
Development of an

Eight Channel Waveform Generator

for Beam-forming Applications

By

John Ledford

Submitted to the graduate degree program in Electrical Engineering

and the Graduate Faculty of the University of Kansas, in partial

fulfillment of the requirements for the degree of Master of Science

in Electrical Engineering.

 Chris Allen - Chair Person

 Committee Members ____________________

 Carl Leuschen

 Sarah Seguin

 Date Defended: ____________________

 Page 2

The Thesis Committee for John Ledford certifies

that this is the approved Version of the following thesis:

Development of an

Eight Channel Waveform Generator

for Beam-forming Applications

Committee:

 Chris Allen - Chair Person

 Carl Leuschen

 Sarah Seguin

 Date Approved: ____________________

 Page 3

Acknowledgements

I wish to acknowledge my wife for encouraging me when I wanted

to be encouraged, kicking me in the pants when I needed to be

kicked, and leaving me alone at the appropriate times. You know

me better than I do myself.

To my children for jumping on my head and not letting me work.

You are far more important than work or school. Thanks for helping

remind me by endlessly dragging me away to play.

To Dr. Chris Allen, whose classes inspired me. Radar was a field I

never thought I would be interested in, but your teachings were

fascinating and inspiring, and it’s your fault I sought to work with

you further.

To Dr. Carl Leuschen for helping me figure it out. It has been quite

a pleasure working with you on this design, even when you want

things I don’t agree with or more to the point want to do.

To Dr. Sarah Seguin for the promise of a good working future, and

someone else to help with the EMI gospel.

To Dr. Prasad Gogineni for the years of work that led to this center

and it’s great mission. Also for letting me design this project as part

of the UAV radar.

 Page 4

Abstract

An eight-channel direct-digital waveform synthesizer has been

developed to enable digital beam steering of the transmitted

waveform. Built around the Analog Devices AD9910 DDS chip, this

eight-channel waveform generator, when used with an eight

element linear antenna array, enables the illuminating radiation

pattern to be digitally modified on a pulse-to-pulse basis if desired.

Developed in support of airborne radar depth-sounding of the polar

ice sheets and outlet glaciers, two key benefits of this capability

provides include improved surface clutter suppression and more

efficient off-nadir illumination for side-looking imaging of the ice-

bed interface.

Adjusting the starting frequency and phase of the waveform

produced by each DDS is analogous to introducing an incremental

time delay between otherwise identical chirp waveforms, thus

providing the required beam-steering control. Additionally, the

AD9910, with a 1-GHz maximum clock frequency, provides

amplitude control, both intra-waveform and inter-waveform, for

time-sidelobe management and radiation-sidelobe management.

An FPGA is used for the management of up to 16 waveforms, zero-

pi phase modulation on a per waveform basis, system

communication over a serial port, and loading the DDS

configuration settings on each system trigger. The board provides

matched clock and sync inputs in order to guarantee phase

alignment across the multiple DDS chips.

 Page 5

Table of Contents

1 Introduction ... 11

2 Theory... 13

2.1 Beam-forming ... 13

2.2 DDS Theory .. 14

3 Implementation .. 17

3.1 System Specifics.. 17

3.1.1 Packaging.. 17

3.1.2 System Clock... 18

3.1.3 Timing Requirements .. 19

3.1.4 Waveforms UAV Style ... 19

3.1.5 Play-List UAV Style ... 20

3.1.6 Location in UAV Radar System 21

3.2 Board Realized .. 22

3.2.1 Board Level Block Diagram 23

3.2.2 PCB Parameters ... 24

3.2.3 Signal Integrity .. 26

3.2.4 Power Sequencing Requirements 28

3.3 Parameters / Specs .. 28

3.4 DDS Information.. 30

3.4.1 Chip Selection.. 30

3.4.2 Ramp Generation ... 31

3.4.3 Amplitude Shaping ... 32

3.4.4 Output Level.. 32

3.5 Timing Considerations .. 33

3.5.1 Clock / Sync Distribution Requirements 33

3.5.2 Phase Alignment / Matched Length Routing.............. 35

 Page 6

3.5.3 Timing Buffer Issue .. 37

4 Experimental Results ... 38

4.1 Signal Integrity.. 38

4.2 Ref_Clk and Sync_In Alignment 43

4.3 Amplitude Shaping... 46

4.4 Amplitude Settings... 49

4.5 Chirp Results – Scope... 49

4.6 Chirp Results – Spectrum Analyzer 50

4.7 Single Frequency Output... 53

4.8 Chirp Results – Data Collection and Processing............... 54

4.9 Pulse Compressed Results ... 55

4.10 Fresnel Ripple Comparison .. 57

4.11 Beam-forming Results .. 59

4.12 Per-Waveform Loading Time.. 64

5 Conclusions and Future Work .. 66

5.1 Conclusions... 66

5.2 Lessons learned... 66

5.3 Future Work.. 69

6 References ... 69

7 Appendix A: User Manual.. 70

7.1 Overview .. 70

7.2 Board Architecture ... 72

7.3 FPGA Architecture .. 74

7.4 Software Command & Configuration Language 80

7.4.1 Serial Port Setup .. 81

7.4.2 Stream Writes vs. Individual Byte Read/Writes 81

7.4.3 Packet Format.. 82

7.4.4 Reading / Writing Individual Registers 82

 Page 7

7.4.5 Stream Writes.. 83

7.5 Configuration .. 83

7.5.1 Load Preference File into Control Database............... 83

7.5.2 Waveform Generator Configuration 84

7.5.3 Internal Timing Generator Configuration 84

7.5.4 Resetting the DDS chips .. 85

7.5.5 Writing Static Registers in the DDS Chips................. 85

7.5.6 Stream Loading the Dual Port Patterns RAM 88

7.5.7 Go!... 89

7.6 External Device Support ... 89

7.7 Appendix A: Memory Map ... 90

7.7.1 Summary Table.. 90

7.7.2 0x31 – Scratch / Reflection Register........................ 91

7.7.3 0x32 – FPGA Revision Major / Middle 91

7.7.4 0x33 – FPGA Revision Minor................................... 91

7.7.5 0x34 – Wavegen Configuration............................... 91

7.7.6 0x35 – Internal PRF Generator Setting - Upper 92

7.7.7 0x36 – Internal PRF Generator Setting - Middle 92

7.7.8 0x37 – Internal PRF Generator Setting - Lower 93

7.7.9 0x38 – Internal EPRI Generator Setting - Upper........ 93

7.7.10 0x39 – Internal EPRI Generator Setting - Lower........ 93

7.7.11 0x3A – IO Update Time - Upper.............................. 94

7.7.12 0x3B – IO Update Time - Lower.............................. 94

7.7.13 0x3C – Temp Sensor Reading - Upper 94

7.7.14 0x3D – Temp Sensor Reading - Lower 95

7.7.15 0x3E – Force Single IO Update Trigger 95

7.7.16 0x40 – DDS Configuration 95

7.7.17 0x41 – DDS CS_N Values 97

 Page 8

7.7.18 0x43 – DDS Byte Send.. 97

7.7.19 0x4B – Reset Serial Pattern RAM Address Counter 98

7.7.20 0x4C – Write Byte Serial Pattern RAM 98

7.7.21 0x50-0x93 Waveform Configuration Values 98

8 Appendix B: Software Operating Routines 101

8.1 serialDriver.c... 101

8.1.1 Higher Level Routines ... 101

8.1.2 Base Routines .. 102

8.2 dds_8ch.c ... 102

8.2.1 int setTimeGenParam() 103

8.2.2 int timeGenCtrlUpdate() 103

8.2.3 int configWfs() ... 103

8.2.4 int initDDS() .. 104

9 Appendix C: FPGA Code ... 106

9.1 accessory_stuff.v ... 106

9.2 dds_8ch_wfg.ucf.. 106

9.3 dds_8ch_wfg.v .. 106

9.4 dds_controller.v... 107

9.5 debug_leds.v... 107

9.6 int_timing_generator.v ... 108

9.7 serial_section.v ... 108

9.8 state_processing.v ... 108

9.9 uart.v... 109

10 Appendix D: Schematics... 110

 Page 9

Table of Figures

Figure 1: Array Beam-forming .. 14

Figure 2: Basic DDS .. 15

Figure 3: Digital Ramp in a DDS.. 16

Figure 4: UAV Radar Solid Model ... 18

Figure 5: Example of a Simplified UAV Waveform Database 20

Figure 6: UAV Radar Play List Play Order.................................. 21

Figure 7: A High Level Block Diagram for the UAV Radar 22

Figure 8: Photograph of Final Board... 23

Figure 9: Board Level Block Diagram 24

Figure 10: 8 Layer Board Stack-up .. 25

Figure 11: High Speed Signal Transmission and Termination....... 27

Figure 12: AD9910 Functional Block Diagram (from AD9910

Datasheet)... 31

Figure 13: AD9910 Detailed Block Diagram (from AD9910

datasheet) ... 33

Figure 14: Timing Architecture... 35

Figure 15: Matched Length Routing ... 36

Figure 16: AD9910 Sync Input (from AD9910 Datasheet) 38

Figure 17: Signal Integrity Test Setup...................................... 40

Figure 18: Ref_Clk Input Signal Integrity Results....................... 41

Figure 19: Sync_In Input Signal Integrity Results...................... 41

Figure 20: Sync_Clk Input to FPGA Signal Integrity Results 42

Figure 21: Repeater Input Signal Integrity Results..................... 43

Figure 22: Ref_Clk Alignment Results 45

Figure 23: Sync_In Alignment Results...................................... 46

Figure 24: DDS Outputs without Amplitude Shaping 48

 Page 10

Figure 25: DDS Outputs with Amplitude Shaping 48

Figure 26: Chirp Measured By Scope 50

Figure 27: DDS Output Direct Into Spectrum Analyzer, Wide

Spectrum... 51

Figure 28: DDS Output Direct Into Spectrum Analyzer, Zoomed In

.. 52

Figure 29: DDS Output Into Spectrum Analyzer Through SAW Filter,

Zoomed In... 53

Figure 30: Single Frequency Output Spectrum 54

Figure 31: Chirp Results Measured with UAV Radar DAQ............. 55

Figure 32: Ideal vs. Ideal Waveform Pulse Compression 56

Figure 33: Ideal vs. Data Waveform Pulse Compression 57

Figure 34: Fresnel Ripple Comparison 58

Figure 35: 195 MHz Nadir Beam, No Window 60

Figure 36: 195 MHz Nadir Beam, Hanning Window 61

Figure 37: 195 MHz 10 Degree Beam, No Window 62

Figure 38: 195 MHz 10 Degree Beam, Hanning Window 63

Figure 39: Serial Pattern Load Time... 65

Figure 40: Board Architecture ... 73

Figure 41: FPGA High-Level Architecture 75

Figure 42: Byte-banged Bypass Logic Block Diagram 76

Figure 43: Block Logic of Regular Playback Mode....................... 77

Figure 44: Details of RAM Feeding Serial Lines 79

Figure 45: Sample Timing Diagram from UAV Radar 80

 Page 11

1 Introduction

Ice sheets are melting and the seas are rising [1]. Rising seas affect

the people in low lying areas. Regardless of whether this is man-

made or a normal part of the earth’s cycle, humans need to predict

the sea level rise, and the impacts of climate changes on the earth.

We need to understand how the ice interacts with the bed, how

much ice there is, and how it moves across the underlying ground.

Scientists are working on the answers to these questions, but lack

the data necessary to have the best models possible. The Center for

the Remote Sensing of Ice Sheets (CReSIS) was founded with the

mission of making the ice measurements, and providing the

scientists these data which are necessary to help answer these

questions.

Modern ice-sounding radars have pushed the technology envelope.

What was impossible years ago is now done routinely. These radars

are ultra sensitive, high performance instruments, but the

measuring of ice in high clutter areas is a very demanding task.

Part of the answer is to use multiple beams that allow for

illuminating only the area of interest in side looking radar and will

reduce clutter effects.

To make radar illumination beams you need antennas, and radiated

RF energy in special patterns. There are many ways to do this, but

the simplest is to use a multi-channel waveform generator. By

using one waveform generator channel per antenna element, you

 Page 12

can digitally program in the special patterns needed to steer the

beams in the directions desired.

This thesis is about an eight channel waveform generator. At the

heart of each generator channel is an Analog Devices AD9910

Direct Digital Synthesis (DDS) chip. All eight channels are

synchronous with outputs that can be programmed to provide the

beam-forming necessary for the Un-crewed Aerial Vehicle (UAV)

radar.

There are also plans to use this board in many of CReSIS’ future

research work.

 Page 13

2 Theory

To meet the waveform generation needs of the UAV radar, we take

a chip from Analog Devices, and wrap all of the timing support and

communications needed to support these chips. By using eight of

these waveform generating chips, we can have the independently

programmed signals that when fed into the RF circuitry and

antennas form beams that illuminate in the desired direction.

2.1 Beam-forming

Beam-forming is the process of using multiple transmit elements to

illuminate some specific target or direction with electromagnetic

energy. By using multiple elements and controlling the amplitude

and phase of each element, constructive and destructive

interference add up such that the remaining RF energy “beam” is

pointing in the desired direction.

To create the different signals, a time-shift (Δt) is added to each

element to delay the signals by fixed amounts. This time-shift

delays the signals in time, and thus when it is launched out of the

antenna it creates the desired RF energy pattern in the air. In this

board, all chips are triggered at the same time. Each waveform

generator has it’s own start frequency and start phase setting, so

doing beam-forming is a matter of correctly setting the start

frequency and phase setting in each DDS chip. These settings can

be updated on a per waveform basis, so each waveform can

produce a different radiation pattern. Additionally, an amplitude

 Page 14

setting can be set for each DDS as a static parameter, letting the

radar operator adjust any weighting windows across the array.

Figure 1 shows eight elements with time-shifts added to create the

wave-front at an angle relative to nadir.

1 2 3 4 5 6 7 8

Θ

Δt

Wav
efr

on
t o

f E
qu

al
Freq

ue
nc

y

an
d P

ha
se

Δt = f(Θ)

2Δt3Δt4Δt5Δt6Δt

“0”

7Δt

Signals are advanced by a multiple of Δt such that they arrive
at the target with the same frequency and phase

Figure 1: Array Beam-forming

2.2 DDS Theory

Direct Digital Synthesis (DDS) uses a high speed clock and digital

logic to create the digital codes necessary to make sine waves and

 Page 15

feeds them to an appropriate D/A converter. The most basic DDS is

shown below in Figure 2.

Figure 2: Basic DDS

Frequency Tuning Word (FTW) is the place you program your

desired output frequency. This setting dictates how fast you step

through the lookup tables, by means of adding the current phase,

to the tuning word to determine what the next phase is. This is

done with a digital adder, and a phase accumulator (basically a

latch).

The output of the phase accumulator is then passed through a sine-

wave look up table that converts phase to a specific output value.

The output of this feeds a D/A which translates the signal into the

analog domain.

If you want a simple frequency, then the FTW is the only setting

you need. However, in radar applications we desire a chirp.

Basically we need to ramp the frequency tuning word. We need a

start word (FTWstart), a stop word (FTWstop), how often we update

 Page 16

the word (ramp rate), how big an update step we want (step size),

and what we desire the starting phase to be.

By using a digital ramp generator, we can feed all of these signals

into it, and it will output the frequency tuning word in the desired

ramp. The output frequency tuning word vs. time is shown below in

Figure 3.

Update
PeriodFTWstart

FTWstop

Step Size

Trigger

Time

Fr
eq

ue
nc

y
Tu

ni
ng

 W
or

d

Ramp Rate

Figure 3: Digital Ramp in a DDS

In a radar application, you set the update period to be at the

smallest value possible to get the smoothest transitions, and then

set the step size so you reach FTWstop at the desired chirp time

(e.g. 10 us).

 Page 17

The phase accumulator is always reset to the same value, the

Phase Offset Word (POW) setting, when the trigger is applied. This

allows us to have coherent outputs, and a programmed starting

phase (required for zero/pi and beam-steering).

3 Implementation

This waveform generator was designed specifically for the UAV

radar and has the flexibility to be used for other applications. We

will focus here on the UAV specific requirements.

To design the UAV radar waveform generator, information about

the system is given in section 3.1. There is a discussion of how the

board was actually implemented in section 3.2. A complete

parameter list is given in section 3.3. Information on the DDS chips

selected is in section 3.4. A discussion on timing and

synchronization is given in section 3.5

All numbers given are typical. When the radar is used over a range

of settings, those ranges and settings are given. It is beyond the

scope of this document to re-create all possible settings or future

expansion modes.

3.1 System Specifics

3.1.1 Packaging

The waveform generator was designed to be part of an integrated

radar system as shown by the solid model that was used to design

 Page 18

everything at once in Figure 4. The red board is the waveform

generator.

Figure 4: UAV Radar Solid Model

The waveform generator was designed to be as small as possible,

mount inside the UAV radar package, and to mount on a simple flat

plate for other future uses.

3.1.2 System Clock

The clock in the UAV radar is derived by dividing a 667 MHz SAW

oscillator by 6, which gives a 111.16 MHz clock frequency. The

frequency on this clock is so close to 111 MHz that we say 111 MHz

 Page 19

and use 9 ns for the period. Any time-based requirements should

use the actual number.

3.1.3 Timing Requirements

This waveform generator has to live within the confines of radars,

and thus has very tight timing requirements, both in the reload

speed and the frequency of triggering.

The UAV Radar operates with a Pulse Repetition Frequency (PRF),

or how often the radar makes a measurement, of up to 12.5 kHz.

This sets a cycle period (PRI) minimum of 80 μs.

When the PRF trigger occurs but before the waveform trigger, the

FPGA has to program all of the waveform specific parameters into

the chip. It takes about 10.4 μs to load all of the information into

the DDS chips. See Appendix A: User Manual for more information

on programming and reprogramming.

Therefore the minimum waveform trigger is 10.4 μs after the PRF

trigger.

3.1.4 Waveforms UAV Style

This waveform generator supports 16 waveforms. It supports a

programmable number of presums per waveform. Zero/Pi is

supported on a per waveform basis. A simplified example of a UAV

Waveform Database is shown in Figure 5.

 Page 20

1
2

WFM #

3

16

4
5
6
7
8
9
10
11
12
13
14
15

Tx Start Amp
Enable

x µs

0/π

On/Off

Amp
Disable

x µs On/Off
x µs On/Off
x µs On/Off
x µs On/Off
x µs On/Off
x µs On/Off
x µs On/Off
x µs On/Off
x µs On/Off
x µs On/Off
x µs On/Off
x µs On/Off
x µs On/Off
x µs On/Off
x µs On/Off

Pad
x dB

Pad1 Pad2
Rx Channel 1

x dB x dB ...
...
...

Pad1 Pad2
Rx Channel 8

x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB
x dBx dB x dB ... x dB x dB

Tx Ch 1
Pad
x dB
x dB
x dB
x dB
x dB
x dB
x dB
x dB
x dB
x dB
x dB
x dB
x dB
x dB
x dB
x dB

Tx Ch 8

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

#
Presums
1-1024
1-1024
1-1024
1-1024
1-1024
1-1024
1-1024
1-1024
1-1024
1-1024
1-1024
1-1024
1-1024
1-1024
1-1024
1-1024

x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs

x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs
x µs

Figure 5: Example of a Simplified UAV Waveform Database

3.1.5 Play-List UAV Style

In the UAV radar, we desire to have the ability to set the number of

times a given waveform is played. For example, a noise

measurement is useful and doesn’t want the averaging effect of

presuming. There is also the case that a surface measurement has

a high enough return signal that the deep averaging isn’t needed to

see the returns.

This waveform generator will be downloaded with the number of

presums per waveform, trigger delay values, DDS chip settings for

each waveform, etc.

The play-order for the UAV radar will be waveform 1, then 2, then

3, and will operate in a burst mode, with a presum setting for each

 Page 21

waveform, and zero/pi enabled on a per-waveform basis. So, for

example we desire to run one waveform at nadir (straight down) to

gather noise data with one presum (no transmit signal), then eight

nadir deep sounding pulses, followed by eight left pointing sounding

pulses, followed by eight right pointing sounding pulses.

Figure 6 shows a smaller example of one down, four down, four

left, and four right.

1 2 3 4

W
F

#
D

ire
ct

io
n

P

re
su

m
s

444333222

Figure 6: UAV Radar Play List Play Order

3.1.6 Location in UAV Radar System

The waveform generator is part of a much larger radar system. A

high level block diagram of the radar system is shown in Figure 7.

 Page 22

T/R
Module

T/R
Module

T/R
Module

T/R
Module

T/R
Module

T/R
Module

T/R
Module

T/R
Module

Tx R
x

Serial RS-232 PCI

Tx R
x

Tx R
x

Tx R
x

Tx R
x

Tx R
x

Tx R
x

Tx R
x

8 Tx 8 Rx

8 Channel
DAQ

Radar
CPU

Waveform
Generator

Timing &
Control

Analog
Conditioning

Analog
Conditioning

GPS

UAV Com
T/R Module Contains:

Power Amp
LNA
T/R Switch
Analog Filtering
RF Blanking
Loopback Path
3 Temp Sensors
3 Axis Accelerometer

This Board

dGPS

Figure 7: A High Level Block Diagram for the UAV Radar

3.2 Board Realized

A picture of the finished board is shown below in Figure 8.

A discussion of how to program the board is attached in Appendix

A: User Manual.

Radar operating software routines are described in Appendix B:

Software Operating Routines.

FPGA code is described in. Appendix C: FPGA Code

Schematics are described in Appendix D: Schematics.

 Page 23

Figure 8: Photograph of Final Board

3.2.1 Board Level Block Diagram

A simplified block diagram of the board is shown below in Figure 9.

The DDS chips have some common control lines, and some that are

individual per channel. The board is set up to receive timing signals

from the radar timing unit, command and configuration from the

radar CPU, and provides some debug and expansion ports. There is

a local oscillator for house-keeping functions, and status LEDs.

 Page 24

FPGA

PRF Trigger

EPRI Reset

Sample Clock

100 MHz
Local

Oscillator

Voltage
Regulation and

Monitoring

Serial Port
RS-232

Daughterboard
Header

DDS1

Board Status
LEDs

C
on

tro
l &

 T
im

in
g

&
 S

er
ia

l

DDS2

DDS3

DDS4

DDS5

DDS6

DDS7

DDS8

SM
A

 O
ut

pu
ts

 to
 A

na
lo

g
C

on
di

tio
ni

ng

Figure 9: Board Level Block Diagram

3.2.2 PCB Parameters

With the speeds of the clocks (222 MHz in the case of Sync_Clk),

and critical phase/line length matched lines, the use of high speed

design rules was extensive. All clocks and sync lines were laid out

first, and then other components were fit around those lines. All

ref-clocks and syncs into the DDS were phase matched to the

resolution of the PCB tool (< 1 μm). Single ended signals use 50

ohm traces. Differential signals use 100 ohm differential pairs.

 Page 25

The circuit board was an 8 layer board with the stack-up given in

Figure 10. The high speed traces (called RF in the figure because of

the very high spectral content of the sharp edges) were primarily

kept to layers 1 & 3, while some less critical lines were put on Layer

5. General control lines were then routed wherever they could fit.

Figure 10: 8 Layer Board Stack-up

The board stack-up in Figure 10 and the trace widths for the

desired impedances were calculated using an impedance calculator

tool, and working with the PCB vendor (Hughes Circuits, CA).

The board was fabricated and tested. Calculated and measured

impedance results are given in Table 1. The measured results were

provided by the PCB vendor at the time of fabrication.

 Page 26

Table 1: Impedance Calculated and Factory Test Results

Layer 50 Ohm

Width

50 Ohm

Measured

100 Ohm

Width

100 Ohm

Measured

1 7 mil 55 Ω 5/5 mil 105 Ω

3 8 mil 53 Ω 5/5 mil 100 Ω

5 6 mil 53 Ω N/A N/A

8 7 mil 55 Ω N/A N/A

In setting the board dimensions, an effort was made to make this

board adaptable to a future 6U CPCI form factor. The layout was

started with a 6U PCB outline, and arranged such that the FPGA and

DDS and most critical routing wouldn’t change. It is expected the

auxiliary and debug circuitry would be edited and removed, so that

was placed where the PCI bridge chip would fall. The layout was

then tailored to be stand-alone as it will be used in the UAV radar,

and designed to be standoff mounted in a 1U chassis.

The board dissipates 8.5 W of power. All high-power dissipation

parts are heat-slugged and make generous use of heat conducting

vias into the multiple ground planes for heat spreading. The board

has run for months on the bench without overheating, so no special

cooling needs exist besides ambient temperature control.

3.2.3 Signal Integrity

As eluded to in section 3.2.2, there are high speed signals and

controlled impedance traces. These signals also need correct

terminations. Figure 11 gives the termination impedances planned.

 Page 27

For 100 Ω differential pairs, the termination is simple, at the load

end put a 100 Ω resistor across the pair, as close to the chip as

possible.

In the use of single ended, direct point to point traces, it’s easiest

to use source termination and leave the load end open. This will

create a reflection off the open end of the line, but that reflection is

absorbed by the combination resistor and the chip’s output

impedance. This requires you know the output impedance, and

neither the FPGA nor AD9910 spec this parameter. As such, a

generic 24.9 Ω resistor is going to be used as the first pass guess.

Section 4.1 will measure and tune these resistors if necessary.

Figure 11: High Speed Signal Transmission and Termination

 Page 28

Additionally, careful attention was paid to bypass capacitor

selection. For all chips requiring high frequency energy content,

multiple capacitors were used. For the highest frequency content 10

nF 0402 sized caps were placed right beside the pin. Beside that the

0.1 uF 0603 sized cap, and beside that the 1 uF 0805 part.

3.2.4 Power Sequencing Requirements

The AD9910 does not list power sequencing requirements (Table 2,

AD9910 Datasheet, and application note AN-932).

The Xilinx Spartan 3 specifically states there is no requirement on

power supply sequencing order.

As such, there is no order or timing requirement on the +5V to

+3.3V application.

3.3 Parameters / Specs

Typical Operating = All 8 channels active @ 12.5 kHz PRF.

Table 2: Product Specifications

Parameter Specification

Sample Clock Input 111.167 MHz, Sine Input,

Pin > -10 dBm & < +10 dBm

PRF Trigger Input 9 ns, Synchronous to Sample Clock

> 1 clock period

 Page 29

EPRI Reset Input 9 ns, Synchronous to Sample Clock

> 1 clock period

Serial Port Settings 115.2 Kbaud, 8-N-1

DDS Sample Clock 889.3 MHz

DDS Output Frequency

Range

0 to 350 MHz

DDS Chirp Rate Programmable

DDS Output D/A # Bits 14 for frequency synthesis

8 for amplitude control

DDS Adjustment Range 1.088292 mVrms/LSB

DDS Power Output +4.5 dBm Maximum

-7.1 dBm Minimum

Output Signal Chirp Rate 4ns Minimum Update Rate

Maximum is almost infinite

Output Chirp Durations Programmable

Amplitude shaping

resolution

214 of programmed output power

Number of Waveforms

Supported

16

Number of Presums per

Waveform

Up to 212 = 4096

Typical Programming Time

On radar start

9 s

Typical Programming Time

Per waveform trigger

10.4 μs

Board Size 9.2” Wide x 5.845” Deep x 0.5” Tall

Board Weight 200 grams

 Page 30

Power Dissipation 8.5 Watts

Humidity 0 to 100% (if conformal coated)

Voltage Inputs

5V Range

5V Typical Current

3.3V Range

3.3V Typical Current

5 V +/- 5%

250 mA

3.3 V +/- 5%

2.2 A

3.4 DDS Information

3.4.1 Chip Selection

This board was built around the AD9910 DDS from Analog Devices.

This chips feature set allowed for simple serial programming, no

high speed interfaces, and allowed for amplitude shaping in real

time. Figure 12 from the AD9910 datasheet shows the functional

block diagram for the AD9910.

 Page 31

Figure 12: AD9910 Functional Block Diagram (from AD9910 Datasheet)

3.4.2 Ramp Generation

In this design we use the digital ramp generator (AD9910 datasheet

pg 27) to generate our chirps, shown in Figure 12 as the linear

ramp generator. This function is programmed through the Digital

Ramp Limit Register (0x0B) which sets the upper and lower limit of

the ramp (i.e. frequency start and stop points), the Digital Ramp

Step Size Register (0x0C) sets the frequency granularity for each

step, and the Digital Ramp Rate register (0x0D) which sets how

often to update the ramp. We will use these settings to generate

chirps from 180 to 210 MHz, and with programmable duration

pulses.

 Page 32

3.4.3 Amplitude Shaping

This design uses the internal 1K RAM for shaping the output

waveform envelope.

It is possible to compensate for system dependent amplitude errors

and it is planned for the UAV radar development. The RAM control

parameters are in the Profile 0 RAM register (0x0E). This profile

register controls the start address, the stop address, the update

rate, and the type of ramp. We will set these parameters to use

most of the RAM for amplitude shaping for the shortest pulse. We

will then update the rate register if we use longer pulses to update

less often so the amplitude envelope matches the system response

at that frequency. This compensation is not used in this thesis

because it requires signal analysis of the system and it is beyond

the scope of this thesis.

For this thesis, it will be shown you can load the RAM with any

arbitrary points and thus this idea can be extended with the proper

use of Matlab to compensate.

3.4.4 Output Level

The RAM from section 3.4.3 only controls the shape in the digital

domain, and internally the signals are at the maximum signal level

possible. The digital code of the signal is then sent through the

output DAC, but the actual output power is set by an 8 bit

 Page 33

“Auxiliary DAC”, as shown in Figure 13 (from the AD9910

datasheet). This Auxiliary DAC register (0x03) controls the output

amplitude in a linear fashion. See section 4.4 for the levels and test

results.

Figure 13: AD9910 Detailed Block Diagram (from AD9910 datasheet)

3.5 Timing Considerations

3.5.1 Clock / Sync Distribution Requirements

Beam-forming in radar has critical timing requirements. Careful

consideration was given on how to synchronize multiple waveform

generators to put out very stable waveforms.

 Page 34

One major issue was guaranteeing a repeatable synchronization

between all eight DDS chips. Internal to the AD9910 is a PLL that

will multiply up the reference clock to approximately 889.3 MHz.

This multiplied clock is called Sys_Clk inside of the DDS. In this

design we multiply our 55.5 MHz reference clock (111.167 / 2) up

by 16x. This however allows for a 1 of 16 unknown in timing, i.e.

the waveform can start in one of 16 positions.

Circuitry inside the AD9910 resolves this ambiguity by using the

Sys_Clk to edge detect the Sync_In signal and align the Sys_Clk to

a known phase with respect to the Sync_In. Therefore, if you apply

the exact same Ref_Clk and Sync_In to every chip, you can have all

eight DDS’s perfectly aligned on their internal Sys_Clk.

The timing architecture and clock frequencies are shown below in

Figure 14.

 Page 35

PRF Trigger

Sample Clock

Sync_In[x]
55.583 MHz

Ref_Clk[x]
55.583 MHz111.167 MHz

Div
2

x16
PLL

Sys_Clk
889.3 MHz

Div
4

Sync_Clk **
222.3 MHz

SW
 P

ro
gr

am
m

ed

D
el

ay
PR

F_
D

el
ay

Edge Detect
IO_Update[x]

DDS “Trigger”

Sync
Circuitry

Se
ria

l C
irc

ui
ts

SDIO[x]
SCLK[x]
CS_N[x]

AD9910 DDS[x]Spartan 3 FPGA

** Sync_Clk is only
routed from DDS1 to
FPGA. DDS2-8 are

identical and not
routed.

[x] = per channel
SN

65
LV

D
S1

17
D

G
G

2:
16

 B
uf

fe
r

x8

55.583 MHz

(~28 MHz Effective)

Figure 14: Timing Architecture

3.5.2 Phase Alignment / Matched Length

Routing

One requirement critical to the DDS PLL alignment is that the

Ref_Clk and Sync_In be phase aligned as they arrive at the DDS

inputs. To do this requires eight precisely matched copies of the

signal, routed with high speed design rules.

This was accomplished on this board by routing from the FPGA to a

dual 1:8 buffer (SN65LVDS117DGG) designed to route a pair of

signals to eight destination chips. The absolute lengths do not

matter in this design, so long as the Ref_Clk and Sync_In to the

 Page 36

buffer are matched, and the sixteen outputs are matched. Also, the

DDS Trigger and IO_Update have to be phase matched into the

DDS chips, and have to be edge aligned and synchronous to the

Sync_Clk that the DDS returns to the FPGA. To accomplish this, all

IO_Update lines are also length matched.

Actual lengths are shown below in Figure 15.

Sync_In[1-8]

Ref_Clk[1-8]

IO_Update[1-8]

S
pa

rta
n

3
FP

G
A S

N
65

LV
D

S
11

7D
G

G
2:

16
 B

uf
fe

r

199 mm

174 mm

174 mm

Ref_Clk_FPGA

Sync_In_FPGA

AD9910 DDS[x]

x8

Sync_Clk 96 mm

99 mm

99 mm

Figure 15: Matched Length Routing

 Page 37

3.5.3 Timing Buffer Issue

The SN65LVDS117 distribution buffer could potentially have too

much skew since the output is listed as 0.5 ns maximum output

skew. This is a large percentage of the 1 ns clock of the DDS chip.

There are several factors that make it acceptable. First, it’s a fixed

skew, so it can be calibrated out along with any mismatches in

cable lengths, etc. Since we can calibrate out any fixed skews, the

only thing required is that the Sync_In and Ref_Clk match each

other.

The AD9910 has an input delay line on the Sync_In as shown below

in Figure 16 (from the AD9910 datasheet). By varying this setting,

the Sync_In clock can be moved in 150 ps steps, with a total

adjustment range of 4.8 ns. Thus, no matter what the Ref_Clk skew

the Sync_In can be made to match it. This only leaves a fixed offset

to calibrate out.

 Page 38

Figure 16: AD9910 Sync Input (from AD9910 Datasheet)

The only other concern is temperature dependence that changes

the delay through the buffer. All delays change the same amount

with temperature, thus maintaining the calibration. The absolute

delay from trigger to waveform output changes a small amount

over temperature, but is negligible in the system.

4 Experimental Results

4.1 Signal Integrity

There are signals from 28 MHz to 222 MHz on this board. Signal

integrity is critical. The rise time of the fastest signal is on the order

 Page 39

of 500ps, which gives a critical bandwidth of the signal from DC to

800 MHz.

Because of the high bandwidth requirements, controlled

impedances and terminations were used on this board. Table 1

gives the planned and measured impedances of the board itself.

Section 3.2.3 discusses the planned terminations.

Experimental results showed these resistors are adequate. Some

ringing and overshoot exists on the LVDS lines, but is within the

required margin of 50 mV. The series terminated also stayed well

above the 2 V required Vin High, and below the 0.8 V Vin Low. The

exception was the Sync_Clk which had a Vin Low of about 0.8 V, so

a PCI input standard was used which required Vin Low to be below

1.2 V.

The test setup for measuring the signal integrity involved the use of

a 500 MHz Bandwidth, 2.5 GSa/s Tektronix MSO4054 scope with a

500 MHz input scope probe.

Measuring high accuracy signal integrity is tricky, so Figure 17

shows the test setup for measuring the 100 Ω differential

termination resistor. The same setup is used for the single ended

traces, but you measure at the load pin i.e. the open circuit side of

the trace.

 Page 40

R
az

or
 K

ni
fe

Figure 17: Signal Integrity Test Setup

It is critical to use a high speed scope, and a high bandwidth probe.

The ground loop on the test probe must be as small as possible, so

the probe should use the short lead option and use a ground as

close to the measurement point as possible. By using a razor knife,

you get the minimum possible ground loop, and the knife tip is

guaranteed to penetrate the surface oxidation, giving a really good

connection.

The Ref_Clk and Sync_In inputs to the AD9910 are LVDS.

Measurement results for Ref_Clk are shown in Figure 18. The left

half shows both signals with regular ground probe leads. You see

clearly that the signals are nicely shaped and stay out of the

minimum voltage levels required (as shown by the horizontal

markers). The right half uses the knife probe technique on one

signal (the other is the same and so not shown). The reflections are

 Page 41

seen more clearly. The horizontal cursors are set to 100 mV which

is twice the minimum required differential input voltage. The

reflections stay well clear of this minimum requirement. Figure 19

shows the same measurements for Sync_In on the AD9910.

True and Complement True Only

Regular Ground on Scope Probe Knife Technique

Figure 18: Ref_Clk Input Signal Integrity Results

Figure 19: Sync_In Input Signal Integrity Results

 Page 42

Sync_Clk is output from the AD9910 and is an input to the FPGA.

Using the knife technique, the results are shown in Figure 20. The

horizontal cursors are set for the limits of a TTL input, and you can

see the signal clearly goes over and stays over the limits.

Figure 20: Sync_Clk Input to FPGA Signal Integrity Results

On a second board with similar Sync_Clk levels, the low voltage

was not sufficiently below the TTL threshold of 0.8 V. The input

buffer for this chip was changed to a PCI input standard which

raised the lower threshold to 1.2 V and left the upper threshold

alone. This worked, and is more reliable for all boards.

The Ref_Clk and Sync_In are sourced from the FPGA as TTL, and

must go into the input of the repeater correctly. Figure 21 has

horizontal cursors set at four times the required minimum voltage.

Because one input is a TTL signal, and there are LVDS input buffers,

 Page 43

the signal goes well above the top cursor and well below the bottom

one. Clearly, the minimum signal levels are easily met and have a

lot of margin.

Figure 21: Repeater Input Signal Integrity Results

4.2 Ref_Clk and Sync_In Alignment

Section 3.5.2 discussed the requirements for phase alignment

matching of the Ref_Clk and Sync_In signals to the DDS.

To measure this alignment, the scope was set to trigger on the PRF

trigger, which is phase synchronous to both of these signals. Then a

500 MHz bandwidth scope probe was used with a 500 MHz

Bandwidth, 2.5 GSa/s Tektronix MSO4054 scope. The scope probe

was moved to identical points on each DDS chip, specifically the _P

line of the differential pair, at the termination resistors beside the

 Page 44

DDS chips. The results are then saved to eight data files. This test

setup was used for both Ref_Clk and Sync_In.

These files were loaded into Matlab, and plotted on the same plot,

zooming in to show the rising edge (these are LVDS signals). Each

horizontal bin is 400ps.

The results for Ref_Clk are shown below in Figure 22. The results

for Sync_In are shown in Figure 23. In both cases there is a skew

maximum of about 320ps, which is acceptable and within the

measurement jitter. On a scope with a good update rate, all

channels are identical, with the measurement jitter the same on

each channel.

 Page 45

Figure 22: Ref_Clk Alignment Results

 Page 46

Figure 23: Sync_In Alignment Results

4.3 Amplitude Shaping

The RAM is used to achieve the waveform shaping. In this case we

used a window of 833 points (see AD9910 datasheet for how to

calculate this). Matlab code was written to make an vector of 555

points then export the points into a binary file. The UAV radar

software code opens the binary file and reads the points into

memory and then writes the values into the RAM of the DDS chips.

The Matlab code for generating the points is given below (for an old

value of 833 points):

 Page 47

For “ideal” function windows:

% Make “Ideal” windows

%x = ones(833); % Rectangular

%x = hanning(833); % Hanning

x = tukeywin(833,0.2); % Tukey

Or, a ramping function:

% Make Linear Ramp Window

x = zeros(833);

for index = 1:length(x)

 x(index)=(length(x)-index)/length(x);

end

% Scale up - By Carl Leuschen

x = x*((2^32)-1);

x = (2^18)*floor(x/(2^18));

The output of a rectangular window is shown below in Figure 24. A

variety of shaping functions are shown in Figure 25.

Any given shape formed in Matlab can be applied to the waveform

amplitude envelope.

 Page 48

10 us Chirp
Rectangular Window

140-160 MHz

Blue = Trigger
Purple = Output Signal

Red = FFT showing
frequencies of interest.

Figure 24: DDS Outputs without Amplitude Shaping

10 us Chirp
140-160 MHz

Blue = Trigger
Purple = Output

Ramp Up Ramp Down

Hanning Tukey 0.2

Figure 25: DDS Outputs with Amplitude Shaping

 Page 49

4.4 Amplitude Settings

As discussed in section 3.4.4, the AuxDAC can be set from 0 to 255.

This sets the output current level, and translates directly into

mVrms on the ouput. This is a linear scale, not a log scale.

The formula for output voltage is approximately:

mVrms = 98.4 mVrms + (setting of 0-255)*1.088292 mVrms / bit

A setting of zero gives about 98.4 mVrms (-7.13 dBm), and a full

scale setting gives a setting of 377 mVrms (+4.5 dBm).

These were empirically measured and checked across channels to

be very consistent.

4.5 Chirp Results – Scope

The output of the DDS is measured with a 500 MHz Bandwidth, 2.5

GSa/s Tektronix MSO4054 scope. For these plots, the generator

was programmed for a 180 MHz to 210 MHz linear up-chirp, lasting

10 us, with rectangular window. The data was imported into Matlab,

and an FFT performed. The results are shown below in Figure 26.

 Page 50

MHz

dB

Figure 26: Chirp Measured By Scope

4.6 Chirp Results – Spectrum Analyzer

The output of the DDS is measured with an Agilent E4407B

spectrum analyzer. We are looking for a clean spectrum, with no

unexpected products. For these plots, the generator was

programmed for a 180 MHz to 210 MHz linear up-chirp, lasting 10

us, with 20% Tukey windowing.

The analysis starts by looking at the spectrum from DC to about 1

GHz. We expect to see the chirp centered at 195, the fsample of

889 MHz, and then an image of the 195 MHz chirp centered at 889

 Page 51

– 195 = 694 MHz. These results are shown below in Figure 27, and

markers 1-3 show the expected results. Note there are no other

images present, or other spurious products.

By zooming into the area of interest, Figure 28 shows the waveform

generator output directly into the analyzer. Figure 29 shows this

same setup with a SAW filter inserted. This saw filter has a 11.1 dB

typical insertion loss, and a 3 dB bandwidth of 30.1 MHz centered at

195 MHz. The 40 dBc rejection bands start at 175 MHz and 215

MHz.

Figure 27: DDS Output Direct Into Spectrum Analyzer, Wide Spectrum

 Page 52

Figure 28: DDS Output Direct Into Spectrum Analyzer, Zoomed In

 Page 53

Figure 29: DDS Output Into Spectrum Analyzer Through SAW Filter,

Zoomed In

4.7 Single Frequency Output

A measure of quality of a signal generator is the spurious products

created when making a single frequency. The waveform generator

used an amplitude shaping window of Tukey (0.2) for this test.

In Figure 30 we can see the first maximum spurious product is at

348 MHz and 50 dB down from the desired signal. In this plot you

can also see the 889 MHz sample clock, and the 180 MHz image at

709 MHz. These are not spurious products, and thus do not count.

 Page 54

Figure 30: Single Frequency Output Spectrum

4.8 Chirp Results – Data Collection and

Processing

A series of tests were run, using the output of the waveform

generator through an 250 MHz low-pass reconstruction filter, and

then into the A/D input of the UAV-Simple Radar. This data

collection system runs at 111 MHz.

Data were gathered with a presum setting of 4, and processed in

Matlab.

 Page 55

The results are shown below in Figure 31. You can see the ideal

shape of the rectangular window in the FFT results, complete with

Fresnel ripples.

Figure 31: Chirp Results Measured with UAV Radar DAQ

4.9 Pulse Compressed Results

Ultimately, the pulse compression of a measured result with a

reference waveform is what matters. Compressing an ideal

waveform with itself yields the “perfect” results, of a symmetrical

 Page 56

response, and the first side lobe is down 13 dB. This is shown below

in Figure 32.

Figure 32: Ideal vs. Ideal Waveform Pulse Compression

This generator’s waveform is compressed against an ideal

waveform and has very nice results, as shown below in Figure 33.

There is a very minor asymmetry that is hard to see.

 Page 57

Figure 33: Ideal vs. Data Waveform Pulse Compression

4.10 Fresnel Ripple Comparison

Using a rectangular function leads to Fresnel ripples. One measure

is how well the FFT of an ideal chirp compares to the FFT of

measured data.

Figure 34 shows the comparison. The blue trace is the measured

results, the red is the ideal. There is a very good correlation.

Sources of difference could include not padding the cable between

the DDS and the scope, and that the real waveforms have finite

 Page 58

limits on what is programmed. So, whereas the ideal uses 180 MHz,

the measured isn’t quite 180 MHz. It is very close though.

Figure 34: Fresnel Ripple Comparison

 Page 59

4.11 Beam-forming Results

Real data from all outputs were measured at 2.5 GSa/sec (500 MHz

Bandwidth), and processed in Matlab. Four test cases were

gathered. Nadir and ten degrees, with and without windowing. The

amplitude control ranges from a setting of 0 which gives an

approximate output power of -7 dBm to a maximum of 255 which

gives an output of +4.5 dBm. The hanning window applied was

done in the linear domain and did not correct for the minimum

output power. This only approximates a hanning window but is

sufficient to show that the sidelobe leves are reduced. The settings

for each DDS amplitude were 29, 105, 191, 248, 248, 191, 105,

29.

Figure 35 shows the plotted response at 195 MHz of a Nadir beam

with no weighting function applied to the amplitude of the eight

channels. The biggest sidelobe is around 13 dB down.

 Page 60

Figure 35: 195 MHz Nadir Beam, No Window

The application of a hanning weighted window should push down

the sidelobes. A Hanning window was applied to the amplitude of

the eight channels, and the results are shown in Figure 36. As you

can see, the sidelobes are reduced to around 21 dB down, or a 7 dB

improvement.

 Page 61

Figure 36: 195 MHz Nadir Beam, Hanning Window

The next cases involve a beam steered to the side by ten degrees.

Figure 37 shows the beam pattern when programmed to ten

degrees. Note the 13 dB first sidelobe.

 Page 62

Figure 37: 195 MHz 10 Degree Beam, No Window

And applying the hanning window to the amplitudes of each

channel, the sidelobes are reduced, as shown in Figure 38. This also

shows the 7 dB improvement.

 Page 63

Figure 38: 195 MHz 10 Degree Beam, Hanning Window

 Page 64

4.12 Per-Waveform Loading Time

The time from the PRF trigger through when the waveform

parameters are loaded into the AD9910 sets a minimum time on

the IO_Update time setting.

The data to be loaded include the Phase Offset Word, DR Limit, DR

Step Size, and RAM Profile. Figure 39 shows the loading of the

Phase Offset Word and DR Limit. The A cursor shows it takes 1.92

us to load the Phase Offset Word Register. It takes 2.7 us to load

the DR Limit. The DR Step Size and RAM Profile will take the same

2.7 us each.

The minimum setting on IO update must therefore be (2 + 2.8*3)

= 10.4 us.

 Page 65

Figure 39: Serial Pattern Load Time

 Page 66

5 Conclusions and Future Work

5.1 Conclusions

The board works as designed, within some minor limits discussed

below. The board will be able to perform it’s duties in the UAV radar

environment very well. Some mistakes were made, but nothing

fatal.

The FPGA and software architecture allow for almost every function

of the AD9910 to be exercised. Minor changes to the radar

operating software would be possible to alter the operation of this

waveform generator in ways not covered here.

The radar software written for the UAV programs this waveform

generator and it produces very nice waveforms. They are

synchronous, and phase locked. They can be programmed to start

at different frequencies, start phases, and amplitude weightings to

create the desired beam-forming patterns.

5.2 Lessons learned

This board did not have sufficient debug access, though it was

designed in, it was not sufficient. Some solder mask points were

opened, but not others. On commonly probed signals the vias

should have been larger to make it easier to probe.

 Page 67

It would have also been nice to have test points on commonly

probed signals at the DDS chips (SDIO, IO Update, CS, SCLK). It

would have been very smart to also put a terminating resistor and a

pair of vias on the SYNC_OUT lines of the DDS. This would allow for

observation of the correct SYNC frequencies.

This board was designed to be inexpensive. The Spartan 3 FPGA is

the largest in that family that can be hand soldered. It should have

met all of the requirements, and has been made to work. However,

certain compromises made the selection of this FPGA less than

ideal. The selection of a Virtex 4 would have easily supported all of

these issues, though the entire cost would have been much more

per assembly.

First, the Spartan 3 does indeed operate at 111 MHz, but if you

have a large amount of logic operating at 111 MHz the chip cannot

meet the timing requirements. The logic was forced to change to

operate off 55.5 MHz to meet timing specs. The Virtex 4 would have

easily supported all of the logic running at full speed. As a direct

result of halving the operating speed, the FPGA loads the AD9910

serial configurations at about half the speed it would have

otherwise, and thus takes twice as long and eats into the recording

time window available.

Second, the shortage of pins dictated certain things not be added to

the design. It forced the use of a serial port instead of a USB port.

This is fine in general operation, but configuring the waveform

 Page 68

generator takes about 10 seconds on boot, but a USB would be less

than one second.

One part of the plan had been to use the FPGAs DLL to adjust the

phase of the IO_Update lines with respect to the SYNC_CLK signal

coming in. The Spartan 3 would not do this in “high speed mode”,

which 250 MHz is in that mode. Also, these chips have built in delay

lines, so the idea of using that to delay the signal may have

worked, but this Spartan 3 only supports 1 bit adjustments. The

Virtex 4 would have been ideal in all of these cases.

Also left out of the design was that Sync_Out of the DDS should

have been routed to the FPGA and was not. An incorrect

assumption led to this was not needed. If we use the DDS PLL in

*18 mode to get 1000.5 MHz from our input clock of 111MHz / 2,

the Sync_Clk is supposed to be 62.5 MHz. There is no way to make

this from the 111 MHz input clock. If Sync_Out had been routed

into the FPGAit could be sent to the Sync_In inputs and would have

allowed any PLL multiplier setting. By not routing Sync_Out we

were forced us to use the *16 PLL setting, which means the input

clock and input sync are the same 55.5 MHz.

If the FPGA had more BRAM resources, debugging through the use

of Chip Scope Pro (a Xilinx embedded logic analyzer) would have

been possible. As it was, the design used all of the BRAM resources

and it was impossible to debug through the JTAG port. The signals

had to be routed out to a logic analyzer header and a logic analyzer

 Page 69

used. In an ideal world both would have been available as they

have different uses in debug.

5.3 Future Work

Carl Leuschen is planning a system that ties in with CDMA

techniques. This system will use complementary coded beams that

will illuminate different areas with different “coding patterns”. Off

line processing will separate out those beams by their code keys,

and thus allow for more effective PRF rates and thus better

sampling of Doppler frequencies. This board has all of the resources

needed to develop this system, and much of the development

infrastructure can be reused.

It may be needed to re-spin this board, and if so it might be moved

to a different form factor, such as a daughterboard on a Virtex 4/5

motherboard. This would allow for all of the errors in the section 5.1

to be remedied. It might also allow for the parallel port to be routed

which would increase future flexibility. The V5 has enough RAM that

arbitrary phase / amplitude / frequency waveforms could be

designed and transmitted via the parallel input on the AD9910,

which is not currently supported on this board.

6 References

[1] Rahmstorf, Stefan, Science, Vol 315, Jan 19th 2007, pp 368-370

 Page 70

7 Appendix A: User Manual

This waveform generator is initially designed to work within the UAV

Radar environment. This manual covers only the aspects of the

waveform generator needed for the UAV Radar, and to prove the

waveform generator’s functionality.

7.1 Overview

The waveform generator needs waveform information and settings

from the radar application code. These settings are downloaded by

the radar control software via a serial port into the FPGA. On the

FPGA there is a UART and state machines to control the writing and

reading of the necessary information.

In the UAV radar, this waveform generator also contains the timing

generator. While this code is not really part of the waveform

generation, the necessary settings will be covered here.

The PRF_Trigger and EPRI_Reset timing signals are generated by

the timing generator using downloaded control parameters. These

are then driven internally and externally (via the daughterboard) to

anyone who needs them (such as the A/D boards).

The DDS chips are Analog Devices’ AD9910. The internal RAM is

used for amplitude shaping (for pulsed compressed side-lobe

reduction). The internal registers are set for the chirp parameters

 Page 71

(rate, start / stop frequency) and the internal digital ramp

generator is used to make the linearly increasing chirp.

The DDS trigger (IO_Update) is derived from the PRF Trigger. This

is done by delaying the PRF trigger by a set amount of time, then

triggering the IO_Update line on the DDS chips.

The DDS control information is of two flavors, static and dynamic.

Static settings are downloaded in a byte-banged software mode

when the radar is started. Byte-bang is the process where the

software writes a byte, and the FPGA serializes it for the DDS chips.

An example of static settings is the DDS Amplitude RAM and other

settings that don’t change in the DDS chip. Dynamic settings are

the settings inside the DDS that change on a waveform by

waveform basis. When a PRF trigger occurs, the DDS is quickly

loaded with the settings it needs, and at the appropriate time the

IO_Update line is strobed. These settings will include start

frequency and start phase, amongst others. For statics settings

each DDS channel is independently programmed, or can all be

programmed at once. Dynamic settings are completely channel

dependent, and are compiled in the radar software, and

downloaded into a “Serial Pattern RAM”. On a trigger, a certain

amount of that RAM is “played” which creates the necessary serial

inputs to the DDS.

 Page 72

Anything short of reloading the DDS RAM can be done between PRF

trigger and IO_Update. The RAM is required to be programmed in

byte-bang mode when the radar is not operating.

7.2 Board Architecture

The 8ch Wavegen board architecture is shown in Figure 40. There

are power supplies and power-on-reset / voltage monitoring

systems. There are debug aids like logic analyzer ports, LEDs, and

switches.

 Page 73

D
ua

l 1
:8

 B
uf

fe
r

Figure 40: Board Architecture

 Page 74

The local oscillator is included for the operating logic, internal

timing generator, and any other low-speed logic needed (it is

divided down internally to create a low speed clock). The FPGA

configuration chip holds the FPGA configuration between power

cycles (i.e. no hot-downloading on this design).

Board status LEDs include an LED that tells when all 8 DDS PLLs are

locked, one for raw power applied (5V), one that indicates the FPGA

loaded correctly, one that indicates all powers and FPGA is able to

start loading, and one that indicates when there is some form of

power error.

Temperature sensor, serial number ID chip, serial EEPROM, and

daughterboard header are added “just in case” for future

expandability. There is no support for any of these chips as of this

document writing.

The daughterboard header uses a high speed connector and 50

ohm traces. It also routes power (5 V and 3.3 V) to the connector

to power daughterboard logic.

7.3 FPGA Architecture

A simplified block diagram of the FPGA architecture is shown below

in Figure 41.

 Page 75

S
er

ia
l P

or
t

C
S

S
C

LK
SD

IO

C
S

S
C

LK
SD

IO

C
S

S
C

LK
SD

IO P
R

F Trigger
E

P
R

I / P
laylist R

eset
S

am
ple C

lock (111 M
H

z)

Figure 41: FPGA High-Level Architecture

There is a UART and a state machine for processing serial

information in the FPGA. Using a pre-defined protocol the radar

software configures things that needs configuring, filling the serial

pattern RAMs, filling the DDS chips, etc.

Full details for the bypass / byte bang mode of one DDS channel

programming / read back is shown below in Figure 42.

 Page 76

UART Processing

DDS #1
C

S_
N

S
C

LK
SD

IO

7 6 5 4 3 2 1 0

S
D

IO
8

S
D

IO
1

S
D

IO
2

S
D

IO
3

S
D

IO
4

S
D

IO
5

S
D

IO
6

S
D

IO
7

C
S_

8_
N

C
S_

1_
N

C
S_

2_
N

C
S_

3_
N

C
S_

4_
N

C
S_

5_
N

C
S_

6_
N

C
S_

7_
N

1

M
od

e
TS

_E
N

0

Per-Waveform
Playback RAM

and Control Logic

SDIO

SCLK

CS_N

(1 of 8)

SDIO Input RegisterCS_N Manual Register

7 6 5 4 3 2 1 0

DDS #1 Byte Bang
Register

DDS
Conf

Serializer (on
write, shift out 8

bits in SPI format)

SDIO_BB

SCLK_BB

Figure 42: Byte-banged Bypass Logic Block Diagram

This diagram shows that there is a bypass mode bit, which controls

all of the muxes at once. They’re either in per-waveform play mode

or bypass program mode.

Read-back mode is not supported at this time. At some point it may

be added, so there is a R/W bit and driver in the design.

 Page 77

In the per-waveform play mode, the CS_N, SDIO, and SCLK line

are driven from the dual-port Serial Pattern RAM. A more detailed

block diagram of per-waveform mode is shown below in Figure 43

with more detail of the RAM outputs shown in Figure 44.

DDS #1

C
S

S
C

LK
S

D
IO

UART / State
Processor

Dual Port RAM with Serial Waveforms
Loaded

C
on

tro
l

A
dd

re
ss

D
at

a

Waveform
Play Logic

WF #1 Start Address
WF #2 Start Address
WF #3 Start Address

WF #16 Start Address

...

WF16 Presum & 0/πWF15 Presum & 0/π

WF2 Presum & 0/πWF1 Presum & 0/π
WF4 Presum & 0/πWF3 Presum & 0/π
WF6 Presum & 0/πWF5 Presum & 0/π
WF8 Presum & 0/πWF7 Presum & 0/π

WF10 Presum & 0/πWF9 Presum & 0/π
WF12 Presum & 0/πWF11 Presum & 0/π
WF14 Presum & 0/πWF13 Presum & 0/π

WF #4 Start Address
WF #5 Start Address
WF #6 Start Address
WF #7 Start Address
WF #8 Start Address
WF #9 Start Address

WF #10 Start Address
WF #11 Start Address
WF #12 Start Address
WF #12 Start Address
WF #14 Start Address
WF #15 Start Address

Mem Mapped Register Bank

DDS #2

C
S

S
C

LK
S

D
IO

DDS #8

C
S

S
C

LK
S

D
IO

P
R

F Trigger
E

PR
I R

eset
S

ystem
 C

lock

Mux in “Per-Waveform
Play Mode”

A
dd

re
ss

D
at

a

Ph
as

e
E

nc
od

e

Figure 43: Block Logic of Regular Playback Mode

The waveform play logic is most easily documented in text. When

the EPRI reset occurs, a state machine resets to “waveform1”.

When in waveform1 state, the waveform that will be played goes

 Page 78

from WF #1 Start Address to (WF #2 Start Address – 1). This is a

counter, preset with WF #1 Start Address, that increments once per

clock until it reaches it’s maximum. The counter drives the address

lines of the RAM.

The playback cycle is triggered by a PRF Trigger, and advances at

less than 2x the maximum serial clock rate. The CS_N, SCLK, and

SDIO lines are driven out of patterns loaded into the RAM.

Once the WF1 presums have been played using WF1, the state

machine advances to “waveform2”, and then used WF2 address,

WF2 Presums, etc.

Because EPRI reset always comes at the end / beginning of a

playlist, there is no need to wrap back around to WF1.

The Dual Port RAM with serial waveforms feed the serial port lines.

The counter counts through the addresses, and the pre-compiled

waveforms include the information for the CS_N, SCLK, and the

SDIO pin. There are two versions of CS_N in the memory, the one

for zero phase, and one for pi phase. The phase encoder and zero-

pi phase enable line drive a small mux which selects which of the

CS_N streams to ship out. Both versions of the Phase offset word

are on the SDIO lines, and by selecting the correct CS_N line, you

select whether you want zero or pi phase to be loaded. This is

shown in Figure 44, as well as the line assignments per channel.

 Page 79

DDS #1

P
la

yl
is

t M
em

or
y

16
 B

it
O

ut
pu

t D
ua

l P
or

t R
A

M

DDS #2

DDS #3

DDS #4

DDS #5

DDS #6

DDS #7

DDS #8

D0

D1

D2

D3

D4

D5

D6

D7
D8
D9

D10

(in RAM feed mode)

CS
SCLK
SDIO

CS
SCLK
SDIO

CS
SCLK
SDIO

CS
SCLK
SDIO

CS
SCLK
SDIO

CS
SCLK
SDIO

CS
SCLK
SDIO

CS
SCLK
SDIO

Phase Encode
(0 / Pi Mode)

Figure 44: Details of RAM Feeding Serial Lines

 Page 80

A sample / simplified timing diagram is shown below in Figure 45.

The waveform generation is responsible for the DDS output portion.

Other parts of the UAV Radar handle the rest. In this figure you can

see that the “Programmable Start Time” is settable. This is the PRF

Trigger to IO Update time mentioned elsewhere. The

“Programmable Duration” is part of the DDS per waveform settings

that are compiled into the serial patterns of the waveform RAM.

Figure 45: Sample Timing Diagram from UAV Radar

7.4 Software Command & Configuration

Language

The convention 0xAA mean the hex value of AA, 0d12 means

decimal value of 12, and 0b10 means a binary value of 10 (decimal

2).

 Page 81

The state processing of the serial data is very limited and must

follow a strict protocol.

Note: At the time of this writing, there is a problem with reading

values from the board. The echo values, and intentional reads are

not working. Since these are far less important, and basically not

used, the effort to fix the read algorithm was not done. It is known

that the board does indeed send the character to the serial port,

but the Linux read algorithm is not reading it correctly. If this

becomes important, the read driver in Linux will need to be

debugged and fixed.

7.4.1 Serial Port Setup

The serial port is set for 115,200 baud, 8 data bits, 1 stop, and no

parity.

7.4.2 Stream Writes vs. Individual Byte

Read/Writes

There are two modes supported for data transfers. The first mode is

a single byte read or write. There is a 256 register address space

possible, and each register is up to 8 bits wide. The second mode is

a streaming mode, where the same 256 registers exist, but you can

write up to 216 (65,536) bytes in a row to that address. Stream

mode is write only.

 Page 82

These two modes, together or separately, support all configuration

needs of this board.

7.4.3 Packet Format

Byte 1 0x77 (ASCII for “w”) for individual write

0x72 (ASCII for “r”) for individual read

0x73 (ASCII for “s”) for stream write

Byte 2 Address Byte (256 possible)

Byte 3 Data for individual mode, or upper byte count for

streaming

Byte 4 None for individual mode, or lower byte count for

streaming

Byte 5+ Steaming data bytes

7.4.4 Reading / Writing Individual Registers

See the memory map in section 7.7 for complete register mappings

and functions.

In order to read or write a register, the serial port must receive a

read or write command byte, an address byte, then a data to be

written (or trash if a read only register). At the end of this

sequence, the state processor will transmit back to the radar

software a single byte (regardless of read or write). If write mode,

this should be an echo of what was written. If read mode, this is

what is to be read. Either way, the logic reads back whatever the

address byte points to.

 Page 83

7.4.5 Stream Writes

To write a stream, you write command byte for stream, what

address you want to write to, an upper count byte, lower count byte

(allowing a 16 bit counter for bytes), then a stream of data to be

written.

7.5 Configuration

PRF Trigger and EPRI Reset must be turned off during configuration

by the software. The software will then write the parameters

necessary for operation into the board, and then turn on the PRF /

EPRI in the timing unit. The first signal out will be an EPRI reset, so

the playlist will come out at the correct starting point.

These settings are for this board being used inside the UAV radar.

Other modes exist, and will not be documented here as it’s beyond

the scope of this thesis.

7.5.1 Load Preference File into Control Database

The radar operating software contains a control database that holds

all of the various parameters for the radar operation. A

configuration file config_uav.txt holds the parameters to be loaded.

These are read, compiled, and stored in the control database

(CDB).

 Page 84

7.5.2 Waveform Generator Configuration

The waveform generator register (section 7.7.5) controls the

internal vs. external timing generator by the timing configuration

bit. This bit must be set to internal timing generator. In the

beginning the waveform generator enable bit must also be off

during programming. In this application, the clock source must be

set to external.

7.5.3 Internal Timing Generator Configuration

The settings of the 24 bit PRF count (section 7.7.6) will drive the

PRF timer.

The 16 bit setting of the EPRI_Reset (section 7.7.9) will count the

numbers of PRFs in between each EPRI_Reset. This must be

compiled in the software to match the number of Presums for each

waveform all added together.

EPRI Reset occurs 3 clock cycles before a PRF trigger.

The IO_Update line starts a waveform generation. This is delayed in

time from the PRF trigger by an internal delay timer. The delay

value is described and set in section 7.7.11. The PRF is delayed by

a certain amount of time, and then re-timed with an edge detector

to be synchronous to the Sync_Clk out of the DDS.

 Page 85

7.5.4 Resetting the DDS chips

The first step in configuring the DDS chips is to reset them. To do

this, we take the Master Reset and IO Reset lines high in the DDS

configuration register (section 7.7.16). These lines are then written

low. This leaves the DDS chips in a default state, and needing to be

programmed.

7.5.5 Writing Static Registers in the DDS Chips

Most of the static registers in the waveform generator can be

written once with all eight chip selects low (thus broadcasting to

every chip).

These registers are usually written with a small stream write, with

the chip select lines written with an individual write. The C code for

writing Config Register 1 is given below:

 //---------------------------------------

 // CFR1

 //---------------------------------------

 // Lower CS_N Line

 addr = 0x41;

 data = 0x00;

 bob = WriteIndv(addr, data);

 addr = 0x43;

 strdata[0]=0x00; // Command Byte

 Page 86

 strdata[1]=0x40; // Data Byte 1

 strdata[2]=0x00; // Data Byte 2

 strdata[3]=0x60; // Data Byte 3

 strdata[4]=0x02; // Data Byte 4

 size = 5;

 bob = WriteStream(addr, strdata, size);

 // Raise CS_N Line

 addr = 0x41;

 data = 0xFF;

 bob = WriteIndv(addr, data);

The function call WriteIndv takes two arguments, one is the address

to write to, and one is the data byte to be written. Returned is the

value of the exit status (and is assigned to the variable ‘bob’ even

though nothing is done with it here).

The actual configuration values for CFR1 are hard coded, and

require the AD9910 datasheet to decode. It is left to the reader to

decipher if needed.

In the same manner as CFR1, the following register are written in

the static settings section of code:

 CFR1 – Broadcast to all

 CFR2 – Broadcast to all

 CFR3 – Broadcast to all

 AuxDAC for DDS1 (these are compiled out of CDB)

 AuxDAC for DDS2

 AuxDAC for DDS3

 Page 87

 AuxDAC for DDS4

 AuxDAC for DDS5

 AuxDAC for DDS6

 AuxDAC for DDS7

 AuxDAC for DDS8

 IO_Update_Rate (not used, we set to defaults, and broadcast to

all).

 Frequency Tuning Word (not used, we set to defaults, and

broadcast to all).

 Phase Offset Word (we over-ride with serial pattern RAM, but we

give a default value).

 Amplitude Scale Factor (not used, we set to defaults, and

broadcast to all).

 Multi-Chip Sync – Broadcast to all

 Digital Ramp Limits – Compiled to the CDB values for waveform

1 – DDS1, but these are over-written by the serial pattern RAM

in run mode. Broadcast to all.

 Digital Ramp Step Size – Compiled to the CDB values for

waveform 1, but these are over-written by the serial pattern

RAM in run mode. Broadcast to all.

 Digital Ramp Rate – Broadcast to all

 RAM Profile 0 – Broadcast to all

After writing all of these settings, an IO update must be triggered

to load them. This is done by writing to the IO Update force trigger

register (section 7.7.15).

 Page 88

At this point, a waveform points file is loaded from the file

“Wavegen_shape.wf”, which is created in Matlab, and put in the

main radar operating directory.

The radar software reads this file into memory, and then does a big

stream write of the values to the byte-bang register to load the

AD9910 RAM.

Another forced IO update is now required to make the chip happy.

One final thing is another write to CFR1 to turn on the RAM. The

first write has it turned off until it’s loaded, but after loading the

RAM must be enabled.

7.5.6 Stream Loading the Dual Port Patterns

RAM

In the radar software, the first and hardest bit is to compile the

settings into a format compatible with the serial pattern RAM. This

is left to the reader to see in the C code in Appendix B: Software

Operating Routines.

To load the serial patterns, you must first write a any byte to the

write only serial pattern RAM write pointer to make it point to

address = 0 in the write side of the dual-port serial pattern RAM

(section 7.7.19).

 Page 89

Then, a stream write to the RAM fill address (section 7.7.20) will

load the RAM.

When this is done, loading the per Waveform Configuation registers

(section 7.7.21) needs to be loaded, to give the number of presums

for each waveform, whether 0/Pi is enabled, and the start address

for the serial pattern RAM waveforms.

7.5.7 Go!

At this point the system is configured ready to run! Turning on the

timing generator bit in the wavegen config register (section 7.7.5)

will start the waveform creation.

7.6 External Device Support

For now there is no support for the temperature sensor, EEPROM

for waveform parameters, or serial number ID chip. These chips

were added for “just in case” and will be updated here if logic is

added to support them. They are unrelated to the functions needed

in the waveform generation, so not documented here.

 Page 90

7.7 Appendix A: Memory Map

7.7.1 Summary Table

Access

Mode

Address - Description

R/W 0x31 – Scratch / Reflection Register

RO 0x32 – FPGA Revision Major / Middle

RO 0x33 – FPGA Revision Minor

R/W 0x34 – Wavegen Configuration

R/W 0x35 – Internal PRF Generator Setting - Upper

R/W 0x36 – Internal PRF Generator Setting - Middle

R/W 0x37 – Internal PRF Generator Setting - Lower

R/W 0x38 – Internal EPRI Generator Setting - Upper

R/W 0x39 – Internal EPRI Generator Setting - Lower

R/W 0x3A – IO Update Time - Upper

R/W 0x3B – IO Update Time - Lower

RO 0x3C – Temp Sensor Reading - Upper

RO 0x3D – Temp Sensor Reading - Lower

WO 0x3E – Force Single IO Update Trigger

R/W 0x40 – DDS Configuration

R/W 0x41 – DDS CS_N Values

WO 0x43 – DDS Byte Send

WO 0x4B – Reset Serial Pattern RAM Address Counter

WO 0x4C – Write Byte Serial Pattern RAM

R/W 0x50-0x93 Waveform Configuration Values

 Page 91

7.7.2 0x31 – Scratch / Reflection Register

This register is read / write, 8 bit, and is just used for software

testing. There is no other function.

Bits Description

7-0 Scratch – Read/Write

7.7.3 0x32 – FPGA Revision Major / Middle

Upper byte of the 16 bit revision code.

Bits Description

7-5 FGPA Major Revision

4-0 FPGA Middle Revision

7.7.4 0x33 – FPGA Revision Minor

Lower byte of the 16 bit revision code.

Bits Description

7-0 FPGA Minor Revision

7.7.5 0x34 – Wavegen Configuration

This register contains configuration bits.

 Page 92

Bits Description

7-3 Unused

2 Internal / External Timing Generator Selector

1 = Internal time generator

0 = External PRF and EPRI inputs used

1 Internal / External Clock Selector

1 = Internal / Local 100 MHz Oscillator used

0 = External – Use clock coming in on SMA connector

0 Internal Timing Generator Enable

1 = Timing Gen Enabled

0 = Timing Gen Disabled

7.7.6 0x35 – Internal PRF Generator Setting -

Upper

Upper byte of the 24 bit PRF count. This counter is based on the

selected clock source that has been divided in half. In the UAV, with

111 MHz Clock, the setting = hex[(667e6/12)/<desired PRF> - 1].

Bits Description

7-0 PRF Count [23:16]

7.7.7 0x36 – Internal PRF Generator Setting -

Middle

Middle byte of the 24 bit PRF count.

 Page 93

Bits Description

7-0 PRF Count [15:0]

7.7.8 0x37 – Internal PRF Generator Setting -

Lower

Lower byte of the 24 bit PRF count.

Bits Description

7-0 PRF Count [7:0]

7.7.9 0x38 – Internal EPRI Generator Setting -

Upper

Upper byte of the 16 bit EPRI count. This counter is based number

of PRFs in an EPRI. The setting = hex[<desired #PRF per EPRI> -

1]. Range = 1 to 65,535.

Bits Description

7-0 EPRI Count [15:8]

7.7.10 0x39 – Internal EPRI Generator Setting -

Lower

Lower byte of the 16 bit EPRI count.

 Page 94

Bits Description

7-0 EPRI Count [7:0]

7.7.11 0x3A – IO Update Time - Upper

Upper byte of the 16 bit IO Update time setting. This is the delay of

the PRF signal before the DDS are triggered and is based on the

selected clock divided by two.

Bits Description

7-0 IO_Update_Time [15:8]

7.7.12 0x3B – IO Update Time - Lower

Lower byte of the 16 bit IO Update time setting.

Bits Description

7-0 IO_Update_Time [7:0]

7.7.13 0x3C – Temp Sensor Reading - Upper

Upper byte of the 16 bit temperature sensor reading. This is

updated once per second. This code probably would work if the

reading function was working. As it is, it was never tested since

there is no code working for readback.

 Page 95

Bits Description

7-0 Temp_Value [15:8]

7.7.14 0x3D – Temp Sensor Reading - Lower

Lower byte of the 16 bit temperature sensor reading.

Bits Description

7-0 Temp_Value [7:0]

7.7.15 0x3E – Force Single IO Update Trigger

A write to this address will cause a single IO update to be sent to all

DDS.

Bits Description

7-0 Nothing

7.7.16 0x40 – DDS Configuration

Individual bits that configure modes of the DDS Operations.

 Page 96

Bits Description

7-5 Reserved

4 1 = Disable Per WF Loading

0 = Enable Per WF Loading

3 All DDS Chip’s Master Reset Line

2 All DDS Chip’s IO Reset Line

1 1 = SDIOs = Input

0 = SDIOs = Output

0 1 = Byte-Bang

0 = Regular / Run mode

Bit 4: When a 1, this disables the shifting of waveforms out on a

per waveform basis. Meaning the DDS will be triggered as

expected, but will use the settings in the default registers. A zero

will shift out the pattern RAM to the chips. – Not Implemented yet,

but planned after thesis is written.

Bit 3: Writing a one will reset all DDS Master Reset lines. A zero is

normal operation.

Bit 2: Writing a one will reset all DDS IO Update lines. A zero is

normal operation.

Bit 1: Is not really used right now. In theory you can turn around

the SDIO to do a read from the DDS chips. In reality, there is a

time of bus clash and this feature isn’t used. More intelligence

 Page 97

would have to be added and this function moved into the FPGA if

the desire to read out the DDS were important.

Bit 0 controls which modes you are talking to the DDS Chips in. If

high the chips are fed byte by byte, and the FPGA serializes that for

the DDS. If low, the ports are fed from the serial waveform RAMs.

7.7.17 0x41 – DDS CS_N Values

Individual bits that in byte bang mode feed the DDS chips’ CS_N

lines.

Bits Description

7 DDS#8’s CS_N

6 DDS#7’s CS_N

5 DDS#6’s CS_N

4 DDS#5’s CS_N

3 DDS#4’s CS_N

2 DDS#3’s CS_N

1 DDS#2’s CS_N

0 DDS#1’s CS_N

7.7.18 0x43 – DDS Byte Send

If you write to this address, the 8 bit data will be SPI serialized and

shipped out to the all of the DDS whose CS_N line is low (section

7.7.17).

 Page 98

7.7.19 0x4B – Reset Serial Pattern RAM Address

Counter

A write to this address will reset the address of the serial pattern

RAM’s address counter to 0x0000.

7.7.20 0x4C – Write Byte Serial Pattern RAM

A write to this address will put a byte into the serial pattern RAM

and increment the address counter.

Bits Description

7-0 Pushed into RAM[address counter]

7.7.21 0x50-0x93 Waveform Configuration Values

Entire 32 bits = 12 bit presum setting for this waveform, 5 reserved

bits, 0/π enable bit, 14 bit start address.

Upper Byte

Bits Description

7-0 # Presums [11:4]

Upper Middle Byte

Bits Description

7:4 # Presums [3:0]

4:0 Reserved

 Page 99

Lower Middle Byte

Bits Description

7 Reserved

6 0/π enabled

5:0 WF Start Addr [13:8]

Lower byte

Bits Description

7-0 WF Start Addr [7:0]

 Page 100

WF # Upper Byte

Address

Upper Middle

Byte Address

Lower Middle

Byte Address

Lower Byte

Address

1 0x50 0x51 0x52 0x53

2 0x54 0x55 0x56 0x57

3 0x58 0x59 0x5A 0x5B

4 0x5C 0x5D 0x5E 0x5F

5 0x60 0x61 0x62 0x63

6 0x64 0x65 0x66 0x67

7 0x68 0x69 0x6A 0x6B

8 0x6C 0x6D 0x6E 0x6F

9 0x70 0x71 0x72 0x73

10 0x74 0x75 0x76 0x77

11 0x78 0x79 0x7A 0x7B

12 0x7C 0x7D 0x7E 0x7F

13 0x80 0x81 0x82 0x83

14 0x84 0x85 0x86 0x87

15 0x88 0x89 0x8A 0x8B

16 0x8C 0x8D 0x8E 0x8F

17 0x90 0x91 0x92 0x93

 Page 101

8 Appendix B: Software Operating Routines

A brief description of important files and routines are here. The raw

source code is available on CReSIS’s SVN server

https://svn.cresis.ku.edu/.

8.1 serialDriver.c

This file has the routines related to the serial port, including read

and writes of individual and streams. This code was adapted by Al

Harris when he was in the employ of CReSIS, and is based on open

code. John Ledford edited and extended slightly on Al’s code.

8.1.1 Higher Level Routines

8.1.1.1 char WriteIndv(char addr, char data)

This code is passed an address to write to, and the data to write to

that address. This routine packs these up into the proper packet

format, and sends them to the serial port.

The routine is supposed to return the character echoed back from

the board, but that is not working.

8.1.1.2 char WriteStream(char addr, char* data, int

size)

This code is passed an address to write to, the number of bytes to

be written, and a pointer to the data to write to that address. This

 Page 102

routine packs these up into the proper packet format, and sends

them to the serial port.

The routine is not supposed to return anything meaningful other

than error codes.

8.1.1.3 char ReadIndv(char addr)

This code is passed an address to read a byte from. This routine

packs this request up into the proper packet format, and sends it to

the serial port.

The routine is supposed to return the character read back from the

board, but that is not working.

8.1.2 Base Routines

These are used as is, and provide base-level access to the Linux

serial port system.

 int OpenAdrPort(int sPortNumber)

 int WriteAdrPort(char* psOutput, int size)

 int ReadAdrPort(char* psResponse, int iMax)

 void CloseAdrPort()

8.2 dds_8ch.c

This file has the routines that are related to this waveform

generator board.

 Page 103

8.2.1 int setTimeGenParam()

This routine takes parameters from the globally available control

database and compiles them to write these registers:

 PRF Settings (upper, middle, low)

 EPRI Settings (upper, lower)

 IO Update Time (upper, lower)

8.2.2 int timeGenCtrlUpdate()

This routine takes parameters from the globally available control

database and compiles them to write the waveform generator

control register. The bits in question include:

 Timing Generator Source (internal vs. external)

 Waveform Generator board clock source (internal vs.

external).

 Waveform timing generator enable bit

8.2.3 int configWfs()

This routine takes parameters from the globally available control

database and compiles them where appropriate, or has hard-coded

values where appropriate. The results are written to the waveform

generator. The general algorithm, in English:

 For each waveform, 1 through N

• Compile and load serial RAM with phase offset word for

Zero phase

• Compile and load serial RAM with phase offset word for

Pi phase

 Page 104

• Compile and load serial RAM with Digital Ramp Limits

register values

• (To be added – Compile and load Digital Ramp Step

Size and RAM Profile 0 values – these are for varying

the pulse duration, which is currently set to a single

value for all waveforms).

 Stream write compiled serial pattern RAM data

• Reset pattern ram address pointer

• Do stream write to fill address

 Compile and write results to the waveform configuration

registers which include:

• Waveform start address

• Whether zero/pi is enabled for that waveform

• Number of presums in that waveform

8.2.4 int initDDS()

This routine takes parameters from the globally available control

database and compiles them where appropriate, or has hard-coded

values where appropriate. The results are written to the waveform

generator. The general algorithm, in English:

 Reset the DDSs

 Put in Byte-Bang mode

 Write CFR1 – RAM not enabled

 Write CFR2

 Write CFR3

 Loop write of AuxDAC for all 8 DDS

 Write IO_Update_Rate

 Page 105

 Write Frequency Tuning Word

 Write Phase Offset Word

 Write Amplitude Scale Factor

 Write Multi-Chip Sync

 Write Digital Ramp Limits

 Write Digital Ramp Step Size

 Write Digital Ramp Rate

 Write RAM Profile 0

 Write forced IO Update

 Import Waveshape from file

 Write imported data to DDS RAM

 Write forced IO Update

 Write CFR1 – RAM enabled

 Write forced IO Update

 Exit Byte-Bang mode

 Page 106

9 Appendix C: FPGA Code

A brief description of important files and their functions are here.

The raw source code is available on CReSIS’s SVN server

https://svn.cresis.ku.edu/ -> FPGA_Code -> 8Ch_Wfg ->

Source_Code.

9.1 accessory_stuff.v

This file contains logic to do the following:

 Read out the temperature sensor once per second and put

that data into a memory mapped register

 Make a one pulse per second signal

 Debounce push-buttons

 Create a divided version of the local 100 MHz clock.

Generates 50 MHz, 1 MHz, and 1 KHz.

9.2 dds_8ch_wfg.ucf

This file contains the constraints necessary for the Xilinx tools.

These specify timing constraints as well as pin locations for signals.

9.3 dds_8ch_wfg.v

This is the top level file that:

 Instantiates and ties together lower level blocks

 Is where the FPGA revision code is set

 Page 107

 Is where the debug LEDs are assigned

 Routes signals into the logic analyzer port

 Signals are assigned to the daughterboard pins

 Instantiate special buffers (tri-state, global buffers, etc).

9.4 dds_controller.v

This file:

 Instantiates the serial pattern ram

 Has fill logic for serial pattern ram

 Has readout logic for serial pattern ram, from the current

waveform to the start of the next, on a PRF trigger

 Waveform playback logic, based on parameters downloaded

into the configuration registers

 Create the zero/pi phase encode signal, if it’s enabled in the

configuration registers

 Handles DDS serial interfacing (CS_N lines, Byte Banging,

etc).

 Edge detect and retime PRF trigger

 Delay trigger by programmed amount

 Convert delayed trigger, or forced trigger into form usable by

output circuit

 Output IO Update on the proper clock

9.5 debug_leds.v

This file has a “boot” pattern logic in it that will make the leds act

like KITT’s from Knight Rider on boot, and then is turned over to

 Page 108

the debug signals routed to this file from the top level. This was the

initial “hello world” logic for this board, and done very late one

night because John thought it was funny. There’s no purpose in it,

but also no point in ripping it out.

9.6 int_timing_generator.v

This file takes programmed parameters and makes PRFs and EPRI

as expected.

9.7 serial_section.v

This file makes the transmit and receive clocks needed out of the

100 MHz oscillator, and instantiates the UART.

9.8 state_processing.v

This file deals with the data to and from the UART. This file

specifically:

 Saves the data on a write to specific registers

 Feeds the correct data back to the UART on a read

 Logic that handles incoming bytes and outgoing bytes (i.e.

handshaking lines) to/from the UART

 Implement the protocol processing for the packet format

 Page 109

9.9 uart.v

This UART code is code found on the internet, that is open and

unlicensed. It’s a simple UART with no buffering capability.

 Page 110

10 Appendix D: Schematics

A brief description of each page is here but the actual file is

available on CReSIS’s SVN server https://svn.cresis.ku.edu/ ->

UAV_Radar -> Schematics_Boards -> 8_Ch_Wavegen ->

8_Ch_Wavegen__Schematics.pdf

Page:

1. Intro / Title, instantiate silkscreen logos, Board stack-up,

Revision history.

2. External clock, PRF, and EPRI inputs. Local oscillator, temp

sensor, EEPROM, and serial number chip

3. FPGA I/O, programming, power, bypass. FPGA configuration

memory chip (non volatile storage).

4. Extensive power-on-reset and monitor. PLL lock. Board LEDs.

Debug resources.

5. Ref_Clk and Sync_In repeater.

6. Power circuitry / regulators. Serial port connector and level

translator. Daughterboard connector.

7. DDS #1 and it’s output.

8. DDS #2 and it’s output.

9. DDS #3 and it’s output.

10. DDS #4 and it’s output.

11. DDS #5 and it’s output.

12. DDS #6 and it’s output.

13. DDS #7 and it’s output.

14. DDS #8 and it’s output.

