A Multi-Tiered Genetic Algorithm for Data Mining and Hypothesis Refinement

BY

Copyright 2009
Christopher M. Taylor

Submitted to the graduate degree program in Computer Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Arvin Agah, Chairperson

Jerzy Grzymala-Busse

Nancy Kinnersley

Xue-Wen Chen

Elizabeth Friis

Date Defended ______________________________
The Dissertation Committee for Christopher M. Taylor certifies that this is the approved version of the following dissertation:

A Multi-Tiered Genetic Algorithm for Data Mining and Hypothesis Refinement

Committee:

Arvin Agah, Chairperson

Jerzy Grzymala-Busse

Nancy Kinnersley

Xue-Wen Chen

Elizabeth Friis

Date approved ________________________________

ii
Acknowledgements

First of all, I would like to thank my mentor and advisor, Dr. Arvin Agah. Without his patience and determination, I am not sure that I could have finished. He deserves the credit for any of my academic success. All failures, of course, are my own.

Thank you to all of my committee members: Dr. Jerzy Grzymala-Busse, for introducing me to data mining; Dr. Xue-Wen Chen, for introducing me to genetic algorithms and bioinformatics; Dr. Elizabeth Friis, for being an inspiration and giving me big ideas for the future; and Dr. Nancy Kinnersley, for believing in me and for stepping in at the last minute to bail me out.

A special thanks to Al and Lila Self for being so incredibly generous and establishing a Fellowship that has provided me with not only the monetary resources to complete this project, but has also helped me to bloom as a leader. I also owe a great debt of gratitude to the staff of the Madison and Lila Self Graduate Fellowship – Cathy Dwigans, Sharon Graham, Patty Dannenberg, Howard Mossberg, and Jim Morrison. I will spend the rest of my life trying to live up to all that they have given me.

Lastly, but most importantly, I owe a lifetime of thanks to my wife, Kim. Without her loving support, patience, and the occasional kick in the pants she has given me, I know that I would not have made it to this point. She left behind a life she loved to let me pursue this dream. I hope that now I can use my dream to make hers come true.
Abstract

While there are many approaches to data mining, it seems that there is a hole in the ability to make use of the advantages of multiple techniques. There are many methods that use rigid heuristics and guidelines in constructing rules for data, and are thus limited in their ability to describe patterns. Genetic algorithms provide a more flexible approach, and yet the genetic algorithms that have been employed don’t capitalize on the fact that data models have two levels: individual rules and the overall data model. This dissertation introduces a multi-tiered genetic algorithm capable of evolving individual rules and the data model at the same time. The multi-tiered genetic algorithm also provides a means for taking advantage of the strengths of the more rigid methods by using their output as input to the genetic algorithm.

Most genetic algorithms use a single “roulette wheel” approach. As such, they are only able to select either good data models or good rules, but are incapable of selecting for both simultaneously. With the additional roulette wheel of the multi-tiered genetic algorithm, the fitness of both rules and data models can be evaluated, enabling the algorithm to select good rules from good data models. This also more closely emulates how genes are passed from parents to children in actual biology. Consequently, this technique strengthens the “genetics” of genetic algorithms. For ease of discussion, the multi-tiered genetic algorithm has been named “Arcanum.”

This technique was tested on thirteen data sets obtained from The University of California Irvine Knowledge Discovery in Databases Archive. Results for these same data sets were gathered for GAAssist, another genetic algorithm designed for data
mining, and J4.8, the WEKA implementation of C4.5. While both of the other techniques outperformed Arcanum overall, it was able to provide comparable or better results for 5 of the 13 data sets, indicating that the algorithm can be used for data mining, although it needs improvement.

The second stage of testing was on the ability to take results from a previous algorithm and perform refinement on the data model. Initially, Arcanum was used to refine its own data models. Of the six data models used for hypothesis refinement, Arcanum was able to improve upon 3 of them. Next, results from the LEM2 algorithm were used as input to Arcanum. Of the three data models used from LEM2, Arcanum was able to improve upon all three data models by sacrificing accuracy in order to improve coverage, resulting in a better data model overall. The last phase of hypothesis refinement was performed upon C4.5. It required several attempts, each using different parameters, but Arcanum was finally able to make a slight improvement to the C4.5 data model.

From the experimental results, Arcanum was shown to yield results comparable to GAssist and C4.5 on some of the data sets. It was also able to take data models from three different techniques and improve upon them. While there is certainly room for improvement of the multi-tiered genetic algorithm described in this dissertation, the experimental evidence supports the claims that it can perform both data mining and hypothesis refinement of data models from other data mining techniques.
Table of Contents

Chapter 1. Introduction .. 1
1.1 Motivation... 2
1.2 Problem Statement.. 4
1.3 Research Hypothesis.. 5
1.4 Dissertation Organization .. 6

Chapter 2. Background and Related Work .. 8
2.1 Set Theory... 8
2.1.1 Crisp Sets ... 8
2.1.2 Rough Sets ... 9
2.1.3 Fuzzy Sets .. 10
2.2 Data Mining .. 10
2.2.1 Decision Tables .. 12
2.2.2 Rule Induction .. 14
2.2.3 Rules with Set Operators ... 15
2.3 Genetic Algorithms .. 16
2.3.1 Genetic Algorithm Techniques ... 16
2.3.2 Applications of Genetic Algorithms ... 19
2.4 Confusion Matrices and Fitness Metrics .. 20
2.5 Genetic Algorithms in Data Mining ... 22

Chapter 3. Research Methodology .. 25
3.1 Design Overview ... 25
Chapter 1. Introduction

As more and more information is added to already immense databases, it is becoming increasingly difficult to analyze information. At the same time, it is becoming increasingly important that the information be analyzed to discover the patterns and truths that lie hidden within our vast collections of data. After all, what good is it to have all the information in the world but not know what it means, or what it might indicate?

Data are collected within some domain, meaning that all the information within that collection is related in some way. The data collected at a hospital are related in that they pertain to patients and the health and treatment of those patients. Data collected at a bank are related in that they pertain to the finances and spending habits of the bank’s customers. Regardless of the domain or purpose of the data, within all collections of related data, patterns exist. These patterns can be used to discover meaning about the data and what they represent. For example, analysis of the medical records of a single hospital can reveal the types of illnesses common to the area the hospital serves. It could further reveal the types of treatment that were successful compared to the types of treatments that were not as effective.

This type of analysis, called data mining, uses computer science techniques to search for patterns within data. With the vast amounts of information that are contained in the databases of the world, data mining has the potential to reveal patterns regarding human health, the human genome, economics, consumer spending,
marketing demographics, and a host of other areas. Given this potential, and the untapped benefits that have yet to be fully realized, there is a tremendous need for more advanced data mining techniques that can find even the most obscure patterns.

1.1 Motivation

Many different data mining packages exist, taking many different approaches to finding patterns. Some use a detailed algorithm for finding patterns. Others use an approach that simulates evolution, so that solutions “evolve” from random processes. This approach is known as evolutionary programming, or a genetic algorithm.

In each case, the use of sets is critical to the analysis of the data. Patterns are found by using various combinations of sets to describe the patterns in the data. However, most set operations are omitted from these approaches, making complex statements about patterns difficult, if not impossible. Furthermore, a translation or encoding of the sets is often performed. Thus some fundamental pieces of the problem are separated from the solution. The language of sets, which is used to describe the patterns, is often extremely limited by the chosen data mining implementation. Furthermore, the means used to represent the information can limit the pattern-finding ability of the chosen technique.

While genetic algorithms have been shown to be very successful, they only partially mimic evolution. They use a “roulette wheel” combined with a fitness function to simulate natural selection, with the more fit members of the population having a higher probability of selection. Thus, the more fit members of the
population are more likely to be selected to produce offspring. In real-world reproduction, only half of the genes from each parent are passed to the child. These may or may not be the good genes that make each individual more fit for survival. Thus, the child may not necessarily be as fit as the parents. However, over many generations the inferior genes will occur in smaller percentages of the population and could potentially be eliminated completely. Few genetic algorithms address a means for determining which “genetic material” from each parent is to be passed to children.

The amount of data used in real world data mining is significant. Having a technique capable of searching through all possible patterns and selecting those that are the most descriptive can be a very time-consuming process. This is why a genetic algorithm approach was selected for this project. Genetic algorithms are capable of quickly searching large solution spaces. They are also very useful for finding solutions to problems that are difficult to find using more direct approaches. The strengths of genetic algorithms make them a good choice for data mining applications.

The motivation for this research is to develop a new tool for data mining that uses the sets as part of the solution process and takes advantage of set properties and operations. This is incorporated into a multi-tiered genetic algorithm, which uses multiple roulette wheels to more closely approximate biological reproduction in which children receive genes from each parent.
1.2 Problem Statement

This dissertation details a novel data mining tool that combines set objects with a multi-tiered genetic algorithm. By performing direct manipulation of sets, the encoding process used in genetic algorithms can be eliminated. The sets can be directly used, manipulated, mutated, combined, etc. until a solution is reached. A rule can be achieved by combining sets together into a clause, separated by set operators (i.e. AND, OR, NOT, XOR, DIFFERENCE). Thus, a rule could look like: A AND B OR C AND NOT D \(\rightarrow\) Z. This collection of sets and operators can be resolved to a single set, which is a subset of Z. Because patterns within a set can also be defined as a subset of that set, this process can be used to construct rules that describe patterns within sets. Furthermore, the rules themselves can also be collected into a set. The resulting solution is thus a set of rules, each of which describes a pattern within the data. This collection of rules is hereafter referred to as a “description.” Each generation of the genetic algorithm is comprised of multiple descriptions, with each description representing one member of the population.

By building code for generic set objects, the properties and advantages of sets can be used over and over regardless of the hierarchy – a set is the same as a set of sets. New sets can easily be created and manipulated by whatever algorithm is employed, and the need for multiple alternative data structures (such as arrays of bit streams to represent the population of a genetic algorithm) can be reduced. This approach more closely mimics biology in that the “organisms” used in the genetic algorithm are “multi-cellular.” The smallest sets are combined together to represent a
pattern in the data (a rule). These are then gathered into an even larger set to describe the data as a whole (a description). In organisms, cells combine to form tissues, which combine to form organs, which combine to form the organism. Thus, the inspiration for the use of set theory in this research comes from biology.

The genetic algorithm described in this dissertation introduces a second “roulette wheel” to the natural selection process. As in traditional GAs, the first roulette wheel is used to select the two parents from whom children will be created. The second roulette wheel is introduced at this point to increase the probability of selecting the more favorable genes from each parent to pass to the child. The “organism” can be thought of as the collection of rules. The “genes” are the individual rules themselves. The process begins with two descriptions, or collections of rules, being selected. Which parents and which genes are considered “favorable” is determined by a fitness function. Then the rules from each description are evaluated and selected as to which will be passed to the children, with higher probability going to those rules with higher fitness values.

1.3 Research Hypothesis

It is hypothesized that the approach presented in this dissertation will produce a robust data mining technique capable of finding obscure patterns within data. The technique is robust in that it can be used on data from a wide variety of domains without having to change any of the programming or encode rules in a different way. Obscure patterns are not observable by humans because the patterns are very complex.
and the data sets are often very large. The addition of the second roulette wheel should help the process to converge more rapidly to a solution, while ensuring that the stronger rules are preserved. Furthermore, because the algorithm employs fuzzy logic, it is capable of finding rules that are not true all the time, but which are true most of the time.

More importantly, the approach described in this dissertation will be able to perform hypothesis refinement. It can potentially take a data model produced by any data mining technique and improve the results of that data model. The ability to perform hypothesis refinement could be a significant step in the field of data mining. It would provide a tool for improving upon data models, regardless of the original method used to obtain the model, by utilizing the strong search capabilities of genetic algorithms.

1.4 Dissertation Organization

The details of the design, experiments, and results are discussed in the chapters and sections that follow. Chapter 2 explains some of the background required for the development of the multi-tiered genetic algorithm, such as set theory, data mining, and fitness metrics. It also includes some previous work that has been done in applying genetic algorithms to data mining. Lastly, it shows how the multi-tiered approach is different from previous approaches to data mining using genetic algorithms.
Chapter 3 describes the methodology employed in the design and development of the multi-tiered genetic algorithm. The structure of the Arcanum multi-tiered genetic algorithm is detailed in this chapter. It includes the design requirements and the actual design used to meet those requirements. The chapter details how input data is used, how uncertainty within the data is handled, as well as how numeric attributes are handled.

Chapter 4 discusses the evaluation of the Arcanum multi-tiered genetic algorithm. It describes how the data sets were chosen, how training and testing data were separated, and the types of metrics used for evaluating the results.

Chapter 5 includes all of the results from the experiments. The chapter also contains descriptions of the actual data sets chosen for evaluation. It shows how Arcanum compared to two other important data mining techniques. It also reports on the results of hypothesis refinement. Discussion of each of these sets of results is also included in this chapter.

Chapter 6 concludes the dissertation. It lists the theoretical contributions of the work contained in this dissertation. The chapter also includes numerous observations made during the course of this research. The limitations of the research are discussed in this chapter. The implications of some of the observations, as well as the limitations of the research, suggest some interesting future work, which is proposed in this chapter.
Chapter 2. Background and Related Work

2.1 Set Theory

In order to begin the discussion of the proposed project, several key concepts must first be defined. The most fundamental concept for this project is that of Set Theory. Set Theory can be defined as the mathematical science of the infinite (Jech, 2002). It studies the properties of sets, which are then used to formalize all the concepts of mathematics. A full discussion of Set Theory is beyond the scope of this dissertation, so for brevity only a few related key concepts are included here. The reader unfamiliar with set theory notation and terminology is referred to Kenneth Rosen’s book *Discrete Mathematics and its Applications* (Rosen, 2007).

2.1.1 Crisp Sets

When the membership of sets is clearly defined, they are often called “crisp sets.” This is because the size of the sets, the number of elements, and the identity of the individual elements are all very well defined. An example of a crisp set could be the number of books on a specific bookshelf. Membership in the set is easily determined – if a book is on the bookshelf, then it is in the set; books not on the shelf are not in the set. The number of elements in the set can be easily calculated by counting the books on the shelf. Questions about membership are also easily answered (*i.e.* Does the set contain “War and Peace?” or “What are the titles of all
books in the set?”). Unfortunately, there are many real-world situations which are difficult to define in terms of crisp sets.

2.1.2 Rough Sets

Because crisp sets are sometimes difficult to represent precisely, they are sometimes defined using two “rough sets.” A rough set approximates the upper and lower bounds of a set that is otherwise difficult to define precisely. The upper and lower bounds are sets themselves. Suppose X is a set that is difficult to define as a crisp set. Let set A be the lower bound for set X, so that all of the elements of set A are certain to belong to set X. Let set B be the upper bound for set X, so that set B contains all of the elements that could possibly belong to set X. The definition for set A would be such that all elements of A are definitely elements of set X. In other words, $A \subseteq X$. Set B is given a much broader definition so that it contains at least some of the elements in X so that $B \cap X \neq \emptyset$ (Pawlak, 1994).

Rough sets are extremely useful when dealing with uncertainty or ambiguity. For example, if the definition of a particular set is unclear, it can be difficult to decide if some cases are elements of the set or not. By creating two rough sets, it is possible to create upper and lower bounds. As a more practical example, consider the concept of a “good student.” The lower approximation would include all students for which everyone would agree they were good students. The upper approximation would include those students for which some might be considered good by some people, but not everyone would call them good students. Somewhere between these two sets lies
the actual set of good students, but because it is such a vague concept, it is easier to approximate it with rough sets than to determine a precise definition for the set.

2.1.3 Fuzzy Sets

Sometimes there are elements that could potentially belong to several sets and so the definition of membership becomes a little blurry, which is where “fuzzy sets” are useful. Fuzzy sets allow for an individual element to be assigned a probability of belonging to a set, often with a different probability for several different sets, a concept that cannot be handled with crisp sets. Each element in a fuzzy set is a given a membership value indicating the probability that the element belongs in the set (Straccia, 1998). For example, let A be the set of weekdays and B be the set of weekend days. To which set does Friday belong? In crisp sets, Friday is a weekday because the weekend only consists of Saturday and Sunday. However, to many people Friday is part of the weekend. Using fuzzy sets, Friday could be assigned to set A with a 60% probability of membership and to set B with 40% probability. Thus, fuzzy sets allow for “loose” membership and can even be used to make claims such as element x is more likely to be a member of the set than element y.

2.2 Data Mining

Data mining is the process of finding patterns that lie within large collections of data. Contrary to more traditional data analysis methods, which begin with a hypothesis and then test the hypothesis based upon the data, data mining approaches the problem from the opposite direction. Thus, data mining is discovery-driven rather
than assumption-driven (Radivojevic et al., 2003). As the process searches through the data, patterns are automatically extracted.

In general, data mining objectives can be placed into two categories: descriptive and predictive (De Raedt et al., 2001). The goal of descriptive data mining is to find general patterns or properties of elements in data sets. This often involves aggregate functions such as mean, variance, count, sum, etc. In other words, descriptive data mining reports patterns about the data itself. Predictive data mining, however, attempts to infer meaning from the data in order to create a model that can be used to predict future data. This is often done by grouping data elements based on similarities and then analyzing the properties those data elements have in common. The common properties should be a reasonable predictor for the given result.

Another important concept is the difference between supervised and unsupervised learning. Supervised learning takes place when the data has been pre-classified. In other words, the items in the data have already been placed into groups or been assigned some value or result. For example, in a database about house values, each item in the database will contain values such as to the number of bedrooms, square footage, etc. In supervised learning, each house will also be assigned a monetary value. The goal of the data mining process is then to find the patterns that result in a given value. Unsupervised learning, on the other hand, occurs when the data is not pre-classified. In these cases, the data mining process cannot make value judgments. It can find correlations within the data, but it is not able to make any inferences about what those patterns might mean. Thus, unsupervised
learning is descriptive while supervised learning is predictive. In order to make predictions, the data must be classified, or given value, by some outside source.

Some of the difficulties involved in data mining are problems with the data. When collecting data from different sources, the various sources often have different formats for the data, collect different types of data, and have different protocols about the data. For example, one set of records might contain a person’s age, while a similar set of records from another source might not. Further compounding the problem, even within the same source, data can be erroneous or even missing. Perhaps the ages for some, but not all, of the people are recorded in the data. This can make finding patterns in the data very difficult when the data is incomplete or inconsistent. Thus, a major task in data mining is in how to handle these anomalies in the data that are not actually part of the data.

There are so many different approaches to data mining that it is difficult, if not impossible, to list them all. And the different techniques vary as widely as the data they are used to analyze. There are data mining techniques implementing neural networks, clustering algorithms, regression modeling, genetic algorithms, data visualization, and many more different approaches. Rather than describe the various approaches, this dissertation will focus on the techniques directly relevant to the proposed project.

2.2.1 Decision Tables

Decision tables are very similar to tables in a database. Each line in the table is called a “tuple” and represents one specific item such a house, an employee, a
business, a car, etc. Each column in the data is an “attribute” and is used to describe each tuple in the table. What distinguishes a decision table from a database table is that the decision table has some descriptive class or category associated with each tuple. The attributes can be thought of as conditions, with the decision being associated with those conditions. Table 2.1 is an example of a decision table indicating the conditions for which a patient will receive different percentages of reimbursement from his or her health insurance provider.

There are 8 tuples in Table 2.1, each representing a different condition under which a client might apply for a reimbursement from the insurance company. Each tuple can take a different value for each attribute. As seen in the table, there are three types of visits: office, hospital, and lab. The other two attributes only have two possible values: yes or no. Thus, each tuple can be described by using the values of the attributes. The “decision” in this table is the “reimbursement” attribute. The combination of an attribute with a value is called a “feature” (Kohavi and Provost, 1998). For example, (type_of_visit, office) is a feature – it specifies that the type of visit was an office visit.

<table>
<thead>
<tr>
<th>Tuple #</th>
<th>Deductible Met</th>
<th>Type of Visit</th>
<th>Participating Physician</th>
<th>Reimbursement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>yes</td>
<td>office</td>
<td>yes</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>yes</td>
<td>office</td>
<td>no</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>yes</td>
<td>hospital</td>
<td>no</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>yes</td>
<td>Lab</td>
<td>no</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>no</td>
<td>office</td>
<td>yes</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>no</td>
<td>office</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>no</td>
<td>hospital</td>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>no</td>
<td>Lab</td>
<td>no</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2.1. Decision table indicating conditions for reimbursement from insurance.

Some of the combinations of attributes in Table 2.1 are missing, such as a hospital visit that is also classified as a participating physician. To cover all possible combinations of features in the first three attributes of the table, only 12 tuples would be required. Real world data, however, can have millions or even billions of tuples.

2.2.2 Rule Induction

Rule induction is the process of taking the data and searching for meaningful patterns that can be described in terms of features. The result is a set of rules that describe the patterns in the data. Each rule consists of two parts: the antecedent and the consequent (Siler, 2005). The antecedent, or left-hand side, of the rule is the condition that must be met for the rule to be applicable. It is the “if” part of the rule. The consequent, or right-hand side, of the rule is the action or decision that follows if the antecedent is true. If the antecedent is true, then the consequent follows. A sample rule from Table 2.1 is:

\[(\text{deductible_met, no}) \rightarrow (\text{reimbursement, 0\%})\]

This rule can be read as “if the deductible is not met then there is 0\% reimbursement.” If the antecedent, (deductible_met, no) is true then the consequent, (reimbursement, 0\%) is true. This does not hold when reversed, however – the antecedent does not follow from the consequent.

The example rule describes tuples 5, 6, 7, and 8 as to how those conditions are reimbursed. It does not cover tuples 1 through 4 because they have (deductible_met,
yes). More rules need to be induced to cover the first four tuples. Thus, by creating a set of rules, all of the patterns in the decision table can be described.

2.2.3 Rules with Set Operators

A consequent can be described by a single set in the antecedent, but this occurs very rarely in real-world data. It usually requires the intersection of multiple sets to provide an adequate classification that does not include members from other consequents. These sets have to be separated by set operators. The set operators describe how the sets relate to one another. Without set operators, the meaning of the rule is ambiguous. For example:

$$(\text{deductible_met, yes}) \land (\text{participating_physician, yes}) \rightarrow (\text{reimbursement, 90\%})$$

does not have a set operator. From Table 2.1, it is apparent that for the consequent to be true, a tuple must be a member of both sets in the antecedent, requiring that an AND operator be placed between the two sets. If an OR operator had been used then tuples 1 through 5 would be members of the antecedent. Tuples 1 through 4 are members of $$(\text{deductible_met, yes})$$ and tuple 5 is a member of $$(\text{participating_physician, yes})$$. Regardless of the antecedent, only tuple 1 would be a member of the consequent. The AND operator makes the rule correct. The OR operator would make the rule correct only one-fifth of the time. However, there are times when the OR operator is more appropriate:

$$(\text{age, 15}) \lor (\text{age, 17}) \rightarrow (\text{age_group, teen})$$
Changing this OR to an AND would mean that there must be a tuple that has ages of both 15 and 17 in order to be a teen.

The four set operators used by Arcanum are:

Y AND Z – must be a member of both sets Y and Z.

Y OR Z – is a member of at least one of the sets Y and Z.

Y XOR Z – is a member of only one of the sets Y and Z.

NOT Z – is not a member of Z.

Using sets and set operators, complex statements can be constructed about the data. This is necessary because the patterns within the data rarely allow for a single set to be used as the antecedent for a rule. Statements can be constructed with sets and set operators that allow rules to make unique classifications.

2.3 Genetic Algorithms

Genetic algorithms, or GAs, are based upon evolutionary principles of natural selection, mutation, and survival of the fittest (Dulay, 2005). GAs are very different from most computer programs, which have well-defined algorithms for coming up with solutions to problems. The genetic algorithm approach is to generate a large number of potential solutions in a search space and “evolve” a solution to the problem.

2.3.1 Genetic Algorithm Techniques

One of the big keys to a successful genetic algorithm is in the development of a good “fitness function.” The fitness function is how each potential solution is
evaluated by the algorithm, and is in essence how the problem to be solved by the algorithm is defined. For example, if the purpose of the genetic algorithm is to design a car, then the fitness function will provide a means for evaluating the “fitness” of any car design.

When developing a genetic algorithm, one must decide how each solution will be represented in the algorithm. For simplicity, a string of bits is most often used. The bits can be used to represent any part of the solution. Taking the car example, some of the bits might represent the color of the car, others the size of the wheels, and others the gas mileage of the car. It is the responsibility of the fitness function to understand what the bits mean and how to use them to evaluate the fitness of each potential solution.

During the first iteration of a GA, it generates an initial “population” of potential solutions, which could be random. Each member of the population is then examined and its fitness is evaluated and recorded. Once each member of the population has been evaluated, then the next generation is produced from the current generation. There are many ways of generating the next generation, but the two most popular techniques involve “crossover” and “mutation.” In crossover, two members of the population are chosen at random with higher probability given to the more fit members of the population. These two members are then combined to produce two offspring. This is usually performed by selecting a position in the bit sequence and exchanging the two sequences after that position, which is called the crossover point.
For example, given the following two members of a population:

11101010
10010100

If these were crossed over at position 4, the resulting offspring would be:

11100100
10011010

There are many ways to perform the crossover, but this example is one of the simplest. The result is two new members in the next generation. In theory, these two new members should be reasonably more fit because they likely came from fit members in the previous population. Each member of the population is assigned a biased probability of selection. Because of this increased probability of selection, the most fit members of a population are more likely to be selected for crossover than less fit members. However, there is always a possibility that a less fit member will be selected instead. This technique can be thought of as a weighted roulette wheel, where each member of the population is assigned a space on the wheel, and the size of its space is determined by its fitness function. The more fit a member of the population is the larger the space it has on the roulette wheel, resulting in a higher probability of it being selected. Selection occurs by “spinning” the roulette wheel.

Usually, the crossover process continues until the size of the next generation is the same as the population size of the previous generation. After crossover has taken place, “mutation” is then applied to each member of the population. A typical mutation function is to assign a probability for flipping each bit. Thus, if a 10% value
for mutation is assigned, then each bit of each member of the population has a 10% chance of being flipped -- a 0 becomes a 1, or a 1 becomes a 0. After mutation is completed, each member of the new generation is evaluated for fitness. The previous generation dies and is replaced by the new generation. The process repeats and another generation is produced. This process of evolving new populations continues until some criteria are met. The stopping criteria could be (a) when the overall fitness of the population reaches a certain value, (b) when the overall fitness over several generations fails to change more than a specified value, or (c) after a certain number of generations have been produced.

The details in how genetic algorithms are actually implemented can vary widely. For example, how crossover is handled or how mutation is performed can vary depending on the problem they are designed to solve. Regardless of the details, the overall process remains the same: generate an initial population, evaluate the members of the population, generate a new population based upon the more fit members of the previous generation, and repeat the process until a certain stop criterion is achieved.

2.3.2 Applications of Genetic Algorithms

Genetic algorithms are very powerful search tools. By “search” it is meant that GAs are capable of pouring through a large number of potential solutions to find good solutions. Scheduling has been an area where genetic algorithms have proven very useful. The GA searches the space of potential schedules and finds those schedules which are most effective and maximize the desired criteria (such as
minimizing idle time). For example, GAs are used by some airlines to schedule their flights (Dulay, 2005). An application of a GA to a financial problem (tactical asset allocation and international equity strategies) resulted in an 82% improvement in portfolio value over a passive benchmark model, and a 48% improvement over a non-GA model used to improve the passive benchmark (Dulay, 2005). GAs have also been applied to problems such as protein motif discovery through multiple sequence alignment (Mendez, et al.), and obtaining neural network topologies (Taylor and Agah, 2006).

More information on genetic algorithms can be found in Goldberg (1989).

2.4 Confusion Matrices and Fitness Metrics

When discussing the results of a data mining model, two common measures are sensitivity and specificity. Sensitivity, often called the “true positive rate,” measures the percentage correctly identified as positive out of the total number of positives. Specificity, often called the “true negative rate,” measures the percentage correctly identified as negative out of the total number of negatives.

A helpful way to discuss sensitivity and specificity is to use a “confusion matrix” (Hamilton, 2005). A confusion matrix is an \(L \times L \) matrix, where \(L \) is the number of different label values. Table 2.2 is a \(2 \times 2 \) confusion matrix. In the confusion matrix, “a” denotes those tuples which were predicted as negative and were actually negative. Quadrant “b” is composed of those tuples which were predicted as
positive but were actually negative, also known as “false positives.” Quadrant “c” are those tuples which were classified as negative but were actually positive, also known

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>Actual</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>a</td>
</tr>
<tr>
<td>Positive</td>
<td>c</td>
</tr>
</tbody>
</table>

Table 2.2. A 2 × 2 confusion matrix.

as “false negatives.” Quadrant “d” contains the tuples that were classified as positive and were actually positive (Kohavi and Provost, 1998). Thus, using the confusion matrix, it is easier to define some fitness metrics:

\[
\text{Accuracy} = \frac{a+d}{a+b+c+d}
\]

\[
\text{Sensitivity (True Positive Rate)} = \frac{d}{c+d}
\]

\[
\text{Specificity (True Negative Rate)} = \frac{a}{a+b}
\]

\[
\text{Precision} = \frac{d}{b+d}
\]

\[
\text{False Positive Rate} = \frac{b}{a+b} = 1 - \text{Specificity}
\]

\[
\text{False Negative Rate} = \frac{c}{c+d} = 1 - \text{Sensitivity}
\]

- Accuracy is the percentage of tuples that are correctly classified out of all the tuples which are given a classification.

- Sensitivity, sometimes called recall, is the percentage of positive classification.

- Specificity is the percentage of negative classification.
• Precision indicates the number of exceptions to a rule. For example, a precision of 4/5 indicates that there is 1 exception to the rule.

• False Positive Rate is the percentage of tuples which are classified as positive but in reality are negative.

• False Negative Rate is the percentage of tuples which are classified as negative but in reality are positive.

There is one more metric which is useful when discussing the fitness of a data mining model, and that is coverage. The coverage of a model is the proportion of the data for which there is a rule. Thus, a model which has 90% coverage provides rules which classify 90% of the tuples. Coverage only means that a classification is made. It does not measure the accuracy of the classification.

Using these seven metrics, the results of a data mining model can be evaluated. This allows for reasonable comparisons to be made between different models.

2.5 Genetic Algorithms in Data Mining

There are currently two different approaches to rule discovery using genetic algorithms (Au et al., 2003): the Michigan approach and the Pittsburg approach. The Michigan approach, first introduced by Holland (1986), represents a rule set by the entire population, with each member of the population representing a single rule. The Pittsburg approach, exemplified by LS-1 (Smith, 1983), represents an entire rule set
with a single chromosome. Thus each member of the population represents an entire set of potential rules for describing the data.

Data sets are either single-class or multi-class. This refers to the number of possible values for the decision class. If there is only one decision value, all of the rules will describe that value – thus it is a single-class set. In a multi-class set, there are multiple decision values in the data (but each rule describes a single value). Table 2.1 is a multi-class set because there are multiple values for the “reimbursement” decision. The Michigan method is very useful for multi-class problems, but it suffers in that there is no way to ensure a high coverage of the data by evaluating a single rule at a time. The Pittsburg approach has been used to learn rules for a single class. To induce rules for multiple classes, the algorithm needs to be run multiple times.

In their experiments, Au et al. (2003), used the Pittsburg approach to great success. They compared the results of their data mining model, DMEL, developed by a genetic algorithm, to the results developed by C4.5, a very popular and well-known data mining algorithm that uses decision trees (Quinlan, 1993). The experiment included seven different data sets that were diverse in nature. In each instance, the genetic algorithm produced more accurate results than C4.5, ranging from as little as 0.3% up to a 13% improvement in accuracy (Au et al., 2003).

In their work, Flockhart and Radcliffe (2005) concluded that genetic algorithms are well suited to undirected data mining, but can also be used for directed data mining. Undirected data mining is the most common form, where the program simply looks for patterns and describes them. In directed data mining, the user
specifies the type of information in which they are interested. Using the Michigan approach, Flockhart and Radcliffe’s GA-MINER was able to find interesting, non-trivial rules within the data sets used for the experiment. Flockhart and Radcliffe also pose an idea for “hypothesis refinement” in which the user can “seed” the genetic algorithm with a rule or set of rules which the GA can use as an initial population. In this way, the GA can refine the initial hypotheses to produce a better model for the data.
Chapter 3. Research Methodology

3.1 Design Overview

This project is an effort to provide a technique for data mining that essentially combines the Michigan and Pittsburg approaches (Holland, 1986 and Smith, 1983, respectively), thus performing both methods at the same time. The technique proposed here uses a combination of set theory and genetic algorithms. The desired outcome is a technique that can generate a set of rules to describe any data set, without using any of the conventional data mining techniques. For ease of discussion, the approach has been dubbed “Arcanum” (Latin for “secret” or “mystery”).

Similar to the Pittsburg approach, each member of the population in Arcanum represents an entire set of rules that describes the data. Thus, a population of 50 would contain 50 different sets of rules for describing the data. Similar to the Michigan approach, Arcanum is able to find patterns for each decision class at the same time. In this manner, Arcanum combines both techniques to find a set of rules that describes every decision class in the data with only a single run. A set of rules is referred to as a “description” through the rest of the dissertation.

3.2 Creation of Sets from Input Data

Arcanum uses a decision table as input. Each unique feature in the decision table is used to create a set. Thus (deductible_met, yes) and (deductible_met, no) are two of the sets that would be created from Table 2.1. Arcanum also allows multiple
columns of the decision table to have the same attribute name. This is useful when multiple features exist for each tuple with respect to a particular attribute. For example, a single object can have several different colors. Creating a separate attribute for each color (i.e. Color1, Color2, Color3, etc.) limits the ability to find patterns in the data because matches only occur within the same attribute. In other words, (color1, black) would not match (color3, black) because they are from two different attributes, even though the values of the attributes are the same. However, by having three columns in the table called “color,” each tuple can have multiple values for the attribute and Arcanum can still match the colors regardless of the order in which the colors appear in the table. By allowing for matching across multiple columns that have the same name, Arcanum can match an object that is red, white, and blue with another object that is blue, white, and red. In other words, having multiple columns with the same name allows for matching independent of the order in which the values occur.

Each feature set contains the tuples to which it applies. From Table 2.1, the feature set (deductible_met, yes) would contain tuples 1, 2, 3, and 4. Each unique tuple can then be described by using a logical AND of the appropriate sets. Thus, from Table 2.1 tuple 1 can be uniquely identified as:

(deductible_met, yes) AND (type_of_visit, office) AND (participating_physician, yes).

Note that the last feature of tuple 1 is unnecessary because the first three features uniquely identify it.
Arcanum also creates a Universal Set. The Universal Set includes all the tuples. Arcanum ignores any other sets which are equal to the Universal Set because the knowledge gain from such sets is negligible and often obvious from a cursory examination of the data.

3.2.1 Numerical Attributes

When dealing with numerical attributes, the values rarely match exactly. For example, \((\text{temperature}, 98.5)\) and \((\text{temperature}, 98.6)\) would be separate sets even though they should probably be combined into a single set. In order to deal with this, Arcanum uses a binary discretization method to create partitions for numeric attributes. This discretization is performed locally on each attribute, meaning that the discretization process is performed on each numeric attribute independently of any other numeric attribute.

The discretization begins by creating a list of “break points” between features in the decision table. For Table 2.1, the only numeric attribute is the “reimbursement” attribute. The first break point occurs halfway between the smallest value and the next largest value. The next break point occurs between the next two larger values and so on. In Table 2.1, the smallest value is 0 and the next largest is 50, thus the first break point is 25. The next break point occurs between 50 and 70, then between 70 and 80, and then between 80 and 90. Thus, the list of break points for Table 2.1 is 25, 60, 75, and 85.

Using the list of break points, intervals are then created. Two intervals are created for each break point. For Table 2.1 there will be eight intervals to partition
the reimbursement attribute because there are 4 break points. For any break point, the
two intervals are from the smallest value to the break point and from the break point
to the largest value. Using the break point of 25 from Table 2.1, the first interval is
[0, 25] and the second interval is (25, 90]. These two intervals are then used to create
sets. The set (reimbursement, [0, 25]) contains tuples 5, 6, 7, and 8. The set
(reimbursement, (25, 90]) contains tuples 1, 2, 3, and 4. Each remaining break point
is then used to partition the attribute and create sets.

Using this discretization process, Arcanum can then induce rules based on
these intervals of values rather than trying to use each separate value.

3.2.2 Uncertainty

In real world data, there are often times when an attribute value for a tuple is
not known, leading to “uncertainty” in the data. Arcanum allows two special symbols
in a decision table to denote uncertainty. A “?” as an attribute value for a tuple
indicates that there is no value for the attribute for the respective tuple and that the
attribute value should be ignored for the tuple. This can be used in the case of
multiple values for the same attribute, such as the “color” in previous examples. If
there are three columns for color, but a particular tuple only has two colors, the “?”
can be placed in one column to tell Arcanum to ignore that column for that tuple. The
“?” can also be used to create more certainty in Arcanum. By ignoring unknown
attribute values, only those values which are known are used to induce rules. Thus,
the resulting rules are “certain” because they make no assumptions about the
unknown values – they are simply ignored.
The “*” as an attribute value for a tuple also indicates uncertainty, but is handled differently than the “?” symbol. When the “*” is used, Arcanum adds the tuple to all sets involving that attribute. It is treated as if it contains every known value for the attribute. For example, if a ninth tuple were added to Table 2.1 and contained an “*” for the first attribute, then the tuple would be added to the sets (deductible_met, yes) and (deductible_met, no). This allows Arcanum to handle uncertainty by using possible values for the attribute when inducing rules, but means that the rules are less certain because assumptions have been made about some attribute values.

Both uncertainty symbols can be used within the same decision table, allowing the user to specify that rules involving particular attributes must be certain, but rules involving other attributes can be less certain. When there are no missing attribute values, neither symbol is necessary.

Using the concept of rough sets discussed in section 2.1.2, allowing for both methods of dealing with missing data, upper and lower bounds for the rules that describe the data can be constructed. The lower bound is created using the “?” operator, resulting only in rules that are derived from certain data. The upper bound is created using the “*” operator, resulting in rules that could be possible is the assumptions about the missing data are correct.
3.3 Modes of Operation

Arcanum can run in either the directed mode or the undirected mode (Flockhart and Radcliffe, 2005). In directed mode, the user specifies which attributes in the decision table are of interest. Only the attributes designated by the user will be used as consequents for rules. In other words, the rules induced by Arcanum will only describe those attributes. All other attributes can be used in the antecedent of rules, but not as consequents. This mode is useful when the user knows the type of information he or she wants to look for.

In the undirected mode, Arcanum will use all attributes as consequents of rules. Essentially, it will try to find patterns for every feature in the decision table. By default, Arcanum operates in the undirected mode, attempting to describe the data set as completely as possible.

3.4 Arcanum

After creating the sets from the input decision table, Arcanum employs a genetic algorithm to produce a description of the data. The outline of the process in Arcanum is as follows:

1. Seed the initial generation of descriptions
2. Evaluate rules
3. Evaluate descriptions
4. Create next generation
5. Manipulate rules
6. Repeat steps 2 through 5 until stop criterion is reached

3.4.1 Seeding the Initial Generation

The initial generation of descriptions can be seeded in one of two ways: Arcanum can randomly generate descriptions or the user can provide Arcanum with an initial description which Arcanum will then attempt to refine through the genetic algorithm.

By default, Arcanum will randomly generate an initial population of descriptions. For each description, Arcanum will generate a random rule for each feature of interest. Each of these initial rules will contain only one set in the antecedent. This will cover any possible one-to-one relationships between features, where a decision class can be described using only a single set in the antecedent of the rule.

If the user chooses to provide an initial set of rules, then Arcanum will use these rules to seed one-third of the initial population. Another third of the population will be seeded with randomly modified versions of these rules. The last third of the population will be composed of randomly generated descriptions. The decision to split the initial population into thirds was made in order to provide a diverse initial generation. The chances of finding beneficial crossovers should be increased while still allowing for some of the initial rules to survive. If the initial rules are “perfect” then they should preserved all the way to the final generation.
3.4.2 Evaluation of Rules

Usually, Sensitivity (true positives) is associated with Specificity (true negatives) when evaluating a classification method (Weiss and Kulikowski, 1991). The technique discussed here does not deal with negative classification, meaning that if a tuple does not match a rule, it cannot be concluded that the tuple is not part of the class. It can be concluded that the tuple is not part of the subset of the class described by the rule. A different rule might show that the tuple is part of the class, just in a different subset. In order to determine if a tuple does not belong to a class, it must be compared to all of the rules that describe that class. Because of this, Specificity has little meaning for individual rules. Precision has been chosen as a substitute because it provides information on the number of exceptions to a rule.

The Sensitivity, also known as Recall, and the Precision of each rule in each description is calculated according to the definitions shown in section 2.4. Precision identifies how inviolate the rule is, i.e. the frequency with which the rule is true. Recall is the proportion of the rule consequent, the decision class, which is classified by the rule. A Recall of 75% means that three-fourths of the rule’s consequent are classified by the antecedent. The fitness value of the rule is calculated as follows:

\[(\text{weight}_{\text{precision}} \times \text{precision}) + (\text{weight}_{\text{recall}} \times \text{recall})\]

The weights are converted to decimal values, so that 80% becomes 0.80. As such, the weights always add up to 1, meaning that each rule will have a fitness value ranging from 0 to 1. The weights are used so that preference can be given to models with high precision or high recall, depending on the needs of the user.
3.4.3 Evaluation of Descriptions

When evaluating a description, the purpose is to measure the collective results of the rules contained in the description. It is possible to have a description that contains very good rules that only classify a small portion of the data set and make no classification for a large portion of the data. It is also possible to have a description that classifies all of the data, but the classifications are inaccurate. To ensure that descriptions provide classifications for a large part of the data and that the classifications are correct, the Accuracy and Coverage metrics are used.

In this dissertation, the fitness of a description is defined as the weighted sum of its Accuracy and Coverage. The Accuracy of a description is the percentage of correct classifications (true positives and true negatives). An Accuracy of 25% means that only one-fourth of the classifications in the description are correct. The Coverage of a description is the percentage of the data set for which a classification is made, regardless of whether the classification is correct. A Coverage of 80% means that 20% of the data remains unclassified by the description. The fitness value of the description is calculated as follows:

\[
\text{fitness} = (\text{weight}_{\text{precision}} \times \text{accuracy}) + (\text{weight}_{\text{recall}} \times \text{coverage})
\]

Thus, each description can have a fitness value ranging from 0 to 1. Note that this uses the same weights specified for Precision and Recall. This is because Accuracy reflects the Precision of the entire model, while Coverage reflects the Recall of the entire model.
3.4.4 Creating the Next Generation

Based upon the fitness values assigned to the descriptions and rules, a new generation of descriptions is created. This is done through a process of selecting two “parent” descriptions and combining rules from each of them to create two “child” descriptions. The children then become part of the new generation. Typically, this is done using a “roulette wheel” approach, like the one described in section 2.3.1. Arcanum uses two roulette wheels, one within the other, in order to create the children.

First, the fitness values of all descriptions are normalized, providing a selection probability for each member of the population. The higher the fitness value of a description, the more likely it is to be selected as a parent for the next generation. Two descriptions are then selected based upon these weighted values. These two descriptions will be used as parents.

Each child will receive one-half of its rules from each parent. This is done through another roulette wheel process similar to the one used to select the parents. Rules with higher fitness values are more likely to be selected to pass on to the child. A child cannot receive the same rule from the same parent more than once, however the same rule can potentially be received once from each parent, resulting in a duplicate. This is similar to the way genes are passed in biology.

Using this process, two children are created from the selected parents. After the children are created, two new parents are selected. This can result in the same parents being chosen. Because of the weighted roulette wheel process used in
selecting parents and rules, there is a chance of producing children in the next
generation that have the exact same genes. The probability of generating children
with the same genes is inversely proportional to the number of genes being received
from each parent. In other words, the more genes each child receives from a parent,
the less likely it is that their children will have the exact same genes. While the
production of duplicate children could indicate convergence on a solution, it is not
necessarily desirable – just because two descriptions have the same rules does not
mean that those are the best rules. Some variance is still necessary to ensure that
some possibilities are not being overlooked. This is handled in the next step, Rule
Manipulation.

3.4.5 Rule Manipulation

This step simulates the role of mutation in evolution. Each rule of each
description in the new generation has a chance of undergoing a random mutation. The
probability for any given rule undergoing a mutation is equal to 1 – the fitness of the
rule. Thus, the higher the fitness score of the rule, the less likely it is to mutate. Only
one operator can be applied to a specific rule or description per generation. Thus, if
one mutation is applied, then none of the others can be applied to that rule or
description until the next generation. The possible operations are:

- ChangeOperator: randomly change one of the set operators to a different
 operator
• ChangeSet: randomly change one of the sets in the antecedent to a different set

• ComplicateRule: add AND with a random set to the end of the antecedent
 - Chance of selection is inversely proportional to Precision. The lower the Precision, the higher the chance that ComplicateRule will be applied to the rule. When Precision is low, it indicates that there are many exceptions to the rule – it is too general. Adding to the antecedent can help make the rule more specific and remove some of the exceptions, thus improving Precision.

• SimplifyRule: randomly select a position in the antecedent and delete everything in the antecedent that comes after the selected position
 - Chance of selection is inversely proportional to Recall. The lower the Recall, the higher the chance that SimplifyRule will be applied to the rule. When Recall is low, it indicates that the antecedent excludes many members of the consequent – it is too specific. Stripping off operators and sets from the end of the antecedent can make it more general and potentially include more members in the consequent that were previously being excluded.

• AddRule:
 - Unlike the other mutation operations, which affect only rules, the AddRule operator applies to a description. Each description has a
chance for having a new rule added. This chance is inversely proportional to the Coverage of the description. The lower the Coverage, the greater the chance that a new rule will be added to the description to help improve the Coverage. The new rule will consist of a single random set as the antecedent and a single random set as the consequent.

3.4.6 Linear Dropping

After a final description for the data has been reached, each of the rules in the description will undergo a process called “linear dropping.” Due to the random way in which rules are constructed in this process, it is possible that they might contain extraneous information in the antecedents of the rules. For example, a rule from Table 2.1 could be:

\[(\text{deductible_met, yes}) \land \text{type_of_visit, lab}) \land (\text{participating_physician, no}) \rightarrow \text{reimbursement, 70%}\]

In reality, only the first two sets are needed; the addition of “\(\text{AND (participating_physician, no) \rightarrow \text{reimbursement, 70%})}\)” does not add any new information to the rule. Therefore, it can be dropped from the rule.

To perform linear dropping, the process will start with the last set in the antecedent of the rule. In the previous example, the process would start with \(\text{(participating_physician, no)}\) because it is the set furthest to the right in the antecedent. This set becomes the “drop set.” The antecedent will then be evaluated
as if the drop set were no longer part of it. If the result from the evaluation of the new antecedent is the same as the result of the old antecedent, or if the result is a subset of the consequent, then the antecedent is changed to no longer contain the drop set (including the operator to the left of the set). The process continues by selecting a new “drop set,” the set immediately to the left of the previous drop set.

Once the linear dropping process is complete, each rule should contain only the minimal amount of information required by the antecedent to describe the consequent (or a subset of it).

3.5 Implementation

When Arcanum was first conceived, much work was done to establish “proof of concept.” In order to ease the coding and provide quick and easily testable code, the Visual Basic version 6 programming language was chosen. It was very easy to write the set objects and perform set operations on them. To further verify that these set objects and the relevant code would be useful and productive, some test programs were written which incorporated these objects. These tests consisted of Visual Basic implementation of a Markov Chain Monte Carlo technique that could assemble sets together into rules and then test them against a data set. A second implementation of the sets was done by developing a Visual Basic version of the LEM2 data mining algorithm. The Markov Chain Monte Carlo technique was very slow and produced very low coverage. The LEM2 implementation, however, ran quite well and produced good results in testing, which was performed by looking for motifs in various protein families (Chen and Taylor, 2008).
The experiments were conducted concurrently on several different machines. This is due in large part to the significant amount of time required for the process to complete. In order to gather the necessary experimental results, many different machines were used at the same time, each running a different experiment. All of the machines used a Microsoft Windows XP platform and had a minimum of 1GB of RAM. All of the computers had at least a 3GHz or faster processor, with the exception of one machine that only had a 1.3GHz processor. In total, four different computers were used to conduct the experiments.
Chapter 4. Evaluation

4.1 Data Sets

In order to evaluate Arcanum, several things are necessary: a group of data sets to be mined, other published results for the data sets, and some metrics that can be compared between the published results and the results from Arcanum. From a review of the literature (Bacardit and Butz, 2004; Au, et al., 2003; Ratanamahatana, 2008), it appears that the most common metrics used are either accuracy or error. The accuracy metric is already calculated by Arcanum, and the error metric is easily obtained (1 – accuracy).

The specific data sets used for experimentation were selected from the University of California at Irvine Knowledge Discovery in Databases Archive (Hettich and Bay, 1999). The UCI KDD archive contains a large collection of data sets which have been used by several research groups. Using this collection provided two distinct advantages: (1) access to several diverse data sets from a single source; and (2) other researchers have published the results of their data mining on these data sets, thus providing a means of measuring the success of Arcanum by comparing it to the results of other approaches.

When selecting the data sets to be used for evaluating Arcanum, several factors were considered. It was desired to select at least six data sets: all nominal attributes, all numeric attributes, and a mix of nominal and numeric attributes; each of these with and without some missing values. Higher priority was given to those sets
with missing attribute values, as most real-world data sets have missing values. Numeric attributes were also very important because Arcanum uses a discretization method when dealing with them. Thirteen data sets were actually chosen from the UCI KDD archive. These sets were selected because published results were available and because these sets covered the desired range of nominal and numeric attributes, both with and without missing attribute values. The data sets are described on more detail in section 5.1.

Another important factor in choosing data sets will be the volume of available literature with respect to the data set. When more results can be obtained from other researchers using the same data set, more comparisons can be made, allowing more insight into the results from Arcanum. Even if the accuracy of the results are similar, it is still of interest to compare the actual results to see if the resulting rule sets are similar.

4.2 Separating Training and Testing Data Sets

It is crucial to separate data sets into two separate sets: one to be used for training and the other to test the results obtained from training. The data sets in the UCI KDD Archive are not split into these separate sets, thus some preprocessing must take place before they can be used in Arcanum.

Each data set selected from the UCI KDD archive was run using a K-fold cross-validation method, with K=10 (Souza, 2005). Thus, each tuple in a data set was randomly dropped into one of 10 buckets, resulting in 10 subsets of equal size. This
was done by randomly selecting a tuple to place in bucket 1, then randomly selecting a tuple for bucket 2, etc. until every tuple had been placed in a bucket. For each run of the algorithm, 9 of the subsets were used for training and the remaining set was used to test the resulting data model. In the following run, a different testing set was used. So, on the K^{th} iteration the K^{th} set was used for testing and the other 9 sets were used for training. This was done 10 times, so each subset was used once as a test set and 9 times as a training set. The results for all 10 runs were averaged together to obtain the overall results for the data set.

4.3 Metrics

The metrics measured and reported by Arcanum are:

- **Accuracy**: measured for the entire description, this is the percentage of correct classifications (true positives and true negatives) using the derived rules.

- **Coverage**: measured for the entire description, this is the percentage of the data set for which a classification is attempted.

- **Precision**: measured for each rule, this is the percentage of elements from the set defined by the antecedent of the rule that are also members of the consequent of the rule. The inverse, $1 - \text{Precision}$, is the percentage of exceptions to the rule.

- **Recall (Sensitivity)**: measured for each rule, this is the percentage of the decision class covered by the rule.
These metrics were selected in order to be able to measure the effectiveness of the overall description (Accuracy and Coverage), as well as the effectiveness of each individual rule (Precision and Recall). Because each rule only indicates membership and not lack of membership, measurement of negative classification can only be done for the entire description.

4.4 Comparisons

In addition to Arcanum, two other algorithms were also implemented based on the same core components of the software. The exact same code for set objects was shared between Arcanum and these programs. These programs were implemented for several reasons. First, this was done in order to test the code that drives the set objects and verify that it works properly. Second, these programs were implemented to prove that the code was reusable so that it could be used in different applications that also make use of set theory. Lastly, these programs can help evaluate the performance of Arcanum by providing their own descriptions of data sets, as well as run-time comparisons. They can also be used to generate rules to be introduced into Arcanum to test the rule-seeding portion of the program.

4.4.1 LEM2

The LEM2 algorithm (Learning by Examples Module), developed by Dr. Jerzy Grzymala-Busse at the University of Kansas, is a proven data mining technique (Chmielewski and Grzymala-Busse, 1996). Given that the pseudo-code for the algorithm was available, it was implemented to test the set theory portion of
Arcanum’s code, providing a means of testing the object models within the code and ensuring that everything worked properly. This LEM2 implementation has been used on several data sets, including a non-trivial data set involving protein sequences, with great success (Chen and Taylor, 2006). Thus, the Arcanum process was built confidently upon the same object models. LEM2 was also used to generate rule sets that could be used as seed rules in the testing of the hypothesis-refinement ability of Arcanum.

4.4.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a technique used to gather random samples from a probability distribution (Ridgeway and Madigan, 2002). First, a Markov model of the data is constructed. In this specific implementation, the Markov model is derived from the training data set. Each attribute is given an equal probability of selection. Thus if there are five attributes, then any attribute has a 1/5 chance of being selected. Within each attribute, the features of the attribute are assigned probabilities based on their frequency within the attribute. Therefore, features that occur more often have a higher probability of selection.

In order to use MCMC to generate rules, a data mining variant of MCMC was developed. This implementation of MCMC created rules by selecting a random set and then selecting additional random sets in order to create an antecedent for a rule. This process continued until a decision class was selected, forming the consequent, and thus completing the rule. This random rule was then tested against the data set to measure the precision and recall of the rule. If it fell below the user-provided
threshold value for either metric, then the rule was discarded. If the rule was accepted, it was added to the rules in the description and another random rule was generated. This process continued until a user-specified number of rules had been sampled.

When used for data mining, this technique was slow and not nearly as accurate as LEM2. However, the random sampling can sometimes find additional patterns within data that LEM2 ignores because the examples have already been covered by a different rule. Implementing the MCMC method allowed for further testing of code and helped ensure that set objects, rule parsing, and metrics were all working properly. The results from MCMC could potentially serve as a lower limit for measuring the success of Arcanum. However, MCMC was run several times on the “Breast.C” data set but was never able to achieve better than 50% coverage of the data. As such, while MCMC was implemented as part of this research, it was never used for comparison or to generate initial rule sets to test hypothesis-refinement in Arcanum.

4.5 Efficiency

The most obvious measure of genetic algorithm efficiency is the number of generations required to reach a solution. However, by the nature of genetic algorithm, the number of generations cannot be directly controlled. Sometimes an upper limit is placed on the number of generations, so that if the limit is exceeded the program terminates. The number of generations required by the genetic algorithm is
affected by several parameters: frequency of mutation, crossover method, encoding method, calculation of the fitness function, and size of the population.

The population size should be high in order to help ensure more diversity within the population. With more diversity comes an increasing chance of finding better solutions. However, as the population size increases, so does the amount of physical memory required to represent it in the computer. The frequency of mutation will need to be adjusted by evaluating the performance of Arcanum on some trial data sets to see which frequency of mutation will help produce the fewest number of generations before a solution is reached.
Chapter 5. Experimental Results

Testing of Arcanum was done in two phases. The first phase was to determine if Arcanum could be used to perform data mining. The second phase tested the ability of Arcanum to perform hypothesis refinement, taking a previously generated data model and attempting to improve it. This chapter contains the results and discussion of both phases of testing.

5.1 Data Sets

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Attribute Values</th>
<th>Missing Attribute Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast.C</td>
<td>Mostly nominal</td>
<td>None</td>
</tr>
<tr>
<td>Breast.W</td>
<td>Entirely numeric</td>
<td>Very few</td>
</tr>
<tr>
<td>Cleve</td>
<td>Nominal and numeric</td>
<td>Very few</td>
</tr>
<tr>
<td>Glass</td>
<td>Entirely numeric</td>
<td>None</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>Entirely numeric</td>
<td>Many</td>
</tr>
<tr>
<td>House-votes</td>
<td>Entirely nominal</td>
<td>Many</td>
</tr>
<tr>
<td>Iris</td>
<td>Entirely numeric</td>
<td>None</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>Entirely numeric</td>
<td>None</td>
</tr>
<tr>
<td>Liver.Bupa</td>
<td>Entirely numeric</td>
<td>None</td>
</tr>
<tr>
<td>Lymph</td>
<td>Entirely numeric</td>
<td>None</td>
</tr>
<tr>
<td>Pima.Diabetes</td>
<td>Entirely numeric</td>
<td>None</td>
</tr>
<tr>
<td>Wdbc</td>
<td>Entirely numeric</td>
<td>None</td>
</tr>
<tr>
<td>Wpbc</td>
<td>Entirely numeric</td>
<td>Very few</td>
</tr>
</tbody>
</table>

Table 5.1. Description of data sets used for testing Arcanum.

To test the data mining ability of Arcanum, 13 data sets were chosen from the University of California, Irvine, Knowledge Discovery in Databases repository
(Hettich and Bay, 1999). These data sets were chosen because of the availability of published results from other data mining techniques. The sets used, and their characteristics, are highlighted in Table 5.1.

As shown in Table 5.1, most of the data sets were comprised of entirely numeric data, and thus required discretization in order to create numeric ranges for the data. Only three of the data sets contained any nominal, or text, data. Five of the sets were missing at least some attribute values. Using these data sets, Arcanum was tested on both nominal and numeric attributes, and each of those was tested both with and without any missing attribute values.

As indicated in Chapter 4, there were many factors that determined which data sets were chosen. Chief among these factors was the availability of published results on the data sets. While only three of the thirteen sets contain nominal data, the type of data being considered is secondary to the fact that results were compared from different techniques using the same data sets.

5.2 Data Mining

In order to determine which weighting scheme to use for Arcanum, some preliminary tests were run in order to gather some base-line data. Two different data sets, “Breast.C” and “Iris,” were selected for this purpose due to their relatively smaller sizes compared to the other sets (Hettich and Bay, 1999). Arcanum was then run on each set 11 times with different weights. The weights started at 100% accuracy with 0% coverage and were incremented/decremented by 10% (90/10,
80/20, etc.) each experiment until the last experiment had a weight of 0% accuracy and 100% coverage. Table 5.2 contains the results of these experiments, which were performed with a population size of 250, 25 generations, and using the entire data set as the training set (thus, no validation).

<table>
<thead>
<tr>
<th>Weight</th>
<th>Breast.C</th>
<th></th>
<th>Iris</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100 / 0</td>
<td>100.00</td>
<td>17.48</td>
<td>17.48</td>
<td>100.00</td>
<td>14.22</td>
<td>14.22</td>
<td></td>
</tr>
<tr>
<td>90 / 10</td>
<td>81.97</td>
<td>88.81</td>
<td>72.80</td>
<td>99.17</td>
<td>76.67</td>
<td>76.00</td>
<td></td>
</tr>
<tr>
<td>80 / 20</td>
<td>81.25</td>
<td>89.51</td>
<td>72.73</td>
<td>97.52</td>
<td>100.00</td>
<td>97.52</td>
<td></td>
</tr>
<tr>
<td>70 / 30</td>
<td>77.83</td>
<td>100.00</td>
<td>77.83</td>
<td>94.60</td>
<td>99.33</td>
<td>94.00</td>
<td></td>
</tr>
<tr>
<td>60 / 40</td>
<td>77.39</td>
<td>100.00</td>
<td>77.39</td>
<td>97.24</td>
<td>97.33</td>
<td>94.64</td>
<td></td>
</tr>
<tr>
<td>50 / 50</td>
<td>76.89</td>
<td>100.00</td>
<td>76.89</td>
<td>94.83</td>
<td>100.00</td>
<td>94.83</td>
<td></td>
</tr>
<tr>
<td>40 / 60</td>
<td>77.05</td>
<td>100.00</td>
<td>77.05</td>
<td>96.64</td>
<td>100.00</td>
<td>96.64</td>
<td></td>
</tr>
<tr>
<td>30 / 70</td>
<td>77.16</td>
<td>99.65</td>
<td>76.89</td>
<td>93.66</td>
<td>100.00</td>
<td>93.66</td>
<td></td>
</tr>
<tr>
<td>20 / 80</td>
<td>75.31</td>
<td>100.00</td>
<td>75.31</td>
<td>94.61</td>
<td>100.00</td>
<td>94.61</td>
<td></td>
</tr>
<tr>
<td>10 / 90</td>
<td>77.41</td>
<td>100.00</td>
<td>77.41</td>
<td>83.89</td>
<td>100.00</td>
<td>83.89</td>
<td></td>
</tr>
<tr>
<td>0 / 100</td>
<td>43.75</td>
<td>100.00</td>
<td>43.75</td>
<td>34.84</td>
<td>100.00</td>
<td>34.84</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.2. Base-line experiments to determine Arcanum weighting scheme.

From Table 5.2, it can be seen that there is a significant change in results around the 80/20 weighting scheme. From 90/10 to 80/20 in the “Iris” data set, there is significant improvement. However this leap occurs between 80/20 and 70/30 in the “Breast.C” data set. The best result in “Breast.C” occurred with the 70/30 weighting scheme. The best result in “Iris” occurred with the 80/20 weighting scheme. The most significant difference between the two schemes was in the difference in Coverage in the “Breast.C” set. The 70/30 scheme provided much better Coverage,
and so it was chosen as the weighting scheme for the Arcanum data mining experiments.

After selecting a weighting scheme, results were gathered from all of the data sets. The results for Arcanum are contained in Table 5.3 and are compared to the results reported for GAssist and C4.5 on the same data sets. All of the results from Arcanum used a population size of 500, a maximum of 50 generations, a precision

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Accuracy</th>
<th>Coverage</th>
<th>Arcanum</th>
<th>GAssist</th>
<th>J4.8 (C4.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast-c</td>
<td>77.2</td>
<td>83.9</td>
<td>64.8</td>
<td>70.5</td>
<td>75.5</td>
</tr>
<tr>
<td>Breast-w</td>
<td>96.7</td>
<td>98.6</td>
<td>95.3</td>
<td>N/A</td>
<td>95.0</td>
</tr>
<tr>
<td>Cleve</td>
<td>68.8</td>
<td>83.7</td>
<td>57.6</td>
<td>80.4</td>
<td>76.8</td>
</tr>
<tr>
<td>Glass</td>
<td>89.4</td>
<td>48.1</td>
<td>43.0</td>
<td>66.8</td>
<td>66.8</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>91.9</td>
<td>53.0</td>
<td>48.6</td>
<td>89.8</td>
<td>83.9</td>
</tr>
<tr>
<td>House-votes</td>
<td>97.5</td>
<td>98.4</td>
<td>95.9</td>
<td>97.1</td>
<td>96.3</td>
</tr>
<tr>
<td>Iris</td>
<td>98.6</td>
<td>96.0</td>
<td>94.6</td>
<td>95.3</td>
<td>96.0</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>76.9</td>
<td>87.3</td>
<td>67.1</td>
<td>92.0</td>
<td>91.5</td>
</tr>
<tr>
<td>Liver.Bupa</td>
<td>84.5</td>
<td>59.0</td>
<td>49.8</td>
<td>62.4</td>
<td>N/A</td>
</tr>
<tr>
<td>Lymph</td>
<td>72.6</td>
<td>88.5</td>
<td>64.3</td>
<td>80.8</td>
<td>77.0</td>
</tr>
<tr>
<td>Pima.Diabetes</td>
<td>77.7</td>
<td>96.0</td>
<td>74.6</td>
<td>74.7</td>
<td>73.8</td>
</tr>
<tr>
<td>Wdbc</td>
<td>95.6</td>
<td>97.0</td>
<td>92.7</td>
<td>94.3</td>
<td>N/A</td>
</tr>
<tr>
<td>Wpbc</td>
<td>78.2</td>
<td>64.3</td>
<td>50.3</td>
<td>75.3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 5.3. Comparison of Results from Arcanum to GAssist and C4.5.
weight of 70%, and a recall weight of 30%. Thus, accuracy was more highly valued in the models than coverage. Note that this population size and number of generations is twice that of the previous experiments run to obtain the weighting scheme. Table 5.3 shows the Accuracy and Coverage metrics from Arcanum for each data set, and Figure 5.1 displays these results in a bar graph for a visual comparison. The overall result reported for Arcanum is the product of these two values (Accuracy * Coverage). Accuracy and Coverage were not reported separately for GAssist or C4.5.

GAssist is a genetic algorithm for data mining, developed using the Pittsburgh approach (Bacardit and Garrell, 2003). J4.8 is a Java implementation of the C4.5 algorithm and is included as part of the WEKA software (Witten and Frank, 2005). These two techniques were ideal for comparison because C4.5 is still considered one of the very best data mining algorithms, and GAssist is a genetic algorithm used for data mining.

In 5 of the 13 data sets examined, Arcanum was able to develop a data model that was comparable to GAssist and C4.5 (marked with “+” symbols). In these five cases, Arcanum was within 2% of the accuracy of the other methods, and in two of the cases, “Breast.w” and “Pima.Diabetes,” it obtained a better data model than C4.5. While there is certainly some improvement that needs to be done before Arcanum can compete on all levels with these algorithms, these results show that the potential exists. When compared to GAssist, Arcanum gains further appeal because it has
significantly fewer parameters than GAssist, demonstrating that the results are more
from the algorithm than from possible “fine-tuning” by the user. Fewer parameters

![Comparison of Results](image)

Figure 5.1. Graph of results from Arcanum, GAssist, and C4.5.

also mean that fewer experiments are required to determine the optimal setting for the
parameters. In a paper comparing GAssist to XCS, Bacardit mentions 19 parameters
for GAssist (Bacardit, 2007). Arcanum only has, at most, 8 parameters if one counts
the type of model validation scheme used. For the purposes of this dissertation, only
4 of the Arcanum parameters were ever varied:

1. the size of the population
2. the maximum number of generations to be run
3. the weight placed on precision
4. the weight placed on recall

The 19 parameters for GAAssist mentioned by Bacardit include:

1. crossover probability
2. selection method
3. tournament size (the tournament selection method was used)
4. population size
5. probability of mutating an individual
6. initial number of rules per individual
7. probability of “1” in initialization
8. rule deletion operator: iteration of activation
9. minimum number of rules
10. fitness function
11. iteration of activation of fitness function
12. initial theory length ratio
13. weight relax factor
14. knowledge representation method
15. split and merge probability
16. probability of re-initialization at initial iteration
17. probability of re-initialization at final iteration
18. merge restriction probability
19. maximum number of intervals

As previously mentioned, the Arcanum parameters focused heavily on precision over recall, and thus favored models with high accuracy even though the coverage of the model might be low. In the cases where Arcanum did not perform as well as GAssist and C4.5, the predictive accuracy of Arcanum’s models was very high but had extremely limited coverage. In other words, when the model made a prediction, it was highly accurate, but the model failed to make any prediction at all for a large percentage of data. This indicates that one of the areas of improvement for Arcanum might be in improving the fitness function to help ensure greater coverage in the resulting data models. Future works needs to be done to determine if this could be achieved by perhaps changing the weight parameters in Arcanum to favor Recall more highly than Precision. This is suggested because the resulting data models had a high Precision and a low Recall, which reflected the way the weights were assigned; Accuracy was favored over Coverage.

It is also worth noting that there is no readily apparent way to stereotype the data sets upon which Arcanum would be successful. The data sets upon which it produced very successful results included sets with nominal attributes, sets with numeric attributes, sets that had large numbers of missing attribute values, sets with only a few missing attribute values, and sets with no missing attribute values at all. Thus, the factor or factors which determine when Arcanum will be successful are not obvious, requiring future experimentation to determine those factors.
From the results discussed in this section, it appears, in at least some cases, that Arcanum has the potential to perform data mining on a level comparable with other successful techniques, such as GAssist and C4.5. Some refinements are required to reach that level consistently, but the results suggest that such performance is possible using the multi-tiered genetic algorithm technique described in this dissertation.

5.3 Hypothesis Refinement

After the data mining proof of concept stage, Arcanum was then tested on whether it could be used to improve a previously generated data model. During this stage, data models from different techniques were used as a starting point for Arcanum. These data models included some generated by Arcanum in the data mining stage, some models generated by the LEM2 algorithm, and a data model generated by C4.5, using the J4.8 implementation included in WEKA.

The six data models chosen from Arcanum represent the two worst data models from Arcanum: Glass and Hepatitis; three models with very good results: Breast.W, House-votes, and Wdbc; and one model in the middle: Breast.C. The refinements were performed while keeping the same population size and number of generations used while data mining, 500 and 50, respectively. Unlike the previous experiments used to compare the different techniques, the refinement experiments were run with equal weighting of Precision and Recall. The equal weighting scheme was chosen to allow Arcanum to take advantage of improvements that could be made in precision or recall, thus giving Arcanum flexibility in how it attempted to improve
the previous models. Table 5.4 shows the results after this refinement. The results for the Glass data set were actually significantly lower using a 50/50 weighting scheme (the result was 34.4%), so it was run again using a 70/30 weighting scheme to see if there would be improvement. The result shown for Glass in Table 5.4 is the result after the 70/30 weighting scheme.

While only half of these data models were improved after refinement, the results show there is potential improvement to be gained by using Arcanum for hypothesis refinement. After refinement, the Arcanum model for the Breast-c set yielded better results than the GAssist model, as the Arcanum model was refined to 71.47% vs. the 70.5% of GAssist. The three models that failed to improve were already very good, comparable to both C4.5 and GAssist, with the Breast-w model already better than the C4.5 result. Figure 5.2 compares the results of each set before and after hypothesis refinement.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Original Data Set</th>
<th>After Refinement</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast-c</td>
<td>77.2 83.9 64.79%</td>
<td>80.0 89.4 71.47%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast-w</td>
<td>96.7 98.6 95.28%</td>
<td>85.4 87.7 74.93%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass*</td>
<td>89.4 48.1 43.0%</td>
<td>89.6 57.5 51.48%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis</td>
<td>91.9 53.0 48.63%</td>
<td>85.0 61.1 51.94%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House-votes</td>
<td>97.5 98.4 95.88%</td>
<td>97.2 98.4 95.67%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wdbc</td>
<td>95.6 97.0 92.69%</td>
<td>94.1 96.8 91.12%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.4. Results of hypothesis refinement on Arcanum data models
Of the six models originally generated by Arcanum, the program was able to improve the quality of its own data models through hypothesis refinement. One model was improved to the point it was comparable with both GAssist and C4.5. Of the models that failed to improve, each of those were already comparable with GAssist and C4.5, and one of them was even better than C4.5. These results suggest that hypothesis refinement is a potentially useful tool and that, at least in some cases, it can take a data model and make it better.

However, each of these data models were generated by Arcanum. To further test the abilities of Arcanum’s hypothesis refinement, three data models generated by the LEM2 algorithm were used for hypothesis refinement. These results, shown in
Table 5.5, used a population size of 500, ran for 50 generations, used a 50/50 weighting scheme, and K-fold cross-validation with K=10. Figure 5.3 is a graph of these comparisons.

Arcanum was able to improve the results of each of these three data models from LEM2 using hypothesis refinement. It is also worth noting that in each case, the resulting model is better than the one obtained when Arcanum performed data mining on the same data set. After refinement, the data model for “Hepatitis” is much better than the one obtained using just Arcanum. The “Iris” and “House-votes” models are both comparable to GAssist and C4.5, with the “House-votes” model slightly better than C4.5. While there was significant improvement in the LEM2 models after hypothesis refinement, the results reflect the success of the original data models obtained from Arcanum. The Arcanum data models for “Iris” and “House-votes” were both comparable to GAssist and C4.5, while the data model for “Hepatitis” was inferior. This remained true even after hypothesis refinement on the LEM2 models – “Iris” and “House-votes” were comparable while “Hepatitis,” even though remarkably improved, was still inferior to the GAssist and C4.5 models for the same data set.

Table 5.5. Results of hypothesis refinement on LEM2 data models.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>LEM2</th>
<th></th>
<th>After Refinement</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy</td>
<td>Coverage</td>
<td>Product (accuracy x coverage)</td>
<td>Accuracy</td>
<td>Coverage</td>
</tr>
<tr>
<td>Iris</td>
<td>99.2%</td>
<td>86.0%</td>
<td>85.33%</td>
<td>95.4%</td>
<td>99.3%</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>96.2%</td>
<td>61.9%</td>
<td>59.56%</td>
<td>73.9%</td>
<td>97.1%</td>
</tr>
<tr>
<td>House-votes</td>
<td>99.7%</td>
<td>71.0%</td>
<td>70.8%</td>
<td>98.0%</td>
<td>98.6%</td>
</tr>
</tbody>
</table>

58
One last series of experiments were run to test Arcanum’s hypothesis refinement ability. A data model was obtained using J4.8, the Java implementation of C4.5 included in WEKA. The resulting decision tree was then converted into a set of rules that could be used as input to Arcanum. For these experiments, the “Breast.C” data set was chosen. This was done because it was a set upon which Arcanum had

<table>
<thead>
<tr>
<th>Weighting Scheme</th>
<th>Accuracy</th>
<th>Coverage</th>
<th>Product (accuracy x coverage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/70</td>
<td>74.6%</td>
<td>89.3%</td>
<td>66.6%</td>
</tr>
<tr>
<td>50/50</td>
<td>75.0%</td>
<td>84.7%</td>
<td>63.5%</td>
</tr>
<tr>
<td>70/30</td>
<td>75.1%</td>
<td>94.0%</td>
<td>70.6%</td>
</tr>
<tr>
<td>80/20</td>
<td>77.7%</td>
<td>80.8%</td>
<td>62.8%</td>
</tr>
<tr>
<td>50/50 (population 1,000)</td>
<td>75.1%</td>
<td>94.6%</td>
<td>71.1%</td>
</tr>
<tr>
<td>70/30 (population 1,000)</td>
<td>77.2%</td>
<td>98.6%</td>
<td>76.1%</td>
</tr>
</tbody>
</table>

Table 5.6. Results of hypothesis refinement on C4.5 Breast-c data model.
not performed comparably to GAssist or C4.5, because there was plenty of room to potentially improve the C4.5 model above the 75.5% accuracy it had achieved, and because the C4.5 model demonstrated superior performance to the GAssist model.

Table 5.6 shows the different weighting schemes and population sizes used in an effort to improve the C4.5 data model. As shown in Table 5.3, the accuracy of the original C4.5 model for “Breast.C” was 75.5%. After several different weighting schemes failed to improve the C4.5 model, the decision was made to try again but with double the population size, resulting in a population size of 1,000 rather than 500. After doubling the population size used by the algorithm, Arcanum was finally able to slightly improve upon the C4.5 data model. Figure 5.4 graphically demonstrates the result of each experiment. The resulting model made a slight sacrifice in coverage in order to improve overall accuracy, producing a slightly better model than the original. Thus, Arcanum was able to use hypothesis refinement to improve a C4.5 data model, and was even able to do so on a data set upon which Arcanum did not perform as well as C4.5.

These three sets of experiments, using data models produced from three different techniques, each show that Arcanum is able to perform hypothesis refinement to improve upon previously generated data models. This suggests that the hypothesis refinement capability of Arcanum could be a potentially useful tool for data miners. Using Arcanum, previously constructed data models can, in some cases, be improved. Even in the cases where Arcanum fails to improve upon a data model, the worst case situation is that the original model is used, meaning that researchers
are no worse off for having tried hypothesis refinement. In the worst case, they keep their original model, but the potential for improving the model using hypothesis refinement makes attempting the process worthwhile.

5.4 Rules

5.4.1 Arcanum rule evolution

This section lists rules generated by Arcanum. The rules listed include random rules from the start of the process, rules from the middle of the process, and the final set of rules. The rules listed are from the “Breast.C” data set and were obtained using a population size of 500 over 50 generations with a 70/30 weighting scheme.
It is important to note that it is currently impossible to determine for certain which rules evolved from which. While it is possible to find rules that are very similar, any conclusion that one rule led to the other is conjecture.

One last caveat is to make note that some of the rules, while the same, have different Precision and Recall (same as Accuracy and Coverage, but for individual rules) values. This could be accounted for by the K-fold cross-validation scheme used. It cannot be assumed that the same subset of the data was used in each of the generations listed below. They rules could potentially have come from different K’s in the K-fold cross-validation.

Initial random rules:

Accuracy = 74.32%
Coverage = 100.00%

Precision: 80.10%; Recall: 80.10%
(deg_malig,1..2) -> (class,no-recurrence-events)

Precision: 78.40%; Recall: 83.08%
(inv_nodes,0-2) -> (class,no-recurrence-events)

Precision: 63.16%; Recall: 5.97%
(tumor_size,35-39) -> (class,no-recurrence-events)

Precision: 52.94%; Recall: 52.94%
(deg_malig,3) -> (class,recurrence-events)

Evolved Rules (from Generation 20):

Accuracy = 78.27%
Coverage = 99.22%

Precision: 79.12%; Recall: 80.45%
(deg_malig,1..2) -> (class,no-recurrence-events)
Precision: 78.65%; Recall: 84.36%
(inv_nodes,0-2) -> (class,no-recurrence-events)

Precision: 80.72%; Recall: 74.86%
(irradiat,no) AND (node_caps,no) -> (class,no-recurrence-events)

Precision: 77.27%; Recall: 85.47%
(node_caps,no) -> (class,no-recurrence-events)

Precision: 96.00%; Recall: 13.41%
(tumor_size,10-14) -> (class,no-recurrence-events)

Precision: 100.00%; Recall: 2.23%
(tumor_size,5-9) -> (class,no-recurrence-events)

Precision: 59.62%; Recall: 39.24%
(node_caps,yes) -> (class,recurrence-events)

Final Rules:

Accuracy = 77.55%
Coverage = 100.00%

Precision: 72.41%; Recall: 35.59%
(age,50-59) -> (class,no-recurrence-events)

Precision: 100.00%; Recall: 3.95%
(breast_quad,right_low) AND (deg_malig,1) -> (class,no-recurrence-events)

Precision: 79.78%; Recall: 80.23%
(deg_malig,1..2) -> (class,no-recurrence-events)

Precision: 77.78%; Recall: 51.41%
(deg_malig,2) -> (class,no-recurrence-events)

Precision: 81.25%; Recall: 29.38%
(inv_nodes,0-2) AND (age,50-59) -> (class,no-recurrence-events)

Precision: 100.00%; Recall: 0.56%
(menopause,premeno) OR (tumor_size,0-4) AND (age,20-29) -> (class,no-recurrence-events)
Precision: 76.02%; Recall: 84.18%
(node_caps,no) OR (tumor_size,20-24) -> (class,no-recurrence-events)

Precision: 76.56%; Recall: 27.68%
(node_caps,no) AND (age,40-49) -> (class,no-recurrence-events)

Precision: 76.67%; Recall: 28.75%
(deg_malig,3) AND (node_caps,yes) -> (class,recurrence-events)

Note that one of the original random rules persevered throughout the entire process to remain in the final specimen:

Precision: 80.10%; Recall: 80.10%
(deg_malig,1..2) -> (class,no-recurrence-events)

This demonstrates that the multi-tiered genetic algorithm can find and persist rules from the original generation.

It is also interesting that a majority of the final rules reflect the weighting scheme that was used. Most of the rules have a precision between 70% and 80%, while the recall hovers near 30%. There are enough rules that differ to show that rules are not limited to the weighting scheme, but can exceed it. However, it begs the question of whether the current fitness function and the use of the weighting scheme might not inadvertently lead to generating rules that tightly fit the weighting scheme, rather than using it as a guide to evolving the rules. At the same time, this also reflects the results from Table 5.2, where it was empirically observed that a 70/30 weighting scheme gave the best result for the “Breast.C” data set.

To explore the answer to whether the algorithm is tightly fitting rules to the weighting scheme, consider the rules in the final data model, in which 6 of the 9 rules
have a Precision between 60% and 80%. However, of the 3 exceptions, 2 of them have a Precision of 100%. With respect to Recall, 4 of the 9 rules have a Recall between 20% and 40%. Of the 6 rules with Recall metrics outside that range, 2 of them are over 80% and 2 are below 5%. Furthermore, consider the 6 rules that have precision between 60% and 80%. Only 3 of them have a Recall between 20% and 40%. Thus, only 3 of the 9 rules have both a Precision and Recall that is within even 10% of both metrics. Two of the rules fall outside that range on both metrics. So it does not appear to be the case that the weighting scheme causes an inadvertent “overfitting” of rules to the weighting scheme.

5.4.2 Rules after hypothesis-refinement of LEM2

This section contains the rules generated by the LEM2 algorithm for the “House-votes” data set. It also contains rules generated by Arcanum during hypothesis-refinement of the LEM2 rules and the final set of rules that resulted from the refinement. The hypothesis refinement used a population size of 500, 50 generation limit, and a 50/50 weighting scheme.

Rules from LEM2:
Accuracy = 99.68%
Coverage = 71.03%

Precision: 100.00%; Recall: 82.02%
(physician_fee_freeze,n) and (adoption_of_the_budget_resolution,y) ->
(class,democrat)

Precision: 100.00%; Recall: 52.98%
(physician_fee_freeze,y) and (crime,y) and (el_salvador_aid,y) and
(religious_groups_in_schools,y) and (mx_missile,n) and
(adoption_of_the_budget_resolution,n) and (duty_free_exports,n) and (synfules_corporation_cutback,n) -> (class,republican)

Evolved Rules (from Generation 25):
Accuracy = 96.90%
Coverage = 99.31%

Precision: 98.24%; Recall: 62.55%
(crime,n) -> (class,democrat)

Precision: 91.42%; Recall: 79.78%
(education_spending,n) -> (class,democrat)

Precision: 96.15%; Recall: 74.91%
(el_salvador_aid,n) -> (class,democrat)

Precision: 99.19%; Recall: 91.76%
(physician_fee_freeze,n) -> (class,democrat)

Precision: 100.00%; Recall: 82.02%
(physician_fee_freeze,n) AND (adoption_of_the_budget_resolution,y) -> (class,democrat)

Precision: 92.09%; Recall: 97.02%
(physician_fee_freeze,y) -> (class,republican)

Precision: 97.83%; Recall: 80.36%
(synfules_corporation_cutback,n) AND (physician_fee_freeze,y) -> (class,republican)

Final Rules:
Accuracy = 97.86%
Coverage = 98.62%

Precision: 100.00%; Recall: 82.02%
(physician_fee_freeze,n) AND (adoption_of_the_budget_resolution,y) -> (class,democrat)

Precision: 99.40%; Recall: 62.17%
(aid_to_nicaraguan_contras,y) OR (physician_fee_freeze,n) AND (crime,n) -> (class,democrat)

Precision: 97.87%; Recall: 68.91%
(el_salvador_aid,n) AND (adoption_of_the_budget_resolution,y) -> (class,democrat)

Precision: 99.44%; Recall: 67.04%
(mx_missile,y) AND (physician_fee_freeze,n) -> (class,democrat)

Precision: 99.19%; Recall: 91.76%
(physician_fee_freeze,n) -> (class,democrat)

Precision: 100.00%; Recall: 38.58%
(physician_fee_freeze,n) AND (education_spending,n) AND (immigration,n) -> (class,democrat)

Precision: 96.54%; Recall: 94.01%
(physician_fee_freeze,n) OR (el_salvador_aid,n) -> (class,democrat)

Precision: 93.89%; Recall: 46.07%
(religious_groups_in_schools,n) AND (education_spending,n) -> (class,democrat)

Precision: 92.09%; Recall: 97.02%
(physician_fee_freeze,y) -> (class, republican)

In this collection of rules, it can be observed that Arcanum improved the overall results from LEM2 by slightly sacrificing the accuracy of the model in order to improve the coverage. As hypothesized in section 3.4.1., a good rule was found in the first generation, was preserved throughout the generations, and used in the final rule collection from Arcanum:

Precision: 100.00%; Recall: 82.02%
(physician_fee_freeze,n) AND (adoption_of_the_budget_resolution,y) -> (class,democrat)
Several things can be concluded from this, not the least of which is that LEM2 generated a rule that Arcanum could not improve upon. As was also observed in section 5.4.1, this shows that Arcanum can preserve a rule all the way from the first generation to the final one. From these results, and the results of the C4.5 experiments, an argument can be made for the use of a multi-tiered genetic algorithm for hypothesis refinement. In the worst case, hypothesis refinement cannot improve upon the original model. Thus, the worst that can happen is that the result is the original data model. However, as shown in the experimental data, there is a potential for improving upon the original data model.
Chapter 6. Conclusion

This dissertation has shown how the Pittsburg and Michigan approaches to using genetic algorithms for data mining can be combined using a multi-tiered approach. This technique was implemented in a project called “Arcanum.” Testing performed with Arcanum shows that it has the potential to be a successful data mining tool, but some refinements are required first. More importantly, testing of the hypothesis refinement capability of this approach showed that it can take a data model generated by some other technique and improve upon that data model.

6.1 Contributions

The contributions of this research are two-fold: the development of a multi-tiered genetic algorithm technique and its ability to perform not only data mining but also hypothesis refinement. The multi-tiered genetic algorithm is not only a closer approximation to genetics in the natural world, but is also a way of combining the two competing schools of thought for genetic algorithms in data mining.

Perhaps the most notable contribution of this research is the examination of hypothesis refinement. The research in this dissertation shows that hypothesis refinement can be a useful tool for data mining. Once a data model has been achieved, performing hypothesis refinement upon it using the Arcanum technique can improve the overall performance of the model. This shows it to be a valuable step in the data mining process. In the worst case, Arcanum is unable to improve the
previous model. Thus, there are no drawbacks to attempting hypothesis refinement: the outcome is either the original model, or one that is better than before.

6.2 Observations

Numerous observations were made during the course of this research which are worthy of discussion. For example, from empirical observations it appears that the optimum weights for Precision and Recall are 70/30 or 30/70. In nearly every case when multiple models were constructed using different weights, the combination of 70% Precision and 30% Recall obtained the best result. The models obtained using 30% Precision and 70% Recall were often the second best.

Similarly, some experiments were performed to observe what happened when the weights were set to extremes. When the weights were set to 100% Precision and 0% Recall, the resulting model contained a single rule that was 100% accurate (and described only a small portion of the data). When the weights were flipped, the resulting model contained a handful of rules that were so generic they each described a large portion of the data, but did so erroneously. It appears that the algorithm is “constrained” between 70/30 and 30/70. Outside of those bounds for the weights, the results get very skewed toward either Precision or Recall.

During one experiment, something interesting was observed in the performance graph. The graph can be see in Figure 6.1. The green lines show the average fitness of the population over time. There is a different line for each of the
different K-fold runs. The blue lines indicate the fitness of the best specimen encountered. Again, the multiple lines correspond to each of the K-fold runs.

It is readily apparent the something happened during one of the K-fold runs. Given that the graph spans 50 generations from end-to-end, it appears that some local optima were overcome around generation 25. Note the corresponding effect this had on the best specimen. Whatever happened was notable and resulted in a jump in improvement in average fitness, as well as a radical improvement in the best specimen, which continued to improve at a rapid rate, much faster than it had achieved at any point prior to this “discovery.”

Figure 6.1. An atypical Arcanum performance graph. Accuracy of best specimen vs. average fitness over K runs.

There are several possible explanations for this phenomenon. It could be that during this particular K-fold run that the training data were optimal. It is also possible, that the population received a large number of “clones” of the best specimen, which would explain the sudden upswing in average fitness, but does not
explain why fitness continued to improve at such a tremendous pace. It is also possible that the mutation operators in the genetic algorithm happened to overcome some local optima at that point which none of the other runs were able to achieve. The last two possibilities pose some interesting questions which will be discussed further in section 6.4.

6.3 Limitations

One of the biggest limitation for this research has been the amount of time required for Arcanum to complete an experiment. The process requires considerable time. This is likely due to the way the process was coded. Minimal efforts were made to ensure that the code was optimized. Efforts were instead focused on ensuring that the process was bug-free and that the proof-of-concept could be tested sufficiently.

Another limitation of this work is that the mutation operations are very simple. It is likely that the process could be improved by investigating more robust or intelligent mutation operations.

It is also difficult to track how a particular rule changes over time, especially as part of refinement. While it is possible to show how a rule potentially evolved, this is a manual effort and requires non-trivial amounts of time to tie two rules together. Even at that, the linkage between an initial rule and a final rule is merely conjecture; it cannot be proven that the final rule truly evolved from the earlier one.

Another limitation of Arcanum is that it does not check for a minimal covering. It is possible for two rules to describe the same subset of the data, or for a
rule to be completely covered by a different rule. In other words, some rules might actually be redundant and unnecessary. Arcanum does not perform any checks to see if this situation exists. This decision was made because one of the visions of the research is for it to lead to a process that can mine a collection of data and find all of the rules within the data. Redundancy is allowed within Arcanum because having multiple rules that describe the same data could be useful in cases where a piece of information needed for a specific rule might be missing, and so while that rule might not be able to make a classification, there might be sufficient data for a different rule to make a classification.

6.4 Future Work

As discussed in section 6.2, some interesting results were observed during experimentation. Two of the possible explanations suggest some future work that should be pursued.

In the case of the genetic operators perhaps overcoming some local optima, this suggests that some additional work should be done to explore the possibility of increasing the frequency of mutation based upon the consistency of the average fitness level. In other words, if the average fitness of the population has been consistent over time, then the chances for mutations should increase to bring about increased genetic diversity within the population. This would help ensure that the population does not become genetically stagnant with a shallow gene pool from which to create new generations, and thus failing to improve upon the best specimen.
This could be achieved using a chance of mutation based upon simulated annealing techniques, where the chance of mutation increases as the average fitness of the population remains relatively consistent.

The second possibility suggested is that the population received a number of “clones” of the best specimen, resulting in a sudden jump in average fitness because multiple members of the population had the same genes as the best specimen. However, this by itself fails to explain why both the average fitness and the fitness of the best specimen continued to improve at an increased rate. The other piece of the puzzle might be found in Arcanum’s hypothesis refinement. If the population were seeded with clones of the best specimen, or even slightly modified versions, this would be similar to performing hypothesis refinement, which was shown to be very successful. It is possible that a better way to perform data mining in Arcanum would be through utilizing hypothesis refinement. Whenever a new best specimen is found, treat it as if it were a “hypothesis” and seed the population with it as described in section 3.4.1. This could make use of the proven strength of the Arcanum technique and potentially improve the deficiencies that were encountered when performing data mining with Arcanum.

Future work should also include an examination of these same data sets using different weighting schemes other than the ones used for this dissertation. All of the results favored Accuracy over Recall, which is not a surprise considering that a weighting scheme of 70% accuracy and 30% recall was used. While this weighting scheme was obtained from empirical results, as discussed in section 5.2, it is possible
that better results could be obtained by placing more emphasis on recall. Similarly, additional work also needs to be done to determine which factors strongly correlate to the success of this technique. It’s possible that using larger population sizes or an increased number of generations could significantly improve the results obtained via this multi-tiered technique. Perhaps there is a way to determine which weighting scheme, population size, and number of generations are optimal for a given data set.

6.5 Lessons Learned

Similar to the subject matter of this dissertation, the researcher also evolved while conducting this research. Given a chance to start over, there are several things that would have been done differently. This section is included with future doctoral candidates in mind in order to pass on lessons learned from the research process, but which are not part of the work itself.

First, there was a great deal more data that could have been gathered. For example, “Arcanum Performance Graphs” such as Figure 6.1 should have been saved for each experiment performed. Similarly, collecting snapshots of the best specimen in each generation was added much later in the research. Consequently, a large amount of potentially interesting information was lost because it wasn’t captured. When performing research, it is important to capture and store all available data – one never knows what the research might lead to, and without adequate data capture it is difficult to fully explore the results and the implications of the results.

Secondly, it is important that every decision made as part of the research can be justified with experimental data. For example, when choosing the weighting
scheme for Arcanum, both the 80/20 and the 70/30 weighting schemes were observed to be optimal for a data set. Further experimentation should have been performed before the choice was made, such as trying a 75/25 scheme, or testing the schemes on more data sets. Without the experimental results to verify a decision, the decision can be seen as arbitrary.

Lastly, many more experiments should have been run. For example, when choosing the weighting scheme, rather than running the experiments once on each of the sets, the experiments should have been performed multiple times on each of the sets, so that an average of the results could be obtained. In each case where results were obtained from Arcanum, multiple experiments should have been run. While a K-Fold Cross-Validation was used in the experiments, meaning that each was run multiple times, the experiments should have been repeated so that multiple K-Fold experiments could be averaged. In addition to running on each data set multiple times, all of the data sets should have been included in the hypothesis refinement section in order for the work to be complete.

However, there are real-world time constraints on how much experimentation can be done while still completing the research in a timely fashion. There is a constant conflict between time and quality of work, and sometimes trade-offs must be made. If the quality of the research will suffer because of time constraints, then the scope of the research should be reduced so that maximum quality can be achieved in the time allowed.
6.6 Final Remarks

The multi-tiered genetic algorithm technique described in this dissertation and the experiments performed using it, indicate that it has some potential in the realm of data mining and in the pursuit of finding patterns within complex data sets. The multi-tiered approach also has the potential to use genetic algorithms to explore data in more than two dimensions, perhaps opening more opportunities for the application of genetic algorithms to complex problems.
References

Appendix 1. Arcanum Source Code

This appendix contains all of the source code for the Arcanum Project. Each subsection is the name of a module or class object, and contains the full source code listing for that module or class object.

A1.1 GlobalVariables
Global ComplimentsOkay As Boolean
Global Universe As SetClass
Global root As SuperSet
'Global rules As SuperSet
Global rules As Description
Global Decision() As Long
Global Decisions As SuperSet
Global atts() As Long
Global usedecision As Boolean
Global rweight As Single
Global pweight As Single
Global PopulationSize As Long
Global Population As Collection
Global otemp As SetClass
Global partitions As Collection
Global clocktime As Date
Global K As Long
Global TEMPPATH As String
Global BestPop As Long
Global MissingValues As Boolean
Global GenCount As Long
Global PrevPopFitness As Single
Global PrevBestFitness As Single
Global iFlag As Long
Global ruleindex As Long
Global rfile As Long
Global tFile As Long
Global txtRuleFile As String
Global bUseLnRoulette As Boolean
Global GenAvg As Long
Global TotCoverage As Single
Global TotAccuracy As Single

A1.2 LEMModule
Option Explicit
Sub SetControlVariables()
 msg "Setting up control variables..."
 If Main.chkCompliments.Value = 1 Then
 ComplimentsOkay = True
 Else
 ComplimentsOkay = False
 End If
 rweight = Val(Main.txtRecall)
 pweight = Val(Main.txtPrecision)
 PopulationSize = Val(Main.txtPopSize)
 If Main.optNoValidate.Value = True Then
 K = 0
 iFlag = 0
 Else
 If Main.optKFold.Value = True Then iFlag = 2
 If Main.optLOO.Value = True Then iFlag = 1
 K = Val(Main.txtK)
 End If
 GenCount = Val(Main.txtGenerations)
 txtRuleFile = Main.txtRuleFile.Text
 If Main.chkLog.Value = 1 Then
 bUseLnRoulette = True
 Else
 bUseLnRoulette = False
 End If
 GenAvg = 5 * Int(GenCount / 5)
 TEMPPATH = App.Path + "\Temp"
End Sub

Sub InduceRules()
 Dim d As SetClass
 Dim i As Long

 msg "Inducing rules..."
 Set d = New SetClass
 Set rules = New Description
 ' While Decision(1) < root.Cardinality
 While Decisions.cardinality > 0
 GetNextDecision d
 msg " " + d.attname + ", " + d.valname, True
 'Debug.Print d.attname + ", " + d.valname
 MLEM d
 Wend
'msg "Gathering statistics...", True
GatherStatistics

LinearDropping

msg "Coverage: " + Format(rules.Coverage, "0.00"), True

End Sub

Sub PrintRules(Optional txtfile As String, Optional count As Boolean, Optional Coverage As Single, Optional Accuracy As Single)
 Dim i As Long
 Dim ifile As Long
 Dim buf As String
 If txtfile = "" Then
 For i = 1 To rules.cardinality
 buf = "Precision: " + Format(rules.Element(i).Precision, "percent")
 buf = buf + "; Recall: " + Format(rules.Element(i).Recall, "percent")
 If count Then
 buf = buf + "; Count: " + Str(rules.Element(i).count)
 End If
 'Debug.Print buf
 buf = rules.Element(i).clause + " -> "
 buf = buf + "(" + rules.Element(i).Decision.attname + "," +
 rules.Element(i).Decision.valname + ")"
 'Debug.Print buf
 'Debug.Print
 Next
 Else
 ifile = FreeFile
 Open txtfile For Output As ifile
 If Accuracy <> 0 Or Coverage <> 0 Then
 Print #ifile, "Accuracy = " + Format(Accuracy, "percent")
 Print #ifile, "Coverage = " + Format(Coverage, "percent")
 Print #ifile, vbNewLine
 End If
 For i = 1 To rules.cardinality
 buf = "Precision: " + Format(rules.Element(i).Precision, "percent")
 buf = buf + "; Recall: " + Format(rules.Element(i).Recall, "percent")
 If count Then
 buf = buf + "; Count: " + Str(rules.Element(i).count)
 End If
 Print #ifile, buf
 buf = rules.Element(i).clause + " -> "
 Next
 End If
End Sub
buf = buf + "(" + rules.Element(i).Decision.attname + "," + rules.Element(i).Decision.valname + ")"
 Print #ifile, buf
 Print #ifile, ""
 Next
 Close ifile
End If
End Sub

Sub BuildSetsFromFile(ByVal txtfile As String, blnRemoveUniversals)
 On Error GoTo BuildSetsFromFile_Error
 Dim ifile As Long
 Dim buf As String * 50000
 Dim attnames As Collection
 Dim attvals As Collection
 Dim att As SetClass
 Dim example
 Dim i As Long
 Dim x As Long
 Dim attcount As Long

 msg "Building sets..."
 MissingValues = False
 usedecision = False
 example = 0
 Set Decisions = New SuperSet
 Set root = New SuperSet
 Set Universe = New SetClass
 Universe.attname = "Universe"
 Universe.valname = "All Examples"
 Set attnames = New Collection
 Set attvals = New Collection
 ifile = FreeFile
 Open txtfile For Input As ifile
 Line Input #ifile, buf
 ParseLine buf, attnames
 If attnames.count = 0 Then
 Line Input #ifile, buf
 ParseLine buf, attnames
 End If
 While Not EOF(ifile)
 example = example + 1
 Line Input #ifile, buf
 'Debug.Print Trim(buf)
 Next
 Close ifile
End Sub
ParseLine buf, attvals
attcount = attvals.count
For i = 1 To attcount
 If attvals(i) = "*" Or attvals(i) = "?" Then
 MissingValues = True
 End If
root.AddToSet attnames(i), attvals(i), example
Universe.AddToSet example
x = root.Contains(attnames(i), attvals(i))
If usedecision Then
 If atts(i) = 1 Then
 root.Element(x).Decision = True
 Else
 root.Element(x).Decision = False
 End If
Else
 root.Element(x).Decision = True
End If
If root.Element(x).Decision = True Then
 Decisions.InsertSet root.Element(x)
End If
Next
Next
ReDim Decision(root.cardinality) As Long
'Line Input #iFile, buf
'ParseLine buf, attnames

Close iFile
CreateAdditionalSets

If MissingValues Then
 HandleMissingValues
End If

If blnRemoveUniversals = True Then
 If Universe.cardinality > 1 Then
 RemoveUniversalAttributes
 End If
End If

root.FindRelevantSets
'DisplaySets
BuildSetsFromFile_Exit:
 Exit Sub

BuildSetsFromFile_Error:
 ErrorHandler "LEMmodule::BuildSetsFromFile", Err
 GoTo BuildSetsFromFile_Exit

End Sub

Sub ParseLine(ByVal abuf As String, attnames As Collection)
 Dim i As Long
 Dim buf As String
 Dim word As String
 Dim wordon As Boolean

 buf = Trim(abuf)
 i = 1
 word = ""
 Set attnames = New Collection
 wordon = False
 While i <= Len(buf)
 Select Case Mid(buf, i, 1)
 Case " ", ", " end of word
 wordon = False
 Case "<" 'starts a line indicating decisions
 FindDecisions buf
 Exit Sub
 Case "[" 'start of attribute line...new word
 wordon = True
 i = i + 1
 While Mid(buf, i, 1) = "
 i = i + 1
 Wend
 i = i - 1
 Case "]" 'end of attribute line...end word
 wordon = False
 Case Else
 wordon = True
 word = word + Mid(buf, i, 1)
 End Select
 If Not wordon And Len(word) > 0 Then
 attnames.Add word
 word = ""
 ElseIf i = Len(buf) Then
 GoTo BuildSetsFromFile_Exit
 End If
 Wend
End Sub
Sub GetNextDecision(d As SetClass)
 Dim i As Long
 Dim ThisOne As Boolean

 Set d = New SetClass
 Set d = Decisions.Element(1)
 Decisions.RemoveMember Decisions.Element(1)
 Decisions.Print Decisions.Cardinality
 If Not usedecision Then
 Decision(1) = Decision(1) + 1
 If Decision(1) <= root.Cardinality Then
 d.Union root.Element(Decision(1))
 d.attname = root.Element(Decision(1)).attname
 d.valname = root.Element(Decision(1)).valname
 End If
 Else
 ThisOne = False
 ' Decision(1) = Decision(1) + 1
 While Decision(1) < root.Cardinality And Not ThisOne
 Decision(1) = Decision(1) + 1
 ThisOne = root.Element(Decision(1)).Decision
 Wend
 If Decision(1) <= root.Cardinality Then
 d.Union root.Element(Decision(1))
 d.attname = root.Element(Decision(1)).attname
 d.valname = root.Element(Decision(1)).valname
 End If
 End If
End Sub

Sub ConvertNumber(x As Long)
 Decision(x) = Decision(x) + 1
 If Decision(x) > root.cardinality - (UBound(Decision) - x) Then
 Decision(x) = 1
 ConvertNumber x - 1
End Sub
End If
End Sub

Sub MLEM(ByVal d As SetClass)
 On Error GoTo MLEM_Error
 Dim rule As RuleClass
 Dim rel As SetClass
 Dim setlist As SuperSet
 Dim Decision As SetClass

 Set Decision = New SetClass
 Decision.Union d
 Decision.attname = d.attname
 Decision.valname = d.valname
 Set setlist = New SuperSet
 setlist.Union root
 setlist.RemoveMember d
 Set rel = New SetClass
 While d.cardinality > 0
 'Find the set that has the most in common, but isn't the same set
 Set rule = New RuleClass
 FindMostRelevant d, rel, setlist
 rule.Decision = Decision
 rule.AddToRule rel, "and"
 'rule.attname = "->(" + d.attname + "," + d.valname + ")"
 'rule.valname = rule.valname + "(" + rel.attname + "," + rel.valname + ")"
 'rule.Union rel
 rule.ReEvaluate
 setlist.RemoveMember rel
 While Not d.Rulesubset(rule) And rel.attname <> ""
 FindMostRelevant d, rel, setlist
 If rel.attname <> "" Then
 rule.AddToRule rel, "and"
 rule.ReEvaluate
 'rule.Intersect rel
 'rule.valname = rule.valname + "&(" + rel.attname + "," + rel.valname + ")"
 setlist.RemoveMember rel
 End If
 Wend
 If rel.attname <> "" Then
 rules.AddRule rule
d.Difference rule.SetFromRule
 Else
 d.Difference d
 Wend
End Sub
MLEM_Exit:
Exit Sub

MLEM_Error:
ErrorHandler "LEMmodule::MLEM", Err
GoTo MLEM_Exit
End Sub

Sub FindMostRelevant(d As SetClass, rel As SetClass, setlist As SuperSet)
Dim S As SetClass
Dim i As Long

Set rel = New SetClass
For i = 1 To setlist.cardinality
Set S = New SetClass
S.Union setlist.Element(i)
S.attname = setlist.Element(i).attname
S.valname = setlist.Element(i).valname
S.Intersect d
If S.cardinality > rel.cardinality Then
Set rel = S
End If
Next

i = root.Contains(rel.attname, rel.valname)
If i <> 0 Then
Set rel = root.Element(i)
setlist.RemoveMember rel
Else
End If

End Sub

Sub CreateAdditionalSets()
On Error GoTo CreateAdditionalSets_Error
Dim i As Long
Dim j As Long
Dim slist As SuperSet
Dim sets As Collection
Dim otemp As SetClass

Set sets = New Collection
Set slist = New SuperSet
slist.InsertSet root.Element(1)
For i = 2 To root.cardinality
 If root.Element(i).attname = slist.Element(1).attname Then
 slist.InsertSet root.Element(i)
 Else
 sets.Add slist
 Set slist = New SuperSet
 slist.InsertSet root.Element(i)
 End If
Next
sets.Add slist

For i = 1 To sets.count
 If IsNumeric(sets(i).Element(1).valname) Then
 PartitionSet sets(i)
 Else
 If ComplimentsOkay Then
 ComplimentSet sets(i)
 End If
 End If
Next

' Display Sets
CreateAdditionalSets_Exit:
 Exit Sub

CreateAdditionalSets_Error:
 ErrorHandler "LEMmodule::CreateAdditionalSets", Err
 GoTo CreateAdditionalSets_Exit
End Sub

Sub PartitionSet(S As SuperSet)
 On Error GoTo PartitionSet_Error
 Dim i As Long
 Dim x As Long
 Dim part As SetClass
 S.Sort True
 For x = 2 To S.cardinality - 1
 Set part = New SetClass
 part.attname = S.Element(1).attname
 part.valname = S.Element(1).valname
 For i = 1 To x
 If IsNumeric(S.Element(i).valname) Then
 PartitionSet part
 Else
 If ComplimentsOkay Then
 ComplimentSet part
 End If
 End If
 Next
 End If
 GoTo PartitionSet_Exit
End Sub
part.Union S.Element(i)
Next
part.valname = part.valname + "." + S.Element(i - 1).valname
root.InsertSet part
Set part = New SetClass
part.attname = S.Element(1).attname
part.valname = S.Element(x + 1).valname
For i = x + 1 To S.cardinality
 part.Union S.Element(i)
Next
If part.valname <> S.Element(i - 1).valname Then
 part.valname = part.valname + "." + S.Element(i - 1).valname
root.InsertSet part
End If
Next
Set part = New SetClass
part.attname = S.Element(1).attname
If S.cardinality < 2 Then
 part.valname = S.Element(1).valname
Else
 part.valname = S.Element(2).valname
End If
For i = 2 To S.cardinality
 part.Union S.Element(i)
Next
part.valname = part.valname + "." + S.Element(i - 1).valname
root.InsertSet part

PartitionSet_Error:
 ErrorHandler "LEMmodule::PartitionSet", Err
 GoTo PartitionSet_Exit
End Sub

Sub ComplimentSet(S As SuperSet)
 Dim i As Long

 If S.cardinality > 2 Then
 For i = 1 To S.cardinality
 If Not usedecision Or S.Element(i).Decision = False Or Not
 S.Element(i).valname = "?"
 Then
 Set otemp = New SetClass
 otemp.Union S.Element(i)
 End If
 Next
 End If
End Sub
otemp.attname = S.Element(i).attname
otemp.valname = S.Element(i).valname
otemp.Compliment
root.InsertSet otemp
'Set otemp = Nothing
 End If
 Next
 End If
End Sub

Sub DisplaySets(Optional iShowElements As Boolean)
 Dim i As Long
 Dim x As Long
 Dim buf As String

 For i = 1 To root.cardinality
 If root.Element(i).Decision Then
 decision=TRUE"
 Else
 decision=FALSE"
 End If
 If iShowElements Then
 buf = ""
 For x = 1 To root.Element(i).cardinality
 buf = buf + Str(root.Element(i).Element(x)) + ", "
 Next
 buf = Left(buf, Len(buf) - 2)
 Debug.Print vbTab + buf
 End If
 Next
End Sub

Sub GatherStatistics()
 Dim i As Long
 Dim pos As Long
 Dim Coverage As Single
 Dim general As Long
 Dim specific As Long
 Dim attname As String
 Dim valname As String

 For i = 1 To rules.cardinality
GetNames rules.Element(i).attname, attname, valname
pos = root.Contains(attname, valname)
general = root.Element(pos).cardinality
specific = rules.Element(i).cardinality
Coverage = specific / general
rules.Element(i).stats = Str(specific) + "/" + Str(general) + " = " + Format(specific / general, "percent")
Next
End Sub

Sub GetNames(buf As String, attname As String, valname As String)
 Dim i As Long
 i = 1
 buf = Right(buf, Len(buf) - 3)
 buf = Left(buf, Len(buf) - 1)
 While Mid(buf, i, 1) <> ","
 i = i + 1
 Wend
 attname = Left(buf, i - 1)
 valname = Right(buf, Len(buf) - i)
End Sub

Sub FindDecisions(buf As String)
 Dim i As Long
 Dim x As Long
 i = 0
 x = 0
 While i < Len(buf)
 i = i + 1
 If Mid(buf, i, 1) = "a" Then
 x = x + 1
 ReDim Preserve atts(x) As Long
 atts(x) = 0
 ElseIf Mid(buf, i, 1) = "d" Then
 x = x + 1
 ReDim Preserve atts(x) As Long
 atts(x) = 1
 End If
 Wend
 usedecision = True
End Sub
Sub RemoveUniversalAttributes()
 Dim i As Long
 Dim obj As SetClass

 i = 0
 While i < root.cardinality
 i = i + 1
 If root.Element(i).Equal(Universe) Then
 Set obj = root.Element(i)
 root.RemoveMember obj
 i = i - 1
 End If
 Wend
End Sub

Sub msg(S As String, Optional append As Boolean)
 If append = True Then
 Main.txtOut = Main.txtOut + vbCrLf + S
 Else
 Main.txtOut = S
 End If
 DoEvents
End Sub

Sub ReduceRule(rule As RuleClass)
 On Error GoTo ReduceRule_Error
 Dim i As Long
 Dim j As Long
 Dim target As RuleClass
 Dim mark As RuleClass
 Dim mark_temp As SetClass
 Dim target_temp As SetClass

 Set target = rule.CopyRule
 Set mark = target.CopyRule
 j = mark.RuleSize
 'Debug.Print target.Decision.valname + " -> " + target.clause
 While j > 0
 mark.RemoveFromRule j
 mark.ReEvaluate
 Set mark_temp = mark.SetFromRule
 Set target_temp = target.SetFromRule
 Wend
End Sub
If ((target.cardinality = mark.cardinality) Or (rule.Decision.SubSet(mark_temp))) And target.cardinality > 0 Then
 Set target = mark.CopyRule
End If
j = j - 2
If target.cardinality > 0 Then
 Set mark = target.CopyRule
End If
'Debug.Print mark.Decision.valname + " -> " + mark.clause
Wend
Set rule = target.CopyRule
ReduceRule_Exit:
 Exit Sub

ReduceRule_Error:
 ErrorHandler "LEMmodule::ReduceRule", Err
 GoTo ReduceRule_Exit
End Sub

Sub LinearDropping()
 Dim rule As RuleClass
 Dim r As RuleClass
 Dim i As Long
 Dim j As Long

 Set r = New RuleClass
 msg "Performing linear dropping...", True
 For i = 1 To rules.cardinality
 Set rule = rules.Element(i)
 Set r = rule.CopyRule
 j = r.RuleSize
 Debug.Print rule.Decision.valname + " -> " + rule.clause
 While r.cardinality = rule.cardinality And j > 0
 r.RemoveFromRule j
 Debug.Print " " + r.clause
 If rule.Decision.SubSet(r.SetFromRule) Then
 rule.RemoveFromRule j
 Set r = rule.CopyRule
 j = r.RuleSize
 Else
 Set r = rule.CopyRule
 j = j - 2
 End If
 'Set r = rule.CopyRule
 Next i
End Sub
'j = j - 2
Wend
Debug.Print rule.Decision.valname + " -> " + rule.clause
ReduceRule rules.Element(i)
Next
End Sub

Sub HandleMissingValues()
On Error GoTo HandleMissingValues_Error
Dim i As Long
Dim j As Long

Debug.Print "Missing Values"
i = 0
While i < root.cardinality
i = i + 1
If root.Element(i).valname = "?" Then
root.RemoveMember root.Element(i)
i = i - 1
End If
If i < 1 Then i = 1
If root.Element(i).valname = "*" Then
For j = 1 To root.cardinality
If root.Element(j).attname = root.Element(i).attname And
root.Element(j).attname <> "*" Then
root.Element(j).Union root.Element(i)
End If
Next
root.RemoveMember root.Element(i)
i = i - 1
End If
Wend
HandleMissingValues_Exit:
Exit Sub

HandleMissingValues_Error:
ErrorHandler "LEMmodule::HandleMissingValues", Err
GoTo HandleMissingValues_Exit
End Sub

A1.3 ArcanumGA
Sub Arcanum()
On Error GoTo Arcanum_Error
Dim BestSpecimen As Description
Dim Parent1 As Description
Dim Parent2 As Description
Dim Child As Description
Dim NewPopulation As Collection
Dim i As Long
Dim x As Long
Dim generation As Long
Dim Fitness As Collection
Dim avgfitness As Single
Dim sum As Single

avgfitness = 0
Set Fitness = New Collection
InitializeGraph
CreateInitialPopulation txtRuleFile
'DisplayAllDescriptions
'set best member to BestSpecimen
Set BestSpecimen = Population(1)
BestPop = 0
GetBestSpecimen Population, BestSpecimen, 1
Fitness.Add Int(PopFitness * 100) / 100
PlotFitness generation, Fitness(1), BestSpecimen.Fitness
'while stop criteria not met
For generation = 1 To GenCount
 msg "Population " + Str(generation) + " :: Fitness " + Str(Fitness(Fitness.count)) + " :: BestSpecimen " + Str(BestSpecimen.Fitness), True
 Set NewPopulation = New Collection

'**
'3/20 :: moved mutation to be before crossover
' to fix, cut and paste before Set Population = NewPopulation
' also need to change from Population to NewPopulation
'Perform genetic operations on each member of the population
'PerformGeneticOperations NewPopulation
PerformGeneticOperations Population

'**

'Add the BestSpecimen to the new population, thus preserving it
Set Child = New Description
For i = 1 To BestSpecimen.Cardinality
 Child.AddRule BestSpecimen.Element(i).CopyRule
Next
NewPopulation.Add Child
'Create a new generation by mating parents together and forming 2 children
While NewPopulation.count < PopulationSize - 1
 SelectParents Population, Parent1, Parent2
 For i = 1 To 2 'Create 2 children from the same parents
 Crossover Parent1, Parent2, Child
 NewPopulation.Add Child
 Next
Wend
SelectParents Population, Parent1, Parent2
Crossover Parent1, Parent2, Child
NewPopulation.Add Child
Set Population = NewPopulation
'if best member better than BestSpecimen, then replace BestSpecimen with the new best
'Debug.Print " selecting best specimen..."
GetBestSpecimen Population, BestSpecimen, generation
'stop if average fitness of the new generation is less than the average of previous N generations
If Fitness.count >= GenAvg Then
 sum = 0
 For i = 1 To Fitness.count
 sum = sum + Fitness(i)
 Next
 avgfitness = Int((sum / Fitness.count) * 100) / 100
 Fitness.Remove 1
End If
Fitness.Add Int(PopFitness * 100) / 100
PlotFitness generation, Fitness(Fitness.count), BestSpecimen.Fitness
'Test to see if at least GenAvg generations have passed
If Fitness.count >= GenAvg Then
 'If the fitness of the new population is equal to the average fitness
 'of the previous five generations, then stop.
 'Debug.Print Str(Fitness(Fitness.count)) + " ; AVG = " + Str(avgfitness)
 If Fitness(Fitness.count) < avgfitness Then
 generation = GenCount + 1
 End If
End If
'wend
'Debug.Print "Population " + Str(i) + " :: Fitness " + Str(PopFitness)
'DisplayDescription BestSpecimen, "Best Fitness " + Str(BestSpecimen.Fitness) + " ; occurred in Generation " + Str(BestPop)
PostProcess BestSpecimen
'Debug.Print "...after post-processing..."
'DisplayDescription BestSpecimen, "Best Fitness " + Str(BestSpecimen.Fitness) +
"; occurred in Generation " + Str(BestPop)
Set rules = BestSpecimen

'MsgBox ("Done!")
Arcanum_Exit:
Exit Sub

Arcanum_Error:
 ErrorHandler "ArcanumGA::Arcanum", err
 GoTo Arcanum_Exit
End Sub
Function GetBestSpecimen(Population As Collection, BestSpecimen As Description, generation As Long) As Long
 Dim i As Long
 Dim j As Long
 Dim best As Long
 For i = 1 To Population.count
 If Population(i).Fitness > BestSpecimen.Fitness Then
 Set BestSpecimen = New Description
 For j = 1 To Population(i).Cardinality
 BestSpecimen.AddRule Population(i).Element(j).CopyRule
 Next
 BestPop = generation
 'Debug.Print " New Best Specimen in Generation " + Str(generation)
 End If
 Next
 BestSpecimen.ReEvaluate
End Function

Sub Crossover(Parent1 As Description, Parent2 As Description, Child As Description)
 Set Child = New Description
 GetRulesFromParent Parent1, Child
 GetRulesFromParent Parent2, Child
 Child.ReEvaluate
End Sub

Sub GetRulesFromParent(ByVal P As Description, Child As Description)
 Dim StopPoint As Long
 Dim i As Long
 Dim x As Long
 Dim sum As Single

 For i = 1 To P.Cardinality
 If P.Rules(i) Then
 For x = 1 To P.Rules(i).Elements.Count
 sum += P.Rules(i).Elements(x).Value
 Next
 StopPoint = i
 End If
 Next

 Dim Rule As Rule
 Dim Cnt As Integer
 For i = 1 To StopPoint
 For Cnt = 1 To P.Rules(i).Elements.Count
 Next
 Next
End Sub
Dim selectfit As Single
Dim Parent As Description

Set Parent = New Description
For x = 1 To P.Cardinality
 Parent.AddRule P.Element(x).CopyRule
Next

' DisplayDescription Parent, "Parent"
StopPoint = Int((Parent.Cardinality + 1) / 2)
For i = 1 To StopPoint
 sum = 0
 For x = 1 To Parent.Cardinality
 If Parent.Element(x).Fitness <> 0 Then
 If bUseLnRoulette Then
 sum = sum + Log(Parent.Element(x).Fitness)
 Else
 sum = sum + Parent.Element(x).Fitness
 End If
 End If
 Next
 Randomize
 sum = Rnd(1) * sum
 x = 1
 While sum > 0
 If Parent.Element(x).Fitness > 0 Then
 If bUseLnRoulette Then
 sum = sum - Log(Parent.Element(x).Fitness)
 Else
 sum = sum - Parent.Element(x).Fitness
 End If
 End If
 If sum > 0 Then
 x = x + 1
 End If
 Wend
 Child.AddRule Parent.Element(x).CopyRule
 Parent.DeleteRule x
 Next
' DisplayDescription Child, "Child"
End Sub

Sub SelectParents(ByVal Pop As Collection, Parent1 As Description, Parent2 As Description)
Dim i As Long
Dim x As Long
Dim sum As Single
Dim Population As Collection

Set Population = New Collection
For i = 1 To Pop.count
 Population.Add Pop(i)
Next

For i = 1 To 2
 sum = 0
 For x = 1 To Population.count
 If Population(x).Fitness > 0 Then
 If bUseLnRoulette Then
 sum = sum + Log(Population(x).Fitness)
 Else
 sum = sum + Population(x).Fitness
 End If
 End If
 Next
 Randomize
 sum = Rnd(1) * sum
 x = 1
 While sum > 0
 If Population(x).Fitness > 0 Then
 If bUseLnRoulette Then
 sum = sum - Log(Population(x).Fitness)
 Else
 sum = sum - (Population(x).Fitness)
 End If
 End If
 If sum > 0 Then
 x = x + 1
 End If
 Wend
 If i = 1 Then
 Set Parent1 = Population(x)
 Else
 Set Parent2 = Population(x)
 End If
 Population.Remove x
Next
End Sub
Function PopFitness() As Single
 Dim sum As Single
 Dim i As Long

 sum = 0
 For i = 1 To Population.count
 sum = sum + (Population(i).Accuracy * pweight) + (Population(i).Coverage * rweight)
 Next
 PopFitness = sum / i
End Function

Function Fitness(S As Collection) As Single
 Dim i As Long
 Dim Recall As Single
 Dim Precision As Single

 If rweight + pweight <> 1 Then
 MsgBox("Invalid Recall and Precision Weights")
 Exit Function
 End If
 Recall = 0
 Precision = 0
 For i = 1 To S.count
 Recall = Recall + S(i).Recall
 Precision = Precision + S(i).Precision
 Next
 Recall = Recall / S.count
 Precision = Precision / S.count
 Fitness = Recall * rweight + Precision * pweight
End Function

Sub CreateInitialPopulation(Optional txtRuleFile As String)
 Dim i As Long
 Dim r As Description
 Dim allrules As Collection
 Dim rules As Collection
 Dim nr As RuleClass
 Dim idx As Long
 Dim rule_desc As Description

 Set rule_desc = New Description
 Set Population = New Collection
If txtRuleFile = "" Then
 ' MsgBox ("No Rule File")
 For i = 1 To PopulationSize
 Set r = New Description
 CreateRuleSet r
 Population.Add r
 Next
Else
 ' Make sure the rules file is valid.
 err = 0
 rfile = FreeFile
 Open txtRuleFile For Input As rfile
 If err <> 0 Then
 MsgBox txtRuleFile + " is not a valid file. Process aborted."
 err = 0
 End If
 ' Read the rules from the file
 Set allrules = New Collection
 Set rules = New Collection
 While Not EOF(rfile)
 GetNextRule rules
 ' allrules.Add rules
 If rules.count > 0 Then
 Set nr = New RuleClass
 idx = root.Contains(rules(rules.count - 1), rules(rules.count))
 If idx > 0 Then
 nr.Decision = root.Element(idx)
 idx = root.Contains(rules(1), rules(2))
 If idx > 0 Then
 nr.AddToRule root.Element(idx), "and"
 End If
 End If
 For i = 4 To rules.count - 3 Step 3
 idx = root.Contains(rules(i), rules(i + 1))
 If idx > 0 Then
 nr.AddToRule root.Element(idx), rules(i - 1)
 Else
 Set nr = New RuleClass
 i = rules.count
 End If
 Next
 nr.ReEvaluate
 Else
 i = rules.count
 End If
End If
If i <= rules.count And nr.Clause <> "" Then
 rule_desc.AddRule nr
End If
End If
Wend
'The description is built. Copy to 2/3 of the population.
For i = 1 To Int(PopulationSize / 3)
 Population.Add rule_desc
Next
'The description is built. Copy to 2/3 of the population.
For i = Int(PopulationSize / 3) + 1 To PopulationSize
 Set r = New Description
 CreateRuleSet r
 Population.Add r
Next
End If
For i = 1 To PopulationSize
 Population(i).ReEvaluate
Next
'DisplayAllDescriptions
End Sub

Sub CreateRuleSet(r As Description)
 Dim i As Long
 Dim rc As RuleClass
 Dim x As Long
 Dim roottemp As SuperSet
 Dim Z As Long

 For i = 1 To Decisions.Cardinality
 Set rc = New RuleClass
 rc.Decision = Decisions.Element(i)
 Z = root.Contains(rc.Decision.attname, rc.Decision.valname)
 Set roottemp = root.RelevantSets(Z)
 x = Int(Random(1, roottemp.Cardinality))
 While (roottemp.Element(x).attname = rc.Decision.attname) And
 (roottemp.Element(x).valname = rc.Decision.valname)
 x = Int(Random(1, roottemp.Cardinality))
 Wend
 rc.AddToRule roottemp.Element(x)
 rc.ReEvaluate
 r.AddRule rc
 Next
Function Random(min As Long, max As Long) As Single
 Randomize
 If max = 1 Then
 Random = Rnd()
 Else
 Random = Rnd() * (max - min + 1) + min
 End If
End Function

Sub DisplayAllDescriptions()
 Dim i As Long
 Dim j As Long
 Dim obj As RuleClass
 Dim buf As String

 For i = 1 To Population.count
 Debug.Print "Description " + Str(i) + " :: Fitness " + Str(Population(i).Fitness)
 DisplayDescription Population(i)
 Next
 Debug.Print ":: Population Fitness " + Str(PopFitness)
End Sub

Sub DisplayDescription(d As Description, Optional tag As String)
 Dim j As Long
 Dim obj As RuleClass
 Dim buf As String

 Debug.Print tag
 For j = 1 To d.Cardinality
 Set obj = d.Element(j)
 buf = " " + obj.Clause
 buf = buf + " -> " + obj.Decision.attname + "", " + obj.Decision.valname
 buf = buf + " :: P=" + Str(obj.Precision) + " ; R=" + Str(obj.Recall)
 Debug.Print buf
 Next
End Sub

Sub PerformGeneticOperations(Population As Collection)
 Dim i As Long
 Dim j As Long
 Dim x As Long
 Dim chance As Single
Dim obj As RuleClass
Dim newset As SetClass
Dim objtemp As SetClass
Dim sum As Single
Dim okay As Boolean
Dim sNoChange As Single
Dim sChangeoperator As Single
Dim sChangeSet As Single
Dim sSimplifyRule As Single
Dim sComplicateRule As Single
Dim sAddRule As Single
Dim rulelength As Long

For i = 1 To Population.count
 For j = 1 To Population(i).Cardinality
 sum = 0
 Set obj = Population(i).Element(j)
 'Set the percentage chance for each mutation to be selected
 sNoChange = (obj.Precision * pweight + obj.Recall * rweight)
 'sChangeoperator = 1 - obj.Precision
 sChangeoperator = 1 - (obj.Precision * pweight + obj.Recall * rweight)
 'sChangeSet = 1 - obj.Precision
 sChangeSet = 1 - (obj.Precision * pweight + obj.Recall * rweight)
 'sSimplifyRule = (1 - obj.Recall) * rweight
 sSimplifyRule = 1 - (obj.Precision * pweight + obj.Recall * rweight)
 'sComplicateRule = (1 - obj.Precision) * pweight
 sComplicateRule = 1 - (1 - Population(i).Coverage) * pweight
 sum = sum + sNoChange + sChangeoperator + sChangeSet + sSimplifyRule + sComplicateRule

 Randomize
 chance = Rnd(1) * sum
 '*** ChangeOperator

 If chance <= sChangeoperator Then
 'Debug.Print " ChangeOperator" + " "+ obj.clause
 chance = Int(Rnd(1) * (obj.olist.count / 2 + 1))
 If chance > 0 And (chance * 2) <= obj.olist.count Then
 rulelength = obj.olist.count
 sum = Int(Rnd(1) * 3) + 1
 Select Case sum
 Case 1
 'Some code
 Case 2
 'Some other code
 Case 3
 'Yet another code
 End If
 End If
 Next j
Next i
Case 1
 obj.olist.Add "AND", , chance * 2
 obj.olist.Remove chance * 2 + 1
Case 2
 obj.olist.Add "OR", , chance * 2
 obj.olist.Remove chance * 2 + 1
Case 3
 obj.olist.Add "XOR", , chance * 2
 obj.olist.Remove chance * 2 + 1
Case Else
 Debug.Print "Something wrong with ChangeOperator!!"
End Select
If rulelength <> obj.olist.count Then
 MsgBox ("Oops! ChangeOperator malfunction!")
End If
End If

chance = 1000
obj.ReEvaluate
Else
 'chance = chance - ((1 - obj.Precision))
 chance = chance - sChangeoperator
End If
*** ChangeSet

If chance <= sChangeSet Then
 'Debug.Print " ChangeSet" + " " + obj.clause
 Dim roottemp As SuperSet
 Set roottemp = New SuperSet
 rulelength = obj.olist.count
 root.Contains obj.Decision.attname, obj.Decision.valname, x
 'RootTemp.Union root.RelevantSets(x)
 Set roottemp = root.RelevantSets(x)
 'For x = 1 To obj.olist.count Step 2
 ' RootTemp.RemoveMember obj.olist(x)
 'Next
 Randomize
 Set newset = obj.Decision
 While newset.attname = obj.Decision.attname And newset.valname = obj.Decision.valname And roottemp.Cardinality > 1
 x = Int(Rnd(1) * roottemp.Cardinality) + 1
Set newset = roottemp.Element(x)
Wend
x = Int(Rnd(1) * (obj.olist.count / 2)) + 1
obj.olist.Add newset, , (x - 1) * 2 + 1
obj.olist.Remove (x - 1) * 2 + 2
'Set obj.olist(x) = newset
If rulelength <> obj.olist.count Then
 MsgBox ("Oops! ChangeSet malfunction!")
End If
chance = 1000
obj.ReEvaluate
Else
 'chance = chance - ((1 - obj.Precision))
 chance = chance - sChangeSet
End If

'*** SimplifyRule

If chance <= sSimplifyRule Then
 'Debug.Print " SimplifyRule" + " " + obj.clause
 'x = obj.olist.count - 1
 'okay = True
 'While x > 1 And okay
 ' If obj.olist(x) <> "AND" Then
 ' x = x - 2
 ' Else
 ' okay = False
 ' End If
 'Wend
 'If x > 1 Then
 ' obj.olist.Remove x
 ' obj.olist.Remove x
 'End If
 If obj.olist.count > 1 Then
 x = Int(Rnd(1) * (obj.olist.count / 2)) + 2
 While obj.olist.count > (x * 2 - 3)
 obj.olist.Remove obj.olist.count
 Wend
 End If
 chance = 1000
 obj.ReEvaluate
Else
 'chance = chance - (1 - obj.Recall)
chance = chance - sSimplifyRule
End If
'*** ComplicateRule

If chance <= sComplicateRule Then
 rulelength = obj.olist.count
 'Debug.Print " ComplicateRule" + " " + obj.clause
 Set newset = SelectSet(obj)
 If newset.attname <> obj.Decision.attname And newset.valname <>
 obj.Decision.valname Then
 obj.AddToRule newset, "AND"
 obj.ReEvaluate
 End If
 If rulelength < obj.olist.count - 2 Then
 MsgBox ("Oops! ComplicateRule malfunction!")
 End If
 chance = 1000
 obj.ReEvaluate
Else
 'chance = chance - (1 - obj.Precision)
 chance = chance - sComplicateRule
End If
'If chance <= sNoChange Then
 ' MsgBox ("No change to this rule.")
'End If
Next
'*** AddRule

chance = Rnd(1)
If chance <= sAddRule Then
 'Debug.Print " AddRule to Description " + Str(i)
 Population(i).AddRule NewRule
End If
Population(i).ReEvaluate
Next
End Sub

Function SelectSet(r As RuleClass) As SetClass
 Dim i As Long
 Dim x As Long
 Dim notOkay As Boolean
 Dim roottemp As SuperSet
Set roottemp = New SuperSet
root.Contains r.Decision.attname, r.Decision.valname, x
'RootTemp.Union root.RelevantSets(x)
Set roottemp = root.RelevantSets(x)

Randomize
x = Int(Random(1, roottemp.Cardinality))
notOkay = True
While notOkay
notOkay = False
While ((roottemp.Element(x).attname = r.Decision.attname) And
(roottemp.Element(x).valname = r.Decision.valname))
 x = Int(Random(1, roottemp.Cardinality))
 notOkay = True
Wend
For i = 1 To r.olist.count Step 2
 If ((roottemp.Element(x).attname = r.olist(i).attname) And
(roottemp.Element(x).valname = r.olist(i).valname)) Then
 x = Int(Random(1, roottemp.Cardinality))
 notOkay = True
 End If
Next
If r.olist.count > (roottemp.Cardinality - 2) * 2 Then
 notOkay = False
 Set SelectSet = r.Decision
 Exit Function
End If
Wend
Set SelectSet = root.Element(x)
End Function
Function NewRule() As RuleClass
 Dim i As Long
 Dim rc As RuleClass
 Dim x As Long

 Set rc = New RuleClass
 Randomize
 i = Int(Rnd(1) * Decisions.Cardinality) + 1
 rc.Decision = Decisions.Element(i)
 x = Int(Random(1, root.Cardinality))
 While (root.Element(x).attname = rc.Decision.attname) And
(root.Element(x).valname = rc.Decision.valname)
x = Int(Random(1, root.Cardinality))
Wend
rc.AddToRule root.Element(x)
rc.ReEvaluate
Set NewRule = rc
End Function

Sub PostProcess(BS As Description)
Dim i As Long
Dim j As Long

i = 0
j = 1
While i < BS.Cardinality
 i = i + 1
 'If BS.Element(i).Precision = 0 Or BS.Element(i).Recall = 0 Then
 ' BS.DeleteRule i
 ' i = i - 1
 'End If
 j = i
 If i = 0 Then i = 1
 While j < BS.Cardinality
 j = j + 1
 If BS.Element(i).Clause = BS.Element(j).Clause Then
 BS.DeleteRule j
 j = j - 1
 End If
 Wend
Wend
End Sub

Sub InitializeGraph()
Load Graph
Graph.Visible = True
Graph.Enabled = True
Graph.pbGraph.ScaleHeight = 1
Graph.pbGraph.ScaleWidth = GenCount
PrevPopFitness = 1
PrevBestFitness = 1
DoEvents
End Sub

Sub PlotFitness(generation As Long, PopFitness As Single, BestFitness As Single)
Graph.pbGraph.ForeColor = vbGreen
Graph.pbGraph.Line (generation - 1, 1 - PrevPopFitness)-(generation, 1 - PopFitness)
Graph.pbGraph.ForeColor = vbBlue
Graph.pbGraph.Line (generation - 1, 1 - PrevBestFitness)-(generation, 1 - BestFitness)
PrevPopFitness = PopFitness
PrevBestFitness = BestFitness
DoEvents
End Sub

Sub ErrorHandler(routine As String, err As ErrObject)
Debug.Print routine + " error..."
Debug.Print "..." + err.Source
Debug.Print "..." + err.Description
End Sub

A1.4 FileHandler
Sub CreateFiles(datafile As String, filelist As Collection, iFlag As Long)
TEMPPATH = App.Path + "\Temp"

TotCoverage = 0
TotAccuracy = 0
Select Case iFlag
Case 0 'no validation...just use the datafile
Case 1 'Leave-One-Out validation
 LeaveOneOut datafile, K, filelist
Case 2 'K-fold Cross-validation
 KFold datafile, K, filelist
End Select
filelist.Add datafile 'Add the original datafile to the list
End Sub

Sub ProcessFiles(filelist As Collection, iFlag As Long, Optional iResume As Long)
On Error GoTo ProcessFiles_Error
Dim x As Long
Dim Coverage As Single
Dim Accuracy As Single

'TotCoverage = 0
'TotAccuracy = 0
If iResume < 1 Then iResume = 1
For x = iResume To K
BuildSetsFromFile filelist(1), True
Select Case iFlag
Case 0 'MLEM
 InduceRules
 strExt = ".MLEM"
Case 1 'Arcanum
 Arcanum
 strExt = ".ARCANUM"
End Select
PrintRules Main.txtOutFile.Text + Trim(Str(x)) + strExt, , rules.Coverage, rules.Accuracy
VerifyRules Main.txtOutFile.Text + Trim(Str(x)) + strExt, filelist(2), 0,
Coverage, Accuracy
TotCoverage = TotCoverage + Coverage
TotAccuracy = TotAccuracy + Accuracy
Kill filelist(1)
Kill filelist(2)
Kill Main.txtOutFile.Text + Trim(Str(x)) + strExt
Kill Main.txtOutFile.Text + Trim(Str(x)) + strExt + ".verified"
filelist.Remove 1
filelist.Remove 1
PrintTempFile TEMPPATH + "\temp." + Trim(Str(x)) + ".txt", TotCoverage,
TotAccuracy, iFlag
If x > 1 Then
 Kill TEMPPATH + "\temp." + Trim(Str(x - 1)) + ".txt"
End If
msg "*** Completed iteration " + Str(x)
Next
If K > 1 Then
 Kill TEMPPATH + "\temp." + Trim(Str(x - 1)) + ".txt"
 'Debug.Print "Coverage = " + Format(TotCoverage / K, "percent")
 'Debug.Print "Accuracy = " + Format(TotAccuracy / K, "percent")
End If
BuildSetsFromFile Main.txtDataFile, True
Select Case iFlag
Case 0 'MLEM
 InduceRules
 strExt = ".MLEM"
Case 1 'Arcanum
 Arcanum
 strExt = ".ARCANUM"
End Select
If K > 0 Then
 PrintRules Main.txtOutFile.Text + strExt, , TotCoverage / K, TotAccuracy / K
Else
End If
msg "Process Complete.", True
Main.clock.Enabled = False
Beep
MsgBox "DONE!!"
ProcessFiles_Exit:
 Exit Sub

ProcessFiles_Error:
 ErrorHandler "FileHandler::ProcessFiles", err
 GoTo ProcessFiles_Exit
End Sub

Sub KFold(datafile As String, K As Long, filelist As Collection)
 On Error GoTo KFold_Error
 Dim ifile As Long
 Dim buf As String '* 50000
 Dim alldata As Collection
 Dim headers As Collection
 Dim KSets() As String
 Dim i As Long
 Dim j As Long
 Dim Z As Long
 Dim count As Long
 Dim idx As Long
 Dim txtTestFile As String
 Dim txtTrainFile As String
 Dim iTest As Long
 Dim iTrain As Long

 Set alldata = New Collection

 'Gather all data from the input file
 ifile = FreeFile
 Open datafile For Input As ifile
 While Not EOF(ifile)
 Line Input #ifile, buf
 alldata.Add buf
 Wend
 Close ifile

 'Remove file headers

Set headers = New Collection
While Left(alldata(1), 1) = "[" Or Left(alldata(1), 1) = ":"
 headers.Add alldata(1)
 alldata.Remove 1
Wend

'Split Data randomly into K sets
ReDim KSets(K) As String
ReDim KSets(K, Int(alldata.count / K) + 1) As String
'Debug.Print UBound(KSets, 1)
'Debug.Print UBound(KSets, 2)
count = 0
While alldata.count > K
 count = count + 1
 For i = 1 To K
 Randomize
 idx = Int((Rnd(1) * alldata.count)) + 1
 KSets(i, count) = Trim(alldata(idx))
 alldata.Remove idx
 Next
Wend
count = count + 1
For i = 1 To alldata.count
 Randomize
 idx = Int(Rnd(1) * alldata.count) + 1
 KSets(i, count) = Trim(alldata(idx))
 alldata.Remove idx
Next
Set alldata = Nothing

'DisplayKFoldSets KSets, K, count

'Make training and testing files from the K sets
iTrain = FreeFile
iTest = iTrain + 1
For i = 1 To K
 txtTestFile = TEMPPATH + ":test." + Trim(Str(i)) + ":.txt"
 txtTrainFile = TEMPPATH + ":train." + Trim(Str(i)) + ":.txt"
 Open txtTrainFile For Output As iTrain
 Open txtTestFile For Output As iTest
 'Print the data from I into the test file
 For j = 1 To headers.count
 Print #iTest, headers(j)
 Next
For j = 1 To count
 Print #iTest, KSets(i, j)
Next
'Print data from all other sets into the training file
For j = 1 To headers.count
 Print #iTrain, headers(j)
Next
For j = 1 To K
 If j <> i Then 'use all of the sets except the Ith one
 For Z = 1 To count
 If Trim(KSets(j, Z)) <> "" Then
 Print #iTrain, KSets(j, Z)
 End If
 Next
 End If
Next
filelist.Add txtTrainFile
filelist.Add txtTestFile
Close iTrain
Close iTest
Next
KFold_Exit:
 Exit Sub

KFold_Error:
 ErrorHandler "FileHandler::KFold", err
 GoTo KFold_Exit

End Sub

Sub DisplayKFoldSets(KSets() As String, K As Long, count As Long)
 Dim i As Long
 Dim j As Long

 For i = 1 To K
 Debug.Print "SET " + Str(i) + " contains...
 For j = 1 To count
 Debug.Print vbTab + Trim(KSets(i, j))
 Next
 Next
End Sub

Sub LeaveOneOut(txtDataFile As String, iIterations, filelist As Collection)
 Dim iData As Long

118
Dim iTrain As Long
Dim iTest As Long
Dim records As Collection
Dim buf As String
Dim i As Long
Dim x As Long
Dim iT As Long
Dim Sample As Long
Dim txtTrainFile As String
Dim txtTestFile As String

iData = FreeFile
iTrain = iData + 1
iTest = iTrain + 1

Set records = New Collection

Open txtDataFile For Input As iData
While Not EOF(iData)
 Line Input #iData, buf
 records.Add buf
Wend
Close iData
x = 1
While Left(records(x), 1) = "[" Or Left(records(x), 1) = "<"
 x = x + 1
Wend
x = x - 1
For iT = 1 To iIterations
 txtTestFile = TEMPPATH + "\test." + Trim(Str(iT)) + ".txt"
 txtTrainFile = TEMPPATH + "\train." + Trim(Str(iT)) + ".txt"
 Open txtTrainFile For Output As iTrain
 Open txtTestFile For Output As iTest
 Randomize
 Sample = Int(Rnd(1) * (records.count - x)) + x + 1
 For i = 1 To records.count
 If i <> Sample Then
 Print #iTrain, records(i)
 End If
 Next
 For i = 1 To x
 Print #iTest, records(i)
 Next
 Print #iTest, records(Sample)
filelist.Add txtTrainFile
filelist.Add txtTestFile
Close iTrain
Close iTest
Next
End Sub

Sub PrintTempFile(tempfile As String, TotCov As Single, TotAcc As Single, iMod As Long)
 Dim iTemp As Long

 iTemp = FreeFile
 Open tempfile For Output As iTemp

 Print #iTemp, Main.txtDataFile.Text
 Print #iTemp, Main.txtOutFile.Text
 Print #iTemp, TotCov
 Print #iTemp, TotAcc
 Print #iTemp, pweight
 Print #iTemp, rweight
 Print #iTemp, GenCount
 Print #iTemp, PopulationSize
 Print #iTemp, ComplimentsOkay
 Print #iTemp, iFlag
 Print #iTemp, K
 Print #iTemp, iMod

 Close iTemp
End Sub

Sub RestoreProcess()
 Dim iTemp As Long
 Dim tempfile As String
 Dim buf As String
 Dim iFlag As Long
 Dim filelist As Collection
 Dim K As Long
 Dim i As Long

 Debug.Print "...resuming...

 tempfile = Dir$(App.Path + "\temp\temp*")
 If tempfile = "" Then Exit Sub
iTemp = FreeFile
Open App.Path + "\temp\" + tempfile For Input As iTemp

Load Main
Main.Visible = True
Input #iTemp, buf
Main.txtDataFile.Text = buf
Input #iTemp, buf
Main.txtOutFile.Text = buf
Input #iTemp, buf
TotCoverage = val(buf)
Input #iTemp, buf
TotAccuracy = val(buf)
Input #iTemp, buf
Main.txtPrecision = buf
Input #iTemp, buf
Main.txtRecall = buf
Input #iTemp, buf
Main.txtGenerations = buf
Input #iTemp, buf
Main.txtPopSize = buf
Input #iTemp, buf
If buf = "True" Then
 Main.chkCompliments.Value = 1
Else
 Main.chkCompliments.Value = 0
End If
Input #iTemp, buf
If buf = "0" Then
 Main.optNoValidate.Value = True
ElseIf buf = "1" Then
 Main.optLOO.Value = True
Else
 Main.optKFold.Value = True
End If
Input #iTemp, buf
Main.txtK = buf
Input #iTemp, buf
iFlag = val(buf)
Close iTemp

'Create filelist
Set filelist = New Collection
tempfile = Right(tempfile, Len(tempfile) - 5)
K = val(tempfile)
For i = K + 1 To val(Main.txtK)
 filelist.Add App.Path + \temp\train." + Trim(Str(i)) + ".txt"
 filelist.Add App.Path + \temp\test." + Trim(Str(i)) + ".txt"
Next

'Initialize variables
SetControlVariables

'ProcessFiles
ProcessFiles filelist, iFlag, K + 1

End Sub

A1.5 MarkovModel

Sub MCMC()
 Dim d As SetClass
 Dim i As Long
 Dim r As RuleClass

 Set rules = New Description
 msg "Performing MCMC..."

 Categorize root
 For i = 1 To PopulationSize
 Set r = RandomRule
 While r.Precision < pweight Or r.Recall < rweight
 Set r = RandomRule
 Wend
 ReduceRule r
 rules.AddRule r
 msg "." + Str(i) + "; (" + Str(rules.Cardinality) + ") unique"
 'Debug.Print r.Decision.valname + " " + r.Clause
 'Debug.Print " P:" + Str(r.Precision) + " R:" + Str(r.Recall)
 Next
 'LinearDropping
 rules.Sort

 msg "Coverage: " + Format(rules.Coverage, ".00")
 msg "Writing rules to file...", True
 PrintRules Main.txtOutFile.Text, True

 msg "Process complete.", True
Main.clock.Enabled = False
End Sub

Sub Categorize(root As SuperSet)
 Dim i As Long
 Dim currentatt As String
 Dim partition As SuperSet

 Set partitions = New Collection
 i = 1
 While i < root.Cardinality
 currentatt = root.Element(i).attname
 Set partition = New SuperSet
 partition.Name = currentatt
 While i <= root.Cardinality And root.Element(i).attname = currentatt
 partition.InsertSet root.Element(i)
 Wend
 If i = root.Cardinality Then
 currentatt = ""
 Else
 i = i + 1
 End If
 Wend
 partitions.Add partition
End Sub

Function RandomRule() As RuleClass
 Dim r As RuleClass
 Dim i As Long
 Dim j As Long
 Dim S As SetClass

 'Get a decision for the rule
 Set r = New RuleClass
 r.Decision = GetRandomDecision

 'Find the first state
 i = Int(Random(1, partitions.Count))
 'Add attributes until a decision state is reached
 While partitions(i).Contains(r.Decision.attname, r.Decision.valname) = 0
 Set S = Sample(partitions(i))
 r.AddToRule S, "and"
 i = Int(Random(1, partitions.Count))
Wend
r.ReEvaluate
'Select an attribute in that state

Set RandomRule = r
End Function

Function GetRandomDecision() As SetClass
 Dim i As Long
 Dim S As SetClass

 Set S = New SetClass
 i = Int(Random(1, root.Cardinality))
 Set S = root.Element(i)
 If usedecision Then
 While Not S.Decision
 i = Int(Random(1, root.Cardinality))
 Set S = root.Element(i)
 Wend
 End If
 Set GetRandomDecision = S
End Function

Function Sample(S As SuperSet) As SetClass
 Dim i As Long

 i = Int(Random(1, S.Cardinality))
 Set Sample = S.Element(i)
 'Debug.Print S.Element(i).attname + ","; S.Element(i).valname
End Function

A1.6 RuleCheck
Dim pos() As String

Function VerifyRules(txtRules As String, txtfile As String, Optional FullReportFlag As Long, Optional Coverage As Single, Optional Accuracy As Single)
 On Error GoTo 0
 Dim rules As Collection
 Dim allrules As Collection
 Dim rule_desc As Description
 Dim iFlag As Long
 Dim att As SetClass
 Dim i As Long
Dim r As RuleClass
Dim outf As Long
Dim txtVerify As String
Dim Family As SetClass
Dim x As Long
Dim idx As Long
Dim bRulesAdded As Boolean

bRulesAdded = False
iDecision = 0
ReDim header(0) As String
ReDim Names(0) As String
HeadPtr = 1
iCounter = 1

'Parse each line of the input file
BuildSetsFromFile txtfile, False

rfile = FreeFile
ruleindex = 0
Set rules = New Collection
Set allrules = New Collection
Set rule_desc = New Description
Open txtRules For Input As rfile
txtVerify = txtRules + ".verified"
outf = FreeFile
Open txtVerify For Output As outf
While Not EOF(rfile)
 GetNextRule rules
 allrules.Add rules
 BuildRanges rules
 'Set att = New SetClass
 Set r = New RuleClass
 If rules.count <> 0 Then
 idx = root.Contains(rules(rules.count - 1), rules(rules.count))
 If idx > 0 Then
 r.Decision = root.Element(idx)
 If root.Contains(rules(1), rules(2)) > 0 Then
 r.AddToRule root.Element(root.Contains(rules(1), rules(2))), "and"
 End If
 'att.Union root.Element(root.Contains(rules(1), rules(2)))
 For i = 3 To rules.count - 3 Step 3
 'att.Intersect root.Element(root.Contains(rules(i), rules(i + 1)))
 x = root.Contains(rules(i + 1), rules(i + 2))
If x > 0 Then
 r.AddToRule root.Element(root.Contains(rules(i + 1), rules(i + 2))),
 rules(i)
Else
 Set r = New RuleClass
 i = rules.count
End If
Next
r.ReEvaluate
Else
 i = rules.count
End If
If i < rules.count And r.Clause <> "" Then
 bRulesAdded = True
 rule_desc.AddRule r
 rule_desc.ReEvaluate
 Print #outf, "Rule: " + rules(rules.count - 1) + ", " + rules(rules.count)
 Print #outf, " " + r.Clause
 Print #outf, " Precision: " + Format(r.Precision, "percent") + "; Recall: " +
 Format(r.Recall, "percent")
 If FullReportFlag = 1 Then
 For i = 1 To r.Cardinality
 If r.Decision.Contains(r.Element(i)) <> 0 Then
 Print #outf, vbTab + Str(r.Element(i)) + " : CORRECT"
 Else
 Set Family = FindClass(r.Decision.attname, r.Element(i))
 Print #outf, vbTab + Str(r.Element(i)) + " : INCORRECT -> (" +
 Family.attname + ", " + Family.valname + ")"
 End If
 Next
 If r.Cardinality = 0 Then
 Print #outf, vbTab + " :::NO INSTANCES OF THIS RULE"
 End If
 End If
Else
 Print #outf, "Rule: " + rules(rules.count - 1) + ", " + rules(rules.count)
 buf = ""
 For i = 1 To (rules.count) / 2 Step 2
 buf = buf + "(" + rules(i) + "," + rules(i + 1) + ")"
 If i <> rules.count - 3 Then
 buf = buf + " & "
 End If
 Next
 buf = buf + " -> (" + rules(i) + "," + rules(i + 1) + ")"
Sub GetNextRule(rules As Collection)
 Set rules = New Collection
 Dim buf As String
 Dim i As Long
 Dim word As String
 Dim wordon As Boolean

 Line Input #rfile, buf
 While Left(buf, 1) <> "(" And Not EOF(rfile)
Line Input #rfile, buf
Wend
If EOF(rfile) And buf = "" Then
 Exit Sub
End If
'While Len(buf) = 0 And Not EOF(rFile)
' Line Input #rFile, buf
'Wend
i = 1
wordon = False
While i < Len(buf)
 Select Case mid(buf, i, 1)
 Case "(" 'starts a new word
 word = ""
 wordon = True
 Case ")" 'ends a word
 rules.Add word
 word = ""
 wordon = False
 Case ",", " " 'ends a word, starts a new word
 If word <> "" And word <> "and" Then
 rules.Add word
 End If
 word = ""
 Case "&" 'burn the character
 Case "-" 'if next character is > then burn, else part of word
 If mid(buf, i + 1, 1) = ">" Then
 i = i + 1
 Else
 word = word + mid(buf, i, 1)
 End If
 Case Else
 i = i + 1
 End Select
 End Select
 i = i + 1
End While
rules.Add word
ruleindex = ruleindex + 1
'Line Input #rfile, buf
End Sub

Sub HighlightString(buf As String, st As String, linedx As Long, pos() As String)
 Dim x As Long

Sub CheckFileForString(txtfile As String, allrules As Collection)
 Dim ifile As Long
 Dim ofile As Long
 Dim buf As String
 Dim lines As Collection
 Dim i As Long
 Dim j As Long
 Dim x As Long
 Dim idx As Long
 Dim rules As Collection
 Dim st As String
 Dim dxn As String

 Set rules = New Collection
 Set lines = New Collection
 ifile = FreeFile
 Open txtfile For Input As ifile
 ofile = FreeFile
 Open txtfile + ".txt" For Output As ofile

 While Not EOF(ifile)
 Line Input #ifile, buf
 lines.Add Format(buf, ">")
 Wend

 ReDim pos(lines.count, 5000) As String
 For i = 1 To allrules.count
 For j = 2 To allrules(i).count Step 2
 For x = 1 To lines.count
 dxn = Format(allrules(i)(allrules(i).count), ">")
 If dxn = Right(lines(x), Len(dxn)) Then
 buf = lines(x)
 st = allrules(i)(j)
 'lines.Add HighlightString(buf, st)
 Wend
 Wend
 Wend
 Wend
End Sub
HighlightString buf, st, x, pos
 pos(x, 5000) = dxn
End If
Next
Next
Next

For i = 1 To UBound(pos, 1)
 buf = pos(i, 5000)
 For j = 1 To UBound(pos, 2) - 1
 If pos(i, j) <> "" Then
 buf = buf + " -" + pos(i, j)
 End If
 Next
 Print #ofile, buf
Next
Close ofile
Close ifile
End Sub

Function FindClass(sAttName As String, vItem As Long) As SetClass
 Dim i As Long
 Dim found As Boolean

 found = False
 i = 1
 While Not found And i < root.Cardinality
 If root.Element(i).attname = sAttName Then 'correct attribute
 If root.Element(i).Contains(vItem) <> 0 Then 'found it
 Set FindClass = root.Element(i)
 found = True
 Else 'didn't find it
 i = i + 1
 End If
 Else 'wrong attribute
 i = i + 1
 End If
 Wend
End Function

Sub BuildRanges(rules As Collection)
 Dim i As Long
 Dim idx As Long

 For each item in rules
 'process each item here
 Next
End Sub
Dim minpoint As Single
Dim maxpoint As Single
Dim ipoint As Long
Dim S As SetClass
Dim bCreatable As Boolean

i = 1
While i < rules.Count
 If rules(i) = "AND" Or rules(i) = "XOR" Or rules(i) = "OR" Then

 Else
 'if it's a range, then see if it already exists
 If IsRange(rules(i + 1), minpoint, maxpoint) Then
 idx = root.Contains(rules(i), rules(i + 1), ipoint)
 If idx = 0 Then 'set doesn't exist...see if it's creatable
 Set S = New SetClass
 S.attname = rules(i)
 S.valname = rules(i + 1)
 bCreatable = True
 While root.Element(ipoint).attname = rules(i) And bCreatable
 If Not (IsRange(root.Element(ipoint).valname)) Then
 If val(root.Element(ipoint).valname) >= minpoint And val(root.Element(ipoint).valname) <= maxpoint Then
 S.Union root.Element(ipoint)
 End If
 End If
 ipoint = ipoint + 1
 End While
 End If
 End If
 ipoint = ipoint + 1
 If ipoint > root.Cardinality Then
 ipoint = 1
 bCreatable = False
 End If
 End If
 Wend
 If S.Cardinality <> 0 Then
 root.InsertSet S
 End If
End If
End If
End If
End Sub
Function IsRange(range As String, Optional minpoint As Single, Optional maxpoint As Single) As Boolean
 Dim i As Long

 i = InStr(range, "..")
 If i > 1 Then
 IsRange = True
 minpoint = val(Left(range, i))
 maxpoint = val(Right(range, Len(range) - i - 1))
 End If
End Function

A1.7 Description object
Private rules As Collection
Private bChanged As Boolean
Private sCoverage As Single
Private sAccuracy As Single

Private Sub Class_Initialize()
 Set rules = New Collection
End Sub

Public Sub AddRule(r As RuleClass)
 On Error GoTo AddRule_Error
 Dim idx As Long
 Dim att As SetClass
 Dim pos As Long

 bChanged = True
 pos = Contains(r.Decision.attname, r.Decision.valname, r.Clause, idx)
 If pos = 0 Then 'add new set
 'Set att = New SetClass
 'att.attname = r.Decision.attname
 'att.valname = r.Decision.valname
 If idx > rules.count Or idx < 1 Then
 rules.Add r
 Else
 rules.Add r, , idx
 End If
 r.count = 1
 'Sort
 Else 'set is already there, just add the example
 rules(pos).count = rules(pos).count + 1
 End If
End Sub

AddRule_Error:
End If

AddRule_Emit:
 Exit Sub

AddRule_Error:
 ErrorHandler "Description::Addrule", err
 GoTo AddRule_Emit
End Sub

Public Property Get Cardinality() As Long
 Cardinality = rules.count
End Property

Public Sub DeleteRule(x As Long)
 bChanged = True

 rules.Remove x

 a = Coverage
 a = Accuracy
 'Debug.Print Coverage
 'Debug.Print Accuracy
 bChanged = False
End Sub

Public Property Get Element(x As Long) As RuleClass
 Set Element = rules(x)
End Property

Public Function Contains(attname As String, valname As String, Clause As String,
Optional insertpoint As Long) As Long
 Dim found As Boolean
 Dim low As Long
 Dim mid As Long
 Dim high As Long

 attname = Format(attname, "<")
 valname = Format(valname, "<")
 Clause = Format(Clause, "<")
 found = False
 high = rules.count
 low = 1
 mid = Int((high - low) / 2) + 1

 Do While low <= high And Not found
 If attname < Clause Then
 high = low - 1
 Else If attname > Clause Then
 low = high + 1
 Else
 found = True
 Exit Do
 End If

 mid = (low + high) / 2
 If attname < valname Then
 high = mid - 1
 Else If attname > valname Then
 low = mid + 1
 Else
 found = True
 Exit Do
 End If
 Loop

 If found Then
 Contains = low
 Else
 Contains = rules.count + 1
 End If
End Function
Contains = 0

While Not found And mid >= low And mid <= high
 If rules(mid).Decision.attname > attname Then
 high = mid - 1
 ElseIf rules(mid).Decision.attname < attname Then
 low = mid + 1
 ElseIf rules(mid).Decision.attname = attname Then
 If rules(mid).Decision.valname > valname Then
 high = mid - 1
 ElseIf rules(mid).Decision.valname < valname Then
 low = mid + 1
 ElseIf rules(mid).Decision.valname = valname Then
 If rules(mid).Clause > Clause Then
 high = mid - 1
 ElseIf rules(mid).Clause < Clause Then
 low = mid + 1
 ElseIf rules(mid).Clause = Clause Then
 found = True
 Contains = mid
 End If
 End If
 End If
 End If
 If high = low Then
 mid = low
 Else
 mid = Int((high - low) / 2) + low + 1
 End If
Wend
insertpoint = mid
End Function

Public Sub Sort()
 Dim i As Long
 Dim j As Long
 Dim max As Single
 For i = 0 To rules.count - 1
 max = 1
 For j = 1 To rules.count - i
 If (rules(j).count) > rules(max).count Then
 max = j
 End If
 Next
 rules.Add rules(max)
Public Property Get Coverage() As Single
 Dim U As SetClass
 Dim d As Collection
 Dim i As Long
 Dim numofclasses As Long
 Dim found As Boolean

 If bChanged = True Then
 Set d = New Collection
 Set U = New SetClass
 U.Union Universe
 For i = 1 To rules.count
 U.Difference rules(i).SetFromRule
 If d.count = 0 Then
 d.Add rules(i).Decision
 Else
 j = 0
 found = False
 While j < d.count And Not found
 j = j + 1
 If d(j).attname = rules(i).Decision.attname And _
 d(j).valname = rules(i).Decision.valname Then
 found = True
 End If
 Wend
 If Not found Then
 d.Add rules(i).Decision
 End If
 End If
 Next
 numofclasses = d.count
 If numofclasses = 0 Or Decisions.Cardinality = 0 Then
 Coverage = ((Universe.Cardinality - U.Cardinality) / Universe.Cardinality)
 Else
 (numofclasses / Decisions.Cardinality)
 End If
 sCoverage = Coverage
Else
Coverage = sCoverage
End If
End Property

Public Property Get Accuracy() As Single
 Dim i As Long
 Dim sum As Long
 Dim total As Long

 If bChanged = True Then
 sum = 0
 total = 0
 For i = 1 To rules.count
 sum = sum + (rules(i).Precision * rules(i).Cardinality)
 total = total + rules(i).Cardinality
 Next
 If total = 0 Then
 Accuracy = 0
 Else
 Accuracy = sum / total
 End If
 sAccuracy = Accuracy
 Else
 Accuracy = sAccuracy
 End If
End Property

Public Property Get Fitness() As Single
 Fitness = (Accuracy * pweight) + (Coverage * rweight)
End Property

Public Sub ReEvaluate()
 x = Coverage
 x = Accuracy
 'Debug.Print Coverage
 'Debug.Print Accuracy
 bChanged = False
End Sub

A1.8 RuleClass object
Private oDecision As SetClass
Public olist As Collection
Private oExamples As Collection
Private ostats As String
Private icount As Long
Private bChanged As Boolean
Private sClause As String
Private sPrecision As Single
Private sRecall As Single

Public Property Let count(i As Long)
 icount = i
End Property

Public Property Get count() As Long
count = icount
End Property

Public Property Let stats(buf As String)
ostats = buf
End Property

Public Property Get stats() As String
stats = ostats
End Property

Private Sub Class_Initialize()
 Set olist = New Collection
 Set oxamples = New Collection
End Sub

Public Property Let Decision(val As SetClass)
 Set oDecision = val
End Property

Public Property Get Decision() As SetClass
 Set Decision = oDecision
End Property

Public Sub RemoveFromRule(i As Long)
 If i < 1 Then Exit Sub
 If i = 1 Then
 olist.Remove 1
 If olist.count > 0 Then olist.Remove 1
 Else
 i = (i - 1) * 2
 olist.Remove i
 olist.Remove i - 1
 End If
 'ReEvaluate
End Sub

Public Property Get Clause() As String
 Dim buf As String
 Dim i As Long
If olist.count = 0 Then
 Clause = ""
 Exit Property
End If
If bChanged = True Then
 buf = "(" + olist(1).attname + "," + olist(1).valname + ")"
 For i = 2 To olist.count - 1 Step 2
 buf = buf + olist(i) + ""
 buf = buf + "(" + olist(i + 1).attname + "," + olist(i + 1).valname + ")"
 Next
 sClause = buf
 Clause = buf
Else
 Clause = sClause
End If
End Property
Public Property Get RuleSize() As Long
 RuleSize = olist.count * 2 - 1
End Property
Public Property Get Cardinality() As Long
 Cardinality = oExamples.count
End Property
Public Sub AddToRule(S As SetClass, Optional operator As String)
 If olist.count = 0 Then
 olist.Add S
 Else
 olist.Add operator
 olist.Add S
 End If
 'ReEvaluate
End Sub
Public Property Get Element(i As Long) As Variant
 If i > oExamples.count Or i = 0 Then
 Element = 0
 Else
 Element = oExamples(i)
 End If
End Property
Public Sub ReEvaluate()
 Dim i As Long
 Dim oset As SetClass

 If olist.count = 0 Then
Set oExamples = New Collection
Exit Sub
End If
Set oset = New SetClass
oset.Union olist(1)
For i = 2 To olist.count - 1 Step 2
 Select Case olist(i)
 Case "and", "AND"
 oset.Intersect olist(i + 1)
 Case "or", "OR"
 oset.Union olist(i + 1)
 Case "xor", "XOR"
 oset.XORS olist(i + 1)
 Case "diff", "DIFF"
 oset.Difference olist(i + 1)
 Case Else
 Debug.Print "Failed to evaluate operator " + olist(i)
 End Select
Next
oset.GetList oExamples
bChanged = True
x = Clause
x = Precision
x = Recall
'Debug.Print Clause
'Debug.Print Precision
'Debug.Print Recall
bChanged = False
End Sub
Public Property Get Precision() As Single
 Dim i As Long
 Dim count As Long

 If olist.count = 0 Then
 Precision = 0
 Exit Property
 End If
 If bChanged = True Then
 i = 0
 For i = 1 To oExamples.count
 If oDecision.Contains(oExamples(i)) <> 0 Then
 count = count + 1
 End If
 Next
 End If
End Property
If count = 0 Then
 Precision = count
Else
 Precision = count / oExamples.count
End If
sPrecision = Precision
Else
 Precision = sPrecision
End If
End Property
Public Property Get Recall() As Single
 Dim i As Long
 Dim count As Long

 If olist.count = 0 Then
 Recall = 0
 Exit Property
 End If
If bChanged = True Then
 i = 0
 For i = 1 To oExamples.count
 If oDecision.Contains(oExamples(i)) <> 0 Then
 count = count + 1
 End If
 Next
 If count = 0 Then
 Recall = 0
 Else
 Recall = count / oDecision.Cardinality
 End If
sRecall = Recall
Else
 Recall = sRecall
End If
End Property

Public Property Get Fitness() As Single
 Fitness = Precision + Recall
End Property

Public Property Get SetFromRule() As SetClass
 Dim S As SetClass
 Set S = New SetClass
S.AddList oExamples
Set SetFromRule = S
End Property
Public Property Get CopyRule() As RuleClass
 Dim r As RuleClass
 Dim i As Long

 Set r = New RuleClass
 r.Decision = oDecision
 r.AddToRule olist(1)
 For i = 3 To olist.count Step 2
 r.AddToRule olist(i), olist(i - 1)
 'If i + 1 < olist.count Then
 ' r.AddToRule olist(i), olist(i - 1)
 'Else
 ' r.AddToRule olist(i)
 'End If
 Next
 r.ReEvaluate
 Set CopyRule = r
End Property

A1.9 SetClass object
Private oAttName As String
Private oValName As String
Private olist As Collection
Private oDecision As Boolean

Public Property Let Decision(val As Boolean)
 oDecision = val
End Property
Public Property Get Decision() As Boolean
 Decision = oDecision
End Property
Public Property Let stats(buf As String)
 ostats = buf
End Property
Public Property Get stats() As String
 stats = ostats
End Property
Public Property Let valname(buf As String)
 oValName = Format(buf, "<")
End Property
Public Property Get valname() As String
 valname = oValName
End Property
Public Property Let attname(buf As String)
 oAttName = Format(buf, "<")
End Property
Public Property Get attname() As String
 attname = oAttName
End Property
Public Property Get Cardinality() As Long
 Cardinality = olist.count
End Property
Public Property Get Element(i As Long) As Variant
 If i > olist.count Or i = 0 Then
 Element = 0
 Else
 Element = olist(i)
 End If
End Property
Public Sub AddToSet(i As Variant)
 Dim idx As Long

 If Contains(i, idx) = 0 Then
 If idx > olist.count Or idx < 1 Then
 olist.Add i
 Else
 olist.Add i, , idx
 End If
 'Sort
 End If
End Sub
Public Sub RemoveMember(i As Variant)
 Dim x As Long
 x = Contains(i)
 If x <> 0 Then
 olist.Remove x
 End If
 'Sort
End Sub
Public Sub AddList(c As Collection)
 Dim i As Long
 For i = 1 To c.count
 AddToSet c(i)
Next
End Sub
Public Sub GetList(c As Collection)
 Set c = olist
End Sub
Private Sub Sort()
 Dim i As Long
 Dim j As Long
 Dim min As Single
 For i = 0 To olist.count - 1
 min = 1
 For j = 1 To olist.count - i
 If val(olist(j)) < val(olist(min)) Then
 min = j
 End If
 olist.Add olist(min)
 olist.Remove min
 Next
 End Sub
Public Sub Union(x As SetClass)
 Dim i As Long
 For i = 1 To x.Cardinality
 AddToSet x.Element(i)
 Next
 'Sort
End Sub
Public Sub Intersect(x As SetClass)
 Dim i As Long
 Dim idx As Long
 i = 1
 While i <= olist.count
 If x.Contains(olist(i), idx) = 0 Then
 olist.Remove i
 i = i - 1
 End If
 i = i + 1
 Wend
 'Sort
End Sub
Private Sub Class_Initialize()
 Set olist = New Collection
End Sub
Public Function Contains(i As Variant, Optional insertpoint As Long) As Long
 Dim found As Boolean
 Dim low As Long
 Dim mid As Long
 Dim high As Long

 found = False
 high = olist.count
 low = 1
 mid = Int((high - low) / 2) + 1
 Contains = 0

 While Not found And mid >= low And mid <= high
 If olist(mid) > i Then
 high = mid - 1
 ElseIf olist(mid) < i Then
 low = mid + 1
 ElseIf olist(mid) = i Then
 found = True
 Contains = mid
 End If
 If high = low Then
 mid = low
 Else
 mid = Int((high - low) / 2) + low + 1
 End If
 Wend
 insertpoint = mid
End Function
Public Sub Difference(Y As SetClass)
 Dim i As Long
 For i = 1 To Y.Cardinality
 RemoveMember Y.Element(i)
 Next
End Sub
Public Sub XORS(Y As SetClass)
 Dim x As SetClass
 Dim Z As SetClass
 Set Z = New SetClass
 Set x = New SetClass
Z.Union Y
x.AddList olist
Z.Intersect x
x.Union Y
x.Difference Z
x.GetList olist
End Sub
Public Function SubSet(Y As SetClass) As Boolean
' returns TRUE if Y is a subset of X, otherwise returns FALSE
Dim i As Long
Dim idx As Long

i = 1
SubSet = True
If Y.Cardinality = 0 Then SubSet = False
While SubSet And i < Y.Cardinality
 If Contains(Y.Element(i), idx) <> 0 Then
 i = i + 1
 Else
 SubSet = False
 End If
Wend
End Function
Public Function Rulesubset(r As RuleClass) As Boolean
 Dim i As Long
 Dim idx As Long

 i = 1
 Rulesubset = True
 If r.Cardinality = 0 Then Rulesubset = False
 While Rulesubset And i < r.Cardinality
 If Contains(r.Element(i), idx) <> 0 Then
 i = i + 1
 Else
 Rulesubset = False
 End If
 Wend
End Function
Public Sub Compliment()
 Dim otemp As New SetClass
 Dim i As Long

 Set otemp = New SetClass
 otemp.Union Universe
For i = 1 To olist.count
 otemp.RemoveMember olist(i)
Next
Set olist = Nothing
Set olist = New Collection
For i = 1 To otemp.Cardinality
 olist.Add otemp.Element(i)
Next
oValName = "not " + oValName
Set otemp = Nothing
End Sub
Public Sub ShowMembers()
 Dim i As Long

 Debug.Print oAttName + " , " + oValName
 For i = 1 To olist.count
 Debug.Print " " + Str(olist(i))
 Next
End Sub
Public Function Equal(S As SetClass) As Boolean
 Dim eq As Boolean
 Dim i As Long

 eq = True
 If S.Cardinality <> olist.count Then
 eq = False
 End If
 i = 1
 While eq = True And i < olist.count
 If olist(i) <> S.Element(i) Then
 eq = False
 End If
 i = i + 1
 Wend
 Equal = eq
End Function
Public Function Intersects(S As SetClass) As Boolean
 Dim i As Long
 Dim idx As Long
 i = 1
 While i <= olist.count
 If S.Contains(olist(i), idx) <> 0 Then
 Intersects = True
 Exit Function
 End If
 i = i + 1
 Wend
Else
 i = i + 1
End If
Wend
End Function

A1.10 SuperSet object
Private oName As String
Private olist As Collection
Private oRelevantSets As Collection

Public Property Let Name(buf As String)
 oName = buf
End Property
Public Property Get Name() As String
 Name = oName
End Property
Public Property Get Cardinality() As Long
 Cardinality = olist.count
End Property
Public Property Get Element(i As Long) As SetClass
 If i > olist.count Or i = 0 Then
 Set Element = Nothing
 Else
 Set Element = olist(i)
 End If
End Property
Public Sub InsertSet(i As SetClass)
 Dim idx As Long
 Dim pos As Long

 pos = Contains(i.attname, i.valname, idx)
 If pos = 0 Then
 If idx > olist.count Or idx < 1 Then
 olist.Add i
 Else
 olist.Add i, , idx
 End If
 End If
End Sub
Public Sub AddToSet(attname As String, valname As String, example As Variant)
 Dim idx As Long
 Dim att As SetClass
Dim pos As Long

pos = Contains(attnname, valname, idx)
If pos = 0 Then 'add new set
 Set att = New SetClass
 att.attnname = attnname
 att.valname = valname
 att.AddToSet example
 If idx > olist.count Or idx < 1 Then
 olist.Add att
 Else
 olist.Add att, , idx
 End If
'Sort
Else 'set is already there, just add the example
 olist(pos).AddToSet example
End If
End Sub
Public Sub RemoveMember(i As SetClass)
 Dim x As Long
 'If IsEmpty(i) Then
 x = Contains(i.attnname, i.valname)
 If x <> 0 Then
 olist.Remove x
 End If
 'End If
'Sort
End Sub
Public Sub AddList(c As Collection)
 Dim i As Long
 For i = 1 To c.count
 AddToSet c(i)
 Next
End Sub
Public Sub GetList(c As Collection)
 Set c = olist
End Sub
Public Sub Sort(Optional bNumeric As Boolean)
 Dim i As Long
 Dim j As Long
 Dim min As Single
 For i = 0 To olist.count - 1
 min = 1
 If bNumeric = False Then
For j = 1 To olist.count - i
 If olist(j).attname <= olist(min).attname And olist(j).valname < olist(min).valname Then
 min = j
 End If
Next
Else
 For j = 1 To olist.count - i
 If olist(j).attname <= olist(min).attname And val(olist(j).valname) < val(olist(min).valname) Then
 min = j
 End If
 Next
End If
olist.Add olist(min)
olist.Remove min
Next
End Sub
Public Sub Union(x As SuperSet)
 Dim i As Long
 Dim pos As Long
 Dim idx As Long
 For i = 1 To x.Cardinality
 pos = Contains(x.Element(i).attname, x.Element(i).valname, idx)
 If pos = 0 Then
 If idx > olist.count Or idx < 1 Then
 olist.Add x.Element(i)
 Else
 olist.Add x.Element(i), , idx
 End If
 End If
 Next
 Sort
End Sub
Public Sub Intersect(x As SuperSet)
 Dim i As Long
 i = 1
 While i <= olist.count
 If x.Contains(olist(i)) = 0 Then
 olist.Remove i
 i = i - 1
 End If
 i = i + 1
 Wend
Private Sub Class_Initialize()
 Set olist = New Collection
End Sub

Public Function Contains(attname As String, valname As String, Optional insertpoint As Long) As Long
 Dim found As Boolean
 Dim low As Long
 Dim mid As Long
 Dim high As Long

 attname = Format(attname, "<")
 valname = Format(valname, "<")
 found = False
 high = olist.count
 low = 1
 mid = Int((high - low) / 2) + 1
 Contains = 0

 While Not found And mid >= low And mid <= high
 If olist(mid).attname > attname Then
 high = mid - 1
 ElseIf olist(mid).attname < attname Then
 low = mid + 1
 ElseIf olist(mid).attname = attname Then
 If olist(mid).valname > valname Then
 high = mid - 1
 ElseIf olist(mid).valname < valname Then
 low = mid + 1
 ElseIf olist(mid).valname = valname Then
 found = True
 Contains = mid
 End If
 End If
 End If
 If high = low Then
 mid = low
 Else
 mid = Int((high - low) / 2) + low + 1
 End If
 insertpoint = mid
End Function
Public Sub Difference(Y As SuperSet)
 Dim i As Long
 For i = 1 To Y.Cardinality
 RemoveMember Y.Element(i)
 Next
End Sub
Public Sub XORS(Y As SuperSet)
 Dim x As SuperSet
 Dim Z As SuperSet
 Set Z = New SuperSet
 Set x = New SuperSet
 Z.Union Y
 x.AddList olist
 Z.Intersect x
 x.Union Y
 x.Difference Z
 x.GetList olist
End Sub
Public Function SubSet(Y As SuperSet) As Boolean
 Dim i As Long
 i = 1
 SubSet = True
 If Y.Cardinality = 0 Then SubSet = False
 While SubSet And i < Y.Cardinality
 If Contains(Y.Element(i)) <> 0 Then
 i = i + 1
 Else
 SubSet = False
 End If
 Wend
End Function
Public Sub FindRelevantSets()
 Dim otemp As SuperSet
 Set oRelevantSets = New Collection
 For i = 1 To olist.count
 Set otemp = New SuperSet
 If olist(i).Decision = True Then
 For j = 1 To olist.count
 If i <> j And olist(i).Intersects(olist(j)) Then
 otemp.InsertSet olist(j)
 End If
 Next
 oRelevantSets.AddSet otemp
 End If
 Next
End Sub
Next
End If
 oRelevantSets.Add otemp
Next
End Sub
Public Function RelevantSets(i As Long) As SuperSet
 Set RelevantSets = oRelevantSets(i)
End Function

A1.11 FileDialog form
Option Explicit
Private objTextBox As TextBox

Private Sub Dir1_Change()
 File1.Path = Dir1.Path
End Sub

Private Sub Drive1_Change()
 Dir1.Path = Drive1.Drive
End Sub

Public Property Let FileBox(obj As TextBox)
 Set objTextBox = obj
End Property

Private Sub File1_DblClick()
 OKButton_Click
End Sub

Private Sub Form_Load()
 Drive1.Drive = "c:\"
 Dir1.Path = App.Path + "\DataFiles"
 File1.Path = App.Path + "\DataFiles"
End Sub

Private Sub OKButton_Click()
 objTextBox.Text = File1.Path + "\" + File1.FileName
 Unload FileDialog
End Sub
A1.12 Main form

Private Sub btnArcanum_Click()
 On Error GoTo 0
 Dim i As Long
 Dim x As Long
 Dim filelist As Collection
 Dim TotCoverage As Single
 Dim TotAccuracy As Single
 Dim Coverage As Single
 Dim Accuracy As Single

 SetControlVariables
 Set filelist = New Collection

 err = 0
 i = FreeFile
 Open Main.txtDataFile.Text For Input As i
 If err <> 0 Then
 err = 0
 MsgBox "Please indicate a valid data set file."
 Exit Sub
 End If

 CreateFiles Main.txtDataFile.Text, filelist, iFlag
 ProcessFiles filelist, 1
End Sub

Private Sub btnBrowse1_Click()
 Load FileDialog
 FileDialog.FileBox = txtDataFile
 FileDialog.Visible = True
 btnMLEM.Enabled = True
 btnArcanum.Enabled = True
 btnVerify.Enabled = True
End Sub

Private Sub btnBrowse2_Click()
 Load FileDialog
 FileDialog.FileBox = txtOutFile
 FileDialog.Visible = True
End Sub

Private Sub btnBrowse3_Click()
Load FileDialog
FileDialog.FileBox = txtRuleFile
FileDialog.Visible = True
End Sub

Private Sub btnMCMC_Click()
 On Error GoTo 0
 Dim i As Long

 SetControlVariables
 (clock.Enabled = True

 err = 0
 i = FreeFile
 Open Main.txtDataFile.Text For Input As i
 If err <> 0 Then
 err = 0
 MsgBox "Please indicate a valid data set file."
 Exit Sub
 End If
 BuildSetsFromFile Main.txtDataFile.Text
 MCMC
End Sub

Private Sub btnMLEM_Click()
 On Error GoTo 0
 Dim i As Long
 Dim filelist As Collection

 SetControlVariables
 clock.Enabled = True

 Set filelist = New Collection
 err = 0
 i = FreeFile
 Open Main.txtDataFile.Text For Input As i
 If err <> 0 Then
 err = 0
 MsgBox "Please indicate a valid data set file."
 Exit Sub
 End If

 CreateFiles Main.txtDataFile.Text, filelist, iFlag
 ProcessFiles filelist, 0
'BuildSetsFromFile Main.txtDataFile.Text
'InduceRules
'msg "Writing rules to file...", True
'PrintRules Main.txtOutFile.Text

'msg "Process complete.", True

clock.Enabled = False
End Sub

Private Sub btnVerify_Click()
 On Error GoTo 0
 Dim i As Long
 Dim FullReportFlag As Long

 SetControlVariables
 clock.Enabled = True

 err = 0
 i = FreeFile
 Open Main.txtDataFile.Text For Input As i
 If err <> 0 Then
 err = 0
 MsgBox "Please indicate a valid data set file."
 Exit Sub
 End If

 err = 0
 i = FreeFile
 Open Main.txtRuleFile.Text For Input As i
 If err <> 0 Then
 err = 0
 MsgBox "Please indicate a valid Rules file."
 Exit Sub
 End If

 FullReportFlag = MsgBox("Do you want FULL results (examples for each rule)?", vbYesNo)

 If FullReportFlag = 6 Then 'Display FULL results
 VerifyRules Main.txtRuleFile.Text, Main.txtDataFile.Text, 1
 Else 'Display only the rules and statistics
 VerifyRules Main.txtRuleFile.Text, Main.txtDataFile.Text, 0
End Sub
End If

clock.Enabled = False
End Sub

Private Sub clock_Timer()
 If lblRunTime.Caption = "" Then
 clocktime = Now()
 End If
 'lblRunTime.Caption = Format(val(lblRunTime.Caption) + 1, "hh:mm:ss")
 'lblRunTime.Caption = (val(lblRunTime.Caption) + 1)
 lblRunTime.Caption = Format(Now() - clocktime, "h:mm:ss")
 DoEvents
End Sub

Private Sub Form_Load()
 Dim buf As String
 Dim ans As Long
 btnMLEM.Enabled = False
 btnArcanum.Enabled = False
 buf = Dir(App.Path + "\temp\temp*")
 If buf <> "" Then
 ans = MsgBox("ARCANUM was previously interrupted. Would you like to resume where it left off?", vbYesNo)
 If ans = 6 Then
 RestoreProcess
 End If
 End If
End Sub

Private Sub txtDataFile_Change()
 txtOutFile.Text = txtDataFile.Text + ".rules" + "." + Trim(Str((val(txtPrecision.Text) * 100))) + "." + Trim(Str((val(txtRecall.Text) * 100)))
End Sub

Private Sub txtPrecision_LostFocus()
 Dim x As Single
 x = val(txtPrecision)
 If x > 1 Then

x = 1
End If
If x < 0 Then
 x = 0
End If

txtRecall = Format(1 - x, "0.00")
txtPrecision = Format(x, "0.00")
txtOutFile.Text = txtDataFile.Text + ".rules" + "." +
Trim(Str((val(txtPrecision.Text) * 100))) + "_" + Trim(Str((val(txtRecall.Text) * 100)))
End Sub

Private Sub txtRecall_LostFocus()
 Dim x As Single
 x = val(txtRecall)
 If x > 1 Then
 x = 1
 End If
 If x < 0 Then
 x = 0
 End If
 txtRecall = Format(x, "0.00")
txtPrecision = Format(1 - x, "0.00")
txtOutFile.Text = txtDataFile.Text + ".rules" + "." +
Trim(Str((val(txtPrecision.Text) * 100))) + "_" + Trim(Str((val(txtRecall.Text) * 100)))
End Sub