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Abstract

Mixtures of truncated exponentials (MTE) potentials are an alternative to dis-
cretization for representing continuous chance variables in influence diagrams. Also,
MTE potentials can be used to approximate utility functions. This paper introduces
MTE influence diagrams, which can represent decision problems without restrictions
on the relationships between continuous and discrete chance variables, without lim-
itations on the distributions of continuous chance variables, and without limitations
on the nature of the utility functions. In MTE influence diagrams, all probability
distributions and the joint utility function (or its multiplicative factors) are repre-
sented by MTE potentials and decision nodes are assumed to have discrete state
spaces. MTE influence diagrams are solved by variable elimination using a fusion
algorithm.
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1 Introduction

An influence diagram is a compact graphical representation for a decision
problem under uncertainty. Initially, influence diagrams were proposed as a
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front-end for decision trees (Howard and Matheson 1984). Subsequently, Olm-
sted (1983) and Shachter (1986) developed methods for evaluating an influence
diagram directly without converting it to a decision tree. These methods as-
sume that all uncertain variables in the model are represented by discrete
probability mass functions (PMF’s). Several improvements to solution proce-
dures for solving discrete influence diagrams have been proposed (see, e.g.,
Shenoy 1992, Shachter and Ndilikilikesha 1993, Jensen et al. 1994, Madsen
and Jensen 1999, Lauritzen and Nilsson 2001, Madsen and Nilsson 2001).

Shachter and Kenley (1989) introduced Gaussian influence diagrams, which
contain continuous variables with Gaussian distributions and a quadratic value
function. In this framework, chance nodes have conditional linear Gaussian
distributions, meaning each chance variable has a Gaussian distribution whose
mean is a linear function of the variable’s parents and whose variance is a
constant. This framework does not allow discrete chance nodes; however, it
does allow chance variables whose distributions are conditionally deterministic
linear functions of their parents.

Poland and Shachter (1993) introduce mixture of Gaussians influence dia-
grams, which allow both discrete and continuous nodes where continuous
variables are modeled as mixtures of Gaussians. In this framework, instan-
tiating all discrete nodes reduces the model to a Gaussian influence diagram.
The influence diagram must satisfy the condition that discrete chance nodes
cannot have continuous parents. In this model, a quadratic value function is
specified along with a utility function which represents risk-neutral behavior
or a constant risk aversion. Poland (1994) proposes a procedure for solving
such influence diagrams which uses discrete and Gaussian operations and re-
duces continuous chance variables before discrete chance variables. Madsen
and Jensen (2005) describe a new procedure for exact evaluation of similar
influence diagrams that contain an additively decomposing quadratic utility
function.

Monte Carlo methods have also been proposed for solving decision problems
with continuous and discrete variables. Bielza et al. (1999) uses Markov chain
Monte Carlo methods to solve single stage problems with continuous decision
and chance nodes. Charnes and Shenoy (2004) solve multiple stage decision
problems using a multi-stage Monte Carlo sampling technique that takes ad-
vantage of local computation to limit the number of variables sampled at one
time.

Mixtures of truncated exponentials (MTE) potentials are suggested by Moral
et al. (2001) and Rumı́ (2003) as an alternative to discretization for solving
Bayesian networks with a mixture of discrete and continuous chance variables.
In this paper, we propose MTE influence diagrams, which are influence dia-
grams in which probability distributions and utility functions are represented
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by MTE potentials. We solve MTE influence diagrams using the fusion algo-
rithm proposed by Shenoy (1993) for the case where the joint utility function
decomposes multiplicatively.

The remainder of this paper is organized as follows. Section 2 introduces nota-
tion and definitions used throughout the paper. Section 3 defines MTE poten-
tials. Section 4 reviews the operations required for solving an MTE influence
diagram. Section 5 presents details of a method for approximating joint util-
ity functions with MTE utility potentials. Section 6 contains two examples,
including an adaptation of Raiffa’s (1968) Oil Wildcatter problem, which are
represented and solved using MTE influence diagrams. Finally, section 7 sum-
marizes and states some directions for future research.

2 Notation and Definitions

This section contains notation and definitions used throughout the paper.

2.1 Notation

Variables will be denoted by capital letters, e.g., A,B,C . Sets of variables will
be denoted by boldface capital letters, Y if all are discrete chance variables, Z
if all are continuous chance variables, D if all are decision variables, or X if the
components are a mixture of discrete chance, continuous chance, and decision
variables. In this paper, all decision variables are assumed to be discrete. If X
is a set of variables, x is a configuration of specific states of those variables.
The discrete, continuous, or mixed state space of X is denoted by ΩX.

MTE probability potentials and discrete probability potentials are denoted
by lower-case greek letters, e.g., α, β, γ. Discrete probabilities for a specific
element of the state space are denoted as an argument to a discrete potential,
e.g. δ(0) = P (D = 0). MTE utility potentials are denoted by ui, where the
subscript i indexes both the initial MTE utility potential(s) specified in the
influence diagram and subsequent MTE utility potentials created during the
solution procedure.

In graphical representations, decision variables are represented by rectangular
nodes, discrete chance variables are represented by single–border ovals, con-
tinuous chance variables are represented by double–border ovals, and utility
functions are represented by diamonds.
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3 Mixtures of Truncated Exponentials

3.1 MTE Potentials

A mixture of truncated exponentials (MTE) potential in an influence diagram
has the following definition, which is a modification of the original definition
proposed by Moral et al. (2001) and Rumı́ (2003).

MTE potential. Let X be a mixed n-dimensional variable. Let Y = (Y1, . . . , Yf ),
Z = (Z1, . . . , Zc), and D = (D1, . . . , Dg) be the discrete chance, continuous
chance, and decision variable parts of X, respectively, with c + f + g = n. A
function φ : ΩX �→ R+ is an MTE potential if one of the next two conditions
holds:

(1) The potential φ can be written as

φ(x) = φ(y, z,d) =

a0 +
m∑

i=1

ai exp{ f∑
j=1

b
(j)
i yj +

c∑
k=1

b
(f+k)
i zk +

g∑
�=1

b
(c+f+�)
i d�} (1)

for all x ∈ ΩX, where ai, i = 0, . . . , m and b
(j)
i , i = 1, . . . , m, j = 1, . . . , n

are real numbers.
(2) There is a partition Ω1, . . . ,Ωk of ΩX verifying that the domain of contin-

uous chance variables, ΩZ, is divided into hypercubes, the domain of the
discrete chance and decision variables, ΩY∪D, is divided into arbitrary
sets, and such that φ is defined as

φ(x) = φi(x) if x ∈ Ωi, (2)

where each φi, i = 1, ..., k can be written in the form of equation (1) (i.e.
each φi is an MTE potential on Ωi).

In the definition above, k is the number of pieces, and m is the number of
exponential terms in each piece of the MTE potential. In this paper, all MTE
probability and utility potentials are equal to zero in unspecified regions. Sev-
eral methods for fitting MTE potentials have been proposed (see, e.g., Moral
et al. 2002, Moral et al. 2003, Cobb et al. 2006).

A 2-piece, 3-term un-normalized MTE potential which approximates the nor-
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Fig. 1. 2-piece MTE approximation overlayed on the standard normal distribution.

mal PDF defined by Cobb and Shenoy (2006) is

ψ′(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ−1(−0.0105643 + 197.0557202 exp{2.2568434(x−μ
σ )}

−461.4392506 exp{2.3434117(x−μ
σ )}

+264.7930371 exp{2.4043270(x−μ
σ )}) if μ− 3σ ≤ x < μ

σ−1(−0.0105643 + 197.0557202 exp{ − 2.2568434(x−μ
σ )}

−461.4392506 exp{ − 2.3434117(x−μ
σ )}

+264.7930371 exp{ − 2.4043270(x−μ
σ )}) if μ ≤ z ≤ μ + 3σ.

(3)

Figure 1 shows a graph of the 2-piece, 3-term MTE approximation overlayed
on the actual normal PDF for the case where μ = 0 and σ2 = 1 over the domain
[−3, 3]. A normalized version of the 2-piece, 3-term MTE approximation to
the normal PDF is ψ(x) = (1/0.9973) · ψ′(x).

3.2 MTE Probability Densities

MTE probability densities. Suppose φ ′ is an input MTE potential for X =
Y∪Z∪D representing a PDF for Z ∈ Z given its parents X \ {Z}. If we can
verify that

K(x) =
∫

ΩZ

φ ′(x, z) dz = 1 , (4)

for all x ∈ ΩX\Z , we state that φ ′ is an MTE density for Z. If K(x) �= 1 for any
x ∈ ΩX\Z , φ ′ can be normalized to form an MTE density by calculating φ =
K(x)−1 ·φ ′ for all x ∈ ΩX\Z . We assume that all input MTE potentials which
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represent probability potentials in an MTE influence diagram are normalized
to be MTE probability densities prior to the solution phase.

3.3 MTE Influence Diagrams

An MTE influence diagram is an influence diagram with discrete and/or con-
tinuous chance variables in which all probability distributions are MTE prob-
ability densities as in (1) which satisfy the normalization condition in (4), and
the joint utility function or the multiplicative factors of the joint utility func-
tion are MTE potential(s) as in (1). We assume decision nodes have discrete
state spaces so that we stay in the class of MTE potentials during the solution
process and also avoid optimization problems associated with continuous state
spaces.

4 Operations on MTE Influence Diagrams

This section will describe the operations required to solve MTE influence
diagrams.

4.1 Combination

Combination of MTE potentials is pointwise multiplication. Let φ1 and φ2

be MTE potentials for X1 = Y1 ∪ Z1 ∪ D1 and X2 = Y2 ∪ Z2 ∪ D2. The
combination of φ1 and φ2 is a new MTE potential for X = X1 ∪ X2 defined
as follows

φ(x) = φ1(x
↓ΩX1 ) · φ2(x

↓ΩX2 ) (5)

for all x ∈ ΩX.

Combination of two MTE probability densities results in an MTE probabil-
ity density. Combination of an MTE probability density and an MTE utility
potential results in an MTE utility potential. Combination of two MTE util-
ity potentials results in an MTE utility potential. Combination of an MTE
potential consisting of k1 pieces with an MTE potential consisting k2 pieces
results in an MTE potential consisting of at most k1 ·k2 pieces. If the domains
of the potentials do not overlap in all pieces, the resulting MTE potential may
have less than k1 · k2 pieces.
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4.2 Marginalization

4.2.1 Chance Variables

Marginalization of chance variables in an MTE influence diagram corresponds
to summing over discrete chance variables and integrating over continuous
chance variables. Let φ be an MTE potential for X = Y ∪ Z ∪D. The marginal
of φ for a set of variables X′ = Y′ ∪ Z′ ∪D ⊆ X is an MTE potential com-
puted as

φ↓X′
(y′, z′,d) =

∑
y∈ΩY\Y′

⎛
⎜⎝

∫

ΩZ\Z′

φ(y, z,d) dz′′

⎞
⎟⎠ (6)

where z = (z′, z′′), and (y′, z′,d) ∈ ΩX′.

Although we show the continuous variables being marginalized before the
discrete variables in (6), the variables can be marginalized in any sequence,
resulting in the same final MTE potential.

4.2.2 Decision Variables

Marginalization with respect to a decision variable is only defined for MTE
utility potentials. Let u be an MTE utility potential for X = Y ∪ Z ∪D, where
D ∈ D. The marginal of u for a set of variables X − {D} is an MTE utility
potential computed as

u↓(X−{D})(y, z,d′) = max
d∈ΩD

u(y, z,d) (7)

for all (y, z,d′) ∈ ΩX−{D} where d = (d′, d).

In order to use the fusion algorithm to solve MTE influence diagrams, marginal-
ization of decision variables must result in an MTE potential. The following
theorem ensures this result.

Theorem 1. Let u1 be an MTE utility potential for X = Y ∪ Z ∪D, where
D ∈ D. If u1(y, z,d

′, D = 1), ..., u1(y, z,d
′, D = n) are MTE utility po-

tential fragments defined over the same domain, ΩX, then u
↓(X−{D})
1 =

Max{u1(y, z,d
′, D = 1), . . ., u1(y, z,d

′, D = n)} can be represented as an
MTE utility potential whose components are equal to one of the fragments
u1(y, z,d

′, D = 1), . . ., u1(y, z,d
′, D = n) in each region of a hypercube of

ΩZ, where Z are the continuous chance variables in X.
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Fig. 2. The MTE utility potential fragments u1(x, D = 1) and u1(x, D = 2) in
Example 1.

Proof. The proof of Theorem 1 is demonstrated using the following example.
Consider the following MTE utility potential fragments defined over the
interval [0, 1]:

u1(x,D = 1) = 7.439066 − 6.692019 exp{0.0720496x}
u1(x,D = 2) = 176.548799 − 355.430039 exp{0.0720496x}

+179.132456 exp{0.1440991x}

These MTE utility potential fragments are shown graphically in Figure 2.
The function u↓X

1 = Max{u1(x,D = 1), u2(x,D = 2)} can be represented
as an MTE utility potential umax(x) by finding the point where the MTE
utility potentials u1(x,D = 1) and u1(x,D = 2) are equal (if any), then
determining which component maximizes the new potential on the resulting
sub-intervals. To find the point where the two functions are equal, we use
the procedure described in Section 4.3. The MTE utility potential fragments
are equal at x = 0.442, so the new MTE utility potential is defined as:

umax(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

7.439066 − 6.692019 exp{0.0720496x} if 0 ≤ x < 0.442

176.548799 − 355.430039 exp{0.0720496x}
+179.132456 exp{0.1440991x} if 0.442 ≤ x ≤ 1.

This MTE utility potential is shown graphically in Figure 3.

A similar maximization process can be used with multi-variate MTE util-
ity potentials and/or when more than two MTE utility potentials are being
evaluated to define a new component potential.
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Fig. 3. The MTE utility potential umax for X in the proof of Theorem 1.

4.3 Defining Component MTE Potentials

Theorem 1 states that the maximum of several MTE utility potentials can
be defined as an MTE utility potential whose components are equal to one
of the original MTE utility potentials. Defining the marginalized MTE utility
potential involves finding the points where the component potentials are equal
(if any), then evaluating each component potential on either side of these
points to determine which components comprise the marginalized MTE utility
potential.

Consider the problem of finding f(x) = Max{u1(x), . . ., un(x)} where Ψ =
{u1(x), ..., un(x)} are univariate MTE utility potentials with ΩX = {x : x ∈
[a, b]}. We use the bisection search method (see, e.g., Bazaraa et al. 1993)
to find the points where ui(x) − uj(x) = 0, for all i, j = 1, ..., n, i �= j. Let
E = {e1, ..., eK} be the set of points where two or more of the MTE utility
potentials in Ψ are equal (with the exception that e1 = a) and let ε be the
allowable length of the final interval of uncertainty. Let Φ = {φ1, ..., φK} be
a vector of values defining the index of the MTE utility potential in Ψ that
maximizes f(x) on each of the sub-intervals created by the points in E, with
maxk = uφk

(ek+ε). The pseudo-code of a procedure for finding the component
MTE utility potentials in the function f(x) described above is as follows:

INPUT: Ψ, a, b, ε
OUTPUT: E, Φ
INITIALIZATION
E ← {a} /* E contains the equality points of potentials in Ψ */
φ1 ← 1
Φ← {φ1} /* Φ contains the index for the maximum MTE utility potentials */
FOR i = 1 : (n − 1)

Find points di where ui(x)− uj(x) = 0, for all j = i+ 1, ...n, i �= j,
within error bound ε using the bisection search method.
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E ← E ∪ {di}
E ← Rank(E) /* Re-order E in ascending sequence */

END FOR
FOR k = 1 : | E |
maxk = u1(ek + ε)

FOR i = 2 : n
IF ui(ek + ε) > maxk

φk = n
maxk = ui(ek + ε)

END IF
END FOR

END FOR

The resulting component MTE utility potential defined in the procedure above
is described as follows:

umax(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uφ1(x) if a < x < e2

uφ2(x) if e2 ≤ x ≤ e3

...

uφK
(x) if eK < x < b .

4.4 Fusion Algorithm

A fusion algorithm for solving influence diagrams is described by Shenoy
(1993). The fusion algorithm involves deleting variables from the network in a
sequence which respects the precedence constraints (represented by arcs point-
ing to decision variables in influence diagrams) in the problem. In influence
diagrams, for any random variable R and any decision variable D, if R is an
information ancestor of D, then this means that the true value of R will be
known at the point when a decision alternative has to be chosen at D. If R is
not an information ancestor of D, then the true value of R is assumed to be
not known. The set of such relations constitutes the precedence relations for
the problem. A deletion sequence for the variables must obey the precedence
relation in the sense that if R is known when a choice at D has to be made,
then D must be deleted before R, and vice-versa. There may be several dele-
tion sequences possible for an influence diagram, but all of these will lead to
the same solution.

During the solution phase, the next variable, X, in the deletion sequence is
selected and a “fusion” operation is performed on the utility and/or probability
potentials containing X in their domain. The fusion operation combines all
potentials with X in their domains, and the resulting potential is marginalized
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such that X is eliminated from the domain. The marginalization operation
used depends on whether X is a continuous chance variable, discrete chance
variable, or decision variable. The potentials withoutX in their domain remain
unchanged and the solution proceeds similarly until all variables are eliminated
from the network. The solution in Section 6.1 is an example utilizing the fusion
algorithm.

The fusion method applies to problems where there is only one utility function
(or a joint utility function which factors multiplicatively into several utility
potentials) and uses only the operations of combination and marginalization as
described above. Moral et al. (2001) shows that the class of MTE potentials is
closed under marginalization (of chance variables) and combination. Theorem
1 states that the class of MTE potentials is closed under marginalization
of discrete decision variables. Thus, MTE influence diagrams can be solved
using the fusion algorithm, since only combinations and marginalizations are
performed.

The general fusion algorithm described by Shenoy (1992) for additive decom-
position of the joint utility function involves division of probability potentials.
Since the class of MTE potentials is not closed under division, we restrict
our discussion to the case of multiplicative decomposition as no divisions are
required for this case.

5 Estimating MTE Utility Functions

In this paper, we consider problems with one joint utility function or a joint
utility function which factors multiplicatively. The utility functions can be
of any form as long as one can approximate them using MTE potentials.
For instance, consider a class of utility functions as follows. The joint utility
function (or one of its multiplicative factors) is a function of M variables in
the influence diagram, u = f(X1, ..., XM). This joint utility function may be
composed of P additive factors, each a function of Kp multiplicative factors,
where Kp is the number of multiplicative factors composing the p-th additive
factor. Thus, we can restate the joint utility function as

u = f1,1(xi) · · · f1,K1(xi) + . . .+ fP,1(xi) · · · fP,KP
(xi) , (8)

where xi is a vector of values for a subset of the variables in the influence
diagram. We restrict the components fp,k(xi) to be one of three forms:

(1) A real number.
(2) An MTE potential of the form in (1).
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(3) An arbitrary polynomial function of one variable, xi.

The class of utility functions described above contains the class of polynomial
functions.

Example 1. Consider the joint utility function u(x, y, z) = 3x2y+4z2+3xz2+
3y2.

This utility function contains four additive factors, P = 4. These additive
factors can be decomposed into constants and the following linear functions:
g1(x) = x, g2(y) = y, g3(z) = z. Thus, u(x, y, z) can be restated as

u(x, y, z) = 3[g1(x)]
2 · g2(y) + 4[g3(z)]

2 + 3g1(x) · [g3(z)]
2 + 3[g2(y)]

2 .

To create an MTE potential which approximates the joint utility function, we
create an MTE approximation φp,k(xi) = a

(p,k)
0 + a

(p,k)
1 exp{a(p,k)

2 xi} for each
fp,k(xi) (unless fp,k(xi) is already of the form in (1) or is a constant), then
re-combine the MTE approximations into a joint MTE utility potential. Func-
tions that exhibit no changes in concavity/convexity over their domains can
be well-approximated by an MTE potential with one independent term and
one exponential term; if a term fp,k(xi) has changes in concavity/convexity, we
can simply fit additional exponential terms. The result of the combination is
an MTE utility potential because the class of MTE potentials is closed under
addition and multiplication (Moral et al. 2001).

To create the MTE approximations φp,k(xi), we use unconstrained, non-linear
optimization and solve

argmin

a
(p,k)
0 , a

(p,k)
1 , a

(p,k)
2

n∑
j=0

(fp,k(xij)− φp,k(xij))
2

where xij, j = 0, ..., n is a set of points obtained by evenly dividing the domain
of Xi. We then replace each fp,k(xi) in (8) with its MTE approximation φp,k(xi)
and simplify the function accordingly.

6 Examples

6.1 Oil Wildcatter with Continuous Uncertainties

This example is an adaptation of the Oil Wildcatter problem from Raiffa
(1968). We model some variables as continuous uncertainties.
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Fig. 4. A hybrid influence diagram representation of the Oil Wildcatter problem
with continuous uncertainties.

An oil wildcatter must decide whether to drill (D = 1) or not drill (D = 0).
He is uncertain whether the hole is dry (O = 0), wet (O = 1), or soaking
(O = 2). The oil volume (V ) extracted depends on the state of oil (O). If
the hole is dry (O = 0), no oil is extracted. If O = 1, the amount of oil
extracted follows a normal distribution with a mean of 6 thousand barrels and
a standard deviation of 1 thousand barrels, i.e. £(V | O = 1) ∼ N(6, 12). If
O = 2, the amount of oil extracted follows a normal distribution with a mean
of 13.5 thousand barrels and a standard deviation of 2 thousand barrels, i.e.
£(V | O = 2) ∼ N(13.5, 22). The cost of drilling (C) is normally distributed
with a mean of 70 thousand dollars and a standard deviation of 10 thousand
dollars, i.e. £(C) ∼ N(70, 102). The log of oil prices (P ) follows a normal
distribution with a mean of $2.75 and a standard deviation of $0.7071, i.e.
£(P ) ∼ LN(2.75, 0.70712). The wildcatter assumes potential θ for O with
values θ(0) = P (O = 0) = 0.500, θ(1) = P (O = 1) = 0.300, and θ(2) =
P (O = 2) = 0.200.

At a cost of 10 thousand dollars, the wildcatter can conduct a seismic test
which will help determine the geological structure at the site. The test results
(R) will disclose whether the structure under the site has no structure (R = 0)
(bad), open structure (R = 1) (so-so), or closed structure (R = 2) (very
hopeful). Experts have provided Table 1 which shows the probabilities of test
results (R) conditional on the state of oil (O) and test (T ) (which we will refer
to as potential δ for {R,O, T }). Figure 4 shows a hybrid influence diagram
representation of the Oil Wildcatter problem with some discrete and some
continuous chance variables.
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Table 1
Probabilities of seismic test results conditional on the amount of oil and test.

Seismic Test Results (R)

————————————————–

Amount of No Open Closed No

Oil (O) Structure Structure Structure Result

P (R | O, T = 1) (R = 0) (R = 1) (R = 2) (NR)

Dry (O = 0) 0.60 0.30 0.10 0

Wet (O = 1) 0.30 0.40 0.30 0

Soaking (O = 2) 0.10 0.40 0.50 0

P (R | O, T = 0)

Dry (O = 0) 0 0 0 1

Wet (O = 1) 0 0 0 1

Soaking (O = 2) 0 0 0 1

6.1.1 Representation

The single utility function in the problem has domain {C, P, V,D, T } and can
be stated (in $000) as

u0(v, p, c,D = 1, T = 1) = v · p− c− 10

u0(v, p, c,D = 1, T = 0) = v · p− c
u0(v, p, c,D = 0, T = 1) = −10

u0(v, p, c,D = 0, T = 0) = 0 .
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Fig. 5. MTE approximations of the PDF’s for V given O.

The utility function u0 can be approximated by an MTE potential u1 by using
the method described in Section 5. The resulting MTE potential is

u1(v, p, c,D = 1, T = 1) =

600, 462, 529.9767685 + 24, 504.975886 exp{ − 0.00004109695c}
−600, 488, 161.2450081 exp{0.00004069868p}
+600, 488, 190.477144 exp{0.00004069868p + 0.00004078953v}
−600, 487, 073.8393291 exp{0.00004078953v}

u1(v, p, c,D = 1, T = 0) = u1(v, p, c,D = 1, T = 1)− 10

u1(v, p, c,D = 0, T = 1) = −10

u1(v, p, c,D = 0, T = 0) = 0 .

Normally distributed chance variables are modeled using the 2-piece MTE ap-
proximation to the normal PDF given in (3). The PDF’s for V givenO = 1 and
V given O = 2 are approximated by the MTE potential fragments ν(v, O = 1)
and ν(v, O = 2), respectively. These potential fragments constitute the poten-
tial ν for {V,O} and are displayed graphically in Figure 5. The PDF for C is
approximated by the MTE potential ϑ.
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Fig. 6. The MTE approximation for the distribution of P overlayed on the actual
LN (2.75, 0.70712) distribution.

An MTE approximation of the lognormal PDF ρ for P is constructed using
the procedure in Cobb et al. (2006). This MTE potential is as follows:

ρ(p) = fP (p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.024921 + 0.186834 exp{0.249714(p− 9.44687)}
+0.101347 exp{1.419659(p− 9.44687)} if 1.86706≤ p < 3.47531

0.174804− 0.062119 exp{ − 0.116729(p− 9.44687)}
−0.066038 exp{0.116608(p− 9.44687)} if 3.47531≤ p < 9.44687

0.049064 + 0.000000154912 exp{1.480552(p− 9.44687)}
−0.002427 exp{0.287079(p− 9.44687)} if 9.44687≤ p < 15.57526

−0.583002 + 0.057534 exp{ − 0.079477(p− 9.44687)}
+0.584025 exp{ − 0.000015(p− 9.44687)} if 15.57526≤ p ≤ 129.93107.

The potential ρ is displayed graphically in Figure 6 overlayed on the actual
LN(2.75, 0.70712) distribution.

6.1.2 Solution

To calculate the optimal strategy and expected profit associated with that
strategy, we use the fusion algorithm and delete the variables in the sequence
C, P, V,O,D,R, T .

To remove C , we calculate u2 = (u1 ⊗ ϑ)↓{P,V,D,T }. An example of this calcu-
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Table 2
The utility function u4 with domain {O, D, T} resulting from the removal of variable
V ($000).

Values of Drill (D) and Test (T )

——————————————–

Amount of D = 1 D = 1 D = 0 D = 0

Oil (O) T = 1 T = 0 T = 1 T = 0

Dry (O = 0) –82.752 –72.752 –10.000 0

Wet (O = 1) 40.955 50.955 –10.000 0

Soaking (O = 2) 192.219 202.219 –10.000 0

lation and one of the resulting utility potential fragments is as follows:

u2(v, p,D = 1, T = 1) =
∫

ΩC

(u1(v, p, c,D = 1, T = 1) · ϑ(c)) dc =

600, 487, 104.6908119

−600, 488, 301.3756697 exp{0.00004069868p}
+600, 488, 330.6078435 exp{0.00004069868p + 0.00004078953v}
−600, 487, 213.969722 exp{0.00004078953v}

To remove P , we calculate u3 = (u2⊗ρ)↓{V,D,T }. An example of this calculation
and one of the resulting utility potential fragments is as follows:

u3(v,D = 1, T = 1) =
∫

ΩP

(u2(v, p,D = 1, T = 1) · ρ(p)) dp =

−494, 334.1115046 + 494, 254.0887283 exp{0.00004078953v}

To remove V , we calculate u4 = (u3⊗ν)↓{O,D,T }, which is described in Table 2.
The potentials remaining in the network after removal of V are u4 with domain
{O,D, T}, δ with domain {R,O, T} and θ with domain {O}. Thus, to remove
O, we calculate u5 = (u4 ⊗ θ ⊗ δ)↓{D,R,T }, which is described in Table 3.

Removing D involves simply maximizing the utility in Table 3 for each config-
uration of {R, T}. The resulting utility function u6 is shown in Table 4. The
optimal policy is drill (D = 1) if a test is performed and the results reveal
open structure (R = 1) or closed structure (R = 2), not drill (D = 0) if a test
is performed and the results reveal no structure (R = 0), and drill (D = 1) if
no test is performed.
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Table 3
The utility function u5 with domain {D, R, T} resulting from the removal of variable
O ($000).

Values of Drill (D) and Test (T )

——————————————–

Results of D = 1 D = 1 D = 0 D = 0

Test (R) T = 1 T = 0 T = 1 T = 0

No Result 0 19.354 0 0

No Struct. (R = 0) –17.295 0 –4.100 0

Open Struct. (R = 1) 7.879 0 –3.500 0

Closed Struct. (R = 2) 18.770 0 –2.400 0

Table 4
The utility function u6 with domain {R, T} resulting from the removal of variable
D ($000), with optimal policies.

Value of Test (T )

————————————-

Results of

Test (R) T = 1 T = 0

No Result 0 19.354 (D = 1)

No Struct. (R = 0) –4.100 (D = 0) 0

Open Struct. (R = 1) 7.879 (D = 1) 0

Closed Struct. (R = 2) 18.770 (D = 1) 0

Summing the values in Table 4 over the possible values of R gives u7(T =
1) = −4.100 + 7.879 + 18.770 = 22.550 and u7(T = 0) = 19.354. Thus, the
optimal test decision is to test (T = 1), and the maximum expected profit is
$22,550.

6.2 Oil Wildcatter with Continuous Test Results

Suppose that the seismic test in the Oil Wildcatter example yields a continuous
reading (R) representing the location of the peak response, measured on the
unit interval [0,1]. The PDF’s for R given O and T = 1 are symmetric beta
distributions as follows: £(R | O = 0, T = 1) ∼ Beta(1, 1), £(R | O =
1, T = 1) ∼ Beta(3.2, 3.2), and £(R | O = 2, T = 1) ∼ Beta(4.2, 4.2).
These distributions are approximated by MTE potential fragments using the
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Fig. 7. The MTE potential fragments for the distribution of R given O and T = 1
representing the distributions of test results given the state of oil.

procedure in Cobb et al. (2006). The PDF for R given {O = 0, T = 1} is the
uniform distribution on the interval [0, 1], which is already an MTE potential.
The PDF for R given {O = 1, T = 1} is approximated by an MTE potential
fragment as follows:

δ(r, O = 1, T = 1) = f{O=1,T=1}(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4, 476.386259− 8, 644.466462 exp{0.0542577r}
+4, 168.080202 exp{0.1127101r} if 0 < r < 0.228837

−9.771378− 15.207250 exp{ − 2.0318469r}
+23.169263 exp{ − 0.5936362r} if 0.228837≤ r < 0.5

−9.771378− 15.207250 exp{ − 2.0318469(1− r)}
+23.169263 exp{ − 0.5936362(1− r)} if 0.5 ≤ r < 0.771163

4, 476.386259− 8, 644.466462 exp{0.0542577(1− r)}
+4, 168.080202 exp{0.1127101(1− r)} if 0.771163≤ r < 1.

The PDF for R given {O = 2, T = 1} is approximated similarly by an MTE
potential fragment and denoted as δ(r, O = 2, T = 1). The MTE potential
fragments δ(r, O = 0, T = 1), δ(r, O = 1, T = 1) and δ(r, O = 2, T = 1)
constitute the potential fragment δ for {R,O, T = 1}. These fragments are
shown in Figure 7—δ(r, O = 0, T = 1) is the flat distribution, δ(r, O = 2, T =
1) is the most peaked distribution, and δ(r, O = 1, T = 1) is in-between. An
observation in the middle of the unit interval will favor O = 2, an observation
near the extremes R = 0 or 1 will favor O = 0, and an observation around
R = 0.275 or 0.725 will favor O = 1.
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Fig. 8. Utility potential fragments u5(r, D = 1, T = 1) (increasing on (0,0.5]) and
u5(r, D = 0, T = 1).

The solution remains the same as in Section 6.1 through the elimination of
variable V . The potentials remaining in the network after removal of V are
u4 with domain {O,D, T}, δ with domain {R,O, T} and θ with domain {O}.
Thus, to remove O, we calculate u5 = (u4⊗θ⊗δ)↓{D,R,T }. The utility fragments
u5(r,D = 1, T = 1) and u5(r,D = 0, T = 1) are shown graphically in Figure 8.
The other utility potential fragments constituting the utility potential u5 are
constants: u5(r,D = 1, T = 0) = 19.354 and u5(r,D = 0, T = 0) = 0.

For T = 1, removing D involves finding Max{u5(r,D = 1, T = 1), u5(r,D =
0, T = 1)} at each point in the domain of R. We can recover an MTE potential
from this calculation by using the procedure described in Section 4.3. In this
case, we find u5(r,D = 1, T = 1) ≈ u5(r,D = 0, T = 1) at 0.212 and 0.788.
The resulting utility potential fragment u6(r, T = 1) (see Figure 9) is defined
as follows:

u6(r, T = 1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u5(r,D = 0, T = 1) if 0 < r < 0.212

u5(r,D = 1, T = 1) if 0.212 ≤ r ≤ 0.788

u5(r,D = 0, T = 1) if 0.788 < r < 1.

The optimal strategy is drill if the test result is in the interval [0.212, 0.788]
and not drill otherwise. For T = 0, removing D involves simply selecting the
value of D which yields the highest utility; thus, we select D = 1 which gives
u6(r, T = 0) = 19.354.
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Fig. 9. The utility potential fragment u6(r, T = 1).

Removing R results in utility potential u7, defined as follows:

u7(T = 1) =

1∫

0

u6(r, T = 1) dr = 19.802

u7(T = 0) = 19.354 .

Thus, the optimal decision is to test (T = 1) and the maximum expected
profit is $19,802.

7 Summary and Conclusions

We have described MTE influence diagrams and demonstrated a procedure
for solving MTE influence diagrams with one joint utility function (or multi-
plicative factors of one joint utility function) when probability distributions
are represented by MTE probability densities and utility functions are repre-
sented by MTE utility potentials. Any continuous PDF can be modeled by
an MTE potential, so any continuous random variable can be represented in
an MTE influence diagram. This includes, e.g., conditional linear Gaussian,
gamma, beta, and lognormal distributions. The solution method presented
places no restrictions on the arrangement of discrete and continuous chance
variables in the influence diagram.

As described, MTE influence diagrams have some limitations. First, the nu-
merical stability of the solution algorithm may be an issue in problems where
the MTE approximations have very large and/or very small parameters. Rumı́
and Salmerón (2005) devised a method to improve computational efficiency
and numerical stability of calculations with MTE potentials. In operations
involving MTE probability potentials, their method can be used to “prune”
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terms that contribute an insignificant amount of density to the resulting po-
tential, thus reducing the overall number of terms in the resulting potential,
which eliminates some terms with very small parameters. We have also exper-
imented with a method of operating with a linear transformation of an MTE
utility potential during the solution phase in MTE influence diagrams. This
method takes advantage of the fact that for a constant k, an MTE probability
density φ for Z, and an MTE utility potential u for Z, the following holds:

k ·
∫

ΩZ

u(z) · φ(z) dz =
∫

ΩZ

(k · u(z)) · φ(z) dz

Thus, we can transform the MTE utility potential such that the parameters are
as close to one as possible, perform operations on the MTE influence diagram,
then recover the appropriate expected utility at the end. Such a method can
help avoid making successive calculations with increasingly smaller or larger
numbers. We leave the detailed description of these two methods for improving
the numerical stability of MTE influence diagrams for future research.

Second, MTE influence diagrams only allow for multiplicative factorization of
the joint utility function. This is because solving an influence diagram with
an additive factorization involves division of potentials, and the class of MTE
potentials is not closed under division.

Third, MTE influence diagrams only allow discrete decision variables. This is
because Theorem 1, which states that the class of MTE potentials is closed
under marginalization of decision variables, holds only for discrete decision
variables. Cobb (2006) describes an extension of MTE influence diagrams that
allows continuous decision variables in certain configurations.
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