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ABSTRACT 

 

Forward population genetic simulations are used to explore the evolution of a 

sequence of nucleotide sites subject to reversible mutation under selection, 

mutation, and drift. Three selection schemes are studied: synergistic, antagonistic, 

and multiplicative interactions among sites. Their respective effects on the level of 

nucleotide diversity, the pattern of linkage disequilibrium, and the allele frequency 

spectrum are determined. Surprisingly, none of these aspects are affected by 

directional epistasis when the overall strength of selection is held constant (where 

the equilibrium allele frequencies are equal). The equilibrium mean fitness does 

differ with selection regime, and is relatively higher with synergistic interactions 

while lower with antagonistic epistasis. These findings legitimate the application 

of many population genetic models assuming multiplicative selection when there 

are actually epistatic interactions among sites, and have important implications on 

the evolution of recombination. 
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INTRODUCTION 

 

Epistasis 

In general, epistasis refers to the interaction between genes, but the exact 

meaning of it varies in different contexts. The term “epistasis” was first introduced 

into genetics by Bateson (1909) to describe the interaction between genes that 

distorts the standard Mendelian segregation ratios. Mendelian and molecular 

geneticists follow this strict classical sense of epistasis (compositional epistasis, 

Philips 2008) and measure the effects of allele substitution against a fixed, exactly 

defined genetic background. On the other hand, evolutionary and quantitative 

geneticists generally use epistasis in the sense of Fisher’s “epistascy” to describe 

the statistical deviation from the additive combination of single-locus genotypes in 

their effects on a phenotype (Fisher 1918), where the average effect of allele 

substitution is measured against the population average genetic background. 

Compositional (classical) and statistical epistasis are in fact two different ways to 

manifest the molecular interactions between the products of genes (functional 

epistasis, Philips 2008) at the level of observable traits.  

The underlying mechanism varies for different levels of epistatic interaction. 

The first level of genetic interaction is between nucleotide sites or codons within a 

protein-coding gene, which affect the structure, stability, and function of the RNA 

or protein molecule (Ortlund et al. 2007; Wilke and Adami 2001). The second 
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level of epistasis involves genetic regulatory sequences which initiate, promote, 

reduce, or inhibit the expression of other genetic components (Ringo 2004). The 

third level of epistatic interaction occurs between the enzymes and/or signal 

molecules controlling various biochemical pathways in metabolic and other 

physiological activities (Keightley 1996). Finally, epistatic interaction also occurs 

between phenotypes with regard to their fitness effects (Brodie 2000). Phillips 

(1998) reviewed various definitions of epistasis and encouraged molecular 

biologists to become more quantitative in their measures of genetic outcomes and 

evolutionary geneticists to become more mechanistic in their interpretations of 

evolutionary change to complete the unification of the classical and statistical 

views of epistasis “through the metaphor of the quantitative flow across a genetic 

network” (Philips 2008). 

For mutations affecting quantitative traits, there are two different types of 

epistasis based on how the mutation effects are modified by the interactions 

between them. Directional epistasis, also called magnitude epistasis, refers to 

antagonistic (also called positive when the mutation effect is negative) or 

synergistic (also called negative when the mutation effect is negative) interactions, 

depending on whether mutational effects at different loci diminish or reinforce 

each other, respectively. More detailed classification of directional epistasis was 

discussed by Phillips et al. (2000). Another type of epistasis is called sign epistasis, 

where the direction (sign) of the fitness effect of a mutation depends on the 
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genotype at other loci, such that the mutation is beneficial on some genetic 

backgrounds and deleterious on others (Weinreich 2005). 

Epistasis is a nearly universal component of the genetic architecture of most 

complex traits (Carlborg 2004; Holland 2007; Wade 2001) and plays critical roles 

in many important evolutionary processes. Epistasis causes a particular allele to 

have different fitness effects on different genetic backgrounds, which enables 

selection for different combinations of alleles or phenotypes. Such selection leads 

to the evolution of supergenes, linkage groups, and coadapted gene complex and 

promotes reproductive isolation and biodiversity (Wolf et al. 2000). Epistasis also 

affects mutation load (Butcher 1995; Kondrashow 1994), linkage disequilibrium 

(Barton 1995) and the fixation of mutations (Charlesworth et al. 1993; 

Kondrashov 1994). The existence or particular form of epistasis is proposed to be 

necessary in theories about many evolutionary processes, such as speciation 

(Carson and Templeton 1984; Wolf et al. 2000), the origin and maintenance of sex, 

recombination, and diploidy (reviewed by de Visser and Elena 2007, and Kouyos 

et al. 2007), and genetic canalization (Burch and Chao 2004; Rice 2000). 

 

Molecular evolution 

Although epistasis appears to be very common in nature and has profound 

evolutionary implications, it is ignored in most population genetic theories of 

molecular evolution. The neutral theory has been used as the null model of 
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molecular evolution (Kimura 1983). The effects of linked selective loci on 

patterns of neutral evolution and variation have been intensely investigated. Single 

weakly selected mutations have only negligible effect on the variation at linked 

neutral loci (Golding 1997; Neuhauser and Krone 1997; Przeworski et al. 1999) 

whereas selective sweeps of strongly beneficial mutations (Smith and Haigh 1974) 

and “back-ground selection” against deleterious alleles (Charlesworth et al. 1993) 

can reduce neutral variation in linked regions. On the other hand, the sequence 

variability is increased near a single locus under balancing selection (Kaplan et al. 

1988; Strobeck 1983), and is elevated at sites that are physically between two sites 

under balancing selection (Kelly and Wade 2000).  

The neutral assumption of mutations at the molecular level is not always the 

case in reality. There is evidence that the majority of sites in genes, or in the whole 

genome, are not completely neutral but actually under weak selection (Ohta 1992). 

For example, the unequal usage of synonymous codons observed in many 

organisms (Chiapello et al. 1998; Duret and Mouchiroud 1999; Sharp and Li 1986; 

Sharp et al. 1986; Shields et al. 1988; Stenico 1994) suggests weak selection at 

synonymous sites. Indirect evidence also shows that transcribed but untranslated 

regions of genes can experience selection even stronger than synonymous sites 

(Bauer and Aquadro 1997; Li and Graur 1991). 

The dynamics of molecular evolution under the nearly neutral assumption has 

also been examined by many authors. The extent of codon bias and patterns of 
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molecular diversity have been analyzed with diffusion theory by Bulmer (1991) 

and McVean and Charlesworth (1999). When linkage among selected sites is tight, 

the associations between selected alleles and the genetic backgrounds on which 

they are found can reduce the efficacy of selection arises, which is known as the 

Hill-Robertson effect (Felsenstein 1974; Hill and Robertson 1966). McVean and 

Charlesworth (2000) examined the effects of Hill-Robertson interference between 

weakly selected mutations on patterns of molecular evolution and variation in a 

simulation study. They showed that the reduced selection efficacy due to 

Hill-Robertson interference results in lower fixation probabilities for beneficial 

alleles and higher fixation probabilities for deleterious alleles, thus decreasing the 

extent of codon bias; the interference builds up negative linkage disequilibrium 

(LD) and significantly reduces nucleotide polymorphism and diversity; the 

interference slightly decreases the contribution to heterozygosity and time to 

fixation for beneficial alleles and has almost no effect on either property for 

deleterious mutations.  

McVean and Charlesworth (2000) assumed multiplicative selection in their 

models. However, with advancements in molecular biology, data suggesting 

epistasis among mutations at the molecular level have accumulated substantially 

since the last decade. First, compensatory mutations have been widely identified 

both in fitness assay experiments (Crawford et al. 2007; Poon and Chao 2005) and 

from analyses of linkage disequilibrium among polymorphic nucleotide sites 
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(Kirby et al. 1995; Schaeffer and Miller 1993). On the other hand, by comparing 

the fitness of constructed mutants with known number of mutations, epistatic 

interactions between deleterious mutations have been directly assayed in various 

organisms (Table 1; also see review by Burch et al. 2003, and Sanjuan and Elena 

2006). Finally, synergistic epistasis is believed to exist among a large number of 

mutations with small fitness effects in highly conserved non-coding regions in 

animals (Kryukov et al. 2005) as well as among weakly selected synonymous 

codons (Akashi 1995, 1996). Amidst all the new information available, the 

question arises as to how epistatic interaction among selected sites affects the 

dynamics of molecular evolution relative to that expected under the assumption of 

independence among selection at multiple sites.  

 

Purpose 

The main purpose of this study is to investigate how directional epistasis 

affects the pattern of molecular evolution. Specifically, I examine if synergistic or 

antagonistic epistasis between deleterious mutations generates a different allele 

frequency spectrum, nucleotide diversity, and pattern of linkage disequilibrium 

from what is predicted by a multiplicative model when the system is at 

mutation-selection-drift equilibrium. I also examine the interactions between 

epistasis and Hill-Robertson effects between weakly selected mutations. 

There are several different models developed by other authors for the study of 
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epistasis. In an additive model or multiplicative model, the effect of a multi-locus 

genotype is the sum or the product of the contributions of each component locus 

respectively. Fisher described epistais as a deviation from the additive model of 

allelic effects (Fisher 1918). When fitness effects are considered, modeling 

epistasis as the deviation from the multiplicative model is preferred. This is 

because the absence of epistasis in this model guarantees that selection does not 

build up correlations among alleles at different loci as long as there is no such 

correlation in the initial population (Karlin 1975). A recently developed 

multi-linear model based on genetic measurement theory (Hansen and Wagner 

2001a; Wagner et al. 1998) has been used to study the epistatic effects on mutation 

load (Hansen and Wagner 2001b) and the evolution of evolvability (Carter et al. 

2005) and genetic architecture (Hansen 2006; Hermisson et al. 2003). Specific 

models with well defined interactions also have been constructed to study the 

epistasis related to particular traits whose underlying gene networks or 

physiological interactions are clearly understood (Clark 1991; Gibson 1996; 

Kacser and Burns 1981; Lenski et al. 1999; Mestl et al. 1995; Nijhout and Paulsen 

1997; Szathmary 1993; Wagner 1994). However, these more realistic models can 

not be used to study general evolutionary consequences of epistasis because the 

underlying mechanism varies widely for different traits and different organisms. 

In this study, I describe epistasis with a power function (e.g. Lenski et al. 

1999) as the deviation from the multiplicative selection. I compare the results of 
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simulations with different parameter sets by holding the intensity of selection 

constant. The conclusions from this study have important implications on previous 

population genetic models about the behavior of weakly selected mutations and 

theories about many biological processes such as the evolution of codon bias and 

recombination. 
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METHOD AND MODELS 

 

I constructed a forward population genetic simulation program written in the 

C language to examine the effects of epistasis on patterns of molecular evolution. 

I consider a constant size population of N haploid nucleotide sequences, each 

consisting of L sites. At each site, there are two alleles; and s is the selection 

coefficient against the deleterious allele. The overall fitness of individuals with m 

deleterious alleles was calculated using the power function 

ms
m eW  .                             (1) 

Here, β describes the form and amount of epistasis: if β = 1, fitness effects are 

multiplicative over sites; there is synergistic epistasis among sites if β > 1 whereas 

β < 1 means antagonistic epistasis (Figure 1). Many authors have considered a 

quadratic function (Table 1) 

2m bm
mW e                                (2) 

where a is the selection coefficient and b measures epistasis (b > 0 for synergistic 

and b < 0 for antagonistic epistasis). However, equation (1) provides a better fit to 

empirical data when the number of mutation under concern is large (Lenski et al. 

1999; Maisnier-Patin et al. 2005; You and Yin 2002). 

Each simulation run starts with a population in which all sites are fixed for the 

beneficial allele. Generations are discrete and the sequence of events is selection, 

mutation and then recombination (if applicable). The probability of an individual 
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contributing to the next generation is proportional to its relative fitness as 

calculated from equation (1). Mutation occurs in both directions at the same 

frequency of μ per site per generation and can occur at currently segregating sites. 

Recombination occurs between adjacent sites at frequency r per generation with a 

maximum of one crossover event per sequence. 

A series of statistics were calculated for samples taken from the population at 

mutation-selection-drift equilibrium. Each statistic is the average over samples 

from 4 runs. For each run, after an initial period of 4/μ generations for the system 

to reach equilibrium, one sample of 25 alleles was taken without replacement 

every 2/μ generations until 50 samples were collected. This sampling strategy 

follows that of McVean and Charlesworth (2000) to minimize evolutionary 

non-independence between sequential samples. In these simulations, the number 

of sites (L) was set at 1000; the population size was N = 200. Larger population 

sizes (250, 1000 and 2000) were also studied, but no differences were found in 

any case. All results appear to depend on the scaled parameters Nμ, Ns, and Nr, as 

expected from diffusion theory (Evens, 1979). The scaled mutation rate per site 

(both forward and backward) 2Nμ = 0.04 and 2Nμ = 0.2 were used because 0.04 is 

close to the estimated 4Neμ value for synonymous sites in Drosophila. 

melanogaster (Moriyama and Powell 1996) and 0.2 is close to the estimated 2Neμ 

value for synonymous sites in E. coli (Hartl et al. 1994). 
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RESULTS 

 

Comparing results from different selection schemes 

For a given value of s, the intensity of selection varies with different forms 

and magnitudes of epistasis (the value of β). Figure 2 shows how the equilibrium 

average frequency of deleterious alleles is affected by epistatic selection and 

recombination. As the selection coefficient increases, the equilibrium average 

frequency of deleterious alleles decreases, as expected. Due to the Hill-Robertson 

effect (Hill and Robertson 1968), higher recombination rates correspond to lower 

deleterious allele frequencies, which is consistent with McVean and 

Charlesworth’s result (2000) in a multiplicative selection model (β =1). For the 

entire range of recombination rates, antagonistic epistasis retards the strength of 

selection while synergistic epistasis reinforces it. This effect of epistasis is the 

same in populations with 2Nμ = 0.04 and those with 2Nμ = 0.2. When making 

comparisons between the multiplicative and epistatic selection models, I need to 

hold the overall intensity of selection constant. To do so, for all subsequent 

comparisons between selection schemes, I contrast parameter sets that produce the 

same average deleterious allele frequency at equilibrium (Charlesworth et al. 

1990). In this section, I will present comparisons by plotting the statistics against 

the average equilibrium frequency of deleterious alleles for runs with different 

values of β. 
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Nucleotide diversity and nucleotide polymorphism 

The relationship between nucleotide diversity and the intensity of selection is 

complex. However, without mutation bias, nucleotide diversity decreases 

monotonically with increasing selection intensity (McVean and Charlesworth, 

1999). The increase in selection intensity also results in a lower equilibrium 

frequency of deleterious alleles. Therefore, a lower equilibrium frequency of 

deleterious alleles corresponds to a lower level of nucleotide diversity, as shown 

in Figure 3. McVean and Charlesworth (2000) presented that for a given selection 

coefficient s, Hill-Robertson interference reduces both nucleotide diversity and 

selection intensity. Figure 3 shows that when the later is held the same, stronger 

Hill-Robertson interference (2Nr = 0) still corresponds to lower nucleotide 

diversity than weaker one (2Nr = 1). Figure 3 also shows that both synergistic and 

antagonistic selection have the same pattern as multiplicative selection in terms of 

the relationship between nucleotide diversity and equilibrium allele frequency. 

That is, regardless of the form and magnitude of epistasis, populations with a 

certain frequency of deleterious alleles at equilibrium have the same level of 

nucleotide diversity. This holds for all levels of recombination that I considered, 

implying that epistasis does not change the way Hill-Robertson interference 

affects nucleotide diversity. The same conclusion can be drawn for the effect of 

epistasis on nucleotide polymorphism (figure 4), and in populations with 2Nμ = 

0.04 and those with 2Nμ = 0.2. 
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Patterns of linkage disequilibrium 

The expected linkage disequilibrium (LD) between favored alleles at pairs of 

segregating sites is determined by the joint effect of mutation, selection, drift, and 

recombination. In finite populations, random drift creates both positive and 

negative LD at equal rates. If there is no fitness difference between the two alleles 

at every site, the average absolute magnitude of LD is not zero and is reduced by 

recombination, but the average of pairwise scaled LDs in close proximity is not 

significantly different from zero because positive and negative values cancel out 

on average. On the other hand, selection tends to erase the LD created by random 

drift. Since positive LD increases whereas negative LD decreases the efficiency of 

selection, selection reduces positive LD faster than it does negative LD. Thus, 

drift and selection together generate a tendency towards negative LD and stronger 

selection results in more negative LD (Hill and Robertson 1966). Negative LD is 

caused by excess repulsion between preferred codons, which means the ratio of 

observed variance ( 2̂ ) in the number of beneficial alleles among individuals to 

the sum of the variance predicted by allele frequency (xi) at every site, 

RV=  
i

ii xx )1(/ˆ 2 , should be less than 1 and the more negative LD, the more 

dearth in RV relative to 1 (McVean and Charlesworth 2000).  

The average D′ (measures scaled LD, Lewontin 1964) and average r2 

(measures magnitude of LD, Hill and Robertson 1968) for pairs of segregating 

sites in close proximity are calculated for simulations with a series of 
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combinations of parameters. For example, the results in r2 as the function of 

distance between segregating sites along the sequence for 2Nμ= 0.04, 2Ns = 0,  = 

1 and a range of 2Nr values are presented in figure 5a. Figure 5b also shows the 

effect of selection on r2. For a certain value of 2Nr and a series of values of 2Ns, 

the average pairwise r2 for segregating sites within each distance category is 

plotted against equilibrium frequency of deleterious alleles; and I put such plotting 

for different values of  together to compare the effect of epistasis on the average 

value of r2 for each distance category. The same method is used to compare the 

effect of epistasis on D′. Figure 6 presents examples of such comparisons for two 

distance categories with 2Nμ= 0.04, 2Nr = 0, which shows that, given the same 

equilibrium allele frequency, no difference in either of the two measurement of 

LD are caused by different selection schemes. Similar patterns are observed in 

other distance categories and all other parameter combinations. 

The comparison on RV is less complicated but the plots for different values of 

 separate slightly from each other (figure 7). However, since the distribution of 

the statistic RV has high variance (McVean and Charlesworth 2000), it is still safe 

to say that no significant difference in RV value is caused by different epistatic 

section as long as the equilibrium allele frequencies are held the same. 

Overall, these results indicate that epistasis has no effect on how selection, 

drift and recombination determine the linkage disequilibrium between preferred 

alleles. 
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The effect of epistasis on the equilibrium mean fitness 

The mean fitness of a population at selection-mutation-drift equilibrium is 

determined by the proportion of deleterious alleles kept in the population 

combined with the fitness effect of each allele as well as the way they interact 

with each other (epistasis). Stronger selection results in a lower equilibrium 

frequency of deleterious alleles (Figure 2). When the positive effect of the 

reduction in the frequency of the deleterious allele can not compensate for the 

negative effect of the increase in selection coefficient in determining population 

mean fitness, increasing s leads to the drop of equilibrium mean fitness. Stronger 

selection can eliminate deleterious alleles more efficiently, so the population mean 

fitness at equilibrium could become larger as s increases. Because tight linkage 

reduces the efficiency of selection, resulting in a higher frequency of deleterious 

alleles at equilibrium, a larger recombination rate leads to a higher equilibrium 

mean fitness for a given s (McVean and Charlesworth 2000). Figure 8 shows that, 

for a given equilibrium frequency of deleterious alleles, the population with 

frequent recombination (2Nr = 1) still has a higher mean fitness than that with no 

recombination (2Nr = 0). With everything else the same, synergistic epistasis (β = 

1.2) leads to a higher mean fitness than multiplicative selection, while antagonistic 

epistasis (β = 0.8) leads to a lower one. Such pattern of the effect of epistasis on 

the population mean fitness at equilibrium can be observed both in populations 

with 2Nμ = 0.04 and those with 2Nμ = 0.2. 
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Estimating the strength of selection 

If selection acts independently between all sites, for small s and small 2Neμ, 

the expected proportion (x) of sites fixed for the beneficial allele in the population 

at mutation-selection-drift equilibrium is 

sNee
xE

21

1
)( 
                                                  (3) 

(Li 1987; Bulmer 1991), where Ne is the effective population size. Thus I can 

estimate the value of 2Nes from the proportion of sites fixed for the beneficial 

allele in a sample taken from a population at equilibrium by rearranging equation 

(3) to obtain 

x

x
sNe 


1
ln2                                                   (4) 

(Bulmer 1991; McVean and Charlesworth 2000). On the other hand, the 

proportion of segregating sites is usually so low that they have little effect on the 

overall frequency of alternative alleles at equilibrium; and the relationship 

between the expected overall frequency of the preferred alleles and the selection 

coefficient is similar for fixed and segregating sites. Thus, it is safe to say that 

equation (3) is also an accurate approximation for the expected overall frequency 

of beneficial alleles in a single sequence picked at random from the population 

(McVean and Charlesworth 1999). In other words, 2Nes can also be estimated 

from the overall frequency of beneficial alleles in a sample of sequences in the 

same way as shown in equation (4) after reassigning x to be the overall allele 

frequency of beneficial alleles.  
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For weak selection (2Nes << 1), the estimates of 2Nes from the overall 

average allele frequency and those from fixed sites alone are very close to each 

other as well as to the true value of 2Ns. As the selection coefficient increases, due 

to the Hill-Robertson effect, the true value of 2Ns becomes more and more 

underestimated by both methods for tight linked sites; and recombination reduces 

both underestimates. Increasing the selection coefficient also enlarges the 

discrepancy between the allele proportions among fixed sites and the overall allele 

frequencies for the whole sequence (McVean and Charlesworth 1999), resulting in 

more and more difference between the two estimates of 2Nes; and recombination 

magnifies this difference (McVean and Charlesworth 2000). 

When selection is epistatic, an equation similar to equation (4) 

x

x
sN ee 


1
ln2                                                   (5) 

can be used to estimate 2Nese, where se is defined as the effective selection 

coefficient for the epistatic model such that a multiplicative model with selection 

coefficient se generates the same overall allele frequencies with this epistatic 

model. When epistasis is zero ( = 1), 2Nese = 2Nes.  

Figure 9 shows that epistasis has no effect on the difference between the two 

estimates, which means, for a given overall equilibrium allele frequency, the allele 

frequency among fixed sites is the same for different epistatic selection schemes. 

Since epistasis does not change the relative proportion of polymorphic and fixed 

sites either (Figure 3, 4), the allele frequencies for segregating sites at equilibrium 
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must be independent of selection schemes too. This result holds for populations 

with 2Nμ = 0.04 and those with 2Nμ = 0.2.  
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DISCUSSION 

 

In a finite population with reversible mutation, directional epistasis modifies 

the average strength of selection. After adjusting for this effect however, standard 

molecular population genetic statistics are unaffected by epistasis. When a 

population reaches statistical equilibrium, the nucleotide diversity and 

polymorphism, the pattern of linkage disequilibrium, the variance in the number 

of deleterious mutations, and the allele frequency among fixed and segregating 

sites, are all the same between epistatic and multiplicative selection models. The 

only difference caused by different selection schemes is that synergistic selection 

leads to a higher while antagonistic selection results in a lower population mean 

fitness than multiplicative selection. 

With the identical patterns of the statistics between populations at equilibrium 

with different selection schemes shown in this study, it may be appropriate to 

release the assumption of independence of selection at multiple sites for many 

population genetic models. Consider a hypothetical population that is at 

mutation-selection-drift equilibrium under epistatic selection with selection 

coefficient s and has an average frequency p for deleterious alleles. Another 

population with multiplicative selection governed by se (effective selection 

coefficient) has the same equilibrium frequency of deleterious alleles. All the 

population statistics except equilibrium mean fitness are identical between these 
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two populations. Because epistatic selection models are much more difficult for 

mathematical analysis, it is easier to study a multiplicative selection model with 

selection coefficient se and obtain valid implications to the epistatic selection 

models with selection coefficient s. For example, both the maximum likelihood 

method with Poisson random field model employed to estimate 2Neμ and 2Nes 

using the pattern of nucleotide polymorphisms (Hartl et al. 1994) and the 

selection-mutation-drift model developed to study the selection intensity on codon 

usage ignored epistatic selection in the evolutionary process. However if there is 

no difference between multiplicative selection and epistatic selection in terms of 

the standard molecular population genetic statistics, it is appropriate to apply these 

models in analyzing empirical data even when selections are synergistic in reality. 

Codon bias, the unequal usage of synonymous codons, is one of the most 

intensely examined genetic phenomena involving weak selection at multiple sites. 

The degree of codon bias can be interpreted as the result of the combined effect of 

selection, mutation bias and drift. A number of population genetic models have 

been developed to study the effect of these factors in determining the level of 

codon bias (Akashi 1994; Bulmer 1991; Duret 2002; Li 1987; McVean and 

Charlesworth 1999). Synergistic selection at synonymous sites is plausible for 

several reasons. One difficulty for the non-epistatic weak selection model in 

explaining high proportions of preferred codons in genes is the high mutation load 

(Gillespie 1994; Li 1987; Tachida 1990). This difficulty can be overcome by 
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adopting synergistic selection to reduce the mutation load (Kimura and Maruyama 

1966; Kondrashov 1995). Figure 8 confirms this point. Also empirical estimates of 

selection coefficient for optimal synonymous codons show a much wider range 

than that required by multiplicative and additive models (Akashi 1995, 1996); and 

synergistic epistasis is suggested to account for the observed codon bias range 

with a reasonable level of selection coefficient variation (Akashi 1995; 

Kondrashov et al. 2006). Despite the important roles epistasis plays in interpreting 

codon bias patterns, due to the mathematical difficulty, it is rarely included in the 

population genetic models of synonymous codon usage. Li (1987) studied the 

predicted patterns of codon usage in an additive, a multiplicative and an additive 

with a threshold model and found that the three models produce identical results, 

based on which he proposed that synergistic selection would generate similar 

results. The results from our simulations support Li’s generalization and legitimate 

the application of previous genetic models in interpreting empirical data of codon 

usage even when synergistic selection is the case. 

 Epistasis plays an important role in the theoretical explanation of the origin 

and evolutionary benefit of sex and recombination (reviewed by de Visser and 

Elena 2007, and Kouyos et al. 2007). The most widely studied theories on the 

benefit of recombination are variation-and-selection models (reviewed by 

Kondrashov 1993). These models assume that recombination facilitates the 

population’s response to directional selection by increasing useful genetic 
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variation, thus speeding up adaptation and promoting the elimination of 

deleterious mutations. For this mechanism to work, a key prerequisite is that the 

LD between preferred alleles among sites should be negative. There are two 

possible sources of negative LD; one is directional selection following the effects 

of drift (Hill-Robertson effect); and the other is negative epistasis. If negative 

epistasis is a major contributor of the benefit of recombination, it should be 

common in the genome of organisms where recombination occurs. However, 

recent experimental data shows that this is not the case (Burch et al. 2003; 

Sanjuan and Elena 2006). The direct assays of epistasis by fitness measurement 

experiments in various organisms show a mixed picture: some show prevailing 

synergism, some are overall antagonistic, and several show no or variable 

epistasis. On the other hand, although it has been analytically shown that, in an 

infinite population, positive epistasis generates positive LD and negative epistasis 

generates negative LD (Eshel and Feldman 1970), for finite populations, the effect 

of directional epistasis in generating negative LD is proposed to be negligible 

relative to that of Hill-Robertson interference according to several simulation 

studies comparing the relative importance of Hill-Robertson effect and negative 

epistasis in the evolution of the recombination modifier (Iles et al. 2003; 

Keightley and Otto 2006; Otto and Barton 2001). The results from our simulations 

show no detectable extra negative LD caused by synergistic epistasis relative to 

the Hill-Robertson effect. This adds another challenge to theories of the evolution 
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of recombination based on the effect of negative epistasis in generating negative 

LD.   

 



 
 

29

SUMMARY AND FUTURE DIRECTIONS 

 

 I studied the effects of directional epistasis on patterns of various population 

molecular genetic statistics in finite populations with reversible mutation. Their 

implications to population genetic models of codon usage and the evolution of 

recombination are discussed.  

Although the constant directional epistatic selection model I employ here is a 

better approximation of the real interaction among weakly selected sites such as 

codon usage and some non-coding sequences than the multiplicative model, it is 

not applicable to explaining the behavior of mutations with variable mutational 

effects and epistatic interactions. The distribution of fitness effects of mutations 

has been studied by many authors in various organisms (reviewed by Eyre-Walker 

and Keightley 2007). The general pattern for all species and genomic regions is: 

advantageous mutations are rare; strongly beneficial mutations are exponentially 

distributed; and the effect distribution of deleterious mutations is complex and 

multi-modal. Previous studies also show that the sign and multitude of epistasis 

vary largely among different combinations of mutations (Sanjuan and Elena 2006). 

No specific distribution of the strength of epistasis or its form has been recognized 

yet. However, it was reported that the strength of directional epistasis is correlated 

with the average deleterious effect of a single mutation (Wilke and Adami 2001).  

To provide more useful implications in explaining the behavior of molecular 
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evolution, more elaborated simulations using models with non-uniform 

distribution of selection effects and variable epistasis coefficients are necessary. A 

different mathematic equation need to be devised to describe epistatic interactions 

among selections at multiple sites when a non-uniform distribution of selection 

effects is adopted in the model. Other types of models in which both pairwise and 

higher orders of epistasis are specifically defined throughout the sequence are 

more desirable when the variation in the strength and form of epistasis is 

considered (Hansen and Wagner 2001a). 
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Figure 1. Hypothetical effects of increasing numbers of deleterious alleles on ln 

fitness in different selection models. The solid line illustrates multiplicative 

effects; the dotted curve shows antagonistic epistasis; and the dashed curve 

represents synergistic epistasis. 
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Figure 2. The effect of epistatic selection and recombination on the average 

frequency of deleterious alleles at equilibrium ( : 2Nr = 0; : 2Nr =0.01; : 

2Nr = 0.1; : 2Nr = 1). Above: 2Nμ = 0.04; below: 2Nμ = 0.2. 



 
 

34

2Nμ = 0.04

2Nr = 0

2Nr = 1

0

0.01

0.02

0.03

0.04

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6

Average equilibrium frequency
of deleterious alleles

N
uc

le
ot

id
e 

di
ve

rs
it

y y

 

2Nμ = 0.2

2Nr = 0

2Nr = 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6
Average equilibrium frequency

of deleterious alleles

N
uc

le
ot

id
e 

di
ve

ri
st

y y

  

Figure 3. Nucleotide diversity under different selection scenarios. In each graph, 

the two groups of plots are for the cases with no recombination and with 2Nr = 1 

respectively. Within each group, different symbols represent different forms and 

magnitudes of epistasis ( : β = 1.2; : β = 1; : β = 0.8). 
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Figure 4. Nucleotide polymorphism under different selection scenarios. In each 

graph, the two groups of plots are for the cases with no recombination and with 

2Nr = 1 respectively. Within each group, different symbols represent different 

forms and magnitudes of epistasis ( : β = 1.2; : β = 1; : β = 0.8). 
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Figure 5. Average pairwise r2 in a sample of 25 alleles as a function of the 
distance between segregating sites for 1000 sites, showing the effect of 
recombination ((a), 2Ns = 0) and selection intensity ((b), 2Nr = 0.01). 2N = 0.04, 
 = 1. 
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Figure 6. The effect of epistasis ( : β = 1.2; : β = 1; : β = 0.8) on 

two measures of LD, showing average measurements for pairs of segregating sites 

within the distance of 0-99 (a) and 500-599 sites (b). 2Nμ = 0.04; 2Nr = 0. 
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Figure 7. The influence of epistasis ( : β = 1.2; : β = 1; : β = 

0.8) on the ratio of observed-to-expected variance in the number of preferred 

alleles among individuals (RV). 2Nr = 0. 
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Figure 8. The effect of epistasis ( : β = 1.2; : β = 1; : β = 0.8) and 

recombination on the population mean fitness at equilibrium. 
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Figure 9. (to be continued) 
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Figure 9. The comparison of two estimated 2Nese,  

showing the effect of recombination and epistasis ( : β = 1.2; : β = 1; 

: β = 0.8). Every point represents two estimates for a same value of s.  
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