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Abstract 
 

Timothy Michael Reed 
 

Department of Chemistry, University of Kansas 
 

Histamine dehydrogenase from Nocardioides simplex (HADH) is a 
flavoprotein that converts histamine to imidazole acetaldehyde and is highly 
specific for histamine.  Chapter one describes the development of 
overexpression and purification a recombinant form of HADH (rHADH) and its 
basic biochemical characterization.  Chapter two describes X-ray structure 
determination of rHADH. Diffraction data were collected to 2.7 Å resolution 
with 99.7% completeness.  The histamine binding motif of HADH are very 
similar to those in the other histamine binding proteins. 
 
Prolyl-4-hydroxylase (P4H) belongs to a family of αketoglutarate-dependent 
non-heme iron oxygenases.  Selective inhibitors of P4H can be potential 
therapeutics for fibrosis.  Chapter three discusses the design of inhibitors that 
target P4H in the ER using the signal peptide KDEL, which is specific to the 
ER.  Phenanthroline-GKDEL demonstrates a 100-fold increase in potency in 
inhibiting P4H produced in the cultured human fibroblast cells versus isolated 
enzyme. Fluorescent microscopy using a fluorescently tagged inhibitor 
demonstrates uptake of the phen-E(EDANS)VKDEL inhibitor into the ER. 
 
Nitric oxide (NO) is an important signaling molecule in the body, and the site-
specific timed release NO could be utilized in the treatment of various medical 
conditions.  Chapter four discusses the photorelease of NO from a ruthenium 
salen complex immobilized within a porous material.  This material transfers 
NO to myoglobin within 20 minutes.  NO is released from this material in the 
presence of light; however, during periods of darkness, the release of NO was 
not observed.  This is the first system where NO is photoreleased from an 
immobilized polymer support.    
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Chapter 1 

Introduction 

 

 Metalloproteins are proteins with cofactors that involve a metal center 

and are involved various important roles in biological system.1  The list of 

roles and functions of metalloproteins is exhaustive but includes the following: 

oxygen transport (iron-hemoglobin),2 the reduction and oxidation of toxic 

radical species (manganese-superoxide dismutase),3 or stereospecific 

reactions (cobalt-glutamate mutase).4  Understanding the structure and 

function of these metalloproteins often begins with the x-ray crystallographic 

structure of the enzyme.  There are close to 44,000 protein x-ray 

crystallographic structures in the Protein Data Bank.5   The 3-D crystal 

structures provide information about the metalloprotein’s active site, including 

important metal-coordinating residues, location, and void space.  

Metalloproteins are also important targets for drug design due to their 

importance in biological processes.  The design of inhibitors that chelate of 

metal centers in metalloproteins could be used for various illness including 

cancer, arthritis, and fibrosis.6-8  The study and understanding of the structure 

and function of metalloproteins provides inspiration into design of materials 

and devices.9   Metalloproteins found in nature contain ideal chemical 

properties such as sight isolation, stereospecific reactions, formation of highly 

reactive species, and catalyzed reactions all at ambient temperature and
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pressure.  Scientist and engineers look to these processes to improve 

systems and provide inspiration towards the new design of materials and 

devices.   

 

Expression, Purification and Characterization of Histamine 

Dehydrogenase 

 

1.1. Background 

1.1.1.  Physiological Importance of Histamine 

Histamine is an important biogenic amine (Figure 1.1) that performs 

various physiological roles in allergic reaction, cell proliferation and as a 

neurotransmitter.10  Histamine is stored in the granules of mast cells, which 

are located near the nose, mouth, and blood vessels and function in the 

immune response at potential sites of injury.2,3  Histamine is also located in 

the histaminergic neurons within the brain, where it functions as a 

neurotransmitter.11  In the stomach, histamine regulates the release of gastric 

acid, which is stored in enterochomaffin-like cells.12  Between regulating the 

immune response and stomach acid secretion, the roles histamine plays in 

the body are vital for homeostasis.  The physiological binding of histamine 

within the human histamine receptors continues to gain understanding.13-15  

The structures of human histamine receptors have not yet been determined. 
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Figure 1.1.  Biogenic amines and polyamines10 

 

In the absence of this information, histamine binding proteins, which are 

selective towards histamine as a substrate provide an understanding of the 

physiological binding of histamine.16  Elevated histamine levels in humans 

have been linked to several deleterious conditions, including gastric 

disorders, mastocytosis, and cancer.10  The high levels of histamine that 

accumulate in fish as it begins to spoil cause scombroid food poisoning, 

leading to symptoms of headache and diarrhea.17   The development of a 

histamine sensor has been sought-after for food-safety regulations as well as 

understanding histamine’s role in cancer.18-20  
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1.1.2.  Histamine Dehydrogenase Background 

 Histamine dehydrogenase (HADH) was first discovered by the Yorifuji 

group by screening the extracts of bacteria grown on histamine as a sole 

nitrogen source.21  The extract of a soil bacterium, Nocardioides Simplex, was 

able to metabolize histamine.  Subsequently, the enzyme was isolated and 

annotated as HADH.  HADH is a homodimer, where each subunit was found 

to be 84 KDa.  Early studies suggested a narrow range of substrate 

selectivity.  In addition to histamine, only putrescine was oxidized by HADH. 22  

HADH was originally thought to contain the tryptophan tryptophyl (TTQ) 

cofactor found in methylamine dehydrogenase22 because of the similarity in 

the UV/vis absorbance spectrum and the positive staining in the quinone-

dependent redox cycling.22 

There are two major families of amine-oxidizing enzymes:  

quinoproteins13-15 and flavoproteins.23   Quinoproteins are a class of enzymes 

that contain covalently-linked quinones as their cofactors, derived either from 

a tyrosine or tryptophan residue.14,16-18  Interestingly, amine oxidases (copper 

amine oxidases and lysyl oxidases) contain tyrosine-derived quinone 

cofactors and amine dehydrogenases (methylamine dehydrogenase, 

aromatic amine dehydrogenase, butylamine dehydrogenase) contain 

tryptophan-derived quinone cofactors.  Flavoproteins are subdivided into 

oxidases or dehydrogenases and contain flavin adenine dinucleotide (FAD) or 

flavin mononucleotide (FMN) as redox active cofactors.23  FAD-dependent 
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monoamine oxidase, is vital in the metabolism of the neurotransmitters 

serotonin, dopamine and norepinephrine.19,20 Trimethylamine dehydrogenase 

(TMADH)21 catalyzes the demethylation of trimethylamine to formaldehyde 

and dimethylamine.  FMN-dependent dehydrogenases are trimethylamine 

dehydrogenase (TMADH) and dimethylamine dehydrogenase (DMADH) 

where the C6-isoalloxazine ring of the 6-S-Cys-FMN is crosslinked through 

the thioether bond of a Cys residue.7,12  These enzymes also have an [4Fe-

4S] cluster, which is involved in the redox active cycle by transporting 

electrons (Figure 1.2). 7,12  Limburg et al. further characterized the 

biochemical properties of HADH in order to define whether HADH is a TTQ-

dependent amine dehydrogenase.24  

Limburg et al. cloned the 2.1 kb gene coding the full-length HADH from 

the genomic DNA of N. simplex.24  A BLAST search uncovered sequence 

identity with several flavoproteins such as trimethylamine dehydrogenase 

(TMADH) (40% identity, 56% similarity) and dimethlyamine dehydrogenase 

(DMADH) (37% identity and 51% similarity).24  The crystal structure of 

TMADH has been determined to 2.2 Å, and it is known to contain the redox 

active cofactors 6-S-Cys-FMN (6-S-Cys-FMN) and an [4Fe-4S] cluster.22   

Sequence analysis revealed the Cys residue in TMADH involved in the 

covalent cross-link of FMN to yield 6-S-Cys-FMN is conserved in HADH 

(Figure 1.3).24  HADH also has the C(2X)C(2X)C(11-12X)C motif that is  
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Figure 1.2.  Structures of A) 6-S-Cysteinly-flavin mononucleotide and B) [4Fe-
4S] iron sulfur cluster found in TMADH, DMADH, and HADH7,12 
 

characteristic of proteins with an [4Fe-4S].  In this motif, 2X and 11-12X 

represent residues in between the cysteines that are coordinated to the iron-

sulfur cluster.24  These results strongly suggest that HADH belongs to the 

same family as TMADH with 6-S-Cys-FMN and an [4Fe-4S] cluster as the 

redox-active cofactors.24   

HADH catalyzes the oxidative deamination of histamine to imidazole 

acetaldehyde (Equation 1.1). Reduction of HADH occurs with addition of 

excess histamine, and the enzyme undergoes single turnover (Scheme 1.1).24  

Histamine binds to the active site and reacts with 6-S-Cys-FMN. Histamine is 

oxidized to imidazole acetaldehyde concomitant with the 2e--reduction of 6-S-

Cys-FMN(6-S-Cys-FMNR) .  After another molecule of histamine binds to the 

active site, the disproportionation reaction between the 6-S-Cys-FMNR and 

[Fe4-S4] cluster occurs to produce the semiquinone form of 6-S-Cys-FMN 

and one electron reduced [Fe4-S4].  The semiquinone of 6-S-Cys-FMN in 

HADH shows a UV/Vis spectrum with an absorbance maximum at 362 nm 

(Figure 1.4).  TMADH undergoes the same reaction under single turnover  
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Equation 1.1.    

 

 

Figure 1.3.  Sequence Alignment of HADH and TMADH24 

 

conditions, with the flavin semiquinone absorbance at 366 nm.23,24  

Comparison of the UV/Vis spectra of HADHox and HADHred, with TMADHox 

and TMADHred reveals almost identical spectral characteristics.24   
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Scheme 1.1.  Proposed reaction mechanism of HADH under single reaction.  
Once substrate binds there is disportionation between 6-S-Cys-FMNH2 and 
[4Fe-4S]2+ with the flavin oxidized to the semiquinone and the [4Fe-4S]2+ in 
the +1 state24  
 

 
 
Figure 1.4.  UV/Vis Spectrum of oxidized and reduced forms of A) HADH and 
B) TMADH24 
 
 

The EPR spectra of the unpaired electrons on the [4Fe-4S] cluster and 

the semiquinone of both enzymes gave further evidence of the similarities in 

redox active cofactors (Figure 1.5).24  The electrons on the semiquinone and  

 [4Fe-4S]+ couple antiferromagnetically, which causes strong, specific EPR 

features.   HADHred has an EPR signal at g = 2.00 and features at g = 2.15 

and 1.88 (Figure 1.5A).24  This g = 2.00 was believed to arise from the radical  
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Figure 1.5.  EPR Spectrum of A) reduced HADH and B) reduced TMADH24 

 

on the semiquinone, while the electron on the [4Fe-4S]+ demonstrates 

features at g = 2.15, g =2.00, and g = 1.88.  TMADHred also has a strong EPR 

signal, with the semiquinone and [4Fe-4S]+ peaks at similar values (Figure 

1.5B).7,25  Unlike HADHred, TMADHred gives a half-field signal, which is due to 

the coupling of electrons on the [4Fe-4S]+ and the 6-S-Cys-FMN 

semiquinone.  The EPR spectrum for HADHred does not contain a half- field 

signal, which suggests that environment of the two cofactors might be  

different.24  The spatial position of the cofactors or the arrangement of amino 

acids around the cofactors could affect the spin coupling of the electrons.24  

This could affect the coupling of the two unpaired electrons, as the distance 

between the two electrons in HADH may be too far for spin-spin interactions.  

Overall, comparison of the sequence analysis and spectroscopic data 



 10 

demonstrates similarities between TMADH and HADH, again supporting the 

presence of the 6-S-Cys-FMN and iron-sulfur containing active site, but with 

possible difference in environment between the two redox sites.24 

1.1.3.  Substrate Specificity of HADH  

 HADH is only able to oxidize a narrow range of amines, as 

demonstrated in Table 1.1.7  HADH does not oxidize trimethylamine (TMA) or 

dimethylamine (DMA), even with the high sequence identity of HADH with 

TMADH and DMADH.  The biogenic amines dopamine and tyramine are also 

not substrates for HADH.  The products of amino acid metabolism (histamine, 

agmatine, and putrescine) are all substrates, with histamine demonstrating 

the highest catalytic efficiency [kcat/Km=2.1 (± 0.4) x 105 M-1 s-1] and lowest Km 

value (31 ± 11 µM).  HADH demonstrates substrate inhibition at high 

concentrations of histamine or agmatine.  As will be discussed further in the 

text, the substrate inhibition is thought to arise from a stable complexation of 

substrate with 6-S-Cys-FMNsq-[4Fe-4S]+, analogous that observed in 

TMADH.25  The selectivity of HADH for histamine provides evidence for its 

potential use in a histamine biosensor.   

1.1.4.  pH Effect on kcat/Km and kcat  

 Limburg et al. determined the pH dependence of kcat/Km and kcat.24  The 

graph of kcat/Km vs. pH was best fit with a double ionization (pKa = 5.6 ± 0.3, 
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                 Substrate kcat (s-1) Km (µM) kcat/Km  (M-1s-1) 

 

Histamine 

 

6.6 ± 2.3 

 

31 ± 11 

 

213000 ± 37000 

 

Agmatine 

 

2.2 ± 0.1 

 

37 ± 6 

 

59800 ± 6000 

 

Putrescine 

 

1.9 ± 0.1 

 

1280 ± 240 

 

1480 ± 190 

Trimethylamine      -       -        - 

Methylamine      -       -        - 

 

Table 1.1.  Substrate specificity of HADH24 

 

pKa = 5.4 ± 0.2) with the fastest rate observed at pH below 6.0 (Figure 1.6).24  

The pKa for imidazole in solution is 6.04 and most likely contributes to one of 

the ionizations, which suggests the mono-protonated form of histamine binds 

to the active site.  The effect of ionizations in kcat/Km also suggested 

involvement of amino acid residues in substrate binding or stability, as 

observed with TMADH.26  Two possible residues are Glu79 and Asp358, as 

they can provide ionic interactions to stabilize the positively charged amino 

group of histamine.7,30  pH values above 9.3 were not linear enough to obtain 

kinetic data, so it was not able to determined if the deprotonated amine (pKa  
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Figure 1.6.  The plot of pH dependence on kcat/Km and kcat.  The solid dots 
represent the values of pH dependence on kcat/km.  The graph fits best to a 
double ionization (pKa = 5.6 ± 0.3, pKa = 5.4 ± 0.2) represented by the dashed 
opposed to the solid line that represents the a single ionization (pKa = 6.2 ± 
0.2).  The open circles represent the effect of pH on kcat.  The graph first best 
to a single ionization (pKa = 5.6 ± 0.1)24  
 
 
 
9.75) affected the rate.  The neutral amines have been proposed to be the 

reactive species for MAO and TMADH.27 28 A single ionization (pKa = 5.6 ±  

0.1) has also been observed for kcat, but this could be attributed to the 

electron acceptor DCPIP (pKa = 5.8) or an amino acid residue found in the 

active site.24  Further studies such as site-directed mutation of Glu79 and 

Asp358 as well as using agmatine as a substrate were proposed to assign 

the pKas.24   

1.1.5.  Deuterium Isotope Effect 
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 The mechanism of C-H bond cleavage for flavoproteins has still much 

been debated.  Efforts to understand the mechanism of histamine oxidation 

by HADH were recently undertaken by Limburg et al. by examining the 

isotope effect.24  Studies with deuterated histamine demonstrated a partial 

rate limiting step with C-H bond cleavage with a D(kcat/Km) of 7.0 (± 1.8)under 

subsaturating concentrations.  Under saturation conditions, the rate-

determining step seems to involve the electron transfer step, analogous to 

TMADH.25  This observed isotopic effect for HADH is close to the semi-

classical maximum.  This involves the H-tunneling and transfer that occur 

through the energy barrier separating reactant from product; therefore, it falls 

below the classical transition state.  This process has been observed for 

copper amine oxidase from bovine serum.29  Tunneling has also been 

suggested for TMADH, as a temperature-dependant KIE was seen at high pH 

values.28   Scrutton et al. also observed a large kinetic isotopic effect for 

TMADH and purposed a nucleophilic addition for substrate oxidation.28  

Correlation of KIE of HADH and TMADH suggested  a similar mechanism of 

substrate oxidation of HADH.24 

 The understanding of the structure and function of HADH would benefit 

from the development of a recombinant expression of HADH.  This will 

provide large quantity of enzyme for crystallography and sensor development.  

Spectroscopic and mechanistic studies including mutant protein would also 

benefit from an overexpression system of HADH.  Solving the crystal 
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structure of HADH will aid towards the fundamental understanding how 

histamine binds in this enzyme. Understanding the binding motif in HADH, 

could provide understanding towards the binding of histamine in the human 

histamine receptor.  This could possibly aid in the design of antihistamines.16  

The crystal structure will also provide further interpretation and understanding 

of Limburg et al. research on C-H bond cleavage and substrate binding.  The 

C-H bond cleavage mechanism is still unclear for many flavoproteins.30  

Further kinetic studies and substrate co-crystallization of HADH could 

potentially led to understanding of C-H bond cleavage in HADH and 

flavoproteins.  Also, with HADH’s selectivity for histamine as a substrate, 

development of a biosensor for histamine will further help in understanding of 

this biogenic amine and move towards regulating histamine levels in humans 

and fish products. 

1.1.6.  C-H Bond Cleavage in Flavoproteins 

 The mechanism of C-H bond cleavage in flavoproteins is not fully 

understood.  Techniques such as KIE, quantitative structure-activity 

relationships (QSAR), and radical and substrate inhibitors have been 

employed to understand the mechanism of C-H bond cleavage in monoamine 

oxidase (MAO),32-34 TMADH,28,31 and D-amino acid oxidase (DAAO).31  The 

three different mechanisms shown below have been proposed: 

 1)  polar nucleophilic attack 

 2)  electron transfer 
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 3)  hydride transfer 

Figure 1.7 demonstrates these possible mechanisms of substrate oxidation. 

9,32 

1.1.6.1  Polar Nucleophilic Attack 
 
 The polar nucleophilic attack follows the mechanism described in 

Figure 1.7A.  The free amine attacks the isoalloxazine ring at the C4a 

position.  This is followed by proton abstraction at the Cα position. Oxidation 

of substrate forms the imine, which is then hydrolyzed to the product 

aldehyde and ammonium ion.  The reactivity of the flavin was confirmed by 

model36,37 and computation studies 22 of the isoalloxazine ring.  Further QSAR  

studies of MAOA were performed with para- and meta-substituted 

benzylamines.32  These studies demonstrate that the negative charge build-

up at the benzyl carbon position, suggesting a proton abstraction mechanism 

as the mode of C-H bond cleavage.  The results of mutagenesis and 

substrate inhibition studies on TMADH support polar nucleophilic attack, 

which will be discussed later on in the chapter.   

1.1.6.2.  Electron Transfer 

 The electron transfer mechanism involves the single electron transfer 

(SET) from the lone pair of the amine nitrogen to the flavin to yield an aminyl 

radical cation and flavin semiquinone (Figure 1.7B).33   SET has been 

observed in electrochemical and chemical oxidation of amines, with the 

possibility of occurring in flavoproteins.33  Radical formation in the active site  
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Figure 1.7.  Possible mechanism for C-H bond cleavage in flavoproteins A) 
polar nucleophilic attack  B) electron transfer  C) hydride transfer9,32 
 
 
 
is also supported by highly reactive inhibitors, which upon radical formation in 

the active site, perform a ring opening mechanism that irreversibly inactivate 

the enzyme.34  Studies on MAO with 1-phenylcyclopropylamine and 1-

phenylcyclobutylamine showed that the enzyme underwent the one-electron 

reduction and the resulting radical reaction lead to the irreversible inactivation 

of the enzyme.30  Recent efforts have been made to observe the radical 

formation in the active site by EPR spectroscopy.32,33  The radical formed by a 

single electron donation to MAO A on the FAD may exist in equilibrium with a 

stable tyrosyl radical, as observed by EPR spectroscopy.35  Further evidence 

for radical formation includes an observed anionic flavin radical on the 

isoalloxazine ring in MAO A.36  The difficultly in observing the SET mechanism 
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is the lifetime of the radical that is short-lived and proves to be very difficult to 

observe in the substrate oxidation.   

1.1.6.3.  Hydride Transfer 

 KIE and QSAR results for D-amino acid oxidase were compatible with 

transfer of a hydride from substrate to FAD.31  The linear free energy 

correlation demonstrated little, if any, development of charge in the transition 

state.  The isotope effect and solvent effect were consistent with a highly 

concerted process and a symmetric transition state.  There was also little 

effect for steric parameters, which negates the polar nucleophilic attack 

mechanism and the following mechanism for DAAO was proposed (Figure 

1.7C).  

1.1.7.  pH Dependence of the Redox Properties of HADH 

           The recent discovery of HADH’s cofactor and possible mechanism of 

C-H bond cleavage24 has encouraged the Kano group to probe the pH 

dependence of the redox properties towards the reductive-half reaction of 

HADH.26,40  Stoichiometric titration of HADH with dithionite showed a 

disappearance of 6-S-Cys-FMN absorbance and the appearance of the 6-S-

Cys-FMN semiquinone (6-S-Cys-FMNS) at the beginning of the titration.  The 

6-S-Cys-FMNS gradually decreased as the reduced 6-S-Cys-FMN (6-S-Cys-

FMNHR) formed.  Plotting absorbance change as a function of dithionite 

concentration revealed three moles of dithionite reacting with one mole of 

HADH.40  This was consistent with the reduction of TMADH with dithionite.37  
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Reductive titration with histamine revealed a two to one mole ratio of 

histamine to enzyme, which is also seen in TMADH with trimethylamine.23,40   

Redox potentials were measured using a spectroelectrochemical method at 

pH 7.0.40   Similar results were observed for HADH and TMADH (Table 

1.2).40,41   

When the pH dependence of the redox potentials was examined, little 

pH dependency was found for the 6-S-Cys-FMN oxidized to 6-S-Cys-FMN 

semiquinone couple (6-S-Cys-FMNO/S).40  The 6-S-Cys--FMNS to 6-S-Cys-

FMNR couple (6-S-Cys-FMNS/R) exhibited pH dependence towards the 

negative potential with a slope of -60 mV pH-1, which suggests the single-

electron transfer was coupled with single-proton transfer.  The redox potential  

of the [4Fe-4S] cluster was observed by cyclic voltammetry.  It is relatively 

free from pH dependency at pH < 9, but at pH > 9, the potential drops with a 

slope of -180 mV pH –1.40  The enzymatic activity of HADH is pH dependent 

with regards to acid-base equilibrium.40  The potential for 6-S-Cys-FMNS/R 

decreases (pH<9) with respect to FeSO, suggesting an increased driving force 

of intermolecular transfer from the 6-S-Cys-FMNS to the [4Fe-4S] with 

increasing pH.  This data is also supported by the EPR spectra, which 

indicates an increase in the semiquinone radical at g = 2 as pH increases.  

This could play a role in the observed increased rate constant of HADH as it 

approaches pH 9.  The redox potential of the cofactors gives insight into the 

reaction mechanism and the reductive half reaction of HADH.  
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Table 1.2.  Redox potentials of the cofactor40,41 

 

1.1.8.  Model Systems of Histamine Binding  

One of the great interests of HADH is the substrate selectivity for 

histamine.24  There are a few enzymes that have been either crystallized with 

histamine or a derivate of histamine.16  These histamine binding proteins 

could provide insist into the binding of histamine in HADH and also the 

physiological histamine receptor.  Understand the binding of histamine could 

have implications in drug design of antihistamines.16  Many antihistamines 

have been designed for the treatment of various physiological disorders.38,39  

Commercially available drugs provide allergy relief by targeting the histamine 

H1-receptor in the body,44,45 while another line of histamine antagonists 

targets the H2-receptor and suppresses excess stomach acid. Antihistamines 

are widely prescribed for various ailments, and the design of these drugs 

requires selectivity and specificity.  Model systems of proteins that specifically 
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bind histamine have contributed to the understanding of how histamine binds 

to its receptor and could potentially help in designing specific and effective 

pharmaceutical drugs.16  All four membrane-bound histamine receptor 

proteins have been sequenced, but the three dimensional structures have yet 

to be determined.46-49  As previously mentioned, each histamine receptor (H1, 

H2, H3, H4) has distinct pharmacological roles and requires careful analysis.  

Various histamine binding proteins have been helpful in understanding both 

the mode of histamine binding and the pharmacological and toxicological 

profiles of certain antihistamines.16  These proteins vary in function and 

structure but all provide insight into the binding of histamine, which is broken 

down into two aspects.  The first involves the imidazole ring of histamine as 

the major mode for binding, while the second binds histamine through the 

aliphatic amine for stabilization in the active site.  In histidinal dehydrogenase, 

the imidazole group is stabilized by hydrogen bonding to a glutamic acid side 

chain and coordination to the zinc atom.40  Carbonic anhydrase also binds 

histamine primarily through its imidazole ring; histamine hydrogen bonds with 

asparagine and glutamic acid residues and shares π−π interactions with 

histidine and phenylalanine.41   Histamine binding proteins (HBP), however, 

which are found in found blood sucking insects, are examples of proteins that 

stabilize the free amine of histamine.52  In HBP, the aliphatic amine of 

histamine forms a salt bridge with the glutamic acid and aspartic acid 

residues.  In HBP, however, the imidazole ring of histamine is also involved in 
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binding; imidazole has ionic interactions with glutamic acid and aspartic acid 

residues and is within π-stacking distances with phenylalanine and 

tryptophan.52  The polar, internal binding pocket of HBP is ideal for histamine 

and mimics what is known about how histamine binds to histamine receptors 

within the body.  Through model studies and site directed mutagenesis, it was 

determined that the primary ligand binding pocket in the H1 and H2 receptors 

have aspartic acid, serine, and threonine residues that interact with the amine 

group of histamine via electrostatic interactions in a predominantly polar 

pocket.48,53,54  The conserved aspartic acid in human H1, H2 and H4 

receptors is essential for binding histamine.48  The imidazole ring is stabilized 

by both hydrogen bonding with two glutamic acid residues and also π-

stacking with a tyrosine residue.  The histamine binding pocket in human H1, 

H2, and H3 receptors may be regulated by the bulkier residues tyrosine, 

tryptophan and phenylalanine, as the H4 receptor does not contain these 

residues, which could explain the difference in histamine interaction.48  

Proteins that are selective for histamine will allow research towards the 

understanding of the physiological binding of histamine.48  In addition, these 

proteins will potentially allow for the development of specific antihistamine 

drugs.    

1.1.9.  Detection of Histamine with a Biosensor  

One application of HADH is the potential design of a histamine 

biosensor.  Amperometric detection of histamine could be used to understand 
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the physiological role of histamine, in regulating histamine levels in humans 

and histamine concentrations in fish.  Reports suggest that histamine could 

play a significant role in cancer.1,55  One example of this is the possibility that 

histamine acts as a mediator of proliferation in breast cancer.56-59  Mast cells 

are responsible for the release of histamine and they are found in large 

quantities around the edge of solid tumors.42   At normal concentrations 

histamine is an immunostimulant, but it is believed to be an 

immunosuppressant at high concentrations.43  One study examined the 

involvement of histamine in breast cancer and found elevated levels of 

histamine in the cancerous breast tissue with respect to the adjacent 

noncancerous breast tissue.42  Elevated histamine levels are also associated 

with colon cancer.55,61  The specific role histamine plays in cancer remains 

unclear.62,63  Detection methods with improved sensitivity and specificity could 

further the understanding of histamine’s involvement in cancer.   

The methods of histamine detection in the cancer studies include 

either radioenzymatic assay44 or an HLPC-based derivatization assay.55  The 

official method for the determination of histamine in fish and fermented food, 

as recognized by the Association of Official Analytical Chemists (AOAC), 

involves the derivatization of histamine with the fluorophore .65,66  This method 

requires the time-intensive procedure of isolating pure histamine by removing 

impurities.  These methods have been proven to detect histamine; however, 

the detection of contaminants67,68 and the multi-step purification of histamine 
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are both problematic.55    A number of histamine detection kits are 

commercially available.  These kits are performed by ELISA,45 but the 

expense and time requirements (30 min to 2h) are not ideal.46  An enzymatic, 

real-time biosensor that is specific for histamine would further our 

understanding of histamine and its involvement in cancer, as well as help 

prevent scombroid food poisoning.    

Histamine accumulates in spoiled fish due to the microbial 

decarboxylation of histidine.17  This elevated level of histamine is the main 

toxic agent in scombroid food poisoning, which is one of the most common 

illnesses that occur due to the consumption of fish.  The symptoms of this 

acute illness include sweating, rash, flushing of the face, diarrhea, and 

abdominal cramps.  In severe cases, symptoms can include respiratory 

distress and swelling of the tongue and throat, which require sudden medical 

attention.  Most cures include a dose of antihistamines to reverse the effects 

of excess histamine consumption.17   

1.1.10.  Understanding HADH through TMADH 

1.1.10.1.  Crystal Structure of TMADH 

The high structural homology (40% identity, 56% similarity) of HADH 

and TMADH and the spectroscopic evidence supporting similar redox 

chemistry of HADH and TMADH, suggest TMADH is a good model for 

HADH.24  The crystal structure of TMADH has been determined at 2.2 Å 

resolution, showing two identical subunits with a molecular mass of 83 kDa 
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each.22  The structure of TMADH consists of three distinct domains: a small 

domain (residues 495-648), a large domain (residues 1-383), and a medium 

domain (residues 384-494 and 649-733).  The large domain contains the 6-S-

Cys-FMN and [Fe4-S4] cluster and is comprised of an 8 parallel β-barrel 

enclosed with 8 parallel α-helices.  The covalently linked 6-S-Cys-FMN is 

located in the first parallel β-barrel.  Large excursions of the chain are found 

at the ends of several β-strands, which give enough mass to the large domain 

to bury the 6-S-Cys-FMN.  The entire structural motif of TMADH contains 16 

α-helices and 18 β-strands. The two redox cofactors are located near the 

center of the large domain and are separated by a center-to-center distance 

of 12 Å. The cysteines of the iron-sulfur cluster are contained in a short helix 

located at the end of the β-barrel.  The [Fe4-S4] cluster is found 

approximately 20 Å from the surface of the protein.  The 8α−methyl of the 6-

S-Cys-FMN is only 4 Å from the closest cysteinyl sulfur atom and 6 Å from the 

nearest iron atom.  The close proximity of the 6-S-Cys-FMN and [Fe4-S4] 

cluster could give rise to the electron coupling seen in the EPR spectrum.  It 

is proposed that upon reduction of the 6-S-Cys-FMN, electrons are passed 

from the 6-S-Cys-FMN to the closest cysteine ligand of the [Fe4-S4] cluster 

via the 8α−methyl on the 6-S-Cys-FMN.  The electron transfer is consistent 

with the reaction of various other flavoproteins that undergo electron transfer 

reactions.    
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The 6-S-Cys-FMN is not planar and contains a high degree of bending 

(called a butterfly bend) in the active site.22  Computational studies were 

performed in attempt to understand the role of the butterfly bend in 6-S-Cys-

FMN.71,72  Calculations were conducted on the energetically favored planar 

flavin versus the unfavorable nonplanar flavin.  Results suggest that the 

energetically unfavored bend of the isoalloxazine ring raises its reduction 

potential from -220 mV to -10 mV in lumiflavin and from -174 mV to +17 mV in 

C6—methylsulfanyllumiflavin.71,72  The data suggest that the butterfly bend 

also raises the reduction potential in TMADH.  These structural characteristics 

will aid in the understanding of HADH and its structural properties. 

1.1.10.2.  Covalent Linkage of 6-S-Cys-FMN 

Mutagenesis studies on Cys30 and Trp335 in TMADH have aided in 

the understanding of the 6-S-Cys-FMN crosslinking.21,22,73   TMADH, DMADH, 

and HADH are the only enzymes known to contain the unusual 6-S-Cys-FMN. 

7,12  Cys30 is known to form a C6-covalent link with 6-S-Cys-FMN through 

nucleophilic attack by the thiolate group on cysteine.47 However, when Cys30 

was mutated to alanine in TMADH, the enzyme retained similar quantities of 

6-S-Cys-FMN compared to the recombinantly expressed TMADH (26 and 30 

% mol equivalent flavin: rTMADH to C30A TMADH, respectively).48  The Km of 

C30A was raised by a factor of two and kcat was reduced by a factor of two 

with respect to the recombinantly expressed wild-type protein.  The C30 bond 

was not required for the oxidative deamination of trimethylamine, although 



 26 

inactivation of the enzyme mutant was seen with the addition of excess 

substrate or after approximately 10 turnovers.  Inactivation of the enzyme was 

caused by formation of 6-hydroxy (6-OH) FMN with the C30A species.  Thus, 

the C30 crosslink was thought to prevent the formation of the inactive 6-OH 

FMN.  The inactive 6-OH FMN was characterized spectroscopically by 

observing the disappearance of the 440 nm peak and the appearance of a 

new peak at 400 nm.  The C30A mutant species was treated with perchloric 

acid21 to remove the 6-OH FMN, which was then titrated and the peak at 600 

nm was observed.49  These spectra show a single ionization with a pKa of 

~7.0, which is the known value for 6-OH FMN.49  When the flavin isolated 

from the C30A mutant TMADH was analyzed by MALDI-MS, it was found to 

have a mass of 472.2 +/- 0.1 Da,48 which is within experimental error for the 

known 6-OH-FMN value of 472.3 Da.49  Since 6-OH FMN was only recovered 

after substrate was added, while the as-isolated enzyme was devoid of 6-OH, 

it was thought that the 6-OH FMN forms by an hydroxide attack on the flavin 

substrate intermediate.50  This theory on 6-OH FMN formation held until one 

of the three residues in the “aromatic bowl,” which is involved in cation – π 

bonding of substrate in the active site, was mutated.48  Upon isolation and 

characterization of W355L, however, spectroscopic data showed a species 

similar to 6-OH FMN C30A.  Isolation of the cofactor by perchloric acid 

revealed a single ionization with a pKa of approximately 7.0 and an exact 

mass of 472.2 +/- 0.1, allowing it to be identified as 6-OH FMN.48  The unique 
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characteristic of the 6-OH FMN formation in W355L was the fact that it formed 

in the absence of substrate.  Only 8-21% of the isolated W355L TMADH 

contained 6-S-Cys-FMN, while 38-65% contained 6-OH FMN and 54-14% 

was in the deflavo form.  (The different reported values are from two separate 

preparation of the enzyme.)  This is different than the isolated C30A species, 

which only contained 6-OH FMN after the addition of substrate.  After 6-OH  

FMN was found in W355L TMADH, both the native and recombinant forms 

were examined for this species.  Native TMADH was found to contain 1.5% 6-

OH FMN, while the recombinant form had 3%.  The observation of 6-OH FMN 

formation in the wild type enzyme suggested that TMADH has the ability to 

derivatize the flavin without the use of substrate.  The following mechanism of 

flavin derivatization in the absence of substrate was then proposed. (Scheme 

1.2).48  The hydroxylation proceeds through a flavin iminoquinone methide  

tautomeric form.  An increase in electrophilicity at the C6 position is seen in 

the methide tautomeric form.  Nucleophilic attack by either hydroxide or 

cysteine at the C6 position is followed by re-oxidation, which re-aromatizes 

the flavin to give either 6-OH or 6-S FMN.  The methide tautomeric form has a 

negative charge between the N1 atom and the C2 carbonyl that is stabilized 

by the positively charged Arg222.  Mutation of Arg222 to lysine compromised 

the formation of the 6-S-Cys-FMN link while mutation of Arg222 to valine 

completely abolished flavinylation of the enzyme.51   These results suggest 

that the mechanism of crosslink formation in flavoproteins involves a methide 
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Scheme 1.2.  Proposed mechanism for formation of 6-OH-FMN (R2= 
hydroxyl) or 6-S-Cys-FMN (R2=cysteine)48 
 
 
 
tautomer, which creates an electrophilic position at the C6 or 8α−methyl 

position on the isoalloxazine ring in flavoproteins.48 

1.1.10.3.  Kinetics of Substrate Oxidation 
 

 One area of great interest for HADH is the reaction mechanism for the 

oxidation of substrate within the active site.  The conserved residues and 

similar spectroscopic characteristics of TMADH and HADH suggest possible 



 29 

similarities in the reaction mechanism.24  Extensive enzyme kinetic studies on 

both wild-type and mutant forms of TMADH have been performed by Scrutton 

and coworkers.28,29,31,78  Cleavage of the C-H bond in flavoproteins is not well 

defined within the family of amine oxidizing enzymes.  The four proposed 

mechanisms28 of C-H bond cleavage in TMADH are the following:  

(1) Active base involved in proton abstraction, generating a carbainon 

species.52 

(2) Formation of an ammonium cation radical followed by H-atom 

abstraction.53 

(3) External radical involved in H-atom abstraction.54   

(4)  Nucleophilic attack of free base substrate, followed by proton 

abstraction by an active site base.55   

Kinetic studies on wild-type and mutant forms of TMADH were performed to 

discover whether the TMADH reaction pathway would fit one of these 

models.28,29,31,78,81   

1.1.10.3.1.  TMADH Reaction Mechanism 

Experiments with recombinant TMADH with the deuterated native 

substrate trimethylamine over the pH range 6.0 – 11.0 exhibited two 

ionizations in the Michaelis complex, with pKa values of 6.5 and 8.5 and 

maximal activity seen in the alkaline region.26  Mutations of TMADH were 

made to define the two ionization points and to further gain understanding of 

the reaction mechanism.  The crystal structure of TMADH reveals several 
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residues involved in the active site, with an “aromatic bowl,” comprised of 

residues Tyr60, Trp264, and Trp355, that is involved in cation-π bonding of 

the substrate (Figure 1.8).22,82   Also in the active site are several basic 

residues (Tyr169, Tyr60, Try174, and His172) that possibly contribute to the 

observed ionization (Figure 1.9).22  Mutagenesis of these residues was 

performed, and plots of rate vs. pH were prepared to determine whether 

TMADH still exhibited ionization.28,29,78,82  The mutants Y169F and Y174F 

were cloned and expressed, but no change in the observed ionization or pH-

dependent kinetic behavior occurred.56  Mutation of Y169 to phenylalanine 

showed unique spectroscopic characteristics.28,78  In the crystal structure,22 

Tyr169 is shown to have van der Waals interactions with the flavin cofactor 

and is hydrogen bonded to His172.56    In the EPR spectrum of the Y169F  

mutant, the intense half field signal of g ~4 that was seen in the wild-type was 

not observed.  This signal is attributed to the spin-spin interaction of the 

unpaired electron on the flavin semiquinone with the unpaired electron on the 

[4Fe-4S]+.56  Both wild-type and mutant spectra have a signal at g ~ 2 that 

accounts for both the axial signal of the semiquinone and the rhombic signal 

of the [4Fe-4S]+.  The Y169 is located next to the C(2) = O group which is on 

the opposite side of the flavin ring from the [4Fe-4S].   The loss of the spin-

spin interaction was rationalized by negative charge that develops due to the 

hydroxyl group, creating an electrostatic repulsion of the unpaired electron on 

the 6-S-Cys-FMN that pushes it towards the [Fe4-S4] cluster.56  This would  
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Figure 1.8.  TMADH aromatic bowl22  All structures in the chapter were 
generated with pymol57 
 

 

Figure 1.9.  Basic residues in TMADH that possibly contribute to the observed 
ionization22 
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reduce the spin-spin distance and therefore cause an increased spin-spin 

interaction. 

   Tyr60 is one of the three residues found in the “aromatic bowl” of the 

active site.58  The Y60F mutant exhibits differences from the wild type 

TMADH.  The Y60F data was fit to a double ionization which suggests little 

influence in the ionization observed; however, the Y60F mutant was shown to 

destabilize the basic form of the Michaelis complex by ~1.3 kJ mol-1, as the 

ionization shifted to a pKa of 8.8.  When His172 was mutated to Gln, the pKa 

was 8.4 +/- 0.1, and the upper ionization was lost.26  In the enzyme-substrate 

complex, this represents the ionization of the imidazolium side-chain of 

histidine that is necessary to control the rate of flavin reduction and maximal 

activity is observed following deprotonation of His172.    A double mutant of 

Y60F and H172Q further reduced the stability of the trimethylamine base.  As 

demonstrated by the double mutant, these residues contribute to the stability 

of the trimethylamine base by ~2 kJ mol-1 and over 3 pH units.  This 

stabilization of the free trimethylamine (pKa 9.8) is a result of both an amino-

aromatic interaction between substrate and the hydroxyl group of Tyr60, as 

well as the imidazolium side chain of His172.  These mutations demonstrate 

that both Y60 and H172 are important to the reaction mechanism, and the 

ionization of H172 is necessary for the rate of flavin reduction.  

1.1.10.3.2.  TMADH Active Base Determination 
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Since all of the possible ionizable residues were mutated, and only 

His172 influenced the upper ionization in the enzyme-substrate complex, the 

lower ionization remained undefined.26   The oxidation of substrate by both 

wild-type and mutant TMADH has a large isotope effect (>7).28,29  In this 

study, His172 was mutated to simplify the observation of the lower ionization.  

In the case of H172Q, ionization of the protonated trimethylamine occurs at a 

pKa of 6.8 +/- 0.1; however, this valve is shifted to pKa of 7.4 +/-0.1 when the 

trimethylamine substrate is deuterated.28,29  This shift indicates that the 

deprotonation of the trimethylamine base corresponds to the lower ionization 

in the enzyme-substrate complex from moving from low to high pH.  In the 

deuterated trimethylamine, the C-D bond contains a larger charge density and 

the N-H bond is more stable with respect to the C-H bond. 28,29  The elevated 

pKa value in the presence of deuterated substrate is therefore attributed to the 

N-H bond of the protonated trimethylamine dissociating easier than the 

deuterated trimethylamine.  Scheme 1.328 demonstrates the controlled rate of 

flavin reduction based on protonation of substrate.  The dissociation steps are 

in thermodynamic equilibrium based on the relatively slow conversion of ES 

complex to EP.28  The buildup of unreactive ESH+ complex that is seen in the  

deuterated substrate is caused by the increased pKa.  At pH 9.5 and above, 

the rates of reduction of the deuterated substrate and protonated substrate 

are equal, which means the substrate only exists in the S form and not in the 

SH+ form.28   This kinetic data suggest the deprotonation of substrate is  
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Scheme 1.3.  Control of rate of reduction of 6-S-Cys-FMN by protonation of 
substrate28 
 

 

responsible for the lower ionization in the enzyme complex while the upper 

ionization is attributed to His-172 with the stability of substrate.28 

1.1.10.3.3.  6-S-Cys-FMN as an Active Base  

Once characterization of the two ionizations in the Michaelis complex 

was accomplished, it was of interest to determine the active site base 

involved in the oxidation of trimethylamine.28  All of the possible active site  

basic residues were examined by point mutations to identify their role in the 

substrate oxidation mechanism. 28,29   Tyr169, Try60 and His172 are the 

potential active site bases, so these were mutated to observe their catalytic 

influence.  As mentioned previously, two ionizations were observed in the 

Y169F and Y60F species.28,31,78  The H172Q TMADH mutant exhibited a 10% 

reduction in rate constant and loss of the upper ionization.26  Therefore, the 

ionization of this residue influences the rate of reaction, but it is not the active 

site base.  The mechanism of the enzyme monoamine oxidase A32 and D-
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amino acid oxidase59 demonstrate how the N-5 atom of the flavin can act as a 

base for C-H bond cleavage.  This mechanism also suggests nucleophilic 

attack of the free amine on the C4 atom of the flavin isoalloxazine ring 

(Scheme 1.4).28   

Computational studies on lumiflavin and C6-methylsulfanyllumiflavin 

were performed in order to calculate the energies associated with the 

reduction of the 6-S-Cys-FMN.71,72  Both were analyzed as part of the wild 

type structure and part of a Cys30 mutant species, which is involved in the 

covalent crosslinking of the flavin within the enzyme.  The wild-type structure 

exhibits an area of negative charge on both the C6 sulfur involved in the 

crosslink and on the N5 of the flavin that is believed to deprotonate the 

trimethylamine, suggesting the N5 atom possesses the nucleophilic 

properties necessary for the mechanism.22  Examination of the lowest 

unoccupied molecular orbital (LUMO) demonstrates significant orbital density  

on the N5 and C4 of the flavin.  The N5 atom has a negative charge of < -0.5 

e, which again supports the mechanism of deprotonation.22  The C4 atom has 

a positive charge of >0.0 e, which supports the mechanism of nucleophilic 

attack on the electrophilic C4a atom.22   

The reaction of phenylhydrazine also supports the mechanism of 

nucleophilic attack at the C4 position.60  When the enzyme is incubated with 

phenylhydrazine, the 440 nm band attributed to the flavin is lost, and a new 

band grows in at 360 nm.60  This new species at 360 nm was tested for  
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Scheme 1.4.  Proposed oxidation reaction mechanism for TMADH28 

 

activity and was found to be 94% inactive.  Isolation of this new species from 

proteolytic digests led to the discovery of the flavin being arylated at the C4 

position.60   This supports the theory of the C4 position of the flavin being the 

site of nucleophilic attack by substrate.31,84  

The data suggest the following mechanism for the oxidative 

deamination of trimethylamine by TMADH (Scheme 1.4).28  The free 

trimethylamine base is deprotonated by the N5 atom of the flavin, and 

subsequently the deprotonated trimethylamine nucloephilically attacks the C4 

atom.  N-methyl-N-methylenemethanaminium is released from the flavin 
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before water oxidizes the substrate to form formaldehyde and dimethylamine.  

HADH is known to have a KIE > 7, butterfly bend in the 6-S-Cys-FMN, and 

react with phenylhydrazine which is reasonably to assume similarities within 

the reaction mechanism.24   

1.1.11.  Reductive Half-Reaction of TMADH 

 There is spectroscopic evidence of a single unpaired electron on the 

[4Fe-4S] and on the semiquinone for both HADH and TMADH during the 

reductive half-reaction.7,81  The reductive half-reaction of TMADH with its 

natural substrate trimethylamine (TMA) was studied over the pH range 6.0 – 

11.0.61   This reaction exhibits three resolved kinetic phases,23,24,26,81  which 

include a fast, intermediate, and slow phase.61  The reductive half-reaction 

begins with the fast phase, which is a two electron reduction of the flavin.  

The intermediate phase, follows with intramolecular electron transfer to the 

iron sulfur cluster from the dihydroflavin.  The slow phase consists of product 

release and involves spin-spin interaction of the unpaired electrons on the 

[4Fe-4S]+ and the flavin semiquinone.  The kinetic information of these three 

phases was determined by stopped-flow spectroscopy of the observable 

changes at 450 nm, 365 nm, and 520 nm at pH 8.0 and 10 oC. 61  A reduced 

temperature was used because reduction of TMADH at elevated 

temperatures is very fast and prohibits detailed analysis.  The rate constants 

from the spectroscopic data for each step are as follows: kfast = 500 s-1; kint = 

17 s-1; and kslow = 1.6 s-1.61    The data were collected at pH 8.0, since below 
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pH 7.0, the intermediate phase is difficult to resolve due to the small spectral 

change.   Above pH 9.5, the rate constant for the slow phase and 

intermediate phase approach each other at high substrate concentration.  The 

rate constants of both the slow and intermediate phases show a dependence 

on substrate concentration, where rate decreases as the substrate 

concentration increases.  The degree of substrate inhibition increases with 

pH.  A 50 % reduction in activity is seen for the intermediate phase, going 

from ~ 2 mM substrate at pH 7.5 to ~ 0.3 mM substrate at pH 9.5.61  The slow 

phase sees a reduction from ~ 20 mM substrate at pH 6.0 to ~ 1 mM 

substrate at pH 8.0.   

1.1.12.  Oxidative-Half Reaction 

Reoxidation of HADH is known to occur by an external electron 

acceptor, but the identity of this electron carrier is unknown.  The oxidative 

half-reaction of TMADH has been well characterized by mutagenesis and 

kinetic studies.62,63  As mentioned earlier, the reductive half-reaction of 

TMADH involves three kinetic phases.61  The fast phase involves the two 

electron reduction of 6-S-Cys-FMN, followed by the intermediate phase of 

intramolecular electron transfer from the reduced 6-S-Cys-FMN to the [4Fe-

4S] center.  Upon the release of product and binding of substrate, the slow 

phase involves the spin-spin interaction of the flavin-semiquinone and 

reduced [4Fe-4S] center.  The [4Fe-4S] is reoxidized by the intermolecular 

transfer of electrons to the external electron acceptor.50  The physiological 
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electron acceptor for the reoxidation of TMADH is an electron transferring 

flavoprotein (ETF),50 but the physiological electron acceptor of HADH has yet 

to be determined.   

Studies on the oxidative half-reaction of TMADH could aid in 

determining the mechanism of electron transfer from HADH to the electron 

acceptor.   Residues involved in the intermolecular transfer from the [4Fe-4S] 

of TMADH to the surface of the protein were believed to be Tyr422 and 

Val344.41   The crystal structure of TMADH reveals a small groove by the 

[4Fe-4S], by which the FAD of the ETF could potentially bind.85  Y422 and 

V344 are located in this small groove, with V344 providing the shortest 

pathway from the Cys-345, one of the cysteines that coordinates the [4Fe-

4S], to the surface of TMADH.62  Y422 is involved the second pathway, which 

proceeds from C345 to Glu-439 then to Y442.  Several mutations of Y422 and 

V344 were performed in order to either increase or decrease the side chain 

volume at these two positions.41   Ferricenium ions and ETF were both 

employed for the kinetic analysis of the Y422 and V344 mutants.41  In ensure 

that the mutant did not affect the oxidation of substrate, steady-state kinetics 

were examined to compare the reductive half reaction of the wild type to the 

mutants species.  The mutants caused very little perturbation of binding and 

oxidation of substrate.62   

To understand how the mutations affected the electron transfer of 

TMADH, the mutants underwent steady-state kinetics with the artificial 
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electron acceptor Fc+.62  The mutants V344C, V344A, and V344G caused an 

increase in reaction rate of electron transfer to Fc+.  Likewise, the larger, 

bulkier side chains of isoleucine and tyrosine caused slower electron transfer 

to Fc+.  The Y442 mutants had little to no effect on the rate of electron 

transfer to Fc+.  Evidence suggests that V344 represents the shortest route 

from the [4Fe-4S] to the surface.62  The shorter the side chains on the 

residues, the shorter and quicker the electron transfer to Fc+.  Similarly, larger 

residues have longer and slower electron transfer, consistent with shorter and 

quicker route.   

The oxidative half reaction of these mutations on TMADH was also 

examined with ETF.62  The V344 mutants had little effect on electron transfer, 

but mutations at the Y422 position perturbed the electron transfer 

significantly.  The Y442G mutant had the greatest increase in dissociation 

constant for the ETF-TMADH complex and had a 10-fold decrease in rate 

constant compared with the wild type.  Y442C also had a decrease in rate 

constant, though not as significant.  This rate reduction in the Y442 mutants 

changed the geometrical alignment of the TMADH-ETF complex making 

electron transfer more difficult and less efficient.  While the residue Y442 is 

more involved with the electron transfer from TMADH to the ETF, the role of 

V344 in the electron transfer to ETF was seen as minimal. This study shows 

the transfer of electrons to the ETF proceeds through Y442, while V344 plays 

a minimal role in this process.62   
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1.1.13.  Substrate Selectivity 

The substrate selectivity that HADH has for histamine represents one 

of the unique properties of this enzyme.  The substrates for which HADH is 

selective include histamine (Km = 31 µM, kcat/Km = 2.1 x 105 M-1s-1), agmatine 

(Km = 37 µM, kcat/Km = 6.0 x 104 M-1s-1), and putrescine  (Km = 1280 µM, 

kcat/Km = 1500 M-1s-1).24  As mentioned previously, HADH shares 40% identity 

and 56% similarity with TMADH and 37% identity and 51% similarity with 

DMADH.24  Observation on substrate selectivity of these two protein could 

provide insight into the histamine selectivity of HADH.58  TMADH and 

DMADH, which are selective for tertiary and secondary amines respectively, 

share a 63.5% sequence identity.58  When comparing the active site residues 

of TMADH with DMADH, most are conserved.  There are three residues 

which are not conserved (Tyr60 to Gln, Ser74 to Thr, and Trp105 to Phe, 

TMADH numbering) that could contribute to the selectivity of tertiary amines 

in TMADH verses secondary amines in DMADH.58   As described above in 

TMADH, Y60 is one of the three residues involved in the aromatic bowl region 

for cation-π binding of the alkylammonium ion substrate.  Cation-π interactions 

within the proteins have been observed in very diverse structures, from 

aceylcholinesterase64 to the  SH2 domain of the v-src oncogene.65  The 

cation-π interaction of the alkylammonium ion with the aromatic bowl in 

TMADH represents the largest group of biologically relevant organic cation 

ligand binding.   In DMADH, the Y60 residue is changed to glutamine and 
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modeling studies suggest that the change to glutamine in DMADH provides 

hydrogen bonding with the N-H of the dimethylammonium substrate.66  The 

other two non-conserved residues pack against the Y60, and model studies of 

DMADH suggest that these residues influence the position of Gln60, giving it 

the ability to hydrogen bonding to the substrate; thus, the difference in 

substrate specificity would depend on these three residues.58   

Mutagenesis studies on TMADH were performed (Y60Q, S74T, and 

W105F) in attempt to switch its substrate specificity from TMA to DMA.58  In 

wild type TMADH, DMA is a poor substrate where the ratio of selectivity 

coefficients for TMA to DMA is about 4000.   The Km value for TMA is 13.7 

µM, verses 2.3 mM for DMA.  The value of kcat for substrate is 0.67 s-1 for 

TMA and 15.6 s-1 for DMA.  Upon the triple mutation of TMADH (Y60Q, S74T, 

and W105F) an increase in Km and an 800-fold decrease in kcat were 

observed with TMA as a substrate.  Reaction of triple mutated TMADH with 

DMA did not show a significant change in Km or kcat.  Even though both 

substrates bind in the same location, the mutations seemed to only impair the 

binding of TMA.  The effects of the TMADH mutations on the reductive half 

reaction were also examined.   Flavin reduction is monitored 

spectroscopically by the decrease in absorbance at 443 nm, along with the 

growth of a peak at 365 that corresponds to the formation of the 6-S-Cys-

FMNsq-[4Fe-4S]+ species that results from the intramolecular electron transfer 

from the dihydroflavin.  When triply mutated TMADH is reacted with TMA, the 



 43 

rate of flavin reduction is reduced around 4000-fold, while minimal reduction 

in rate was observed with DMA as substrate. In contrast to wild-type, the 

specificity of the overall reductive half reaction favors DMA by 82,000-fold.  

An Absorbance change at 365 nm for the mutant TMADH reacting with TMA 

was monophasic and displayed no tendencies for substrate inhibition, in 

contrast with the biphasic wild type enzyme, in which each phase is controlled 

by substrate concentration.  The reaction of mutant TMADH with DMA was 

biphasic and exhibited faster intramolecular electron transfer from the 

reduced 6-S-Cys-FMN to [4Fe-4S].58   

The enzymes TMADH and DMADH have active sites that contain 

highly conserved residues.58  Mutation of TMADH residues Y60 (aromatic 

bowl) and S74 and W105 (interaction with Y60) was performed in order to 

change substrate specificity towards that of DMADH.58  These residues are 

not conserved within the active sites of the two enzymes.  These mutants 

greatly diminish substrate TMA from binding and decrease the reduction of 6-

S-Cys-FMN.  Of the three residues in the aromatic bowl, only Y60 (Gln60 in 

DMADH) is not conserved, which signifies the selectivity of TMADH for the 

trimethylammonium ion instead of the dimethylammonium ion.58    

1.1.14.  Substrate Inhibition 

HADH exhibits substrate inhibition at high concentrations of substrate, 

which is likewise seen in TMADH.24  The steady-state reaction of TMADH has 

been studied in attempt to understand the substrate inhibition.  As mentioned 
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above, TMADH and HADH exhibit similar spectroscopic properties upon 

reaction with substrate;24 therefore, a similar mechanism of substrate 

inhibition would be expected to be seen in both of these enzymes.  The redox 

cycle of TMADH was studied under steady-state conditions with the artificial 

electron acceptor ferricenium hexafluorophosphate (Fc+).25  Fc+ was used 

since it does not interfere with the spectroscopic region used for analyzing the 

rate of reduction of TMADH, and it is shown to be comparable to the electron 

flow that is seen with physiological redox acceptor, ETF.   

Stopped-flow studies monitored the decrease in absorbance at 443 nm 

(6-S-Cys-FMN) for the reduction of TMADH by substrate and increase in 

absorbance at 365 nm (anionic flavin semiquinone) and 440 nm (oxidation of 

the iron-sulfur cluster).25  TMADH turnover was observed at a constant 

concentration of Fc+ (100 µM) and varied concentration of TMA (20 µM – 2 

mM).  At lower TMA concentration, the peak at 365 nm is not observed, while 

the peak for oxidized 6-S-Cys-FMN at 443 nm is observed, which suggests 

the oxidized 6-S-Cys-FMN is the dominant species at low substrate 

concentrations.  At high substrate concentration, the absorbance at 365 nm 

grows in, while the peak at 443 nm is lost, indicating that the semiquinone of 

6-S-Cys-FMN is the predominant species.  The peak at 440 nm, which 

represents oxidized [Fe4-S4] cluster, is observed at high substrate 

concentrations.  Spectral analysis at intermediate concentration of TMA (55 

and 100 µM) demonstrated both a semiquinone peak at 365 nm and oxidized 
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6-S-Cys-FMN peak at 443 nm, indicating both species are present at 

intermediate substrate concentrations.  Concentrations of Fc+ were also 

varied to observe substrate inhibition.  The oxidized enzyme at 443 nm was 

seen at high concentrations of Fc+ while low Fc+ concentrations caused the 

semiquinone to be the predominant species.  When the Fc+ concentration is 

lowered to 50 µM and concentration of TMA is varied (20 µM – 2 mM), the 

oxidized 6-S-Cys-FMN is not observed and the semiquinone and oxidized 

[Fe-S] cluster are present.25   

A proposed branching mechanism for TMADH was constructed with 

two paths in the 0/2 cycle and 1/3 cycle (Figure 1.10).25  At low TMA and high 

electron acceptor concentrations, the 0/2 cycle predominates with the two-

electron reduction of the enzyme in the catalytic cycle.  At high TMA and 

lower Fc+ concentrations the 1/3 cycle will predominate, where substrate 

binds to the one-electron reduced enzyme, leading to substrate inhibition.  

The binding of substrate stabilizes the semiquinone, shifting the potential of 

the [Fe-S] cluster from +102 mV to +50 mV.  The potential of the 

quinone/semiquinone couple increases from +44 mV to +240 mV and the 

semiquinone/hydroquinone couple decreases from +36 mV to -50 mV.  This 

effect stabilizes the semiquinone oxidation state of 6-S-Cys-FMN and shifts 

the equilibrium of the oxidation-reduction potential towards the semiquinone 

and oxidized [Fe-S] cluster.  The bound substrate is not able to reduce the  
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Figure 1.10.  Proposed mechanism for TMADH for 0/2 and 1/3 cycle25 

 

enzyme when 6-S-Cys-FMN is in the semiquinone state, so catalysis is 

inhibited.25 

1.1.15.  Expression and Purification of recombinant HADH 

 The selectivity and specificity of HADH for histamine makes it an 

interesting protein of which to pursue structural determination.  Understanding 

the selectivity for histamine has the potential to improve antihistamine drug 

design and will provide information on the binding of histamine to natural 

histamine receptors.  HADH is a recently discovered protein that has yet to be 

crystallized.  A high yield expression system and crystallographic 

determination of HADH will aid in furthering the understanding this protein. 
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Native expression of HADH from N. simplex yields 0.5 mg L-1.  For this 

reason, a recombinant over expression system for HADH was desired in 

order to conduct kinetic studies and X-ray crystallography.  Discussed in this 

chapter is the expression and purification of recombinant HADH (rHADH) 

developed by Dr. Hirakawa used herein to generate the HADH protein for 

crystallization.  The SDS-PAGE and spectroscopic evidence support that 

rHADH is comparable to native HADH.    

1.2.  Materials and Methods 

1.2.1.  Cloning and expression 

The hadh gene was cloned from genomic DNA of N. simplex (ATCC 

6946).24  PCR was performed on the HADH gene with the following primers:  

Seq 5’ to 3’ GCTCTAGACATATGACCGAGCAGC  

Seq 3’ to 5’ GGAATTCAAGCTTTCACGCCAGCTGGGTGA.   

Due to the GC rich nature of the gene, 10 µL GC-Rich PCR system PCR 

reaction buffer (Roche Applied Science) and 1 µL of GC-Rich PCR system 

nucleotide mix (Roche Applied Science) were added to 50 µl of PCR reaction 

solution.  PCR was performed with the following conditions: an initial 95 oC for 

5 min, then cycled between 95 oC for 1 min, 60 oC for 30s and 72 oC for 5min, 

for a total running time of 5 hours.  The primers were designed to amplify the 

2.1 Kbp fragment and incorporate EcoRI (New England BioLabs) and XbaI 

(New England BioLabs) flanking sites for subsequent insertion into pUC19.  

The resulting hadh gene was sequenced with the following primers:  
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M13 and M13R 

HSDHseq1  GAGCGCCCAGGCCTCGATGCGC 
 
HSDHseq2  TACAGCGGCGTCCACCACTTCC 
 
HSDHseq3  GCTCCACACGGCGGCCGCGATC 
 
HSDHseq4  CTGCGCGAGCAGCTCGGCCACGAC 

in the forward and reverse directions and then subcloned between the NdeI 

and EcoRI sites of pET21b (Novagen) in order to express the recombinant 

protein without the C-terminal T7-tag or the N-terminal His-tag.  The plasmid 

was transformed into E. coli Rosetta 2 (DE3) cells (Novagen).  The cells were 

grown in 1 L of Terrific Broth media with 100 mg L-1 ampicillin at 37 °C and 

shaken at 225 rpm to an OD600 of 0.7.  Protein expression was induced with 

0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG).  250 mg L-1 Iron 

sulfate and 50 mg L-1 riboflavin were also added at an OD600 of 0.7 to ensure 

full incorporation of the [Fe4-S4] cluster and FMN cofactors.   The 

temperature was reduced to 20 °C and the cultures were allowed to shake at 

225 rpm overnight.  The cells were harvested by centrifugation at 4°C.   

HADH was also grown in selenomethionine rich media in order to 

obtain selenomethionine-substituted protein for multiwave anomalous 

dispersion (MAD) data set.  The same plasmid was transformed into the 

methionine-auxotrophic E. coli strain B834 (DE3) (Novagen). 67  The cells 

were grown in SelenoMet Medium Base (AthenaES) where 21.6 g SelenoMet 

Medium Base was dissolved in 1 L of deionized water.  The media was 
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autoclaved and allowed to cool.  5.1 g SelenoMet mix was dissolved in 50 mL 

of deionized water and the solution was sterile filtered.  The resulting 

SelenoMet solution, 100 mg L-1 ampicillin, and 30 µg/mL L-SeMet were added 

to the selenomet medium base.  5 mL of media was removed and LB was 

added to 5% concentration to grow the starter culture.  The starter culture 

was allowed to grow overnight and was used to inoculate the 1 L base media.  

Induction and expression of HADH protein followed previous methods.  

Efforts for higher incorporation of selenomethionine into the protein were 

made by increasing the amount of L-SeMet added to the selenomethionine 

medium to 60 µg/mL.  In addition, the starter culture was spun down and 

washed twice with SeMet media before inoculation and induction with IPTG.   

1.2.2.  Purification 

Cells (10 g) were resuspended in 20 mM potassium phosphate buffer 

(pH = 7.4) containing 0.1 M KCl.  Cells were lysed by ultrasonication, and 

centrifuged at 40 000 g for 30 min.  The supernatant was loaded onto a 100 

mL Toyopearl-DEAE column pre-equilibrated with 20 mM potassium 

phosphate (pH = 7.4) containing 0.1 M KCl, and proteins were eluted with a 

300 mL linear gradient increasing from 0.1 to 0.3 M KCl (20 mM potassium 

phosphate buffer, pH 7.4).  Fractions exhibiting an Abs444/Abs382 ratio of 1.0 or 

higher were pooled and (NH4)2SO4 was added to a final concentration of 0.8 

M.  The protein solution was then loaded on to a 100 mL Toyopearl Butyl-650 

column (Tosoh Bioscience) pre-equilibrated with 50 mM potassium phosphate 
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buffer (pH = 7.4) containing 0.8 M (NH4)2SO4.  Bound proteins were eluted 

with a 300 mL gradient decreasing from 0.8 to 0 M (NH4)2SO4 (50 mM 

potassium phosphate buffer, pH = 7.4).  Fractions exhibiting an Abs444/Abs382 

ratio of 1.2 or higher were pooled and concentrated to 1 mL using an Amicon 

Ultra-30 centrifugal unit (Millipore).  This protein was loaded onto a HiLoad 

Superdex 200 sizing column (GE Biosciences) and eluted with 50 mM Tris-

HCl (pH 7.4) containing 0.15 M KCl.  Fractions with an Abs444/Abs382 ratio of 

1.38 or higher were concentrated to >20 mg/mL.  The purity of HADH was 

confirmed with SDS-PAGE and protein concentration was determined by a 

BCA assay (Thermo Fisher Scientific).   

Selenomethionine-substituted protein was purified as described with 

around ~10 fold reduction in cell paste and protein expression.  Flavination, 

purity and activity were all in agreement with the recombinant expressed 

HADH.  The incorporation of selenomethionine was determined by MALDI-

TOF mass spectrometry at the KU Analytical Proteomics Lab.   

1.2.3.  HADH Coupled Assay 

 HADH coupled assay was measured using the electron acceptor 

dichlorophenolindophenol (DCPIP) coupled to the redox mediator phenazine 

methosulfate (PMS) according to published procedures with slight 

modifications.22  0.5 µg of HADH was added to 0.1 M Tris buffer pH 7.0 

containing 500 µM PMS, 50 µM DCPIP, and 0- 2 mM histamine.  The 

bleaching of the absorbance at 580 was observed on Cary UV/Vis 
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spectrophotometer with constant temperature (30oC).  The activity rate of 

enzyme was plotted against histamine concentration 

1.3.  Results 

1.3.1.  The Cloning of HADH gene in pET21b Vector Achieves 

Expression of Soluble Protein. 

 The hadh gene of N. simplex was amplified with PCR and confirmed 

by the presence of a 2.1 Kb band on a 1% agarose gel.  The amplified gene 

was extracted and purified (Quigen) and digested with EcoRI and XbaI for 

ligation into pUC19.  The size of the cloning vector pUC19 enables easier 

sequencing and the confirmation that no undesired mutation was introduced 

into the hadh gene.  The plasmid was subjected for sequencing (UC 

Berkeley) in a concentration of ~ 500 µg/mL with 0.5 µg DNA/5kb DS plasmid 

with 3.2 pmol primer in 13 µl water.  Sequencing results were in good 

agreement with wild-type hadh (Figure 1.11).  The plasmid was digested with 

EcoRI and NdeI and ligated into the pET21b expression vector for the 

purpose of transforming and expressing the protein in bacteria.  Incorporation 

of the hadh gene into the pET21b expression vector was confirmed on a DNA 

agarose gel demonstrating a band for the hadh gene (2.1 Kb) and the 

pET21b vector (5.4 Kb) after digestion with EcoRI and NdeI. 

1.3.2.  The Expression of Soluble HADH yields high yield (~20 mg/L 

protein) and High Purity for Crystallography. 
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Starter cultures were prepared, and soluble protein was observed in a 1 L 

culture grown expression in LB with a protein band at 76 kDa, which is in 

good agreement with wild-type HADH.  Optimization of soluble protein 

expression was performed with TB, LB, and 2X YT media (Figure 1.12).  

SDS-PAGE revealed that protein expression was highest in TB media based 

on intensity of an anionic dye (coomassie blue) that binds non-specifically to 

protein.  The protein was purified as fully flavinated and purity of fractions 

were examined after each step.  Figure 1.13 shows the 12.5% SDS-PAGE 

gel after each stage of purification.  After each column, the SDS-PAGE gel 

reveals the separation of unwanted protein.  The major band seen in the 

SDS-PAGE gel was in good agreement with the calculated molecular weight 

(76 kDa) of HADH.  Full flavination was confirmed based on the Abs444/Abs382 

ratio of 1.4 indicating full incorporation of 6-S-Cys-FMN into the protein, as 

seen in the native HADH.68   Figure 1.14 depicts the absorbance spectra and 

the Abs444/Abs382 ratio after each stage of purification.  The progressive 

increase of the Abs444/Abs382 ratio after each purification step demonstrates 

the removal of impurities.  After the first column, DEAE column, the average 

expected Abs444/Abs382 ratio is 1.15, where the butyl column increases the 

average value of 1.25-1.30 column.  Fractions from the size exclusion column 

demonstrated an Abs444/Abs382 ratio of 1.38, indicating flavination is very  
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                                                         10                   20                    30         
                                                            |                      |                       |          
HADH_Native              MTEQPAVAAPYDVLFEPVQIGPFTTKNRFY 
rHADH                         MTEQPAVAAPYDVLFEPVQIGPFTTKNRFY 
 
 
                                                      40                      50                    60 
                                                         |                         |                       | 
HADH_Native         QVPHCNGMGYRDPSAQASMRKIKAEGGWSA 
rHADH                    QVPHCNGMGYRDPSAQASMRKIKAEGGWSV 
                                       
 
                                                           70                 80                    90         
                                                             |                     |                       |          
HADH_Native                 VCTEQVEIHATSDIAPF IELRIWDDQDLPA 
rHADH                            VCTEQVEIHATSDIAPFVELRIWDDQDLPA 
 
 
                                                    100                   110                  120 
                                                        |                        |                        | 
HADH_Native              LKRIADAIHEGGGLAGIELAHNGMNAPNQL 
rHADH                         LKRIADAIHEGGGLAGIELAHNGMNAPNQL 
 
                                                       130                 140                 150         
                                                           |                      |                       |          
HADH_Native              SRETPLGPGHLPVAPDTIAPIQARAMTKQD 
rHADH                         SRETPLGPGHLPVAPDTIAPIQARAMTKQD 
 
 
                                                    160                    170                  180 
                                                        |                         |                       | 
HADH_Native             IDDLRRWHRNAVRRSIEAGYDIVYVYGAHG 
rHADH                        IDDLRRWHRNAVRRSIEAGYDIVYVYGAHG 
                                       
 
                                                    190                    200                  210         
                                                        |                         |                       |          
HADH_Native           YSGVHHFLSKRYNQRTDEYGGSLENRMRLL 
rHADH                      YSGVHHFLSKRYNQRTDEYGGSLENRMRLL 
 
 
                                                       220                   230                240 
                                                           |                        |                     | 
HADH_Native              RELLEDTLDECAGRAAVACRITVEEEIDGG 
rHADH                         RELLEDTLDECAGRAAVACRITVEEEIDGG 
 
 
                                                  250                  260                     270 
                                                      |                        |                         | 
HADH_Native            ITREDIEGVLRELGELPDLWDFAMGSWEGD 
rHADH                       ITREDIEGVLRELGELPDLWDFAMGSWEGD 
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                                                     280                  290                  300         
                                                          |                        |                      |          
HADH_Native             SVTSRFAPEGRQEEFVAGLKKLTTKPVVGV 
rHADH                        SVTSRFAPEGRQEEFVAGLKKLTTKPVVGV 
 
 
                                                          310                320               330 
                                                               |                     |                    | 
HADH_Native                 GRFTSPDAMVRQIKAGILDLIGAARPSIAD 
rHADH                            GRFTSPDAMVRQIKAGILDLIGAARPSIAD 
 
 
                                                        340               350                  360 
                                                             |                    |                       | 
HADH_Native                 PFLPNKIRDGRLNLIRECIGCNICVSGDLT 
rHADH                            PFLPNKIRDGRLNLIRECIGCNICVSGDLT 
 
 
                                                  370                     380                  390 
                                                       |                          |                       | 
HADH_Native          MSPIRCTQNPSMGEEWRRGWHPERIRAKES 
rHADH                     MSPIRCTQNPSMGEEWRRGWHPERIRAKES 
                                       
 
                                                    400                  410                   420         
                                                          |                       |                        |          
HADH_Native            DARVLVVGAGPSGLEAARALGVRGYDVVLA 
rHADH                       DARVLVVGAGPSGLEAARALGVRGYDVVLA 
 
 
                                                   430                  440                     450 
                                                         |                       |                         | 
HADH_Native          EAGRDLGGRVTQESALPGLSAWGRVKEYRE 
rHADH                     EAGRDLGGRVTQESALPGLSAWGRVKEYRE 
 
 
 
                                                        460                  470                480 
                                                             |                       |                     | 
HADH_Native                AVLAELPNVEIYRESPMTGDDIVEFGFEHV 
rHADH                           AVLAELPNVEIYRESPMTGDDIVEFGFEHV 
 
 
                                                        490                  500                510 
                                                            |                       |                      | 
HADH_Native               ITATGATWRTDGVARFHTTALPIAEGMQVL 
rHADH                          ITATGATWRTDGVARFHTTALPIAEGMQVL 
                                       
 
                                                      520                   530                  540         
                                                          |                        |                        |          
HADH_Native            GPDDLFAGRLPDGKKVVVYDDDHYYLGGVV 
rHADH                       GPDDLFAGRLPDGKKVVVYDDDHYYLGGVV 
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                                                      550                 560                   570 
                                                          |                       |                        | 
HADH_Native              AELLAQKGYEVSIVTPGAQVSSWTNNTFEV 
rHADH                         AELLAQKGYEVSIVTPGAQVSSWTNNTFEV 
 
 
                                                   580                    590                    600 
                                                         |                         |                        | 
HADH_Native              NRIQRRLIENGVARVTDHAVVAVGAGGVTV 
rHADH                         NRIQRRLIENGVARVTDHAVVAVGAGGVTV 
 
 
                                                        610                  620                 630 
                                                             |                       |                      | 
HADH_Native                 RDTYASIERELECDTVVMVTARLPREELYL 
rHADH                            RDTYASIERELECDAVVMVTARLPREELYL 
 
 
                                                         640                650                  660 
                                                               |                     |                       | 
HADH_Native                 DLVARRDAGEIASVRGIGDAWAPGTIAAAV 
rHADH                            DLVARRDAGEIASVRGIGDAWAPGTIAAAV 
                                       
 
                                                        670                  680                  690         
                                                             |                       |                       |          
HADH_Native              WSGRRAAEEFDAVLPSNDEVPFRREVTQLA 
rHADH                         WSGRRAAEEFDAVLPSNDEVPFRREVTQLA 
 

 

Figure 1.11.  Sequence Alignment of native-HADH with rHADH 
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Figure 1.12.  Optimization of HADH expression in Terrific Broth (TB), Luria-
Bertani Media (LB), and 2X Yeast Extract Trypton (2X YT) with (+) and 
without (-) Isopropyl ß-D-1-thiogalactopyranoside (IPTG).  Highest expression 
was seen in TB media. P = Pellet, S = Supernatant  
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Figure 1.13.  SDS-PAGE showing each stage of purification A) DEAE 
B) Butyl-Sepharose C) Size exclusion chromatography 
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close to 100%.  The protein concentration was quantified with the BCA assay 

(Pierce) for a final yield of 10-20 mg/L protein.  This expression system 

results in the highest yield of HADH in the literature and gives an ~ 40 fold 

increase from the native HADH.  HADH activity was examined by the rate of 

reduction of DCPIP at 580 nm, with the specific activity of recombinant HADH 

being 40 mmol . min-1. mg-1 compared to 45 mmol . min-1. mg-1 of the native 

HADH.   

 

 

 

Figure 1.14.  UV/Vis spectra of fractions collected after A) DEAE B) butyl-
Sepharose C) size exclusion column.  Ratios were calculated based on 
A444/A382 for determination of complete flavinylation 
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1.3.3.  HADH Coupled Assay demonstrate activity of recombinant HADH 

(rHADH) is comparable as native HADH   

 It is necessary to prove the recombinant HADH behavior the same as 

the native HADH (Table 1.3).  A coupled assay was employed to test the 

activity of the recombinant HADH against the native HADH.  In the coupled 

assay, as HADH turns over histamine, the electrons are transferred to the 

redox mediator phenazine methosulfate, which transfers electrons to the 

DCPIP.  The reduction of DCPIP demonstrates a bleaching effect at 580 nm 

and the rate of enzymatic activity is calculated.  The Km value obtained from 

the rHADH (38 µM) is in good agreement with native HADH (31 µM) (Figure 

1.14).  Table 1.3. demonstrates the similarities of rHADH with the native 

HADH. 

 

 

 rHADH Native HADH 

hadh gene 2.1 Kb 2.1 Kb 

SDS-PAGE gel 76  kDa 76 kDa 

Specific Activity 40 mmol . min-1. mg-1 45 mmol . min-1. mg-1 

Km 38 µM 31 µM 

 

Table 1.3.  rHADH and native HADH comparison 
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Figure 1.15.  HADH coupled Assay with histamine 

1.4.  Discussion 

1.4.1.  The Cloning of HADH in pET21b Vector Achieves Expression of 

Soluble Protein. 

 Previous efforts in the Limburg lab to establish a recombinant 

expression for HADH produced mostly insoluble protein.  Attempts were 

made with the hadh gene in pDEST expression vector transfected into E. coli 

for soluble protein.  Inoculation with and without IPTG and glucose only led to 

insoluble protein.  The amplification of the hadh gene proved to be 

challenging as the GC-rich nature of the gene increased the melting point.  

Longer run time and the addition of GC-rich PCR system reaction buffer and 

nucleotide mix successfully amplified the hadh gene.  The amplified gene was 
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ligated into pUC19 with restriction enzymes XbaI and EcoRI.  The sequence 

alignment with the native HADH demonstrated excellent agreement with only 

three polymorphism (Val60, Val78, and Ala615).  These three amino acid 

residues are not involved in the active site.  Difficulty followed with inserting 

the hadh gene into the expression vector pET21b.  Several different 

restriction enzymes were employed for ligation into the vector.  NdeI and XbaI 

both prove unsuccessful as demonstrated by 1% agarose gel, along with 

NdeI and HindIII.  The restriction enzymes, NdeI and EcoRI, were able to 

properly ligate the gene into pET21b.  The pET21b/hadh construct was 

transformed into E.coli Rosetta cells.  The protein expression was optimized 

with TB media.  This result correlates well with the growth conditions found in 

the initial screening of N. simplex.22  The cell growth in histamine-glycerol 

media expressed the highest HADH activity. 

1.4.2.  The Expression of Soluble rHADH yields high yield (~20 mg/L 

protein) and High Purity for X-ray Crystallography. 

 The prerequisite of kinetic and crystallographic studies on rHADH are 

high expression of pure and fully flavinated protein.  The induction of 

pET21b/hadh construct in Rosetta cells produced  soluble protein in high yield 

of 10-20 mg/L.  The rHADH protein was purified with anion exchange (DEAE), 

hydrophobic (butyl), and size exclusion column chromatography.  After each 

column purification, fractions were collected and the extent of flavination was 

evaluated.  Each fraction was plotted against the Abs444/Abs382 ratio, which 
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demonstrated a bell shaped curve.  Fractions were usually collected at the 

beginning to the end of the bell shaped curve.  Most of the fractions after the 

size exclusion column chromatography showed full flavination and gave high 

purity with the Abs444/Abs382 ratio greater than 1.35. 

1.4.3.  HADH Activity Assay demonstrate activity of rHADH is the same 

as native HADH   

 The activity assay revealed the activity of rHADH is identical to the 

native HADH, assuring that the kinetic study on rHADH represents that of 

native HADH.  The activity assay was performed on rHADH and the Km and 

specific activity were in good agreement with the native HADH.  The assay 

also demonstrated substrate inhibition of rHADH, which is also seen with the 

native HADH.   

1.5.  Conclusion 

 Expression and purification of rHADH resulted in highest yield reported 

in literature with ~ 100 % flavination.  HADH is highly selective for histamine, 

and solving the crystal structure will further the understanding how the 

enzyme active site recognizes histamine specifically.   The activity assay 

demonstrated that the rHADH behaves the same as the native enzyme. The 

recombinant expression of HADH should be able to be employed for 

mechanistic studies on electron transfer, substrate selectivity, and oxidative 

turnover.  The crystal structure analysis of rHADH was pursued in hopes of 

understanding the structure/function correlation of HADH, in particular the 
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histamine selectivity of HADH.  The following chapter will discuss 

crystallization, structural determination, and the structural analysis of rHADH.   
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Chapter 2  

Crystal Structure Determination of Histamine Dehydrogenase from 

Nocardioides Simplex 

 

2.1.  Introduction  

At stated in the previous chapter histamine dehydrogenase (HADH) is 

an amine oxidizing enzyme first isolated from cultures of Nocardioides 

simplex.1   Limburg et al. pursued the cloning of the full length hadh gene 

from N. simplex in order to gain insight into the nature of the redox active 

cofactors in the native HADH.  Through sequence alignment, HADH showed 

high similarity with several flavoproteins, most notably TMADH.2  Further 

spectroscopic studies confirmed an [4Fe-4S] and 6-S-Cys-FMN as the 

cofactors involved in oxidation of histamine.2  HADH is known to have high 

substrate selectivity towards histamine and bind histamine in the mono-

protonated form.2  Kinetic isotope effect also demonstrated that C-H bond 

cleavage is partly rate limiting.  To understand the narrow substrate selectivity 

and oxidation reaction, structural studies were performed on rHADH.  The 

crystal structure of rHADH could provide an opportunity to define how the 

enzyme active site contributes to the histamine selectivity.  Modeling of 

histamine in the active site of rHADH suggests important residues involved in 

the binding of histamine in rHADH.  Such a knowledge could also provide a 

better understanding of the physiological binding of histamine within human 
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histamine receptors (HHR).  The sequence of all four HHR is known, but none 

of the crystal structures have been determined.3-7  Modeling studies of HHR, 

along with other histamine binding proteins, have helped provide insight into 

how histamine binds within its natural receptor, which could aid in the design 

of antihistamines.  The active site structure of rHADH may provide information 

for the mechanism of C-H bond cleavage, which remains unclear for many 

flavoproteins.8  One important enzyme where the mechanism of C-H bond 

cleavage is uncertain is the FAD containing flavoprotein monoamine oxidase 

(MAO).9-11  This enzyme is involved in the breakdown of important biogenic 

amines in the body including, dopamine, serotonin, and norepinephrine.  The 

substrates of MAO and HADH are very similar in chemical structure.  Probing 

the mechanism of HADH could potentially reveal a clearer understanding of 

substrate oxidation in MAO and other flavoproteins.   

 In addition, the histamine selectivity of HADH may allow it to be used 

in a histamine biosensor.2  When considering biosensor design, several 

conditions must be met.12-14  The first is exclusive selectivity for the substrate 

of analytical interest.  The second is the ability of the enzyme to facilitate 

electron transfer between the enzyme and the electrode.  Dehydrogenases 

are preferred over oxidase as they can be used under O2 limited conditions. 

The determination of the rHADH crystal structure can be used to 

evaluate and confirm the presence of the redox active cofactors, the residues 

involved in binding of substrate, and mechanism of substrate oxidation 
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presented by Limburg et al.2  In this study, we were able to solve the crystal 

structure of HADH to 2.7 Å . Structural similarities and differences that 

distinguish HADH from TMADH will be discussed, with emphasis on the 

histamine binding site.  Modeling studies of neutral and mono-protonated 

histamine were performed to gain insight into how the active site is arranged 

to gain selectivity for histamine. 

2.2.  Materials and Methods 

2.2.1.  Crystallization 

 Prior to crystallization, protein was concentrated to 20 mg/mL in 50 mM 

Tris-HCl buffer (pH 7.4) containing 0.15 M KCl.  Screening of crystallization 

conditions was performed by the hanging-drop vapor-diffusion method using 

commercially available sparse matrix screening kits (Hampton Research and 

Emerald Biosystems).  Equal volumes of protein and reservoir solution (1 µL 

+ 1 µL) were mixed and equilibrated against 750 µL reservoir solution at 293 

K. After 5 days, yellow crystals appeared in the three following conditions: 0.4 

M NaH2PO4,1.6 M K2HPO4, 0.1 M imidazole pH 8.0, and 0.2 M NaCl 

(Emerald Biosystems #20); 2.0 M (NH4)2SO4, 0.1 M CAPS, pH 10.5, and 0.2 

M Li2SO4 (Emerald Biosystems #33); and 2.0 M (NH4)2SO4, 0.1 M Hepes pH 

7.5, and 2% PEG (Hampton Research #39).  Each of these commercial 

solutions were replicated from reagents in the, but only #33 was able to 

reproduce crystals.  Sharp needles and square box shaped crystals were 

mostly observed with the Hampton Research #39 crystallization condition 
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solution.  Concentrations of protein from 20 to 5 mg/mL were screened for 

optimization of crystal growth.  Initial testing and handling of these crystals 

proved difficult, exposure to the atmosphere with opening the well and the 

addition of various cryoprotectants would dissolve the crystals or the crystal 

lattice would crack, resulting in poor diffraction patterns.  Crystals were then 

grown in 2.0 M (NH4)2SO4, 0.1 M Hepes pH 7.5, and 2% PEG (Hampton 

Research #39) with the addition of 2%-4% glycerol (v/v) to aid in the addition 

of the cryoprotectant.  Crystals were frozen in liquid nitrogen in a solution of 

mother liquor (2.0 M (NH4)2SO4, 0.1 M Hepes pH 7.5, and 2% PEG (Hampton 

Research #39)) and 25% glycerol as a cryoprotectant.   

2.2.2.  Data collection and processing 

 Initially unsubstituted HADH crystals were screened for X-ray 

diffraction in-house on an R-AXIS IV++ detector with Cu Kα X-rays generated 

by a Rigaku RU-H3RHB rotating-anode generator and focused using an 

Osmic confocal optical system (Rigaku, Japan) at the KU Protein Structure 

Laboratory.  A full data set was collected, but initial attempts at molecular 

replacement using the TMADH structure (PDB 1DJN) 15 as a search model 

were not successful due to the complexity of the screw axis in the crystal 

lattice.  Subsequently, SeMet-HADH crystals which were generated with 

HADH grown in the presence of L-SeMet, were screened, and a complete 

MAD data set was collected at beamline BL9-2 at the Stanford Synchrotron 

Radiation Laboratory (SSRL) using the Stanford Automated Mounting (SAM) 
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system.16  Data collection was performed at 100 K using an oscillation angle 

of 1° per frame over a total of 270° to yield a highly redundant data set.  The 

diffraction data was processed with MOSFLM 17 and scaled with SCALA from 

the CCP program suite.18 

2.2.3.  Refinement and Validation 

The model was refined using the data set to 2.7 Å resolution using 

iterative round of refinement with REFMAC 20 and model building performed 

with COOT.21  The structure was validated using PROCHECK22 and  

WHATIF. 23  All figures were prepared using PyMOL.24 

2.2.4.  Histamine Modeling 

The ligands were sketched in SYBYL 25 and refined via molecular 

mechanics optimization using the Tripos Force Field 26 and Gasteiger-Marsili 

electrostatics.27  The ligands were docked into the HADH receptor via     

FlexX 28 retaining for explicit consideration all residues and 

crystallographically resolved heteroatomic moieties within 8.0 Å of the 

receptor center.  All other docking controls were left at default setting. 

2.3.  Results 

2.3.1.  The Screening of Crystal Growth Conditions for HADH Reveals 

Three Different Conditions that Produce HADH Crystals. 

The process of protein crystallization for an new protein requires the 

screening of many conditions to produce well-ordered single 3-D crystals.  

HADH protein in 50 mM Tris-HCl buffer pH 7.4 containing 0.15 M KCl with a 
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concentration of 20 mg/mL was screened against possible crystallization 

solutions from Hampton Research Screening Crystal Screen Kits I and II (HRI 

and HRII) and Emerald Biosystems Screening Wizard Kits I and II (EBI and 

EBII).   After a period of five days, crystals were obtained in EBI #20, EBI #33, 

and HRI #39.  All crystals were yellow due to the 6-S-Cys-FMN, which made 

distinguishing protein from salt crystals very easy.  Both EBI #20 and EBI #33 

yielded small crystals with small two-dimensional plates growing in EBI #33 

(Figure  2.1).  Both were well separated with slight birefringence but were too 

small for preliminary diffraction. Homemade solutions of both EBI #20 and 

EBI #33 were prepared in attempt to improve crystal quality.  Small, 2-D, 

urchin-like crystals were observed in EBI #33 (Figure 2.2), but further efforts 

were focused on HRI #39 because these crystals produced 3-D chunky 

yellow crystals and long needle like crystals (Figure 2.3).  After 11 days of 

growth, the crystals had good birefringence with a regular surface on many 

crystals.  When protein concentrations were screened from 20 mg/mL to 2 

mg/mL, crystals of similar morphology were observed.   

2.3.2.  The Screening of Cryoprotectants for X-ray Data Collection 

Reveals the Need to Grow Crystal in 2-5% Glycerol for Stability. 

The benefit of collecting an X-ray data set with a crystal flash cooling in 

a cryoprotectant is to avoid the formation of ice crystals in the flash cooling 

process.  Various cryoprotectants were tested to optimize the diffraction 

quality.  Both 30% glycerol and 25% PEG 400 were initially tested since these 
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A)                                                   B) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1.  Screening hits for Emerald Biosciences Crystal Kit #1 A) #20 - 0.4 
M NaH2PO4/1.6 M K2HPO4, 0.1 M Imidazole pH 8.0, 0.2 M NaCl  B) #33 2.0 
M (NH4)2SO4, 0.1 M CAPS, pH 10.5, 0.2 M Li2SO4 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2.  Homemade solution of Emerald Biosciences Crystal Kit #33 2.0 
M (NH4)2SO4, 0.1 M CAPS, pH 10.5, 0.2 M Li2SO4. 
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Figure 2.3.  Hampton Research Crystal Screen Kit 1 #39 2.0 M (NH4)2SO4, 
0.1 M Hepes, pH 7.5, 2% PEG. 
 

compounds are known to provide a glassy surface in the flash cooling 

process, but many crystals appeared to visually dissolve or gave poor 

diffraction patterns.  Cryoprotectants containing the mother liquor with 30% 

sucrose, 30% glucose, 30% ethylene glycol, and 30% 2-methyl-2,4-

pentanediol were tested with similar results.  Efforts with capillary mount also 

proved to give little diffraction due to the crystal drying and dissolving with 
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exposure to the atmosphere.  Initial tests were performed with 25% PEG-400; 

since the crystallization solution contained 2% PEG-400.  It was reasoned 

that the addition of higher concentration of PEG might minimize the damage 

to the crystal lattice with PEG-400 already in solution, but this proved also to 

dissolve the crystal.  The growth of the crystal in another cryoprotectant was 

then applied to glycerol, which demonstrated the best diffraction pattern 

during cryoprotectant screening.  rHADH protein solutions were grown in HRI 

#39 with the addition of 2-6% glycerol.  Within 2-3 days, crystal growth was 

observed in the 2-4% glycerol and growth was seen in 5-6% glycerol 5-6 days 

later.  The crystals consisted of medium to large size crystals that were of two 

morphologies: long and slender rods (walking stick) and flattened squares 

(pizza box) (Figure 2.4). Freezing in 25% glycerol as a cryoprotectant resulted 

in good diffraction and no observable dissolving of the crystal.   

2.3.3.  Expression of SeMet Incorporated rHADH for the Purpose of 

Collecting MAD Data Set for Crystallography  

Expression and purification of SeMet-incorporated rHADH was 

performed in order to collect a MAD data set for phase determination.  Cell 

growth in SeMet media was stunted, with an additional 5-20 hours were 

needed to reach OD600 = 0.7.  Longer time was also needed for cell growth in 

a second prep, which involved an additional 30 µg/mg L-SeMet and the 

added step of spinning down and washing the starter culture cells with SeMet 

media.   Purity and flavination, as observed by SDS-PAGE and absorbance  



 76 

 

 

Figure 2.4.  Hampton Research Crystal Screen Kit 1 #39 2.0 M (NH4)2SO4, 
0.1 M Hepes, pH 7.5, 2% PEG.  Common crystal morphology of walking 
sticks and pizza boxes. 

 

 

spectra closely resemble the expression of wild-type rHADH.  A slight 

decrease in Abs444/Abs382 ratio of 1.37 was observed in the SeMet-rHADH, 

along with a 10-fold decrease in protein yield, though activity was found in 

good agreement with the wild-type HADH.  Incorporation of SeMet into 

rHADH was observed with MALDI-TOF mass spectrometry.  The first prep 

incorporated 10 out the13 L-Met as L-SeMet (Figure 2.5).  A second attempt 

for full incorporation of SeMet into rHADH was performed by doubling the L-

SeMet concentration and removing the LB media before inoculation into 

expression media.  This resulted in slower growth of the cells and a reduced 
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incorporation of 5 out of 13 L-Met residues replaced by L-SeMet as observed 

by MALDI-TOF mass spectrometry (Figure 2.6).   

2.3.4.  Complete Data Set Collected for the SeMet-rHADH at the Stanford 

Synchrotron Radiation Laboratory (SSRL) 

  Initial SeMet-rHADH crystal screening was performed on the in house 

X-ray diffraction.  Crystal samples were grown in HRI #39 with 4% glycerol for 

screening on the house source X-ray diffraction.  Collection of the data set 

suggested the crystals belong to the orthorhombic space group P212121 with 

unit-cell parameters a = 101.1411, b = 107.0355 and c = 153.3517 (Table 

2.1).  Each asymmetric unit contained two molecules of HADH and had a 

Matthews coefficient of 60%.  Initial attempts with molecular replacement 

were unsuccessful using the TMADH structure as a search model (PDB 

1DJN).15  Efforts were subsequently directed towards solving the structure 

with an muliwavelength anomalous diffraction (MAD) data set.  Two SeMet-

HADH protein preps were generated yielding protein with partial incorporation 

of 10/13 and 5/13 L-SeMet.  L-SeMet-HADH crystals were grown in HRI #39 

with 2-5% glycerol with no change in crystal morphology.  A complete MAD 

data set was collected at beamline 9-2 at the SSRL.  The X-ray diffraction 

data was collected with 99.7 completeness to 2.7 Å resolution (Figure 2.7) 

and an Rsym value of 16% (Table 2.1).  The data set was highly redundant 

(9.7) with 451,076 points collected and 46,309 unique reflections.  This data 

set was high enough quality to solve the structure by molecular replacement  
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Figure 2.5.  Mass spectrum (MALDI-TOF) of A) unsubstituted rHADH and B) 
SeMet incorporated rHADH.  10 of 13 Met were incorporated with SeMet 
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Figure 2.6.  Mass spectra (MALDI-TOF) of A) unsubstituted rHADH B) SeMet 
incorporated rHADH.  Within the second prep, 5 of 13 Met were incorporated 
with SeMet. 
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Average I/σ(I) 16.8 (6.3) 

 

Table 2.1.  X-ray data collection statistics for SeMet-rHADH.  Values in 
parentheses are for the last shell. 
 

 

 

Space group P212121 

Unit-cell parameters (Å) a = 101.14  b = 107.03  c = 153.35  

Resolution (Å) 84.5 – 2.70 (2.77 – 2.70) 

No. of measurements 451,076 

No. of unique reflections 46,309 

Redundancy  9.7 (9.2) 

Completeness (%) 99.7 (98.8) 

Rsym (%) 16.0 (38.5) 
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Figure 2.7.  X-ray diffraction pattern of SeMet-rHADH at SSRL 

 

 

using TMADH structure as a search model (PDB 1DJN).15  The HADH crystal 

structure was refined with Refmac and modeled with COOT. 

2.3.5.  rHADH Structure  

Preparation of SeMet-rHADH followed previously described 

procedures.19  Activity of rHADH maintained activity as seen in native HADH 
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as described in chapter 1.  The SeMet HADH crystal was refined at 2.7 Å with 

two molecules per asymmetric unit.  The structure was validated using 

PROCHECK22 and  WHATIF. 23   The Ramachandran plot showed 87.1% 

residues in most favored reigion, 12.4% in the additional allowed regions, 

0.5% in the generously allowed and no residues in the disallowed region.  

Data refinement statistics are described in Table 2.2.   

 

Rwork/Rfree(%) 19.7/25.3 

B-factors 
     Protein 21.7 

     6-S-Cys-FMN 4.40 

     [4Fe-4S] 20.86 

      ADP 17.18 

RMSD 
      Bond lengths (Å) 0.012 

      Bond angles (o) 1.463 
 

Table 2.2.  Refinement Statistics 

 

2.3.6.  The Overall Structure of rHADH 

                                       rHADH was crystallized as a homodimer with two molecules per 

asymmetric unit (Figure 2.8).  Each subunit contains 690 residues with 
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molecule A modeled with residues 7-690 and molecule B modeled with 

residues 7-689.  Both contain [4Fe-4S] and 6-S-Cys-FMN as redox active 

cofactors with the addition of a single ADP molecule per each subunit.  Figure 

2.9 shows the structure of each subunit of the homodimer with the prosthetic 

groups colored in red. The root mean square deviation (RMSD) for the Cα 

between molecules A and B for rHADH is 0.34 Å.  With the high structural 

similarity between both molecules, continued analysis will focus on molecule 

A due to the complete modeling the C-terminus.  The molecule is comprised 

of four segments within three domains (Figure 2.9). The large domain 

contains the first segment of residues 7-385. The medium domain is 

comprised of the second segment of residues 386-491 and the last segment 

of residues 622-690, while the small domain consists of third segment of 

residues 492-621.  

  2.3.6.1.  The Large Domain of HADH 

                                           The large domain contains an N-terminal TIM barrel (Figure 2.10) 

common to other flavoproteins, with the eight parallel β-barrels covered by the 

eight parallel α-helices.  This domain contains the 6-S-cys-FMN and [4Fe-

4S].30  The 6-Scys-FMN is located at the opening of β-barrel and is 

surrounded by the 8-fold α-helices and large excursions at the end of β- 



 84 

 

 

Figure 2.8.  Overview of rHADH structure.  Ternary Structure of rHADH with 
one dimer in green and the other in blue.  The prosthetic groups are colored 
red within the molecule.   
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Figure 2.9.  Individual domains of each subunit.  The large domain is colored 
in blue, the medium is colored in green, and the small domain is colored in 
purple.  The prosthetic groups are colored red within the molecule.  
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stands 2,3,4,6, and 8 of the barrel that serve to cover and bury the 6-S-Cys-

FMN.  The 6-S-Cys-FMN is covalently linked to Cys35 positioned after the 

first parallel strand of the β-barrel.  The cysteine is linked to the 6-S-Cys-FMN 

through its C-6 atom, which is only known for two other flavoproteins.31  The 

[4Fe-4S] cluster is positioned outside the β/α-barrel and connected after the 

end of the parallel α-helix (helix 8) close to the medium domain.  The [4Fe-

4S] is coordinated to four cysteine residues (Cys348, Cys351, Cys354, and 

Cys366).   

2.3.6.2.  The Medium and Small Domains of rHADH 

The medium domain is comprised of five α-helices that cover 3 parallel 

β-sheets, with three of the α-helices on one side and two on the other.  The 

last 20 C-terminal residues of the fourth segment are in contact with the 

adjacent subunit. The ADP is located in the medium domain, but it is not 

covalently linked to any residue within the domain. The ADP is exposed to the 

surface, next to the interface of the medium and small domains.  The small 

domain contains three α- helices that cover over five parallel β-sheets. Three-

stranded anti-parallel β-sheets cover the other face.   

2.3.7.  Structural Comparison of HADH with TMADH 

  HADH shares structural homology with a large family of flavoproteins 

containing a TIM barrel domain.30,32-34  HADH is structurally most similar to 

the 6-S-Cys-FMN and [4Fe-4S] containing flavoprotein, TMADH.34  The 

enzyme TMADH catalyzes the oxidative demethylation of trimethylamine to 
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Figure 2.10.  HADH large domain rainbow colored from N-terminus (blue) to 
C-terminus (red) demonstrating the TIM barrel.  The prosthetic groups are 
also in red. 
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dimethylamine and formaldehyde.35  Both the enzymes are homodimer in 

structure and are similar in size, 76 kDa and 82 kDa for HADH and TMADH 

respectively.2,35  Molecule A of HADH demonstrates high structural similarity 

with molecule A of TMADH based on the root mean square deviation of 1.15 

Å for the Cα atoms. Figure 2.11 shows the overlay of each molecule of HADH 

and TMADH.  Both of the structures are comprised of four segments within 

three domains.34 The large domain has the TIM barrel structural motif found in 

TMADH and in other flavoproteins.32-34  The medium and small domain 

secondary structures share similarities corresponding with the α helices and β 

sheets.34  One main structural difference between HADH and TMADH is 

found in the small domain.  In TMADH, a long loop is connected to the three 

anti-parallel β-sheets consisting of residues 606-631, which is not found in 

HADH. This loop in TMADH extends over the large domain in the adjacent 

molecule.  This loop is also not found in the FMN and [4Fe-4S] E. coli 2,4-

dienoyl-CoA reductase, which shares a 30% identity with TMADH.30  The 

redox active cofactors, 6-S-Cys-FMN and [4Fe-4S] cluster, are positionally 

conserved in both HADH and TMADH, along with bound ADP in the medium 

domain.34  The function of the bound ADP is unknown.2  The bound ADP is 

spatially analogous with bound FAD in other flavoproteins, i.e. E. coli 2,4-

dienoyl-CoA reductase.30  In this flavoprotein, the FAD transfers electrons to 

the FMN through the [4Fe-4S], which will reduce the substrate by two 

electrons.  
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Figure 2.11.  HADH subunit overlaid with TMADH.  HADH molecule A (green) 
is overlaid with molecule B (blue) TMADH. 
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2.3.8.  The Active Site of HADH 

The prosthetic groups, 6-S-Cys-FMN and [4Fe-4S], in HADH are involved in 

the oxidation of histamine.2  Both cofactors are found in the large domain of 

HADH, with the 6-S-Cys-FMN covalently linked to Cys35 and the [4Fe-4S] 

coordinated to four cysteine residues (Cys348, Cys351, Cys354, and  

Cys366) 2 (Figure 2.12).  The distance of the 8α-methyl of the 6-S-Cys-FMN 

to the closest iron is around 6 Å, while the closest cysteine residue is 4 Å 

away.  The distances 8α-methyl of the 6-S-Cys-FMN to the closest iron and 

cysteine are reasonably close to the distances of the 8α-methyl of the 6-S-

Cys-FMN to the closest iron and cysteine in TMADH based on overlay of both 

cofactors.34  Within the active site, residues in HADH, Arg230, His179, and 

Tyr176 (HADH numbering) are conserved in TMADH.  In TMADH, these 

residues are involved in substrate oxidation36,37 and in 6-S-Cys-FMN 

biogenesis.38  Arg230 is positioned 2.70 Å from the O2 carbonyl of the 6-S-

Cys-FMN, while Arg222 in TMADH is 2.60 Å from the carbonyl.34  This 

residue was found in TMADH to stabilize the negative charge buildup on the 

N1 and C2 carbonyl during 6-S-Cys-FMN biogenesis in TMADH.38  In HADH, 

Tyr176 is almost 1.0 Å further from the O2 carbonyl of 6-S-Cys-FMN, 3.72 Å 

in HADH and 2.80 Å in TMADH, but both are within hydrogen bonding 

distances to the Nδ atom of the imidazole ring of the neighboring histidine 

(H179).  The difference in Tyr and 6-S-Cys-FMN distance could influence the 

extent of the spin-spin coupling and explain the differences observed in 
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Figure 2.12.  The prosthetic groups, 6-S-Cys-FMN and [4Fe-4S], in HADH 
(red) are involved in the oxidation of histamine.  The cofactor distances for 
TMADH (blue) and HADH (red) from the FMN to closest cysteine and iron 
center is the same.  Overlap was performed with SSM superimpose in Coot 
based on cα chain of both proteins.  
 

 

TMADH and in HADH.2,36  This tyrosine residue is also involved in hydrogen 

bonding with histidine residue and is proposed to be essential to lower the 

pKa of histidine residue for substrate oxidation based on the mutation studies 

with TMADH.36  His179 is around 0.5 Å closer to the 6-S-Cys-FMN than 

His172 is to the 6-S-Cys-FMN in TMADH.  Through mutation studies, this 

histidine residue is believed to influence the upper ionization in the enzyme-
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substrate complex of TMADH.37  The 6-S-Cys-FMN in both HADH and 

TMADH exhibit a butterfly bend centered at the N5 and N10 positions (Figure 

2.13).  The figure demonstrates the bend in the 6-S-Cys-FMN of HADH 

(green) is not as extensive as the bend in TMADH (blue), while the purple 6-

S-Cys-FMN of HADH was under planar constraint within the refinement 

process.  The electron density of HADH suggests that the bend of the 6-S-

Cys-FMN lies between the planar 6-S-Cys-FMN in the constrained refinement 

and the bend found TMADH.  Experimentally, it was determined that the 6-S-

Cys-FMN bend increased the two electron reduction potential of the 6-S-Cys-

FMN.39-41  This increase is in good agreement with the findings in this work, 

as the two-electron potential of TMADH is higher than HADH.42  

One of the major differences between HADH and TMADH is the 

substrate selectivity.  The differences in substrate binding to TMADH and 

HADH are due to differences within the active site.  In TMADH, substrate 

binds to the “aromatic bowl”.43  The binding of substrate in TMADH involves 

cation-π bonding of the alkylammonium ion mediated by one tyrosine and two 

tryptophan residues. Only one tryptophan is conserved between these two 

enzymes in HADH, where the other two residues are substituted by glutamine 

and aspartic acid.  These residues may provide insight for the selectivity of 

HADH for histamine versus TMADH and DMADH.  Since the structure did not 

contain histamine, docking studies of histamine were undertaken to assist in 

understanding the enzyme’s selectivity.              
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Figure 2.13.  Butterfly bend structure of 6-S-Cys-FMN.  Electron density 
shown as 2 FO− FC map at 1.0 σ around the 6-S-Cys-FMN of strained 
refinement of HADH 6-S-Cys-FMN (purple), unstrained refinement of HADH 
6-S-Cys-FMN (green), and TMADH (blue)  

 

 

2.3.9.  The Modeling of Histamine into the Active Site to Understand the 

Mode of Binding 

To gain understanding of the substrate selectivity of HADH, histamine 

was modeled into the active site (Figure 2.14).  The molecular model of 

histamine was docked into the active site in both the neutral and protonated 
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forms, with the cation predicted to be substantially more energetically 

favorable than the neutral species (-21.50 kcal/mol vs. -14.44 kcal/mol).  The 

binding of histamine is characterized by several interactions that stabilize the 

enzyme-substrate complex.  The histamine is positioned over the si face of 

the isoalloxazine ring (Figure 2.15).  The negative charge of the Asp358 and  

Glu79 tightly binds the amino group of histamine.  This salt bridge would 

provide exceptional stabilization for the amino group.  The imidazole group of 

histamine forms π−π interactions with Tyr181 and Phe77.  Tyr181 exhibits π-

stacking interaction, with Phe77 forming end-on interactions with the 

imidazole group.  Asn115 also contributes to the stabilization by hydrogen-

bonding to the nitrogen of the imidazole ring.       
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Figure 2.14.  Putative histamine binding site.   
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Figure 2.15.  Model study on histamine binding in the active site of rHADH. 
 

 

2.4.  Discussion 

2.4.1.  Screening of Crystal Growth Conditions for HADH Reveals Three 

Different Conditions that Produce HADH Crystals 

The process of protein crystallization requires the screening of many 

different conditions to produce crystals if conditions are not known.  Hampton 

Research Screening Kits I and II (HRI and HRII) and Emerald Biosystems 

Screening Kits I and II (EBI and EBII) were used to identify the conditions of 
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crystal growth.   Three different conditions were found to grow crystals within 

a week, EBI #20, EBI #33 and HRI #39.  Minimal optimization of EBI #20 and 

EBI #33 were pursued, since the crystal morphology of HRI #39 produced the 

greatest potential for diffractable crystals in a short time period.  Crystal 

morphology of HRI #39 did not vary with protein concentration, as 5 mg/mL to 

20 mg/mL produced similar long rods and flatten square boxes crystal 

shapes.  Initial HADH crystal screening was perform on the in house X-ray 

diffraction. 

2.4.2.  Screening of Cryoprotectants for X-ray Data Collection Reveals 

the Need to Grow Crystal in 2-5% Glycerol to Avoid Damaging the 

Crystal 

The exposure of the crystal to the atmosphere and the initial addition of 

various cryoprotectants readily dissolved the crystal within minutes.  Different 

approaches where then pursued to obtain a crystal that could frozen and yield 

well-ordered diffraction.  Gradually increasing the concentration of glycerol in 

5% increments to the final concentration of 25% proved unsuccessful as the 

crystal would still dissolve in higher concentrations of the cryoprotectant.  

Efforts then where made to collect a data set at room temperature without 

cryoprotectant using a capillary mount.  The challenge in this method is to 

avoid drying out the crystal during manual manipulation to a sealed capillary.  

The HADH crystals examined using this method did not yield a quality data 

set from this method but unclear if this was due to the crystal or the 
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manipulation.  The introduction of cryoprotectant while the crystal is forming 

can reduce the damage to the crystal caused by the addition of 

cryoprotectant.  Thus, before crystallization 2 – 6 % glycerol was added to the 

mother liquor.  This did not change the crystal morphology of the walking 

sticks or pizza boxes.  These crystals grown in this manner appeared 

unaffected when 25 % glycerol was added as a cryoprotectant.  The crystals 

were mounted at the home source X-ray diffraction and obtain good 

diffraction data. Initial tests determined the HADH crystals belong to the 

orthorhombic space group P212121 with unit-cell parameters a = 101.1411, b 

= 107.0355 and c = 153.3517 (Table 2.1).  Each asymmetric unit contained 

two molecules of HADH.  The Matthews coefficient VM of 2.79 Å3 Da-1 which 

corresponds to a solvent content of 60%.  Due to the high sequence identity 

and homology with TMADH (PDB 1DJN)15 this structure was used to attempt 

to solve the structure using molecular replacement.  This method proved 

difficult and while other programs of molecule replacement were being 

pursued, SeMet HADH was prepared to obtain a MAD data set. 

2.4.3.  Expression of SeMet incorporated rHADH for the purpose of 

collecting MAD data set for X-ray crystallography  

Since molecular replacement proved to be more difficult than 

expected, HADH protein was grown in SeMet rich media in which the heavy 

atom selenium is incorporated into the protein by replacing normal amino acid 

methionine with methionine in which the sulfur in the amino acid is substituted 
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with selenium.  The anomalous scattering of the heavy atom can give the 

corresponding phase angle, which is then used to solve the crystal 

structure.44  The initial attempt at SeMet incorporated 10 out the13 L-Met as 

L-SeMet into rHADH.  A complete data collection was successfully collected 

at the SSRL and phasing using the incorporated SeMet was attempted using 

multiwavelength anomalous diffraction.  It appeared that insufficient 

incorporation of SeMet caused problems for determining phase information 

although the number of SeMet was also high.  A subsequent attempt at 

higher SeMet incorporation by the addition of higher concentration of L-SeMet 

during protein expression, only resulted in a reduction in the amount of SeMet 

incorporated (5 out of 13).   However, the first SeMet data was of significantly 

higher quality compared to home source and was used for molecular 

replacement. 

2.4.4.  Complete Data Set collected for the SeMet-rHADH at the Stanford 

Synchrotron Radiation Laboratory (SSRL) 

 A complete MAD data set was collected at beamline 9-2 at the SSRL 

at the remote, peak, and edge of the X-ray absorbance of selenium.  

Screening of L-SeMet crystals showed higher order in longer, cuboid walking 

sticks rather than the flat, square box crystals.  It also appeared that the best 

diffraction data could be collected with the crystal hanging out of the loop. 

(Figure 2.16).   
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HADH crystals were also grown with substrate in order to understand 

the binding of histamine with substrate bound (histamine) and inhibitor bound 

(N-methyl-histamine) with a five fold increase of inhibitor concentration to 

enzyme.  The resulting crystals only consisted of pizza boxes, which we were 

unable to obtain reasonable diffraction.  In the future, seeding the crystal 

solution of enzyme and histamine with microcrystals from the walking sticks 

could be used to influence the crystal morphology towards the diffractable 

walking sticks. 

 

 

 

 

Figure 2.16.  Data collection of HADH crystal hanging out of the loop 
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2.4.5.  The Active Site of HADH 

2.4.5.1.  Active Site Comparison of HADH and TMADH 

Many structural similarities exist between HADH and TMADH, but the 

difference in substrate specificity suggests a unique aspect of the active site 

of HADH.  The crystal structure of HADH and modeling studies with histamine 

were performed in order to gain understanding of the substrate specificity of 

HADH.  Only one of the residues in the aromatic bowl of TMADH (Trp267) is 

conserved in HADH.45   With the polar residues Asp358, Glu79, Gln65, 

Tyr181, and Gln115, the binding pocket of HADH resembles that of histamine 

binding proteins (HBPs) and the proposed binding pocket of HHR3-7  rather 

than TMADH, which consists of the aromatic side chains (Tyr60, Trp264, and 

Trp355).45  A distinct difference between TMADH and HADH is the substrate 

selectivity within the active site.  The tertiary alkylammonium trimethylamine 

(TMA) in TMADH is bound through the organic cation-π bonding of the 

aromatic bowl, Tyr60, Trp264, and Trp355.  Only one residue in HADH 

(Trp267) is conserved from the aromatic bowl of the TMADH, and the Trp267 

residue is not responsible for the stabilization of histamine in HADH.  Gln65 

and D358 are the two other residues spatially conserved with the aromatic 

bowl.  These polar residues stabilize the substrate through a salt bridge and 

hydrogen bonding, as opposed to the cation-π stabilization found in the 

aromatic bowl of TMADH with residues Tyr60 and Trp355.  
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2.4.5.2.  The Mechanism Biogenesis of 6-S-Cys-FMN in HADH 

Could Resemble TMADH Based on Spatially Conserved Arginine 

Residue in the Active Site 

Within the active site of HADH, Arg230 is spatially conserved with 

Arg222 in TMADH (Figure 2.17).  Mutation studies in TMADH38 have revealed 

that Arg222 is involved in the 6-S-Cys-FMN biogenesis in which the Cys30 is 

covalently linked to the C6 position on the flavin isoalloxazine ring.  In the 

proposed mechanism, the 6-S-Cys-FMN forms through flavin 

tautomerization.38  In the flavin iminoquinone methide tautomer, the C6 atom 

of the flavin is susceptible to nucleophilic attack.38  Arg222 in TMADH is 

conserved with Arg230 in HADH and is important for the stability of negative 

charge buildup in the N1 atom and C2 carbonyl region.  Mutation studies of 

Arg222 to lysine in TMADH show reduced flavination of the enzyme, while 

R222V and R222Q prevent flavinylation altogether.38  Arg222 in TMADH is 

conserved as Arg230 in HADH, suggesting the possible formation of 6-S- 

Cys-FMN following the same mechanism.  Similar mutation studies of HADH 

would conclusively support the iminoquinone methide tautomeric mechanism. 

2.4.5.3.  The Two Electron Potential of the 6-S-cys-FMN may be 

Influenced by the Butterfly Bend of 6-S-Cys-FMN in the Active Site 

The 6-S-Cys-FMN of HADH has a unique bend along the N5-N10 axis 

of the flavin isoalloxazine ring in the active site.   The butterfly bend of 6-S-

Cys-FMN in TMADH was originally thought to be a result of the covalent  
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Figure 2.17.  The spatial arrangement of Arginine in HADH (Red Arg230) and 
TMADH (Blue Arg222) suggests similar mechanism of 6-S-Cys-FMN 
biogenesis 

 

 

linkage of the thioether bond of the cysteine and the isoalloxazine ring.46  

However, mutation studies of C30A in TMADH resulted in a non-covalently 

bound 6-S-Cys-FMN identical to native TMADH, suggesting this covalent 

linkage is not responsible for the 25o butterfly bend.46  Computational studies 

on both the planar and butterfly bend conformations were performed on 

lumiflavin and C6-methylsulfanyllumiflavin, and these studies suggested that 
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the butterfly bend raises the two-electron reduction potential, making the 6-S-

Cys-FMN more reactive to substrate.40,41  Based on the electron density of 

HADH, the bend of the 6-S-Cys-FMN is not as extensive as the bend in 

TMADH.  The redox potential of HADH for 6-S-Cys-FMNO/S and 6-S-Cys-

FMNS/R have been reported to be +34 mV and +30 mV, respectively, 42 while 

the reported values of TMADH for 6-S-Cys-FMNO/S and 6-S-Cys-FMNS/R are 

+44 mV and +36 mV, respectively.47  The slightly less positive redox 

potentials of 6-S-Cys-FMN in HADH may be influenced by the slightly 

flattened bend in the 6-S-Cys-FMN.   

2.4.5.4 Conserved Tyr in the Active Site Contributes to the Spin-

interaction States of HADH and TMADH  
 Tyr176 in HADH is conserved as Try169 in TMADH, but is almost 1.0 

Å farther away from isoalloxazine ring (Figure 2.18).  Mutation studies on 

TMADH with Y169F revealed the loss of the spin couple of the semiquinone 

and reduced [4Fe-4S].36  This phenomenon was observed by EPR as the loss 

of feature at half-field.  This same phenomenon of the loss of the feature at 

half-field is observed native HADH.36  Limburg et al. suggested that either the 

spatial arrangement of the two cofactors or the arrangement of the amino 

acids could affect the spin coupling.2  The 6-S-Cys-FMN distance to [4Fe-4S] 

are equal in HADH and TMADH with 4.0 Å from the 8α carbon to the nearest 

cysteine residue and 5.7 Å from the 8α-methyl to the closest iron in the [4Fe- 
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Figure 2.18.  Conserved Tyr in the Active Site Contributes to the Spin-
interaction States of HADH (Red Tyr176) and TMADH (Blue 169) 
 

 

4S] shows the spatial relationship of the cofactors is the same.  In a mutation 

study done by Scrutton substituting Tyr169 with phenylalanine, the complex  

EPR signal associated with the spin-interaction state in the wild type is not 

observed at high-field and the signal at g ~4 is greatly reduced.36  The mutant 

forms the semiquinone and reduced [4Fe-4S], but the magnetic moments of 

the two unpaired spins do not interact as strongly as wild type.  The proposed 
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rationale behind this was that the negative charge on the hydroxyl group 

develops and forces unpaired electron density on the 6-S-Cys-FMN towards 

[4Fe-4S] and reduces the distance of the spin-interaction.  The tyrosine in the 

active site of HADH is almost an entire Å farther from the isoalloxazine ring 

and likely does not assist in the spin coupling of the semiquinone and 

reduced [4Fe-4S]. 

2.4.6.  Histamine Binding In HADH 

2.4.6.1.  The Modeling of Histamine in the Active Site reveals 

Important Residues for Selectivity 

 Limburg et al. proposed that the mono-protonated histamine binds to 

the active based on the pH dependence on kcat/Km.2  Results of modeling 

studies also suggest a more favorable binding of the mono-protonated over 

the neutral histamine.  Also predicted were the active site residues Glu79 and 

Asp358 involved in histamine binding2, and could contribute to the ionization 

observed in the pH dependence on kcat/Km.   The involvement of these 

residues in histamine binding are also consistent with modeling studies.  

Histamine is also stabilized by Phe77 and Tyr181 through π−π stacking 

interactions.   

The binding of histamine in the active site of HADH explains the high 

selectivity.  Biogenic amines such as tyramine and dopamine, which have a 

hydroxyl group on the aromatic ring would have a high degree of steric 

hindrance with the asparagine residue (Asn115), which would not allow for 
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the binding of these substrates.  Aliphatic amines, such as n-butylamine, 

putrescine, and methylamine, do not benefit from the π−π interactions that are 

observed with the imidazole group of histamine.  Agmatine could take 

advantage of both the interactions with the amino group and the π−π 

interaction of the guanidine group, along with stabilization with the asparagine 

residue.  However, the  π−π interaction would not be comparable to the 

imidazole ring histamine, which alters its binding affinity. 

2.4.6.2  Known Binding motif of Histamine Binding Proteins 

Validates the Binding mode of Histamine in HADH. 

There are a handful of proteins that have been crystallized with 

histamine bound in the active site.48  These range from proteins found in 

humans, histamine methyltransferase and histidine decarboxylase, to proteins 

found in insects, nitrophorin and histamine binding proteins.  Though the 

residues involved in the binding of histamine differ, the stabilization of 

histamine though either the imidazole ring or the amino group of histamine is 

conserved throughout these proteins.   When comparing HADH with the other 

histamine binding proteins, the binding motif correlates most closely with 

salivary proteins seen in blood sucking insects, commonly known as 

histamine binding proteins (HBP), and histamine methyltransferase.   In the 

HBPs, the negatively charged residues of aspartic acid,  glutamic acid, or 

both stabilize the amino group of histamine.  Stacking interactions with the 

aromatic residues tyrosine, phenylalanine, and tryptophan help to stabilize the 
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imidazole ring of histamine.  The HBPs found in these insects function to bind 

histamine with high affinity during blood feeding, as this will suppress the 

inflammation response.  The role of histamine methyltransferase (HNMT) is to 

inactivate histamine.  This occurs by transferring a methyl group from S-

adenosyl-L-methionine to the imidazole ring.  The binding of histamine in 

HNMT involves the amino group of histamine interacting with glutamic acid, 

glutamine, and asparagine residues.  The aromatic residues tryptophan and 

tyrosine provide π stacking with the imidazole.  The binding of histamine in 

HADH follows the motif of these two classes of proteins.  HADH binds the 

amino group of histamine through negatively charged aspartic acid and 

glutamic acid residues, along with π−π stacking interactions with tyrosine and 

phenylalanine.  Even though the function and mechanism of HBPs, HNMT, 

and HADH differ, the selectivity of histamine and the binding motif is clearly 

consistent with these high-affinity histamine-binding proteins 

2.4.6.3.  Docking of Histamine in the Active Site of HADH has 

Similarities with Human Histamine Receptor/ Histamine Model 

The sequences of the human histamine receptors (HHR) are known, 

but the crystal structures have yet to be determined.3-7  Modeling studies of 

the HHR and other histamine binding proteins have provided some 

understanding of the physiological binding of histamine.  In all four HHR, a 

salt bridge between a conserved aspartic acid and the amino group of 

histamine has proven essential for histamine binding based on site-directed 
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mutagenesis studies.3-7    HADH also has an aspartic acid residue that forms 

a salt bridge with the cationic amino group of histamine, exhibiting a similar 

binding motif to all four HHRs, with a glutamic acid residue that also 

contributes to the ion-pair interaction.  HHR 1 and HHR 4 both contain an 

asparagine residue that hydrogen bond to the imidazole nitrogen.3,49  In 

HADH, Asn115 plays the same role as the asparagine in these two HHR, 

stabilizing the imidazole ring.  In HHR1,  a tyrosine residue contributes to 

imidazole binding by forming a π−π interaction3, while in HADH Tyr181 and 

F77 provide the same stabilization of the imidazole group.   The binding motif 

of HADH demonstrates significant similarities with HHR, and especially the 

binding motif of HHR1. 

One of the most prescribed families of pharmacological drugs are 

designed to target the H1 receptor within the body.  Understanding how 

histamine binds within this receptor could greatly increase selectivity and 

specific pharmacological action.  The important residues in the HHR 1 that 

are essential for the binding of histamine are aspartic acid, tyrosine, and 

asparagine.  In HADH, the same residues interact to stabilize histamine 

making HADH a great model for HHR1, for which the crystal structure has not 

been solved. 

2.4.7.  The Possible Catalyst Mechanism for C-H Bond Cleavage and 

Potential to Probe the Possible Mechanism. 
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 The proposed mechanism of C-H bond cleavage for HADH involves 

the nucleophilic attack amino group of histamine at the C4 position of the 6-S-

Cys-FMN with proton abstraction by the N5 atom of the 6-S-Cys-FMN.  

Elimination and formation of the imine follows the nucleophilic attack and then 

subsequent oxidation with water and the eventual formation of the reduced 6-

S-Cys-FMN.  (Figure 2.19)  This mechanism had been proposed by TMADH 

and MAO.10,50,51  Limburg et al. determined the KIE of 7.0 indicating the C-H 

bond cleavage was part of the rate determining step under subsaturating 

conditions.2  They also observed the reaction of phenylhydrazine with HADH.  

In TMADH, Scrutton et al. reacted phenylhydrazine and noticed that an 

unusual spectrum was observed.52  After isolation of the isoalloxazine ring, 

the phenylhydrazine was seen complexed to the ring.  This electrophilic 

position was also confirmed by experimental and computational studies on 

the isoalloxazine.46,53  Quantitative structure-activity relationships (QSAR) 

with MAO have been performed by Edmondson with para and meta-

substituted benzylamines.10  They observed negative charge build up that 

supports proton abstraction mechanism for the substrate C-H bond and 

suggests a polar nucleophilic mechanism as proposed here. Further 

computational studies of the LUMO in both lumiflavin and C6-

methylsulfanyllumiflavin suggest significant orbital density on N5 and C4a.46  

This could play a significant role in the mechanism of C-H bond cleavage of  
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Figure 2.19.  Proposed Oxidation of Histamine by HADH 
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histamine.  The positive electrostatic potential found at C4a suggests a 

possible location of substrate adduct formation.46 

Phenylhydrazine is known to react with 6-S-Cys-FMN in HADH and 

TMADH. 2,52  The KIE found in HADH that shows the C-H bond cleavage is  

rate limiting.2   These mechanistic similarities suggest that HADH undergoes 

nucleophilic addition mechanism in the substrate oxidation.10,50,51   

 Other possible means of probing the mechanism of HADH could 

involve the use of derivatized substrates.2  The use of mono or di-substituted 

fluorohistamine creates an amino group that is harder to oxidize and 

decreases the nucleophilicity of histamine.  A decrease in the rate of the 

reduction would suggest a covalent mechanism is involved in substrate 

oxidation.  Substrates with steric bulk at the amine position would affect the 

rate of reduction if a covalent mechanism is employed.  If the reduction rate is 

constant with these derivatives there is a possibility of electron transfer, and 

an increase in reaction rate with the difluorohistamine might suggest a 

hydride transfer.2  This could possibly help in towards understanding 

oxidation of substrate in flavoproteins. 

2.4.8.  The Possible Electron Transfer from Cofactors of HADH to the 

External Electron Exceptor. 

In the oxidative half-reaction, HADH transfers one electron from the 

reduced [4Fe-4S] cluster to an external electron acceptor.  The natural 

electron acceptor for HADH is unknown.  The physiological electron acceptor 
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for TMADH was found to be the electron transferring flavoprotein (ETF).54  In 

TMADH, Tyr442 was shown to be the means of transferring electrons to 

ETF.55  Mutation studies of Tyr442 and Val344 in TMADH demonstrate two 

possible pathways for electron transfer.55  With ferricenium (Fc) as the 

electron acceptor, the rate of electron transfer was greatly affected by 

introduction of various mutations at Val344.  Smaller side chains (Val344A, 

Val344C, and Val344G) showed an increased rate, while longer side chains 

(Val344I and Val344Y) reduced the rate of electron transfer to Fc+.  Electron 

transfer to native ETF was unaffected by mutations at Val344.  In contrast, 

mutations at Tyr442 had little effect on electron transfer to Fc+, while the 

mutations Tyr442P, Tyr442L, Tyr442C, and Tyr442G showed major reduction 

of electron transfer to ETF.  The conclusion of this mutation study suggested 

two modes of electron transfer: 1) electron transfer from the [4Fe-4S] to 

Val344 is the shortest pathway, because small Fc+ is able to access through 

a small groove. 2) ETF is not able to penetrate this small groove, and electron 

transfer occurs on a longer pathway from Cys345 to Glu439 to Tyr442.   The 

physiological electron acceptor for HADH is not known, and ETF protein could 

not be recovered in the purification process of HADH from N. simplex.  Some 

possible single-electron acceptors are ferredoxin, cytochrome c, and azurin.2  

The residues of the electron transfer pathway found in TMADH are not 

conserved within HADH (Figure 2.20).  The longer pathway in HADH includes 

Cys348 to Ala441 to Arg444, though electron transfer along this route is  
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Figure 2.20.  Proposed Electron transfer of HADH 

 

 

probably unlikely.  The more probable route of electron transfer is from 

Cys348 to Glu347.  Glu347 is exposed to the surface and is directly adjacent 

to Cys348.  Mutations of this cysteine residues in HADH are currently in 

progress to uncover the mechanism and residues involved in the oxidative 

half-reaction.   Further studies will decipher the specific route of electron 

transfer in HADH. 

2.4.9.  Possible Design of a Histamine Sensor 
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 In the design of an enzymatic sensor, the transfer of electrons from the 

reduced enzyme to the electrode surface is vital for successful detection.  

Charge transfer can occur through a mediator or by engineering the enzyme 

to the electrode surface.  Biosensor design has been pursued by several 

groups.  One means of creating an enzymatic biosensor is to immobilize the 

enzyme in a polypyrrole film on the electrode surface.   Potassium 

ferricyanide was employed to mediate electrons from the reduced enzyme to 

the electrode.  HADH has demonstrated substrate inhibition based on the 

substrate and external electron acceptor concentrations, so problems with the 

sensitivity at high histamine concentration might arise if the external electron 

acceptor is not present at sufficient concentrations to reoxidize HADH.  A 

better route to an enzymatic biosensor would be to genetically engineer the 

protein to the sensor itself.  This would allow for electrons to travel directly 

from the [4Fe-4S] to the electrode.  This concept was demonstrated with 

TMADH, where the enzyme was wired to the electrode.14   In order for 

electron transfer to occur, the wiring of the enzyme needs to be in close 

proximity to the redox active cofactors.  HADH has an ideal setup, with the 

residue right next to the [4Fe-4S] exposed to the surface of the enzyme 

(Glu347).  This residue can be mutated to a cysteine residue, which can in 

turn be immobilized onto the surface of the electrode.  However, mutation 

close to the [4Fe-4S] might cause a change in the reduction potential.  Cyclic 

voltammetry would need to be employed to test the redox potential of the 
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[4Fe-4S] to ensure no change had occurred.  A design for a portable 

enzymatic sensor for histamine detection could be applicable in the field of 

cancer research and in FDA detection of contaminated fish. 

2.5.  Conclusion 

HADH is known to have high substrate selectivity.  To better 

understand this narrow substrate selectivity, structural studies were 

performed on histamine dehydrogenase.2  HADH crystallization conditions 

were screened finding HRI #39 as optimal for crystal growth.  Further 

screening would be useful to obtain data with higher resolution or with 

histamine bound.  Overall, a complete data set was collected with HADH 

crystals that contained 4% glycerol and a “walking stick” crystal morphology.  

Although they grew readily, the diffraction of the square boxes yielded poor 

diffraction quality.  Shifting the equilibrium of crystal growth towards the 

“walking sticks” could improve the resolution, especially when co-

crystallization of substrate is desired.  Slight modifications in HRI #39, such 

as pH, salt, or buffer concentration, should be explored.  Also, slight 

modification to EBI #20 and EBI#33 could produce desirable crystals.   X-ray 

diffraction data of HADH recombinantly expressed in E. coli has been 

determined to 2.7 Å resolution.  HADH shares the common TIM barrel motif 

found in many flavoproteins along with prosthetic groups that are spatially 

analogous to other FMN and [4Fe-4S] dependent flavoproteins.  The docking 

studies suggest that binding of histamine mimics the binding motif found in 
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histamine methyltransferase and HBP.  These enzymes are selective for 

histamine and bind histamine with high affinity.  In these proteins, the amino 

group is stabilized by the negative charge on the carboxylate group and π−π 

interaction with aromatic residues.  Histamine is proposed to have a similar 

binding motif with human histamine receptors (HHR), especially human 

histamine receptor 1, which is the target of pharmaceutical drug design.  A 

conserved aspartic acid found in all four HHR, stabilizes the amino group of 

histamine though ion-pair interactions.  HHR 1 also stabilizes the imidazole 

ring of histamine with tyrosine and asparagine residues.   Both the ion pair 

interaction and the imidazole stabilization binding motifs are conserved in 

HADH.    HADH’s high selectivity towards histamine and its optimal electronic 

properties make it an excellent choice for a biosensor for the detection of 

histamine.  The similar binding motif of HADH and HHR 1 could provide a 

better understanding of histamine binding within the body, allowing the 

development of highly specific and selectivity antagonists to HHR1.  
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Chapter 3 

Targeting the Endoplasmic Reticulum for Inhibition of Collagen 

Production by Prolyl 4-Hydroxylase 

 

3.1.  Background 

3.1.1.  Fibrosis  

Fibrosis is a disease characterized by the over production and 

progressive accumulation of collagen.1  Fibrosis has been observed in many 

tissues and organs including the heart, kidney, lungs, blood vessels, and 

skin.1,2  Excessive collagen production results in the destruction of normal 

function and structure of these organs.  The most prevalent types of fibrosis 

include pulmonary fibrosis, fibrosis of the liver, and rheumatoid arthritis.  

Table 3.1 demonstrates the effects of fibrosis on people.  In pulmonary 

fibrosis, the air sacs in the lungs thicken from  

 

 Deleterious Effects 
Pulmonary Fibrosis 84,000 people die each year3 

Liver Fibrosis 900,000 people have been diagnosed 
26,000 people will die4 

Rheumatoid Arthritis  Millions of people affected with joint 
pain and discomfort5 

 

Table 3.1.  The deleterious effects of fibrosis on human population  
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the formation of scar tissue,6 making oxygen transfer from the lungs to the 

blood very difficult.  Fibrosis of the liver, or cirrhosis, involves the 

development of scar tissue in place of normal tissue.  This scar tissue blocks 

the transfer of blood into the liver preventing the removal of poisons and 

bacteria from the blood.7  Rheumatoid arthritis is an autoimmune disease that 

causes inflammation of the joints and the surrounding connective tissue.5  

The destruction of cartilage and ligaments triggers the inflammatory 

response, which produces scar tissue.   

While all types of fibrosis within these tissues are characterized by 

excess collagen, the environmental triggers that cause fibrosis within these 

tissues vary significantly.  Pulmonary fibrosis is primary caused by smoking, 

inhalation of inorganic dusts or chemicals, or viral infections.3  Liver fibrosis is 

often caused by excessive alcohol consumption or viral hepatitis.8  In many 

cases of fibrosis, the initial cause of inflammation is varied, but the deleterious 

effect is the overproduction of collagen.  Fibrotic diseases are chronic and 

progressive in their injurious effect.  A treatment able to cure or minimize 

fibrosis could alleviate the pain and discomfort felt by many around the world.  

3.1.2.  Fibrosis – Pathway and Possible Prevention 

 Development of a cure to fibrosis is as varied as the disease itself.  

Simply abstaining from alcohol or smoking will greatly reduce the risk of liver 

fibrosis and slow its advancement within the body.8  The cellular response is 

another target towards inhibiting fibrosis.  The cellular involvement in the 
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pathway to fibrosis is described in Figure 3-1.9,10  After tissue is damaged, the 

body responds to substances released from dead and dying cells by the 

activation of macrophages.  These macrophages activate cytokines, the most 

notable being TNF-α and interleukins 1 and 6.  The pathway continues with 

the activation of the inflammatory response in the local environment,  

 

 

 

Figure 3.1.  Damage to the tissue elicits a cascade immune response.  The 
persistent cell damage causes the sequence of events that lead to the 
developing of fibrosis.11  
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especially with EGF, PDGF and TGF-β.10  Eventually, the cytokines activate 

fibroblast cells and elicit the production of collagen.  Persistent tissue damage 

leads to continued inflammatory response, which eventually causes the 

overproduction of collagen and therefore fibrosis.   

Many of the fibrosis drugs being developed target the immune 

response with the hope of preventing the production of scar tissue.  Anti-

inflammatory therapy and steroids have been successful in preventing the 

inflammation response, causing a reduction of fibrosis.8,12  Steroids have had 

a more prolonged effect on chronic fibrosis than non-steroidal anti-

inflammatory drugs.12  The increased expression of mRNA and protein levels 

of TGF-β seen in rats with liver fibrosis and pulmonary fibrosis has lead to an 

increased interest in targeting the TGF-β pathway.13  When TGF-β is directly 

injected into test subjects, fibrogenic tissues are observed.14  Experiments 

using antibodies to TGF-β have reduced scarring in rats without disrupting the 

body’s wound healing response.15  However, using antibodies as a long term 

therapeutic agent could prove difficult due to the need to minimize their ability 

to stimulate an immune response.11  Low molecular weight inhibitors that 

either block the interaction of TGF-β with its receptor or inhibit signal 

transduction mechanism for TGF-β could provide a safe and cost effective 

route to reduce fibrosis; however, the class of receptor that determines 

fibrogenic activity (Type I, II, or III) and which isoform of TGF-β (TGF-β1 or 

TGF-β2) is responsible for fibrogenic activity remains unclear.16  The cytokine 
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PDGF is also believed to be involved in fibrosis due to its location near tissue 

damaged sites.8  Inhibitors know as tyrphostins inhibit PDGF-receptor 

tyrosine kinases.17  These drugs have been shown to be potential therapeutic 

agents against fibrosis and are progressing toward in vitro studies.  All of 

these possible therapeutic drugs target different proteins on the pathway 

towards fibrosis.   

3.1.3.  Post-Translational Modification of Collagen by Prolyl 4-

Hydroxylase: A Possible Target for Fibrosis  

 Many different types of collagen exists in the extracellular matrix, with 

types I and III being the most common, but these proteins all underwent the 

same post-translational modifications.  The enzyme responsible for one of the 

key post-translational modifications is prolyl 4-hydroxylase (P4H).18  This 

enzyme is located in the lumen of the endoplasmic reticulum (ER) and is 

responsible for hydroxylation of peptidyl proline, which is crucial for the folding 

and stability of the collagen triple helix.  Each monomer of collagen consists 

of a Gly-Xaa-Yaa repeat, where the Xaa residue is often proline and the Yaa 

residues is often trans 4-hydroxyproline (Hyp).  Hyp is formed from the post-

translational modification of proline by P4H and is essential for the stability of 

the collagen triple helix.  Under-hydroxylated collagen that occurs due to 

inactive P4H, is not stable at room temperature and remains in the ER until 

either 1) activity of P4H is restored and collagen undergoes hydroxylation or 

2) it is broken down within the lysosomal compartments.18,19  The prevention 
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of Hyp formation by P4H would inhibit the production of collagen, making P4H 

an attractive target for reducing fibrosis within the body.  

3.1.4.  Prolyl 4-Hydroxylase 

P4H is a member of the α-ketoglutarate dependent non-heme iron 

oxygenases super family.19  The type I isoform of P4H found in mammals is 

an α2β2 tetramer where each α subunit contains a catalytic active site 

responsible for the formation of Hyp as well as a peptide binding domain 

where collagen binds.  The β subunit is protein disulfide isomerase (PDI) and 

is primarily responsible for enzyme solubility and the retention of the enzyme 

in the ER through the peptide recognition sequence of KDEL at the C 

terminus.  The structure of human Type I P4H has yet to be solved but site-

directed mutagenesis has identified important residues in the catalytic cycle 

(Figure 3-2).20  His412, Asp414, and His483 comprise the iron binding site.  

These residues form a facial triad of ligands to the iron along with an 8-

stranded β-helix core fold in the α subunit.18,19,21  The peptide-substrate 

binding domain is found between Gly138 through Ser244 and is unique to 

human type I P4H.22  The hydroxylation of peptidyl proline by P4H requires 

FeII, α ketoglutarate, O2, and ascorbate for catalysis.22,23  The iron in the 

resting state is FeII that is in six-coordinate octahedral coordination sphere 

with three water molecules and the His-Asp-His facial triad as ligands.  Two 

water molecules are displaced upon the bidentate binding of α-ketoglutarate.  

Lys493 and His501 bind to the C-5 and C-1 carbonyl groups of α-
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ketoglutarate to stabilize the cofactor.  As substrate and O2 enter the active 

site; O2 binds to iron in the axial position and oxidizes FeII to FeIII.  

Nucleophilic attack of the α-ketoglutarate by O2 forms the FeIII-peroxo bridge.  

 

Figure 3.2.  Proposed catalytic cycle of human type I prolyl 4-hydroxylase20 

 



 128 

α-ketoglutarate then undergoes oxidative decarboxylation to form succinate 

and reactive FeIV-oxo species.  This reactive oxygen species catalyzes H-

atom abstraction from the 4 position on proline, which is followed by a 

rebound step to form trans 4-hydoxyproline.  Loss of succinate returns iron to 

its FeII resting state.  During this process, succinate can accumulate and 

inactivate the enzyme unless ascorbate is present to restore the enzyme to its 

resting FeII state.  

3.1.5. Current Iron Chelating P4H Inhibitors. 

3.1.5.1. N-oxalylglycine Derivatives 

 Several inhibitors for P4H have been designed to mimic the binding of 

α-ketoglutarate to FeII.  This binding prevents the decarboxylation step 

essential for catalytic turnover.    Potential inhibitors of P4H have analogous 

structures to 2-oxoglutarate and mimic the bidentate binding to the FeII resting 

state.   Franklin and coworkers designed chelators analogous to 2-

oxoglutarate and tested them against both isolated avian P4H enzyme and 

collagen production in isolated chick-tendon cells (Table 3-2).23  These 

inhibitors are proposed to bind to iron thereby preventing the oxidative 

decarboxylation to inhibit P4H.  When tested against isolated avian P4H, N-

oxalylglycine (1) demonstrated an IC50 value of 3 µM.  A series of N-

oxalylglycine derivatives were prepared and screened.  Simple substitutions 

at the α-carbon atom of N-oxalylglycine (2) only raised the IC50 and reduced 

activity of the derivatized N-oxalylglycine compounds.  When the oxalyl C-
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group was replaced with a heterocyclic cinnoline moiety (3), a 100-fold 

decrease in the IC50 value was observed.  It was proposed that the nitrogen 

from the heterocyclic and the nitrogen from the amide group would coordinate 

to the FeII complex.  Methylation at the α-carbon (4) retained the same 

stereochemical restriction observed in the methylated N-oxalylglycine (2).   

 

 
Table 3.2.  IC50 values for the inhibition of P4H by N-oxalylglycine and its 
derivatives against isolated P4H enzyme and in vitro with chick-tendon cells23 
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One of the difficulties in drug design is delivery of the drug across the 

cytoplasmic membrane.  N-oxalylglycine (1) has a 50-fold increased IC50 

value when tested against P4H produced in chick tendon cells to compared to 

the isolated P4H.  Similarly, the IC50 of the cinnoline derivative (3) increased 

from 0.02 µM for isolated P4H to 81 µM for the P4H produced in chick-tendon 

cells, which was the highest concentration tested.  These data demonstrate 

the difficulty in drug design; an inhibitor maybe effective against isolated P4H 

but may prove ineffective in cellular and in vivo studies.  In order to derive a 

more lipophilic inhibitor, the compound (5) was prepared and it resulted in a 

4-fold decrease in IC50 value when tested against the P4H produced in chick-

tendon cells.  This demonstrates the importance of inhibitors with the ability to 

cross the intracellular membrane.   

3.1.5.2.  Pyridine-2,5 Dicarboxylic Acid Derivatives 

Another common inhibitor of P4H is pyridine-2,5 dicarboxylic acid (6), which 

has an IC50 value of 5.5 µM against isolated enzyme (Table 3-3A).24  The 

nitrogen from the pyridine ring and the C-2 carboxylic acid group are believed 

to chelate iron thereby preventing the oxidative decarboxylation.  Increased 

binding of this inhibitor to human P4H is seen because the C-5 carboxyl 

group can also bind to the distal carboxylate binding site, which is comprised 

of residues Lys493 and His501.  Modifications of pyridine-2,5 dicarboxylic 

acid were made in order to improve P4H inhibition against isolated enzyme 

and investigate binding of the inhibitors (Table 3.3).24  Two main modifications 
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were made: one involved variation of the chain lengths at the C-5 carboxylate 

position (Table 3.3A), while the second involved replacing the C-2 and C-5 

carboxylic acid groups with acid mimics (Table 3.3B).  Variations at the C-5 

carboxyl position extended the length from a simple methyl group (7) to 

ethyl/ethylene (8,9) and to a benzyl group (10).  Small variations in the IC50 

value were observed even with the large benzyl group (5-fold increase),  

  

 

Table 3.3.  Inhibition of avian P4H by pyridine-2,5-dicarboxylate  
and its derivatives. A) Variations of the distance between the C-5 carboxylic 
acid binding site and pyridine.  B) The replacement of C-5 with acyl 
sulfonamides24 
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suggesting the distal binding of the C-5 carboxyl group is flexible and allows 

various chain lengths to inhibit P4H.  When the C-5 carboxyl group was 

replaced with several different acyl sulfonamides, an increase in potency was 

observed for most of the compounds tested (Figure 3.2B).  The IC50 for the 

alkyl (10,11) or aryl (12,13) sulfonamide derivatives all had similar IC50 

values; however very large substitutions of 2-(4,5-dibromothienyl) (14) and 

4,7-dichloro-2-p-tolylquinoline (15) increased IC50 values to 8.5 and 6.6 µM 

respectively.  When the 2-carboxyl group was replaced with acyl sulfonamide, 

the IC50 value went up to 500 µM.  The substitution on the C-5 position of the 

pyridine 2,5-dicarboxylic acid is flexible and will allow for bulky phenyl groups 

without much effect on the inhibition; however modifications on the C-2 

carboxyl group affect its ability to bind to iron.   The pyridine-2,4-dicaroxylic 

acid compounds inhibit the activity of P4H by mimicking the binding of 2-

oxoglutarate and preventing oxidative decarboxylation.24  Results also 

suggest that the presence of carboxyl group at the 5 position effects the 

potency.  Substituents at the 5 position do not influence the potency and 

suggests a large range of possible derivatives at the 5 position.24 

3.1.5.3.  Phenanthroline Derivatives  

Another type of inhibitor that mimics the binding of 2-oxoglutarate is a 

series of phenanthroline derivatives.25  These phenanthroline compounds 

have been tested against isolated P4H and human foreskin fibroblast (HFF) 

cells for inhibition of collagen production (Table 3.4).  The structures of the  
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positions in Table 3.3.  An increased potency against isolated enzyme was 

observed in the phenanthroline derivatives with carboxylic acid groups at the 

R3 and R4 positions (16), as compared to derivatives with a single carboxyl 

group (17,18).  The increase may be due to the interaction of residues Lys493 

and His501 with the inhibitor, as found to stabilize 2-oxoglutarate and N-

oxalylglycine.  The most potent inhibitor against isolated P4H contained a 

nitro group at the R3 position and carboxylic acid at the R4 position (19).  

However, as seen in previous studies,23,24 inhibition of isolated enzyme may 

not translate into potency with in vitro and in vivo studies.  When the 

dicarboxylic acid derivative (16) was tested against HFF cells, it had a notable 

increase in IC50  (>20 µM), as did the nitro/carboxylic acid derivative 

(R3=NO2, R4=CO2H) (19) (value not determined).    When the carboxyl group 

was replaced with a more lipophilic N-alkylamide group phenanthrolinone 

derivatives are given with modifications at the R3 and R4 (20), improved IC50 

values were observed within HFF cells (2.3 µM).  The best phenanthrolinone 

derivative against cells was the R3=NO2 (21) which had an observed IC50 

value of 0.12 µM against chick-tendon cells (not shown) and 1.1 µM against 

HFF cells.  Unfortunately, this compound was too insoluble for use for in vivo 

studies.  Instead (R3=CO2H)  (18) and (R3=CO2H, R4=CONEtBu) (20) 

derivatives were both tested in vivo for inhibition of collagen production in 

rats.  Both compounds exhibited similar inhibition of collagen production, with 

maximal inhibition observed within the first two hours and sustained over the  
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Table 3.4.  Inhibition of isolated P4H and HFF cells by phenanthrolinones 
derivatives.25 
 

next six hours until collagen production returned to normal after 22 hours.  

This demonstrates how unprocessed collagen remaining in the ER until active 

P4H returns.  With an oral dose (50mg/kg) given to rats, the phenanthroline 

derivative, collagen production was reduced, but it was not located in a 

specific region, as the uterus, ear and tail all experienced a similar reduction 

of collagen production.  The low levels of toxicity and the in vivo and in vitro 

studies that have performed on the phenanthroline derivatives make these 

compounds a possible candidate for treating fibrosis. 
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3.1.6.  Targeting the Endoplasmic Reticulum with the KDEL Receptor  

Phenanthroline does not have any selectivity towards P4H, as it chelates any 

source of iron in the environment.  One possible means of selectively 

targeting P4H would be drugs containing organelle-specific retention signal 

peptides.  As mentioned previously, the hydroxylation of collagen by P4H 

occurs in the ER and is vital for the stability of collagen.  Signal peptides are 

important for sorting and directing post-translational transport of proteins.  

The destination of proteins with a specific signal peptide can range from the 

nucleus, peroxisomes, ER, the trans-Gogli network, or secretion to the 

extracellular matrix.  The human retention signal peptide for ER consists of 

four amino acids, lysine, aspartic acid, glutamic acid, and leucine (KDEL).26,27  

This KDEL tag is located at the C-terminus of the β-subunit of P4H and 

retains the protein within the ER.   The mechanism of retrieval of the KDEL-

signal peptide secreted proteins is the binding of the tetrapeptide sequence to 

the KDEL receptor located in the Gogli apparatus (Figure 3.2).28,29  The KDEL 

receptor is a 26-kDa membrane-bound protein.  Based on site-directed 

mutagenesis this protein has four known amino acids that are essential for 

the binding of substrate.30,31  Arg5, Asp50, Tyr162, and Asn165 are all 

involved in the formation of a hydrophilic binding pocket that binds KDEL 

ligands.  Mutation of these residues demonstrated decreased binding of 

KDEL substrates with no difference in expression with respect to wild type.30  

Various sizes of substrates were used with the bulkier reagent biotin 
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maleimide, demonstrating a greater decrease in binding in Tyr162 and 

Asn165 as compared to Arg5 and Asp50.30  This indicates Tyr162 and 

Asn165 are less accessible, and the locations of these residues are deeper 

inside the hydrophilic binding pocket.  The binding of the KDEL-tagged 

proteins may also be pH-dependent.  The KDEL receptor showed the highest 

binding affinity at pH 5.0, which suggests the importance of pH in substrate 

binding to the KDEL receptor.32 The ER is believed to have a pH similar to the 

cytosol (pH 7.4), while the cis-Golgi and the trans-Golgi have a pH of 6.4 and 

5.8, respectively.32  The idea is, the KDEL tag of the secreted protein will bind 

 

 

Figure 3.3.  Mechanism of retrieval of the KDEL-signal peptide secreted 
proteins is the binding of the tetrapeptide sequence to the KDEL receptor 
located in the Gogli apparatus28 
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to the receptor located on the trans-Golgi due to the low pH and be 

transferred to the ER, while at higher pH (7.4) the KDEL tagged protein will be 

released back into the ER.32  pH alone may not account for KDEL binding, but 

it is one factor in substrate binding, as it binds the trans-Golgi receptor under 

acidic conditions before transporting to the ER and releasing the substrate at 

pH 7.4 within the ER.30,32  This mode of substrate retention within a specific 

organelle could aid in drug design, as the retention signal will provide the 

ability to target enzymes located inside these organelles.    

3.1.7.  BODIPY581/591 Targeting the Endoplasmic Reticulum. 

 The concept of directing small molecules to organelles using a peptide 

retention signal was demonstrated by using signal peptide labeled 

BODIPY581/591 compound.33  This fluorophore was covalently linked to several 

different retention signals and the uptake was observed through fluorescence 

microscopy.33   The retention signals observed includes AKL for the 

peroxisome,33 KKKRK for the nucleus,33 and KDEL for the ER.33  The uptake 

of the retention signal was very rapid, occurring in less then 1 minute, with 

complete localization after 16 minutes.  The process of targeting the ER was 

confirmed with a co-localization study of the known ER maker concanavalin 

A.  Targeting the ER with cell permeability small molecules could potentially 

be used in therapeutic drug delivery by targeting enzymes specific to the ER.    

3.1.8.  Literature Examples of Retention Signals Involved in Drug Design   

3.1.8.1.  HIV-1 Nuclear Import 
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 Drug delivery based on these specific recognition signals has gained 

much attention.  Two major advantages are as follows: a) localization of the 

drug at the same site as the protein it inhibits or b) blocking the protein from 

interacting with its specific retention signal receptor and therefore preventing 

the protein from reaching the proper organelle.  The latter process could be 

very useful in anti-HIV therapy, as drugs could be designed to target the 

nuclear transport of mRNA.34 The nucleus contains a selectively-permeable 

envelope for active transport of nuclear specific proteins by the nuclear 

localization signals (NLS).  The first peptide sequence identified for the 

selective nuclear localization is a basic stretch of amino acids (KKKRK).35,36  

The search for effective HIV drugs rapidly changes due to the process of HIV-

1 reverse transcriptase replication, which allows for continuous mutations 

within its environment.  A possible solution is inhibition of the viral integration 

and transcription that occurs within the nucleus by drugs that target the 

NLS.37  Arylene bis (methylketones) are small molecule inhibitors of nuclear 

import and have been shown to reduce HIV-1 replication in primary 

macrophages and peripheral blood mononuclear cell cultures.38,39  This has 

the potential to stop viral integration and transcription by inhibiting the uptake 

of the pre-integration complex by nuclear import.  Also, simian 

immunodeficiency virus in macaques has been used as a model for HIV.40  

Studies show that the antibodies produced by the macaques prevent import 

of the virus into the nuclear membrane.42,43  This process is still being studied, 
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but it demonstrates the potential for targeting the selective nuclear import, 

which could be used in anti-HIV therapy. 

3.1.8.2.  Screening for Protease Inhibitors 

 Recognition signal peptides are also currently used for the 

identification of inhibitors of trans-Golgi network (TGN) bound proteases.41  

Proteases found in the TGN are involved in proteolytic processes of recently 

formed protein secreted from the ER.42  These TGN proteases recognize and 

cleave specific domains of proteins before the cleaved proteins enter 

secretory vesicles and are sent out into the cytoplasm.43  Two families of TGN 

proteases include prohormone convertase43 and β-site amyloid precursor 

protein-cleaving enzyme.44  These proteases contribute to the development of 

various diseases, including: Alzheimer’s disease, arthritis, propagation of 

viruses, and proliferation of cancerous tumors.48-50  An assay to screen 

protease inhibitors was developed for the quantification of protease activity.  

The significance of this assay was the recombinant expression of a reporter 

containing the TGN retention signal (SDYQRL) and a protease cleavage 

sequence with alkaline phosphatase tag.  The chimeric reporter was localized 

in the TGN by the retention signal, then protease activity was monitored by 

the cleavage of the reporter and secretion of the alkaline phosphatase tag 

into the extracellular media.  This assay has been used to screen nearly 

39,000  compounds for inhibition of the protease furin, which is involved in 

tumerigenesis, viral propagation of avian influenza, ebola and HIV, and 
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activation of anthrax.  The protease involved in BACE cleavage, which leads 

to Alzheimer’s disease, was also screened to identify potential inhibitors.  The 

use of the TGN retention signal allows for a real-time and noninvasive assay 

of protease activity, which until to now has been difficult with the low pH and 

high Ca2+ environment of the TGN.  

3.1.8.3. Gene Therapy 

 The replacement of a defective human gene or the introduction of new 

genes is known as gene therapy.  Interest in gene therapy has increased in 

recent years.46  One of the major barriers to the incorporation of exogenous 

DNA is transportation through the extracellular matrix, the cell membrane, 

and the nuclear envelope.  One common solution to this problem has been 

using viral machinery to transfer genetic information into the nucleus.  

However, the linkage of a nuclear retention signal to therapeutic DNA could 

provide a nonviral approach to gene therapy.51  DNA entry into the cell would 

be enhanced by antibodies on the therapeutic gene that are specific to the 

cell membrane or amphiphilic peptides.   The final entry step, into the 

nucleus, would be accomplished through utilization of the NLS.  DNA injected 

directly into the nucleus resulted in 50-100% transfection.45  When DNA was 

injected directly into the cytoplasm, however, no transfection occurred, 

displaying the selectively impermeable nature of the nuclear envelope.  To 

cross the nuclear barrier, DNA was attached to synthetic NLS peptides mostly 

consisting of PKKKRKV retention sequence.46,47  The NLS could be linked to 



 141 

DNA through a covalent linkage or noncovalent electrostatic interactions of 

the cationic residues in the NLS with the negatively charged DNA.  Unnatural 

peptide backbones, known as peptide nucleic acids, also have advantages in 

a sequence-specific nuclear retention site.  A 150-fold increase in expression 

was observed with a 3.4-kb linear fragment covalently linked to NLS-

containing peptides.47  Increased expression was also seen in plasmid DNA 

noncovalently linked to NLS; a 10-fold increase of β-galactosidase reporter 

gene expression was observed when noncovalently linked to NLS.50  Peptide 

retention sequences used in assay development and in gene therapy display 

the emerging therapeutic possibilities of signal recognition peptides.   

3.1.9.  Phenanthroline Derivate Targeting the ER for the Inhibition of 

Collagen. 

 With the damaging effects of fibrosis reaching many people, an 

effective treatment for this disease is critical.  A treatment may be possible 

with new techniques in drug design.  Early reports describe the possible drug 

targets that mimic 2-oxoglutarate binding to FeII.23-25  Many of these drugs 

have IC50 values in the lower µM concentration, even in in vitro and in vivo 

studies.  These inhibitors demonstrate the importance of drug design and 

considering cellular aspects of drug delivery; as many potent inhibitors were 

not lipophilic enough to cross the cell membrane.  This chapter describes the 

synthesis and in vitro study of a phenanthroline derivative for the targeting the 

endoplasmic reticulum for inhibition of collagen production by P4H. The 
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phenanthroline derivatives were coupled to the ER retention signal KDEL with 

the hope of targeting within the ER.  The phenanthroline derivatives were 

promising as potential inhibitors for several reasons:   

1) Both in vitro and in vivo studies have been performed with no toxic 

effects.25   

2) Modifications to both the C2 and C5 positions are known in the 

literature, allowing phenanthroline to be coupled to the retention 

peptide signal relatively easily.48-50  

3) Hydrophobic aromatic rings on phenanthroline increase ability to 

cross the cell membrane.25   

This chapter also describes various collagen assays performed to optimize 

the collagen production screening process. 

3.2.  Materials and Methods 

Reagents involved with synthesis were purchased from Sigma-Aldrich 

(Milwaukee, WI) or Fisher Scientific (Pittsburgh, PA) unless otherwise stated.  

All amino acids and resin were purchased from Novabiochem (Gibbstown, 

NJ) with the exception of Fmoc-Glu-OH, which was purchased from AnaSpec 

(San Jose, CA). 

3.2.1.  Synthesis of 1,10-phenanthroline-1-oxide 

Synthesis of 1,10-phenanthroline-1-oxide followed the published 

procedure with minor modifications.51  1,10-phenanthroline monohydrate 

(25.0 g, 0.125 mol) was dissolved into 40 mL of glacial acetic acid.  15 mL of 
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30% hydrogen peroxide was added dropwise and stirred for 3 hours at a 

temperature of 72 oC.  After the initial 3 hours, an additional 15 mL of 30% 

hydrogen peroxide was added dropwise and the reaction was stirred for 3 

more hours.  The solution was removed from the heat, 15 mL of 30% 

hydrogen peroxide was added, and the solution was allowed to stir for 18 

hours.  The solution was neutralized to pH ~ 10 with saturated potassium 

hydroxide.  The product was extracted with several portions of chloroform and 

dried with anhydrous sodium sulfate.  Solvent was removed under reduced 

pressure to give a tan solid of 15 g. (60% yield)  1H NMR (δ/ppm, in CDCl3): 

7.75 (m, 2H), 7.85 (m, 2H), 7.98 (m, 1H), 8.31 (m, 2H), 8.4 (d 1H), 9.32 (m, 

2H).  13C NMR (δ/ppm, in CDCl3): 117.46, 124.20, 125.77, 126.34, 129.26, 

129.85, 133.51, 136.35, 137.30, 145.36, 146.77, 151.31.  ESI-MS: m/z = 

197.1 (MH+).   

3.2.2.  Synthesis of 2-Cyano-1,10-Phenanthroline  

Synthesis of 2-cyano-1,10-phenanthroline followed the published 

procedure with minor modifications.56  1,10-phenanthroline-1-oxide (2.7 g, 

13.4 mmol) and potassium cyanide (2.7 g) were dissolved in 50 mL of water.  

Benzoyl chloride (3.76 g, 3.1 mL) was added dropwise via addition funnel, 

and the reaction stirred for 2 hours.  During that time, a brown precipitate 

formed in solution.  At the completion of 2 hours, the precipitate was collected 

by suction filtration and dried to yield brown solid (1.5 g, 56% yield).  1H NMR 

(δ/ppm, in CDCl3): 7.67 (m, 1H), 7.77 (m, 1H), 7.89 (d, 2H), 8.24 (m, 1H), 8.34 
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(d 1H), 9.21 (d, 1H).  13C NMR (δ/ppm, in CDCl3): 117.33, 124.16, 125.71, 

126.24, 129.21, 129.86, 133.37, 136.45, 137.29, 145.18, 146.49, 151.18. ESI-

MS: m/z = 206.1 (MH+). 

3.2.3.  Synthesis of 2-Carboxy-1,10-Phenanthroline  

Synthesis of 2-carboxy-1,10-phenanthroline followed the published 

procedure with minor modifications.51  2-cyano-1,10-phenanthroline (2.63 g, 

1.28 mmol) was dissolved in 15 mL of 95% ethanol, while sodium hydroxide 

(2.10 g) was dissolved in 15 mL of water.  The sodium hydroxide solution was 

added to the 2-cyano-1,10-phenanthroline solution, and it was allowed to 

reflux for 2 hours.  The ethanol was removed under reduced pressure, and 

the solution was made acidic with concentrated HCl solution, forming a brown 

precipitate.  The brown solid was filtered and dried to yield 1.7 g of the 

desired product (65% yield).  1H NMR (δ/ppm, in CDCl3): 7.76 (m, 1H), 7.86 

(m, 1H), 8.37 (m, 2H), 8.02 (t, 2H), 8.34 (d, 1H), 8.45 (d 1H), 9.31 (d, 1H).  

13C NMR (δ/ppm, in CDCl3): 124.33, 124.97, 127.94, 128.30, 129.43, 130.57, 

138.86, 142.55, 146.87, 147.72, 165.58.  ESI-MS: m/z = 225.1 (MH+). 

3.2.4.  Synthesis of Peptide Inhibitor 1,10-Phenanthroline-2-Glycine-

Lysine-Aspartic Acid-Glutamic-Acid-Leucine (Phen-2-GKDEL)  

All of the described peptide syntheses were performed with a 

ChemGlass peptide synthesizer (Vineland, N.J.).  All peptide synthesis 

reactions were performed using the following procedure (Scheme 3-1).  Wang 

resin (0.25 mmol) was added to the peptide synthesizer and swelled with 4 
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mL dimethylformamide (DMF) by continuously bubbling air through the fritted 

filter.  DMF was removed and, in order to remove the Fmoc protecting group 

from the resin, 20% piperidine in DMF (4 mL) was added to the resin and 

stirred by bubbling for 30 min.  Following deprotection, the solution was 

removed and the resin was washed by bubbling with several portions of DMF.  

Following DMF removal, 4 equivalents of Fmoc-protected amino acid (1 

mmol) were added along with 4 equivalents of the activator O-Benzotriazole-

N,N,N’,N’-tetramethyl-uronium-hexafluoro-phosphate  

(HBTU) (1 mmol), and dissolved in 4 mL of 8% N,N-diisopropylethylamine 

(DIPEA) in DMF.  The Fmoc-protected amino acid was stirred by bubbling air 

through the fritted filter for 1 hour.  After the amino acid was coupled to the 

resin, the solution was removed, and the resin was washed and stirred with 

several portions of DMF.  20% Piperidine in DMF (4 mL) was added to 

deprotect the Fmoc group of the last amino acid coupled on the resin.  The 

procedure was repeated until the desired peptide chain was complete.  The 

P4H inhibitor 2-carboxyl-1,10-phenanthroline was coupled to the N-terminus 

of the peptide resin using the same coupling technique.  The resin was dried, 

and peptides were cleaved from resin with 10 mL of 95/5% trifluoroaceatic 

acid (TFA) in water.  Cleavage conditions also removed protecting groups 

from any side chains present.  The TFA solution was removed with a gentle 

flow of air, leaving a yellow oil product.  Cold diethyl ether was added to 

precipitate the peptide as an off-white solid.  The crude product was purified 
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by HPLC (Shimadzu) on a Jupiter 4-Proteo prep column (Phenomenex) with 

average yield of pure peptide of 30 -40 %.  HPLC solvents were eluent A, 0.1 

% TFA-H2O and eluent B, 0.1 % TFA- CH3CN with gradient conditions of 5 to 

35 % B over 60 min.  

The three step synthesis of the 2-carboxyl-1,10-phenanthroline from 

1,10-phenanthroline was accomplished.  Each step of this synthesis had 

moderate to good yields of 40 – 80 %, and was confirmed with NMR and ESI 

mass spectrometry.  Standard peptide synthesis techniques allowed for easy 

coupling to the peptide on Wang resin.  The peptide retention signal was 

synthesized on solid support, building from the C terminus to the N terminus 

(Scheme 3-1).  This process began with the deprotection of the Wang resin 

with 20 % piperdine in DMF, followed by the addition of the first amino acid.  

Each amino acid was then deprotected with 20 % piperdine in DMF before 

the subsequent addition of the next amino acid.  2-Carboxy-phenanthroline 

was coupled on the N-terminus and the peptide chain and protecting groups 

(OtBu and Mtt) were cleaved from the resin with 95/5 % TFA/H2O.  Dipsi 2-D 

NMR (δ/ppm, DMSO-d6):  glycine C-2 1H, 4.13, 4.27, leucine C-2 1H, 4.17, 

lysine C-2 1H, 4.26, glutamic acid C-2 1H, 4.33, aspartic acid C-2 1H, 4.58. 

3.2.5.  Fluorescence Detection of 1,10-Phenanthroline-2-Glutamic acid-γ-

[2-(1-sulfonylnaphthyl)aminoethylamide]-Valine-Lysine-Aspartic Acid-

Glutamic-Acid-Leucine {Phen-2-E(EDANS)VKDEL} in ER   
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HFF cells were grown to 60 % confluency in Nunc Lab Tek chambered 

cover glass 8 well plates (Fisher) with 0.3 mL of Iscove’s Modified Dulbecco’s 

Medium (IMDM) with heat-inactivated fetal bovine serum (FBS), 100 units/mL 

of penicillin and 50 µg/mL of streptomycin at 37 oC in an incubator containing 

an atmosphere of air/CO2 (95:5).  The media was replaced with 0.3 mL of 

potassium buffered saline (PBS) buffer pH 7.4, at 37 oC for 30 min preceding 

the experiment.  During the experiment, cells were placed in temperature 

controlled confocal microscope chamber set at 37 oC in the atmosphere of 

air/CO2 (95:5).  The PBS was removed, and 0.3 mL of fresh PBS containing 

20 µg/ml of phen-E(EDANS)VKDEL was added and incubated for 20 min. 

The fluorescence peptide probe solution was then removed, and the cells 

were washed with 0.3 mL of PBS and imaged on the confocal microscope. 

The cells were washed for a second time with 0.3 mL PBS before being 

treated with 1 µM of ER Tracker Red (Invitrogen) in PBS and imaged on the 

confocal microscope.  Fluorescence imaging was performed at the 

microscopy and analytical imaging lab at the University of Kansas on an 

inverted laser scanning microscope with Olympus/3I spinning disk 

confocal/TIRF inverted microscope.  The two-channel fluorescence 

excitation/emission ratio for the fluorescence labeled inhibitor was 341 

nm/471 nm, and the ER Tracker Red excitation/emission was 587 nm/615 

nm.  Co-localization analysis studies were performed with the fluorescence 

probe and the ER tracker to confirm the localization of the peptide probe into 
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the ER.  The co-location study was performed using the Image J51 JACoP52 

plug-in with the following equations: 

 

rP= (Si ((Ai-a)x(Bi-b)))/…(Si (Ai-a)²x Si (Bi-b)²)  

Equation 3.1 Pearson's coefficient52 

 

r= (Si (AixBi))/…(Si (Ai-a)²x Si (Bi-b)²)  

Equation 3.2 Overlap coefficient52 

 

r²=k1xk2 with k1= (Si (AixBi))/ (Si (Ai)²) & k2= (Si (AixBi))/ (Si (Bi)²) 

Equation 3.3 k1 and k2 coefficients52 

 

k1= (Si (Ai, coloc))/ (Si Ai) & k2= (Si (Bi, coloc))/ (Si Bi)  

With Ai, coloc being Ai if Bi>0 and 0 if Bi=0; and Bi, coloc being Bi if Ai>0 and 0 if 

Ai=0 

Equation 3.4 M1 & M2 coefficient52 

3.2.6.  Expression and Purification of Recombinant Human–P4H 

Plasmid pBAD+ containing the human-p4h gene (cDNA of human P4H 

a(I) subunit (UltimateTM ORF clone IOH26865, Invitrogen)  was transformed 

into origami DE3 cells (Novagen).  Cells were inoculated into 1.5 L Luria-

Bertani (LB) media with 150 mg ampicillin and grown to an O.D.600 < 0.2 at 37 

oC with agitation at 225 rpm.  At O.D.600 < 0.2, isopropyl-1-thio-β-D-
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galactopyranoside (IPTG) was added to a final concentration of 0.1 mM for 

the induction of PDI.  The temperature was reduced to 25 oC, and cell growth 

was continued to O.D.600 = 0.6.  This point, arabinose was added to a final 

concentration of 0.02 mM for the induction of catalytic α-subunit of P4H.  

Temperature was reduced to 20 oC cultures were allowed to grow overnight.  

The cells were harvested by centrifugation (Beckman) at 4 oC and 6 000 x g 

for 30 min and resuspended in a buffer (10 mM Tris, 100 mM glycine, and 

100 mM sodium chloride, pH 7.8).  Cell lysis was performed in an ice bath by 

20 cycles of ultrasonication where each 20 cycle consists of 0.8 second 

pulses with 0.5 second gaps in between. The solution was allowed to cool for 

5 minutes between each cycle.  Cell debris was removed by centrifugation 

(Beckman) at 40,000 x g for 30 min.  The supernatant was collected and 

loaded on poly-L-proline affinity column53 and washed with 3 column volumes 

of buffer (10 mM Tris, 100 mM glycine, 100 mM sodium chloride pH 7.8).  

Protein was eluted from the column with the elution buffer (5 mg/mL poly –L-

proline, 10 mM Tris, 100 mM glycine, 100 mM sodium chloride, pH 7.8).  

Fractions were collected and dialyzed with 3 batches of 4 L buffer (25 mM 

sodium phosphate, 10 mM glycine, 50 mM sodium chloride, pH 7.8) first 

every 2 hours and then overnight.  Protein was loaded on a HiTrap QFF anion 

exchange column (Amersham Biosciences), and washed three column 

volumes of binding buffer (25 mM sodium phosphate, 10 mM glycine, 50 mM 

sodium chloride, pH 7.8) then eluted with a linear gradient (50 mM NaCl to 



 150 

430 mM NaCl) on an FLPC (Amersham Biosciences) .  Fractions were 

collected, concentrated to 1 mL and loaded on the FPLC size exclusion 

column Hiload 16/60 Superdex 200 pg (Amersham Biosciences) and eluted 

with buffer (10 mM Tris, 100 glycine, 100 mM NaCl, pH 7.8).  Protein purity 

was confirmed with SDS-PAGE, and concentration was determined using 

bicinchoninic acid (BCA) assay.54 

3.2.7.  Preparation of (GPP)10 

(GPP)10 was prepared using a thioredoxin fusion protein previously 

expressed in the Limburg lab.  Cleavage of thioredoxin from the fusion protein 

was performed by adding 1 µL of enterokinase (Invitrogen) to 1 mL of 12 

mg/mL of protein and incubating at 37oC (overnight).  The cleaved protein 

was purified by size exclusion chromatography Hiload 16/60 Superdex 200 pg 

in 6 M urea.  Urea was removed using a HiTrap desalting column (Amersham 

Biosciences).  Fractions were collected and protein concentration was 

determined by the absorbance at 280 nm (ε = 5.5 mM-1cm-1).    

3.2.8.  Enzyme Activity Assay with Oxygen Electrode 

The activity of the recombinant P4H was assayed with an Oxygraph 

oxygen electrode (Hansatech Instruments).  The electrode is a Clark type 

polarographic oxygen sensor.  The electrode is fitted at the bottom of the 

reaction vesicle, which was covered with a thin oxygen permeable  

polytetrafluoroethylene (PTFE) membrane.  A polarizing voltage is applied 
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between the central platinum cathode and silver anode electrode.  A small 

current is generated as oxygen diffuses across the membrane. 

The inhibitors were dissolved in dimethylsulfoxide (DMSO), and when 

inhibitor was added to the enzyme/substrate mixture, the final DMSO 

concentration was ~ 0.2 %.  Reaction conditions are 50 mM Tris, 750 µM 

ascorbate, 10 µM of FeII, 20 µM of GPP10, and 0.2 µM of P4H, to a final 

volume of 500 µL.  Concentration ranging from 5 - 60 µM phenanthroline and 

100 – 5000 µM phen-2-GKDEL  were added.  Reaction rate was determined 

by the consumption of O2, and plotted as rate of O2 consumption versus the 

log of inhibitor concentration.  The IC50 was determined with the following 

equation: 

y = Vmin + (Vmax – Vmin)/(1 + 10^(x-IC50)) 

with x being inhibitor concentration 

Equation 3-5 IC50 curve55 

3.2.9.  Quantification of Collagen Production from Soluble Collagen in 

Media 

The hydroxylation of collagen was measured by the production of 

soluble collagen in the media of HFF cells.  HFF cells (ATCC) were grown to 

confluency in 15 cm2 flasks in IMDM media (ATCC) with 10% FBS (Gibco), 

100 units/mL of penicillin and 50 µg/mL of streptomycin, at 37 oC in an 

incubator containing an atmosphere of air/CO2 (95:5).   At the point of full 

confluency, the media was removed and cells were incubated for 24 hours 
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with serum free medium (1 mL), 30 µg/mL ascorbate, penicillin, and 

streptomycin.  Following incubation, the medium was again removed and 

replaced with fresh serum free media with ascorbate, penicillin, streptomycin 

for another 24 hour incubation.  At this point, inhibitors, which were dissolved 

in DMSO, were added to the media.  After 48 hours, the media was removed 

and diluted with binding buffer (0.1 M NaHCO3, pH 10.0) and 100 µL of this 

solution was incubated in an ELISA plate (4 HBX Immunlon Plates, Thermo 

Scientific) overnight at 4 oC.  Solution was removed, and the wells were 

washed three times with PBS buffer.  200 µL of 2% Blocker BSA (Pierce) in 

PBS buffer, pH 7.2, was added and incubated at room temperature for 1 hour.  

The wells were washed three times with 200 µL PBS.  100 µL of a 1:5000 

dilution of mouse anti-collagen type I monoclonal primary antibody, 

unconjugated (abcam) was added to each well and incubated at room 

temperature for 30 minutes.  The antibody was then removed and washed 

three times with 200 µL of PBS.  Secondary antibody, donkey anti-mouse 

conjugated horseradish-peroxidase (Jackson ImmunoResearch), was added 

in a 1:1000 dilution in PBS, and 100 µL was added to each well and 

incubated for 30 minutes at room temperature.  The secondary antibody was 

removed and the wells were washed with 200 µL PBS.  The plate was 

developed with 100 µL of 1 mM 2,2'-azino-bis(3-ethylbenzthiazoline-6-

sulphonic acid (ABTS) in citrate-phosphate buffer, pH 4.2, with 0.03% H2O2 
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monitoring at 415 nm absorbance on SpectraMax Plus plate reader 

(Molecular Devices). 

3.2.10.  Sircol Detection of Collagen Production 

Detection of collagen by Sircol (Biocolor) followed the same cellular 

preparation procedure as the detection of collagen production with pepsin 

digest.  After centrifugation of the 2M NaCl precipitated collagen, the 

supernatant discarded and 1 mL of sirius red dye was added to each tube.  

The tubes were capped and gently mixed at room temperature for 30 min.  

The tubes were centrifuged at 10,000 x g for 10 minutes to form a collagen-

dyed pellet.  After centrifugation, the supernatant was discarded, and the 

pellet was washed with 500 µL of 200 proof ethanol.  Bound dye was 

recovered with the addition of 1.0 mL of the Alkali reagent (Sircol).  Samples 

were capped and mixed by vortex until all of the dye was solublized.  100 µL 

samples were plated on a 96 well plate and observed on SpectraMax Plus 

plate reader (Molecular Devices) at 540 nm.  

3.2.11.  Detection of Collagen in Extracellular Matrix of HFF cells with 

Polyclonal Antibodies Against Human Collagen Type I 

 The hydroxylation of collagen was measured by the production of 

collagen in the extracellular matrix of HFF cells.  HFF cells were grown to 

95% confluency in a 6 well plate in IMDM media with 10% fetal-bovine serum, 

100 units/mL of penicillin and 50 µg/mL of streptomycin, at 37 oC in an 

incubator at the atmosphere of air/CO2 (95:5).   At the point of full confluency, 
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the media was removed, and cells were incubated for 24 hours in serum free 

medium (1 mL), 30 µg/mL ascorbate, penicillin, and streptomycin.  Following 

incubation, the medium was again removed and replaced with fresh serum 

free media with ascorbate, penicillin, and streptomycin for another 24 hour 

incubation.  At this point, inhibitors dissolved in DMSO were added to the 

media.  After 48 hours, the media was removed and replaced with 5 mg/mL 

pepsin from porcine gastric mucosa (Fisher) in 0.05 M acetic acid, pH 2.8.  

The cells were harvested by scraping cells and transferred into 1 mL 

eppendorf tubes with the pepsin solution and rocked overnight at 4 oC.  The 

eppendorf tubes were centrifuged at 10,000 x g for 10 minutes (Eppendorf 

Centrifuge) to remove insoluble cell debris, and the supernatant was isolated.  

The soluble collagen in the supernatant was precipitated with 2 M NaCl and 

centrifuged at 10,000 x g for 10 min.  The supernatant was discarded and the 

soluble collagen was redissolved in 100 µL of 0.05 M acetic acid and coated 

in ELISA plate (4 HBX Immunlon Plates, Thermo Scientific) and incubated 

overnight at 4 oC.  Solution was removed and washed three times with PBS 

solution before 200 µL of 2% Blocker BSA (Pierce) in PBS buffer, pH 7.2, was 

added and incubated at room temperature for 1 hour.  The wells were washed 

three times with 200 µl PBS.  100 µL of a 1:5000 dilution of mouse anti-

collagen type I monoclonal primary antibody, unconjugated (abcam) was 

added to each well and incubated at room temperature for 30 minutes.  The 

antibody was then removed and the wells were washed three times with 200 
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µL PBS.  100 µL of the secondary antibody, donkey anti-mouse conjugated 

horseradish-peroxidase (Jackson ImmunoResearch), in a 1:1000 dilution in  

PBS, was added to each well and incubated for 30 minutes at room 

temperature.  The secondary antibody was removed and the wells were 

washed with 200 µL PBS.  The plate was developed with 100 µL of 1 mM 

2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS) in citrate-

phosphate buffer, pH 4.2, with 0.03% H2O2 at 415 nm on SpectraMax Plus 

plate reader (Molecular Devices). 

3.3.  Results  

3.3.1 Synthesis of Inhibitors Containing the Fe-chelator Coupled to an 

ER-Retention Signal Peptide as Potential in vivo P4H Inhibitors   

Two agents useful in exploration of selective in vivo inhibition of human-

P4H were prepared by the method of Scheme 3.1.  Their structures are 

shown in Figure 3.4A (phen-2-GKDEL) and Figure 3.4B (The fluorescent 

agent phen-2-E(EDANS)VKDEL).  Each agent combines a chelating moiety, 

capable of inhibiting P4H by removal of essential FeII, combined with a signal-

peptide moiety, capable of localizing the agents (and thus the inhibition) to the 

ER where P4H is located.  In addition phen-2-E(EDANS)VKDEL contains a 

fluorescent moiety capable of visualization of the intracellular localization of 

the agents.  Both were obtained in 99 % pure form with a final yield of 30 %.  

The peptide sequences in both inhibitors were confirmed with 2-D NMR and 

ESI mass spectrometry (Figure 3.5,6). 
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Scheme 3.1.  The solid phase synthesis of the GKDEL retention signal.  Each 
amino acid is coupled onto the Wang resin, building C-terminus to N-
terminus. 
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Figure 3.4.  A) Phen-2-GKDEL   B)Phen-2-E(EDANS)VKDEL 
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Figure 3.5.  Dipsi spectrum of phen-2-GKDEL on Bruker 500 MHz NMR 



 159 

 

 

Figure 3.6.  Dipsi spectrum of phen-2-E(EDANS)VKDEL on Bruker 500 MHz 
NMR 
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3.3.2.  Phen-2-VD(EDANS)KDEL Localizes in the ER of HFF Cells 

To observe the localization of the KDEL-labelled inhibitor into the ER of 

HFF cells, the EDANS fluorophore (AnaSpec)56 was coupled on to the 

peptide chain, phen-2-E(EDANS)VKDEL.  Localization of the KDEL 

fluorophore was confirmed with commercially available ER tracker.  This cell-

permeable agent utilizes two components, BODIPY fluorescent dye and 

glibenclamide.  The agent is visualized by BODIPY fluorescent dye and 

localizes in the ER by glibenclamide.  Glibenclamide is known to bind to the 

sulphonylurea receptors of ATP-sensitive K+ channels which are prominent 

on ER.57  Careful consideration was taken towards the overlap of excitation 

and emission spectra to avoid bleed through.  The excitation and emission for 

E(EDANS) is λex = 341 and λex = 471,58 while the excitation and emission for 

ER tracker red (Molecular Probes) is λex = 587 and λex = 615.   

At first, the fluorescence labelled inhibitor was distributed throughout 

the cell, but after 20 minute incubation and wash with PBS, the inhibitor was 

localized within the ER (Figure 3.7A).  The co-localization and 

compartmentalization within the ER were confirmed with ER tracker Red 

(Figure 3.7B).  ER tracker Red was immediately taken up within the ER.   

Analysis of subcellular co-localization was performed with Image J51 plug-in 

JACoP52 to confirm the import of fluorescence-labelled inhibitor into the ER 

(Table 3.5).  Pearson’s coefficient measures the dependency of pixels in a 

linear expression of the intensities of two images on each other.52  The range 
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of this value is centralized from 1 to -1, with complete positive correlation at 1, 

negative correlation is at -1 and no correlation at 0.52  The linear 

approximation of the two fluorophores and the goodness of fit were 

determined by JACoP with a Pearson’s coefficient of 0.85.52  The Pearson’s 

coefficient demonstrates good co-localization of the inhibitor fluorophore and 

the ER tracker.  The overlap coefficient is calculated with Pearson’s 

coefficient and the average intensities of both fluorophores.   The overlap 

coefficient of 0.944 confirms good co-localization 

 

 

 

A)                                                                B) 

 

Figure 3.7.  Fluorescence imaging of HFF incubated with A) phen-
E(EDANS)VKDEL   B) ER tracker. 
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Pearson’s coefficient 85% 

overlap coefficient 94.4% 

k1 intensity of ER tracker Red 4.337 

K2 intensity of phen-2-
E(EDANS)VKDEL 

0.228 

 

Table 3.5.  Quantitative analysis of the co-localization of ER tracker Red and 
phen-2-E(EDANS)VKDEL as performed with Image J51 plugin JACoP52 
 
 

 

of both fluorophores.  k1 and k2 are two components that are included in the 

overlap coefficient and are related to the total intensity of each fluorophore.52  

The intensity of ER tracker was approximately 20 times more intense than the 

inhibitor, with a k1 value of 4.337 versus a k2 value of 0.228.   Co-localization 

and intensity correlation analysis (ICA) was performed (Figure 3.8) which 

helps for an interpretable representation of co-localization to determined 

coincidental events with two different dyes.52  The x-value of the graph is 

dependent on covariance of both fluorophores, while the y-value signifies the 

intensities of the independent channel.52  The spread of the dots on the left 

side of the are due to non-colocalization while the pixel clouds on the right 

side of the graph indicate partial co-localization.  The “c” shape curves of both 

graphs indicate good co-localization of each fluorophore.52  Phen-2- 
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A)                                                              B) 

 

Figure 3.8.  Co-localization and intensity correlation analysis of A) phen-
E(EDANS)VKDEL and B) ER Tracker 
 

 

E(EDANS)VKDEL and ER tracker colocalization studies were performed to 

prove that the inhibitor with the KDEL tag was being localized within the ER.   

3.3.3.  Phen-2-GKDEL demonstrates an IC50 value of 3.5 mM Inhibition 

Against Recombinant Human-P4H 

IC50 values for phen-2-GKDEL were measured against our 

recombinant human-P4H.  The recombinant P4H was produced to a yield of 

1.0 mg/L, and its activity was determined to be the same as native P4H with a 

Clark oxygen electrode.  SDS-PAGE confirmed the purity with a band at 77 

kDa as is seen and the IC50 was determined by the following Equation 3.5.   
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Figure 3.9.  IC50 curve of phen-GKDE inhibition of the recombinant human-
P4H. 
 
 

 

Phen-2-GKDEL was tested from 100 – 8000 µM with an IC50 value of 3500 

µM (Figure 3.9).  

3.3.4.  Phen-2-GKDEL Demonstrates 250 µM Inhibition in vitro with HFF 

Cells 

Soluble collagen excreted into the media and collagen in the ECM 

were assayed to determine the inhibition of collagen by phen-2-GKDEL.  

Soluble collagen excreted into the media and collagen within the ECM were 

assayed with polyclonal antibodies towards human collagen type I or dye 

which covalently adheres to collagen type I to type V.   
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The first attempt to probe the effect of phen-KDEL towards inhibiting 

the collagen production was performed with ELISA to detect the soluble 

collagen that is secreted into the media.  The media with the soluble collagen 

was removed after 48 hours of incubation with the inhibitor.  The ELISA was 

performed on samples with phen-2-GKDEL (2 µM) and control experiment 

was performed on samples with no inhibitor.   The media of both the control 

and phen-2-GKDEL samples were diluted with a range of 80 % to 50 % 

media/ binding buffer (0.1 M NaHCO3, pH 10.0) to determine the optimal 

concentration of antigen.  In the graph of diluted collagen versus absorbance 

(Figure 3.10), both the control and the 2 µM phen-2-GKDEL samples follow a 

linear expression.  The control has approximately 1.5 –fold higher absorbance 

than phen-2-GKDEL, which suggests that collagen production is inhibited by 

phen-2-GKDEL.   

          Other method for collagen detection was employed to obtain higher 

concentration of collagen.  The Sircol Assay utilizes Sirius red, which is an 

anionic dye with a sulphonic acid side chain (Figure 3.11), reacts with the 

basic amino acid side chains present in collagen.  The advantage with this 

method is that mammalian collagen type I to type V can be all measured 

while the previous assay used a primary polyclonal antibody for type I 

collagen. Collagen was extracted from the extracellular matrix (ECM) and was 

digested with pepsin.  Pepsin cleaves collagen into soluble proteins, but 

allows it to retain native triple helical structure that is necessary for detection.   
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Figure 3.10.  Collagen production by HFF cells with no inhibitor (red boxes) 
and phen-GKDEL (green diamonds).  Media samples were diluted with 
binding buffer (0.1 M NaHCO3, pH 10.0) 
 

 

Once the collagen was solublized and isolated, the dye was added and 

placed on rocker to allow for binding.  The dye-collagen complex was pelleted 

by centrifugation, and the dye was extracted with the Alkali reagent from the 

Sircol kit.  Absorbance readings were taken on 96-well plate reader Spectra  

Max plus (Molecular Devices).  We found that phen-2-GKDEL (20 µM) inhibits 

collagen production, as compared to the cells without inhibitor (Figure 2.12).   

IC50 curves for phen-2-GKDEL were obtained with inhibitor concentrations 

ranging from 0.01-1000 µM.  The collagen from the ECM was extracted and 

pepsin digested in the similar manner as the Sircol Assay as described in the 
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previous paragraph.  After the soluble collagen was isolated, it was 

redissolved in 100 µL of 0.05 M acetic acid (pH 4.2), and the concentration of 

collagen was determined using an indirect ELISA method.  As shown in 

Figure 3.13, IC50 values for phen-2-GKDEL were determined to be 250 µM.   

 

 

 
Figure 3.11.  The chemical structure of the dye that covalently links to 
collagen types I through V in the Sircol Assay. 
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Figure 3.12.  Sircol assay of pepsin digested collagen from HFF cells.  (The 
standards are displayed on the left of the graph.)  20 mM phen-GKDEL was 
incubated with HFF cells for 48 hours. 

 

Figure 3.13.  IC50 curve of phen-2-GKDEL (green diamonds) with pepsin 
digested collagen. 
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 The control experiments using untagged 1,10-phenanthroline (phen) gave 

IC50 value of 160 µM.  These results clearly show that the production of 

soluble and insoluble collagens are both inhibited by phen-2-GKDEL. 

 
3.3.5.  Phen is 100 Times More Potent than Phen-2-GKDEL for 

recombinant P4H enzyme 

IC50 values for phen were also measured against recombinant P4H in 

comparison with Phen-2-GKDEL.  Phen inhibition of recombinant P4H was 

assayed at a concentration range of 5 – 60 µM (Figure 3.14).   The IC50 for 

phen was  

 

 

Figure 3.14.  IC50 curve of inhibition of recombinant human-P4H with phen.  
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calculated at 35 µM.  At high concentrations of phen, a reddish precipitate 

was present in the reaction mixture.  This precipitate is likely an FeIII adduct 

that was insoluble in the buffer solution.  The comparison of phen with phen-

2-GKDEL demonstrated a 100 times more potency against isolated P4H 

enzyme.  Further experiments were performed to test the potency of phen 

against phen-2-GKDEL with collagen production in HFF cells.   

3.3.6.  Phen-2-GKDEL IC50 Value of 250 µM is Similar to Phen IC50 value 

of 160 µM in vitro with HFF cells 

To evaluate the effect of phen-2-GKDEL for inhibiting the collagen 

production in HFF cells, collagen production was compared to the unmodified 

phenanthroline.  Both soluble collagen excreted to the media and collagen in 

the ECM were assayed.  

Both phen-2-GKDEL and phen for soluble collagen excreted into the 

media by HFF cells at a fixed concentration of 2 µM.  Figure 3.15 shows the 

linear slope for detecting the secreted soluble collagen in the media upon 

dilution with a range of 80 % to 50 % media/ binding buffer (0.1 M NaHCO3 

pH 10.0).  The graph suggests that both phen and phen-2-GKDEL inhibit 

collagen production where that latter is more effective to achieve ~ 30 % 

inhibition (~ 25 % inhibition using phen). 
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Figure 3.14.  Inhibition of collagen with 0.2 mM phen-GKDEL (green 
diamonds), 0.2 mM phen (blue circles), and no inhibitor control (red boxes). 
   

 

Assay of collagen in the ECM was performed by pepsin digest followed 

by indirect ELISA to determine collagen concentration.  The IC50 value for 

phen was determined with inhibitor concentrations ranging from 0.01-1000 

µM.  The IC50 value for phen-2-GKDEL was determined to be 250 µM (Figure 

3.16) that is very similar to the IC50 value of phen (160 µM).   

In both the soluble collagen secreted and collagen in the extracellular 

matrix showed similar inhibition of collagen production in HFF cells.  This is in 

sharp contrast to the inhibition of P4H activity in which phen demonstrates 

100 times more potency than phen-2-GKDEL  
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Figure 3.16.  IC50 curve of phen (blue circles) and phen-GKDEL (green 
diamonds) with pepsin digested collagen. 

 

3.4.  Discussion 

3.4.1. Synthesis of P4H Inhibitor Containing the Fe-chelator Coupled to 

an ER-Retention Signal Peptide as Potential in vivo Inhibitors     

  2-Carboxyl 1,10 phenanthroline was coupled with the KDEL tagged 

and designed to inhibit the production of collagen in the ER.  The presence of 

amino acid peptide was confirmed by dispi 2-D NMR (Figure 3.16).  The 

ability of phen derivatives to chelate to iron and inhibit production of collagen 

in P4H has already been reported.25  The synthesis of the 2-carboxyl-phen is 

well established, but the novelty is the coupling of the KDEL retention tag.  

This will direct the iron chelation by phen to the ER for inhibition of P4H.  As 
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there are other iron containing enzymes in the ER, addition of the sequence 

for peptide binding domain for P4H could be implemented to select for P4H.  

The sequence for the peptide binding domain is known and is specific for 

P4H.22   The synthesis of phen-5-GKDEL also has the potential to reduce the 

large IC50 value observed in phen-2-GKDEL when tested with isolated 

enzyme.  The steric interference of the KDEL tag next to the iron chelation 

could be reduced by moving it on the opposite side of the iron chelation.  The 

phen-2-GKDEL synthesis was pursued due to the ease of synthesis of the 2-

carboxy-phen.  The synthesis of the 5-carboxy-phen is also reported59,60and 

is currently undertaken in the lab.  

3.4.2.  Phen-2-VD(EDANS)KDEL Localizes in the ER of HFF Cells 

 Phen-2-E(EDANS)VKDEL was successfully synthesized, and addition 

of this agent with HFF cells demonstrated localization in the ER.  Both have 

good co-localization (85%) as determined by Pearson’s coefficient measured 

by the dependency of pixels in a linear expression of the intensities of two 

images on each other.  The ER tracker demonstrated a more intense signal 

than the inhibitor.  The weaker intensity could be in part due to the quick 

photobleaching of the phen-E(EDANS)VKDEL group observed when 

collecting data or coupling on to the receptor may have shifted the 

excitation/emission band.  The subcellular co-localization analysis of both the 

fluorescently labelled inhibitor and the ER tracker indicate transport into the 
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ER.  This reflects the ability of the inhibitor to reach and localize in the ER 

were P4H is know to reside.   

3.4.3.  Phen-2-GKDEL Demonstrates IC50 value of 3.5 mM Against 

Isolated P4H Enzyme 

The effect of phen-2-GKDEL inhibitor was tested against the 

recombinant P4H.  The phen-2-GKDEL inhibitor exhibited an unexpected high 

IC50 value (3.5 mM).  This could potentially be caused by steric hindrance of 

the peptide chain at the C2 position on the phen next to the iron binding site.  

The steric interaction could possibly be avoided by moving the KDEL to the 

C5 position on the 1,10 phenanthroline ring and possible lowering the IC50 

value to µM range.   

3.4.4.  Phen-2-GKDEL Demonstrates IC50 value of 250 µM Inhibition in 

vitro with HFF Cells 

Indirect ELISA was employed for the detection of collagen in the ECM.  

The IC50 value for phen-2-GKDEL was prepared with inhibitor concentrations 

ranging from 0.01-1000 µM, with an IC50 value of 250 µM.  The scattering of 

the plot points may be caused by many sample transfers during the assay.  

Isolation of collagen under went many steps, in which each step had the 

potential for losing some sample.  The scattering of the plot points could be 

minimized by assay of procollagen, RIA, or the extraction of cellular 

proteins.23,25   
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3.4.5.  Phen is 100 Times More Potent than Phen-2-GKDEL in Isolated 

P4H Enzyme   

Both phen and phen-2-GKDEL were tested with isolated P4H enzyme, 

in which phen demonstrated a 100 fold potency than phen-2-GKDEL.  The 

reasoning behind the large difference in IC50 value could be attributed to the 

addition of the GKDEL signal peptide to phen.  The signal peptide might 

sterically hinder the chelating capacity of phen.  Future experiments are in 

progress to synthesize the phen with a reactive coupling carboxyl group at the 

C5 position away from the iron chelator motif (Figure 3.17).  The signal 

peptide will have an advantage at the five position, as it will interfere less with 

iron chelation and could possible interact with Lys493 and His501 of human 

P4H known to bind to the C-5 and C-1 carbonyls of α-ketoglutarate. 

3.4.6.  Collagen Inhibition by Phen-2-GKDEL and Phen Demonstrate 

Similar IC50  values in cultured HFF Cells 

Phen and phen-2-GKDEL were also tested in vitro for inhibiting 

collagen production in HFF cells.  The indirect ELISA results suggest that 

both phen and phen-2-GKDEL inhibit collagen production with the similar 

dose dependence manner.  The IC50 values for both inhibitors are determined 

to be in the range of 10 - 50 µM.  For phen, this value is very similar to the 

IC50 value obtained with the isolated enzyme.  However, phen-2-GKDEL 

demonstrates a 100-fold increase in potency in cultured HFF cells as 

compared with isolated enzyme.  These results show that having the KDEL  
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Figure 3.17. phen-5-GKDEL inhibitor, with the phenanthroline couple to the N 
terminus at the 5 position 
 

 

retention tag is 100-fold effective than phen itself to support the idea of 

targeting P4H in the ER.  The IC50 value for inhibiting the collagen production 

in the ECM was also similar between phen and phen-2-GKDEL.  This 

demonstrates the inhibition of the collagen production in the ECM by both  

phen and phen-2-GKDEL and correlates with the results for the soluble 

collagen extracted in the media.   

5.  Conclusion 

 The use of signal peptide for drug delivery is a powerful tool that is 

quickly gaining interest.  Phen-2-GKDEL discussed here is designed to 

specifically target P4H in the ER to inhibit collagen production. Fluorescence 

detection of the EDANS group coupled to the signal peptide demonstrates the 

localization of the phen-E(EDANS)VKDEL into the ER within 20 min.  

Detection with antibodies raised against collagen demonstrates the inhibition 

of collagen production in cultured HFF cells by phen-2-GKDEL.  Phen was 
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also tested with phen-2-GKDEL as a positive control against isolated P4H 

and in vitro studies.  Both have similar IC50 values in HFF cells.  The 

difference in the two inhibitors was observed against isolated P4H.  Phen-2-

GKDEL had a 100-fold increase in the observed IC50 value as compared to 

phen.  The data suggest the peptide signal at the 2 position of phen is 

interfering with iron chelation.   

The GKDEL signal peptide could have a significant effect on the IC50 

value in vitro and in vivo of phen derivatives if the observed IC50 value of 

phen-2-GKDEL decrease by 100-fold from isolated enzyme to HFF cells.  To 

conclusively prove the effects of the signal peptide on decreasing the IC50, 

more derivatives with the KDEL tag need to be synthesized.  Currently, a new 

inhibitor where the KDEL tag at the 5 position of phen to avoid steric effects 

are undertaken.  Other inhibitors are also being synthesized to target both the 

peptide binding domain as well as the iron active site.   
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Chapter 4   

Photolytic Release of Nitric Oxide from an Immobilized Ruthenium 

Complex 

 

4.1.  Background 

 In the 1980’s, nitric oxide (NO) was found to cause vascular smooth 

muscle relaxation by the activation of cGMP.1  Since then, NO has been 

established as a critical mediator in various bioregulatory processes of the 

cardiovascular, nervous, genitourinary, immune, and gastrointestinal 

systems.1,2  Several diseases are related directly to over or underproduction 

of NO, creating great interest in the design and development of NO donors for 

NO delivery.3-5  These NO donors have potential for the treatment of heart 

attacks, thrombosis, cancer, and restenosis.    

4.1.1.  Nitric Oxide 

NO is a colorless gas with one unpaired electron, which causes it to be 

highly reactive with other species within the body.1  Nitric oxide synthase 

(NOS) is responsible for the product of nitric oxide within the body.  This 

dimeric enzyme contains both flavin adenine dinucleotide and flavin 

mononucleotide cofactors.   In a five electron process containing both 

oxidation and reduction cycles, L-Arginine is converted to citruline, producing 

one equivalent of NO.  The enzymes location and effect on the body 

distinguish the three isoforms of NOS; they include neuronal (nNOS), 
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inducible (iNOS), and endothelial (eNOS).1,2  Neuronal NOS is located in 

nervous system and is involved in cell communication.6  Inducible NOS fights 

pathogenic infections in the immune and cardiovascular systems.1  

Endothelial NOS is found in the endothelial layer of blood vessels and 

produces NO that causes vasodilatation of smooth muscles. As these 

examples illustrate, NO is ubiquities throughout the body, causing the needed 

to develop synthetic systems to delivery NO.  Because of the diversity of NO 

function, it is now recognized that are a variety of systems are necessary.3 

4.1.2.  Current NO Donors in Medical Practices 

Several NO donors are currently employed in the medical practice, but 

complications can arise from toxic byproducts or to tolerance to the drug.1,2,4          

Nitrate esters, such as nitroglycerin, that release NO are known to relax blood 

vessels and relieve chest pain due to angina (Figure 4.1a).  Three electron  

 

 

 

 

Figure 4.1.  NO donors drugs approved for medical use a) Nitroglycerin - 
relief of angina and chronic heart failure. b) Sodium nitroprusside - lowering of 
blood pressure during hypertensive emergency. c) Molsidomine - treatment of 
hypertension. 
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reduction of nitrate ester generates NO, causing vasodilatation.  Doctors have 

found, though, that a patient’s body can develop a tolerance to nitroglycerin 

and may require increasingly high dosages to elicit the same response.7  

Sodium nitroprusside (SNP) is another NO donor that rapidly lowers blood 

pressure (Figure 4.1b).  SNP is administered during surgery when blood 

pressure is fluctuating dangerously; however the byproducts of SNP are 

problematic.8  Both free cyanide ion and iron center are generated during the 

one-electron reduction of SNP.  Molsidomine is used in Europe for the 

treatment of hypertension (Figure 4.1c).  Through ring opening metabolism, 

Molsidomine releases one equivalent of NO along with peroxynitrite, which is 

a highly toxic nitrogen species.9  All of these NO donors are currently used in  

the medical field, but harmful byproducts or dose-related tolerance have 

prompt the design of safer and more reliable NO donors for medical 

treatments.     

4.1.3.  Controlled Release of NO by Diazeniumdiolates 

 The leading research on NO drug delivery has been the design of 

diazeniumdiolates (NONOates), pioneered by Keefer and co-workers at the 

National Cancer Institutes Laboratory of Comparative Carcinogenesis.3-5,10  

NONOates are a possible treatment for medical disorders caused by NO 

deprivation as they provide controlled delivery of NO without harmful 

byproducts.  NONOates have a chemical formulation of R1R2NN(O)=NOR3 

and can be designed to target and control the release of NO (Figure 4.2).   
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Figure 4.2. Structures and time release of selective diazeniumdiolates 

 

These prodrugs control the release of nitric oxide based on their structure.  

The three R groups can be modified to control the location of delivery and  

rate of release.  R1 and modifications of R2 are usually associated with control 

the release rate of NO, while R3 serves as a site to bind a cation.  For 

instance, when R1 and R2 were modified to the amino acid L-proline, the initial 

reaction under basic condition yielded PROLI/NO.  PROLI/NO is stable under 

basic conditions, but at physiological pH has a half-life of 1.8 s, converting to 

L-proline and two equivalents of NO with a half-life of 1.8s.  PROLI/NO has 

been shown to reduce platelet aggregation in baboon’s blood.11  When 

infused into the right atrium of sheep, PROLI/NO proved to reduce the 

pulmonary arterial pressure.  When R1 and R2 are changed from proline to 
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longer alkyl chains, longer half lives are generally observed.  One example of 

a NONOate with a longer time release is DMAEP/NO, which has an observed 

half-life of 135 min.12  The above examples involve R3 site ionically bound as 

a cation; however, when R3 is covalently linked to the NONOate release of 

NO is inhibited until the R3 group is cleaved off.  Covalent linkers to the R3 

group are specific to certain enzymes and could potentially control both the 

release of NO as well as the desired location. For example, the NO group of 

V-PYRRO/NO is specifically cleaved by cytochrome p450 and delivers NO to 

the liver.13   

Further modifications made for NO release comes from various 

polymer support biomaterials that could potentially release NO from site-

specific locations and avoid the release of harmful byproducts into the body.  

NONOates have demonstrated the ability to release NO from a solid support.  

The need for a material that releases NO has been made evident by 

restenosis after angioplasty.  The buildup of atheromatous plaque in the 

coronary artery can restrict blood flow, leading to heart attack and possibly 

death.  A process known as angioplasty can clear the blocked artery and 

restore blood flow.  In this process, a balloon is inflated at the site of plaque 

build up, expanding the artery to allow blood flow.  Complications include 

overstretching the artery, leading to an overproduction of vascular smooth 

muscle cells and the thickening of the vessel wall.  Stents may be employed 

to prevent the re-constriction of the blood vessels, but buildup of smooth 
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muscles is still observed.  Kaul and coworkers designed a NO releasing gel 

containing the NONOate SPER/NO to be placed at the site of restenosis; this 

would inhibit smooth muscle accumulation and further thickening of the vessel 

wall.14  When treated with the SPER/NO gels, the damaged artery had similar 

appearance to normal and healthy arteries while the untreated artery still 

appeared injured and damaged with the build up of smooth muscle.   

Addition of foreign objects to the body causes excessive platelet 

aggregation.15  NO is known to inhibit platelet aggregation.  Smith and 

coworkers demonstrated that objects implanted into the body that have been 

coated with NONOate releasing material inhibit platelet aggregation.16  

Biosensors coated with NONOates have improved accuracy due to the 

inhibition of platelet aggregation.  Blood oxygen sensing measurements were 

taken with electrode with and without NONOate releasing material.17  The 

accuracy of the sensor coated with NONOate was very close to standard 

clinical chemistry methods while the non-coated sensor had diminished 

readings.  Materials with the ability to release NO at site specific locations 

have proven useful in angioplasty procedures as well as in their ability to 

inhibit platelet aggregation with reduced complications towards the biosensor.   

4.1.4.  Ruthenium Salen Nitrosyl Complex Release of Nitric Oxide 

Another approach to NO delivery to site specific a location is the 

photochemical release of NO.  The photorelease of NO from metal- N,N'-

ethylenebis(salicylideneimine) (salen) complex could be applied to treating 



 187 

thrombosis as seen previously.  In addition site, delivery of NO could 

potentially be an effective mediator of cytotoxic action of macrophages toward 

tumor cells.18,19  The synthesis and characteristics of light activated ruthenium 

salen nitrosyl complex (Ru(salen)(Cl)(NO)) have been described recently by 

Ford and co-workers (Figure 4.3).20  These complexes are thermally stable 

but photochemically release NO.  Spectroscopic analysis of the 

Ru(salen)(Cl)(NO) displayed a strong ligand-localized π−π* UV absorbance 

band at 376 nm.  The FTIR spectrum shows the nitrosyl stretching frequency 

at 1844 cm-1.  The photochemistry of Ru(salen)(Cl)(NO) was monitored by the 

spectral changes that occur when an acetonitrile solution of the complex was 

irradiated at λirr = 365 nm.  Photolysis leads to the increased absorbance at 

348 nm, and new bands were displayed at λ = 494 and 724 nm.  Isosbestic 

points were also seen at λi = 313, 392, and 448 nm.  The absorbance at λ = 

724 nm was assigned as a ligand (phen) to metal (RuIII) charge transfer band.  

Disappearance of FTIR νNO band at 1844 cm-1 was also observed upon  

 

 

 

Figure 4.3.  Photochemical release of NO from ruthenium salen complex 
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photolysis of the complex at λirr = 365 nm.  When photolysis was carried out 

in aerated solutions, the observed spectral changes were permanent; 

however, in deaerated solutions, the spectral characteristic went back to 

those of the starting complex due to the absence of O2 unable to react with 

NO.  In nonpolar, deaerated solutions, the Ru(salen)(Cl)(NO) complex 

displayed no spectral changes as the rate towards reformation of starting 

complexes was solvent dependent, since solvent coordinates to the axial 

position after NO leaves.  Quantum yield for this complex was determined 

based on spectral changes and calculated product extinction coefficients: 

ΦΝΟ = 0.13 at λirr = 365 nm,  ΦΝΟ = 0.09 at λirr = 436 nm, ΦΝΟ = 0.07 at λirr = 546 

nm.  The photoefficiency decreases at longer wavelengths but still continues 

to release NO.  A low barrier for NO dissociation could explain this observed.  

It was anticipated that modification to the salen ligand would make it possible 

to covalently link a Ru-NO complex to a polymeric support for the controlled 

release of NO.   

4.1.5.  Immobilized Metal Salen Complexes for the Storage and Release 

of NO 

Borovik and co-workers have developed methods for the 

immobilization of metal salen complexes into polymer material.21-23  In their 

template copolymerization with metal complexes, the metal complex is 

substitutionally inert to ensure that the various ligands remain coordinated. 

These ligands contain a polymerizable vinyl group that will ultimately be 
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covalently link into a polymer host.  The schematic representation of this 

process is seen in Figure 4.4.  The use of template copolymerization for the 

storage and release of NO was first demonstrated by Padden and  

 

 

 

 

Figure 4.4.  In the process of template copolymerization, A) the metal ions are 
stabilized by ligands for a substitutionally inert complex.  B) Crosslinking 
agents react with the vinyl groups and polymerize the metal complex. C) 
Ligands without vinyl groups are remove to provide space for reactivity. 
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co-workers.21  This process involved the polymerization of a CoII salen 

complex into porous solids, having site-isolated cavities with channels that 

connect the cavities to the polymer surface.  This is a bio-inspired design, in 

which site-isolation and channel structures are common structural features in 

metalloproteins.24-26  In order to construct the desired environment around the 

metal center, the metal complexes were prepared before insertion into the 

organic polymer.  A styrene-modified salen ligand allows covalent-

incorporation of polymerizable functional groups of the ligand into the organic 

host. This material was one of few with the ability to bind and release NO 

(Figure 4.5).  Upon binding of NO, P-1[CoII] changes from an orange color to 

a brown-green color characteristic of P-1[Co(NO)].  The release of NO and 

conversion to the unbound orange polymer P-1[CoII] form was accomplished 

in approximately one hour upon heating and under vacuum.  Reversible 

binding of NO was observed through EPR spectroscopy.  Solid P-1[CoII] 

exhibits an axial spectrum signal at g = 3.83 and g = 1.98, which is  

 

 

 

Figure 4.5.  The storage and release of NO from P-1[CoII]. 
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characteristic of a CoII square planar geometry.  Binding of NO to P-1[CoII] 

quenches the EPR signal as a result of antiferromagnetic coupling of the CoII 

center and the unpaired electron of the NO.  The signal for P-1[CoII] was 

observed when P-1[Co(NO)] was placed under vacuum; however, the signal 

was again disappeared when additional NO was added to the system.  Slow, 

passive release of NO was also observed under conditions of ambient 

temperature and pressure: 40% of the NO was release after 14 days.  The P-

1[Co(NO)] demonstrates the possibility of NO release from a porous polymer 

support.   

 The controlled release of NO through photolysis can potentially be 

applied by immobilizing ruthenium nitrosyl (Ru-NO) complexes within a similar 

material as used with P-1[Co(NO)].  This chapter describes the synthesis and 

controlled release study of NO from a polymer support using a Ru-NO 

complex.  Providing polymerizable vinyl groups to salen Ru(NO) complex 

allowed for covalent linkage to the solid support.20,27  The release of NO is 

triggered by light, which allows the controlled transfer of NO from the polymer 

to biologically relevant compounds.  This material illustrates the controlled 

release of NO without the formation of toxic and unwanted byproducts.  The 

potential medical applications of this system maybe treatment of angina 

pectoris, myocardial infarction, congestive heart failure, and treatment for 

different cancers.      

4.2.  Materials and Methods  
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 Unless otherwise stated, all materials and solvents were obtained from 

Aldrich (Milwaukee, WI) or Fisher (Pittsburgh, PA).  All inert conditions were 

performed with either Vacuum Atmospheres (Hawthorne, CA) drybox under 

or a Schlenk-line under argon atmospheres. 

4.2.1.  Synthesis of Bis[2-hydroxy-4-(4-

vinylbenzyloxy)benzaldehyde]ethylenediimine. (H21)  Synthesis was 

performed as described by Borovik and co workers.28  2-Hydroxy-4-(4-

vinylbenzyloxy)benzaldehyde (2.00 g, 7.86 mmol), was suspended in 100 mL 

of dry methanol and placed under an argon atmosphere.  Ethylenediamine 

(0.24 g, 3.90 mmol, 0.16 ml) was added with a syringe and the resulting 

yellow solution was stirred for 4 hours, during which time a yellow precipitated 

formed.  The yellow product was isolated by suction filtration with a fritted-

glass filter and washed with 30 mL of chloroform to yield 1.83 g of product 

(88% yield).  1H NMR (CDCl3): δ 3.86 (s, 4H), 5.05 (s, 4H), 5.26 (d, 2H), 5.75 

(d, 2H), 6.46 (dd, 2H), 6.51 (d, 2H), 6.70 (dd, 2H), 7.08 (d, 2H), 7.11 (d, 2H), 

7.41 (m, 4H), 8.21 (s, 2H), 13.62 (s, 2H).  

4.2.2.  Ru(NO)Cl3  Ru(NO)Cl3 was synthesized following published 

procedures.29,30  RuCl3 x H2O (0.450 g, 2.17 mmol) was dissolved in 25 mL of 

1 M HCl and the solution was degassed with N2 for 15 min.  As the solution 

was refluxing at 100oC, an aqueous solution (10 mL) of NaNO2 (0.452 g, 2.17 

mmol) was added dropwise by addition funnel and allowed to reflux for 3 h.  

At the completion of the reaction, solvent was removed under reduced 
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pressure.  The resulting red compound was then washed in 5 mL of 100% 

ethanol, 5 mL of 6 M HCl, and then  washed three times with 3-5 mL aliquots 

of H2O , removing solvent after each addition.  The reddish product when 

then dried under reduced pressure to yield 0.536 g (91%).  FTIR (nujol, cm-1)  

1897 (ν NO). 

4.2.3.  Ru1(NO)(Cl)  Synthesis of ruthenium complexes followed the 

procedure published by Ford and coworkers.30  Under inert atmosphere, a 30 

mL DMF solution of H21 (0.250 g, 0.468 mmol) in DMF was treated with 2 

equiv of solid KH (0.0375 g, 0.936 mmol).  After gas release (H2) was 

completed (~30 min) Ru(NO)Cl3 (0.113 g, 0.479 mmol) was added and the 

mixture was refluxed for 2 h.  Solvent was removed by rotoevaporation to give 

a brown solid, which was purified using silica gel flash chromatography with a 

mobile phase of 2% methanol/98% methylene chloride.  Fractions containing 

the desired Ru1(NO)(Cl) complex were collect and solvent was removed 

under reduced pressure to yield 0.24 g of brown solid (45%).   1H NMR 

(CDCl3): δ 3.92 (d, 2H), 4.30 (d, 2H) 5.07 (s, 4H), 5.28 (d, 2H), 5.30 (d, 2H), 

5.77 (d, 2H), 6.40 (d, 2H), 6.73 (m, 2H), 6.88 (s, 2H), 7.15 (d, 2H), 7.42 (dd, 

8H), 8.11 (s, 2H).    

4.2.4.  P-1[Ru(NO)(Cl)]  Under an argon atmosphere, Ru1(NO)(Cl) (0.100 g, 

0.144 mmol, 5 mol %), ethylene glycol dimethacrylate (EGDMA) (0.53 g, 2.7 

mmol, 94 mol %), and azodiisobutyronitril (AIBN) (5 mg, 0.03 mmol, 1 mol %) 

were added to a thick-wall polymerization tube (Ace Glass).  Porogen DCB 
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(1.5 g) was added and the tube was sealed and wrapped in foil to prevent the 

release of NO.  The solution was heated at 60 ˚C for 24 h, after which the 

polymer underwent continuous extraction, using a Soxhlet extractor, with 

CH2Cl2 for another 24 h.   The polymer was dried under reduced pressure to 

yield 0.642 grams of product.  The polymer was crushed and separated with 

particle size smaller than 75 µM and between 0.5 and 1.0 mm with molecular 

sieves. 

4.2.5.  NO Release Studies  Particles of P-1[Ru(NO)(Cl)] (20mg) were 

suspended with 2 mL of phosphate buffer solution (50 mM, pH 7.2) in Pyrex 

test tubes.  Samples were covered with parafilm and stored in the dark in a 

Rayonet photochemical reactor.  During five minutes intervals, the samples 

were irradiated with light at λirr = 350 nm (~24 W) and then a 50 µL sample 

was removed and added to 96-well microtiter plate.  NO was detected by 

nitrite concentration in water using the Griess reagent system (Promega), and 

colorimetric absorbance at λ =520 nm was determined with a SpectraMax 

190 plate reader.31,32 

4.2.6.  NO Transfer Studies  A solution of 100 mg of metmyoglobin (metMb) 

and known concentration of P-1[Ru(NO)(Cl)], in a typical experiment, was 

prepared in a 1.00 cm Suprsail quartz cuvette and sealed under an inert 

atmosphere with a rubber septum.  Reduction of equine skeletal muscle 

metMb was performed with 1.2 equiv of dithionite to obtain the reduced form 

of myoglobin (Mb).  The sample was irradiated with a Hg arc lamp, equipped 
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with a  λirr = 370 nm wavelength bandpass filter (Omega Optical).  Spectra 

were collected on a Varian Cary 50 spectrophotometer at room temperature.   

4.2.7.  Physical Methods  Proton nuclear magnetic resonance spectra were 

collected on a 400 MHz Bruker spectrometer.  UV/Visible spectra of all 

samples were collected on a Varian Cary 50 spectrophotometer.  Fourier 

transform infrared spectra were collected on a Mattson Genesis Series FT-IR 

spectrometer.  Time release studies with the Griess reaction were performed 

on SpectraMax 190 96-well plate reader.  EPR spectra were collected on a 

Bruker EMX spectrometer.  

4.3.  Results and Discussion  

4.3.1.  Synthesis of Ru1(NO)(Cl) and P-1[Ru(NO)(Cl)]  Ru1(NO)(Cl) was 

obtained in 45% yield and characterized with UV/vis, FT-IR and EPR 

spectroscopies and compared to literature values.30  The absorbance 

spectrum showed a band at λ = 367 nm for the monomeric complex, which 

was assigned as a metal-to-ligand charge transfer (MLCT) band.  The silent 

EPR spectrum was observed presumably due to antiferromagnetic coupling 

of the unpaired electron of the NO and unpaired electron of the low-spin d5 

RuIII center.33  The FT-IR stretching at 1830 cm-1 was assigned to the nitrosyl 

group.    

  The Ru(NO)(Cl3) monomer complex was stable under all the reaction 

conditions, including polymerization, as long as light exposure was avoided.  

The styryloxy groups provided polymerizable sites for immobilization within a 
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porous polymer.  Scheme 4-1 illustrates the preparation of P-1[Ru(NO)Cl)], 

including the monomer Ru1(NO)(Cl), EGDMA for the crosslinking agent, 

AIBN as the radical initiator and 1,2-dichlorobeneze as the porogen. The 

polymer was collected, dried, crushed and sieved to isolate the material as 

particle, ranging in size from smaller than 75 µM to 1 mM.     

Several spectroscopic analyses were performed to ensure P-1[Ru(NO)(Cl)] 

was undisturbed during the synthesis and compared to [Ru1(NO)(Cl)] 

monomer.   EPR spectroscopy was silent at 77 K and 4 K due  

 

 

 

Scheme 4.1.  Synthesis of [Ru(1)(NO)(Cl)], P-1[Ru(1)(NO)(Cl)], and P-1 
[Ru(Cl)].  AIBN = azobisisobutyronitrile, DCB = 1,2-dichlorobenzene 
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to the antiferromagnetic coupling between the unpaired electron of NO and 

the unpaired electron of the low-spin d5 RuIII complex.  The FT-IR (KBr plates) 

stretching frequency spectrum of P-1[Ru(NO)(Cl)] exhibited a band at 1824 

cm-1 that is characteristic of the NO stretching frequency.  The UV/Vis 

spectrum of the polymer suspended in toluene reveals a λmax of 373 nm.  

These spectroscopic features are in agreement with the [Ru1(NO)(Cl)] 

monomer.33   

4.3.2.  Photorelease of Nitric Oxide from P-1[Ru(NO)(Cl)]  Photolytic 

release of NO from [Ru1(NO)(Cl)] and P-1[Ru(NO)(Cl)] was performed by 

broad-band irradiation with a Hg arc lamp.  Upon photolysis, P-1[Ru(NO)(Cl)] 

is converted to P-1[RuIII(Cl)], a process that was observed spectroscopically.   

The EPR spectrum after photolysis of P-1[Ru(NO)(Cl)] showed a rhombic 

signal with g value at 2.3, 2.1, and 1.8, which is characteristic of immobilized 

ruthenium(III) complexes with S = ½ ground state (Figure 4.6).  The unpaired  

electron on the ruthenium that was antiferromagnetically coupled to radical 

NO is observed after the release of NO.  P-1[Ru(NO)(Cl)] was suspended in 

CH2Cl2 and irradiated to obtain the electronic absorbance spectra revealing 

the peak absorbances at λmax = 400 and 660 nm.  Both of these values are 

characteristic of other monomeric Ru complexes after the release of NO.   

4.3.3.  NO Transfer to Metalloporphyrin  Previous efforts by Koch and 

coworkers demonstrated the transfer of NO from P-1[Ru(NO)(Cl)] to cobalt(II) 

tetraphenylporphyrin ([CoII(TPP)]).33  Irradiation of the suspended polymer 
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and [CoII(TPP)] at 370 nm demonstrated the transfer of NO from the polymer 

to the metalloporphyrin.  NO transfer appears to occur cleanly as shown by 

the sharp isosbestic points at λmax = 397, 420 and 425 nm for the conversion 

of [CoII(TPP)] to [CoII(TPP)(NO)].  Moreover, the transfer was complete in less 

than 20 minutes.  Transfer of NO to a biological metalloporphyrin were  

performed with myoglobin (Mb), which has been shown to bind NO.34  Mb has 

also been known to act as a NO scavenger, and has a high concentration in 

cardiac cells and muscles.35  In a typical in vitro experiment, P-1[Ru(NO)Cl)]  

 

 

 

Figure 4.6.  EPR spectra (77K) for P-1[Ru(NO)(Cl)] (dashed line) and 
P-1[RuIII1(Cl)] (solid line). 
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was suspended in PBS buffer pH 7.2 and irradiated with λmax =  370 nm light.  

Reduced Mb was converted to Mb(NO) within 20 minutes.  NO transfer was 

observed spectroscopically with the shift in the Mb band from λmax = 435 to 

420 nm (Figure 4.7).  The literature reports the same spectral shift for Mb and 

Mb(NO).  This transfer process has a first-order rate constant of 5.0 x 10-4 s-1.   

4.3.4.  Photorelease of NO  The release of NO under physiological 

conditions was investigated for potential medical applications.  A suspension 

of P-1[Ru(NO)Cl)] in PBS buffer pH 7.2 was irritated with λmax = ~350 nm 

light, and aliquots of sample were removed at various time intervals.   

 

 

Figure 4.7.  Mb peak at 435 nm shifts to 420 nm upon the binding of NO from 
P-1 [Ru(NO)(Cl)].  Mb concentration 3.0 mM in 50 mM phosphate buffer, pH 
7.2. 
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Samples of this solution were also collected for time periods in which no 

irradiation occurred (denoted dark phase).  The purpose of the latter 

experiments was to demonstrate NO release was not observed during the 

dark phase and thus light was the triggering mechanism for release.  Figure 

4.8 illustrates the release curve of NO from P-1[Ru(NO)Cl)], showing that 

0.027 µmol NO were released after 45 min, corresponding to 2.7 µmol of 

NO/g of polymer.  Figure 4.9 also illustrates the time release with light and  

 

Figure 4.8.  Time release curve of P-1[Ru(NO)(Cl) with continuous release 
(black dots) and stop time release (red dots).  Stop time release is 
demonstrated with continuous irradiation (solid line) and no irradiation 
(dashed line). 
 
 
dark phases.  The polymer was irradiated with light for 15 min with 

subsequent 10 min time period with no irradiated.  Photolysis proceeded for 
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another 10 minutes followed by no irradiation for another 10 min.  No release 

of NO was observed during the dark phase, indicating the NO release is 

controlled by photolysis alone.  NO release was monitored indirectly by 

Griess reaction,31,32 which analyzes the nitrite concentration by coupling nitrite 

to sulfanilamide and NEDA for detection of azo complex at 520 nm (Figure 

4.9). 

 

 

 

 

 

Figure 4.9.  Detection of NO through nitrite concentration by the Griess 
Reaction. 
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4.4.  Conclusion 

 The chapter described the synthesis and transfer of NO from a porous 

material.  This is the first reported NO donor in polymer material where the 

release of NO was controlled by light.  As described in the introduction, 

compounds and materials that release NO have been proven to elevate 

restenosis after angioplasty, inhibit platelet aggregation (thrombus) on 

implanted medical devices, and relieve hypertension.3,4,10,14,16,36,37  NO is 

involved in numerous processes within the body, thus the release of highly 

reactive NO would need to be controlled and site specific.   P-1[Ru(NO)(Cl)] 

provides both of these advantages with controlled release of NO with light 

and site-directed release because NO is attached to the polymer support.  

This chapter has illustrated the ability of P-1[Ru(NO)(Cl)] to release NO only 

when it was irradiated with light, and no leaching of NO from the material has 

been observed.  A potential application of this materials is to attach the 

Ru1(NO)(Cl) complex to a fiber optic to provide release of NO at site specific 

locations.  This could also potentially be useful in cancer treatment, as NO is 

known to be involved in apoptosis.  Materials coated with P-1[Ru(NO)(Cl)] 

that are implanted in the body, such as stent medical devices, would not 

prove useful as 380 nm irradiation will not penetrate the skin.  Ford and 

coworkers has developed a complex for the release of NO by single and two 

photon excitation.38  The near-infrared wavelengths are optimal for tissue 

transmission.  Designing modification to P-1[Ru(NO)(Cl)] for release at single 
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and two photon excitations would allow the release of NO from the material at 

desired materials implanted locations with the use of tissue penetrating 

wavelengths.  Medical stents, implanted devices, or other possible areas of 

atherosclerosis would be coated with this material, and the scheduled release 

of NO could be performed with one and two photon light excitation.   
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Conclusion 

 

 The expression system of rHADH has been optimized and purification 

procedure yields ~ 20 mg/L of >99% pure, fully flavinylated protein.  The 

physical properties (molecular weight and sequence analysis) are in good 

agreement with the native enzyme.  The kinetic properties (specific activity, 

Km) of rHADH are also in good agreement with the native enzyme.  The 

recombinant system of HADH behaves identical as native expression.  

Crystal conditions of rHADH were optimized with screening conditions: 2.0 M 

(NH4)2SO4, 0.1 M Hepes, pH 7.5, 2% PEG, 4% glycerol.  Addition of glycerol 

was needed for proper cryrofreezing of the crystal.  The crystal structure of 

HADH was defined to 2.7 Å with data collection obtained at the SSRL.  The 

structure validated the presence of 6-S-Cys-FMN and [4Fe-4S] redox active 

cofactors.  The presence of a bound ADP was also determined, but the 

function of this prosthetic group is unknown.  Continual refinement of the 6-S-

Cys-FMN suggested the presence of a bend in the isoalloxazine ring, which 

modulates its redox potential.  Docking studies of histamine demonstrate 

interactions of Glu79 and Asp358 with the protonated amino group of 

histamine.  The imidazole ring of histamine is stabilized by π−π interaction of 

Tyr181 and Phe77.  Asn115 as provides hydrogen bonding to the nitrogen on 

the imidazole ring.  The binding motif demonstrated by the model is found in 

other histamine binding proteins.  Histamine transferase and histamine 
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binding proteins show a carboxylate residue stabilizing the amino group and 

π−π interaction of either Phe or Tyr holding the imidazole group.  The binding 

motif of HADH is also similar to the human histamine receptor.   This could 

provide further understanding of the human histamine receptor along with 

potential drug design.     

 Continued studies and mutant HADH studies would provide further 

understanding of this enzyme.  Arg230 is believed to stabilize intermediates in 

the biogenesis of the 6-S-Cys-FMN.  Mutations to R230V to observe the 

formation of 6-S-Cys-FMN could confirm the role of Arginine in the 6-S-Cys-

FMN biogenesis.  Further probing of the redox active [4Fe-4S] and discovery 

the physiological external electron acceptor would provide understanding of 

electron transport of the 6-S-Cys-FMN to outside the enzyme.  The 

implications of understanding the electron pathway would be useful in the 

design of histamine biosensor.        

 The synthesis of the two agents of the iron-chelating phenanthroline 

inhibitor was coupled to a retention signal (KDEL) to target the endoplasmic 

reticulum to inhibitor prolyl 4-hydroxylase.  Colocalization studies of the 

fluorophore labeled phen-2-KDEL inhibitor with ER tracker demonstrated that 

the inhibitor is localized in the ER.  Good collocation (85%) and overlap (94%) 

were shown with the fluorophore and the ER tracker.  Phen-2-GKDEL 

demonstrates an IC50 value of 3.8 mM against isolated human P4H.  This 

value is around 100-fold increase in IC50 value as compared to phen without 
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the KDEL tag.  The peptide chain at the 2 position next to the iron chelation, 

could be affecting the ability of the phenanthroline to chelate to the metal.  

Synthesis of the KDEL at the 5 position could elevate this and provide better 

iron chelation.  Similarities in IC50 for phen-2-GKDEL (165 µM) and phen (160 

µM) were observed in HFF cells.  Experimental evidence suggests that phen-

2-GKDEL and phen are demonstrating similar potency in HFF cells.  The 

optimal design of a potent inhibitor with the KDEL tag would provide efficient 

selectivity and inhibition of P4H 

The controlled release of nitric oxide by P-1[Ru(NO)(Cl)] was designed 

with a porous material.  Sight isolated ruthenium salen complex allowed for 

the storage and photolytic release of nitric oxide.  Release of nitric oxide was 

demonstrated spectroscopically by EPR.  The bound Ru(NO) complex 

demonstrates a slight EPR sign, but upon release of NO, the electron on the 

RuIII complex is observed at g = 2.0.  The transfer NO to biologically relevant 

myoglobin within 20 minutes was observed with a spectroscopic shift of the 

unbound Mb (435 nm) to the Mb(NO) form (420).  The controlled release of 

NO from the porous material was also shown.  No is released from this 

material in the presence of light; however, during periods of darkness, the 

release of NO was not observed.  This is the first system where NO is 

photoreleased from an immobilized polymer support.   Continued design of 

Ru salen complex covalently linked to a fiber optic would provide the site 

specific delivery of nitric oxide to a desired location.  The release of NO by 
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two photon excitation from the polymer material could provide penetration 

wavelengths through tissues for the release of NO.  
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Appendix 

 

Soluble collagen secreted in the media was also assayed by varying the 

concentration of phen-2-GKDEL from 0.01 µM to 100 µM in a dose 

dependent experiment.  Based on the pervious experiment, the media was 

diluted to a concentration of 20 % binding buffer and 80 % media, as these 

condition provided the highest absorbance.  Figure A.1 exhibits the curve for 

phen-2-GKDEL suggesting a dose dependence manner for this inhibitor.   

 
 
Figure A.1.  Dosage dependent indirect ELISA detecting collagen production 
with a concentration range of 100 mM to 0.01 mM in the presence of phen 
(blue circles) and in the presence of phen-GKDEL (green diamonds) 
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Phen and phen-2-GKDEL were both assayed for secreted soluble 

collagen by varying the concentration of each inhibitor from 0.01 µM to  

100 µM in a dose dependent experiment.  The media was diluted to a 

concentration of 20 % binding buffer and 80 % media, as these condition 

provided the highest absorbance in previous experiments.  Figure A.2 exhibits 

the curve for each inhibitor, suggesting a similar dose dependence value for 

both of these inhibitors.  These results show that both phen and phen-2-

GKDEL are inhibiting collagen production with the similar dose dependence.   

 

 

Figure A.2.  Dosage dependent indirect ELISA of collagen production with a 
concentration range of 100 mM to 0.01 mM for phen (blue circles) and phen-
2-GKDEL (green diamonds) 
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A dose dependent behaviour for the inhibition of collagen production 

was also performed with phen-2-GKDEL.   At lower concentration of inhibitor 

the inhibition of collagen production was observed as very minimal, but at 

higher concentration of inhibitor the collagen production was substantially 

inhibited.  The dose dependent curve exhibits a lower absorbance at 0.01 µM 

as compared to 0.1 µM, which is not expected.  This could an artefact of the 

ELISA.  At the outer edge of the plate the heat transfer of the outer samples is 

not the same as the samples within the middle of the ELISA.  This conclusion 

may be validated as both samples were at the out edge and exhibited an 

unusual decline in absorbance.  Indirect ELISA assayed soluble collagen 

secreted in the media and demonstrated inhibition is a dose dependent 

behaviour.   
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