Mitochondrial DNA and Y-Chromosome Variation of Eastern Aleut Populations: Implications for the Genetic Structure and Peopling of the Aleutian Archipelago

By

Mark Zlojutro
M.A., University of Kansas, 2006

Copyright 2008

Submitted to the Department of Anthropology and the Faculty of the Graduate School of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Dr. Michael H. Crawford (Chairperson)

Dr. James H. Mielke

Committee members

Dr. Felix Moos

Dr. Rolfe D. Mandel

Dr. Stephen H. Benedict

Date defended: September 10th, 2008
The Dissertation Committee for Mark Zlojutro certifies that this is the approved version of the following dissertation:

Mitochondrial DNA and Y-Chromosome Variation of Eastern Aleut Populations: Implications for the Genetic Structure and Peopling of the Aleutian Archipelago

Committee:

Dr. Michael H. Crawford (Chairperson)

Dr. James H. Mielke

Dr. Felix Moos

Dr. Rolfe D. Mandel

Dr. Stephen H. Benedict

Date approved: September 16th, 2008
Abstract

The Aleuts are the native inhabitants of the Aleutian archipelago off the southwest coast of Alaska and, since Russian contact in 1741, have experienced a series of demographic transitions. This study investigates the impact of historical events on the genetic structure of the Aleut population through analysis of mitochondrial and Y-chromosome DNA variation in five eastern Aleut communities in relation to previous molecular research conducted on communities located further to the west.

Results from HVS-I sequencing and Y-SNP and Y-STR typing reveal patterns of variability that exhibit geographic differentiation in an east-west manner. Mitochondrial haplogroups A and D represent the two major maternal lineages observed in the Aleut samples, with haplogroup D more prevalent in the Pribilofs and island groups located to the west. This distribution pattern is likely the result of founder effect related to the forced population resettlements organized by Russian fur traders in the late 18th and early 19th centuries. In the eastern Aleutian Islands and lower Alaska Peninsula, higher frequencies of haplogroup A and its subclades were observed and based on archaeological and phylogeographic evidence may represent the genetic signature of sustained cultural and demic exchange with neighboring Eskimo and Na-Dene groups. The relationship between geography and mtDNA variation is further evident from the highly significant correlation of geographic and genetic distance matrices ($r = 0.717$) and the decreasing correlogram of spatial autocorrelation values that present a cline pattern to mtDNA structure. For the Aleut Y-chromosomes, the vast majority were characterized to European haplogroups (approximately 85%), which contrasts the mtDNA picture that reveals only 6.1% non-native matrilineal interest in the eastern region and thus indicating asymmetrical gene flow between European men and Aleut women. Russian paternal lineages are common in the western islands, whereas the predominantly Scandinavian patriline I1a is observed at elevated frequencies in the eastern communities, a consequence of the American purchase of Alaska and the subsequent influx of Scandinavian and US European fishermen into the region. The application of Monmonier’s algorithm and genetic surface interpolations for both genetic systems reveal geographic zones of discontinuity at Umnak and Akutan Islands, underscoring the east-west substructure for the Aleut population. Lastly, phylogeographic analysis of mtDNA data and the results of recent ancient DNA studies suggest that subhaplogroup D2 evolved in Beringia and may represent the ancestral gene pool for both Paleo-Eskimos and Aleuts.

Overall, this study identifies a significant relationship between geography and genetic variation in the Aleut population, with a distinct substructure along an east-west axis. These regional differences are due to a combination of historical founder effects, male-biased gene flow from European populations, and the peopling of the Aleutian Archipelago during the postglacial period.
I dedicate this dissertation to my loving family.
Acknowledgements

I am grateful to all the Aleuts who participated in this study and provided the necessary DNA samples and family history information. I would also like to thank: Dr. Michael Crawford for his conceptualization of the Aleut Research Program at the University of Kansas and guidance provided for this dissertation project; Liza Mack for her boundless energy in promoting the project in the various Aleut communities; and Dr. Christine Hanson for welcoming the research team into her home. Without them this study would not have been possible.

I would like to acknowledge my committee members for their valuable feedback on the research study: Dr. Michael Crawford, Dr. James Mielke, Dr. Alan Redd, Dr. Rolfe Mandel, and Dr. Steve Benedict. I would also like to thank my collaborators on this project: Dr. Rohina Rubicz, Dr. Mike Grose, and Dr. Katherine Reedy-Maschner; my fellow students: Phil Melton, Kristen Young, Orion Graf, Kristie Beaty, Geetha Chittoor, Anne Justice, Jennifer Rack, and Chris Phillips-Krawczak; the office staff: Judy Ross, Carol Archinal, and Kathleen Womack; and my family and friends for all their support.

This research was funded by NSF grants #OPP-990690 and #OPP-0327676 awarded to Dr. Michael Crawford.
Table of Contents

CHAPTER ONE: INTRODUCTION ... 1

CHAPTER TWO: LITERATURE REVIEW ... 6

Anthropological Genetics Review .. 6
 Early Research: From Classical to Molecular Markers 7
 Mitochondrial DNA ... 9
 Y-Chromosome Markers ... 18
 Peopling of the Americas ... 30

Population Background .. 38
 Archaeology and Prehistory .. 40
 Aleut Society at Russian Contact .. 47
 Aleutian History ... 50
 Language .. 55
 Morphology ... 56
 Genetics .. 58

Summary ... 63

CHAPTER THREE: MATERIALS AND METHODS 65

Sampling Methods ... 65

Laboratory Methods ... 68
 DNA Extraction ... 68
 Mitochondrial DNA Analysis .. 70
 Y-Chromosome Analysis .. 78

Analytical Methods ... 82
 Measures of Genetic Diversity .. 82
 Neutrality Test Statistics ... 83
 Median-Joining Network Analysis .. 86
 Neighbor-Joining Trees .. 89
 Multidimensional Scaling .. 91
 R-Matrix Analysis .. 92
 Heterozygosity versus r_{ii} ... 94
 Mismatch Distributions ... 95
 Estimates of Coalescence Time .. 97
 Delaunay Triangulation .. 99
 Monmonier’s Maximum-Difference Algorithm 102
List of Figures

Figure 1 Human Mitochondrial Genome .. 10
Figure 2 Phylogeny of human mtDNA from five geographic regions 15
Figure 3 Evolutionary migration patterns of human mtDNA haplogroups 17
Figure 4 Diagram of structural variation in the human Y-chromosome 19
Figure 5 Pie charts of NRY haplogroup frequencies of global populations ... 23
Figure 6 Differentiation of Y-chromosome macrohaplogroup F outside Africa ... 25
Figure 7 Application of genetic markers in NRY and mtDNA phylogenetic reconstructions ... 28
Figure 8 Distribution of mtDNA haplogroup frequencies among Native American populations .. 32
Figure 9 Maximum extent of North American ice sheets during last ice age ... 33
Figure 10 Y-STR network for haplogroup R ... 37
Figure 11 Map of the Bering Sea region .. 39
Figure 12 Map of the Aleutian Islands ... 39
Figure 13 Geographic distribution of Aleut and Eskimo languages 55
Figure 14 Map of sampled Aleut communities 66
Figure 15 Illustration of polymerase chain reaction (PCR) 71
Figure 16 Illustration of gel electrophoresis .. 73
Figure 17 Explanation of electropherogram output from automated capillary sequencer .. 75
Figure 18 Approximate locations of SWGDAM Y-STR loci 79
Figure 19 Concept of Tajima’s D neutrality test statistic 85
Figure 20 Schematic of phylogeny construction by the Neighbor-Joining algorithm ... 90
Figure 21 Colaescent simulation of gene genealogy and corresponding mismatch distribution .. 96
Figure 22 Example of Voronoï tessellation .. 100
Figure 23 Circumcircle property of Delaunay triangulation 100
Figure 24 Example of Delaunay triangulation-based connectivity network 101
Figure 25 Example of barrier construction using Monmonier’s algorithm 102
Figure 26 Map of pie chart frequencies of mtDNA haplogroups for Aleuts and surrounding Beringian populations 115
Figure 27 Correlogram of autocorrelation statistic II for HVS-I data of Aleut and Beringian populations .. 116
Figure 28 Median-Joining network for haplogroup A 121
Figure 29 Median-Joining network for haplogroup D 122
Figure 30 Neighbor-Joining tree based on D_A distance matrix of HVS-I data ... 125
Figure 31 PCA of R-matrix computed from haplotype frequencies 126
Figure 32 PCA biplot of R-matrix population coefficients and haplotype scores ... 127
Figure 33 MDS plot of D_A distance matrix and results of SAMOVA analysis ($K = 4$) ... 129
Figure 34 Application of Monmonier’s maximum difference algorithm to D_A distance matrix for HVS-I data 131
Figure 35 Genetic surface interpolation based on HVS-I data 132
Figure 36 HVS-I diversity versus r_{ii} plot .. 134
Figure 37 Mismatch distributions of mtDNA subclades for Aleut samples 135
Figure 38 Map of pie chart frequencies of Y-chromosome haplogroups for Aleut communities .. 143
Figure 39 Median-Joining network of R1a Y-STR haplotypes 145
Figure 40 Median-Joining network of R1b Y-STR haplotypes 146
Figure 41 Median-Joining network of I1a Y-STR haplotypes 147
Figure 42 Median-Joining network of N Y-STR haplotypes 147
Figure 43 Median-Joining network of Q Y-STR haplotypes 148
Figure 44 Neighbor-Joining tree based on R_{ST} distance matrix of Y-STR data ... 149
Figure 45 MDS plot of R_{ST} distance matrix of Y-STR data 151
Figure 46 PCA of R-matrix computed from Y-SNP haplogroup frequencies ... 152
Figure 47 PCA biplot of R-matrix population coefficients and haplogroup scores ... 153
Figure 48 Map of pie chart frequencies of combined Y-chromosome haplogroups for Aleut communities .. 154
Figure 49 Application of Monmonier’s maximum difference algorithm to R_{ST} distance matrix for Y-STR data 155
Figure 50 Genetic surface interpolation based on Y-STR data 156
Figure 51 HVS-I diversity versus r_{ii} plot ... 157
Figure 52 Map of pie chart frequencies of Russian and non-Russian surnames in Aleut communities ... 166
Figure 53 Human prehistoric dispersals into northern North America according to the Gilbert et al. (2008) model 169
List of Tables

Table 1 Number of Aleut participants by community and sizes of corresponding data sets ... 57
Table 2 PCR primer pairs used in RFLP and HVS-I sequence analyses 72
Table 3 Y-chromosome STR repeat sequences and primer information 80
Table 4 Primers for Y-SNP analysis ... 81
Table 5 HVS-I sequence data for Aleuts .. 111
Table 6 Frequencies of mtDNA haplogroups for Aleut communities and native populations from Beringia 113
Table 7 Diversity values and neutrality test scores for mtDNA sequence data .. 118
Table 8 Coalescent dates of mtDNA subclades for Aleut samples 136
Table 9 Y-chromosome haplotypes in Aleut communities 139
Table 10 Diversity values for Y-STR haplotypes in Aleut populations 141
Table 11 Y-SNP haplogroup frequencies in Aleut communities 142
CHAPTER ONE: INTRODUCTION

Since the earliest human migrations across the exposed Bering Land Bridge into the uninhabited lands of the Western Hemisphere, Native American populations and their societies had evolved in relative isolation, producing specialized technologies, complex belief systems and languages, and distinctive styles of art and architecture that rival the accomplishments of the Classical civilizations that emerged in Rome, Egypt and China. However, the cultural and biological divergence that characterized the evolutionary trajectory of most ancient societies, both Old and New World, began to dramatically change by the medieval period, as much of Eurasia and Africa had become integrated through a combination of long-distance trade, direct foreign investment and migration. This socio-economic development produced a competitive geopolitical environment that spurred intercontinental exploration for new trade routes and contact with formerly isolated populations, resulting in dynamic, and often calamitous, relations. For Native Americans, contact occurred in 1492, when Christopher Columbus and his expedition discovered the Caribbean Islands, marking the beginning of an extensive period of Western European colonization in the Americas and considered by some to be one of the most dramatic events of human history (Ramenofsky 1987, Diamond 1997, Mann 2005).

The collision of Old World and New World societies led to a demographic tragedy for most Native Americans. Based on ethno-historical and archaeological evidence, it has been estimated that the population size of the New World was reduced from over 44 million prior to European contact to only two or three million
in less than 100 years after the event (Crawford 1998). A number of factors are believed to have contributed to this tremendous population crash, including: the introduction of European diseases such as smallpox, measles, and influenza into populations with no natural genetic resistance; war and violence as directed against Native American resistance to European rule; economic exploitation in the form of forced labor on plantations and hunting grounds; and population displacement and disruption as a deliberate policy of Native American control by European colonies and states. As a consequence, Native Americans generally exhibit lower levels of genetic diversity relative to populations from other continents (Rosenberg et al. 2002), although the picture is complicated by the pervasive admixture of Western European males into the native gene pools (Jobling et al. 2004).

For the native inhabitants of the Aleutian archipelago, located off the southwest coast of Alaska, European contact was established much later in 1741 and with a different European people, the rapidly expanding Russians. Unfortunately, the Aleuts experienced a similar range of hardships at the hands of their colonizers: disease epidemics, malnutrition, warfare and indiscriminate violence, population relocations of laborers conscripted into the Russian fur trade industry, and forcible abductions and rape of women. Substantial admixture occurred with the influx of Russian explorers, merchants and clergymen into the region, producing a “Creole” class that has permanently altered the genetic character of the Aleut people. However, with the sale of Alaska to the United States in 1867, the uneasy relationship between Aleuts and Europeans changed as a new wave of migrants began to enter the
archipelago, one dominated by Scandinavian and European American fishermen. This development added a further layer of genetic complexity to the Aleut population, in particular among the communities in the eastern region that were most heavily impacted by the arrival of Scandinavian men.

In previous studies that characterized the genetic variation of Aleut communities in the central and western Aleutians and neighboring island groups (Rubicz et al. 2003, Zlojutro et al. 2006, Rubicz 2007), evidence was found for substantial European male admixture based on Y-chromosome markers (73% to 90%), whereas maternal markers from the mitochondrial (mt)DNA belonged exclusively to two Native American lineages, haplogroups A and D, representing the genetic signature of the original peopling of the archipelago. Furthermore, in Aleut communities established through Russian relocation on the Commander and Pribilof Islands, a reduction in mtDNA diversity was observed, the evolutionary consequence of founder effect.

This dissertation project contributes to earlier research by characterizing the mtDNA and Y-chromosome variation in five eastern Aleut communities in order to provide a more complete understanding of the genetic structure of the Aleut population distributed throughout the archipelago and neighboring regions. The study will attempt to identify zones of genetic discontinuity and evaluate the genetic impact of historical processes, namely asymmetrical European gene flow by Russian and Scandinavian men in the western and eastern regions respectively, population reductions stemming from disease epidemics and warfare, forced relocations of Aleut
communities and families, and the peopling of the island chain during the postglacial period.

Specifically, the objectives of the project are the following: (1) collect buccal and sputum samples from Aleut participants residing in the eastern communities of Akutan, False Pass, King Cove, Nelson Lagoon and Sand Point, and extract DNA from the biological material; (2) sequence DNA samples for the hypervariable segment I (HVS-I) of the mitochondrial organelle and type restriction cut sites (RFLPs) for the purpose of mtDNA haplogroup assignment; (3) characterize the male samples for Y-chromosome short tandem repeat (STR) loci and haplogroup-specific single nucleotide polymorphisms (SNPs); (4) investigate the relationship between genetic variation and geography through both spatial autocorrelation and the identification of Aleut population substructure from geographic areas of genetic discontinuity; (5) investigate the nature of European gene flow into the Aleut population with regards to the degree of admixture, presence of gender asymmetry, and regional differences that stem from the American purchase of the Alaska and the resulting demographic transition in the eastern Aleutian Islands and lower Alaska peninsula; and (6), based on the genetic results, evaluate different models for the origins of the Aleut people and the prehistoric relationship of the eastern Aleut region to neighboring Eskimo and Na-Dene populations from mainland Alaska and Kodiak Island.

The chapters that follow include a review of the literature, the materials and methods used in this study, a summary of the results, and a discussion of the findings.
Chapter two provides background information on the field of anthropological genetics, as well as the Aleut people from archaeological, historic, linguistic and genetic perspectives. The sampling, laboratory protocols, and analytical methods are presented in chapter three. The results of the molecular genetic typing and multivariate analysis are provided in chapter four, with a subsequent discussion in chapter five. And lastly, the conclusions of the project are summarized in chapter six.
CHAPTER TWO: LITERATURE REVIEW

This chapter provides a brief overview of the field of anthropological genetics and summarizes the historical narrative of human evolution as understood by the phylogeographic analysis of human mitochondrial DNA and Y-chromosome variation. In addition, an ethno-historical description of the Aleut population is presented to the reader by reviewing the archaeological record for the Aleutian Islands and historical accounts beginning with Russian contact in the 18th century, as well as detailing the body of research conducted on the anthropometric and genetic traits of the Aleut people.

Anthropological Genetics Review

Physical anthropology is a branch of anthropology that studies, among other things, biological variation in contemporary human populations and the hominid fossil record from an evolutionary framework. Moreover, the discipline is considered a “historical science” that applies modern evolutionary theory to the reconstruction of human prehistory. Different types of evidence are typically available to test historical hypotheses, which include written texts, historical linguistics, the archaeological record, paleontological remains, paleoclimatology, and comparative anthropometrics. And with the many advances achieved in molecular biology during the latter half of the twentieth century, human genetic variation has been added to this list, providing anthropologists with a powerful means of understanding our evolutionary past.
With its roots in evolutionary biology, population genetics, and physical anthropology, anthropological genetics is an amalgamated discipline that investigates the processes of human evolution, the human migratory patterns out of Africa, and the resulting distribution of human variation, which includes complex diseases (Crawford 2007a). According to the seminal volume *Methods and Theories of Anthropological Genetics* (1973), which helped to initially define the methods and research goals for this rapidly growing field, an emphasis tends to be placed on human genetics in non-Western, highly isolated populations, with a consideration for the biocultural perspective on human evolution and disease etiology. The discipline today is a dynamic one that is largely impacted by developments in molecular biology and bioinformatics, which have made tens of thousands of human genetic markers available for analysis, including entire genomes, and contrasts the earliest research that focused on a limited number of classical polymorphisms.

Early Research: From Classical to Molecular Markers

At the beginning of the twentieth century, the Austrian physician Karl Landsteiner (1901) characterized the ABO red blood cell system and, based on its Mendelian mode of inheritance, provided the first genetic marker for the measure of human genetic variation. The first known study of population genetic variation was Ludwik and Hanka Hirszfeld’s (1919) survey of ABO blood types among military personnel from several different national armies fighting on the Balkan front in World War I. In the following decades, additional human blood groups and HLA types were immunologically identified, such as Rhesus, MNS and Duffy (Landsteiner and Levine
revealing allele frequency differences between regional populations and, unfortunately, contributing to the formation of a variety of human typologies and classifications that were in some instances misused to support racial ideologies (Pearson 1959, Montagu 1964).

In the 1960s, many more genetic markers were made available for analysis by the earlier development of protein electrophoresis, a method for separating proteins in an electric field on the basis of their size and charge (Smithies 1955, Hunter and Markert 1957). Most of these proteins represent red cell antigens, enzymes and serum proteins, and are collectively referred to as “classical polymorphisms.” The first studies of human genetic variation conducted by anthropologists began around this period, such as Frederick Hulse’s (1955, 1957) examination of blood variation in Native Americans and linguistic barriers to gene flow, and Frank Livingstone’s (1958, 1960) research on sickle-cell hemoglobin and malaria. By the 1970s, anthropological genetics was an active field of research, with an increased focus on the relative effects of evolutionary mechanisms on the patterns of genetic variation within and between local populations and a corresponding shift away from traditional classification and taxonomy of human groups (O’Rourke 2003). This was later complemented by a number of studies examining genetic variation at regional or continental levels, in particular the comprehensive review and multivariate analysis of human classical polymorphisms in the volume *The History and Geography of Human Genes* by Cavalli-Sforza *et al.* (1994), which pioneered the use of synthetic gene
frequency (PC) maps in order to identify the origins and scope of major human migration events.

However, with the advent of new laboratory methods in the 1970s for directly characterizing DNA sequences (i.e., recombinant DNA and sequencing technology), a new class of “molecular markers” began to be increasingly examined by anthropologists, in particular restriction fragment length polymorphisms (RFLPs) used in linkage analyses of disease phenotypes (Botstein *et al.* 1980) and genetic investigations of human origins (Johnson *et al.* 1983). Molecular markers are more informative than polymorphic blood groups and proteins, with a greater degree of variation generated from an Infinite Sites Model (ISM) of genetic mutation. But it was not until the invention of the polymerase chain reaction (PCR) by Kary Mullis in 1984, a method for rapidly synthesizing many copies of a specific segment of DNA, that researchers were able to cheaply and extensively characterize human genomic variation, and in the process identify a number of genetic systems that are considered well-suited for questions concerning human evolutionary history.

Mitochondrial DNA

Since the dawn of the “molecular revolution”, one of the most widely studied human genetic systems has been mitochondrial DNA (mtDNA), a circular molecule averaging 16,569 base pairs (bp) in length located within mitochondria, the cellular organelles responsible for energy production (see Figure 1). The human mtDNA can be divided into two regions: a coding region of approximately 15,000 bp that contains 37 different genes (22 transfer RNAs, 13 proteins, and two other RNAs) that are
Figure 1 Human mitochondrial genome
Interior labels represent genes located on the light strand of the mitochondrial genome, and conversely, exterior ones are genes on the heavy strand. The O_h and O_l labels identify the origins and directions of the syntheses of the heavy and light strands, respectively. P_h and P_l are the origins and directions for the transcription of genes on the heavy and light strands.

linked and inherited as a single unit; and the non-coding displacement loop (D-loop) or control region that regulates the replication of mtDNA and gene expression. The control region is further subdivided into three hypervariable segments: HVS-I, nucleotide positions (np) 16,024-16,365; HVS-II, np 73-340; and HVS-III, np 438-
[Note, the numbering system for mtDNA nucleotide positions is based upon the first complete sequence produced by Anderson et al. (1981), commonly referred to as the Cambridge Reference Sequence or CRS]. A large number of base substitutions and indels identified within the coding region have been linked to a variety of mitochondrial disorders that affect organs with a high energy requirement, such as Kearns-Sayre syndrome and progressive encephalopathy.

Although the human mitochondrial genome is only about 0.0005% the size of the nuclear genome, there are five features that make it particularly useful for assessing the evolutionary history of closely related populations. First, mtDNA mutates about five to ten times faster than nuclear DNA, at 2-4% per million years (Brown et al. 1982). Within the mtDNA molecule, the control region, despite its functional importance, has a mutation rate ten times higher than that of the coding region (Francalacci et al. 1999). However, the control region variability is not evenly distributed, with the highest density of polymorphic positions found in the HVS-I and HVS-II regions (Lutz et al. 1998; Chen et al. 2002). Overall, the rapid rate of sequence divergence of mtDNA makes it suitable for investigating short-term evolutionary phenomena. Second, although each cell contains only a single copy of nuclear DNA, it has several hundred copies of mtDNA (up to 1,000 per cell) (Robin and Wong 1988). The high copy number facilitates the analysis of degraded contemporary samples and ancient DNA. Third, mtDNA is maternally inherited, meaning that it is passed from the mother to all her offspring, both sons and daughters, but it is only the daughters who pass it onto the subsequent generation.
Sperm mitochondria disappear early in embryogenesis by selective destruction, inactivation, or simple dilution by the vast surplus of oocyte mitochondria. Thus, mtDNA analysis can provide insight into female-specific processes. Fourth, because inheritance occurs only from a single parent there is no recombination, which removes its confounding effects from gene trees or networks and allows for clearer interpretations of mutational pathways. And fifth, the low effective population size due to the haploid character of mtDNA leads to increased genetic drift, which generates geographic structure for mtDNA variation (i.e., continent-specific lineages).

There are, however, a number of issues concerning the use of mtDNA in anthropological genetic studies. The most pressing is the anomalous patterns of human variability that have been identified in HVS-I sequence data, which has been largely attributed to mutation “hotspots” (Malyarchuk et al. 2002, Galtier et al. 2006), but has prompted others to suggest the effects of recombination (Eyre-Walker et al. 1999; Hagelberg 2003; Piganeau et al. 2004). The possibility of recombination stems from a limited number of studies that claim to have observed leakage of paternal mtDNAs in offspring (Schwartz and Vissing 2002, Williams 2002, Zhao et al. 2004). If recombination does in fact occur, then some of the assumptions from which phylogeographic analysis of human mtDNA is conducted need to be reconsidered. Another important issue regards the discrepancy in mtDNA mutation rates estimated from either phylogenetic or family pedigree approaches. The pedigree-based mutation rates for the control region are approximately 5-10 times higher than those
derived from phylogenetic considerations (Pakendorf and Stoneking 2005), which clearly have important implications for coalescent dating of mitochondrial ancestors (refer to Chapter Three: Materials and Methods for a more a detailed discussion on this topic). Lastly, several studies based on genetic data for the coding region have suggested that natural selection has significantly shaped mtDNA variation (Nachman et al. 1996, Moilanen et al. 2003, Ruiz-Pesini et al. 2004). As a consequence, there is strong disagreement by some on whether the distribution of continent- and region-specific human mtDNA clades or haplogroups is due to adaptation to different environmental conditions or a product of random genetic drift and purifying selection that is responsible for eliminating many nonsynonymous mutations (i.e., point mutations that result in the coding for different amino acids). It is often assumed that mtDNA, or at least for the control region, is neutral and that genetic differences between any two individuals is mostly due to mutation and genetic drift. Thus, the mathematical models developed for reconstructing human evolutionary history from mtDNA variation are based on the mechanisms of mutation and drift.

Research into human mtDNA as a source of molecular markers was pioneered by Wesley Brown and Douglas Wallace in the late 1970s. In these “pre-PCR” days, characterization began with RFLP analysis, digesting the molecule with either a single restriction enzyme applied to a large number of samples (Denaro et al. 1981) or several enzymes on a few samples (Brown 1980). Later studies tended to use five or six enzymes on large sample sets (Johnson et al. 1983, Santachiara-Benerecetti et al. 1988, Scozzari et al. 1988). The resulting “low-resolution” RFLP data from these
early studies were soon applied to questions concerning human origins, an area of research that had produced substantial controversy since Vincent Sarich and Allan Wilson’s (1967) study that estimated the divergence of the hominid lineage from other ape species at approximately 5 million years using serum albumins. Based on the RFLP data, global phylogenies were constructed that had star-like appearances: a single, central RFLP haplotype shared among individuals from all over the world that radiated other mtDNA types, some of which were population-specific. This central haplotype was assumed to be the most recent common ancestor for human mtDNAs and was interpreted by some as support for the “multi-regional” model for human evolution, the notion that modern humans had evolved from archaic ancestors in many different parts of the world (Excoffier and Langaney 1989, Templeton 1992).

But in 1987, an alternate model for human mtDNA evolution emerged from an influential study conducted by Rebecca Cann, Mark Stoneking, and Allan Wilson at the University of California at Berkeley. This research team extracted mtDNA from 147 individuals representing five geographic regions (Africa, Asia, Australia, New Guinea, and Europe) and used “high-resolution” restriction analysis involving 12 different endonucleases to obtain a much more detailed mtDNA phylogeny (see Figure 2). In contrast to the picture derived from the low-resolution data, this tree is not star-like and exhibits a deep split, estimated at about 200,000 years ago, between two main branches: one that is exclusively comprised of sub-Saharan Africans, and the other larger branch representing both African and non-African individuals. This was interpreted by Cann et al. as evidence for a recent, out of Africa origin for
modern humans, and whose African ancestor was dubbed “Mitochondrial Eve”.

Since then a number of studies based on mtDNA sequence data have supported the “Out of Africa” scenario for human evolution (Vigilant et al. 1991, Watson et al. 1997, Ingman et al. 2000, Herrnstadt et al. 2002), although the topic is still hotly

Figure 2 Phylogeny of human mtDNA from five geographic regions (Cann et al. 1987)
Tree is based on mtDNA RFLP profiles of 147 individuals (represented by filled-in circles, triangles and squares) relative to the Cambridge Reference Sequence (CRS). The two main branches, one comprised of African individuals and the other with both Africans and non-Africans, are labeled as ‘I’ and ‘II’, respectively.

During the early 1990s, a more refined picture of the human mtDNA phylogeny began to emerge with the application of high-resolution RFLP analysis to population samples from one continent at a time (Schurr et al. 1990, Ballinger et al. 1992, Chen et al. 1995, Torroni et al. 1996). These analyses were first performed at the laboratory of Douglas Wallace at Emory University in Atlanta, showing that mtDNA variation could be classified into a small number of monophyletic clades, or haplogroups, characterized by one or several restriction sites located primarily in the coding region. In later studies, the focus began to shift towards the direct sequencing of the control region because of its greater variation (Ingman and Gyllensten 2001), which allowed for more robust investigations of population differentiation at the regional level and the identification of additional subhaplogroups.

The geographic distribution and evolutionary relationship of the human mtDNA haplogroups can be summarized in the following fashion. To begin, the large majority of African mtDNAs belong to the “L clades”, namely haplogroups L1, L2, and L3. Africa contains the greatest level of mtDNA diversity in the world, with deep phylogenetic branches that are exclusively sub-Saharan (Zietkiewicz et al. 1998, Ingman et al. 2000). As noted above, this has been interpreted by many as evidence for a recent African origin for modern humans. All non-Africans today are descended from an L3 type, which gave rise to two founder (macro)haplogroups outside the African continent, M and N, which are defined by the presence or absence of RFLP
Figure 3 Evolutionary migration patterns of human mtDNA haplogroups
(www.anthropology.net)

cut sites at np 10394 (endonuclease Ddel) and np 10397 (AluI) (see Figure 3). From the divergence dates computed for these two founder lineages and its subclades, which are often simple conversions of mtDNA diversity into absolute time using an estimated mutation rate, the out-of-Africa migrants appear to have split along different routes approximately 60,000 years ago (Forster and Matsumura 2005). The earliest of these was a tropical coastal route along southern Asia that was ultimately responsible for introducing modern humans to Australia and Papua New Guinea by about 46,000 years ago as indicated by the archaeological record (Barker et al. 2002, Bowler et al. 2003). The northern Eurasian migrants, on the other hand, would have encountered harsher conditions, such as terrain, Neandertals, and a sharply fluctuating climate during the earlier stages of the last Ice Age. In the period from 30 to 60
thousand years ago, Eurasians gained tenuous footholds in the Old World, and their M and N mtDNAs mutated into descendant haplogroups, which are still continent- or region-specific today (Forster 2004). In Europe, the main haplogroups are H, I, J, K, T, U, V, W and X, which all belong to macrohaplogroup N. In East Asia, the primary haplogroups are A, B, C, D, F, G, M*, Y and Z, although with important regional differences (Kivisild et al. 2002, Tanaka et al. 2004). The picture in Central Asia is more complex, with a mixture of both western and eastern Eurasia haplogroups that is likely to be the product of recent gene flow due to continental trade routes and empire-building (Comas et al. 2004). Finally, with regards to the peopling of the Americas, there is a general consensus that ancestral Native American populations originated from Asia and migrated over the Bering Land Bridge during the last glacial maximum approximately 20,000 years ago, introducing haplogroups A, B, C and D, with a small percentage of X (Torroni et al. 1992, 1993a, Brown et al. 1998).

Y-Chromosome Markers

In addition to mtDNA, the non-recombining portion of the Y-chromosome (NRY) also possesses genetic properties well-suited for investigating human evolution but for male-specific demographic processes. This genetic system has been characterized for a growing number of microsatellite (STR) loci and single nucleotide polymorphisms (SNPs) and has provided anthropologists with an important complementary picture to the mtDNA results.

The human Y-chromosome is one of two sex-determining chromosomes, spanning approximately 58 million bases (Mb) and representing about 1% of the
diploid DNA content, and is substantially smaller than the X-chromosome that is roughly 165 Mb. The Y-chromosome contains 90 known protein-coding genes, of which 23 are novel, and over 60,000 SNPs have been identified (statistics obtained from the Ensembl genome browser, an online database for large eukaryotic genomes).

A schematic diagram of the Y-chromosome is provided in Figure 4. The centromere (CEN) is comprised of heterochromatic sequences (~1 Mb) and separates the short arm (Yp) from the long arm (Yq). The NRY, also commonly referred to as the male-specific region of the Y-chromosome (MRY), is flanked by two pseudoautosomal regions (PAR1 and PAR2) that undergo meiotic pairing and exchange with the X-chromosome (Vogt et al. 1997), although PAR2 shows a much lower frequency of recombination than PAR1 and is not necessary for fertility (Kvaloy et al. 1994; Li and Hamer 1995; Kuhl et al. 2001). The majority of the distal long arm of the Y-chromosome is comprised of a heterochromatin block of about 30 Mb, which is

![Diagram of structural variation in the human Y-chromosome](image)

Figure 4 Diagram of structural variation in the human Y-chromosome (Repping et al. 2006) The structures depicted include the centromere (CEN), pseudoautosomal regions (PAR1 and PAR2), heterochromatin blocks, and three classes of NRY euchromatin: X-transposed, X-degenerate, and ampliconic.
assumed to be genetically inert and polymorphic in length because of two highly repetitive sequences families, DYZ1 and DYZ2 (Quintana-Murci and Fellous 2001).

The NRY’s euchromatin is roughly 25 Mb and is a mosaic of three classes of sequences: X-transposed, X-degenerate, and ampliconic (Skaletsky et al. 2003). The X-transposed sequences are 99% identical to DNA sequences in Xq21, a band in the human X-chromosome, and exhibits the lowest density of genes and the highest density of interspersed repeat elements (Venter et al. 2001). The X-degenerate segments of the NRY contain single-copy genes or pseudogene homologues of X-linked genes, which exhibit between 60-96% nucleotide sequence similarity. And the third class of euchromatic DNA, the ampliconic segments, is primarily composed of sequences highly similar to other sequences in the NRY and harbor the majority of the Y-chromosome genes, most of which are related to male-specific functions, such as male sex determination (SRY) and spermatogenesis.

Based on the organization and variability of these euchromatic classes, a multi-tiered evolutionary model has been proposed for the Y-chromosome (Lahn and Page 1999, Skaletsky et al. 2003), in which the sex chromosomes co-evolved from an ordinary pair of autosomes approximately 300 million years ago when mammals diverged from avian and reptilian lineages, with the X-degenerate and ampliconic regions representing the earliest “evolutionary strata”. Interestingly, the rapid degradation of the Y-chromosome since its early divergence from the X (which is likely due to the effects of “Muller’s ratchet” and/or mutation processes particular to
this chromosome) and the acquisition of male-specific roles by the majority of Y-chromosome genes has led some researchers to conclude that it is undergoing a neo-functionalization towards male reproduction (Fernandes et al. 2004, Repping et al. 2004, Graves 2006), even to go as far as to suggest the eventual disappearance of the chromosome in the human species (Aitken and Graves 2002).

The search for polymorphic sites on the NRY that would be useful to anthropological genetics began relatively slowly, with the first RFLP identified in 1985 (Casanova et al. 1985, Lucotte and Ngo 1985). By the end of 1996 fewer than 60 NRY polymorphisms had been published, of which only 11 could be genotyped by PCR (Hammer 1994, Seielstad et al. 1994, Hammer and Horai 1995, Santos et al. 1995, Whitfield et al. 1995, Jobling et al. 1996, Underhill et al. 1996). The primary reason for this slow development is the low level of polymorphisms in the NRY relative to any other region in the human genome (Hammer 1995, Thomson et al. 2000, International SNP Map Working Group 2001). Estimates based on sequencing work show an average of one nucleotide substitution per 10,000 bp between two randomly drawn NRY sequences. This compares with a whole-genome rate of one SNP for every 1,000 to 2,000 bp (International Human Genome Sequencing Consortium 2001, Kruglyak and Nickerson 2001, Venter et al. 2001). These differences in diversity levels likely stem from the effective population sizes of the autosomal and sex chromosomes, in which the Y-chromosome is expected to be one-quarter of the effective size of any diploid autosome, one-third of that of the X-chromosome, and similar in size to the haploid mtDNA. Therefore, assuming the
same mutation processes act on all chromosomes, one would expect lower sequence diversity and greater susceptibility to the effects of genetic drift, leading to increased rates of differentiation between Y-chromosomes in different populations (Jobling and Tyler-Smith 2003).

In the late 1990s, there was a dramatic increase in the number of markers discovered and populations assayed. This was largely due to a new method for mutation detection, denaturing high performance liquid chromatography (DHPLC), in which heteroduplexes are detected by their altered retention time on chromatography columns under near-denaturing conditions. DHPLC was used to discover more than 200 new PCR-based SNPs and small insertions/deletions (indels) in the NRY (Underhill et al. 1997, 2000, Shen et al. 2000, Hammer et al. 2001). These types of polymorphisms have low rates of parallel and back mutation, which make them particularly suitable for identifying paternal lineages or haplogroups that can be traced back thousands of years (Hammer and Zegura 2002). Based on a nomenclature system similar to mtDNA, Y-chromosome haplogroups are designated by capitalized Roman letters (Y and A-R), with nested subclades named using an alternating alphanumeric system with lower case letters. Paragroups, which are lineages that are not defined by the presence of a derived marker, are indicated by an asterisk after the clade designation (for example, P*).

Haplogroup Y is the most inclusive clade, comprising haplogroups A-R. The position of the root in the human NRY tree falls between A, which is defined by the SNP marker M91, and haplogroups B-R that encompass the rest of the tree. The
various dates estimated for the most recent common ancestor of human Y-chromosomes range from 40,000 to 140,000 years (Pritchard et al. 1999, Thomson et al. 2000, Hammer and Zegura 2002). The global distribution of the major NRY haplogroups is presented in Figure 5. Similar to the phylogeographic structure of mtDNA variation, two highly diverse haplogroups, A and B, are restricted to African populations, with the remaining lineages distributed both within and outside the African continent (Underhill et al. 2001). This pattern in which non-Africans carry a subset of African diversity supports the “Out of Africa” model for the origins of both NRY and mtDNA variation (Hammer et al. 1998, Underhill et al. 2000). The main African lineages, however, are haplogroup E3a, which exhibits a strong

Figure 5 Pie charts of NRY haplogroup frequencies of global populations
(www.scs.uiuc.edu/~mcdonald/WorldHaplogroupsMaps.pdf) Map represents patterns of Y-chromosome variation prior to widespread European expansion beginning around 1500 AD.
correspondence with the distribution of Bantu speakers in the sub-Sahara (Underhill et al. 2000, Cruciani et al. 2002), and haplogroups E3b2 and J*, which are common in North Africa (Arredi et al. 2004).

The SNP marker M168 is shared by essentially all non-African Y-chromosomes and represents one of the genetic signatures of the recent modern human migrations outside of Africa. This Y-SNP has been dated to about 68,500 years (95% probability interval of 56,400 to 80,600) by Hammer and Zegura (2002), which predates the time estimates for ancient demographic expansions based on HVS-I mismatch distributions that average approximately 40,000 years (Sherry et al. 1994). Collectively, these genetic dates roughly coincide with the Middle-Upper Paleolithic boundary, an archaeological period that exhibits increased variability and geographic distribution of lithic tools belonging to the Upper Paleolithic traditions generally associated with modern humans (Klein 1992).

The M168 lineages evolved into three distinct subclusters: haplogroup C; haplogroups D and E that acquired the Alu insertion YAP; and macrohaplogroup F, which includes lineages F-R. Haplogroup C is currently found throughout Asia and Oceania (Redd et al. 2002b, Deng et al. 2004, Kayser et al. 2006), and based on its wide distribution and relative high frequency in Central Asia is considered by some to represent the patriline of Genghis Khan (Zerjal et al. 2002). Haplogroup D is limited to Asian populations, predominantly the Japanese and Tibetans, as well as Southeast Asians at low frequencies (Su et al. 1999, 2000, Qian et al. 2000, Underhill et al.)
2000, Karafet et al. 2001), and may potentially have been apart of the earliest southern migration out of Africa along with haplogroup C (Underhill et al. 2001).

The third large sub-cluster of M168 lineages is believed to have first evolved in East Africa, from where it dispersed to Eurasia through the Levantine corridor around 45,000 years ago and gave rise to the pronounced geographic expansion of Upper Paleolithic assemblages 30,000 to 40,000 years ago (see Figure 6). The early diversification of this macrohaplogroup resulted in at least four major Y-chromosome patriline: (i) the eastward expansion of haplogroup H into Pakistan and the Indian

![Figure 6](www.anthropology.net)
subcontinent, where today it is primarily found (Cordaux et al. 2004; Sahoo et al. 2006); (ii) the migration of macrohaplogroup K (defined by M9 and dated to about 35,600 years) towards Central Asia and subsequently dispersing throughout Eurasia and the Americas, and ultimately differentiating into several distinct lineages (paragroup K* and haplogroups L-R); (iii) the rise of a north Asian lineage characterized by markers M45 and M74, representing the ancestral clade of haplogroups P, Q and R; and (iv) the evolution of a lineage specific to northeast Asian, haplogroup O (Deng et al. 2004).

From this early distribution of ancestral partilines, a number of more recent population expansions and migration events are responsible for producing the current pattern of Y-chromosome variation we see today. The N3 haplogroup of the M9 lineages is believed to have been carried from eastern Siberia or China across Eurasia into northern Europe by large-scale migrations of Uralic-speaking peoples (Zerjal et al. 1997, Pakendorf et al. 2006). Another M9 lineage, haplogroup M dispersed into Southeast Asia and eventually reached New Guinea where it now predominates (Kayser et al. 2006). From the north Asian M45/M74 lineages, haplogroup R expanded south into Central Asia and northern India-Pakistan, and westwards into Europe, where today there are very high frequencies of subclades R1a and R1b (Semino et al. 2000, Alonso et al. 2005, Kayser et al. 2005). Other lineages from the M45/M74 cluster, haplogroups P and Q, also dispersed widely across the Asian northern steppes into Central Asia and northern India-Pakistan, with haplogroup Q3
later spreading from south Siberia and/or the Amur River region to the Americas (Schurr 2004). Closer to Africa, haplogroups E3b and J have high frequencies in the Mediterranean basin and the Middle East and are believed to have dispersed into Europe as a consequence of a Neolithic demic expansion (Semino et al. 2000, Chikchi et al. 2002). And lastly, haplogroup I is common in Europe and the Middle East, with particularly high frequencies of subclades I1a and I1b in Scandinavia and the Balkans, respectively (Rootsi et al. 2004, Marjanovic et al. 2005).

In addition to SNP markers, microsatellites or short tandem repeats (STRs) have also been typed for human Y-chromosomes. STRs are DNA sequences that consist of repetitions of 2-6 bp motifs and the number of repeats within STRs often varies between individuals due to high mutation rates relative to Y-SNPs (Heyer et al. 1997, Kayser et al. 2000, Nachman and Cromwell 2000, Xu et al. 2000), making them useful markers in gene mapping, forensic investigations, and evolutionary studies. STRs from the NRY have been particularly important for forensic cases involving sexual assault or paternity testing (Gill et al. 1985, Betz et al. 2001, Rolf et al. 2001), and have increasingly been used in combination with Y-SNPs to produce refined phylogenies that differentiate male patriline (or haplotypes) within haplogroups and provide diversity estimates of the NRY clades (see Figure 7). By 2002, a total of 53 different Y-STRs were characterized (Chen et al. 1994, Mathias et al. 1994, Jobling et al. 1996, Kayser et al. 1997, White et al. 1999, Ayub et al. 2000, Iida et al. 2001, 2002, Bosch et al. 2002, Redd et al. 2002a), a subset of which was
used to develop standard forensic databases in Europe and the United States (e.g., Y-Chromosome Haplotype Reference Database or YHRD). This was soon followed by a comprehensive survey conducted by Kayser et al. (2004), discovering 166 new Y-STRs from a sample of eight Y-chromosomes representing different NRY haplogroups. Based on these data, the authors investigated the capacity of Y-STRs in resolving deep phylogenetic relationships by constructing a series of trees using sets of 100 loci. The results were the Y-STR tree outputs all differed from one another and from the Y-SNP phylogeny, and thus confirming the ineffectiveness of this class of markers to produce robust resolutions of deep lineages.

Overall, the diversity statistics for NRY markers reveal regional differences. In a Y-SNP study by Hammer et al. (2001) involving 50 global populations, African samples exhibited the highest mean number of pairwise differences, indicating a large
degree of differentiation between NRY lineages, whereas Native Americans produced
the lowest value, which likely reflects the limited evolutionary time and bottleneck
effect associated with the peopling of the Americas (see the next section for more
information on this topic). Moreover, estimates of the apportionment of NRY
biallelic diversity to hierarchical levels (commonly referred to as F-statistics; Wright
1965) based on geographic considerations has produced an interesting picture of Y-
chromosome variation that starkly differs from mtDNA and autosomal markers. In
general, the within-populations variance component ($1 - F_{ST}$) for NRY data is much
smaller than values reported for autosomal markers and mtDNA, whereas the
between-populations-within-groups (F_{SC}) and between-groups (F_{CT}) component
values for Y-chromosomes are typically larger (Seielstad et al. 1998, Hammer et al.
2001, Roumaldi et al. 2002). In other words, human NRY variation exhibits greater
regional and continental differentiation than other genetic systems. Seielstad et al.
(1998) attributed this geographic pattern of human genetic variation to a higher
female migration rate and the practice of patrilocality, the tendency for a wife to leave
her natal household and move into her husband’s domicile. As a result of this cultural
practice, most men tend to live closer to their birthplaces than do women, and thus
regional differentiation may be enhanced. A number of studies have supported this
hypothesis (Kayser et al. 2001, Oota et al. 2001), although others do not, particularly
ones that included Y-STR markers in their estimates of NRY diversity apportionment
(Santos et al. 1999, Jorde et al. 2000), which may reflect the differences in mutation
mechanisms and rates between Y-STRs and biallelic markers. Perhaps the most
direct refutation of the patrilocality hypothesis comes from a study by Wilder et al. (2004), which found no evidence for higher levels of regional differentiation for the Y-chromosome based on Alu retrotransposons that represent a rich source of polymorphisms, unlike Y-SNPs. The authors conclude that previous studies supporting the hypothesis were flawed by a non-random sampling of Y-SNPs that produced an ascertainment bias along geographic lines. However, this model for the relative distribution of human NRY and mtDNA variation continues to be debated.

Peopling of the Americas

One of the most active areas of research in anthropological genetics is the peopling of the Americas. Initial studies on the mtDNA diversity of Native American populations revealed four major haplogroups – A, B, C and D – and discovered regional differences in diversity levels (Torroni et al. 1992, 1993a). These findings were interpreted by some as genetic evidence of multiple migrations from Asia with varying chronologies, with the Na-Dene and Esko-Aleut speakers, as defined in Greenberg et al.’s (1986) tripartite migration model, representing the latest migrants into the New World across the Bering Land Bridge. However, in later research that involved Native American HVS-I sequences, differences in diversity levels between populations and the major haplogroups were found to be negligible, suggesting that American mtDNA variation has accumulated over a common period of time and is the product of a single peopling event (Merriwether et al. 1995, Bonatto and Salzano 1997a, b, Lorenz and Smith 1997, Malhi et al. 2002). Other migration scenarios that have been proposed are based on multiple migration events akin to the Greenberg et
al. model, such as the four wave model with each of the major haplogroups representing a separate migration event (Horai et al. 1993) and a bipartite scenario with haplogroup B entering the Americas independently in a later migration process (Torroni et al. 1993b, Starikovskaya et al. 1998). The divergence times for the Native American haplogroups range from approximately 37,000-14,000 years before present (BP) (Forster et al. 1996, Bonatto and Salzano 1997b, Silva Jr. et al. 2003), which generally precede the emergence of the Clovis lithic tradition (13,350-12,895 calibrated BP) (Fiedel 1999), a commonly cited benchmark for the colonization of the Americas, and generally accommodate the pre-Clovis archaeological record of South America (Dillehay 1999).

Most Native American populations are polymorphic for the four major mtDNA haplogroups, although patterns exist in the geographic distributions of these lineages (see Figure 8). Haplogroup A has its highest frequencies in Arctic and SubArctic populations, predominantly among Na-Dene and Eskimo groups, and decreases in frequency in the Southwestern United States before increasing again in Central America (Torroni et al. 1993, 1994b, Ward et al. 1993, Merriwether et al. 1995, Lorenz and Smith 1996). Haplogroup B is mostly absent from northern North American populations and has its highest frequencies in the Southwestern US and Central and South America (Lorenz and Smith 1996, Malhi et al. 2003, Melton et al. 2007). Haplogroup C is not common among Na-Dene and Eskimo populations of North America, but is prevalent further to the south, with its highest frequencies in South America (Bert et al. 2001). And lastly, haplogroup D has a similar geographic
distribution to C, with low frequencies in northern populations, with the notable exception of the Aleuts where it is found at approximately 60% (see Chapter Four: Results), and its highest frequency among South American groups (Merriwether et al. 1995, Moraga et al. 2000).

Based on the predominance of haplogroup A and its region-specific subclades in northern North American populations, several authors have suggested that its phylogeographic structure represents the genetic signature of an additional peopling process – a broad population re-expansion in North America that stemmed from gene
pools originally derived from the earliest migrations of founder lineages into the Americas (Forster et al. 1996, Bonatto and Salzano 1997a). This proposed scenario has been attributed to the adverse climatic conditions that existed during the Younger Dryas glacial period (12,900 – 11,600 cal. BP) (see Figure 9), which would have disrupted human settlements in northern North America and produced highly isolated and reduced gene pools in Beringia and the Pacific Northwest from which later re-expansions may have occurred (Rogers et al. 1991). The A3 subclade, common to the circumarctic region, is consistent with this model as its accumulated diversity dates to about 13,000 years, which coincides closely with the Younger Dryas phase.

The primary criteria that has been used by anthropologists in identifying potential ancestral populations for Native Americans is the presence of all four of the major New World haplogroups. In early research that characterized mtDNA variation

![Figure 9](modified figure from www.archaeology.org)
in East Asian samples, the four lineages were discovered in the Taiwanese Han (Ballinger et al. 1992), Tibetans (Torroni et al. 1994a), and Mongols (Kolman et al. 1996, Merriwether et al. 1996). Later, this group was expanded by studies conducted primarily by Miroslava Derenko and colleagues at the Russian Academy of Sciences in Magadan (Derenko et al. 1999, 2000, 2001b, 2003), who found the haplogroups at high frequencies in a number of south Siberian groups, such as the Buryats and Tuva.

Our understanding of Native American origins was further complicated by the discovery of a fifth mtDNA founder lineage by Brown et al. (1998), haplogroup X, which at the time had not been characterized in any Asian groups, leading some to suggest that this minor lineage may have come from Europe well before Columbus’ discovery of the Americas. That is until 2001, when Derenko et al. (2001a) reported finding haplogroup X mtDNAs in the Altai at a low frequency. Not surprisingly, the authors concluded that the native populations from the Altai mountain region represent the most likely source of New World mtDNA variation based on the presence of all five founder haplogroups. However, phylogenetic analysis of haplogroup X control region sequences for the Altai, Native Americans, and Europeans showed that the mtDNAs for these three respective groups are distinct from one another and were thus appropriately assigned to separate subhaplogroups (Bandelt et al. 2003, Reidla et al. 2003). As a result, the origin of Native American haplogroup X is still not well understood, although the European scenario of its introduction to the New World is considered very unlikely.
Over the past decade, there has been a steady rise in the application of complete or nearly complete mtDNA sequences to questions regarding human evolution and population origins. This change in methodology, as well as improved coverage in the sampling of global populations, has greatly increased the resolution of the human mtDNA phylogeny, with a larger number of region- and population-specific subhaplogroups. Today, the five Native American founder haplogroups are now recognized by the following nomenclature: A2, B2, C1, D1, and X2a (Forster et al. 1996, Herrnstadt et al. 2002, Bandelt et al. 2003). In addition to these, a sixth founder lineage from haplogroup D has been described among the Na-Dene, Aleuts, and Eskimos, referred to as subhaplogroup D2 (Starikovskaya et al. 1998, Derbeneva et al. 2002, Rubicz et al. 2003), which does not derive from American D1 and likely originated from post-glacial Beringian contact with Siberia (Saillard et al. 2000, Zlojutro et al. 2006).

In the most current mtDNA research on Native American origins that involves a combination of HVS-I sequencing, high-resolution RFLP typing and complete genome sequencing, a more detailed picture has emerged. Based on a study by Starikovskaya et al. (2005), the remnants of an ancient Siberian gene pool were identified within several contemporary populations, suggesting that the founding haplogroups of Native Americans originated from different parts in Siberia. Lineage B1, which is most closely related to the American B2, is present among the Tubalar and Tuvan inhabiting the upper reaches of the Ob and Yenisei Rivers in south Siberia, whereas the sequence variants most similar to American C1 and D1 were detected in
the Ulchi of the Lower Amur River, located north of Manchuria. The authors concluded from these genetic findings and compelling archaeological evidence from northeastern Siberia that the direct ancestors of Native Americans were a hybrid product of different Siberian groups that migrated to eastern Beringia at different times and following different routes. Other studies support this conclusion, with evidence of genetic differentiation of several mtDNA lineages within Beringia prior to their expansion into the Americas (Derenko et al. 2007, Tamm et al. 2007, Volodko et al. 2008).

Due to the paucity of polymorphisms on the human Y-chromosome relative to mtDNA, the contribution of NRY variation to this area of research occurred later when it was better characterized by biallelic markers (i.e., SNPs, indels) through DHPLC. As previously noted, these types of polymorphisms have low rates of parallel and back mutation, which make them ideal for identifying paternal haplogroups that complement the mtDNA perspective. NRY haplogroups Q3, C and R represent the vast majority of male lineages in Native Americans today, which led some researchers to conclude that the trio represent the founder patriline (Karafet et al. 1999, Lell et al. 2002). In a comprehensive study of NRY markers in North and South American populations by Zegura et al. (2004), haplogroup Q3 was found to be the predominant lineage, with a wide geographic distribution and an overall frequency of 76.4%, followed by haplogroup R at 13.4%, and haplogroup C at 5.8%. Haplogroup C is mainly limited to Na-Dene and Amerind groups of North America (Bortolini et al. 2003), as well as Greenland Inuit (Bosch et al. 2003). Similar to Q3,
haplogroup R has a very broad distribution, but exhibits extensive sharing with European lineages based on Y-STR haplotypes (see Figure 10), suggesting that haplogroup R in Native Americans is the product of European admixture, whereas haplogroups Q3 and C represent the actual male founder lineages associated with the earliest peopling of the Americas. Phylogeographic analysis of Y-STR variation identified the Altai-Sayan region in southern Siberia as a potential ancestral homeland for these patrilines, with divergence dates ranging from approximately 10,100 to 17,200 years, which precludes a very early entry into the Americas as suggested by some archaeological sites and mtDNA dates.

Figure 10 Y-STR network for haplogroup R (Zegura et al. 2004)
Haplotypes are represented by circles with area proportional to the number of individuals with the haplotype. Branch lengths are proportional to mutation number. Haplotypes are coded in white, black, or gray by population, with haplotype sharing indicated by pie chart divisions.
Overall, the NRY evidence appears to complement the findings based on mtDNA data. MtDNA haplogroups A2, B2, C1 and D1 and NRY haplogroup Q3 are all likely to derive from a single peopling process some time between 10,000-30,000 years ago, with an ancestral origin in Siberia. However, given the circumscribed distributions of A3, D2 and NRY haplogroup C among northern North American groups, it is likely that re-expansions occurred within the circumarctic regions and that Beringia may have served as a “gateway” that both differentiated and facilitated the infusion of Siberian mtDNAs into the Native American gene pool.

Population Background

The Aleut people are the native inhabitants of the Aleutian archipelago off the southwest coast of Alaska (see Figures 11 and 12). The island chain is located to the south of the Bering Sea and is comprised of approximately 200 islands, many of which are volcanic and the product of tectonic activity between the North Pacific and North American plates. The Aleutians span around 1,200 miles from the Alaska Peninsula in the east to Attu Island in the west and is broken down into five major island groups: Fox, Islands of Four Mountains, Andreanof, Rat, and Near groups. The climate has been characterized as both harsh and oceanic, with heavy rainfall, high winds, frequent fog, and cool temperatures throughout the year (Lantis 1984). Most of the islands are treeless and have few terrestrial resources, although there is abundant marine life associated with nutritious upwellings of ocean water from the Aleutian trench that has served as the basis of the Aleut economy (Black 1976). The
Figure 11 Map of Bering Sea region (modified map from www.archaeology.org)

Figure 12 Map of the Aleutian Islands
Aleut communities are mainly located in the eastern portion of the Aleutians and mainland Alaska, as well as the Pribilof Islands in the Bering Sea, the Kamchatkan Peninsula of Siberia, and the Commander Islands located off the coast of Kamchatka. English and Russian are the dominant languages used by Aleuts living in the United States and Russia respectively, however the traditional Aleut language is still spoken by several hundred people. Regional differences in traditional culture and language have been described by the first Russian inhabitants in the island chain (Veniaminov 1840) and later by linguists and anthropologists (Black 1984). The Aleut population today is socio-culturally diverse as it has become increasingly integrated with the global economy through its fishing industry. And as a result of the influx of foreign workers into the region that began with Russian contact in 1741, Aleuts are an admixed people mostly through intermarriage with Europeans, in particular Russian and Scandinavian males.

Archaeology and Prehistory

The Aleutian Islands lie to the south of Beringia, the vast area located between the Kolyma River in northeastern Siberia and the Mackenzie River in the Northwest Territories of Canada. During the Pleistocene ice ages, this geographic region represented a single ecosystem dominated by steppe lands and large grazing animals and included "land bridges" that emerged across the Bering Sea due to low sea levels (Guthrie 1982). The eastern-most region of the Aleutians is believed to have been incorporated into the southeastern terminus of the Bering Land Bridge, which last existed between 25,000 and 10,000 years ago and served as the likely route of the
earliest migrations into the New World (Hoffecker et al. 1993, Elias et al. 1996). Therefore, given the location of the Aleutians between Asia and the Americas, the archaeological record of this island chain has generated much interest by anthropologists concerned with Native American origins.

The earliest archaeological sites in the Aleutian Islands are in the eastern part of the region in the Fox Islands group. These sites have been generally characterized as belonging to the Northwest Coast Microblade Tradition (9,000 to 8,500 BP), which extends south to the Kodiak archipelago and along the Pacific coasts of southeast Alaska, Canada, Washington and Oregon (Dixon 1999). This tool industry was contemporaneous with the American Paleoarctic and Denali complexes of mainland Alaska and is considered by some to have derived from microblade assemblages of northeastern Siberia, such as layer VI at Ushki-I (10,700 BP) on the Kamchatkan Peninsula (Akazawa 1999, Goebel and Slobodin 1999, Hamilton and Goebel 1999).

The Anangula Blade Site, radiocarbon dated to 8,400 BP, is the oldest known Aleutian site (Dumond and Bland 1995). It is located on the small island of Anangula, across from Nikolski village on Umnak Island, and was first discovered in 1938 by William Laughlin and Alan May as a part of a Smithsonian expedition. Since then, extensive archaeological work at Anangula has unearthed over 50,000 stone artifacts, making it one of the largest early Holocene assemblages in Alaska (McCartney and Veltre 1996). The site is dominated by a unifacial blade and core industry, which mostly consists of knives, end scrapers, and transverse burins (Dumond 1987). Based on the thickness of the cultural layer, the length of
occupation at Anangula is believed to have been relatively short, with estimates ranging from 500 to 1,500 years in duration (Black 1974, Laughlin 1980). The excavated remnants of homes indicate that approximately 75 to 100 individuals resided at the blade site. Reasons for abandonment of Anangula are uncertain, although stratigraphic data suggests that it may have been in response to heavy ash fall from nearby volcanic activity that potentially contaminated local sources of drinking water (McCartney and Turner 1966, Black 1975).

Two other early Aleutian sites, Russian Spruce and Oiled Blade (8,000 BP), are found on Hog Island near the city of Unalaska. The Russian Spruce site was excavated from 1997 to 1999 and represents a short-term occupation by a blade-making people (Dumond and Knecht 2001). The artifacts recovered from the site are similar to those found at Anangula, including cores prepared by comparable lithic techniques and the absence of biface manufacture. The Oiled Blade site is located near Russian Spruce and was excavated in 2001, revealing a stratigraphy that is deeper and more complex but with an artifact assemblage akin to the other early Aleutian sites (Knecht and Davis 2001).

To the west of the Fox Islands group, the earliest archaeological sites occur significantly later, starting with a site on Adak in the Adreanof Islands group that dates to approximately 6,000 years and progressively becoming more recent moving westward along the island chain. The cultural layer for the Adak site spans 2,000 years and contains the shell and bone remains of various marine species, as well as a small number of stemmed points and scrapers (O’Leary 2001). In the Rat Islands
group, the oldest sites are located on Amchitka and date to about 4,000 years BP. Excavations have discovered the elements of a bifacial and unpatterned flake core technology, which includes burins, projectile points, scrapers, choppers, and abraders (Hatfield 2002). And in the western-most Aleutians, the Near Islands group, the oldest sites are on Shemya and Attu, dating from 3,000 to 2,000 years BP (Corbett et al. 2001, Lefevre et al. 2001). The sites contains several house features, as well as faunal and artifact samples that have not yet been analyzed.

Overall, the chronological sequence of the archaeological sites follows an east-to-west pattern, suggesting that the Aleutian Islands were peopled in this direction. This evidence contradicts various models espoused by Russian and Japanese researchers in which the Aleutians are considered an extension of the Asian continent and was peopled from both the west and east through multiple migration events (Dikov 1965, 1979, Arutinov and Sergeev 1975, Black 1983). Furthermore, the notion of an eastward entry into the Aleutians is weakened by the fact that the Commander Islands, which would have served as a necessary stopover point before the distant travel to Attu and its neighboring islands, exhibit no evidence for prehistoric occupation (Hrdlička 1945). Therefore, the archaeological record indicates a Holocene settlement of the Aleutian Islands from the Alaskan side, as early as 8,400 BP.

According to the American anthropologist William Laughlin (1963, 1980), the Aleuts descend from a single ancestral population that migrated into the New World across the Bering Land Bridge, splitting into two groups: the Paleo-Eskimos, who
traveled north and then east across the Canadian Arctic; and the Aleuts, who occupied the Fox Islands. The relationship of the early Anangula and Hog Island people to present day Aleuts has been subject to much speculation. Based on his 1936 to 1938 archaeological survey of the islands, Aleš Hrdlička (1945) described two distinct cranial morphologies that represent different periods of occupation: the earlier dolicocephalic (long and narrow) skulls, attributed to a “pre-Aleut” people; and the subsequent brachycephalic (short and round) skulls, belonging to a later “Aleut” population. Hrdlička proposed that the two populations derive from separate migrations and that the “pre-Aleuts” were replaced by the “Aleuts” beginning around 1,000 BP. However, dating of ancient Aleut skeletal material has shown that the two morphologies do not sort into distinct chronological categories (Rubicz 2007), although recent ancient mtDNA and isotope analyses are suggestive of partial population replacement or admixture within this time frame (Coltrain et al. 2006).

With regards to artifact assemblages, Laughlin (1975) has argued that the oldest sites in the Aleutians share cultural affinities with the much younger Chaluka midden, located across the bay on Umnak Island and dated to around 4,000 BP. Chaluka is believed to have been continuously occupied to the present day and, interestingly, the current residents of the nearby Nikolski village are considered by some to be the direct descendants of the original Chaluka people. The assemblages at the Anangula and Chaluka sites are similar through their shared use of stone vessels, pumice abraders and ocher grinders, and the manufacture of unifacial implements (Laughlin 1967, Dumond 2001). However, Laughlin’s argument for cultural
continuity was criticized for failing to acknowledge the large technological differences between the Anangula and Chaluka sites (McCartney 1984), and the substantial hiatus that existed between the end of early sites (7,000 BP) and the emergence of the Chaluka complex (4,000 BP).

From recent excavations in the eastern islands, new archaeological evidence has been reported that settle some of the key issues concerning cultural continuity in the Aleutians. At the Margaret Bay site near Unalaska Island, a “transitional culture” has been identified, with an assemblage characteristic of the earliest Aleutian sites and the bifaces of more recent traditions (Knecht and Davis 2001). Furthermore, the occupation of the site spans more than 3,000 years and has been radiocarbon dated to approximately 3,000 to 6,700 BP, which places it within the previously noted hiatus of the region’s prehistoric chronology. Based on these findings, Knecht and Davis (2001) devised a five-phase prehistoric sequence for the eastern Aleutians that underscores cultural continuity: (i) Early Anangula (9,000 to 7,000 BP), represented by the Anangula and Hog Island sites and characterized by an abundance of blades and microblades that have been retouched by unifacial techniques; (ii) Late Anangula (7,000 to 4,000 BP), which is typified by the Margaret Bay site and exhibits basic elements of the Early Anangula phase and the addition of bifaces and bone artifacts; (iii) Margaret Bay (4,000 to 3,000 BP), characterized by a technological shift, with less emphasis on blade and microblade manufacture and a corresponding increase in unpatterned core technology and tools with similarities to the Eskimo Arctic Small Tool tradition (ASTt); (iv) Amaknak (3,000 to 1,000BP), named for the island near
the city of Unalaska and defined by an abundance of ground slate tools (ulus) and stone projectile points and v-shaped burial trenches that may suggest a change in belief system or social organization; and (iv) Late Aleutian (1,000 to 200 BP), lasted until the time of Russian contact and shows little change from the previous phase, except for the presence of a more complex bone technology and the first appearance of long houses with a variety of configurations (Hatfield 2002).

Regional differences have been identified in the archaeological assemblages recovered from the Aleutian Islands, with the Near Islands group exhibiting the largest degree of differentiation, mostly in terms of stylistic features (McCartney 1971). The atypical character of these islands likely stems from its relative isolation, separated from the neighboring Rat Islands by the largest inter-island distance of the entire chain. Researchers have also noted archaeological differences between the Fox Islands group and the Aleutian Islands further to the west that have a conspicuous absence of blade and microblade technology. This may suggest a social or environmental barrier between these two regions, or may simply be due to insufficient sampling outside of the eastern Aleutians.

In the east, Aleut settlement is believed to have extended beyond the Aleutian Islands into the lower Alaska Peninsula, where an ethnic and linguistic boundary between Aleuts and Eskimos exists today. There is increasing evidence for cultural, and potentially demic, exchange between the eastern Aleut zone and non-Aleut peoples. For instance, similarities have been noted in the assemblages belonging to the Aleutian Late Anangula phase and the Pacific Eskimo Ocean Bay phase (Dumond
1987), as well as close affinities between the Margaret Bay phase and Eskimo ASTt tradition (Dumond 2001, Knecht and Davis 2001). Moreover, from about 1,500 BP until Russian contact, a trade network appears to have existed among eastern Aleut communities and Pacific Eskimos from the Alaska Peninsula and Kodiak Island as suggested by the presence of foreign tool types and exotic materials in the archaeological record. Therefore, the eastern Aleut region, including the lower Alaska Peninsula, was likely engaged in considerable contact with outside groups, either through trade, warfare and/or migration, and was apart of a wider sphere of interaction that included mainland Alaska and the Pacific Northwest (Dumond 1987, Moss and Erlandson 1992, Holland 2001).

Aleut Society at Russian Contact

At the time of Russian contact in the year 1741, the Aleut socio-culture was diverse and in a state of change. According to early historical records and personal journals of Russian explorers, merchants, and clergymen, Aleut traditional society was predominantly patriarchal, although with elements of a matrilineal clan system (Liapunova 1975). Marital relationships were varied, with cross-cousin marriages preferable. Polygamy and fraternal polyandry were equally common among Aleuts who could support multiple spouses. The abduction of wives from other villages was also practiced. There were no marriage ceremonies, however the birth of a child often signaled a union (Chamberlain 1951).

According to the detailed writings of Ioann Veniaminov (1840), a Russian Orthodox priest that resided in Unalaska during the 1820s and 1830s, Aleut society
was stratified by the following three classes: the “honorable ones”, which comprised the chiefs, their relatives and children; the “common people”, who were other Aleuts and freed slaves; and the lowest class represented by slaves. Chiefs were usually recruited from the highest class, but had to also demonstrate skill in military leadership and hunting. Slaves and concubines were usually obtained through capture during raids on enemy communities, and were considered a form of wealth along with furs, dentalium shells, and amber (Liapunova 1975). The number of slaves one owned was an essential criterion for determining rank and status among the nobility. Successes, rank and allegiance were typically advertised on bentwood visors and parkas with finely-made decoration and amulets (Black 1982). Aleut leaders were often mummified and buried with these prized items.

Sea mammal hunting and fishing formed the basis of the prehistoric economy in the Aleutian Islands. Hunting was conducted from baidarkas, the Aleut Kayaks made from sea lion skin, driftwood, and whalebone (Dyson 2000). Aleuts used spears and throwing boards for hunting, and seines woven from plant fiber, sinew and Baleen for fishing (Liapunova 1975). Deep water fishing for halibut was done with stone sinkers and bone hooks, and fishing lines were made from strands of braided kelp. When sea conditions were too rough for hunting and fishing, Aleuts collected terrestrial foods such as berries (moss berry and salmonberry), roots and leaves from several edible plants (including wild celery and Asian lily), and shellfish and bird eggs from the beach (Lantis 1984).
Aleuts practiced a strict sexual division of labor (Liapunova 1975). Men hunted sea mammals and birds, engaged in deep-sea fishing, and constructed baidarkas. Women were in charge of fresh water fishing, preparing foods for storage, gathering roots, berries and eggs, weaving baskets, and sewing garments, such as rain resistant clothing produced from sea mammal intestines.

Due to the importance of the sea for Aleut subsistence, settlements were located on the coasts, usually on the north shores facing the Bering Sea because of the greater abundance of marine resources and the frequent ocean swells on the Pacific side that made landing of Baidarkas difficult (Lantis 1984). Villages were generally located near a fresh water stream and near elevated land that could serve as a look-out point for migratory animals or approaching enemies (Black 1974). Aleuts lived in barabaras or semi-subterranean dwellings constructed from driftwood, sod and earth, which were typically rectangular in shape and designed with common central rooms and several roof-top openings to allow in light and serve as entrances. Most Aleut households were composed of single families, with large barabaras sub-divided into single-family compartments.

The belief system developed by the Aleuts was a sophisticated, naturalistic religion. Agugux was the primary deity that was associated with the sun and responsible for successful hunting and reincarnation (Lantis 1984). Lesser spirits existed in other natural objects and were believed to have interacted with humans. Each Aleut had his or her own personal amulets which provided a direct relationship with the spirit world. Shamans also played a role in this relationship, acting as
mediators with the deities and claiming powers of prognostication, healing, and protection from harm.

Aleutian History

The Aleutian Islands and their native inhabitants were independently discovered by Vitus Bering and Alexei Chirikov in 1741. Their voyages were part of a long-term Russian campaign to explore and map the lands of the North Pacific, with over 225 expeditions sent into the region between 1728 and 1867 (Smith 2000). The Second Kamchatkan Expedition, which lasted from 1733 to 1743, was led by Bering on the ship *St. Peter*, and his deputy Chirikov, who directed a second ship christened *St. Paul* (Jochelson 1933). In order to reach the North Pacific, the expedition had to travel overland to northeastern Siberia, and once there, construct the ships for their voyages. The crews were made up of European naturalists, physicians, marine officers, and local recruits from Kamchatka and Okhotsk (Waxell 1952). Upon departure, the two ships became separated after 16 days, with both crews making contact with the Aleuts before heading back to Kamchatka. However, due to stormy weather conditions, *St. Peter* was wrecked on the shores of Bering Island, where Bering fell ill with scurvy and died in December of 1741.

The survivors of the expedition returned to Kamchatka with impressive cargos of furs. Despite the financial success of the voyages, the Russian crown did not take an active role in exploiting the region’s resources, but rather private entrepreneurs began to quickly travel in large numbers to the newly discovered islands in hopes of establishing profitable companies and potentially opening a fur market to China.
The first Russian and Siberian *promyshlenniki* (fur hunters) began landing on Attu Island in 1743 and was chosen as a fur hunting base because of its smaller Aleut population relative to nearby islands (Black 1984). Soon thereafter, Russian ships began to bypass the western Aleutian Islands, which were rapidly being depleted of their fur resources, for new hunting grounds further to the east.

In the 1750s, the Russians had come to dominate the Aleutian Islands, with the Russian crown establishing sovereignty from the Near Islands to the Alaska Peninsula, with the private companies having a central role in its governance. However, Russian control was only attained after numerous violent encounters with the Aleuts. According to Father Veniaminov (1840), Aleut men were directly targeted, with approximately 5,000 killed by the Russians. Based on various estimates, the Aleut population is believed to have been rapidly reduced from a pre-contact size that was between 8,000 to 20,000 down to perhaps as low as 2,000 by 1790 through a combination of warfare, malnutrition, and the introduction of European diseases such as smallpox, measles and tuberculosis (Veniaminov 1840, Milan 1974, Liapunova 1975, Laughlin 1980, Lantis 1984, Fortuine 1992).

In 1799, the regional fur trade was formalized into the Russian-American Company and was prospering mainly on the backs of Aleut men who were forcibly conscripted and removed from their villages to work on hunting grounds. For instance, in 1788, 137 Aleuts from Atka and Unalaska were taken to the uninhabited Pribilof Islands to hunt seals and sea lions (Elliot 1886). And between the years 1825 and 1828, Aleuts were again relocated from the central and western Aleutian Islands.
to the Commander Islands to work in the local fur trade industry (Rychkov and Sheremetyeva 1972, Lantis 1984). As a result of these conscriptions and forced relocations to worker cooperatives, Aleut communities experienced a deficit of Aleut men, which enabled hunting crews to gain control over the villages and their women. Foreign crewman often established themselves in Aleut settlements by constructing their own version of *barabaras* (Federova 1973). This led to forcible abductions and rape (Black 1993, Khlebnikov 1994), but also sexual relations and marriage that could be characterized as voluntary. This complex relationship between Russian fur hunters and Aleut women produced a rapidly growing “Creole” class within Aleut society (Reedy-Maschner 2007).

The American purchase of Alaska in 1867 altered this demographic scenario in the Aleut population. Russians living in Alaska were given three years to return to Russia proper or be given automatic citizenship (Federova 1973). Aleuts and Creoles were classified as “Indians” and were not provided with the same rights as US citizens (Black 1990). As for the fur and fishing industries, they became controlled by the US government through the Alaska Commercial Company and attracted large numbers of Scandinavians and European Americans to the Aleutians, in particular to the peninsula and eastern islands.

In order to reduce the number of hunters and conserve the dwindling stock of sea otters, the US Treasury Department imposed a marriage rule during the 1870s, in which only Alaskan natives and non-native men married to Alaskan women were permitted to hunt fur-bearing animals (Porter 1893). This policy had the unintended
consequence of pushing the two cultures together, leading to further admixture of the
Aleut population with European men, mostly Scandinavians (Reedy-Maschner 2007).
In the eastern Aleut zone, elements of Scandinavian culture are evident from
surnames, language accents, place names, housing designs, cuisine, entrepreneurial
spirit, and even polka parties. Some writers have described a so-called “Scandinavian
effect” in southeastern Alaska, with a corresponding change in work ethic and
material prosperity (Mishler and Mason 1996).

With the start of World War II and the Japanese invasion of the Aleutian
Islands, the culture and lives of the Aleut people were once again disrupted. In June
of 1942, Japan bombed Dutch Harbor and invaded the western islands of Attu and
Kiska, capturing 42 Aleuts that were transferred to the Otaru Prison Camp on
Hokkaido Island for three years (Lantis 1984). In response, the American
government and military evacuated 881 Aleuts from communities west of Unimak
Island to abandoned canneries in southeast Alaska for the duration of the war
(Kohlhoff 1995). In the camps, the Aleuts endured difficult conditions, lacking
proper housing, sanitation, medical supplies, and even sufficient food. As a result,
they experienced a high mortality rate due to pneumonia and poor nutrition (Kohlhoff
1995). It was not until 1944 to 1945 that the Aleuts were finally repatriated, although
many elected not to return to their villages, some of which were heavily damaged
during US military occupation, and resettled elsewhere in Alaska.

In the post-war American period, the Aleut people began to reorganize and
assert their economic and political rights. Tribal councils were established in the
various communities in order to regulate land use and preserve Aleut culture. In 1971, The Aleut Corporation, a foundation that settles native land claims on behalf of all Aleuts and promotes economic and social growth for its shareholders, was formed through the Alaska Native Claims Settlement Act, with the Aleutian/Pribilof Islands Association as its non-profit counterpart. Other local organizations, such as the Aleutians Eastern Borough, were created in order to direct economic development in their respective communities.

Today, the Aleut communities are becoming increasingly integrated into the global economy through its fishing industries. Japanese megacorporations are heavily investing in the region, setting up processing plants in Dutch Harbor, Sand Point, King Cove and elsewhere in Alaska. Hundreds of international cannery workers and fisherman work in these communities on a seasonal basis, many of whom have made the Aleutians their home (Reedy-Maschner 2007). This latest demographic shift in the Aleut population follows a common theme that is evident from the region’s dynamic history, in that the rich marine resources of the Bering Sea and neighboring waters has attracted newcomers to the region, beginning with Russian fur hunters, followed by Scandinavian fishermen, and now an influx of international workers associated with the present-day globalization of the Aleutian economy (Lowe 2006).
Language

According to Ruhlen’s (1991) linguistic classification, the Aleut language belongs to the Esko-Aleut family, with Eskimo and Aleut representing the two major subgroups. The divergence of these two branches from an ancestral proto-language has been estimated between 5,000 and 10,000 years BP using the glottochronology method (Greenberg et al. 1985). The Eskimo group has a total of nine extant languages that can be further divided into Yupik and Inupiaq branches, with a distinct geographic barrier at Norton Sound, Alaska, where Yupik speakers are found both to the south of this boundary and to the west in Chukotka (northeastern Siberia), whereas Inupiaq speakers are present in northern Alaska and throughout the Arctic regions of Canada and Greenland (Woodbury 1984) (see Figure 13).

The Aleut language has been divided into eastern and western dialects, although both are mutually intelligible and exhibit less linguistic differentiation in

Figure 13 Geographic distribution of Aleut and Eskimo languages
comparison to the Yupik-Inupiaq divergence (Woodbury 1984). However, other researchers have identified as many as seven additional dialects or subdialects in the Aleut communities (Rubicz 2001). It has been estimated by Ruhlen (1991) that the Aleut language is spoken by approximately 720 people, mostly the older generation, although this number is likely to be lower today.

Morphology

Morphological traits, such as anthropometrics, cranial shape, and dentition, have been studied by physical anthropologists since the 19th century to better understand human evolutionary relationships. But, in comparison to genetic data, morphological measurements have a number of limitations in this area of research, most notably the confounding effects of environmental conditions on phenotypic variation. Nonetheless, a large amount of morphological data has been collected and analyzed for native populations from northern North America and Siberia.

Based on anthropometric data (i.e., body measurements), the Aleuts, along with Eskimos and other native groups from Beringia, have been classified as having a body type adapted for reducing heat loss in cold-climate conditions: medium to sub-medium stature, tall sitting heights, and small hands and feet (Laughlin 1980). The Aleuts also share a number of other physical traits with neighboring populations, including straight black hair, epicanthic eye folds, narrow nasal roots, scanty beards, broad faces, and high cheekbones (Crawford 1998). Recent multivariate analysis of various anthropometric measurements collected by William Laughlin has found a
close phylogenetic relationship between Aleuts from the Pribilofs and Eskimos from St. Lawrence Island in the Bering Strait (Justice 2007).

Similar to other Native Americans and Northeast Asian groups, the Aleuts exhibit sinodont dentition, which is defined by a series of traits such as higher frequencies of incisor shoveling, single-rooted upper first molars, and triple-rooted lower first molars. This is in contrast to sundadont dentition, which has relatively simplified features and is most prevalent among Southeast Asians, native Australians and other populations in the South Pacific. Statistical analyses of dental traits confirm this relationship among Sinodont populations, clustering the Aleuts closest to Eskimos and Northeast Asians (Powell 1993, Turner 1993).

As previously noted in the section on Aleutian archaeology, skull morphology has been used to reconstruct the evolutionary history of the Aleuts. Hrdlička (1945) identified two cranial types, dolicocephalic and brachycephalic, arguing that the latter was representative of a more recent Aleut population that expanded into the island chain and replaced the other cranial form. However, a number of studies have refuted this model. Laughlin and Marsh (1951) re-examined Hrdlička’s Aleutian material, revealing physical similarities between the “pre-Aleuts” and “Aleuts” and concluded that there was evolutionary continuity between the two types, rather than population replacement. In a later investigation by Laughlin (1980), the two head shapes were identified among living Aleuts, with the western Aleutian populations retaining the dolicocephalic cranial type and the central and eastern islands predominantly exhibiting the brachycephalic shape. From these results, Laughlin posited that the
brachycephalic trait originally evolved in the eastern part of the region, and has subsequently spread westwards along the island chain through gene flow. And lastly, in a study by Coltrain et al. (2006), analysis of 80 radiocarbon dated skeletal specimens that were previously categorized show that both cranial types existed in the Aleut population since 1,000 BP, although the authors suggest that the brachycephalic Aleuts may have represented a closely related people with a distinct culture that recently migrated into Aleutian Islands, mixing with the indigenous inhabitants. Interestingly, analyses of cranial traits from various Native American and Siberian populations appear to indicate that Aleut skulls more closely resemble those of American Indians rather than Eskimos or Siberians. Based on the presence or absence of 24 discrete cranial features, Szathmary and Ossenberg (1978) found the Aleuts to cluster with five American Indian groups and none of the nine Eskimo populations included in their study. Using different Aleut samples, Ossenberg (1992) and Ousley (1995) produced similar results, with the Aleuts clustering closest to Na-Dene populations, such as the Apache and Navaho of the American Southwest and various groups from the Pacific Northwest.

Genetics

For classical genetic polymorphisms that include blood groups and serum proteins, Aleuts are most similar to Eskimo populations, as well as certain native groups from the Americas and northeastern Siberia. In studies that characterized the ABO blood system, Aleuts exhibited high frequencies of ABO*O and ABO*A alleles and a corresponding low frequency of ABO*B. This is similar to the variability
observed in Eskimos and contrasts ABO patterns in other Native American populations that are either fixated for ABO*O, such as South American Indians, or have only ABO*A and ABO*O (Laughlin 1980, Mourant 1985). For the MNS blood group system, Aleuts have high frequencies of MNS*Ms, moderate levels of MNS*MS and MNS*Ns, and only small numbers of MNS*NS, which once again is a pattern similar to Eskimo frequencies (Rychkov and Sheremetyeva 1972). Like many other Native Americans, Rh- phenotypes of the Rhesus blood system are absent from the Aleuts, who have high frequencies of the cDE and CDe alleles. For the Diego blood types, Aleuts possess a high frequency of Di*A, which is atypical of North Americans and more characteristic of native groups from South America. And similar to other Native Americans and some Siberian populations, Aleuts exhibit comparable frequencies of haptoglobin genes HPA*1 and HPA*2 and near fixation of serum albumin gene AL*A (Szathmary and Ossenberg).

Multivariate analyses of classical genetic data for Native American and Siberian populations have produced varied results, with the Aleuts exhibiting close genetic affinities with Eskimos, American Indians, and/or Siberians (Rychov and Sheremetyeva 1972, Szathmary and Ossenberg 1978, Harper 1980, Ousley 1995). In a recent study by Rohina Rubicz (2007) that analyzed nine alleles from five different blood group systems, Aleut samples from the Pribilof communities (St. Paul and St. George) and Bering Island of the Commanders displayed greater genetic similarity with Eskimos groups, with the exception of St. Paul that clustered away from the other Aleut populations and appeared closest to Chukchi and Kodiak Eskimos.
The first molecular genetic study of the Aleuts was conducted by Merriwether et al. (1995, 1996), characterizing mtDNA variation in a population sample collected from St. Paul Island. The initial RFLP results suggested that the Aleuts possessed three of the founder lineages for Native Americans: haplogroups A (25%), C (1.4%) and D (66.7%). In later research, additional restriction enzymes were used to generate greater phylogenetic resolution among the matrilines, which led to the reclassification of Aleut haplogroups A and D to sublineages A2 and D2, respectively.

In more recent mtDNA studies (Rubicz 2001, Rubicz et al. 2003, Zlojutro et al. 2006), Aleut samples were collected from several communities located throughout the central and western Aleutian Islands, the Pribilofs, and Bering Island, and were typed for diagnostic RFLP markers, identifying only two of the New World founding haplogroups: A (28.5%) and D (71.5%). Haplogroup C was not reported and likely represented non-Aleut individuals in the samples from earlier research. As previously noted in the section concerning the peopling of the Americas, haplogroup D is an uncommon mtDNA lineage among Na-Dene and Eskimo populations, while haplogroup A is far more prevalent in these groups (Figure 8). Thus, the Aleut mtDNA pattern, with its high frequency of D, is considered atypical for Native North Americans.

HVS-I sequencing was also performed in the aforementioned studies, with multivariate analysis revealing greater genetic similarity between Aleuts and the Chukchi and Eskimo populations of northeastern Siberia, than to either Native
Americans or Kamchatkan groups. This finding has effectively refuted an eastward peopling of the Aleutian archipelago from the Kamchatkan Peninsula, a scenario that is espoused by several Russian and Japanese scholars (Rubicz et al. 2003). Moreover, phylogeographic analysis of the HVS-I data has identified three star-like clusters within the networks for subhaplogroups A3, Aleut-specific A7, and Beringian-specific D2, a genetic feature that is commonly interpreted as a signature of population expansion (Zlojutro et al. 2006). Based on coalescent dating, the A7 and D2 subclades have similar ages and appear to be the product of an expansion event approximately 5,400 years BP, whereas A3 is substantially older (19,900 BP) and likely represents a genetic remnant of the earliest peopling of northern North America. From these results and the prevailing interpretations of the Aleutian archaeological record, Zlojutro et al. (2006) proposed four plausible demographic models for Aleut prehistory: (i) biological continuity and kin-structured peopling of the archipelago, with the Anangula and Hog Island sites representing the earliest ancestors of the Aleuts; (ii) intrusion and expansion of a non-native biface producing population, beginning around 6,500 BP, that introduced subhaplogroups D2 and A7 into the Aleutian gene pool; (iii) expansion of Arctic Small Tool tradition (ASTt) peoples into the Aleutian archipelago and the amalgamation of haplogroup D2 with an older Anangula population substratum; and (iv) biological continuity with the early Anangula peoples and significant gene flow from neighboring populations in mainland Alaska and Kodiak. The four models are not mutually exclusive, with each
varying in their degree of concordance to current genetic, archeological, and ethnolinguistic evidence.

To further investigate the evolutionary relationship of haplogroup D2 among Aleut and Eskimo populations, complete mtDNA sequencing was performed by Derbeneva et al. (2002) on thirty Aleut samples from Bering Island and seven Siberian Eskimo samples that were previously classified to the D2 lineage. The results showed a complete fixation of D2 in the Bering population sample, which the authors attributed to the effects of genetic drift. However, others have argued that given the recent settlement of Bering Island by Aleuts (circa 1825), the likelihood of inter-generational stochastic processes eliminating haplogroup A from the gene pool is exceedingly improbable (Rubicz et al. 2003), and thus the fixation is likely to be a product of founder effect as the original Aleut transplants to the Commander Islands consisted of closely-knit families from Attu and Atka (Rubicz 2007). The phylogeny based on D2 sequences revealed two major branches: Aleut-specific subclade D2b, defined by a transversion at np 8910; and subclade D2c, with HVS-I transitions at np 16,111 and 16,366 and identified in five of the seven Eskimo samples (note, a third and more distant branch, subclade D2a, was also defined by the authors but is considered to be primarily a Na-Dene lineage). The geographic specificity and phylogenetic relationship of these two D2 subclades suggest that Aleuts and Eskimos derive from a common founding population some time during the postglacial period.

The only Y-chromosome research done on the Aleuts to date was conducted recently by Rubicz (2007) in her PhD dissertation project. In this study, samples
from the central and western Aleutian Islands, the Pribilofs, and Bering Island were characterized for Y-SNPs and Y-STRs, as well as mtDNA markers and autosomal STRs. The results reveal a considerable reduction of mtDNA diversity for the Bering community, which is consistent with the findings of Derbeneva et al. (2002), and as discussed above, is probably the consequence of founder effect. The Aleut Y-chromosome haplogroups are mostly of non-Aleut origin (73% to 90%), which indicates substantial male gene flow into the Aleut communities and starkly contrasts the mtDNA picture that is almost exclusively represented by Native American matrilines.

Summary

This chapter provided an overview of the field of anthropological genetics and its application towards understanding regional patterns of human genetic diversity, most notably mtDNA and Y-chromosome variation, and reconstructing human evolutionary histories through phylogeographic approaches. In addition, background information on the Aleut people is presented, including the pre-history and history of the Aleutian Islands, the different Esko-Aleut languages spoken in the region, and the morphological and genetic traits observed in the Aleut population. Archaeological evidence indicates that the Aleutian Islands were first settled in the east at approximately 8,400 years BP, with the central and western islands occupied much later in the postglacial period. Much of the debate concerning Aleut origins has focused on the relationship of the earliest inhabitants on Anangula and Hog Islands to modern day Aleuts. Some researchers argue for biological continuity, supported
primarily by cranial evidence and the Late Anangula transitional phase classified at Margaret Bay, whereas others propose scenarios in which population replacement or amalgamation occurred at times of cultural change or technological transitions that are evident in the archaeological record (e.g., manufacture of biface tools). The history of the Aleutian Islands is a dynamic one, where the influx of foreigners, particularly Europeans, has had a major impact on Aleut demography and genetic structure. Through Russian contact, the Aleut population rapidly became admixed, producing a so-called “Creole” class in Aleut society. This changed after the sale of Alaska in 1867, with Scandinavian men representing the majority of newcomers to the region, especially into Aleut communities located in the lower Alaska Peninsula and eastern islands. Population genetic studies thus far have not characterized the genetic variation in the eastern region nor investigated the genetic structure of the entire Aleutian archipelago, which based on its history, is likely to have significant regional differences.
CHAPTER THREE: MATERIALS AND METHODS

This chapter describes the research design of this dissertation project. This includes the sampling procedure conducted in eastern Aleut communities, DNA extraction protocols, characterization of mtDNA and Y-chromosome markers, and the various analytical methods used to assess Aleut population structure, gene flow, and molecular signatures of demographic history.

Sampling Methods

During the summers of 2005 and 2006, DNA samples were collected from Aleut communities located in the eastern Aleutians and lower Alaska Peninsula by a research team comprised of Dr. Michael Crawford, Mark Zlojutro and Liza Mack. Participants that claimed Aleut ancestry were informed about the objectives of the study, the confidentiality of individual genetic profiles and genealogical information, and the anonymity of any published data. All participants signed informed consent forms (see Appendix A) and were provided with contact information for any questions concerning the study and its findings. The scope of the study and the safeguards concerning personal genetic information were approved by the University of Kansas Advisory Committee on Human Experimentation (ACHE), the Aleut Corporation, the Aleutian/Pribilof Islands Association, the Aleutians East Borough, and the tribal councils of the various communities.

For each participant, buccal samples were obtained by gently scraping the inside of the participants’ mouths using sterilized wooden dowels and then depositing
the cheek cells in 750 µL of TE buffer. In addition, the participants rinsed their
mouths with 10 mL of distilled water and the resulting sputum was collected in 15
mL polypropylene tubes. Buccal and sputum samples were successfully collected
from the following Aleut communities: Akutan, False Pass, King Cove, Nelson
Lagoon, and Sand Point (see Figure 14). According to the United States census of
2000, the population sizes of the five villages range from 64 to 952, with native
Aleuts representing approximately 16% to 78% of these populations. But it should be
noted that the population sizes of the larger communities, specifically Akutan, Sand
Point and King Cove, are substantially inflated and likely misrepresentative of the
Aleuts living in the permanent settlements because the census statistics included
transient workers of multinational origins employed at local fish processing plants
and cold storage facilities.

Figure # Map of sampled Aleut communities
The sample sizes are provided in Table 1. A total of 197 samples were collected from the five communities, which excludes: two samples from participants who reside in the Pribilofs; and five samples from individuals that were not born in either Anchorage or one of the Aleut communities and based on genealogical information were unable to trace their matrilineages to this region. For the mtDNA analysis, only a subset of the samples was used. Closely related individuals were culled from the data set (i.e., siblings, mothers, and grandmothers). Moreover, samples that were not characterized to native haplogroups A or D were also removed from the data set ($n = 12$ or 6.1% of the total sample size) in order to focus the mtDNA study on ancient evolutionary relationships between Beringian populations. Similarly, for the Y-chromosome analyses, closely related individuals were excluded from the male data set. However, non-native haplogroups were included because the vast majority of Aleut Y-chromosomes belong to European patrilineages (see Chapter Four: Results). Thus, the focus of the Y-chromosome study mostly concerns the impact of European gene flow on the Aleut gene pool.

Table 1 Number of Aleut participants by community and sizes of corresponding data sets

<table>
<thead>
<tr>
<th>Community</th>
<th>Total Samples</th>
<th>mtDNA Subset</th>
<th>Y-chromosome Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akutan</td>
<td>27</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>False Pass</td>
<td>23</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>King Cove</td>
<td>57</td>
<td>33</td>
<td>20</td>
</tr>
<tr>
<td>Nelson Lagoon</td>
<td>32</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Sand Point</td>
<td>58</td>
<td>38</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>197</td>
<td>114</td>
<td>75</td>
</tr>
</tbody>
</table>
Laboratory Methods

DNA Extraction

Two different methods were used to extract DNA from the buccal and sputum samples collected from the Aleut communities: Chelex-based DNA extraction (Walsh et al. 1991); and standard phenol-chloroform protocol (Chomczynski and Sacchi 1987). To safeguard against any potential problems arising from the transport of Aleut biological material from Alaska to the University of Kansas (e.g., delays, high temperatures) and ensure high-quality DNA was obtained from the samples, DNA was extracted in the field using the Chelex method. Sputum samples were allowed to stand for 15-20 minutes in order for buccal cells to settle at the bottom of 15 mL polypropylene tubes and then transferred to two 2.0 mL microcentrifuge tubes using bulb pipettes. The tubes were spun at full speed in a microcentrifuge (3,000 rpm) for 5 minutes, producing cellular pellets. The supernatants were discarded and 100 µL of 10% Chelex resin (BioRad, Hercules, CA) was added to each tube. The pellets were resuspended through vortexing and incubated at 100°C in a heating block for 10 minutes in order to denature and lyse the buccal cells. The tubes were then placed on ice for 3 minutes to allow the Chelex to bind to proteins and lipids. The tubes were centrifuged at full speed for 5 minutes, forcing the Chelex-bound material to the bottoms of the tubes. The supernatants, which contain the DNA, were transferred into clean 0.5 mL tubes and stored at 4°C.

For the buccal samples transported to the Laboratory of Biological Anthropology (LBA) at the University of Kansas, DNA was extracted by the phenol-
chloroform method. This protocol required digesting each of the samples overnight at 55°C in an extraction cocktail of 100 µL 5X STE (sodium chloride-Tris EDTA), 25 µL proteinase K (ISC Bioexpress, Kaysville, UT), 25 µL 10% sodium dodecyl sulfate (SDS), and 325 µL double-distilled, deionized (dd) H₂O. Next, 250 µL of cold (4°C) 5M potassium acetate (Fisher Scientific, Pittsburgh, PA) was added to precipitate the cellular polypeptides produced from the digestion, which was pelleted and discarded. The aqueous phase, containing the DNA, was purified of the remaining proteins and lipids with two phenol:chloroform:isoamyl alcohol (24:24:1) (Fisher Scientific) extraction steps. The DNA was purified by adding two volumes of cold 95% ethanol, pelleted, and washed with 75% ethanol to remove any remaining salts. The DNA samples were air-dried, resuspended in 50 µL of sterile 1X TE, pH 8.0, and stored at 4°C at the LBA.

The two extraction methods produced large differences in the DNA yields. The DNA concentrations for the samples derived from the Chelex-based method ranged from 2.8 to 816.0 ng/µL (estimates obtained from NanoDrop® ND-1000 spectrophotometer), with an average of 119.9 ng/µL. These values differ substantially from the yields of the phenol-chloroform protocol, which ranged from 0.1 to 25.6 ng/µL, with an average of only 1.3 ng/µL. This difference likely stems from the biological material used in the two methods, in which the mouth rinses appeared to have much more cellular material than the buccal samples obtained from cheek scrapes (personal observation). However, it has been well established in molecular biology that the phenol-chloroform extraction produces better DNA purity.
than most methods (Cao et al. 2003, Chomczynski and Sacchi 2006). The DNA samples derived from the Chelex method were used in this study for the mtDNA and Y-chromosome analyses, but a small number of PCR reactions failed repeatedly due to unknown inhibitors and thus the phenol-chloroform samples were used in such cases to complete the reactions.

Mitochondrial DNA Analysis

Aleut mtDNAs were characterized by the sequencing of the first hypervariable segment (HVS-I) of the control region and restriction fragment length polymorphism (RFLP) analysis when samples could not be assigned to haplogroups by HVS-I data alone. For both procedures, PCR (polymerase chain reaction) is required to amplify specific segments of DNA for molecular analysis. The basic PCR reaction involves the following key steps: 1) heating double-stranded DNA to separate the strands (i.e., denature); 2) cooling the reaction to allow primers to anneal to the ends of the region to be amplified; and 3) increasing the reaction temperature to the optimal level for DNA polymerase activity, leading to the extension of the primer sequences and the generation of new, complementary DNA strands. Because the newly synthesized strands can subsequently serve as additional templates for the same primers, successive rounds of denaturation, primer annealing, and polymerase extension produce an exponential increase in highly specific amplicons of the desired sequence (see **Figure 15**).

The ingredients for a common PCR reaction are the following: water, which provides an aqueous medium for the reaction to take place; PCR buffer, which
establishes an optimal pH and monovalent salt environment; deoxynucleotide triphosphates (dNTPs), the “building blocks” or nucleotides necessary for DNA synthesis; DNA polymerase, a multi-subunit enzyme that synthesizes new DNA strands by using the target DNA as a template and catalyzing the formation of phosphodiester bonds between dNTPs; magnesium chloride (MgCl₂), essential for stimulating DNA polymerases and stabilizing dNTP incorporation; forward and reverse primers, which are simple oligonucleotides (usually composed of 25 or fewer nucleotides) that enable polymerase extension and specify the boundaries of the region to be amplified; and lastly, the target DNA from the sample of interest.

For the mtDNA analysis, the PCR mixture per sample is as follows: 2.5 µL of 10X PCR buffer (500 mM KCl, 100 mM Tris-HCl, pH 9.0 at 25°C, and 1% Triton®

![Illustration of polymerase chain reaction (PCR)](image-url)

Figure 15 Illustration of polymerase chain reaction (PCR)
X-100); 4.0 µL of MgCl$_2$ (25 mM); 0.5 µL dNTP mix (10 mM of each dNTP); 0.2 µL of Taq polymerase (5 units per µL); 7.8 µL of ddH$_2$O; 2.5 µL of forward primer (10 pmoles per µL); 2.5 µL of reverse primer (10 pmoles per µL); and 5.0 µL of sample DNA. The reagents were purchased from Promega (Madison, WI) and the primers were synthesized at Integrated DNA Technologies (Coralville, IA). In order to expose any potential cases of contamination, both positive controls containing known DNA samples and negative controls lacking target DNA were included in every PCR reaction.

The PCR reactions were run on either a PE Applied Biosystems GeneAmp® 2400 or 9700 thermalcycler. The primers used in the mtDNA analysis are listed in Table 2, which includes information regarding mitochondrial location, primer sequences, annealing temperatures, and amplicon size. For all of the primer pairs, the following thermal profile was utilized: 94°C for 1 minute (1 cycle); 94°C for 40 seconds (35 cycles); primer annealing temperature for 30 seconds (35 cycles); 72°C for 1 minute (35 cycles); 72°C for 5 minutes (1 cycle); and a hold at 4°C (Rubicz Table 2

<table>
<thead>
<tr>
<th>MtDNA Marker (Haplogroup)</th>
<th>Primer Sequences (5’→3’)</th>
<th>Annealing Temp (°C)</th>
<th>Size (bp)</th>
</tr>
</thead>
</table>
| + HaeIII 663 (Hap A) | 535 FOR: CCCATACCCCCAACCACCC
725 REV: GGTGAACCTCAGAGGAAGGGG | 57 | 191 |
| − AluI 5176 (Hap D) | 5147 FOR: AAACCTCCCCAGCAAGC
5252 REV: CAAAAAGCGGTTCAGC | 55 | 121 |
| − AluI 7025 (Hap H) | 6958 FOR: CCCTGACTCTCACTCAGAG
7049 REV: TGTAAAACGACGGIDAAGTTAGGACATAGTGGAAGTG | 58 | 131 |
| + HinfI 12308 (Hap U) | 12216 FOR: CCAAGAACCTGCTATGACCG | 55 | 153 |
| HVS-I | 15976 FOR: CCAACATAGCAGCAGCTAGAAG
16401 REV: TGAATTCACGGAGGATG | 55 | 445 |
The annealing temperature for the primer pairs are typically set 2°C to 5°C (Innis and Gelfand 1990; Devor 2004) below the corresponding melting temperatures of the individual primers (the lower value of the two), which is defined by the equation

\[
T_m = \left[2(A + T) + 4(G + C)\right] ^\circ C
\]

(1)

where A, C, G and T represent the number of each type of nucleotide exhibited in a primer sequence.

PCR reactions were checked for successful amplification on a 1.5% agarose gel using electrophoresis at approximately 100 volts for about one hour. Electrophoresis is a method for separating DNA products by passing an electrical current through a gel matrix and a buffer medium (1X TBE). This causes negatively-charged DNA molecules to migrate to the positive node, with the rate of migration

![Illustration of gel electrophoresis](image)

Figure 16 Illustration of gel electrophoresis
dependent upon the size of the DNA strand (Sambrook et al. 1989) (see Figure 16). The gels were polymerized from 150 mL of 1X TBE (Tris-borate-EDTA) and 2.25 g of SeaKem® LE agarose (Cambrex, East Rutherford, NJ), which were initially heated to a boil, cooled to approximately 45°C and directly stained with 8 µL of ethidium bromide. The gel wells were loaded with 5 µL of PCR products and 2 µL of 6X loading dye (Promega) and were checked against a 100 bp DNA ladder (Promega). After electrophoresis, the lane products were illuminated using UV light to confirm amplification and photographed for laboratory records.

For HVS-I sequencing, nucleotide positions (np) 16,000 to 16,400 were amplified by PCR at the LBA (primer pair 15976 FOR and 16401 REV) and sequenced on an ABI® 3130xl Sequencer (Applied Biosystems, Foster City, CA) by Dr. Mike Grose, the director of the Core DNA Sequencing Laboratory at the KU Natural History Museum. The ABI® 3130xl is an automated capillary electrophoresis system that generates sequence data via the Sanger dideoxy method (Sanger et al. 1977). This protocol involves a PCR reaction that synthesizes DNA strands in one direction (i.e., based on a single primer) using a mixture of dNTPs and dideoxynucleotides (ddNTPs). When a ddNTP is incorporated to the end of a growing strand, synthesis is terminated because of the lack of a 3' hydroxyl (-OH) group in the five carbon sugar, which is necessary for the formation of phosphodiester linkages with other dNTP molecules. This results in amplicons of varying sizes, all ending with fluorescently-labeled ddNTPs. The reaction products are then electrophoretically separated in an automated sequencer using a polymer gel system.
Figure 17 Explanation of electropherogram output from automated capillary sequencer

and typed with a laser-induced fluorescence detection unit. The output is wavelength spectra, known as electropherograms, which is illustrated and explained in further detail in Figure 17.

Prior to sequencing, DNA templates were purified (i.e., removal of PCR reagents) using the QIAquick® Purification kit (Qiagen, Valencia, CA). As described in the kit’s instruction manual, 5 volumes of Buffer PB were initially mixed with 1 volume of the PCR product. The resulting solution was then transferred to a QIAquick® spin column and collection tube, and centrifuged for one minute at approximately 10,000 rpm in order to bind the DNA to a positively charged filter matrix. The waste in the collection tube was discarded and the spin column was reseated back in the tube. The bound DNA was then washed through the addition of 750 µL of Buffer PE to the column and two successive, one minute centrifuges at
10,000 rpm. The collection tube was discarded and the spin column containing the DNA template was placed in a clean 1.5 mL Eppendorf tube. Finally, to elute the DNA from the column matrix, 50 µL of Buffer EB was added to the center of the filter membrane, allowed to stand for 30 to 60 seconds, and centrifuged for one minute at 10,000 rpm.

The sequencing PCR mixture for each purified template was produced by M. Grose using the Big Dye® Terminator ver. 3.1 Cycle Sequencing Kit (Applied Biosystems) with the following components: 4.0 µL of Big Dye® Ready Reaction Mix (contains polymerase, Mg²⁺, dNTPs, and fluorescently-labeled ddNTPs); 2.0 µL of Big Dye® 5X Sequencing Buffer; 1.0 µL of a single primer (both 15976 FOR and 16401 REV were used in sequencing runs); and 4.0 µL of target DNA. The thermal cycle profile used for the PCR reactions was the following: 96°C for 30 seconds (1 cycle); 96°C for 10 seconds (25 cycles); 50°C for 5 seconds (25 cycles); 55°C for 4 minutes (25 cycles); and a hold at 4°C. Unused primers and Big Dye® reagents were removed with a filtration kit and then dried in a speed-vac. The PCR products were prepared for sequencing by adding 20 µL of ABI® Template Suppression Reagent, heating to 95°C for 3 minutes, and placing on ice. The prepared samples were then transferred to ABI® tubes and placed on the ABI® 3130xl 96-well loading tray. The genetic analyzer uses polymer solutions (e.g., POP-6) in its capillaries to create molecular sieves that separate ddNTP-terminated amplicons in an electrophoretic gradient. The machine’s 16-capillary system directs the DNA products to an optical window, where a 488 and 514.5 nm argon-ion laser excites the
terminator dyes, producing fluorescence emission wavelengths that differ for each specific ddNTP (Devor 2004). The wavelength spectra were delineated by a detector, and compiled in the computer program ABI® 3130 Data Collection ver. 3.0.

The HVS-I sequence output ranged from approximately np 16,020 to 16,400 and were aligned with BioEdit® software (Ibis Therapeutics, Carlsbad, CA) against a standard mtDNA sequence known as the Cambridge Reference Sequence (CRS) (Anderson et al. 1981). In order to avoid some of the major errors observed in published mtDNA sequences as classified by Bandelt et al. (2001) (e.g., base shifts, reference sequence bias, base misscoring) all sequence data were confirmed against the original electropherograms. Moreover, sequences that exhibit unusual HVS-I profiles relative to the known Eurasian mtDNA phylogeny (e.g., excessive transversions and inter-haplogroup parallelisms in network trees) were re-checked for potential errors.

For the Aleut samples that could not be firmly assigned to a particular mitochondrial haplogroup with HVS-I data, RFLP analysis was performed for diagnostic restriction sites in the coding regions of the mtDNA molecule. This method involves digesting PCR products with endonucleases, bacterial enzymes that cleave DNA at specific sequences, and identifying the presence or absence of cut sites by examining the sizes of the resulting restricted fragments by gel electrophoresis. The restriction sites characterized in this study include: + HaeIII 663 (defines haplogroup A); – AluI 5176 (haplogroup D); – AluI 7025 (haplogroup H); and + HinfI 12308 (haplogroup U). The primer pairs for PCR amplification are provided in Table
each one using the same thermal cycle profile as 15976 FOR/16401 REV (with the exception of the annealing temperatures). The PCR mixtures contained: 3.6 µL of 5X Flexi® PCR buffer (Promega); 3.1 µL of MgCl\textsubscript{2} (25 mM); 0.4 µL of dNTP mix; 0.2 µL of GoTaqTM polymerase (Promega); 0.3 µL of BSA; 1.6 µL of forward and reverse primers; 5.2 µL of ddH\textsubscript{2}O; and 3.6 µL of target DNA.

After amplification, the PCR products were digested for 10-18 hours at 37°C with the appropriate restriction enzymes (\textit{AluI}, \textit{HaeIII}, or \textit{HinfI}). The restriction reagents per sample are as follows: 2.0 µL of 10X buffer (provided by the manufacturer and varies according to restriction enzyme); 1.0 µL of 100X bovine serum albumin (BSA); 0.5 µL of enzyme (10,000 units per mL); 9.0 µL of ddH\textsubscript{2}O; and 7.5 µL of PCR product. The reagents were purchased from New England Biolabs (Beverly, MA). The digestion reactions were stopped with the addition of 5 µL of 3X loading dye. The restricted DNA fragments were then electrophoresed at 100 volts for approximately 2 hours on a 3% 3:1 NuSieve® agarose gel (ISC BioExpress) made with 1X TBE and stained with ethidium bromide.

Y-Chromosome Analysis

Male samples in this study were characterized for Y-chromosome short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs). For the Y-STR analysis, three PCR multiplexes designed by the author were used to amplify the eleven U.S. “core” Y-STR loci as recommended by the Scientific Working Group on DNA Analysis Methods (SWGDAM): DYS19, DYS385a/b, DYS389I, DYS389II,
Figure 18 Approximate locations of SWGDAM Y-STR loci

DYS390, DYS391, DYS392, DYS393, DYS438, and DYS439 (see Figure 18). The primers used in the analysis, along with sequence information for the Y-STR repeat motifs, are provided in Table 3. Also, the PCR mixtures and thermalcycle profiles for the three multiplexes are given in Appendix B. The PCR products were cleaned using the QIAquick® Purification kit and characterized by fragment length analysis on an ABI® 3130xl Sequencer at the KU DNA Sequencing Laboratory. The various Y-STR amplicons were tagged with two different fluorescent dyes in order to remove possible overlap in the ranges of allele sizes: HEX (DYS389I, DYS389II, DYS390, DYS393 and DYS438) and FAM (DYS19, DYS385a/b, DYS391, DYS392 and DYS439). The multiplex products for each Aleut sample were combined and diluted to approximately 1:100 before being directly loaded onto the ABI® 3130xl. Fragment
Table 3 Y-chromosome STR repeat sequences and primer information

<table>
<thead>
<tr>
<th>Y-STR Loci</th>
<th>Repeat Motif Sequences</th>
<th>Primer Sequences (5'→3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYS19</td>
<td>[TAGA]<sub>n</sub>ta[AGA]<sub>n</sub></td>
<td>FOR: CTACTGAGTTTCTGTATATGT
REV: ATGCGCATGATGAGAGCA</td>
</tr>
<tr>
<td>DYS385a,b</td>
<td>[GAAA]<sub>n</sub></td>
<td>FOR: AGCATGGTGACAGGCTA
REV: TGGGATCTAGGTAAGAAGCTG</td>
</tr>
<tr>
<td>DYS389I</td>
<td>[TCTG]<sub>n</sub>[TCTA]<sub>n</sub></td>
<td>FOR: CCAACCTCTCTGTAATATCTAT
REV: TCTTATCTGCACCC</td>
</tr>
<tr>
<td>DYS389II</td>
<td>[TCTG]<sub>n</sub>[TCTA]<sub>n</sub>N<sub>28</sub>[TCTG]<sub>n</sub>[TCTA]<sub>n</sub></td>
<td>FOR: CCAACCTCTGTAATATCTAT
REV: TCTTATCTGCACCC</td>
</tr>
<tr>
<td>DYS390</td>
<td>[TCTG]<sub>n</sub>[TCTA]<sub>n</sub>[TCTG]<sub>n</sub>[TCTA]<sub>n</sub></td>
<td>FOR: TATATTTACACATTTTTAGGCC
REV: TGAGAAAATGGAACAGCATG</td>
</tr>
<tr>
<td>DYS391</td>
<td>[TCTA]<sub>n</sub></td>
<td>FOR: CTAATCAATCACTACACACCA
REV: GATCCTTTGTTGCTGCTG</td>
</tr>
<tr>
<td>DYS392</td>
<td>[TAT]<sub>n</sub></td>
<td>FOR: GCTATTAAAATCTGTTTAAAAACAA
REV: AGACCCAGGATGAGCATG</td>
</tr>
<tr>
<td>DYS393</td>
<td>[AGAT]<sub>n</sub></td>
<td>FOR: GTGTTCTCTACTTGTTCTACA
REV: AACCTCAATCCAAATAAGG</td>
</tr>
<tr>
<td>DYS438</td>
<td>[TTTTC]<sub>n</sub></td>
<td>FOR: TGGGGAATAGTTGACACGGTA
REV: GTGCGAGACCCCTATAATCC</td>
</tr>
<tr>
<td>DYS439</td>
<td>[GATA]<sub>n</sub></td>
<td>FOR: TCTGGAATGCGTACTTCAGGTTT
REV: GCCTGCGATGGAATCTTTT</td>
</tr>
</tbody>
</table>

lengths were compiled in the program ABI[®] 3130 Data Collection ver. 3.0 and standardized against the known Y-STR profile of Dr. Alan Redd.

The resulting Aleut Y-STR haplotypes were tentatively assigned to Y-chromosome haplogroups using the online database at www.ysearch.org, which contains the Y-STR and Y-SNP profiles of individuals characterized by Genealogy by Genetics, Ltd, a company that provides genetic testing services to the general public for the purpose of determining “ancestral origins”. Based on the results of this cross-check, Y-SNP analyses were performed to verify all of the haplogroup assignments. The Y-SNP biallelic markers were typed by direct sequencing of the DNA region encompassing the polymorphism. The PCR primers and annealing temperatures are
listed in Table 4. The thermal cycle protocol that was used in the Y-SNP analysis is as follows: 94°C for 1 minute (1 cycle); 94°C for 40 seconds (35 cycles); primer annealing temperature for 30 seconds (35 cycles); 72°C for 1 minute (35 cycles); 72°C for 5 minutes (1 cycle); and a hold at 4°C. The resulting DNA templates were cleaned using QIAquick® spin columns and sequenced by Dr. Grose at the KU DNA Sequencing Laboratory (see previous section regarding HVS-I sequencing for a description of these methodologies).

Table 4 Primers for Y-SNP analysis

<table>
<thead>
<tr>
<th>Y-SNP (Defined Haplogroup)</th>
<th>Primer Sequences (5’→3’)</th>
<th>Annealing Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P39 (Hap C)</td>
<td>FOR: AGAAGGACTGCCTCAGAATGC REV: GTTCGAAAGGGGATCCCTGG</td>
<td>60</td>
</tr>
<tr>
<td>P2 (Hap E3)</td>
<td>FOR: GATGCAATGAGAAAGAACT REV: CTAAAAACTGGAGGGAGAAA</td>
<td>62</td>
</tr>
<tr>
<td>M170 (Hap I)</td>
<td>FOR: TGCTTCACACAAATGCCGTTT REV: CCAATTAACCTTCACCATTTAAAGACC</td>
<td>60</td>
</tr>
<tr>
<td>M253 (Hap I1a)</td>
<td>FOR: GCAACAATGAGGGTTTTTTGG REV: CAGCTCCACCTCTATGCGTTT</td>
<td>62</td>
</tr>
<tr>
<td>12f2 (Hap J)</td>
<td>FOR: CTTATATCTGGAAAAATGTGG REV: ATGCCGGATCTTTACACTTTG</td>
<td>64</td>
</tr>
<tr>
<td>M231 (Hap N)</td>
<td>FOR: TGAAGGACATGAGATGACACA REV: TAAATGCCATGATGCTAGAA</td>
<td>64</td>
</tr>
<tr>
<td>P36 (Hap Q)</td>
<td>FOR: TAAATGTCAGTATGACACA REV: TAAATGCCATGATGCTAGAA</td>
<td>62</td>
</tr>
<tr>
<td>M3 (Hap Q3)</td>
<td>FOR: TAATCGAGTCTTCCCAAGCA REV: AAAAAATGTGAAATCTGGAATTAAAGG</td>
<td>60</td>
</tr>
<tr>
<td>SRY10381b (Hap R1a)</td>
<td>FOR: CCACACCTTCTTCATC REV: AAAAAATGCCGTAAAAAT</td>
<td>55</td>
</tr>
<tr>
<td>M269 (Hap R1b)</td>
<td>FOR: CTAAGAGACTGAGTACCTTTCCTTTGG REV: AATAAGTGGTCATTTACAG</td>
<td>58</td>
</tr>
</tbody>
</table>

Analytical Methods

Measures of Genetic Diversity

Three different diversity measures were calculated for the HVS-I and Y-chromosome data using the computer program Arlequin ver. 3.1 (Schneider *et al.* 2000): gene diversity (also referred to as haplotype diversity or heterozygosity for diploid genetic systems), and two theta estimators, \(\theta_S\) and \(\theta_\pi\). Gene diversity is defined by the equation

\[
H = \left(\frac{n}{n-1} \right) \left(1 - \sum_{i=1}^{k} p_i^2 \right),
\]

with \(n\) representing sample size and \(p_i\) the frequency of the \(i\)th haplotype (Nei 1987). This measure is a relatively stable statistic that is considered to be less responsive to recent demographic events and random genetic drift (Nicholson *et al.* 2002, Helgason *et al.* 2003).

For haploid genetic systems, such as mtDNA and Y-chromosome markers, the parameter \(\theta\) equals \(2N_e\mu\), where \(N_e\) is effective population size and \(\mu\) is mutation rate. The \(\theta_\pi\) estimator, originally derived by the Infinite Sites Model (ISM) from classical population genetics (Tajima 1983), is equivalent to the mean number of pairwise differences between sequences (\(\pi\)) (it is also referred to as MPD). This measure is defined as

\[
\theta_\pi = \sum_{i=1}^{k} \sum_{j<i} p_i p_j d_{ij},
\]
where d_{ij} is the number of nucleotide differences between haplotypes i and j, k is the number of haplotypes in the data set, and P is haplotype frequency. This differs from the estimator θ_S that is calculated by the term

$$\theta_S = \frac{S}{\sum_{i=1}^{k} \frac{1}{i}},$$

(4)

where S is the number of observed variant sites (Watterson 1975). Thus, the two θ indices are derived from different aspects of molecular data, and as a consequence provide alternative perspectives on the impact of past evolutionary processes on genetic variation (see below).

Neutrality Test Statistics

The neutrality tests, Tajima’s D and Fu’s F_S, were calculated in Arlequin ver. 3.1 to determine whether HVS-I sequence data deviate from genetic variation patterns expected under the null evolutionary model (i.e., constant population size and absence of natural selection). Coalescent theory, which is a powerful modeling tool used for hypothesis-testing in population genetics (Kingman 1982, Hudson 1983), has shown that populations undergoing size expansion will have gene genealogies that exhibit “star-like” topologies characterized by long external branches and a compacted internal structure (Slatkin and Hudson 1991). As a consequence, the genetic diversity profiles for expanding populations will be distorted by an excess of rare variants or
singleton located on the long external branches, which has different implications for
the two \(\theta \) indices described in the previous section. Due to the importance of the total
number of sequence variants (\(S \)) in its calculation, \(\theta_S \) values will be significantly
inflated from the increase of low-frequency, unique polymorphisms in a sample data
set. On the other hand, \(\theta_\pi \) represents the mean pairwise differences between all
sequences and places equal weight on all haplotypic polymorphisms and thus is more
heavily influenced by the number of intermediate- and high-frequency variants
located on the short internal branches. Recognizing this salient difference between
the two \(\theta \) measures as a potential signal for departure from the null model, Tajima
(1989a, b) created the following test statistic:

\[
D = \frac{\theta_\pi - \theta_S}{\sqrt{\text{Var}(\theta_\pi - \theta_S)}}.
\]

Therefore, if population growth generates an excess of low-frequency mutations, then
expanding populations should have \(\theta_S \) values that are greater than its corresponding \(\theta_\pi \)
values, resulting in negative \(D \) scores (see Figure 19). Conversely, population
bottlenecks tend to create gene genealogies that are highly fragmented with deep
internal branches that are characterized by intermediate- and high-frequency variants,
which will inflate \(\theta_\pi \) relative to \(\theta_S \) and produce positive \(D \) scores.

Fu’s \(F_S \) (1997) is another neutrality test statistic that derives from Ewens’
haplotype frequency distribution (Ewens 1972) and evaluates the probability of a
random neutral sample having a number of alleles (\(K \)) no fewer than the observed
Figure 19 Concept of Tajima’s D neutrality test statistic

number (k_{obs}) given θ_x. The expected number of haplotypes (K) in a sample of size n is calculated as

$$E(K) = 1 + \frac{\theta}{\theta + 1} + \frac{\theta}{\theta + 2} + \ldots + \frac{\theta}{\theta + (n-1)}.$$

(6)

From this formula, Ewens derived the expected distribution of haplotype frequencies at equilibrium given K and n as

$$\Pr(n_1, n_2, \ldots, n_K \mid K, n) = \frac{n!}{K! l_K n_1 n_2 \ldots n_K},$$

(7)

where l_K is a Stirling’s number of the first kind (effectively a normalizing constant). Based on this probability, Fu’s F_S statistic is defined as

$$F_S = \ln \left(\frac{S'}{1 - S'} \right),$$

(8)

where $S' = \Pr (K \geq k_{\text{obs}} \mid \theta = \pi_{\text{obs}})$. A negative F_S score indicates the genetic effects of a population expansion, which stems from an excess of alleles (mostly singleton
haplotypes) contributing to the reduction of the S' term. Compared to Tajima’s D, the F_S statistic is more sensitive to the effects of population growth (Ramos-Onsins and Rozas 2002). The Arlequin program tests the significance of both statistics by generating random samples under selective neutrality and population equilibrium using a coalescent simulation algorithm (Hudson 1990), with P-values representing the proportion of random statistics less or equal to the observation.

Median-Joining Network Analysis

The evolutionary relationships of Aleut HVS-I and Y-STR haplotypes were displayed by a phylogenetic method known as Median-Joining (MJ) network analysis (Bandelt et al. 1995, 1999). The advantage of this type of cluster analysis is it allows for cycles or reticulations within evolutionary pathways in order to accommodate the elevated mutation rates and corresponding homoplasy of particular genetic systems, such as the HVS-I and Y-STR loci (Kayser et al. 2000, Sigurgardóttir et al. 2000, Pakendorf and Stoneking 2005). Networks are similar to other kinds of phylogenetic trees in that both are connected graphs composed of nodes (i.e., populations or haplotypes) and links (i.e., evolutionary pathways). The key distinction is that the links are not unique paths, but represent cycles in the network diagrams. This feature creates a degree of fluidity that enables networks to present “all most parsimonious trees” in a single diagram by distinguishing between unresolvable and resolvable character conflicts, and then highlighting the unresolvable conflicts in the form of reticulations that can then be interpreted as the product of either homoplasy or another molecular issue (e.g., recombination, sequence errors). Moreover, median
networks provide a systematic method for reconstructing hypothetical unsampled or extinct ancestral haplotypes in order to shorten the overall length of a network.

There are four different types of networks: Minimum Spanning Networks (MSN); Quasi-Median (QM); Reduced Median (RM); and Median-Joining (MJ). The MSN method creates networks that are embedded by all possible minimum spanning trees (i.e., the sum of distances between linked sequences is minimal) based on Kruskal’s (1956) algorithm. It is the simplest to compute, but is of little direct use for representing genetic data, since minimum spanning trees do not reflect the most parsimonious phylogeny. However, MSNs serve as the starting point for all higher level networks. QM networks utilize an unconstrained median operation that generates all optimal trees, as well as numerous suboptimal ones, and is generally too complex to be visualized in three-dimensional space. For the two remaining network methods, the main difference is that RM networks are designed for binary data (e.g., RFLPs, SNPs), whereas the MJ approach can handle multi-state data (e.g., DNA sequences, microsatellites). Thus, the MJ method was applied to HVS-I and Y-STR data for the Aleuts and comparative populations (note, MJ networks were constructed for individual haplogroups, which were identified from RFLP and Y-SNP information).

The assumptions of the MJ method are that ambiguous states are infrequent and that recombination is absent (Bandelt et al. 1999), two conditions that are largely met by mtDNA and the non-recombining portion of the Y chromosome (NRY). The process of constructing a MJ network is accomplished by a five-step algorithm after
specifying the value of the tolerance parameter, $\varepsilon \geq 0$. (i) Create a matrix of genetic distances between sequences by simply counting the number of site differences. (ii) Determine the links between the sequence types which describe the (ε – relaxed) minimum spanning network. (iii) Iteratively remove from the set obsolete sequence types that are not among the sampled sequences. If obsolete sequences are detected, the second step is repeated. (iv) Aiming for parsimony, consensus sequences (i.e., median vectors, designated as X) of three mutually close sequences (U, V, and W) are added to the minimum spanning network. These median vectors can be biologically interpreted as either extant unsampled sequences or extinct ancestral sequences. Feasible sequence triplets contain two pairs from U, V, and W that are linked, and at least one median vector X that is not a current sequence type. If there are no feasible triplets, then the algorithm goes to the final step (v), the construction of the final network. Otherwise, the minimum connection cost, λ, is calculated for all feasible triplets. The median vectors are then generated at a connection cost level that does not exceed $\lambda + \varepsilon$. The set of current sequence types are then expanded with these new median vectors and the algorithm process goes back to step (i). The MJ networks presented in this study were produced using Network ver. 4.5 (Fluxus Engineering, Suffolk, England) and, in the case of the HVS-I haplotypes, redesigned with the aid of previously published mtDNA networks for Native American and Asian populations (Derbeneva et al. 2002, Kivisild et al. 2002, Yao et al. 2002, Starikovskaya et al. 2005, and Zlojutro et al. 2006).
Neighbor-Joining Trees

At the level of the population, phylogenetic trees were constructed from genetic distance matrices for HVS-I and Y-STR data using the Neighbor-Joining (NJ) algorithm. This clustering approach was used because it does not assume an evolutionary clock (i.e., the tree is unrooted) and produces more accurate results when closely related populations, such as human groups, are analyzed (Saitou and Nei 1987). Using Arlequin ver. 3.1, the HVS-I data for 17 Aleut and Beringian populations were converted into a genetic distance matrix using Nei’s intermatch-mismatch index (Nei and Li 1979):

\[
D_A = d_{ij} - \frac{(d_i + d_j)}{2},
\]

(9)

where \(d_{ij}\) is the average number of nucleotide differences between populations \(i\) and \(j\), and \(d_i\) and \(d_j\) are the average pairwise differences within populations \(i\) and \(j\). For the Y-STR haplotypes, \(R_{ST}\) distances (sum of squared size differences) were computed for 13 Aleut and comparative European populations. The squared number of repeat differences between any two haplotypes (\(x\) and \(y\)) is given as

\[
d_{xy} = \sum_{i=1} (a_{xi} - a_{yi})^2,
\]

(10)

where \(a_{xi}\) is the number of repeats of the microsatellite for the \(i\)th locus and when estimating population differentiation represents an analog of Slatkin’s \(R_{ST}\) (1995).
Figure 20 Schematic of phylogeny construction by the Neighbor-Joining algorithm
Initially, all populations (A-H) are related by a single star-like phylogeny. Then, the
pair of populations that gives the shortest overall tree (lowest value for S) is selected
and combined into a single taxon (for example, populations D and E in the phylogeny
above). The genetic distances from the composite grouping to all other populations is
recalculated and the process is repeated until all interior branches have been found
(Jobling et al. 2004).

The NJ algorithm begins the tree-building process by assuming that all
populations are related to one another by a star phylogeny. For a star phylogeny of N
populations, the sum of the branch lengths is

$$S_0 = \sum_{i \neq j} \frac{D_{ij}}{(N-1)} \tag{11}$$

where D_{ij} is the distance between populations i and j based on the computed genetic
distance matrices. Next, the algorithm determines which pair of populations, when
considered as a single entity (i.e., joined neighbors), produces minimum branch
lengths (S_{ij}’s) for the entire tree. After the first pair of neighbors is found, the process
of considering all possible pairings is repeated and the joined neighbors are not
rearranged thereafter. The distance from any one population (k) to the pair of
neighbors (i and j) is the average of the two distances: $\frac{1}{2} (d_{ik} + d_{jk})$ (see Figure 20).

Thus, the basic principle of the NJ method is to minimize the total evolutionary
distance in the tree (Hartl and Clark 1997). The NJ phylogeny was constructed using the executables NEIGHBOR and DRAWTREE in the PHYLIP ver. 3.6 software package (Felsenstein 1993). The robustness of the trees were tested by generating cophenetic matrices derived from the nested population clusters and comparing them to the original genetic distance matrices by Mantel tests (1967).

Multidimensional Scaling

Since a tree representation of genetic distances may be misread as a succession of evolutionary splits, which is inappropriate for populations below the species level, multidimensional scaling (MDS) was performed using the software package NTSYS (Applied Biostatistics, Inc., Setanket, NY) on D_A and R_{ST} distance matrices for HVS-I and Y-STR data, respectively, in order to provide a visual representation of genetic relationships in two-dimensional space. This ordination technique presents the dissimilarity of n objects in a k-dimensional space so that the inter-point distances in the projected space correspond as well as possible to the observed distances in the original matrix (Kruskal 1964a, b). MDS differs from a standard principal component analysis (PCA) in that instead of requiring that a projection of points explains a maximum percentage of the variation found, MDS focuses on the distances in the k-dimensional space having a monotone relationship to the original distances. As a consequence, the smaller inter-point distances tend to be preserved more accurately in MDS than in PCA because of the greater weight given to larger distances in PCA due to the maximization of variances. Hence, this property
is advantageous for characterizing the genetic relationships of regional populations, such as the Aleuts and neighboring Beringian peoples.

The MDS algorithm begins with an initial configuration for the points (i.e., populations) that were produced by PCA, and compute distances, \(d'_{ij} \), between all pairs of points, \(ij \), and compare them to the original distances, \(d_{ij} \). A monotone function, \(d'_f \), is fitted to these two variables and the deviations from the function are computed as normalized sums of squared deviations. A statistic called stress measures the goodness-of-fit of the distances in the projected space to the monotone function of the original distances:

\[
\text{Stress} = \sqrt{\frac{\sum (d^*_{ij} - d'_f)^2}{\sum d^*_{ij}^2}}. \quad (12)
\]

The positions of the projected points are then adjusted to reduce this value, from which stress is then recalculated, and the process repeated until the maximum number of specified iterations is reached (\(n = 100 \)). The final MDS distance coordinates were plotted using Minitab 14.0 (Minitab, Inc., State College, PA).

R-Matrix Analysis

Using the frequencies of mtDNA and Y-chromosome (sub)haplogroups as identified by diagnostic HVS-I and Y-SNP sites, an R-matrix of genetic similarity and dissimilarity between populations was computed with the program ANATANA (Harpending and Rogers 1984). The R-matrix is akin to a variance-covariance matrix.
that measures deviations from mean allele frequencies (Harpending and Jenkins 1973). The elements are given as

\[r_{ij} = \frac{(P_i - \overline{P})(P_j - \overline{P})}{\overline{P}(1 - \overline{P})}, \] (13)

where \(r_{ij} \) is the kinship coefficient, \(P_i \) and \(P_j \) are the allele frequencies (or in this case, haplogroup frequencies) for populations \(i \) and \(j \), respectively, and \(\overline{P} \) is the weighted mean frequency for all populations. The final \(R \)-matrix of kinship coefficients is averaged over all haplogroups in the genetic data set and can be rewritten as the product of a \(Z \)-matrix of standardized variables and its transpose: \(R = ZZ^T \). The \(R \)-matrix was then transformed by PCA using Minitab ver. 14.0 so that the variation explained by the first two eigenvectors was maximized. The results are displayed as a two-dimensional plot of the eigenvalues scaled by the square root of the corresponding eigenvector, producing a genetic map that orients populations with the greatest degree of genetic similarity closest together.

In order to assess the relative contribution of the haplogroup variables to the distribution of populations in the two-dimensional space, biplots of the population coefficients and haplogroup scores corresponding to the covariance matrix \(S = Z^T Z \) were performed. The eigenvectors for the \(S \)-matrix were directly computed by multiplying the \(R \)-matrix eigenvectors \((E^T) \) by the \(Z \)-matrix (Harpending and Jenkins 1973). And as a final note, \(R \)-matrix analysis is most informative when multiple loci
are examined, and thus a degree of caution needs to be taken when interpreting the plots generated for the HVS-I data.

Heterozygosity versus \(r_{ii} \)

To assess the gene flow experienced by these populations, the \(r_{ii} \) coefficients (i.e., diagonal elements of the \(R \)-matrix representing the genetic distance of a population from the centroid) was estimated by calculating the mean value for the following expression:

\[
 r_{ii} = \frac{(P_i - \bar{P})^2}{\bar{P}(1 - \bar{P})},
\]

(14)

where \(r_{ii} \) is the distance from the centroid for the \(i \)th population for a particular (sub)haplogroup, \(P_i \) is the frequency of the haplogroup within the \(i \)th population and \(\bar{P} \) is the mean frequency for the entire population data set. The population heterozygosities or gene diversities (see Equation 2) were plotted against the corresponding \(r_{ii} \) scores with the program Minitab ver. 14.0. According to Harpending and Ward (1982), a linear relationship is expected between heterozygosity and genetic distance if migration declines monotonically with distance as conceived in Sewall Wright’s island model (1943), in which the heterozygosity of the \(i \)th population should equal the heterozygosity of the overall population mean of haplogroup frequencies multiplied by \((1 - r_{ii})\). Thus, deviations from this simple relationship can be interpreted as evidence for either increased gene flow or greater
population isolation, depending upon where a population lies in respect to this theoretical relationship.

Mismatch Distributions

In addition to the neutrality test statistics, demographic episodes of population expansion can be detected in genetic data by identifying particular signatures in the distribution of pairwise sequence differences, also known as mismatch distributions (Slatkin and Hudson 1991, Rogers and Harpending 1992).

Under the Infinite Sites Model (ISM), Watterson (1975) derived the probability of observing i differences between two sequences in an equilibrium population as

$$F_i(\theta) = \left(\frac{1}{\theta+1}\right) \left(\frac{\theta}{\theta+1}\right)^i.$$ \hspace{1cm} (15)

Rogers and Harpending (1992) found that the equilibrium distribution based upon Watterson’s theoretical formula poorly fit the mismatch data observed in global populations (Cann et al. 1987), producing a smooth decline instead of a unimodal distribution that is characteristic of most populations. A number of possibilities were considered as a potential source for this lack of concordance, including sampling error, failure of the ISM, and selection. However, the authors demonstrated in their seminal paper that variation in population size is the likely factor responsible for creating mismatch “waves”.
In an earlier paper, Li (1977) derived the probability of observing \(i \) differences between two sequences taken at random in a population that has instantaneously expanded from \(N_0 \) to \(N_1 \) as

\[
F_i(\theta_0, \theta_1, \tau) = F_i(\theta_1) + e^{-\frac{\theta_0 + \tau}{\theta_1}} \times \sum_{j=0}^{i} \frac{\tau^j}{j!} [F_{i-j}(\theta_0) - F_{i-j}(\theta_1)],
\]

where \(\theta_0 = 2N_0\mu, \theta_1 = 2N_1\mu, \) and \(\tau = 2\mu t \) (\(t \) is post-expansion time in generations).

Simulating distribution curves with Li’s expression, Rogers and Harpending (1992)

![Graph](image)

Figure 21 Coalescent simulation of gene genealogy and corresponding mismatch distribution (Rogers 2004) Coalescent simulation based on the following growth parameters: \(\theta_0 = 1, \theta_1 = 100, \) and \(\tau = 7. \)
found that unimodal waves are generated, moving from lower to higher pairwise
difference values \((i)\) when \(\tau\) was increased (see Figure 21). The authors argued that
because most coalescent events (i.e., when two or more alleles originate from the
same parent) in an expanding population are clustered over a short period, the number
of generations separating pairs of sequences, along with the expected number of
mutations, will be fairly constant. The variation in the number of pairwise
differences is due to the variance of the Poisson mutation process, but the overall
distribution will be unimodal with a variance approaching the mean. Furthermore,
Rogers and Harpending note in their paper that population size equilibrium would
likely produce multimodality because the gene genealogies for static populations, as
simulated by the coalescent algorithm (Slatkin and Hudson 1991, Rogers 2004),
exhibit long internal branches that create significant fragmentation of the haplotypic
profile.

Mismatch distributions were determined for Aleut HVS-I data for three
haplogroups (A3, A7 and D2) using Arlequin ver. 3.1 and graphically displayed in
Microsoft Excel 2003.

Estimates of Coalescence Time

The timing of coalescence (i.e., the age of the most recent common ancestor
or MRCA) of Aleut mtDNA subclades was estimated by computing the \(\rho\) statistic
using the program Network ver. 4.5. The \(\rho\) statistic is the average pairwise difference
between a cluster of sequences to a designated root or basal sequence within a median
network and calibrated to a rate of 20,180 years per mismatch difference
(alternatively, this rate equals 0.12 mutations per million years per nucleotide) (Forster et al. 1996; Saillard et al. 2000). A key advantage of this statistic over other methods of coalescence estimation (e.g., τ parameter from mismatch analysis) is its relative insensitivity to mutation rate heterogeneity (i.e., mutation hotspots), which is especially problematic for the HVS-I where 29 sites have been found to mutate at about 12 times the rate of other sites in the same region (Schneider and Excoffier 1999). However, since ρ is derived from haplotypic networks that are capable of resolving identical site variants as either independent mutation events or the products of common ancestry, this potential problem is mitigated.

The mutation rate used in the calibration of coalescent dates derives from phylogenetic considerations of mtDNA subclade A2 and the timing of the end of the last glacial period in northern North America. According to Forster et al. (1996), the diversity of haplogroup A2 in Eskimo and Na-Dene populations has accumulated since the end of the Younger Dryas glacial relapse approximately 11,300 years ago when warmer circumarctic temperatures prevailed and allowed for considerable population growth by indigenous peoples. The mutation rate is comparable to other estimates based on human and chimpanzee divergences (Ward et al. 1991, Hasegawa et al. 1993, Tamura and Nei 1993). However, HVS-I mutation rates calculated from direct observations of mutations arising in families or deep-rooted pedigrees have produced estimates that are approximately 5-fold higher than the rates based on phylogenies (generally around 0.5 mutations per million years per nucleotide) (Pakendorf and Stoneking 2005) and are supported by coalescent simulation analysis.
of HVS-I data for populations with well-known demographic histories (Zlojutro et al. 2008). Many explanations have been offered to account for these differences, including paternal mtDNA leakage and recombination, mutation rate heterogeneity, and the effects of selection and/or genetic drift (Macaulay et al. 1997, Siguroardóttir et al. 2000, Hagelberg 2003, Howell et al. 2003). Interestingly, Ho et al. (2005) have described an exponential decay in the HVS-I mutation rate using Bayesian methods, suggesting that for questions concerning recent history (e.g., forensics or biological relationships between supposed kin) the pedigree-based rate would be most appropriate. Clearly, this discrepancy in mutation rates has important implications for reconstructions of human evolutionary history based on mtDNA variation, and thus caution is required when interpreting the results, noting that the time estimates would be approximately 5-fold lower using the pedigree-based rates.

Delaunay Triangulation

In order to identify areas of abrupt genetic change within the Aleutians and surrounding environs, a geographic network of sampling locations was obtained by constructing Voronoï tessellations and deriving Delaunay triangulations from them. The Voronoï diagrams are two-dimensional lattices composed of polygons (see Figure 22) that are defined by having all possible points inside the polygons closest to its centroid (i.e., the location of the sampled population) than to any other neighboring centroids (Voronoï 1908). Furthermore, each vertex of a Voronoï polygon is located at the intersection of three edges, such that the vertex will be equidistant from three sampled locations represented by the centroids of the
Figure 22 Example of Voronoï tessellation

Figure 23 Circumcircle property of Delaunay triangulation
surrounding polygons. As a result of this characteristic, the vertices will become the centres of circumcircles formed by three centroid points, as well as correspond to the intersection of medians for triangles that connect these points (see Figure 23). A Delaunay triangulation network is obtained from creating all the triangles that have a circumscribed circle whose centre is a Voronoï vertex (Brassel and Reif 1979) and thus connecting all adjacent points on a map (see Figure 24). Delaunay triangulations were computed in the programs Barrier ver. 2.2 (Manni et al. 2004) and Alleles in Space ver. 1.0 (Miller 2005), which served as an initial step for methodologies investigating genetic differentiation in geographic space (see the following sections).
Monmonier’s Maximum-Difference Algorithm

Based on a Delaunay triangulation connectivity network, Monmonier’s (1973) maximum-difference algorithm was used to identify genetic boundaries, namely geographic zones where differences between populations are largest. The algorithm was applied in the program Barrier ver. 2.2 with the following three step procedure: (1) link each edge of the Delaunay triangulation to its corresponding pairwise distance value from a genetic distance matrix (either D_A for HVS-I data or R_{ST} for Y-STR haplotypes); (2) start a boundary at the edge with the largest genetic distance and proceed across adjacent edges whose distance value is higher; and (3) continue until the boundary has reached either the limits of the triangulation map or another

Figure 25 Example of barrier construction using Monmonier’s algorithm
The barrier (red line) starts at the triangulation edge with the largest genetic distance (between populations 1 and 2). Next, the edge between populations 2 and 3 has a larger genetic distance (D_{23}) than the one between populations 1 and 3 (D_{13}), and therefore the algorithm extends the barrier across this edge. This procedure is continued until the barrier reaches the limit of the triangulation network between populations 5 and 6.
preexisting boundary (Manni and Guérard 2004). An example of a Monmonier barrier is shown in Figure 25. The significance of the barriers were not tested, however it is expected to decrease with the rank of the boundaries. In principle, barrier construction can be continued until all edges of a triangulation network are crossed and thus the number of barriers identified were informed by population genetic considerations and ultimately should be viewed as an exploratory tool for understanding genetic differentiation in relation to geographic space.

Genetic Landscape Interpolation

Interpolation of pairwise genetic distances was performed as a means of further visualizing spatial patterns of genetic diversity. Using the program Alleles in Space (AIS) ver. 1.0, a three-dimensional surface plot was generated, where the x and y axes correspond to geographical locations and the z axis (i.e., surface heights) represents genetic distance residuals derived from the linear regression of all pairwise genetic distances and geographic distances (Manni et al. 2004). Based on a Delaunay triangulation connectivity network, genetic distance residuals between sampling locations are placed at the midpoints of each connection and surface heights are interpolated for all of locations overlaid on a uniformly spaced rectangular grid (x, y). This is accomplished by an Inverse Distance weighted interpolation procedure (Watson and Phillips 1985, Watson 1992), in which inferred genetic distances, Z, is obtained for each of the $i = 1$ to n genetic distance residuals (Z_i) assigned to the midpoints of the connectivity network as
\[Z = \frac{\sum_{i=1}^{n} w_i \cdot Z_i}{\sum_{i=1}^{n} w_i} \] \hspace{1cm} (17)

where \(w_i \) is a weighting function applied to each \(Z_i \) that is inversely proportional to the distance between a grid coordinate \((x, y)\) and the actual geographical coordinates \((X_i, Y_i)\) used to construct the Delaunay network. The weighting function is computed as

\[w_i = \left[(X_i - x)^2 + (Y_i - y)^2 \right]^{\frac{a}{2}}, \] \hspace{1cm} (18)

when \(X_i \neq x, Y_i \neq y \) (the function is one when the coordinates are equal) and \(a \) is a distance weighting value (Miller 2005).

Spatial Analysis of Molecular Variance

The analysis of molecular variation (AMOVA) has been widely used for the hierarchical analysis of molecular differences between haplotypes in a set of sampled populations (Excoffier et al. 1992). Using a genetic distance matrix that summarizes haplotypic differences, the following equation is used to compute the total sum of squares:

\[SSD_{(Total)} = \frac{1}{2N} \sum_{j=1}^{N} \sum_{k=1}^{N} \delta_{jk}^2, \] \hspace{1cm} (19)
where N is the total number of haplotypes and δ_{jk}^2 is the genetic distance between jth and kth haplotypes. Based on the hierarchical structure being investigated, the total SSD can be partitioned into SSD among groups and SSD within groups. From these results, F-statistic analogs, known as Φ-statistics, can be calculated and reflect the proportion of variation attributable to the hierarchical divisions.

Physical, ecological, linguistic and/or cultural criteria are typically used to define a priori groups of populations to be tested in this manner. But when no obvious criteria exist for defining groups of populations, the investigation of genetic structure may be problematic. Several methodologies have been developed to detect the presence of genetic barriers in population genetic data sets, including Monmonier’s maximum-difference algorithm and genetic surface interpolations, which are discussed above. However, these approaches have important limitations. The Monmonier algorithm can lead to the identification of weak genetic barriers due to the directional and incremental nature of the technique (i.e., fixation at a local optimum solution). And when the sampling points are not regularly spaced, the interpolation process can produce spurious discontinuities, especially for PC maps based on allele frequency data (Sokal et al. 1999).

Faced with these limitations, Dupanloup et al. (2002) developed a new approach – spatial analysis of molecular variance (SAMOVA) – for defining groups of populations that are geographically homogeneous and maximally differentiated from each other, and in the process identifying genetic barriers between the inferred groups. The algorithm is composed of the following steps: (1) a two-dimensional
space of Voronoï polygons are constructed from the geographical location of the n population samples; (2) an arbitrary partition of the n populations into K groups (which is selected a priori) is initially chosen at random; (3) the genetic barrier(s) between the K groups are identified as edges of the Voronoï polygons; (4) the F_{CT} index associated with the K groups is computed; (5) an edge on a given barrier is selected at random; (6) one of the two populations located at the selected edge is randomly assigned to the group on the opposite side of the barrier; (7) the genetic barrier is updated and the new F_{CT^*} value is computed; and (8) the new structure is accepted with the probabilities

$$P = 1 \quad \text{if } F_{CT^*} \geq F_{CT}$$

$$P = e^{(F_{CT^*} - F_{CT})S} \quad \text{if } F_{CT^*} < F_{CT}$$

where S is the number of times steps 5-8 are repeated (set to 10,000) and the constant A is 0.9158 such that the probability P defined above is equal to 1% if the difference between F_{CT} and F_{CT^*} at the 10,000th iteration is equal to 0.001. This means that there is a probability of 1% to accept a slightly worse F_{CT} value at the end of the process. To ensure that the final configuration of K groups is not affected by a given initial configuration, the process is repeated multiple times, each time from a different initial partition of the n samples into K groups as determined by the preliminary steps 1-4. Simulations showed that the SAMOVA algorithm indeed finds maximally differentiated groups that do not always correspond to predefined genetic barriers.
SAMOVA analyses were performed on HVS-I data (D_A distances) for Aleut and neighboring Beringian populations using the computer program SAMOVA ver. 1.0 (Dupanloupe et al. 2002). The number of population groupings (K) investigated ranged from two to seven, with the process repeated 100 times for each run.

Mantel Test

The Mantel test is a method for testing the significance of the correlation between two or more matrices, and was used in this study to investigate the relationship between genetics and geography of Aleut and surrounding Beringian populations for HVS-I and Y-STR haplotypic data sets. For a test involving two square matrices, $X = \{x_{ij}\}$ and $Y = \{y_{ij}\}$, the correlation is classically defined as

$$r_{XY} = \frac{SP(X, Y)}{\sqrt{SS(X)SS(Y)}},$$

(20)

where SP is the sum of products for X and Y, and SS is the sum of squares for the individual matrices (Mantel 1967). Using the program Arlequin ver. 3.1, Mantel tests were performed on D_A and R_{ST} matrices with geographic distance matrices (km) computed in GEOG ver. 2.1 (Relethford 2000). The significance of the correlations was determined by a permutation procedure of the original matrices and the computation of the following quantity:

$$Z_{XY} = X \ast Y = \sum_{i=1}^{N} \sum_{j=1}^{i} x_{ij} y_{ij}.$$

(21)
The permutated Z_{XY}^{*} quantities ($n = 1000$) were compared to the original Z_{XY} to obtain P-values (Smouse et al. 1986).

Spatial Autocorrelation

The degree of dependency of HVS-I haplotypes in geographic space (i.e., whether or not haplotypes in nearby populations are more similar than haplotypes in more distant populations) was quantified for Aleut and Beringian populations by spatial autocorrelation. Different patterns of nonindependence are expected for different types of human genetic variation, such as isolation by distance and regional clines. This analytical method requires pooling sampled localities within defined geographic distance classes (km) and calculating measures of genetic similarity that varies between 1 (strong positive autocorrelation) and -1 (strong negative autocorrelation) for each distance class (Jobling et al. 2004). Classic spatial autocorrelation statistics for allele frequency data include Moran’s I and Geary’s C (Sokal and Oden 1978). For molecular data, such as HVS-I sequences, Bertorelle and Barbujani (1995) devised two spatial autocorrelation analogs, II and cc indices. Using the program AIDA developed by these two authors, II scores were computed for the Aleut and Beringian HVS-I data according to the following equation

\[
II = \frac{n \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \sum_{k=1}^{S} (p_{ik} - \bar{p}_{i})(p_{jk} - \bar{p}_{j})}{W \sum_{i=1}^{n} \sum_{k=1}^{S} (p_{ik} - \bar{p}_{i})^2},
\]

(22)
where \(n \) is the sample size, \(W \) is the number of pairwise comparisons within a particular distance class, \(p_{ik} \) and \(p_{jk} \) are the haplotype frequencies of the \(i \)th and \(j \)th individuals, respectively, at the \(k \)th site, \(\bar{p}_k \) is the \(k \)th element of the average vector, and the weights \(w_{ij} \) are 1 if individuals \(i \) and \(j \) fall within the same distance class, 0 if otherwise. Summation is for \(S \) sites and all individuals in the sample. Confidence intervals were computed by a permutational method. The autocorrelation scores were plotted against the geographic distance classes, referred to as a correlogram, and was used as a means of investigating departure from spatial randomness.
CHAPTER FOUR: RESULTS

This chapter presents the genetic variation of Aleut mtDNAs and Y-chromosomes from eastern communities as characterized by RFLP typing, direct sequencing of the HVS-I and Y-SNPs, and fragment length analysis of Y-STR multiplex products. The genetic data were analyzed using several statistical methods, including: diversity measures and neutrality test statistics; Median-Joining networks; ordination analyses of genetic distances and R-matrices to characterize genetic relationships between Aleut communities and neighboring Beringian populations; spatial autocorrelation and Mantel tests to evaluate the correlation between genetics and geography; and surface interpolation using genetic distance residuals, along with the application of SAMOVA and Monmonier algorithms on spatial networks, to detect genetic barriers or discontinuities in geographic space.

Mitochondrial DNA

HVS-I Sequencing and Haplogroup Frequencies

The sequencing results for the HVS-I region of the mtDNA genome for 114 individuals from the five sampled communities are presented in Table 5. In addition, sequence data for Aleut participants from Unalaska, Nikolski, Atka, the Pribilofs and Bering Island are also listed (Rubicz et al. 2003, Zlojutro et al. 2006). A total of 21 different haplotypes are observed in the entire Aleut data set (n = 267), all belonging to haplogroups A or D. Seventeen of these are characterized to three subhaplogroups:
Table 5 HVS-I sequence data for Aleuts

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL01 (A7)</td>
<td>. . . T . . T G T . . T . . . A C . . 11 - - 4 6 - 8 6 11 3 4 53</td>
</tr>
<tr>
<td>AL02 (A7)</td>
<td>C . . T . . T G T . . T . . . A C . . 3 - 1 - - - - - - - - 5</td>
</tr>
<tr>
<td>AL03 (A3)</td>
<td>. . . T . . T T . . . T C . . A C . . 1 2 - - - - - - - - - - 4 7</td>
</tr>
<tr>
<td>AL04 (A3)</td>
<td>. . . T . . T A C . . - - - - 1 - - 1 1 1 1 1 6</td>
</tr>
<tr>
<td>AL05 (A3)</td>
<td>. . . T . . T A C . . - - - - - - - - - - - - 3</td>
</tr>
<tr>
<td>AL06 (A3)</td>
<td>. . . T . . T T . . . T . . . A C . . - 2 - 1 - - - - - - - - 4 7</td>
</tr>
<tr>
<td>AL08 (A7)</td>
<td>. . . T . . T T . . . A C . . 1 - - - 1 - - - - - - - - 2</td>
</tr>
<tr>
<td>AL11 (A3)</td>
<td>. . . T . . T T . . . T C . . A C . . 1 - - - - - - - - - - - - 1</td>
</tr>
<tr>
<td>AL13 (A2)</td>
<td>. . . T . . T A C . . - - - - - - 1 1 2 4 4 12</td>
</tr>
<tr>
<td>AL14 (A3)</td>
<td>. . . T . . T T . . . A C . . - - - - - - - - - - - - 1</td>
</tr>
<tr>
<td>AL17 (A3)</td>
<td>. . . T . . T A C . . - - - - - - - - - - - - 1</td>
</tr>
<tr>
<td>AL30 (A6)</td>
<td>. . . T . . T T C . . . A C . . - - - - - - - - - - - - 1</td>
</tr>
<tr>
<td>AL31 (A2)</td>
<td>. . . T . . T A C . . - - - - - - - - - - - - 1</td>
</tr>
<tr>
<td>AL20 (D2)</td>
<td>. . . T T . . . C C . . 8 3 8 19 19 29 5 2 10 2 19 124</td>
</tr>
<tr>
<td>AL21 (D2)</td>
<td>. . . T T . . . C C . G 2 3 - - 3 - - - - - - - - 3</td>
</tr>
<tr>
<td>AL22 (D2)</td>
<td>. . . T T . . . C C . . - - - - 2 - - - - - - - - 4</td>
</tr>
<tr>
<td>AL23 (D2)</td>
<td>. . . T T . . . C C . C . 1 - 2 - 1 6 - - - - 5 4 1 20</td>
</tr>
<tr>
<td>AL24 (D2)</td>
<td>. . . T T . . . C C . C . - - - - 2 - - - - 1 - - - 3</td>
</tr>
<tr>
<td>AL26 (D2)</td>
<td>. . . T T . . . C C . C . - - - - - - 1 - - - - - - - 1</td>
</tr>
<tr>
<td>AL28 (D2)</td>
<td>. . . T T . . . C C . C . - - - - - - - - - - 2 - 1 - - 1 4</td>
</tr>
<tr>
<td>AL29 (D3)</td>
<td>. . . T T . . . C A C . . - - - - - - - - - - - - 1</td>
</tr>
</tbody>
</table>

Haplotypes AL01 to AL26 are based on definitions conceived by Rubicz et al. (2003). Haplotypes AL28 to AL31 are newly observed Aleut sequences in the eastern communities. CRS represents the Cambridge Reference Sequence (Anderson et al. 1981). Haplogroup assignments are provided within parentheses. Communities: UN = Unalaska; NK = Nikolski; AT = Atka; SG = St. George; SP = St. Paul; BR = Bering Island; AK = Akutan; FP = False Pass; KC = King Cove; NL = Nelson Lagoon; and SD = Sand Point. Community assignment is based on residency of the participants at the time of sampling.

A3, defined by the HVS-I motif 16,111-16,192-16,223-16,290-16,319-16,362; A7, a subclade of A3 that exhibits an A→G transition at np 16,212; and D2, defined by the motif 16,129-16,223-16,271-16,362. Haplotype AL20 is the most common sequence (46.4%), representing the root of subclade D2, followed by AL01 (19.9%), the root for A7.

Haplotypes AL28 to AL31 are newly observed sequences for the Aleut population. Of these, AL29, AL30 and AL31 are only present in the Nelson Lagoon sample, suggesting a somewhat unique genetic character of this Aleut community.
relative to the others. All three of these sequences, however, have been identified in other populations. AL29 was assigned to subhaplogroup D3 based on the 16,223-16,319-16,362 HVS-I motif and the absence of the AluI restriction site at np 5176. This mtDNA lineage is geographically widespread, found in low frequencies in Siberian groups such as Tuva, Yukaghirs and Nganasans (Starikovskaya et al. 2005, Derenko et al. 2007, Volodko et al. 2008), and Beringian populations such as Chukchi, Siberian Yupik, Inuit and Koryaks (Starikovskaya et al. 1998, Schurr et al. 1999, Helgason et al. 2006). AL30 belongs to subhaplogroup A6 based on the presence of an A→G transition at np 16,265. This lineage is a common matriline of Inuit populations of Canada and Greenland (Saillard et al. 2000, Helgason et al. 2006), and has been identified at low frequencies in Chukchi, Yupik and Koryaks (Starikovskaya et al. 1998, Derenko et al. 2007, Simonson and Shields unpublished data). The remaining sequence, AL31, belongs to subhaplogroup A2 and has been reported in the Haida of the Canadian Pacific Northwest (Ward et al. 1993).

As noted in the Materials and Methods section, twelve individuals from the eastern communities were assigned by RFLP typing and diagnostic HVS-I sites to haplogroups C1, H, K, M7b2 and U5a1, and were excluded from the above table and subsequent mtDNA analyses. Haplogroup C1 represents one of the five major Native American founder lineages, whereas haplogroups H, K and U5a1 are prevalent in Europe (Macaulay et al. 1999, Richards et al. 2000, Achilli et al. 2004, 2005) and M7b2 is common in both Japan and Korea (Kivisild et al. 2002, Tanaka et al. 2004). Interestingly, nine of these individuals are from Sand Point, representing 15.5% of the
sample, which suggests a substantial level of non-Aleut female gene flow into this particular community.

The haplogroup frequencies for the Aleut communities and surrounding native groups from Beringia are presented in Table 6. Haplogroup assignment is based upon diagnostic HVS-I sites and RFLP data when available. Overall, the Aleut samples have frequencies of 0.378 and 0.622 for haplogroups A and D, respectively. However, there are notable differences among the communities. The highest frequencies for D are on Bering Island, the Pribilofs, Atka and Nikolski, ranging from 0.600 to complete fixation in the Bering sample. In the more easterly communities,

<table>
<thead>
<tr>
<th>Population</th>
<th>n</th>
<th>Haplogroup A</th>
<th>Haplogroup C</th>
<th>Haplogroup D</th>
<th>Other</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unalaska</td>
<td>28</td>
<td>0.607</td>
<td>-</td>
<td>0.393</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Nikolski</td>
<td>10</td>
<td>0.400</td>
<td>-</td>
<td>0.600</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Atka</td>
<td>17</td>
<td>0.294</td>
<td>-</td>
<td>0.706</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>St.George</td>
<td>28</td>
<td>0.179</td>
<td>-</td>
<td>0.821</td>
<td>-</td>
<td>1, 2</td>
</tr>
<tr>
<td>St. Paul</td>
<td>35</td>
<td>0.286</td>
<td>-</td>
<td>0.714</td>
<td>-</td>
<td>1, 2</td>
</tr>
<tr>
<td>Bering</td>
<td>35</td>
<td>0.000</td>
<td>-</td>
<td>1.000</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Akutan</td>
<td>16</td>
<td>0.563</td>
<td>-</td>
<td>0.438</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>False Pass</td>
<td>11</td>
<td>0.727</td>
<td>-</td>
<td>0.273</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>King Cove</td>
<td>33</td>
<td>0.515</td>
<td>-</td>
<td>0.485</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Nelson Lagoon</td>
<td>16</td>
<td>0.563</td>
<td>-</td>
<td>0.438</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Sand Point</td>
<td>38</td>
<td>0.447</td>
<td>-</td>
<td>0.553</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Aleut - Total</td>
<td>267</td>
<td>0.378</td>
<td>0.000</td>
<td>0.622</td>
<td>0.000</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Alaskan Yupik</td>
<td>25</td>
<td>0.960</td>
<td>0.000</td>
<td>0.000</td>
<td>0.040</td>
<td>4</td>
</tr>
<tr>
<td>Siberian Yupik</td>
<td>90</td>
<td>0.700</td>
<td>0.022</td>
<td>0.278</td>
<td>0.000</td>
<td>5, 6, 7</td>
</tr>
<tr>
<td>Chukchi</td>
<td>72</td>
<td>0.708</td>
<td>0.097</td>
<td>0.111</td>
<td>0.083</td>
<td>5, 6</td>
</tr>
<tr>
<td>Athapaskan</td>
<td>21</td>
<td>0.952</td>
<td>0.048</td>
<td>0.000</td>
<td>0.000</td>
<td>5</td>
</tr>
<tr>
<td>Koryak</td>
<td>147</td>
<td>0.054</td>
<td>0.361</td>
<td>0.014</td>
<td>0.571</td>
<td>8</td>
</tr>
<tr>
<td>Itelmen</td>
<td>46</td>
<td>0.065</td>
<td>0.130</td>
<td>0.000</td>
<td>0.804</td>
<td>8</td>
</tr>
</tbody>
</table>

References: 1 = Rubciz et al. 2003; 2 = present study; 3 = Zlojutro et al. 2006; 4 = Simonson and Shields, unpublished data; 5 = Shields et al. 1993; 6 = Starikovskaya et al. 1998; 7 = Derbeneva et al. 2002; and 8 = Schurr et al. 1999.
the frequencies for D are lower, ranging from 0.553 in Sand Point to 0.273 in False Pass. Thus, it is evident that the ratio between haplogroups A and D has a geographic pattern in which the eastern communities have relatively higher frequencies of haplogroup A, whereas the historically founded communities on Bering Island and the Pribilofs, along with Atka Island and Nikolski on Umnak Island that are more centrally located within the archipelago, have higher frequencies of D.

This east-west differentiation is further highlighted in Figure 26, which presents the haplogroup frequency data as pie charts in geographic space. In comparison to other native groups of Beringia, Aleuts are conspicuous in their high frequency of haplogroup D. The populations from Chukotka (i.e., Siberian Yupik and Chukchi) also display D, but at markedly lower levels (0.278 and 0.111, respectively). Further to the south, the Koryaks and Itelmen of the Kamchatkan Peninsula exhibit distinctly different haplogroup profiles. Haplogroups A and D represent only about six percent of these samples, while haplogroups G and Y (listed as “other” in Table 6) comprise the majority of the mtDNA lineages. On the American side of the Bering Strait, haplogroup D is not observed in the samples for either the Alaskan Yupik or Athapaskans, which are both close to fixation for haplogroup A. In a study by Merriwether et al. (1995), RFLP data for Yupik populations from St. Lawrence Island (located just south of the strait) and Kodiak Island reveal a similar pattern to the Chukotkan groups, with high frequencies of haplogroup A (0.757 and 0.647, respectively) and corresponding lower frequencies of D. As for the other major branch of Eskimo speakers, the Inupiaq of the Canadian
Figure 26 Map of pie chart frequencies of mtDNA haplogroups for Aleut and surrounding Beringian populations
and Greenland Arctic, haplogroup A predominates, ranging from 0.875 to complete fixation in various communities (Saillard et al. 2000, Helgason et al. 2006).

Spatial Autocorrelation and Mantel Testing

In order to further investigate the patterns of genetic variation in geographic space, the HVS-I data were quantitatively described by means of spatial autocorrelation. Pairs of sampled localities were pooled into five distance classes: 0 to 500 km, 501 to 1000 km, 1001 to 1500 km, 1501 to 2000 km, and 2001 to 2563 km. The autocorrelation statistic II was computed and plotted against each distance class to produce a correlogram, as shown in Figure 27. Positive autocorrelation (II tending toward 1.0) is observed for the first two distance classes (double asterisks represent significant values) and indicates genetic similarity; whereas negative autocorrelation (II tending toward -1.0) is evident for the larger distance classes and

Figure 27 Correlogram of autocorrelation statistic II for HVS-I data of Aleut and Beringian populations
indicates genetic dissimilarity. From the shape of the correlogram, inferences on the likely processes generating the geographical structure can often be drawn (Bertorelle and Barbujani 1995). A spatially random distribution will produce a series of non-significant \(I \) values, at all distances. A decreasing correlogram from positive significant to non-significant values at large distances is expected for genetic systems under isolation by distance (i.e., genetic diversity reflects only short-range gene flow and genetic drift). However, the correlogram presented in Figure 27 reveals a cline, decreasing from positive significant to negative significant values, and likely reflects the deep evolutionary histories and long range migrations that genetically differentiate the Aleuts, Yupik, Alaskan Na-Dene and Kamchatkan peoples from one another, as well as the formation of amalgamated Aleut populations on Bering Island and the Pribilofs with high frequencies of haplogroup D relative to the eastern communities.

The strong relationship between genetics and geography was also detected through Mantel testing. The correlation coefficient \((r) \) for the pairwise genetic and geographic distance matrices of Beringian populations is a very significant 0.717 \((P = 0.000) \) and is higher than the value computed for native Siberian populations \((r = 0.55) \) (Crawford 2007b).

Sequence Diversities and Neutrality Test Statistics

The diversity levels and neutrality test scores for the HVS-I data of Aleuts and comparative populations are presented in Table 7. For the Aleut communities, Bering Island exhibits by far the lowest values for gene diversity and the two \(\theta \)
Table 7 Diversity values and neutrality test scores for mtDNA sequence data

<table>
<thead>
<tr>
<th>Population</th>
<th>Gene Diversity</th>
<th>θ_π</th>
<th>θ_S</th>
<th>Tajima’s D</th>
<th>F_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unalaska</td>
<td>0.770 (0.056)</td>
<td>4.325 (2.456)</td>
<td>3.341 (1.359)</td>
<td>0.988</td>
<td>1.206</td>
</tr>
<tr>
<td>Nikolski</td>
<td>0.822 (0.072)</td>
<td>4.556 (2.765)</td>
<td>3.181 (1.605)</td>
<td>1.891</td>
<td>2.701</td>
</tr>
<tr>
<td>Atka</td>
<td>0.757 (0.091)</td>
<td>3.324 (2.009)</td>
<td>3.254 (1.461)</td>
<td>0.080</td>
<td>0.844</td>
</tr>
<tr>
<td>St. George</td>
<td>0.529 (0.105)</td>
<td>2.503 (1.549)</td>
<td>3.084 (1.276)</td>
<td>-0.624</td>
<td>0.989</td>
</tr>
<tr>
<td>St. Paul</td>
<td>0.681 (0.078)</td>
<td>3.294 (1.929)</td>
<td>3.157 (1.252)</td>
<td>0.139</td>
<td>-0.011</td>
</tr>
<tr>
<td>Bering</td>
<td>0.292 (0.085)</td>
<td>0.292 (0.351)</td>
<td>0.243 (0.243)</td>
<td>0.303</td>
<td>0.760</td>
</tr>
<tr>
<td>Akutan</td>
<td>0.675 (0.085)</td>
<td>3.917 (2.321)</td>
<td>2.411 (1.168)</td>
<td>2.252**</td>
<td>3.656</td>
</tr>
<tr>
<td>False Pass</td>
<td>0.709 (0.137)</td>
<td>3.418 (2.134)</td>
<td>2.731 (1.390)</td>
<td>1.040</td>
<td>0.881</td>
</tr>
<tr>
<td>King Cove</td>
<td>0.780 (0.041)</td>
<td>3.932 (2.248)</td>
<td>2.464 (1.046)</td>
<td>1.848*</td>
<td>2.110</td>
</tr>
<tr>
<td>Nelson Lagoon</td>
<td>0.900 (0.046)</td>
<td>4.033 (2.380)</td>
<td>3.014 (1.391)</td>
<td>1.262</td>
<td>-0.586</td>
</tr>
<tr>
<td>Sand Point</td>
<td>0.723 (0.068)</td>
<td>3.835 (2.191)</td>
<td>2.618 (1.071)</td>
<td>1.425</td>
<td>1.489</td>
</tr>
<tr>
<td>Aleut - Total</td>
<td>0.740 (0.023)</td>
<td>3.729 (2.088)</td>
<td>3.636 (1.036)</td>
<td>0.067</td>
<td>-7.218</td>
</tr>
<tr>
<td>Alaskan Yupik</td>
<td>0.650 (0.059)</td>
<td>1.180 (0.873)</td>
<td>1.854 (0.888)</td>
<td>-1.124</td>
<td>0.632</td>
</tr>
<tr>
<td>Siberian Yupik</td>
<td>0.774 (0.038)</td>
<td>3.570 (2.028)</td>
<td>3.944 (1.288)</td>
<td>-0.278</td>
<td>-3.285</td>
</tr>
<tr>
<td>Chukchi</td>
<td>0.881 (0.027)</td>
<td>4.403 (2.437)</td>
<td>4.745 (1.542)</td>
<td>-0.222</td>
<td>-6.759*</td>
</tr>
<tr>
<td>Athapaskan</td>
<td>0.905 (0.048)</td>
<td>2.467 (1.550)</td>
<td>3.613 (1.526)</td>
<td>-1.137</td>
<td>-6.071**</td>
</tr>
<tr>
<td>Koryak</td>
<td>0.923 (0.011)</td>
<td>5.583 (2.985)</td>
<td>6.829 (1.873)</td>
<td>-0.545</td>
<td>-11.105**</td>
</tr>
<tr>
<td>Itelmen</td>
<td>0.921 (0.022)</td>
<td>4.059 (2.290)</td>
<td>5.233 (1.795)</td>
<td>-0.737</td>
<td>-4.266</td>
</tr>
</tbody>
</table>

$^* P < 0.05$; $^{**} P < 0.01$. Standard deviations for the diversity measures are provided in parentheses.

estimators. This low mtDNA diversity reflects the fixation of haplogroup D (sequences AL20 and AL23) and has been explained by Rubicz (2007) as the genetic consequence of the Bering community experiencing a founder effect in its original settlement by the Russians, followed by closure of this community from other Aleut populations after the American purchase of Alaska in 1867. The other amalgamated populations, St. George and St. Paul, exhibit relatively low gene diversity and θ_π values and is also likely related to their founding in the 19th century. Overall, the diversity values for the Aleut populations are 0.740 for gene diversity, 3.729 for θ_π and 3.636 for θ_S. The values for the eastern communities are comparable to these
levels, although the θ_S scores are somewhat depressed and, based on the definition of this measure, indicate a relatively smaller number of variant HVS-I sites and/or haplotypes in the mtDNA data for these populations.

In comparison to the neighboring Beringian populations, the diversity levels for the Aleuts are among the lowest, with the exception of the Alaskan Yupik sample. The Kamchatkan groups and Chukchi exhibit the highest values for all three measures, other than the gene diversity score for the Athapaskans. This is consistent with the findings of Zlojutro et al. (2006), who identified a similar regional pattern in which northern North American populations display lower mtDNA diversity levels relative to Amerind and Siberian groups that may represent the genetic imprint of multiple migrations from Asia with varying chronologies, with the Esko-Aleut and Na-Dene speakers being the latest migrants into the New World.

For the neutrality test statistics, three Aleut communities exhibit significant positive Tajima’s D scores: Akutan, King Cove and Nikolski. These types of deviations for neutral genetic systems have typically been interpreted as evidence for population bottlenecks (Tajima 1989b). However, this is not reflected in the total Aleut sample, which has non-significant scores of 0.067 and -7.218 for D and Fu’s F_S, respectively. The values for other Beringian populations are mostly negative, with the Chukchi, Koryaks and Athapaskans exhibiting significant F_S scores, which are considered genetic signatures of population expansion. But it should be noted that other factors can account for deviations in these statistics, including background selection and mutation rate heterogeneity (Tajima 1993, Aris-Brousou and Excoffier...
1996). Furthermore, relative to other global populations, Native Americans, northeast Siberians and hunter-gatherer groups generally have smaller negative or positive neutrality test results (Excoffier and Schneider 1999, Zlojutro 2006). In particular, the pattern in Native Americans can be explained as the product of a strong founder effect at the time of colonization of the New World and/or the recent population crash experienced by these groups after European contact. However, simulation studies have shown that bottleneck times of 100 generations or more are required to substantially reduce significant negative F_S tests (Excoffier and Schneider 1999), thus weakening the latter explanation. And on a final note concerning these statistics, gene flow appears to also play an important role. In a research paper by Ray et al. (2003), gene flow among simulated metapopulations have shown that high levels of gene flow increase the probability of significant negative D and F_S values. Therefore, despite the fact that the D and F_S tests are commonly employed in human population genetic studies, the exact meaning of these measures for neutral genetic systems are difficult to interpret.

MtDNA Network Analysis

The Median-Joining (MJ) networks for Aleut HVS-I data for haplogroups A and D are presented in Figures 28 and 29. Incorporated into these networks are the frequencies of haplotype sharing by neighboring Beringian populations, as indicated by the size and color-coded division of the haplotype nodes. For the network of haplogroup A, three subclades that derive from the Asian root (A4) are identified: A2,
Figure 28 **Median-Joining network for haplogroup A**

Circles represent HVS-I haplotypes, with the size of the circles corresponding to the haplotype frequency in Aleut, Central Alaskan, Chukotkan, and/or Kamchatkan populations. The lines connecting the haplotypes represent mutation pathways (mutations are abbreviated to the last three digits of np 16,000-16,400 of the mtDNA genome).
Figure 29 Median-Joining network for haplogroup D
Circles represent HVS-I haplotypes, with the size of the circles corresponding to the haplotype frequency in Aleut and/or Chukotkan populations. The lines connecting the haplotypes represent mutation pathways (mutations are abbreviated to the last three digits of np 16,000-16,400 of the mtDNA genome). The lone transversion, np 16,092 T→A, is presented as 92A.
which represents one of the major mtDNA founding lineages of Native American populations (the other subhaplogroups being B2, C1, D1 and X2a) and is defined by a transition at np 16,111 (Bandelt et al. 2003); A3, a common lineage among northern North American and Chukotkan populations that derives from A2 (Forster et al. 1996, Starikovskaya et al. 1998, Saillard et al. 2000, Helgason et al. 2006); and A7, a subclade of A3 that has only been identified in Aleut populations (Rubicz et al. 2003, Zlojutro et al. 2006) and represents 60 individuals (22.5% of the total Aleut sample). As discussed previously, subhaplogroup A6 is predominantly found among Inuit populations and a single Aleut sequence from Nelson Lagoon was assigned to this lineage, but was omitted from the network to prevent excessive cluttering and focus the diagram on the major Aleut lineages. [Note, an alternate nomenclature has been proposed by Helgason et al. (2006) for the A2 subhaplogroups that uses lowercase roman letters for the nested clades and has been adopted in a number of recent studies: A2a for A3 and A2b for A6. However, in order to maintain consistency with the Aleut mtDNA studies conducted by Zlojutro et al. (2006) and Rubicz (2007), the other classification scheme is utilized].

In addition to A7, a second branch that is specific to the Aleuts is observed in the network. Characterized by a transition at np 16,234, this sublineage contains three haplotypes representing 15 Aleut individuals (5.6% of the sample). According to Rubicz et al. (2003), this mtDNA cluster dates to approximately 4,000 years BP and likely arose through a combination of founder effect and geographic isolation in the Aleutian Islands.
For haplogroup D, the network is almost entirely comprised of D2 sequences, with the lone exception being a D3 haplotype from Nelson Lagoon. The D2 subclade exhibits a star-like structure, which is typically interpreted as a genetic signature of population expansion (Slatkin and Hudson 1991). Two additional star-like structures are also evident for Aleut sequences of the A3 and A7 clusters (Zlojutro et al. 2006). The D2 root is the only haplotype found in both Aleut and Chukotkan populations, with all of the derived haplotypes presented in the network only observed in the Aleut samples. A major lineage of D2, however, has been identified that is specific to Chukotkan populations, referred to as subclade D2c (Derbeneva et al. 2002), which is defined by a transition at np 16,366 (branch not shown in Figure 29).

Neighbor-Joining Tree

A Neighbor-Joining (NJ) tree based on an intermatch-mismatch (D_A) distance matrix for HVS-I sequence data is presented in Figure 30. The correlation of the NJ phylogeny (i.e., cophenetic matrix) to the original distance matrix is highly significant ($r = 0.597; P < 0.001$), indicating a good fit to the data. The tree is comprised of three major branches relative to the central node positioned between Nikolski and St. Paul. Towards the bottom of the tree are the two Kamchatkan populations, which are separated from the other groups by a very long branch and thus indicating substantial genetic differentiation. To the right of the central node are the historically founded populations of Bering Island and the Pribilofs, as well as Atka. And the clade to the left of the central node includes the remaining Aleut communities, which cluster
Figure 30 Neighbor-Joining tree based on D_A distance matrix of HVS-I data

together, and the Chukotkan and Alaskan populations, with the Alaskan Yupik the farthest removed. Of the Aleut communities, Nelson Lagoon is positioned closest to any of the non-Aleut populations (i.e., Siberian Yupik).
R-Matrix Analysis

An R-matrix based on haplotype frequencies was computed for the Aleut communities and neighboring Beringian populations and was projected into two-dimensional space using principal components analysis (PCA) (see Figure 31). The first axis accounts for 22.2% of the R-matrix variation and clusters the Aleut communities separately from the non-Aleut populations. However, similar to the NJ tree, Nelson Lagoon is positioned closest to the Chukotkan and Central Alaskan populations. This result is likely a reflection of the atypical HVS-I profile of Nelson Lagoon. This sample harbors two haplotypes (AL29 and AL30) that belong to haplogroups D3 and A6, which are absent in other Aleut communities but are present in the Chukotkan and Alaskan populations. The second axis captures 16.9% of the

![Figure 31](image)

Figure 31 PCA of R-matrix computed from haplotype frequencies
Figure 32 PCA biplot of R-matrix population coefficients and haplotype scores
The closed squares represent the scaled eigenvector coefficients for the population variables as presented in Figure 31 (blue squares are Aleut groups, red ones are Chukotkan, green ones are Alaskan, and black ones are Kamchatkan). The open triangles represent haplotype scores (blue triangles belong to haplogroup D2, red ones to haplogroup A7, and black ones to haplogroups A2 and A3). The two haplotype scores identified in the plot as haplogroup A7 and D2 represent the root sequences for their respective haplogroups.

variation, and thus the PCA plot accounts for a total of 39.1% of the R-matrix variation. Against the second axis, the Kamchatkan populations are separated from the other Beringian groups, with the Alaskan Yupik located at the other end of the dimension. The isolation of the Koryaks and Itelmen in the plot is due to their low frequencies of haplogroup A (0.054 and 0.065, respectively) and high numbers of Asian lineages such as G and Y.

A biplot of the scaled eigenvector coefficients for the population variables and haplotype scores is presented in Figure 32. Along the first dimension the roots for
subhaplogroups A7 and D2 are the genetic variables primarily responsible for the dispersion of the Aleut communities away from the non-Aleut populations. This result is not surprising given that subhaplogroup A7 is Aleut-specific and D2 has its highest frequencies in Aleut populations. On the other hand, haplotype variables belonging to A2 and A3 have situated the Chukotkan and Alaskan populations towards the other end of the axis. Thus, the proximity of the Aleut communities to non-Aleut populations appears to be predicated upon the frequencies of haplogroup A and its subclades. As noted above, Nelson Lagoon is positioned closest along the first axis, followed by False Pass, King Cove and Akutan. All four of these eastern communities have the highest frequencies of haplogroup A, ranging from 0.515 to 0.727 (see Table 6), with the only exception being Unalaska (0.607). Moreover, the orientation of these five particular communities in relation to one another is based upon the frequencies of subclades A2 and A3. Unalaska and Akutan have low combined frequencies (0.071 and 0.063, respectively) and are positioned towards the center of the Aleut cluster. Conversely, Nelson Lagoon (0.250), False Pass (0.152) and King Cove (0.182) have relative high frequencies of A2 and A3 and are positioned closer to the Chukotkan and Alaskan groups.

Multidimensional Scaling and SAMOVA Analysis

A multidimensional scaling (MDS) plot based on a D_A distance matrix computed from the HVS-I sequence data is presented in Figure 33. The stress level of the plot is 0.095, which according to guidelines proposed by Kruskal (1964a)
Figure 33 MDS plot of D_A distance matrix and results of SAMOVA analysis ($K = 4$)

represents a “good” fit with the distance matrix. Overall, the plot presents a projection similar to the R-matrix analysis based on haplotypic frequency data. The Aleut communities cluster together, with the dispersion mostly in the first axis. The Chukotkan populations are closest to the eastern communities of Nelson Lagoon and False Pass, whereas the Alaskan groups are positioned further away relative to the first axis. The Kamchatkan populations are again isolated from the other Beringian groups, particularly along the second dimension.

In order to investigate the relationship of the population clusters differentiated in the MDS plot to the geographic proximity of these populations, a series of SAMOVA analyses were conducted. The number of population groups (K) that were considered in the SAMOVA computations ranged from two to seven. The highest
Φ_{CT} score was obtained with K set to four groups (0.326; $P = 0.000$) and the results are shown in Figure 33. As expected from their isolation in the NJ tree and ordination plots, the Kamchatkan populations comprise one of the groups. Interestingly, the Alaskan Yupik forms a group by itself, which may be due to its near fixation of haplogroup A. For the remaining two groups, the Aleut communities of Bering Island, the Pribilofs and Atka are separated from the more eastern communities, as well as the Chukotkan and Athapaskan populations. This genetic discontinuity is likely a reflection of the high frequencies of haplogroup D in Atka and the amalgamated Aleut settlements.

Monmonier’s Maximum Difference Algorithm

To further investigate genetic differentiation of Beringian populations in geographic space, Monmonier’s (1973) maximum difference algorithm was applied to a Delaunay triangulation derived from population coordinates (see Figure 34). Using the results from the SAMOVA analysis as a guide, four genetic barriers were identified with Monmonier’s algorithm. The barrier with the maximum degree of genetic differentiation was located between the Chukotkan and Alaskan Yupik groups and the Aleut communities. The next barrier identified by the algorithm isolates the Kamchatkan populations from the Chukchi and Bering Island settlement. The third barrier is located between the Athapaskans and the eastern Aleut communities. And the fourth zone of genetic discontinuity is between the Pribilofs and Nikolski and the Aleut communities to the east. These results are slightly different from the population groupings obtained in the SAMOVA analysis, which identified the
Figure 34 Application of Monmonier’s maximum difference algorithm to D_A distance matrix for HVS-I data Four sequential genetic barriers (red arcs) were identified in a Delaunay triangulation constructed from the geographic coordinates of Beringian populations.

Alaskan Yupik as an outlier and did not include Nikolski in the cluster of amalgamated Aleut communities. These differences likely stem from the fact that the barriers detected by Monmonier’s algorithm only require a single maximum pairwise genetic distance to initiate the iteration process, whereas the SAMOVA method searches for groups of adjacent populations that maximize genetic variation between them regardless of pairwise differences of the individual populations. However, both methods reveal an east-west genetic structure in the Aleut communities.
Genetic Surface Interpolation

The final method used to determine regions of genetic differentiation for Beringia is Miller’s (2005) genetic surface interpolation (see Figure 35). Similar to the application of Monmonier’s algorithm, a Delaunay triangulation network is utilized. The genetic surface is generated from the residual values of a regression between pairwise genetic and geographic distance variables. The residual scores are placed at the midpoint of the Delaunay connections and a surface landscape is created by inverse distance interpolation. Thus, the surface landscape is defined by three

Figure 35 Genetic surface interpolation based on HVS-I data
Residual scores derived from a linear regression of intermatch genetic distances on geographic distances were used to generate a landscape surface created by inverse distance interpolation. The x and y axes represent the geographic coordinates of populations in a Delaunay triangulation network. The z axis corresponds to the residual genetic distances.
axes: \(x \) and \(y \), which represent the geographic coordinates of the Delaunay network of populations; and \(z \), the positive or negative residual scores of the population pairs. For the Aleut communities and surrounding Beringian populations, five surface peaks were produced (i.e., pairwise genetic distances that are greater than expected given the geographic distance between the population pair). In the west, there are two peaks separating the Kamchatkan groups from Bering Island and the Chukchi, as well as a third situated between the Koryaks and Itelmen. Further to the east, a pronounced peak separates the Alaskan Yupik from the Pribilofs. And among the Aleut communities, a fifth peak arises between Nikolski and Unalaska, which supports the results of the other methods employed in this study that show an east-west genetic differentiation for the Aleut populations. Lastly, a major depression was produced in the surface landscape between the Bering Island settlement and the nearest Aleutian communities, which indicates that the Bering sample is genetically similar to other western Aleut populations despite the large distance that separates the groups (approximately 1,300 km).

Diversity versus \(r_{ii} \) Plot

The plot of haplotype diversities (equivalent to the heterozygosity measure of diploid systems) against the distances from the centroid \((r_{ii}) \) computed in the R-matrix analysis is presented in **Figure 36**. According to Harpending and Ward (1982), a linear relationship between diversity and \(r_{ii} \) is expected for human genetic variation that follows an isolation by distance model where “peripheral” populations experience less gene flow and results in lower diversity and greater differentiation.
With the exception of Nelson Lagoon and Nikolski, all of the Aleut communities fall below the theoretical relationship. This suggests that the Aleut populations have experienced a high degree of isolation relative to other Beringian groups. In particular, the communities of Bering Island and St. George are considerably below the theoretical line and as a result produce a positive regression fit to the data (not shown). The relative low diversity for these two populations is likely a product of founder effect stemming from their original settlement by the Russians. Both Yupik populations are located below the theoretical line, whereas the remaining Beringian

![Figure 36](image)

Figure 36 HVS-I diversity versus r_{ii} plot

Heterozygosity values represent haplotype diversities ($1-\Sigma p^2$) for HVS-I data. Distances from the centroid (r_{ii}) were computed in R-matrix analysis between Aleut and Beringian populations. The theoretical relationship between the two variables is displayed as a solid line and corresponds to average heterozygosities multiplied by (1-r_{ii}) (Harpending and Ward 1982).
populations are all positioned above the linear relationship, with the Koryaks and Itelmen exhibiting the largest deviations, which suggests greater gene flow into these particular groups.

Mismatch Distributions and Coalescent Time Estimations

In the MJ networks presented in Figures 28 and 29, star-like clusters are evident in three subhaplogroups: A3, A7 and D2. This genetic characteristic is commonly interpreted as a signature of population expansion (Slatkin and Hudson 1991). In order to gain further insight into Aleut demographic history from the HVS-I data, mismatch distributions were determined for the star-like clades (see Figure 37). All three distributions are unimodal, which is also considered a product of

![Mismatch Distributions of mtDNA subclades for Aleut samples](image)

Figure 37 Mismatch distributions of mtDNA subclades for Aleut samples
population expansion (Rogers and Harpending 1992). However, the shapes of the distributions vary. Both A7 and D2 have modes at zero pairwise differences, whereas A3 peaks at one. Based on mismatch analysis theory, this modal difference between the distributions suggests that the subclades are the products of multiple population expansions, with A7 and D2 possibly being generated by the same demographic event or process.

Based on the MJ networks, the ρ statistic was computed and coalescent times were estimated for the three subclades by applying a mutation rate of 20,180 years per HVS-I variant (see Table 8). The age of subhaplogroup A3 is 23,285 ± 13,488 years, which is considerably older than the dates derived for A7 (3,027 ± 1,932 years) and D2 (5,247 ± 2,752 years). Thus, the expansion signature identified in the A3 cluster appears to be associated with demographic events of the last glacial maximum (approximately 21,000 years BP) and is likely to have derived from the reduced gene pools that existed in circumarctic populations during this period (although the large standard deviation does not preclude the possibilities of alternate scenarios involving much earlier or later expansions).

<table>
<thead>
<tr>
<th>mtDNA Subclades</th>
<th>n</th>
<th>$\rho \pm \sigma$</th>
<th>Age (years)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>26</td>
<td>1.154 ± 0.668</td>
<td>23,285 ± 13,488</td>
</tr>
<tr>
<td>A7</td>
<td>60</td>
<td>0.150 ± 0.096</td>
<td>3,027 ± 1,932</td>
</tr>
<tr>
<td>D2</td>
<td>165</td>
<td>0.260 ± 0.136</td>
<td>5,247 ± 2,752</td>
</tr>
</tbody>
</table>

* The ρ statistic and σ were converted to time using the mutation rate of 20,180 years per HVS-I variant (Forster et al. 1996, Saillard et al. 2000).
Given the more circumscribed geographic distributions of lineages A7 and D2 relative to A3 that is widespread in northern North America, the younger coalescent dates likely correspond to demographic episodes localized to Beringia and the Aleutian Archipelago. The D2 date of 5,247 years neatly parallels the approximate onset of peopling into the central and western Aleutian Islands based on the archaeological record. The age of A3 is younger by about two thousand years, however the confidence intervals for the two dates overlap and may derive from a single expansion event. Another plausible model that accounts for the phylogeographic structure of D2 and was originally proposed by Zlojutro et al. (2006) is that the clade represents a genetic marker of the Arctic Small Tool tradition (ASTt), a circumarctic cultural development that expanded rapidly from Beringia across northern Canada and Greenland around 4,000 years BP and gave rise to the pre-Dorset peoples. Intriguingly, ancient DNA analysis has recently identified haplogroup D2 for a pre-Dorset specimen discovered at a Greenland site (Gilbert et al. 2008), an area where D2 has not been identified among extant Eskimo populations. This finding suggests that D2 was an early mtDNA lineage of Beringia that not only played a major role in the ethnogenesis of the Aleuts, but also represented an important genetic lineage of the paleo-Eskimo migrants into northern North America.
Y-Chromosome DNA

Y-Chromosome STR Haplotypes and Population Diversities

The Y-chromosome STR haplotypes for 75 male individuals from the five sampled communities are presented in Table 9. Also listed are haplotypes for 62 participants from Unalaska, St. George, St. Paul and Bering Island (Rubicz 2008). The Aleut samples were typed for the United States “core” Y-STR haplotype (Budowle et al. 2005), which include the following eleven loci: DYS19, DYS385a/b, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS438, and DYS439. A total of 89 haplotypes are observed in the nine Aleut populations, with 42 new haplotypes characterized in the five eastern communities. The vast majority of the Y-STR variants are population specific (77 haplotypes or 86.5%), of which 64 represent singletons. The most frequent haplotype (16-11/14-14-30-25-10-11-13-11-11) is observed for seven Aleuts from Bering Island and the Pribilofs.

The population diversities for the Aleut Y-STR data are presented in Table 10. Gene diversities (1-Σp^2) were computed for the haplotype frequencies and ranged from 0.889 in the False Pass sample to 0.995 in the Bering sample. The mean number of pairwise differences (MPD) was also calculated and ranged from 5.756 for St. George to 7.642 for Unalaska. Interestingly, the Bering sample exhibits the highest gene diversity value and the second highest MPD, which is in stark contrast to the mtDNA data that revealed extremely low diversity levels in this population. This discrepancy between the two genetic systems likely stems from the different modes of inheritance (i.e., maternal versus paternal) and the corresponding impact of Russian
Table 9 Y-Chromosome haplotypes in Aleut communities

<table>
<thead>
<tr>
<th>Y-STR Haplotype<sup>a</sup></th>
<th>Aleut Communities and Number of Subjects<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UN SG SP BR AK FP KC NL SD Total</td>
</tr>
<tr>
<td>13-13/19-30-24-10-15-14-11-11</td>
<td>1</td>
</tr>
<tr>
<td>13-13/19-31-24-10-15-14-11-11</td>
<td>1</td>
</tr>
<tr>
<td>13-15/14-30-24-10-14-13-11-11</td>
<td>2</td>
</tr>
<tr>
<td>13-15/17-12-28-23-10-14-13-11-12</td>
<td>2</td>
</tr>
<tr>
<td>13-15/17-13-29-22-10-15-13-11-12</td>
<td>1</td>
</tr>
<tr>
<td>13-15/17-13-30-23-10-14-14-11-13</td>
<td>2</td>
</tr>
<tr>
<td>13-15/17-14-31-23-10-14-14-11-13</td>
<td>2</td>
</tr>
<tr>
<td>13-15/17-14-31-24-10-14-14-10-13</td>
<td>1</td>
</tr>
<tr>
<td>13-16/17-12-29-23-10-14-13-11-12</td>
<td>1</td>
</tr>
<tr>
<td>13-16/18-13-20-23-10-11-13-10-12</td>
<td>1</td>
</tr>
<tr>
<td>13-16/19-13-30-24-10-11-13-10-12</td>
<td>1</td>
</tr>
<tr>
<td>13-17/18-13-30-24-10-11-13-10-12</td>
<td>1</td>
</tr>
<tr>
<td>13-18/20-13-31-24-10-11-13-10-13</td>
<td>1</td>
</tr>
<tr>
<td>14-11/11-14-30-23-11-14-13-10-10</td>
<td>1</td>
</tr>
<tr>
<td>14-11/12-13-29-25-11-14-13-12-12</td>
<td>1</td>
</tr>
<tr>
<td>14-11/13-13-29-24-11-13-12-11</td>
<td>1</td>
</tr>
<tr>
<td>14-11/13-13-29-25-11-12-13-12</td>
<td>1</td>
</tr>
<tr>
<td>14-11/13-13-29-25-11-14-13-12-12</td>
<td>1</td>
</tr>
<tr>
<td>14-11/13-13-30-24-11-14-10-10</td>
<td>1</td>
</tr>
<tr>
<td>14-11/13-14-30-21-11-14-10-10</td>
<td>1</td>
</tr>
<tr>
<td>14-11/13-14-30-24-11-14-10-10</td>
<td>1</td>
</tr>
<tr>
<td>14-11/14-13-29-23-12-13-12-12</td>
<td>1</td>
</tr>
<tr>
<td>14-11/14-13-29-24-10-13-12-12</td>
<td>1</td>
</tr>
<tr>
<td>14-11/14-13-29-24-11-12-12-12</td>
<td>2</td>
</tr>
<tr>
<td>14-11/14-13-29-26-12-13-12-13</td>
<td>1</td>
</tr>
<tr>
<td>14-11/14-13-30-24-11-13-12-12</td>
<td>1</td>
</tr>
<tr>
<td>14-11/14-14-30-23-10-13-12-12</td>
<td>1</td>
</tr>
<tr>
<td>14-11/14-14-30-24-11-13-12-12</td>
<td>1</td>
</tr>
<tr>
<td>14-11/14-14-30-25-11-13-14-12-13</td>
<td>2</td>
</tr>
<tr>
<td>14-11/15-13-29-24-10-13-12-12</td>
<td>1</td>
</tr>
<tr>
<td>14-11/16-14-30-24-11-13-14-12-14</td>
<td>1</td>
</tr>
<tr>
<td>14-12/14-12-28-23-11-13-12-12</td>
<td>1</td>
</tr>
<tr>
<td>14-12/14-13-29-24-10-13-12-12</td>
<td>1</td>
</tr>
<tr>
<td>14-12/14-13-29-24-11-13-13-13</td>
<td>1</td>
</tr>
<tr>
<td>14-12/14-13-29-25-10-13-12-12</td>
<td>2</td>
</tr>
<tr>
<td>14-12/15-13-30-24-11-13-12-13</td>
<td>1</td>
</tr>
<tr>
<td>14-13/14-12-28-22-10-11-13-10-11</td>
<td>3</td>
</tr>
<tr>
<td>14-13/14-12-29-22-10-11-13-11-11</td>
<td>1</td>
</tr>
<tr>
<td>14-13/15-13-30-23-10-11-13-10-10</td>
<td>1</td>
</tr>
<tr>
<td>14-13/18-14-30-23-10-11-12-10-13</td>
<td>1</td>
</tr>
<tr>
<td>14-14/14-11-27-23-10-11-13-10-11</td>
<td>1</td>
</tr>
<tr>
<td>14-14/14-12-28-22-10-11-13-10-11</td>
<td>1</td>
</tr>
<tr>
<td>14-14/14-12-28-23-10-11-13-10-11</td>
<td>1</td>
</tr>
<tr>
<td>14-14/15-12-29-22-10-11-13-10-11</td>
<td>1</td>
</tr>
<tr>
<td>14-14/15-12-29-23-10-11-12-09-11</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 9 Continued

<table>
<thead>
<tr>
<th>Y-STR Haplotype(^a)</th>
<th>UN</th>
<th>SG</th>
<th>SP</th>
<th>BR</th>
<th>AK</th>
<th>FP</th>
<th>KC</th>
<th>NL</th>
<th>SD</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-14/15-12-28-23-10-11-13-10-11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-14/15-12-28-23-10-11-13-11-11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-14/16-13-29-23-10-11-12-09-11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-15/17-13-29-23-10-14-13-11-11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-15/17-13-30-23-10-14-13-11-11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-15/21-13-30-24-10-15-14-11-13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-10/14-13-32-25-11-11-13-11-10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-11/11-14-31-24-11-11-13-11-10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-11/13-13-29-23-11-14-14-10-10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-11/14-12-31-24-11-11-13-14-10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-11/14-13-30-24-11-13-12-11</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-11/14-13-30-24-11-11-13-11-10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-12/13-13-28-24-11-11-13-10-12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-12/13-13-29-23-11-14-14-10-10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-12/14-13-29-25-10-11-14-11-12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-12/14-13-30-23-11-13-12-12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-13/16-13-29-24-09-11-12-09-12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-14/14-12-28-23-10-11-13-10-11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-14/15-13-31-23-11-11-14-10-13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-14/15-13-31-24-11-11-14-10-13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-14/17-14-30-23-10-12-09-12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-15/16-13-29-24-10-12-15-10-11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-15/16-14-32-21-11-11-15-11-12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-15/17-13-29-03-02-12-15-10-11</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-16/18-13-29-24-10-13-12-11-09</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-11/14-12-30-25-10-11-13-11-11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-11/14-13-29-25-10-11-13-11-11</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-11/14-13-30-25-10-11-13-11-10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-11/14-13-30-25-11-11-13-11-10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-11/14-14-30-25-10-11-13-11-11</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-13/17-12-28-24-10-11-12-09-11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-13/19-12-28-24-12-11-14-10-11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-14/15-13-31-24-11-11-13-10-13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-10/14-12-29-25-10-11-13-11-10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-10/14-12-29-26-10-11-13-11-10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-10/14-13-31-25-10-11-13-11-11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-14/15-13-33-24-11-12-10-13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-16/16-14-29-23-10-12-14-10-11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-10/14-13-31-25-10-11-14-11-10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>10</td>
<td>16</td>
<td>20</td>
<td>11</td>
<td>9</td>
<td>20</td>
<td>14</td>
<td>21</td>
<td>137</td>
</tr>
</tbody>
</table>

\(^a\) Haplotypes based on alleles (i.e., repeat numbers) for the following Y-STR loci: DYS19, DYS385a/b, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS438, and DYS439.

\(^b\) Communities: UN = Unalaska; SG = St. George; SP = St. Paul; BR = Bering Island; AK = Akutan; FP = False Pass; KC = King Cove; NL = Nelson Lagoon; and SD = Sand Point.
Table 10 Diversity values for Y-STR haplotypes in Aleut populations

<table>
<thead>
<tr>
<th>Aleut Communities</th>
<th>n</th>
<th>Gene Diversity</th>
<th>MPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unalaska</td>
<td>16</td>
<td>0.958 (0.036)</td>
<td>7.642 (3.762)</td>
</tr>
<tr>
<td>St. George</td>
<td>10</td>
<td>0.933 (0.062)</td>
<td>5.756 (3.010)</td>
</tr>
<tr>
<td>St. Paul</td>
<td>16</td>
<td>0.967 (0.037)</td>
<td>7.484 (3.721)</td>
</tr>
<tr>
<td>Bering</td>
<td>20</td>
<td>0.995 (0.018)</td>
<td>7.500 (3.657)</td>
</tr>
<tr>
<td>Akutan</td>
<td>11</td>
<td>0.927 (0.067)</td>
<td>7.364 (3.733)</td>
</tr>
<tr>
<td>False Pass</td>
<td>9</td>
<td>0.889 (0.091)</td>
<td>7.500 (3.869)</td>
</tr>
<tr>
<td>King Cove</td>
<td>20</td>
<td>0.953 (0.033)</td>
<td>6.742 (3.318)</td>
</tr>
<tr>
<td>Nelson Lagoon</td>
<td>14</td>
<td>0.978 (0.035)</td>
<td>7.242 (3.610)</td>
</tr>
<tr>
<td>Sand Point</td>
<td>21</td>
<td>0.980 (0.018)</td>
<td>7.150 (3.480)</td>
</tr>
<tr>
<td>Aleut - Total</td>
<td>137</td>
<td>0.990 (0.003)</td>
<td>7.353 (0.348)</td>
</tr>
</tbody>
</table>

Standard deviations for the diversity measures are provided in parentheses. MPD is mean number of pairwise differences (π).

Male gene flow on Bering Y-chromosome diversity. Overall, there is no apparent geographic pattern in the diversity levels. The total Aleut sample has a gene diversity of 0.990 and a MPD of 7.353, which are comparable to Y-STR diversities reported for Native American populations from the United States (Redd et al. 2006).

Y-Chromosome SNPs and Haplogroup Frequencies

Results of the Y-chromosome SNP analysis are presented in Table 11. A total of ten Y-SNPs were characterized in the Aleut samples via direct sequencing, each one defining a different Y-chromosome haplogroup. The most common haplogroups are R1a (25.5%) and R1b (21.9%), which are observed in almost every Aleut community. These patrilines are prevalent in Europe, with R1a widely found in Eastern European and Russian populations (Kayser et al. 2005) and R1b common in Western Europe and the British Isles (Semino et al. 2000, Alonso et al. 2005). Haplogroup I1a, another European lineage that is mainly observed in Scandinavian
Table 11 Y-SNP haplogroup frequencies in Aleut communities

Phylogeny represents human Y-chromosome haplogroups. Diagnostic Y-SNPs are positioned along the phylogeny branches, with the corresponding haplogroup designations placed at the branch termini and column headings of the frequency table.

<table>
<thead>
<tr>
<th>Population</th>
<th>R1b</th>
<th>R1a</th>
<th>Q3</th>
<th>Q*</th>
<th>N</th>
<th>J</th>
<th>I1a</th>
<th>I1*</th>
<th>E3</th>
<th>C3b</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelson Lagoon</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand Point</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>King Cove</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False Pass</td>
<td>1</td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akitan</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unalaska</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. George</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Paul</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bering Island</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>30</td>
<td>35</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>19</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percentage</td>
<td>21.9</td>
<td>25.5</td>
<td>8.8</td>
<td>6.6</td>
<td>7.3</td>
<td>5.1</td>
<td>13.9</td>
<td>7.3</td>
<td>5.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

...populations (Rootsi et al. 2004, Karlsson et al. 2006), has the third highest frequency in the Aleuts (13.9%) and is mostly found in the eastern communities. Of the remaining six haplogroups identified in the Aleuts, only Q* and Q3 are considered to be Native American in origin (Zegura et al. 2004). [Note, haplogroup C3b is also regarded as a Native American founder lineage but was not identified in any of the Aleut samples]. These two haplogroups have a combined frequency of 15.3% and are present in every Aleut community, with the exception of Nelson Lagoon. Therefore, 84.7% of the Aleut male samples have non-Aleut Y-chromosomes, of which most are likely to be of European origin (including haplogroups I, J and N), and represents an estimation of the degree of male-mediated gene flow into the Aleut gene pool. In
stark contrast, the number of Aleut participants with mtDNAs not characterized to haplogroups A and D is only six (6.1%), and thus suggesting a large degree of asymmetry in European gene flow into Aleut communities with regards to gender.

The Y-chromosome haplogroup frequencies of the Aleut communities are presented as pie charts in Figure 38 in order to reveal any geographic patterns that may be present in the genetic data. However, unlike the mtDNA sequences that exhibit a pronounced east-west differentiation, the geographic structure of the various Y-chromosome haplogroups is less evident. For instance, haplogroups R1a, R1b and I1a, which represent the majority of the Aleut Y-chromosomes, are present in most of the communities. Although as mentioned above haplogroup I1a is found at higher frequencies in the eastern populations, which may be indicative of differences in the nature of male gene flow into this region. Furthermore, a Mantel test was performed on matrices of Y-STR genetic and geographic distances and found a non-significant

Figure 38 Map of pie chart frequencies of Y-chromosome haplogroups for Aleut communities
negative correlation of -0.123 ($P = 0.581$), which contrasts the highly significant result obtained for the mtDNA data ($r = 0.717$).

Y-STR Network Analysis

MJ networks were constructed for Aleut and European Y-STR haplotypes based on seven loci: DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392 and DYS393. The European Y-STR data represent three different populations – Germany ($n = 549$), Sweden ($n = 708$), and Russia (participants from Novgorod and Moscow; $n = 135$). The data were obtained from the Y Chromosome Haplotype Reference Database (YHRD), a collaborative online database (www.yhrd.org) maintained and used by the international forensic and scientific communities. Specifically, the data derives from a comprehensive Y-STR study conducted by Roewer et al. (2005), in which 12,700 samples from 91 different locations in Europe were typed for the above mentioned loci. In total, five networks were created for the major Y-SNP haplogroups observed in Aleuts: R1a, R1b, I1a, N and Q (see Figures 39 through 43).

The European Y-STR haplotypes were assigned to haplogroups using the database www.ysearch.org, an online tool developed by Genealogy by Genetics, Ltd, a company that offers Y-DNA testing (both STRs and SNPs) to the general public (approximately 59,000 Y-chromosome profiles as of May 2008).

The MJ network for haplogroup R1a is presented in Figure 39. The color-coded nodes represent relative frequencies of the Y-STR haplotypes in their respective population samples instead of absolute counts. This was done in order to avoid a frequency skew towards the Swedish and German haplotypes because of the
Figure 39 Median-Joining network of R1a Y-STR haplotypes

Figure 40 Median-Joining network of R1b Y-STR haplotypes
much larger sizes of the samples. Clearly, R1a haplotypes are well-represented by the Russian samples, with relatively high frequencies for most of the major nodes. Of the fifteen Aleut R1a haplotypes, eleven are shared with the comparative European populations. Overall, the network exhibits a tremendous amount of reticulation (mutation pathways are represented by the gray connecting lines), which is typical of Y-STR networks because of the high mutation rate for these loci (Kayser et al. 2004).

In Figure 40 is the MJ network for R1b haplotypes. A total of 128 different haplotypes are presented in the network, of which 84 and 52 are observed in the German and Swedish samples, respectively. The largest Y-STR node is found in all four populations, with the highest frequency in the German data set. For the Aleut samples, seventeen different R1b haplotypes were identified, with twelve shared with the European populations, primarily the Germans and Swedes.

The MJ network for haplogroup I1a is shown in Figure 41. Most of the 66 haplotypes in the network are Swedish and/or German (87.9%), with only a single haplotype from the Russian data set. Of the seven Aleut I1a haplotypes, six are shared with Swedish and German samples. The most frequent haplotype in the network is found in the Aleuts, with its highest frequency in the Swedes and exhibiting a star-like structure.

The final two networks are based on haplogroups N and Q and are presented in Figures 42 and 43. From earlier Y-SNP studies conducted on European populations (Semino et al. 2000, Malyarchuk et al. 2004), haplogroup N was found to be most prevalent in groups east of the Baltic Sea, including the Russians. However,
Figure 41 Median-Joining network of I1a Y-STR haplotypes

Figure 42 Median-Joining network of N Y-STR haplotypes
most of the low-frequency haplotypes (i.e., singletons) shown in the network are from the Swedish data set, which is likely due to its much larger sample size relative to the Russian sample. All five of the Aleut N haplotypes are shared with the comparative European populations. Overall, the network is based on 18 haplotypes and as consequence exhibits far less reticulation than the networks discussed above. And lastly, the network for haplogroup Q, which includes subclade Q3, represents 15 different haplotypes. Interestingly, in addition to the Aleut samples, haplogroup Q was identified in the Swedish data set (4 individuals representing only 0.56% of the total sample), with one haplotype shared between the two populations. Haplogroup Q is a diverse lineage that is scattered at low frequencies throughout Eurasia, especially among Europeans (Semino et al. 2000). However, none of the Swedish Y-STR
haplotypes were assigned to Q3, a patriline only found in the Americas and Beringia (Zegura et al. 2004).

Neighbor-Joining Tree

A NJ tree based on a R_{ST} (sum of squared size differences) distance matrix for Aleut and European Y-STR data used in the network analysis above is shown in

![Neighbor-Joining tree based on R_{ST} distance matrix of Y-STR data](image)

Figure 44 Neighbor-Joining tree based on R_{ST} distance matrix of Y-STR data
Aleut and European Y-STR haplotypes used in R_{ST} computation comprise the following seven loci: DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392 and DYS393.

149
Figure 44. The correlation of the NJ phylogeny to the original distance matrix is highly significant \((r = 0.403; P < 0.001) \), indicating a good fit to the data. The tree exhibits three major branches: on the left side are the Russian groups, along with St.George and Unalaska; towards the bottom are the Aleut populations of False Pass, Bering Island, St. Paul and Akutan; and near the top are the remaining European populations, Sweden and Germany, clustering with the eastern Aleut communities from Nelson Lagoon, King Cove and Sand Point. Of the thirteen Aleut and European populations presented in the tree, Akutan is separated by the longest branch, indicating a substantial degree of Y-chromosome differentiation. This result likely reflects the high frequency of haplogroup Q* observed in this community.

Multidimensional Scaling

A MDS plot based on a \(R_{ST} \) distance matrix computed from the Y-STR data is presented in **Figure 45**. The stress level of the plot is 0.118, which according to Kruskal (1964a) represents a “fair” fit with the original distance matrix. Along the first dimension, the Russian samples from Novgorod and Moscow are removed from the Aleut communities and the other two European populations. Against the second dimension, the eastern Aleut communities of Sand Point, King Cove and Nelson Lagoon, as well as the German and Swedish populations, are oriented towards the bottom of the axis. At the other end are the Russian samples and the Aleut populations from Bering Island, the Pribilofs and the central Aleutians. Overall, the MDS plot has a two-dimensional projection that mirrors the branching order of the NJ
Figure 45 MDS plot of R_{ST} distance matrix of Y-STR data

tree: the Russian groups are separated from the Germans and Swedes, who cluster with the eastern Aleut communities; and Akutan appears as an outlier relative to the other Aleuts.

R-Matrix Analysis

An R-matrix based on Y-SNP haplogroup frequencies was computed for the Aleut communities and six European populations: three Russian samples collected from the northern ($n = 380$), central ($n = 364$) and southern regions ($n = 484$) of Russia west of the Ural mountain range (Balanovsky et al. 2008); Germany ($n = 1,215$) (Kayser et al. 2005); Sweden ($n = 305$) (Karlsson et al. 2006); and European-Americans ($n = 927$) from Arizona, Ohio, South Dakota and various states from the eastern seaboard (Hammer et al. 2006). A PCA plot of the R-matrix is presented in Figure 46, which accounts for 50.6% of the matrix variation in the ordination axes.
The Russian populations are well removed from the other European groups in the two-dimensional space. The Aleut communities of Bering Island, King Cove and the Pribilofs are positioned closest to the Russians, whereas Sand Point and Nelson Lagoon cluster with the German, Swedish and European-American populations. False Pass and Akutan appear as outliers on opposite ends of the second axis, and Unalaska is located near the center of the PCA plot. Overall, the combined Aleut sample is oriented close to Unalaska and approximately equidistant between the Russian groups and the other European cluster.

A biplot of the \(R \)-matrix coefficients for the population variables and haplogroup scores is given in **Figure 47**. Along the first axis, haplogroups R1a and R1b are the key polarizing variables, clustering the Russian populations on one end of the axis due to their high frequency of R1a and conversely orienting the other.
European populations on the other end from the high frequency of R1b Y-chromosomes. Relative to the second axis, haplogroup N is the key variable in positioning the Russian groups towards the bottom of the entire cluster of populations, whereas haplogroup I1a is directing the other European populations towards the top of the two-dimensional space. In addition, haplogroups Q* and Q3 appear to be responsible for the outlier status of Akutan and False Pass, respectively. The remaining haplogroup scores for E3, I and J are positioned within the cluster of Aleut and European populations.

The haplogroup frequencies of the various Aleut communities support the patterns observed in the PCA plot above. The Pribilofs, Bering Island and King Cove
Figure 48 Map of pie chart frequencies of combined Y-chromosome haplogroups for Aleut communities

have high frequencies of haplogroup(s) R1a and/or N (see Figure 48) and thus are oriented closest to the Russian groups. Sand Point and Nelson Lagoon have high frequencies of haplogroups R1b and I1a and therefore are clustered with the German, Swedish and European-American groups. And lastly, Akutan and False Pass have high frequencies of haplogroups Q* and Q3, respectively, and as a consequence both Aleut communities are removed from the rest of the populations in the PCA plot.

Monmonier’s Maximum Difference Algorithm

Given the genetic differentiation of certain groups of Aleut communities in the ordination analyses above, Monmonier’s algorithm was applied to a Delaunay triangulation in order to identify geographic regions of maximum genetic change (see Figure 49). The genetic barrier with the greatest degree of differentiation was located between Unalaska and Akutan, which can be explained by the large number of haplogroup Q* Y-chromosomes in the Akutan sample and the high frequency of
Figure 49 Application of Monmonier’s maximum difference algorithm to R_{ST} distance matrix for Y-STR data Two sequential genetic barriers (red arcs) were identified in a Delaunay triangulation constructed from the geographic coordinates of Aleut communities.

haplogroups R1a and N in the Pribilofs relative to the eastern communities, especially Nelson Lagoon. The next barrier to be identified by the algorithm is placed between Akutan and False Pass, underscoring the outlier status of Akutan. Additional barriers were derived from the R_{ST} distances, however each one simply isolated individual communities, beginning with King Cove (results not shown). Similar to the geographic pattern revealed in the mtDNA data, the first two Monmonier barriers create an east-west genetic structure, with the predominantly Russian lineages R1a and N found at high frequencies in the west and the Scandinavian I1a and West European R1b most prevalent in the eastern communities.

Genetic Surface Interpolation

The genetic surface interpolated from the residual values of a regression between pairwise R_{ST} and geographic distances for Aleut communities is shown in Figure 50 (note, the diagram is oriented in a north-to-south direction). The most
Residual scores derived from a linear regression of R_{ST} genetic distances on geographic distances were used to generate a landscape surface created by inverse distance interpolation. The x and y axes represent the geographic coordinates of populations in a Delaunay triangulation network, with a north-to-south orientation. The z axis corresponds to the residual genetic distances.

pronounced surface peaks are located between Akutan and the communities to the east. Further to the north, a smaller ridge is present between the Pribilofs and the eastern communities, effectively creating an east-west separation in the Aleut Y-chromosome variation. Four major surface depressions are also revealed, with two located among Nelson Lagoon, King Cove and Sand Point in the east, and the other two positioned near the Pribilof Islands.
Diversity versus r_{ii} Plot

The plot of Y-SNP haplogroup diversities versus distances from the centroid for Aleut and European populations is given in Figure 51. Most of the populations exhibit relatively small r_{ii} values (generally less than 0.04), indicating the genetic similarity of Aleut Y-chromosomes with European ones. The exceptions are False Pass and Akutan, which likely stems from the high frequencies of Native American patriline Q^* and $Q3$ in these communities. Interestingly, the highest heterozygosities are observed in the Aleut groups, which is a reflection of the diverse European origins of the Aleut Y-chromosomes.

![Figure 51](image)

Figure 51 HVS-I diversity versus r_{ii} plot
Heterozygosity values represent haplogroup diversities $(1-\Sigma p^2)$ for Y-SNP data. Distances from the centroid (r_{ii}) were computed in R-matrix analysis between Aleut and European populations. The theoretical relationship between the two variables is displayed as a solid line and corresponds to average heterozygosities multiplied by $(1-r_{ii})$ (Harpending and Ward 1982).
Pass are the only populations situated above Harpending and Ward’s (1982) theoretical line, suggesting relatively higher gene flow in these particular communities. However, for the remaining populations lying below the theoretical relationship, it probably should not be interpreted as evidence for increased isolation. All of the Aleut communities have experienced substantial male-mediated gene flow into their respective populations, as evidenced by their predominantly European haplogroup profiles. And the European groups, especially the European-Americans, have known histories of significant immigration levels. The orientation of the populations relative to the theoretical line would likely change with the inclusion of truly isolated populations (with respect to male gene flow), pushing more of the Aleut and European groups above it. Regression analysis produced a positive fit to the data, which is a pattern not predicted by Harpending and Ward, further underscoring the amalgamated and diverse nature of the Aleut Y-chromosomes.
CHAPTER FIVE: DISCUSSION

The results from the mtDNA and Y-chromosome analyses of Aleut samples representing five eastern communities are consistent with previous studies of the central and western Aleutians and neighboring island groups in that it revealed high frequencies of mtDNA haplogroups A and D and a majority of non-Aleut Y-chromosomes (Rubicz et al. 2003, Zlojutro et al. 2006, Rubicz 2007). Overall, the Aleut frequencies for haplogroups A and D are 0.378 and 0.622 respectively, which differs markedly from other Beringian populations that exhibit substantially lower numbers of D. Among the various Aleut communities, haplogroup D is more prevalent in the Pribilofs and islands further to the west, especially Bering Island where it was found to be fixated in two independent samples (Derbeneva et al. 2002, Zlojutro et al. 2006). Diversity statistics highlight the atypical mtDNA composition of Bering Island, showing markedly lower levels of diversity relative to other Aleut settlements. In her dissertation project investigating the genetic consequences of Aleut relocations and population aggregation since Russian contact, Rubicz (2007) argues that the mtDNA pattern observed for Bering Island, as well as St. George and St. Paul of the Pribilofs that exhibit high frequencies of D (0.821 and 0.714) but less pronounced diversity reductions, is primarily the result of founder effect. These three aggregate communities were established in the late 18th and early 19th centuries by Aleut individuals and families forcibly taken from Unalaska and the western and central Aleutian Islands of Attu and Atka to work for the Russian fur trade industry, and based on these findings, are likely to have had a disproportionate number of D
lineages. Further to the east in the Fox Islands group and lower Alaska Peninsula, haplogroup A is present at significantly higher frequencies, ranging from 0.400 to 0.727, and thus indicating regional differences in the genetic structure of the widely distributed Aleut populations.

East-West Genetic Substructure

The correlogram generated through spatial autocorrelation analysis revealed a negative clinal relationship between mtDNA similarity and corresponding geographic distance classes for Beringian populations. This nonrandom distribution of genetic variation in geographic space likely reflects the deep evolutionary histories of the various Beringian peoples, as well as the differentiation of Aleut communities along an east-west axis. In the NJ tree based on HVS-I data, the historically founded populations of Bering Island and the Pribilofs, as well as Atka of the central Aleutians, all clustered together separately from the more eastern Aleut populations. This pattern is also observed in the MDS plot and in the results for the SAMOVA analysis which placed these four populations in a grouping that excluded the other Aleut communities. Based on Monmonier’s maximum difference algorithm and genetic surface interpolation using residual distances, a zone of genetic discontinuity was identified further to the east, between Nikolski and Unalaska. This genetic boundary corresponds well with the distribution of haplogroup D, as its frequencies in Nikolski and the communities to the west, including the Pribilofs, are all greater than those observed in the east. Thus, an east-west substructure for Aleut mtDNA variability is evident from the multivariate analyses and appears to be the
consequence of two factors: (1) founder effect in the aggregated Aleut communities of Bering Island and the Pribilofs, responsible for depressing diversity levels in these respective populations; and (2) the elevated frequencies of haplogroup D in the central and western Aleutian Islands, which may reflect the genetic distribution pattern established during the early postglacial peopling of these island groups.

From the Median-Joining networks constructed for mtDNA haplogroups A and D, three major subclades were identified in the Aleuts: A3, Aleut-specific A7, and D2. The PCA biplot of population coefficients and HVS-I haplotype scores indicates that the roots for A7 and D2 are the genetic variables primarily responsible for the dispersion of the Aleut communities away from non-Aleut populations, and in particular D2 for the orientation of Nikolski and the historically founded communities towards the positive end of the first dimension. Conversely, haplotype variables belonging to A2 and A3 have situated the eastern Aleut communities towards the opposite end of the dimension, in closer proximity to the non-Aleuts. These two subhaplogroups are common in Eskimo and Chukotkan populations, as well as False Pass (0.152), King Cove (0.182), and Nelson Lagoon (0.250). Of these three, Nelson Lagoon exhibits the greatest differentiation in relation to other Aleut communities, consistently clustering closest to non-Aleut populations in the NJ tree, R-matrix PCA, and MDS plot. Furthermore, three of the four newly observed Aleut haplotypes reported in this study are only present in the Nelson Lagoon sample, with two commonly found in Eskimo groups in Alaska and the third previously reported in the Haida of Pacific Northwest. Therefore, the higher frequencies of haplogroup A
among eastern Aleut communities, and in particular subclades A2 and A3, are suggestive of a third factor responsible for the east-west mtDNA substructure: (3) gene flow into the eastern Aleutians and lower Alaska Peninsula from neighboring Eskimo and Na-Dene groups.

Archaeological evidence tends to support the notion of native gene flow into the eastern Aleutians, as cultural exchange is evident at various times during the prehistory of the region. Artifact similarities have been documented between the Late Anangula phase (dated to approximately 6,000 BP) and the Pacific Eskimo Ocean Bay phase, as well as connections between the Margaret Bay phase (3,000 BP) and Eskimo ASTt (Dumond 1987, 2001). Also, beginning around 1,500 BP until Russian colonization, there is evidence for increased cultural contact between Aleuts and Pacific Eskimos from the Alaska Peninsula and Kodiak Island and the Tlingit of the Pacific Northwest (Holland 2001). This is based upon shared tool styles and manufacturing techniques, and the use of exotic materials for stone or bone artifacts. The eastern boundary of the Aleut people has been identified to the east of Port Moller (Dumond 1992), which interestingly is located near Nelson Lagoon across the Hague Channel, and likely served as a zone of cultural exchange through migration, hunting expeditions, trade, and/or warfare (Holland 2001).

For the Y-chromosome picture, the geographic structure of genetic variation is less evident. The result of a Mantel test performed on Y-STR and geographic distance matrices was a non-significant correlation of -0.123, which distinctly contrasts the highly significant value obtained for the mtDNA data ($r = 0.717$), and is
likely due to non-Aleut male gene flow throughout the region. A total of nine different haplogroups were identified in the Aleut samples by Y-SNP analysis, with R1a, R1b and I1a the most common lineages. Only two of the identified haplogroups are considered Native American in origin, Q* and Q3, with a combined frequency of 15.3%. Therefore, 84.7% of the Aleut male samples are considered to have non-Aleut Y-chromosomes, of which most are likely to be of European origin, and represents an estimation of the degree of male-mediated gene flow into the Aleut gene pool. This differs substantially from the mtDNA results, which shows only a small frequency (6.1%) of non-Native American haplogroups (i.e., lineages other than A and D) that are limited to the eastern Aleut samples. Curiously, nine of the twelve non-native matrilineas were identified in Sand Point, which may represent the genetic impact of an increasingly globalized fishing industry, as the local cold storage and fish-processing plant owned by Trident Seafoods typically attracts hundreds of transient workers into the community, both male and female. Nonetheless, this finding underscores the asymmetrical nature of gene flow into the Aleut population that is dominated by European men.

In order to investigate the origins of the Aleut Y-chromosomes, comparative population data for Sweden, Germany, US Europeans and Russia were incorporated into the analyses. In the NJ tree and MDS plot based on Y-STR data, the eastern communities of Nelson Lagoon, King Cove, and Sand Point clustered with the Swedish and German populations and were well removed from other Aleut and Russian samples. For the PCA plot of an \textbf{R}-matrix derived from Y-SNP haplogroup
frequencies, Nelson Lagoon and Sand Point once again oriented closely to the Swedish and German populations, as well as US Europeans. Additionally, a second cluster emerged that included the Russian populations, St. Paul and St. George of the Pribilofs, King Cove, and Bering Island. The biplot of population coefficients and haplogroup scores indicate that haplogroups R1a and N are the key polarizing variables for the Russian cluster, whereas haplogroups R1b and I1a are primarily responsible for orienting the eastern Aleut communities towards the Swedish, German and US European populations. This pattern is supported by the MJ networks, as the R1a network is dominated by Russian Y-STR haplotypes, while both the R1b and I1a networks are heavily represented by German and Swedish lineages.

To assess the level of Russian and Scandinavian male admixture, the major Y-SNP haplogroups observed in the Aleuts were analyzed using Bernstein’s (1931) classical equation $M = (P_H - P_B / P_A - P_B)$, where P represents the haplogroup frequencies for the hybrid (H) and two parental populations (A and B), with M and $1 - M$ the proportion of migrant alleles deriving from the two parental sources. The results for this admixture scenario show that the majority of Aleut patrilines derive from Russian admixture ($M = 0.586$), with a smaller proportion attributable to Scandinavian males ($M = 0.414$), suggesting that the genetic impact of European gene flow during Russian rule was more pronounced on the Aleut gene pool than after the American purchase of the Alaskan territory.

Although the Mantel test failed to reveal a significant relationship between Y-STR variation and geography, from both the application of Monmonier’s algorithm
and the interpolation of residual genetic distances a zone of genetic discontinuity was identified around Akutan, which effectively divides the Aleut male population into two regions. In the western part, Aleut Y-chromosomes are characterized by relatively higher frequencies of haplogroups R1a and N. The Aleut community on Bering Island exhibits the highest level of Y-chromosome diversity and, based on its placement above the theoretical line in the diversity versus r_{ii} plot, appears to have experienced considerable gene flow. This contrasts the mtDNA data for Bering Island that shows a marked reduction in diversity and the placement of all three aggregate populations well below the diversity versus r_{ii} theoretical expectation.

In the eastern region, the Y-chromosome variation is somewhat more complex, with King Cove possessing a large number of R1a lineages and False Pass exhibiting a relatively high frequency of Native American Q3. However, the region is characterized by I1a frequencies that are higher than in any of the Aleut communities to the west, ranging from 0.15 up to 0.333. Therefore, given that I1a appears to be predominantly a Scandinavian partiline based on the results of this study and previously published research (Rootsi et al. 2004, Karlsson et al. 2006), the Aleut communities in the eastern Aleutian islands and Alaska Peninsula appear to harbor the genetic signature of the influx of Scandinavian fishermen into the region that began with the sale of Alaska to the US in 1867 and the US Treasury Department’s intermarriage policy that promoted Aleut-European admixture in the following decades. In the communities further to the west, patriarchal remnants of
the earlier Russian conquest are evident from both Y-chromosome variation and surname ancestry (see Figure 52).

Overall, an east-west substructure in the Aleut population is present for both mtDNA and Y-chromosome variation, with a number of interdigitated factors contributing to the geographic differentiation: founder effect, prehistoric gene flow, assymetrical admixture with European men, and the original peopling of the Aleutian archipelago.

Origins of the Aleut People

Previous phylogeographic studies of mtDNA and Y-chromosome data indicate that the native Aleut maternal and paternal lineages derive from Siberian and/or Beringian sources. According to Zegura et al. (2004), the Altai-Sayan region of southern Siberia represents the ancestral homeland for Q3 Y-chromosomes, whereas mtDNA haplogroups A2, including its subclades, and D2 appear to have
evolved within Beringia (Derbeneva et al. 2002, Starikovskaya et al. 2005). The three major mtDNA lineages in Aleuts – A3, A7 and D2 – all exhibit star-like network structures and unimodal mismatch distributions, which suggest the genetic effects of population expansion. The A3 subclade is mostly observed among northern North American populations and, using Aleut HVS-I sequences, was dated in this study to 23,285 ± 13,488 years, revealing a deep evolutionary history. Thus, A3 appears to have been introduced into the Aleut population through either gene flow from neighboring groups in southwestern Alaska or population amalgamation with an older Anangula substratum during the postglacial period. Both A7 and D2 have much younger ages (approximately 3,000 and 5,200 years BP, respectively) and, based on phylogeographic considerations, are likely to represent the founder lineages of the Aleut people. In the study by Zlojutro et al. (2006), four models were proposed for Aleut origins from mtDNA and archaeological evidence, representing a combination of biological continuity with the earliest inhabitants at Anangula and Hog Islands and population intrusion as reflected by cultural transitions evident in the archaeological record (for instance, Margaret Bay phase at 3,000 BP and its similarities to Eskimo ASTt).

In a recent June issue of Science, the results of an ancient mtDNA study conducted by Gilbert et al. (2008) are particularly relevant to this topic of Aleut origins. The mitochondrial genome for a 3,400 to 4,500 year-old Paleo-Eskimo human hair specimen from an early Greenland Saqqaq settlement was sequenced. The results revealed that the mtDNA belongs to haplogroup D2, which is absent in
contemporary Eskimo populations in northern Canada and Greenland (Saillard et al. 2000, Helgason et al. 2006). More specifically, the ancient mtDNA was assigned to D2a1, a subclade previously observed only among contemporary Aleut and Siberian Eskimo populations of Beringia [note, D2a1 corresponds to the phylogenetic branches D2b and D2c in the study by Derbeneva et al. (2002)]. The early settlement of Eskimo peoples across northern North America is associated with the ASTt culture (4,500 BP) that gave rise to the Independence I-Saqqaq and Pre-Dorset traditions found throughout this vast region from approximately 4,000 to 2,500 years BP (Fitzhugh 1984). Later, around 1,000 BP, the Paleo-Eskimos are believed to have been largely replaced through an expansion of the Neo-Eskimo Thule peoples, a distinct population characterized by high frequencies of mtDNA haplogroup A (Helgason et al. 2006). Therefore, the results of this study suggest that the ASTt migrants into northern North America derived in part from populations in Beringia, represented by the D2a1 matriline, and may have played an important role in Aleut ethnogenesis (see Figure 53). As previously noted, similarities exist in the cultural assemblages of the Aleutian Margaret Bay phase and ASTt, such as well flaked, small tools that include “qaxaq” points (Hatfield 2002, Knecht and Davis 2001), and may reflect population admixture in the Aleutians from outside groups during this transitory period, which roughly corresponds to the ages estimated for lineages A7 and D2. However, additional research needs to be done to confirm this scenario. Other ancient DNA studies have identified haplogroup D among Paleo-Eskimo specimens, but have not performed complete mitochondrial sequencing that would
allow for the characterization of D2a1 (Hayes *et al.* 2003, 2005). Furthermore, Aleutian discontinuity has been described for cultural practices, isotope chemistry, and mtDNA haplogroup frequencies for archaeological specimens dating to around 1,000 years BP (Coltrain *et al.* 200), thus adding further complexity to the issue of Aleut origins.
CHAPTER SIX: CONCLUSION

This study characterized the mitochondrial and Y-chromosome DNA diversity in five eastern Aleut communities in order to complement earlier research conducted on communities further to the west and provide a comprehensive understanding of the genetic substructure of the Aleut people and their origins. Results from both genetic systems reveal patterns of variability that exhibit geographic differentiation along an east-west axis and reflect the genetic impact of key demographic events. In the west, which includes the central and western Aleutian Islands and the historically founded communities on Bering Island and the Prbilofs, a combination of low mtDNA diversity and high frequencies of haplogroup D2 is observed, which likely derives from both founder effect associated with the forced population relocations during Russian colonization and the early postglacial peopling of the region. For the Aleut Y-chromosomes, the vast majority are of European origin, approximately 85%, which contrasts the mtDNA picture, as only 6% of the Aleut matrilineal pedigrees were characterized to non-Aleut haplogroups and thus indicating a large degree of asymmetrical gene flow into the Aleut population from European male sources. In the eastern Aleutian Islands and lower Alaska Peninsula, Aleuts exhibit higher frequencies of mtDNA haplogroup A and its subclades, which according to archaeological evidence and phylogeographic considerations may stem from a sustained cultural and demic exchange across the eastern boundary with various Eskimo and Na-Dene groups prior to European contact. NRY haplogroup I1a, considered to be a Scandinavian patriline, is common among the eastern communities and represents the genetic impact of
Scandinavian and American migrants that entered the region after the sale of Alaska in 1867. Further to the west, Russian Y-chromosomes predominate, in particular haplogroups R1a and N. The phylogeographic analysis of mtDNA data and the results of recent ancient DNA studies both suggest that haplogroup D2 evolved in Beringia and formed the ancestral gene pool for Paleo-Eskimos and Aleuts, although further research is needed to fully elucidate the evolutionary relationship between these two arctic peoples and the demographic events that contributed to Aleut ethnogenesis.

It is evident from the mtDNA and Y-chromosome results of this study that the Aleuts are a genetically diverse population, with significant substructure between the eastern and western communities. Founder effect, gene flow, and prehistoric peopling events have all played a role in molding the patterns of Aleut genetic variability. However, of these three demographic circumstances, gene flow appears to be the primary factor responsible for the observed differentiation. The admixture model described in this study is a complex one, with differences in gender contribution, timing, genetic sources, and intensity. Most Native American populations have experienced varying degrees of creolization through European contact and settlement, as well as the introduction of African slaves into the North and South American mercantile economic systems. Generally, European ancestry is found at higher frequencies among Native American Y-chromosomes than mtDNAs, which underscores the detrimental impact of historic events over the past 500 years on Native American paternal lineages.
This pattern of male-mediated admixture also occurred in the Aleutians, but with an important difference. Unlike most Native American groups that were colonized by Western European nations, the Aleutians were governed by two European peoples – initially by the Russians and then later by the Americans. As a result, the nature of Aleut-European genetic admixture is a dichotomy between Russian and non-Russian Y-chromosome sources, in terms of both frequencies and geographic distributions.

Therefore, the American purchase of Alaska represents a watershed moment for Aleut history and demography, incorporating the Aleutians into an American sphere of socio-economic influence dominated by the fishing industry and impacted by the arrival of non-Russian European males, especially Scandinavian fishermen in the eastern region. Today, the Aleutian Islands are undergoing a third demographic transition with the increasing integration of its fishing industry into the global economy, which attracts hundreds of international, seasonal workers to the region on a yearly basis and will undoubtedly alter the genetic character of the highly admixed Aleut people.

Elliott HW (1886) Our Arctic Province, Alaska and the Seal Islands. New York, USA: Charles Scribners’s Sons.

Harpending HC, and Rogers AR (1984) *ANTANA: A Package for Multivariate Data Analysis*. Distributed by the authors.

Merriwether D, Rothhammer F, and Ferrell R (1995) Distribution of the Four Founding Lineage Haplotypes in Native Americans Suggests a Single Wave of

Schneider S, Roessli D, and Excoffier L (2000) *Arlequin ver. 2.00: A Software for Population Genetic Data Analysis*. Switzerland: Genetics and Biometry Laboratory, University of Geneva.

203

Veniaminov I (1840) *Notes on the Islands of the Unalaska District*. St. Petersburg, Russia: Russian-American Company.

APPENDIX A

Informed Consent Statement

The Department of Anthropology at the University of Kansas supports the practice of protection for human subjects participating in research. The following information is provided for you to decide whether you wish to participate in the present study. You should be aware that even if you agree to participate, you are free to withdraw at any time without penalty.

We are interested in reconstructing the origins and migrations of the Aleut people, using molecular genetic information. You will be participating in one session that should require a few minutes of your time. During that time you will be asked about the geographic origins of your parents and two buccal smears, one on each side, will be taken. The buccal smear technique consists of a sterile wooden applicator being gently stroked across the cheeks and gums, followed by rinsing the mouth with distilled water.

The DNA extracted from the buccal smears will be used solely to reconstruct the history of the Aleut people. Although participation will not directly benefit you, we believe that the information will be useful in revealing the origins of Aleut people and their connections to Siberian, Inuit, and Native American populations. All DNA will be used up in the analysis. Only personnel working directly on the Aleut project will have access to the DNA.

Your participation is solicited although strictly voluntary. We assure you that your name will not be associated in any way with the research findings. The information will be identified only by a code number.

If you would like additional information concerning this study before or after it is complete, please feel free to contact me by phone or mail.

Sincerely,

Michael H. Crawford, Ph.D.
Principal Investigator
Department of Anthropology
University of Kansas, Lawrence, KS 66045
785-864-4170

__
Signature of participant agreeing to participate

With my signature I affirm that I am at least 18 years of age and have received a copy of the consent form.
APPENDIX B

Y-STR Multiplex PCR Mixtures and Thermalcycler Profiles

Multiplex I: DYS385a/b, DYS390, DYS391 and DYS393

- 4.4 µL Flexi® PCR buffer
- 3.8 MgCl² (25 mM)
- 1.0 dNTP mix
- 0.3 GoTaq™ polymerase
- 0.4 BSA
- 2.0 Primer mix (10 pmoles of each primer per µL)
- 5.7 ddH₂O
- 4.4 Target DNA
- 22.0 µL

Multiplex II: DYS19, DYS392, DYS438 and DYS439

- 3.6 µL Flexi® PCR buffer
- 3.1 MgCl² (25 mM)
- 1.0 dNTP mix
- 0.3 GoTaq™ polymerase
- 0.3 BSA
- 2.0 Primer mix (10 pmoles of each primer per µL)
- 4.1 ddH₂O
- 3.6 Target DNA
- 18.0 µL

Multiplex III: DYS389I and DYS389II

- 3.6 µL Flexi® PCR buffer
- 3.1 MgCl² (25 mM)
- 0.4 dNTP mix
- 0.2 GoTaq™ polymerase
- 0.3 BSA
- 0.8 Forward primer (10 pmoles per µL)
- 0.8 Reverse primer (10 pmoles per µL)
- 5.2 ddH₂O
- 3.6 Target DNA
- 18.0 µL

Thermalcycle Profile: Multiplex I
94°C for 3 minutes (1 cycle); 94°C for 30 seconds (35 cycles); 57°C for 30 seconds (35 cycles); 72°C for 30 seconds (35 cycles); 72°C for 3 minutes (1 cycle); and a hold at 4°C.

Thermalcycle Profile: Multiplexes II and III
94°C for 3 minutes (1 cycle); 94°C for 25 seconds (35 cycles); 56°C for 30 seconds (35 cycles); 72°C for 30 seconds (35 cycles); 72°C for 3 minutes (1 cycle); and a hold at 4°C.