30x). (a) The 
incorrect scenario assumed throughout initial RHe analysis of rutile with no rim and 
homogeneous U and Th distribution, application of the standard alpha ejection 
correction.  (b) Rutile grain analyzed by the standard (U-Th)/He process with an 
intact titanite rim.  Resulting (U-Th)/He age is too young, as He is preferentially lost 
from the U- and Th-enriched rim by alpha ejection, while analyzing the parent 
concentrations.  A young age would result if only a fraction of the rim was preserved, 
due to the drastic concentration difference between rutile and titanite. (c) Rutile grain 
that lost enriched titanite rim during mechanical mineral separation.  Due to 
parentless He implanted from the enriched rim, (U-Th)/He analysis would result in an 
erroneously old age.   
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Figure 17.  Age bias plots for spherical rutile grains display the percent age difference 
produced from an enriched rim with varying rim thickness and concentration gradient 
5x (a), 10 (b), 30x (c), 50x (d).  Enriched rims yield corrected ages that are 
erroneously young as FTstandard correction underestimates grain retentivity. Maximum 
age bias for a rim to grain concentration difference of 5x is ~5-7 µm in width, where 
maximum age bias for a 75x concentration difference is ~1-3 µm in width.  Age bias 
also scales with grain size as the greatest age bias is seen in the req 40 µm grain. 
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Figure 18.  Age bias plot for spherical rutile (req 50 µm) grain based on scenario if 
enriched rim is removed before (U-Th)/He analysis (Figure 16c).  Removal of 
enriched rims produces erroneously old ages because of implantation of parentless 
He.  (a) Log plot of age bias % highlights the rapid age increase for rim width <1 µm, 
removal of a 1µm rim grain produces an age bias of 4-7%.  (b) Zooms into the same 
scenario without the log scale to display the effect of concentration difference 
between rim to grain.   
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Figure 19. The following contour plots (Figure 19-21) display the FTzoning corrections 
of single RtHe ages, which correct the raw RtHe age within 10% (grey circles, light 
grey) and 5% (black circles, grey) of the modeled RtHe age.  Darkest grey box is the 
estimated correction that best fits observed rim width (<1-4 µm- dashed lines), which 
is typically produced by high (20-50) rim-to-grain concentration differences.  
Modeled RtHe is based on results from Figure 5.  FTzoning applied to four out of seven 
aliquots of sample RKTB1516, average RtHe age for 62 ± 26 Ma (std dev) based 
on a FT correction.  Modeled RtHe age for rutile at 1516 m depth in the KTB 
drill hole is 85 Ma.  (a) Aliquot RKTB1516-1 displays the largest variety of FTzoning 
corrections that will produce the modeled age.  (b-d) Aliquots RKTB1516-5, -6, -7 
have similar patterns and most likely were effected by a thin concentrated rim.  
RKTB1516-2 was erroneously old (RtHe age 107 ± 11 Ma), while aliquots 
RKTB1516-3 and -4 were too young and could not be corrected to the modeled RtHe 
age by the FTzoning corrections calculated (RtHe age 33.5 ± 3.4 Ma and 27.3 ± 2.7 Ma 
respectively). 
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Figure 20.   FTzoning applied to three out of four aliquots of sample RKTB4172, 
average RtHe age for 55 ± 16 Ma (std dev) based on FT correction.  Modeled RtHe 
age for rutile at 4172 m depth in the KTB drill hole is ~84 Ma.  (a-c) Aliquots 
RKTB4172-1, -2 and -3 all display a corresponding “tornado or boomerang” shape, 
and we assume that a thin (0.75-2 µ m) rim with 20-40x increase in concentration 
affected rutile from sample RKTB4172.  Aliquot RKTB4172-4 was too young and 
could not be corrected to the modeled age by the FTzoning corrections tested (RtHe 31 
± 3 Ma based on homogeneous U and Th distribution).  
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Figure 21. FTzoning corrections applied to all three aliquots from sample RKTB5720, 
average RtHe age for 45.8 ± 5.3 Ma (std dev) based on homogeneous U and Th 
distribution.  Modeled RHe age for rutile at 5720 m depth in the KTB drill hole is ~72 
Ma.  (a) Aliquot RKTB5720-1 displays a range of FTzoning corrections that can correct 
back to the modeled age.  (b) RKTB5720-2 displays the “tornado or boomerang” 
shape indicating it may have been affected by a thin (0.5-0.75 µm) rim with 30-50 
fold increase in concentration.  (c) Aliquot RKTB5720-3 requires an FTzoning 
correction produced by a 1-4 µm rim with a 50-75 increase in concentration from 
grain to rim to produce the modeled age.  
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Table 4.  Regional RtHe ages from southern Bohemian Massif in the Blansky les 
Granulite Massif and northern Bohemian Massif in Erzgebirge. 
 




