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Abstract

This thesis presents an infrastructure for computations of the J-integral for mode
I linear elastic fracture mechanics in A,k mathematical and computational framework
using finite element formulations based on the Galerkin method with weak form and the
least squares process. Since the differential operators in this case are self-adjoint, both
the Galerkin method with weak form and the least square processes yield unconditionally
stable computational processes. The use of /,p,k frameworks permits higher order global
differentiability approximations in the finite element processes which are necessitated by
physics, calculus of continuous and differentiable functions and higher order global
differentiability features of the theoretical solutions. The significant aspect of this
research is that with the proposed methodology very accurate J-integral computations
are possible for all paths including those in very close proximity of the crack without use
of special crack tip or quarter point elements at the crack tip. A center crack panel under
isotropic homogeneous plane strain linear elastic behavior, subjected to uniaxial tension
(mode I) is used as model problem for all numerical studies. The investigations
presented in this thesis are summarized here: (i) J-integral expression is derived and it is
shown that its path independence requires the governing differential equations (GDEs)
to be satisfied in the numerical process used for its computations (i) It has been shown
that the J-integral path I' must be continuous and differentiable (iii) The integrand in the
J-integral must be continuous along the path as well as normal to the path (iv) Influence
of the higher order global differentiability approximations on the accuracy of the J-
integral is demonstrated (v) Stress intensity correction factors are computed and

compared with published data.

The work presented here is a straight-forward finite element methodology in
hpk framework is presented in which all mathematical requirements for J-integral
computations are satisfied in the computational process and as a result very accurate
computations of J-integral are possible for any path surrounding the crack tip without
using any special treatments. Both the Galerkin method with weak form and the least

square processes perform equally well.
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Chapter 1
EQUATION CHAPTER 1 SECTION 1
Introduction and Scope of Work

1.1 Introduction

The experimental fracture strength (load at which failure occurs) of flawed solid
materials is 10 to 1000 times below the fracture strength of unflawed ones, due to the
fact that tiny internal and external surface cracks, originated during production or
service, create higher stresses near these cracks. This observation lead English
aeronautical engineer A. A. Griffith to the conception of fracture mechanics. In the

1920s, he showed that the total energy of the system U is equal to the sum of: the elastic

energy of the loaded uncracked plate (a constant) U, ; the change in the elastic energy

caused by introducing the crack in the plate U ; the change in the elastic surface energy

a’

caused by the formation of the crack surfaces U,; minus the wotk performed by

external forces F [1]. He formulated the concept that crack growth instability will occur
as soon as U no longer increases with increasing crack length a. Due to the fact that
U, is a constant, crack growth instability will occur as soon as the change of F' minus
U, due to crack propagation (crack driving force) is greater than the change of U, due
to crack propagation (crack resistance to growth). This crack driving force is referred to
as elastic energy release rate per unit thickness G, and the crack resistance to growth as
critical energy release rate per unit thickness G.. Therefore, crack growth instability will
occur as soon as G is greater than G, . Griffith’s theory was developed for brittle

materials under elastic behavior. Griffith finally showed that for a center crack in a plate



with infinite width, G is equal to 7O *alE for isotropic, homogeneous, plane stress
linear elastic behavior and (1-v*)zc*alE for isotropic, homogeneous, plane strain

linear elastic behavior, where o, E and V are the applied uniform tensile stress,

Young’s Modulus, and Poisson’s ratio respectively [1-3].

In the mid-1950s, Irwin showed that the local stress field near the crack tip of an
isotropic linear elastic material can be expressed as a product of 1/ Jr and a function

f; () with a scaling factor K , which he called stress intensity factor [1]. When r — 0,

TX

, equals zero and singularity is introduced in 0,, and O . Irwin further showed that

the energy approach developed by Griffith is equivalent to the stress intensity approach,
in the sense that crack growth instability will occur as soon as K is greater than the
critical stress intensity factor K. . In addition, he distinguished three different modes that
describe different crack surface displacement and applied loading (mode I, II and III),
where each of these three modes has a specific stress intensity factor represented as K,
K, and K, respectively [1-3]. He finally connected Griffith energy approach and the
stress intensity factor approach deriving an expression relating G and the stress intensity
factors K,, K, and K, [3]. This direct relation between G and K means that under
linear elastic fracture mechanic conditions (LEFM), the achievement of a critical stress
intensity factor, K., is exactly equivalent the achievement of critical energy release rate
per unit thickness G . For the specific case of Mode I (the most common load type in

engineering design), the expression is reduced to G=K,’/E for isotropic,

homogeneous plane stress linear elastic behavior and G = (l—V2 ) K,?/E for isotropic,

homogeneous plane strain linear elastic behavior [1-3].

The value of the stress intensity factor K is a function of the applied stress, the
size and the position of the crack as well as the geometry of the specimen in which

cracks are detected. In the last few decades, many closed-form solutions of the stress



intensity factor K for simple configurations have been derived, while the critical stress
intensity factor K. is obtained experimentally [1-2]. Also because K. is unique for a

particular material, engineers can use this variable for selecting appropriate materials for
a range of different applications. This critical information helps engineers to optimize
the design and ensure the safety on the operations and to prevent or minimize possible
accidents. This is extremely important for the design of aircraft components, where there

are a lot of rivet holes and small cracks.

Based on Irwin’s theoty, the stresses 0, and 0 ate infinity at the crack tip, but

in reality, since materials plastically deform as the yield stress is reached, a plastic zone
will form near the crack tip, which limits the stresses to finite values. Irwin showed that
LEFM concepts could be slightly altered in order to cope with limited plasticity in the
crack tip region by treating the crack length longer than its physical size [1-3].
Nevertheless, there are many important classes of materials that are too ductile to
describe their behavior by LEFM: the crack tip plastic zone is simply too large. Then the
problem has to be treated elasto-plastically by considering elastic plastic fracture

mechanics (EPFM) [1].

In 1968, Rice introduced a line integral called the J-integral [31, 38], which has
the same value for all integration paths surrounding the tip of a notch in two-
dimensional deformation fields of materials exhibiting linear or nonlinear elastic
behavior (reversible process). If G is the strain energy release rate per unit thickness,
then J =G by definition, thus the J-integral concept is compatible with linear elastic
fracture mechanics. The path independency of the J-integral expression allows
calculation along a contour remote from the crack tip. This is what makes the J-integral

concept so attractive. Further we note that since J equals G, we may write
J=G=K/E for isotropic, homogeneous plane stress and J =G = (I—VZ)KIZ/E

for isotropic, homogeneous plane strain linear elastic behavior [1-3]. Obtaining solutions

for the J-integral in actual specimens turns out to be difficult and it is generally necessary



to use computational methods such as finite element techniques. Using finite element
processes, the J-integral concept can be used in LEFM to calculate stress intensity
factors in structures that do not posses a closed form solution for K, and compare them

with critical stress intensity factors K.. The primary interest in discussing nonlinear

materials lies with elastic-plastic behavior, particularly in relation to elasto-plastic fracture

mechanics (EPFM). Therefore, the J-integral concept can also be used in EPFM to

calculate J values and compare them with critical J. values determined empirically [1-2].

However, the extension of non-linear elastic to elasto-plastic behavior is beyond the

scope of this work.

Finite element computations of J-integral values for linear elastic fracture
mechanics involve numerically simulating the solutions of boundary value problems
(BVP) that contain a singularity of the solution derivatives at some point(s) in the
domain of definition of the BVP. Such point(s) are referred to as singular points and
hence the name singular BVP. The theoretical solutions of such boundary value
problems are not analytic at the singular points but analytic everywhere else. In
attempting to solve such singular BVP numerically, many difficulties arise: in the

currently published literature [5-7,12,13,15]:

(2) A major constraint is the use of C” low degree p-version local approximation
such as C° linear displacement local approximation finite elements due to
the fact that use of C° higher degree p-version local approximations resulted
in solutions with wild oscillations in the vicinity of the crack tip.
Furthermore, these oscillations increased with increasing p-levels and mesh
refinements [33, 39, 40]. In view of this, the use of C O linear displacement
local approximation finite elements became popular since solutions without
oscillations were possible with excessive mesh refinement. This improvement

is an illusion due to the fact that it is the gradients of the solution that

determine the accuracy of the J-integral values, and when using C° linear



displacement local approximation, the solution gradients become highly

diffused [33, 37].

(b) In a different approach, attempts are made to incorporate the singularity of
the solution in the computational process [18-23, 25-29, 36]. Use of quarter
point singular elements and special basis functions incorporating the strength
of the singularity are among such approaches. It is important to remark that
these approaches are not general because their use requires a priori
knowledge of the strength of singularity. In such approaches, correct
integration of the coefficients of the element matrices is not possible and

hence, accuracy of the solution becomes questionable.

(c) A main limitation of currently used finite element methodologies in J-integral
computations is the lack of required global differentiability of local

approximations, which arises from employing /4,p mathematical framework

with C° local approximations when designing the finite element and

computational processes.

(d) Non-differentiable paths are used when computing J-integral values, which is
generally a consequence of using quadrilateral or triangular elements with
linear sides that cannot be avoided if the local approximation for the

displacement field is linear.

(e) Another serious problem is the discontinuity of the integrand in the J-integral

expression along the path as well as normal to the path due to the use of C°
local approximation for displacements. Because of these, special treatments
and modifications to Rice’s original J-integral expression are being employed
in the currently used computations to circumvent or alleviate the errors

introduced in the J-integral computations [13, 16, 17, 34, 37].



1.2 Scope of Work

In this work, linear elastic fracture mechanics with isotropic material behavior is
used as a model problem to address all of the issues discussed above. It is shown that
quarter point singular elements and special basis functions incorporating the strength of
the singularity are unnecessary, and that /,p,& framework permits higher order global
differentiability local approximations that are necessitated by the higher order global
differentiability characteristics of the theoretical solution, and that J-integral can be
maintained in Riemann sense as opposed to Lebesgue. This results in significantly
accurate computations of the integrals. The J-integral paths are always differentiable
which is essential for the J-integral computations to be valid along the chosen path. It is
shown that in /p,k framework, by employing differentiable J-integral paths and
maintaining integrals in the Riemann sense, the numerically computed J-integral values
remain virtually path independent regardless of the proximity of the path to the crack tip

and match extremely well with the theoretical values.

The research presented in this thesis demonstrates the need for proper choice of
approximation spaces. The /,p,£& framework is essential in this regard. Higher order and
degree global differentiability approximations result in improved accuracy and hence are
meritorious in the J-integral computations. Maintaining J-integrals in Riemann sense
along differentiable path is essential for correct and accurate computations of J-integrals.
The approach presented here in Ap,k framework is a straight forward finite element
computational methodology that is free of any and all special treatments. The finite
element formulation based on the Galerkin method with weak form and the least square
processes are considered in the computations of J-integrals. Stress intensity factors and
correction factors obtained from the numerical studies presented here are compared

with those obtained using analytical expressions available in literature [46].



Chapter 2

EQUATION CHAPTER 2 SECTION 1
Theoretical Aspects of the J-integral
for Two Dimensional Elasticity and
Presently Used Methodologies

2.1 Theoretical derivations

The original derivation of the J-integral was presented by Rice in 1968 [38]. In
this derivation, Rice considered the variation of the potential energy inside a fixed
arbitrary region containing the crack tip [38]. A few alternative derivations have been
presented in the literature. In 1984, Ewarlds and Wanbhill provided a simpler derivation
starting with Griffith’s energy balance [1]. In 1985, Kanninen and Popelar [41] presented
a different derivation starting with the statement of total potential energy [41]. In 1995,
the same derivation was presented also by Anderson [42]. In 2004, it was pointed by Jin
and Sun [42] that such derivation applies the divergence theorem in a region containing
the crack tip, and that it is flawed because of the crack tip stress singularity. They
mentioned that it has been ignored that the stress singularity at the crack tip invalidates
the direct treatment of such theorem. Furthermore, Jin and Sun provided a
mathematically rigorous and physically straightforward derivation of the J-integral
applying the divergence theorem properly. Having this in mind, it is important to notice
that Ewarlds and Wanhill derivation [1] uses Green’s theorem in a region enclosing the
crack tip. Therefore, this derivation is also flawed. The J-integral, with units of force per

unit thickness, is given by (2.1), the strain energy density by (2.2) and traction by (2.3).
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leWdy—lﬂgds @.1)

W=W(e) = jdijdé‘ij (2.2)

T =0n, 2.3)

As stated above, derivations presented by Ewarlds and Wanhill [1] and Kanninen
and Popelar [41] are flawed. Nevertheless, both derivations are presented to illustrate the
fact that different approaches can be taken in deriving the J-integral expression.
Furthermore, what these derivations have in common is that they all start with an
expression for the strain energy release rate,G, per unit thickness, which after
manipulations becomes the J-integral. It is also important to specifically identify the
problems associated with the flawed derivations, and that the derivation proposed by Jin
and Sun [42] is based on the same general idea than Kanninen and Popelar’s work, but

departs into a different approach to address the effect of the crack tip singularity.

2.1.1 H. L. Ewarlds and R. J. H. Wanhill (derivation of J-

integral)

H. L. Ewarlds and R. J. H. Wanhill [1] presented a derivation starting with
Griffith’s energy balance approach for elastic behavior by consider an infinite plate of
unit thickness that contains a through-thickness crack of length 2a and that is subjected
to uniform tensile stress, 0, applied at infinity. Figure 2.1 represents an approximation to

such a plate.
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Figure 2.1: Infinite plate of unit thickness with a through-thickness crack (2a<<w)

The total energy U of the cracked plate for elastic behavior may be written as,
U=U,+U,+U,-F (2.4)

where U, is the elastic energy of the loaded uncracked plate (a constant), U, is
the change in the elastic energy caused by introducing the crack in the plate, U, is the

change in the elastic surface energy caused by the formation of the crack surfaces, and
F' is the work performed by external forces (this must be subtracted in equation (2.1),
since it is not part of the internal potential energy of the plate). Crack growth instability
will occur as soon as U no longer increases with increasing crack length a. Thus

instability will occur if,

LU 2.5)
da

Since U, is a constant, instability will occur if,



d dU
%(F -U,)2 d; (2.6)

The elastic energy release rate, G, per unit thickness is defined by equation (2.7)
and the crack resistance, R, per unit thickness is defined by equation (2.8). Thurs

instability will occur if equation (2.9) is met.

Gzi(F—Ua) 2.7)
da
r=12Y 2.8
= (2.8)
G2=R (2.9)

An equivalent of G can be defined by equation (2.10). The potential energy U,

is defined by equation (2.11). Therefore equation (2.4) becomes equation (2.12).

J=—(F-U,) (2.10)
da

U,=U,+U,-F 2.11)

U=U,+U, 2.12)

Thus U, contains all the energy terms that may contribute to nonlinear elastic
behavior, while U, is generally irreversible. Since U, is a constant, differentiation of U,

is given by equation (2.13). Therefore, it is seen that by definition, | is specified by

equation (2.14). Now since dF /da represents the energy provided by the external force

10



F per increment of crack extension and dU_ /da is the increase of elastic energy owing

to the external work dF /da, the quantity dU , /da is the change in stored energy.

dU d d

r -~ (U —F)=——(F-U 2.13

L= (U, = F)=="~(F~U,) @13
dUp

J=- Za 2.14)

Now, consider a cracked body of unit thickness as shown in Figure 2.2. The
body has a perimeter I and a surface A . A traction T acts on a part S, of the perimeter
and performs external work of an amount AF . Thus parts of the body undergo a
displacement represented as a displacement vector u . Let U, be the energy contained
in the plate before the traction is applied. Note that U, has the same meaning as U, in
equation (2.4), except that this time we start with a plate that already contains a crack.
Thus U,, represents the energy contained in the cracked plate owing to any previous

history. The effect of applying the traction may now be considered for two cases; for

crack growth and for no crack growth.

T

/'/.u

— S —H

- —»

Figure 2.2: A cracked body of unit thickness loaded by a traction T
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For no crack growth, the potential energy is,
U, =U,+AF (2.15)

For crack growth Aa, AF is given by equation (2.16), and the potential energy
by equation (2.17).

AF =AU, +AU, AF (2.16)
U,,=U, +AU, 2.17)

Note that the change in surface energy AU, is irreversible and cannot be patt of

U ,,. It follows that the change in potential energy AU, due to a crack extension Aa is,

AU,=U,,-U, (2.18)
Using equation (2.15) and (2.17), equation (2.18) can be rewritten as,

AU, =AU, —AF 2.19)
and for the limiting case Aa — 0 we may write,

dU, =dU,-dF (2.20)

Equation (2.20) shows that dU, will always be negative since dF provides both

dU, and dU, . Integrating equation (2.20) leads to,

12



[av,=[au,-[aF 2.21)
or

U,=U,-F+C (2.22)
The integration constant is equal to U, . This means,

U,=U,-F+U, (2.23)

This is equivalent to the definition of U, in equation (2.11). In equation (2.23)

U,+U,, is the total strain energy contained in the body. This total strain energy and F

can be represented by equations (2.24) and (2.25) respectively.

U,+U,, = [[Wdxdy (2.24)
A

F = [Tdseit (2.25)
r
Substituting equation (2.24) and (2.25) into equation (2.23) gives,
U, = |[Wexdy— [ Tdseit (2.26)
A r

If the traction applied to the body is kept constant we may write,

ou
da

4w, —J- a—dedy—.[Y_"-
r

da ¥ 9a

ds 2.27)

A
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Note: It is known that W /da has a 1/ singularity at the crack tip (where 7
is the distance from the tip) in LEFM because W ~1/r, as r—0. Hence, the
differentiation with respect to the crack length a cannot be directly performed within

the area integral and the divergence theorem cannot be used directly.

Equation (2.27) is an expression for the change in potential energy per unit crack
extension, which can be modified as follows. As shown in Figure 2.2, the coordinate
system can be taken such that the origin is at the crack tip a. If the perimeter I is fixed,

da =—dx and thus d/da=—d/dx . Then,

ou
d 2.28
5 (2.28)

dU —
t (|2 gy + [T
da Y ox S
Using Green’s theorem on equation (2.28), we can eliminate A and express
dU ,/da as a line integral along the perimeter I'. Therefore, equation (2.28) becomes

equation (2.29) and J is now given by equation (2.30), which is the definition of the J-

integral.

Note: It is known that 9W /dx has a 1/7” singularity at the crack tip (where 7
is the distance from the tip) in LEFM because W ~1/r, as » = 0. Hence, Green’s

theorem cannot be used directly.

aUu — Jdu
P — _\Wdv+ T —d 2.29
da 'l- Y 'l- ox > (2:29)
Jdu,
J=|\Wdy—|T —4d 2.30
i y l’ax s (2.30)
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2.1.2 M. F. Kanninen and C. H. Popelar (derivation of J-

integral)

Kanninen and Popelar [41] considered a two-dimensional cracked body bounded

by the curve I'; (Figure 2.3). Let A, denote the area of the body. The segments I, and

I', are the portions of the contour on which tractions and displacements are defined.

The tractions are assumed to be independent of the crack length a and the crack
surfaces are taken to be traction free. Under quasistatic conditions and in the absence of
body forces, potential energy of the cracked body per unit thickness is given by equation
(2.31). By considering the change in potential energy resulting from a virtual extension of

the crack length a, strain energy release rate per unit thickness G given by equation

(2.32).

T ]‘—‘(ﬁ)

r,=TuT,
r=T,0T,

Figure 2.3: Kanninen and Popelat’s two-dimensional cracked body bounded by I';

I =T1(a) = [[WdA~ | Tu,dT 2.31)
4 L,
Gz—ﬂz—ﬂd—WdA+ 7% gr (2.32)
da " da r da
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Note: It is known that OW /da has a 1/ singularity at the crack tip (where 7
is the distance from the tip) in LEFM because W ~1/r, as r— 0. Hence, the
differentiation with respect to the crack length a cannot be directly performed within
the area integral. However, this is done by Kanninen and Popelar, even though they

acknowledge the singularity at the crack tip.

When the crack grows, the coordinate axis moves. Therefore, in performing the
differentiation, a coordinate system attached at the crack tip is introduced in equation

(2.33). Since dx'/da =—1, equation (2.34) can be written.
x=X-a y=Y (2.33)

d_a,mo 0 0 o ala s
da 0da Jdaodx da Ox

The line integration in (2.32) can be performed over the entire contour I'; in the

counterclockwise direction from the lower crack face to the upper one because

du,/da=0 over I'

the region where displacements are specified, and 7, =0 on the

u?

crack faces I', . Applying equation (2.34) to (2.32) gives equation (2.35).

du, du,

G:—ﬂ(a—w—a—wjdmjz(i—ijdr (2.35)
. da  ox ro\da ox

By invoking the definition of strain energy density given by equation (2.2),

equation (2.30) is achieved. Note that this expression applies only when W' exhibits the

properties of an elastic potential. Since 0; =0 ;, use of strain-displacement relationship

for small strains (constitutive relation €; = ou, / axj) in equation (2.306) gives (2.37).

o€.. o€,
oW _ oW 9¢; s g, .36
0x 86‘1:1. 0x Y ox
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ow 0| 1(du Ou, 9 (ou,
"% 5 gL zo-ij_(ij (2.37)
ox ox| 2 ox, dx ox, \ ox
When applying the same assumptions shown in equation (2.36) and (2.37), the
expression shown in equation (2.38) is obtained.

d
oW _ oW 94 =0, i(a—uj (2.38)

a  0g; Erd ax; \ da
Using (2.3) and the divergence theorem in two dimensions, equation (2.39) is
written. Due to equilibrium conditions (90} /dx; =0), equation (2.39) becomes

equation (2.40). Recalling equation (2.38), the expression presented in equation (2.41) is

obtained.

jT ’dF janj%dr J-O'Ugnjdl“ ﬂ (dya—jdA (2.39)

jT —-dl' = jj' . (g‘:jdA (2.40)
jT—’dF ﬁ —dA (2.41)

Substituting equation (2.41) into equation (2.35) gives equation (2.42).

G=(] aa dA - jT ST (2.42)

1—‘(]
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Applying the divergence theorem and multiplying both sides by —1 leads to

equation (2.43). Noting that ndl'=dy and I')=1'Ul’, leads to equation (2.44).

T, =dy =0 on the crack faces I', . Thus equation (2.44) becomes equation (2.45).

Note: It is known that 9W /dx has a 1/7” singularity at the crack tip (where 7

is the distance from the tip) in LEFM because W ~1/r, as »—0. Hence, the

divergence theorem cannot be used directly. However, this is done by Kanninen and

Popelar, even though they acknowledge the singularity at the crack tip.

G= | (Wdy—]}%dl“]
X

I'+I,

aui —
G:l(Wdy— igdl“j—J

2.1.3 Z. H. Jin and C. T. Sun (derivation of J-integral)

(2.43)

(2.44)

(2.45)

In this derivation, the effect of the crack tip stress singularity is considered and

the divergence theorem is properly applied [42]. The derivation of the J-integral done by

Rice in 1968 [38] was based on the fact that J is equal to the strain energy release rate

per unit thickness G given by equation (2.40).

18
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With this approach the derivation of the J-integral done by Z. H. Jin and C. T
Sun is simply to show that the G of the above definition leads to the well known
expression of J-integral. Consider a two-dimensional cracked body shown in Figure 2.4

with an area A, subjected to prescribed tractions 7; on the boundary segment I', and
the prescribed displacements on the boundary segment I' . The whole boundary I, of

the cracked body consists of I',, I', and the crack faces T, .

r,=TuT,
r=r ol
r=r"ul ul
A=A+ 4,

Figure 2.4: Jin and Sun's two-dimensional cracked body bounded by I',

The positive contour direction of I'; is when one travels along it, the domain of
interest always lies to the left of the traveler. The potential energy of the cracked body
per unit thickness is given by equation (2.47), where (X,Y) is a stationary Cartesian
coordinate system. The energy release rate associated with the quasi-static crack

extension is defined by equation (2.48).

M =11(a) = [[Waxay - [ Tu,dT (2.47)
A{) Ft
il d d
G=-" = g Waxay +- - Fj Tu.dT (2.48)
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Consider a small square A, with the center at the crack tip as shown in Figure
2.4. The side length of the square is 2h and the boundary is denoted by I', . The region

of the cracked body excluding A, is denoted by A. Therefore,
G=——{ [[waxay + ] WdXdY} j T dF (2.49)

Because no stress singularity exists in A and along I',, equation (2.49) can be
written as equation (2.50), where the integration along I, is extended to the whole

boundary I'; because T; =0 on the crack faces I', and du,/da=0 on I, .

G:—Lji dXdY+jT dF——J-J-WdXdY (2.50)

A local coordinate system (x,y) attached at the crack tip was introduced in

equation (2.33) leading to equation (2.34) when the filed variables are described in the

local coordinate system (x,y). Use of equation (2.34) in equation (2.50) leads to the

expression presented in equation (2.51).

G= —Ha—dedy+Haa—dedy

% gr - jT dr——ijdXdY

2.51)
+ j T

a
Ty

The third term on the right hand side of equation (2.51) can be written as
equation (2.41). Here the singularity in dW/da (1/r near the crack tip) is a weak

singularity because dA =rdrd@, making the divergence theorem applicable. The use of

20



equation (2.41) in (2.51), and the notion that A — A=A, leads to equation (2.52). Here,

the integration along the whole boundary I'; is reduced to I" because 7, =0 on I', .
G=[[ 2 axay jT s H dvdy L [[waxay 252
) ox da<;

Applying the divergence theorem to the first term on the right hand side of
equation (2.52) yields equation (2.53), whose substitution into equation (2.52) leads to

equation (2.54).

ﬁaa—vrdxdy = IWdy+ IWdy (2.53)
A r Ly

G= dey+dey jT dr+jj dxdy—diijdXdY (2.54)
ClAh

In the region near the moving crack tip, the strain energy density function has

the universal separable form presented in equation (2.55), Where B(a) may depend on
loading and other factors but not on the local coordinates, and w (x,) is a function of
local coordinates only. Now assume that A, is so small that equation (2.55) holds in a

region containing A, .
W:B(a)W(X—a,Y)zB(a)W(x,y) (2.55)

With equation (2.55), the contour integral over I', (second integral) in equation

(2.54) can thus be evaluated as equation (2.56), and the area integral over A, (fourth

integral) in equation (2.54) becomes equation (2.57).

21



dey jB W (~h.y dy+J.B W (h,y)dy (2.56)

IJ‘a_d’“ly = [[B'(a)W (x, y) dxdy 257)

Now evaluate the last term in equation (2.54). Noting that noting that x=X —a,
it follows from the definition of a derivative and the expression presented in equation

(2.55) that equation (2.58) is obtained.

iJ‘J‘WdXdY—hm— ” B(a+Aa)W (x—Aa,y)- B(a)W(x,y))dxdy (2.58)
da

Aa—0 Aa

Letting x*=x—Aa makes the expression presented in equation (2.59) valid. If
the integration over x* is divided into three integrals, equation (2.60) is achieved.

Noting that x* is a dummy variable, equation (2.61) can be obtained.

HW x—Aa,y)dxdy j{ hJ,M x*, y)dx* }dy (2.59)

—-hL —h—Aa

—-h

\ I W(x*,y)dx*+j£W(x*,y)dx*
HW(X—Aa,y)dxdyzj e B dy (2.60)
A

h—Aa

_h+J-Wx*ydx*
L h

ﬂW(x—Aa,y)dxdy =”W(x,y)dxdy+

Wl i ) 2.61)
J[ J- W(x,y)dx— .[ W(x,y)dx}dy

—h|L—h—Aa h—Aa
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When Aa becomes infinitesimally small, equation (2.61) becomes (2.62).

Applying the definition of a derivative, equation (2.63) can be written.

J:[W (x—Aa,y)dxdy = ”W(x, y)dxdy +
K K Aa—0  (2.62)

jl-[W (=h,y)Aa—W (h, y)Aa]dy

—h

B(a+Aa)=B(a)+B'(a)Aa Aa—0 (2.63)

Substitution of equations (2.62) and (2.63) into (2.58) yields equation (2.64).

%HWCZXdY = B'(a) [[W (x, y) dxdy
A A (2.64)

h

+B(a) [[W(~hy)-W () Jay

—h

Substituting equations (2.56), (2.57) and (2.64) into equation (2.54), we obtain,

aMi —
G:JF‘Wdy—Jr‘ngS—J (2.65)

2.2 J-integral Along a Closed Path

Rice [31, 38] considered a closed curve I enclosing an area A" in a two

dimensional deformation field free of body forces under elastic (linear or non linear)

assumptions. The J-integral along I is,

J=[wiy- T, 9 s (2.66)
o L ox
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Using Green’s theorem,
[way= | w dxdy (2.67)
4 T ox

Note: The integrand on the right hand side is again dW /dx . However, this step

is valid. The reason for this validity is that the integration is done over an area A* which

does not need to be the entire area of the body. It only has to be the area (free of

singularities) enclosed by a closed path T". Therefore, this area A” could be the area
enclosed by the closed path shown in Figure 2.5 (page206), which clearly exclude the
crack tip singularity that is present if the crack shown in Figure 2.5 was a sharp crack and

LEFM was considered.

Differentiating the strain energy density, and using small displacement theory,

oW QW 0¢; dE; o 1(0u Ju 0 [au.j
= —0,—L=0,—|=| —+—L||=0,—| =L | (2.8
ox dg; ox " ox  Tox(2|dx; Ox " ox; \ ox

and since do;; /dx; =0,

ow 0 ou,
—=— 0, —* 2.69
ox  ox, [O-” ox J (2.69)

which can be used in equation (2.67) giving,

[ way=] . . (aua—jdxdy (2.70)

Noting that 7, = 0;n; we can rewrite,
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J-Yz.%dsz J-Giini%ds= .[O'ij %nids (2.71)
& ox L0 ox &7 ox

and expanding the terms in Einstein notation gives,

Jdu. ou du Ju ou
F[ T, a—x’ds = Fj (0'11 a—xl +0,, a—;}lds + Fj (0'12 a—xl +0,, a—;}zds (2.72)

which, since dy =n,ds and dx =—n,ds , can be written as,

du, , ou ou du ou
IL[YngS—1:[(0'118—;4'0'21a—;jdy—ll[(o'lza—;+o'zza—xzjdx (2.73)

Using Green’s theorem,

du, , | 9 ou ou d ou ou
1:[7:—615‘ —A[|:$(O'”a—;+0'218—x2j+$(0'128—x1+0'22 a—xzj:|dXdy (274)

which can be rewritten as,

ou, 0 ou.
T—ds=|—| o0,— ldxd 2.75
f['axs ;l[axj(o-” axjdxy ®75)

d du, d ou,

A"

This shows that J-integral along a closed path is zero.
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2.3 Path Independence of the J-integral

Consider any two paths I', and I', surrounding the notch tip as shown as in
Figure 2.5. Traverse 1’| in the counterclockwise sense, continue along the upper flat
notch surface to where I', intersects the notch, traverse I', in the clockwise sense, and
then continue along the lower flat notch surface to the starting point where I', intersects

the notch. This describes a closed contour so that j-integral vanishes. But T =0 and
dy =0 on the portions of path along the flat notch surfaces. Thus the integral along I',
counterclockwise and the integral along I', clockwise sum to zero. J has the same value
when computed by integrating along either I', or I',, and path independence is proven.

The utility of the method rest in the fact that alternate choices of integration paths often

permit a direct evaluation of J .

Figure 2.5: Flat surfaced notch in two-dimensional deformation field
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2.4 Current Computational Procedures Used for

Stress Intensity Factor Calculations

2.4.1 Methods of Determining the Stress Intensity Factor

Many methods of obtaining K-solutions have been developed. These methods
are divided in three categories or stages depending on their degree of sophistication and
the time required to obtain a solution. This is shown in Figure 2.6. For simple
geometrical configurations, or where a complex structure can be simply modeled, it may
be possible to use reference books. When a solution cannot be obtained directly from a
reference book, then one of the relatively simple methods in stage 2 may be adequate

since they will seldom require more than a couple of man-hours to obtain K-values [3].

STAGE 1 STAGE 2 STAGE 3
HANDBOOKS SUPERPOSITION COLLOCATION METHOD
STRESS CONCENTRATION INTEGRAL TRANSFORM
STRESS DISTRIBUTION BODY FORCE METHOD
GREEN'S FUNCTION EDGE FUNCTION METHOD
APPROX. WEIGHT FUNCTION METHOD OF LINES
COMPOUNDING METHOD BOUNDARY ELEMENT METHOD
FINITE DIFFERENCE METHOD
FINITE ELEMENT METHOD

Figure 2.6: Methods of determining the stress intensity factor

Although stage 2 methods cannot produce very accurate solutions, for most
practical crack problems in real engineering structures they can be helpful in obtaining
rough, approximate K-solutions relatively quickly. The use of more than one model
and/or more than one method may enable upper and lower bounds for K-solutions to

the real problem.
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When a particular stress intensity factor is required repeatedly, say for a standard
test-piece, and high accuracy is important, then numerical methods in stage 3 become
necessary. These methods are also essential for complex structural configurations. The
practical application will influence the choice of method. Today the finite element
method is the most widely method for obtaining solutions in fracture mechanics, and
techniques for extracting stress intensity factors fall into one of two categories: (i) direct
approaches, which correlate the stress intensity factors with finite element results
directly, (ii) and energy approaches, which first compute energy release rates. In general,
the energy approaches are more accurate and preferable. However, the direct approaches
have utility and are especially useful as a check on energy approaches because their
expressions are simple enough and hence are amenable for hand calculations. A large
number of different techniques for extracting stress intensity factors using finite element
processes have been presented in the literature. The main 4 techniques are: displacement
correlation (direct approach), virtual crack extension (energy approach), crack tip
opening displacement (CTOD) (direct approach), and the J-integral (energy approach).
An in-depth view of these other techniques using finite element processes, and methods

listed above can be seen in ref. [2, 3, and 5].

Amongst all the techniques mentioned above, the J-integral approach is the most
accurate and hence preferred. The implementation of the method is quite involved. The
displacement correlation technique is the least accurate but is simple enough for hand
calculations. Since it does not require additional terms for cases with crack-face tractions
or body forces, it provides a simple “sanity” check for more accurate techniques to

ensure that they are formulated correctly and are being used propetly.

2.4.2 Special Crack Tip Elements

Early attempts of finite element application on the evaluation of the stress

intensity factors were unsatisfactory, even though a very larece number of elements with
ry, g y larg
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uniform mesh refinement was used. In 1970, Chan and co-workers [6] used classical
triangular elements with first order displacement functions. Chan’s study included the
use of the displacement method and the line J-integral. Determination of stress intensity
factors by employing conventional types of elements was not satisfactory, which was
believed to be due to an inability of the polynomial basis functions to represent the
singular crack-tip stress and strain fields predicted by the theory. Chan did an extensive
finite element study of crack problems using constant stress triangular elements. An

extrapolation of the solution away from the tip was used to estimate K, since the near

tip solutions were not reasonable. They reported K, of an edge-cracked plate under

eccentric loads (gained from extrapolating a solution involving 2000 degrees of freedom)

within 5 percent of the results obtained from a collocation solution.

As a consequence, a new type of finite element was introduced by Tracey in
1971 [20], which introduced the Vr displacement into the shape function representation

and hence a 1/~/r singularity into the strain variation. Singularity triangular elements
were obtained considering each triangle as a four node quadrilateral with two nodes

coincident at the «crack tip and with the displacement function of
u(f,n)=b1+b2\/g +b\JEn +b,n along with the auxiliary constraint u, =u, at the

crack tip, where & and 77 are the elements’ natural coordinates. Singularity triangular
elements were used in the first ring of elements centered about the crack tip. Outside
this, rings of trapezoidal isoparametric elements were employed. The far field consisted
of rectangular isoparametric elements. No incompatibilities of displacement were
introduced along inter-element boundaries. In all isoparametric elements, the
displacement within the element was assumed to be linear. The near tip solutions yield
K, values within 5 percent of accepted values when using the displacement method and
250 degrees of freedom. In these approaches the approximate representation of the

geometry remains the same as in conventional elements.
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Henshell and Shaw [21] and Barsoum [18] independently observed that by
moving 2 of the center nodes of an eight nodded quadrilateral element to a quarter point
position (bring the center nodes closer to the crack tip), a singularity into the mapping

between the element’s parametric coordinate space and Cartesian space is introduced

and the desired 1/4/r variation in the strains can be achieved and the singularity occurs
exactly at the corner of an element. These new type of elements are known as “quarter-
point elements”. It was noticed the stresses and displacements in the elements adjacent

to the crack tip were very poor. Therefore, displacements on the elements adjacent to

the crack tip had to be ignored when calculating K, using the displacement method.

Barsoum [18] however, showed that the 1/ Jr vatiation for strains in
quadrilateral quarter-point elements is not achieved along rays, within the element, that
emanate from the node at the crack tip. He enforced this condition by collapsing a
regular 8-node quadrilateral element into a “triangular quarter-point element” by
coalescing nodes along one side and moving 2 of the center nodes to a quarter point
position [19]. Barsoum [19] showed that triangular quarter-point elements give better
results than 8- node quadrilateral quarter-point elements. In 1977, Hibbitt [22] published
a note showing that the strain energy (and hence the stiffness) of such quadrilateral
elements is unbounded (stiffness is singular if integrated exactly) and in triangular form,
the elements offer bounded strain energy. With these new triangular quarter-point
elements standard and widely available, finite element programs can be used to model
crack tip fields with only minimal preprocessing required. These include: one, two and
three-dimensional quarter-point elements, which are all isoparametric, and can be of any
order and also hierarchical [6]. If the quarter-point geometry mapping is used for
hierarchical elements, then as terms are added to the polynomial order of the element,
additional terms of the LEFM crack-tip fields are modeled. Since then, quadrilateral
quarter-point elements have been used less frequently in practice than the triangular
versions. Hibbitt assertion published in 1977 (stiffness of quadrilateral quarter-point

elements being singular) has been claimed not to be true (Ying in 1982 [27], Banks-Sill in
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1984 [28]). Banks-Sills and Bortman demonstrated that quadrilateral quarter-point
elements have a square root singularity along all rays emanating from the crack tip, but
only in a small neighborhood near the tip, and only if the element has a rectangular
shape. In 1987, Banks-Sills and Einav [29] showed that the region of singular stresses is
slightly larger for 9-noded quadrilateral elements providing the central node is suitably
positioned (at a location on the diagonal between the crack-tip and the far corner,
11/32nds of the distance from the crack-tip). A reason of why quadrilateral quarter-
point elements are less accurate might be that fewer of these elements can be placed
conveniently around a crack tip. With fewer elements, the circumferential variation of
the stress and displacement fields about a crack tip may be less accurately represented

than in the triangular case where more elements can be used.

Benzley [25] introduced the elements known as “enriched elements”. These
involve adding the analytic expression of the crack-tip field to the conventional finite
element polynomial approximation for the displacement resulting also in strain
singularity. These elements will produce an incompatibility of displacements with
adjoining element nodes. Therefore, the analytic expression is multiplied by a smoothing
function that is unity on boundaries adjacent to enriched elements and equal to zero on
boundaries adjacent to conventional elements. Tong, Pian and Lasry [20] introduced the
elements known as “hybrid elements”, which are similar to enriched elements, in the
sense that both approaches are based on assumed displacement near the crack tip. The
major difference is in the method of enforcing the inter-element compatibility of the
displacement variables. Further details on hybrid elements for the solution of crack

problems can be found in ref [206].

2.4.3 Finite Element Techniques for Calculating J-integral

Berkovic [7] starts with the definition of the J-integral given in (2.1). Taking into

account the symmetry of 0;; he writes (2.2) as (2.77), where u; =du, /dx; . In the plane
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problem, normal vector coordinates are given by (2.78) and for isotropic homogeneous
plane stress linear elasticity, the stress tensor is given by (2.79). Substituting (2.77)

through (2.79) into (2.1), a new expression for J-integral is presented in (2.80).

w=Ltou @.77)
2 4 Y
dx, dx,
n =—= n,=———~ 2.78
" ds 2 ds @78
2u
0, = V80, + (1-v)5,68, |u,, 2.79)
(1- V)(ul,Z +u,, )(”‘1,2 - u2,1)
dx, +
Tl 20Uy, oy Uy, —uy )
sl m 2.80)
21-v (1)
—WV)u, u
J‘2 1,17°1,2 dx1
Lo+ V)ul,luz,1 + 2u2’1u2,2

On parts of the integration path that are parallel to the x, axis, dx, equals 0, and

vice-versa, which reduces the amount of calculations required. This is the case of
rectangular paths. For the assumed linear displacement field, the derivative of the
displacement in the tangential and normal direction can be calculated using equation

(2.81), where the normal derivative is an average value.

ou _uy —u, au:l(uK—uM+uJ—uLj 281

o t,—t, on 2\ ng—-n, n,—n

J L

In these expressions, f, and n, are coordinates of point “ K ” in the Cartesian

coordinate system. Also dx, is replaced by x,, —x,, and dx, is replaced by x,, —x,,.
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Finally the integral is replaced with a sum of segments of the observed contour and
noting that a factor of 2 must be introduced because only the upper half of the plate will

be taken into account due to symmetry. Equation (2.80) becomes (2.82).

(1- V)(ul,Z tu,, )(”1,2 - u2,1)
(X, —%,;)
+2(”2,2 tu,, )(“2,2 - “1,1)
P J<K=N-1,N
J=— (2.82)
I-v ,%5»
I=v)u, u,,
+2 (X — Xy )

+(A+V)u, u, | +2u,,u,,

He carries out a dimensionless analysis with a 6 by 6 square plate with a central
symmetrical crack. The applied tensile load is p=1 and the total crack length is 2. Only

one quarter of the plate was modeled using symmetry conditions. A rectangular mesh of
58 elements was used with a total of 8 different rectangular integration paths. The K,
solutions obtained had 1.65%, 1.49%, 0.83 %, 2.81%, 2.48%, 1.98%, 1.65%, 1.65%
deviation from numerical results obtained by Hellen [9], where the first solution

corresponds to the farthest path away from the crack tip, which is the boundary of plate.

Conway [13] evaluated the integral along the specimen boundary I"". Integration
of this path was performed numerically using the finite element method. Nodal density

was used, since the path follows a line of low strain and stress gradient. The integration

is expressed in lumped form where the energy density W, is given in terms of the stress

and strain at element i along I".

J =23 W (b=a.y,)-W,(-a.y)lAy,

: 2.83
+2) [0,..(x; .k DAu(x;,h/2)] &5

W, =—o0¢, (2.84)
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A 4.75in by 10 in plate with 2 collinear edge crack was considered. The plate is
subjected to a uniform tensile stress of 100 psi under isotropic homogeneous plane
stress linear elastic assumptions. Only one quarter of the plate was modeled using
symmetry conditions. Triangular and quadratic linear-strain elements were implemented.

Four different crack lengths were used (2.235 in, 2.111 in, 1.900 in and 1.583 in), which
gave 9.7 %, 1.7%, 2.4% and 3.5 % deviation in the K, results from an analytical solution

developed by Paris and Sih [11].

Sedmak [14] employed isoparametric triangular elements. Constitutive relations
for a isotropic homogeneous linear isotropic body, as well as strain-displacement
relationship for small displacement gradients were used. For the plane problem the final
relation for J-integral is a function of displacement gradients only given by equation

(2.85), where k, and k, are constants characterizing the type of the problem. This is the

very same approach taken by Berkovic [7] and equation (2.85) is exactly equation (2.80).
_Hu
7= [{F,dy+F.dx} (2.85)
r

where

Foop Qv _dujfdv ou) [Ou v du_ Ov
© Moy ox )lay ox dy odx )l dy ox

o[ g (202 (200
’ ox dy Ox dx ox dy

k, = 24-v) k,= ! ; for plane strain
1-2v 1-2v
k, = 2z k, = v ; for plane stress
I-v 1-v
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The displacement gradients were calculated directly from the known
displacement field. Under the assumption of a linear variation of displacements in the
clements, the integral in equation (2.85) was transformed into a sum suitable for
calculation. This is given in equation (2.86), where FY and FX are the expressions

multiplying dy and dx in equation (2.85), respectively, which are constants inside an
element since linear variation of displacements was assumed. The terms y,, and x,, are

the differences of the coordinates of points K and J along the integration path, and N

is the number of elements along the integration path.

N-1,N

D> (FY.y +FX.xy) (2.86)

Jo b
2,532

A dimensionless analysis was carried out using a double edge cracked tension 2

by 2 plate under isotropic homogeneous plane strain linear elastic conditions. The
applied load is 1, the crack length is 0.5, the young modulus being 1, poisons ratio of 0.3
and a unit thickness. Only one quarter of the plate was modeled using symmetry
conditions. Five meshes were tested. All of them obtained by adding one new layer of
elements in the lower half of the domain (rapid mesh refinement). Only one integration

path was used. Meshes with 32, 44, 60, 84 and 108 elements were created obtaining K,

values of -13.12%, -7.13%, -4.73%, -3.54%, -2.94% deviation from a result reported by

Hellen in 1973 obtained using crack extension method [15].

Li Shih and A. Needleman [16] (using the principles of virtual crack extension)
showed how the contour J-integral can be transformed to an equivalent area integral, and
has been shown by Banks-Sills and Sherman in 1992 [17] to be objective with respect to

the domain of integration. The area form of the integral is,

J:J.{o;.%—W§ }%dA (2.87)
A

1
Y ox, ! |ox;
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where O; is the Kronecker delta and ¢, is sufficiently smooth function (a

weighting function) defined over the domain of integration. Physically, g, can be

thought of as the displacement field due to a virtual crack extension. The domain of
integration can be defined in two ways. Either an annular region that surrounds the crack
tip (Figure 2.7a), or the inner contour can be contracted all the way to the crack tip
(Figure 2.7b). The later case where only crack tip elements are used in the integration is
particularly convenient to implement in a finite element program. These cases are
conceptually similar to the virtual crack extension, but no actual physical displacements
are imposed. The ¢, function is defined by prescribing nodal values that are interpolated
over elements in the domain using the standard shape functions as shown in equation
(2.88). Other quantities in equation (2.87) are easily computed in a finite element context

using equation (2.89).

dq ON.
q, z i axj z axj 4, (2.88)
1
W= Ediigii (2.89)
1 X5
1
P Xy X

b.

Figure 2.7: Domain of integration for an equivalent domain evaluation of J-integral

The g, function should have a value of one on the inner contour of the domain,
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(Figure 2.7a), or the crack tip, (Figure 2.7b), and have a value of zero on the outer
contour of the domain. A linear spatial variation is usually assumed between the two
contours. For an eight nodded, isoparametric element, Banks-Sills and Sherman [17]
used equation (2.87), where & and 7 are the coordinates of the parent element and ¢,
are the values of g, at the element nodal points. In their investigation, 2 eight-node

quarter-point elements at the crack tip were used and the rest of the mesh was composed

by eight-node isoparametric elements. Virtual crack extension is shown in Figure 2.8.

6= 2 N(&may (2.90)

1582 1 \2
(2) (b)

Figure 2.8: Mesh (a) before and (b) after virtual crack extension

For the specific case with 2 eight-node quarter-point elements, if the domain of
integration is these 2 crack tip elements only, and 8-nodded quarter-point elements are

used, the nodal values for g, should be 1 at the crack-tip node, 0.75 at the quarter-point

nodes, and 0 at all other element nodes as shown in Figure 2.9. This maps the nodal
points of the quarter-point elements during the virtual crack extension to positions such

that the distorted element remains quarter-point. Other choices of ¢, lead to less

accurate results [17].
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Figure 2.9: g, values for crack-tip parent element of element 1 shown in Figure 2.8

It is possible to implement the area J-integral over a region larger than the two
elements adjacent to the crack tip. If this is the case, then the deformed elements due to
the virtual crack extension will be the ones along the integration path. Elements inside,
but not along, the integration path are translated but not deformed. For this case, a

proper definition of ¢, is required. Banks-Sills and Sherman showed that nearly the

same results are obtained whether integration is performed over two elements or many.

L. Banks-Sills and D. Sherman [17] considered a central crack and a single edge
crack plate where a/b is 0.5 and h/b being 1. Here a is half the crack length for the
central crack, and the total crack length for the single edge crack, b is half the width of
the plate for the central crack, and the total width for the single edge crack, and finally &
is the total height of both plates. For the central crack problem, only a quarter of the
plate was considered and for the single edge crack case, half the plate was considered due
to symmetry. In both cases, the same mesh was used, which included 100 rectangular
elements, two of them being quarter-point elements. Six different integration paths were

chosen, the smallest one being through the quarter-point elements. For the central crack
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case, the deviation between K, calculated based on the line form of the J-integral and an
exact solution [35] is 0.30%, 0.37%, 0.37%, 0.75%, 1.27% and 24.81%, the first one
being along elements at the boundary of the plate and the last one along the two quarter-
point elements. Based on the area form of the J-integral, the deviation is 0.30%, 0.30%,
0.30%, 0.30%, 0.30%, 0.22%. For the edge crack case, the deviation between K,
calculated based on the line form of the J-integral and a numerical solution [36] is 0.18%,
0.25%, 0.32%, 0.75%, 1.26% and 32.42%. Based on the area form of |, the deviation is
0.21%, 0.21%, 0.21%, 0.21%, 0.21% and 0.14%.

Prasad Pondugala [34] starts with the definition of J-integral given by equation

(2.1). The path was selected such that it always coincides with &=¢& , = constant, as

shown in Figure 2.10. A unit normal n to the contour I' (contour along which the J-
integral is evaluated) is defined. In order to do this, two vectors A and B were defined
along & = constant and 77 = constant . The cross product of the vectors A and B gives
the unit vector that is normal to these two vectors which is perpendicular to the plane of
the element. This vector is given by equation (2.92). Now, the vector normal to the
contour I' which is along the curve defined by & = constant is obtained by the cross
product between vectors C and A. This is vector D and given by equation (2.93), and
the unit vector is given by equation (2.94). The elemental arc length ds along the cutve

& = constant is given by (2.96).

ox dy dx dy
Al =|— =20 : B =|—.2.0 2.91
{877 o } {aﬁ 2 } @0
0x dy dy ox
c'=00,| ——=-—2—2 2.92
[ (877 2 an afﬂ 272
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X &=E =+1 = constant
» P

14

Figure 2.10: Gauss point numbering sequence

dy(dydx ardy
dn\dn dg dndé
p=)ox[dxdy Odydx (2.93)
dn\adndg dndé
0
n" =[n.n,,0]= D i D, , 0 (2.94)
D’ +D, D’ +D,
dy=a—yd7]; dx=ﬂd7] (2.95)
an an
2 2
ds =+Jdx* +dy’ = \/(Qj +(a—yj dn (2.96)
on on

The study is restricted to isotropic homogeneous plane stress linear elasticity, and
substituting equations (2.94) and (2.96) into the definition of J-integral, equation (2.97) is
obtained and the numerically integration is achieved by equation (2.98), in which
NGAUS rtepresents the order of Gaussian numerical integration and I is evaluated at

the Gaussian sampling points fp and 77,. The term W, is the weighting factor
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cotresponding to 77,. The J-integral is obtained by accumulating the contributions from

all sampling points by equation (2.98) from the path fp = constant through all the

neighboring elements around the crack tip.

ou ou dv ov | dy
0,—+0, | —+— |+0, — |[==
ox “lady ox Yy |on
1 1
J = j —{(O'Hn1 +axyn2)%+ dn = jldn (2.97)
—1 X -1
ov ax Y dy ’
(nynl + O'yyl’lz )a— a— +| —
x ]\\on) o7
J = by 1 14 2.98
Z (fp’nq) q ( ’ )

q=1

A plate of unit thickness with a central crack subjected to uniform tensile loading
was considered. Height, width and crack length are 24 =50, 26=20 and 24=8
respectively. A Young’s modulus of E =10,000 and Poisson’s ratio of v =0.3 were
used. Due to symmetry, only a quarter of the plate was modeled. A total of 20 eight-
node isoparametric elements were employed. Three different element paths (Element
path 3 being closer to the crack tip) were considered, and through each of these element
paths, three J-contours were obtained, corresponding toé=-1, £=0 and &=+1
(& =—1 being closer to the crack tip). The solutions obtained were: for element path 1;
2.12,1.02 and 1.84 % deviation, for element path 2; 2.38, 0.85 and 2.05 % deviation, and
for element path 3; 5.73, -1.06 and 3.48 % deviation from previously reported numerical

results [37].
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2.5

Remarks on Chapter 2

It is important to clarify a very important misconception. The J-integral is
thought of as a nonlinear elastic equivalent of the strain energy release rate ,G ,
per unit thickness. This statement has been encountered in the published
literature [1, 3, 42] and has lead to the belief that G is only valid for linear elastic
behavior. In all three derivations presented in this work, it is shown that J-
integral is equal to G by definition. Furthermore, G arrived from Griffith’s
energy balance approach, which is valid as long as the behavior remains elastic. It
does not have to be linear [1, 3, 42]. Griffith showed that for the case presented

in Figure 2.1,

o
G= Z a ; isotropic homogeneous plane stress (2.99)
linear elasticity (infinite medium)
‘a
G= (1 - VZ) ; isotropic homogeneous plane strain (2.100)

linear elasticity (infinite medium)

It is also important to mention a major contribution made my Irwin. He
modified Griffith’s theory by introducing the stress intensity factor K and

presenting the “Irwin relationship”,

K2
G= EI ; isotropic homogeneous plane stress (2.101)
linear elasticity (infinite medium)
2
G= (1 —V2) é ; isotropic homogeneous plane strain (2.102)

linear elasticity (infinite medium)
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Now, equations (2.99) through (2.102) are valid only for isotropic homogeneous
linear elastic behavior, but the concept of G is always valid as long as the

behavior remains elastic. Furthermore, we note that since J equals G, we may

write J =G =K,/ E for isotropic homogeneous plane stress linear elasticity,

and J =G=(1—V2)K 2 1E for isotropic homogeneous plane strain linear

elastic behavior.

A second issue to be discussed is Kanninen and Popelar’s flawed derivation of
the J-integral pointed out by Jin and Sun’s work. The differentiation with respect
to the crack length a has been performed within the integral signs and the
divergence theorem has been used to evaluate the area integral. This is shown in
equation (2.32). However, it is known that W /da has a 1/7” singularity at the
crack tip (where r is the distance from the tip) in LEFM because W ~1/r, as
r — 0. Hence, the differentiation with respect to the crack length a cannot be
directly performed within the area integral and the divergence theorem cannot be
used directly. This is the reason why in equation (2.49), the area of integration
A, is divided into A and A,, where A, is the area containing the singularity.
Following the same reasoning, the very last step of Ewarlds and Wanhill’s
derivation is also flawed, more specifically equation (2.29). In this case, it is

Green’s theorem that is not applied propetly.

Equation (2.67) also shows the use of Green’s theorem, and the integrand on the

tight hand side is again dW /dx . However, this step is valid. The reason for this
validity is that the integration is done over an area A~ which does not need to be
the entire area of the body A, . It only has to be the area (free of singularities)
enclosed by a closed path I Therefore, this area A” could be the area enclosed

by the closed path shown in Figure 2.5, which clearly exclude the crack tip

singularity that is present if the crack shown in Figure 2.5 was a sharp crack and
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LEFM was considered. Of course, if a smooth crack tip was considered, then the

area of integration A" could very well be the entire area of the body A, .

As stated before, J-integral along a closed path is zero. A direct consequence of

this is the proof of J-integral path independence. A key step in this proof is that

T =0 and dy=0 on the portions of path along the flat notch sutfaces. If the

notch considered was not a flat one, T =0 would still hold along the notch
surfaces, but dy would not be zero. This means that the J-integral is only path
independent if the section of the notch where J-integral values are computed is
flat. Furthermore, the validity of this proof is only granted if two-dimensional
deformation fields of materials exhibiting linear or nonlinear elastic behavior

(reversible process) are considered.

Clearly the integration path I' might be shrunk to the tip of a smooth-ended

crack T, and since T =0, the J-integral would be the averaged measure of the
strain on the crack tip J = dey. This is not meaningful for a sharp
FT

crack. However, the treatment of blunt cracks is beyond the scope of this work.

The J-integral is the strain energy release rate per unit thickness, or the rate of
change of the total potential energy for a crack extension in elastic materials
under quasistatic conditions. Its path independency allows calculation along a
contour remote from the crack tip. This is what makes the J-integral concept so
attractive. The primary interest in discussing nonlinear materials lies with elastic-
plastic behavior, particularly in relation to elastic-plastic fracture mechanics
(EPFM). Contours can be chosen to contain only elastic loads and
displacements, and the J-integral concept can be used in EPFM. Thus an elastic-

plastic energy release rate can be obtained from an elastic calculation along a
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contour for which loads and displacements are known. However, the extension

of non-linear elastic to elasto-plastic behavior is beyond the scope of this work.

Many methods of obtaining K-solutions have been developed. Amongst all the
techniques mentioned above, the J-integral approach is the most accurate and
hence preferred. The implementation of the method is quite involved. The
displacement correlation technique is the least accurate but is simple enough for
hand calculations. Obtaining solutions for the J-integral in actual specimens turns
out to be difficult. Some closed form expressions have been developed for very
few standard specimens, however it is generally necessary to use computational
methods such as finite element techniques. Using finite element processes, the J-
integral concept can be used in LEFM to calculate stress intensity factors in

structures that do not posses a closed form solution for K, and compare them

with critical stress intensity factors K. .

Special treatments and complicated modifications to Rice’s original J-integral
expression are being employed in the currently used computations to circumvent
or alleviate the errors introduced in the J-integral computations. In addition,
since theoretical solutions of singular BVP are not analytic at the crack tip due to
the fact that solution gradients approach infinity at such points, quarter point
elements, special basis functions and other special crack tip elements that
incorporate the strength of the singularity are also utilized in the currently used

computations.
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Chapter 3

EQUATION CHAPTER 3 SECTION 1
Mathematical Models, Finite
Element Formulations and J-integral
Computations in A,p,k Framework

3.1 Mathematical Models

In the development of mathematical models we assume linear elasticity (i.e. small
deformation, small strain) and hookean constitutive equations with isotropic and
homogeneous material. We further assume the matter to be incompressible, i.e. volume-

preserving, and hence the density remains constant during deformation. Due to linear

elasticity assumptions, the deformed coordinates {Y}Z[f,y,f]t and undeformed

. t . . . . .
coordinates {x}=[x,y,z] of a material particle remain the same. Hence the Jacobian is,

1= 225 o)

X, 52
Therefore,
=1 (3.2)

Thus, for this type of of deformation, Lagrangian and Eulerian descriptions are

identical.
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Continuity Equation:

Conservation of mass during deformation yields,

pdV = pdV (3.3)
Since dV =|J|dV =dV due to (3.2), equation (3.3) reduces to,

p=p (3.4)

Momentum Equations:

Let {ul} =u=u= [u,v,w]rbe the displacement of a material particle P(x, Yy, z),
{vl.} =y=v= [vx, V..V, T be its velocities given by equation (3.5), and
Fb = [Fxb, Fyb,FZb ]t be the body forces per unit mass in x,y,z directions. The

application of Newton’s second law to a control volume dV (or dV) gives the

momentum equations (3.6).

ou,
v, =—= 3.5
=, (3-5)
Y Voo Fp=0 (3.6)
ot
Substitution of equation (3.5) into equation (3.6) gives,
Zu ~
p?—V.G—F”pzo (3.7)
t
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which in Einstein notation can be expressed as equation (3.8).

2y, do,
paa;‘—g’*’—Fihpzo; i,j=1,23 (3.9)
J

In equation (3.8), 0; are Cauchy stresses. If we consider a stationary process

(invariant of time), and two dimensional elasticity, i.e. i =1,2 and j=1,2, then equation

(3.8) reduces to equation (3.9).

O b ..
+F p=0; i,j=12 (3.9)

Constitutive Equations:

The constitutive equations are a relationship between Cauchy stresses 0;; and

Cauchy strains &, . For hookean solids we can write,

0

= Cjuu (3.10)

in which ¢, is a fourth order tensor containing material behavior. For isotropic,
homogeneous linear elastic solids (i.e. hookean), equation (3.10) reduces to (3.11) or

(3.12), in which [C]=[D] .

(o} =[D]{e) G0

{e}=[Cl{o} (3.12)
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The stress and strain vectors are given by,

{o}=[0,.0,.0..7,.7,.7,] (3.13)
{e}= [Em, E € Vs Vs Ve ]l (3.14)
where

¥y =2¢ (3.15)

For a 2-D case (x,y plane), equations (3.13) through (3.15) are reduced to:

{o}=[0,.0,.7,] (3.16)
{e}=[e.8,.7, ] (3.17)
where

Ve =26, (3.18)

For two dimensional linear elasticity the strains are given by,

ou du du dv
E ox’ En dy’ Vo dy ox G-19)

The material matrix [C ] for 2D plane strain linear elasticity can be written as,
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¢, C, C, (14v) I-v v 0
[Cl=|C. Co Cy|=2—| v 1-v 0 (3.20)
C31 C32 C33 O O 2

in which, E is modulus of elasticity and V is Poisson’s ratio. The material matrix

[D] is obtained by taking the inverse of [C ] and is given by equation (3.21).

D, D, D;, I-v v 0
E
D|(=|\D, D, D,|=———F——| Vv 1-v 0 3.21
[ ] 21 22 23 (1+V)(1—2V) ( )
D, D, D, 0 o L
2

In Einstein’s notation, we can consolidate these equations in a compact form,

0.

—L+F'p=0; i,j=12 (3.22)

ox;

O = Ciu€y (3.23)

g, =L P, O |, k=12 (3.24)
2\ dx,  dx,

It can be shown that the relation presented in equation (3.23) is reduced

o, =D, €&, where the indices 1,2,3 in the stresses and strains represent Xxx,yy,Xy
tespectively. D, is the same as D, except D;; =2D,; due to €. Equations (3.22)

through (3.24) provide complete mathematical description of the mathematical model

for 2D plane strain linear elasticity.
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3.2 Differential Forms of Mathematical Model

Suitable for Finite Element Formulations

The specific form of partial differential equations (PDEs) in the mathematical
models is important in constructing the finite element computational processes. We

describe two such forms in the following that are used in the present work.

3.2.1 Strong Form of Governing Differential Equations

If we substitute £, from (3.24) into (3.23), we obtain,

1 ou, du,
== Cy | — = 3.25
%y =7 ( ox, ox, j 625)

Now, we can substitute 0, from (3.25) into (3.22). Then we obtain,

0|1 ou, du, b
—| =cy| =5+=—L||+FE'p=0 3.26
0x; (2 o ( ox, ox, D P 520

Equation (3.20) is a system of second order PDEs in displacements uand v.

The expanded form of (3.20) is given by,

0 ou o) d du dv b
2D, %sp, 2+ p, | 2+ |+ Frp=0
ax( ! 8x+ lzayj-l_ay( 33(8y+8xD+ P

0 ou v 0 ou ov b
DI | L2+ 2 p, %D, 2 |+ Fp=0
ax( 33(ay+8xn+8y( 2ok ”ayj+ »P

(3.27)
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Since D, are constant,

0’u 0’u 2%y

D11¥+D3 er(Dlz +D33)W+ Flp=0
(3.28)
9%y % o’u
Dy, y"'DzzW"’(Dlz +D33)%+Ffp =0

Both, equations (3.27) and (3.28) are a system of second order PDEs in
displacements u and v. These will be referred to as strong form of GDEs. Symbolically

we can write either one of them as,

A®-F=0 (3.29)
3.2.2 Weak Form of Governing Differential Equations

The weak form of GDEs is a system of first order PDEs in the dependent

variables. The incentive for constructing these is to be able to utilize C* local
approximations in the finite element processes (see chapter 4). We note that the
equations derived in section (3.1) are a system of first order equations. Thus in this case

we can use equations (3.22) and (3.25),

99, |
- tFEp=0
ox;

o =L, [du  ou
oM oy, o,

Equations (3.30) is a system of first order PDEs in displacements uand v and

(3.30)

stresses O

xx

0,, and 7 . The expanded form of these equations are given by,
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3.3

do._ 0JT, b
X+ —=+F p=0 3.31
x> oy o P (3.31)
% 9% oy 0 (3.32)
ox  dy P '
c.=D, ou, D, » (3.33)
ox dy
ou ov
Oy = Dy Dn EN (3.34)
ou dv
T =D, —+— 3.35
Xy 33 (ay axj ( )
Symbolically we can write,
AP-F=0 (3.36)

Description of the Boundary Value Problem
Associated with the Mathematical Model in

Section 3.1

From section 3.2, the mathematical models can be written in two alternate forms,

A®-F=0 inQ (3.37)

AP-F=0 inQ (3.38)

where Q is the domain, and Q = QUT'; T being the closed boundary of Q.
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For both forms of GDEs, we consider the following boundary conditions (two-

dimensional case).

u=1u
° on T, (3.39)
V=Y,
o.n +t,n, =t
on I, (3.40)

— t . . .
where ['=I", UTI',, and {ii} = [nx,nv] is a unit exterior normal to I',, and ¢,

and f, are tractions in x and y directions. The details are well known and are omitted for

the sake of brevity [53].

In equation (3.40) we can also substitute second equation of (3.30) to obtain
these in terms of gradients of u and v. This form of (3.40) is in fact needed if the strong
form of GDEs (3.37) are used. Thus, we have two alternate descriptions of the two-

dimensional BVP describing two-dimensional plane strain linear elasticity.

3.4 Finite Element Formulations of BVP Described

in Section 3.3

Based on references [48, 49, 50], it can be shown that the differential operator A
in the strong form of GDEs (3.37) is self-adjoint. Hence, (i) the integral form resulting
from Galerkin method with weak form is variationally consistent (VC) when the
functional B(.,.) is symmetric. (ii) the integral form resulting from least squares process
is also variationally consistent (VC). (i) The integral forms resulting from all other

methods of approximation are variationally inconsistent (VIC).
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The differential operator A in the weak form of GDEs (3.38) is non-self-

adjoint, hence the integral forms resulting from all methods of approximation except
least squares process are variationally inconsistent [48, 49, 50]. The variationally
consistent integral forms yield algebraic systems in which the coefficient matrices are
symmetric and positive definite with real basis and have eigenvalues greater than zero.
Such algebraic systems ensure a unique solution. VIC integral forms on the other hand
yield algebraic systems in which the coefficient matrices are non-symmetric which may
have partial or completely complex basis and the same holds for eigenvalues. A unique

solution from such algebraic systems is not always ensured [48, 49, 50].

Based on the above discussion, we only consider (i) Galerkin method with weak
form for the strong form of GDEs (3.37) with boundary conditions (3.39) and (3.40) (i)
Least square method for strong form of GDEs (3.37) as well as weak form of GDEs
(3.38) with boundary conditions (3.39) and (3.40). In both cases we have VC integral

forms.

3.4.1 Discretizations and Approximations

Let Q" =UJQ¢ be a discretization of Q in which Q° = Q¢ U is an element e

and I'® is the boundary of the element. Let @, be the global approximation of ® over

Q" and @ be the local approximation of @ over Q°. Then, ®, =U®¢ . Furthermore,

let @€V, be an approximation of ® over Q° in which V, is subspace of an

appropriate scalar product space. @ is a vector of dependent vatiables which are u and

v in case of the strong form of GDEs (3.37) and u, v, 0, 0, and 0, in case of the

weak form of GDEs (3.38).
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In the following we present details of constructing integral forms using the
Galerkin method with weak form for strong form of GDEs (3.37) and the least square
method using strong form of GDEs (3.37) and weak form of GDEs (3.38).

3.4.2 Galerkin Method with Weak Form Using Strong Form
of GDEs (3.37)

We consider the strong form of GDEs (3.27),

0 ou ov) 0 ou dv b
—| D,,—+D,— |+—| D,,| —+— F’'p=0 3.41
ax( 11 ax+ lZayj—i_ay( 33(ay+aij+ xp ( )

0 ou Jdv 0 ou ov b
i |2 2L p, D, L Frp=0 3.42
ax[ 33(8y+8x]j+8y( 2 8x+ ”ay}r P (5:42)

which can be written as,

AP+F'p=0, ADP+F p=0 with ®=[u,v] (343

with boundary conditions,

u=u,
on I'| (3.44)
v=y,
DMa—M+D12ﬂ n +D., a—u+@ n =t
ox dy “\dy ox)’
on T, (3.45)

ou v ou ov
l)33 (g'ngnx +(D12g+ Dzzgjny = ty
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t A ! pa . .
Let ®, =[u,,v,] over Q" and & z[uz,vﬂ over Q° be approximations of

q)z[u,v]t.

In the Galerkin method with weak form over Q' we begin with (based on

fundamental lemma [51, 52, 53]),
(A®,+Fp . w), =0 (3.46)
(4,2, +Fp . w,), =0 (3.47)

where w, and w, are test functions such that w, =du, and w,=0Jv,.

Performing integration by parts once, we obtain,

B, (uh’vh;wl):ll (Wl) (3.48)
B, (uh’vh;WZ)ZZZ(WZ) (3.49)
where
ow 0 v ow, 0 v
Bl(”h’vh;wl)zi[a_xl(l)n%"' 12 a_;j+a_)il(D33 (ai;+a_;jjjdg (3.50)

ow 0 v ow 0 v
B, (1, v,5w,) = J'[a—xz{p33 (aithra_;DJra_yz(D”%JrD”a_yhj}Q (3.51)

ﬁT

L(w)=Pwqidl+ [ F!pwdQ (3.52)
r or
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L(w,)=$w,gldl+ [ F! pw,dQ (3.53)
r or

where the secondary variables ¢, and g are,

0 ou, v, ou, v

q" :(D“a—);+D12 a}i an+D33(a)j +a—;]ny (3.54)
. ou, dv ou ov

qy = l)33 (a—;+a—;J l’lx +(D12 a—;‘i‘ D22 B—;J l’ly (355)

The integral forms (3.48) and (3.49) are weak forms of (3.46) and (3.47).

Equations (3.48) and (3.49) over Q' containing M elements can be written as,

M M

> B (w5 i) =200 () (3.56)
e=1 e=l1

M M

> By (v 5 wh) =D 15 (w5) (3.57)
e=1 e=1

where B{( .;. )=0(.) and B;( .;.)=L( . ) hold for an element e,

and w{ =0u; and w; =Jv;.

Approximation Spaces and Local Approximations

In this section we discuss approximation spaces and local approximation for u

and v over Q°.
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First, we consider integrals in (3.46) and (3.47). Since the operators A,
and A, contain derivatives of u and v up to second order, the
continuity of integrand over Q' requires ®, € C”(Q") ; J=2 in
which J =2 is minimally conforming. When J =2 the integrals in

3.46) and (3.47) are Riemann. If we maintain ®°e C”(Q°); J =2 in
h

(3.56) and (3.57), then @, e C”(Q") obviously holds. In this case
(3.46) and (3.47) can be recovered from (3.48) and (3.49) by reverse

integration by parts. All integrals in the entire process are Riemann with

this choice of @ .

If we just consider the integrals in the weak form (3.48) and (3.49)
obtained after performing integration by parts once, then the continuity
of the integrand requires P, e c” (f_ZT) ; J 21 in which J=1 is
minimally conforming i.e. lowest value of J for which the integrals are
Riemann. With the choice of J 21 the integrals in (3.48) and (3.49) are
Riemann for all values of J. However, when J =1, the integrals in
(3.46) and (3.47) are Lebesgue. In this case (3.46) and (3.47) are not
recoverable precisely form (3.48) and (3.49) by reverse integration by
parts. That is we can only go from (3.46) and (3.47) to (3.48) and (3.49)
assuming Lebesgue measures in (3.46) and (3.47). Naturally coming back
from (3.48) and (3.49) to (3.46) and (3.47) also requires similar

assumption.

If we choose ®¢ e C” (Q°), then the integrals in the weak form (3.48)

and (3.49) are Lebesgue and we cannot go back to (3.46) and (3.47) by

reverse integration by parts.
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“ Thus, we see that there ate numbers of different choices for @

approximation. However, only once choice, ®§e C” Q°); J=2

maintains all integrals Riemann and provides mathematically consistent
formulation in which all integral forms are equivalent and precise in the

sense of calculus of continuous and differentiable functions.

5) Since the operators A, and A, both contain derivatives of u# and v up
to second order, we can choose equal order equal degree approximation
for both u and v i.e. the approximation spaces for u, and v, can be the

same. Based on references [48, 49, 50], we can write,
i eV, e H(Q)={w=w| . e C(Q)w=w|.e P"(Q);p>2k-1k=3}(3.58)

and we can write,

u = z NP Q!

i=1

; NT7(Q)eV, (3.59)
V= 2N @
i=1
with this choice,
wo=w=N""(Q) ; j=12,..,n (3.60)

Since local approximation functions N/ ""(Q)eV,; u eV, and v eV,

naturally holds.

From (3.59) and (3.60) we can substitute in the weak form and obtain element

matrices and vectors. The details are standard and hence not presented here.
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3.4.3 Least Squares Finite Element Processes

In this section we consider least squares finite element formulations using strong
form of GDEs (3.28) as well as weak form of GDEs ((3.31) - (3.35)). The details of the
least squares process are identical regardless of the type of GDEs, only the choice of
local approximations is effected. In the following we present details of least squares

method applicable to both forms of GDEs.

Let @, be an approximation of @ in Q" and let ®¢ be an approximation of

® over Q°. Then by substituting @) in these GDEs we obtain element error or

residual equations.
E(®) V x,yeQ° ; i=12,.,ne (3.61)
ne is the number of equations.

(i) Existence of functional I(®,)

ne

(D)= i[ﬂ = f“ (Ef . EY) (3.62)

e=] i=l

Thus, the existence of the least squares functional is by construction.
(ii) Necessary condition
If I(®,) is differentiable in P, , then,

SI(P,)= f“ 3 (Ef,6E)=0 (3.63)

=1 i=1

Q
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is a necessary condition for an extrema of (3.62).

(iii) Sufficient condition or extremum principle

If I(®,) is differentiable twice in ®,, (noting that §°E =0 since the operator

is linear) then,

M ne

S 1(@,)=> > (SE.0E)>0 (3.64)

e=1 i=l

is a unique extremum principle and @, from (3.63) minimizes I(®,) in (3.62).

The minima of I(®,) is zero. When I(®,) >0, Ef -0 V x,ye Q°, ie. GDEs are

satisfied in the pointwise sense.

In the case of the strong form of GDEs, we have:
t
@5 =|u;,v; | (3.65)

and the element residual equations V' x,ye Q° are:

2 e 2 e 2. e

. u 0u 07y
E =D, axzh + D, ayzh +(D12 +D33)?£C+Fxhp =0 (3.66)

. aZve aZve aZue
E2:D33$2”+D22?2’1+(D12+D33)KB;+F;’IO:O (3.67)

In this case ne=2.
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In the case of the weak form of GDEs, we have,

t
®; =| u;,v;,(0,);,(0,,);.(0,); ] (3.68)
Therefore ne=>5.

It has been shown that equal order equal degree local approximation does yield a
convergent least squares process. Thus local approximations for displacements and

stresses can be easily written (similar to (3.59)). The element residual equations

Y x,ye Q°are,

e a ¢
Ele _ 8(6xx)h + (O-xy)h + Fxbp (369)
ox dy

do,), o p
Ei= @ 9O F'p=0 (3.70)
ox dy !

ou; v,

E3e Z(O'M)Z _DII%_DIZ a\;f (3.71)
ou; vy

E,=(0,),—D, %—Dzzaly” (3.72)
ou; dv;

ES=(0,), —Dgg( 5;’ +%) (3.73)

Approximation Spaces and Local Approximations

The main issue here is the choice of the class of local approximations that
influences whether the integrals are Riemann or Lebesgue. We discuss this in the

following.
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In the case of the strong form of GDEs, ®, € C”(Q") ; J =2 ensures
the integrals to be Riemann in the LSP and J =2 corresponds to the

minimum order of continuity. When J =1, ie. ®, of class C", the

integrals in the LSP are Lebesgue therefore C*(Q") approximations are

not admissible in the LSP utilizing strong form of GDEs.

The weak form of GDEs are a system of first order PDEs in
displacements and stresses. The problems associated with these types of
PDEs have been discussed by Surana et al [54]. Nonetheless, we consider

the LSP for the weak form of GDEs due to the fact that in this case we
do have a convergent finite element process. When &, e C 7@Q"y;
J 21, the integrals are Riemann and J =1 corresponds to minimally
conforming order of global differentiability. If we choose ®, € C” Q"

then all integrals in the LSP are Lebesgue.

The choice of the order of global differentiability has been discussed by Surana

et al [48, 49, 50]. The authors have shown that the order of global differentiability
ensuring Riemann integrals is highly meritorious over those in which the integrals are in

the Lebesgue sense.

3.5 J-integral Computations in h,p,k Mathematical

and Computational Finite Element Framework

3.5.1 J-integral Proposed by Rice [31]

In this section, first we revisit J-integral derivation proposed by Rice [31] to

better understand its wvalidity in context with numerically computed approximate

solutions of the BVDPs. Let,
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W =W(x,y)=[o,de, (3.74)
0

be the strain energy density function in which €; are components of an

infinitesimal strain tensor [8] . Based on Rice [31], we consider the following integral,

J= j(Wdy —dl“j (3.75)

where I' is a continuous and differentiable curve surrounding the crack tip. The
integral is being evaluated in counterclockwise sense starting from the lower flat notch
surface and continuing along the path I to the upper flat surface. T is a traction vector
defined according to the outward normal along I', T, =0yn;, u is the displacement

vector and dI' is an infinitesimal arc length segment of I".

To prove path independence of J-integral, consider any close contour I
enclosing an area A" in a two dimensional deformation in the absence of body forces.

An application of Green’s theorem to (3.75) along I gives (after substituting for T),

d du,
J= FI(Wa?y drjz Aj ( o gj(aﬁ a—”;jjdxdy (3.76)

but

oW oW g,  9g
= =0, 3.77
ox oz, ax ) ox 70

1 au auj
L= —4+—L 3.78
& Z(Bx.-l_ax.] (5.78)

J 1
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a—(ax j+§(a—&ﬁ (3.79)

0

w_1 i(a” j+ J [ o4 (3.80)
ox 2 ox;\ dx ) ox ax
oW 0 (du,
—=0,—| —- 3.81
ox % 0x; ( ox J G-81)

90, Ju
Adding and subtracting a—’a—’ in equation (3.81) gives,

X
00, 00,

W :Oﬁ‘i(%j"' O, du; _90; du, (3.82)
ox "ox;\dx ) ox; dx dx; ox
or

1\ 00, du.
IW :i(q,%]__u ou; (3.83)
ox odx;\ " dx ) ox; ox
By substituting equation (3.83) into equation (3.76) we obtain,
du, d0; du
J=||Wdy-T,—dI" |=— 1 2% dxd 3.84
i(y’dxj ox, o Y G849
do, Jdu,
Thus this integral on the LHS is zero if and only if A, = .[ 3 —dxdy =0.
x, Ox

a0,
We note that —% =0 are equations of equilibrium (in the absence of body forces)
X
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which are satisfied exactly if and only if 0, (numerically computed displacements or the

displacement solutions from any other method of approximation) corresponds to the

do,
theoretical solution u. Assuming 5 % =0 in (3.84) and that (3.84) holds for any close
X

contour I, Rice [31] showed that J-integral in (3.75) is path independent. Thus the path

, , , do, du, , .
independence of J-integral requires that I —*% —Ldxdy=0 or a more strict condition

& 0x, ox

90,

=0 V x,ye A" must hold.
o

3.5.2 J-integral Computations in hA,p,k Finite Element

Framework

If one constructs a finite element mesh for the crack problem and chooses I as

a contour (Figure 3.1), where,

r=yr (3.85)

in which I is j" boundary of element e contributing to a segment of T.

Referring to Figure 3.1, we can rewrite (3.75) as follows,

1 T dui
J= l (5{6} {g}ny—a,.jnj; r (3.86)

where {0} = [O‘XX, 0,,0, T and {&} = [gxx, £,.7, ]’ .
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Remarks on Chapter 3

Based on Rice [31], ]J-integral in (3.86) is path independent if

J-—j—’dxdy=0 or —2=0 V x,ye A where A" is the area bounded
& ox; 0.

ox X,

by I This amount to ensuring that equilibrium equations are satisfied by the
approximation of @®. This is very significant. In simple terms, if the finite
element solution does not satisfy equations of equilibrium, then J-integral is

not path independent. Thus, for each path I' used for computing J-

00, Ju.
Y id)cdyZO holds for each

ox ; ox

integral values we must show that I
-

element in the area enclosed by I' in the pointwise sense. This feature of the J-

integral computations is a significant aspect of the work presented here.

In order for the integral in (3.80) to be meaningful, the path I' must be
continuous and differentiable, otherwise dI" is not defined. This aspect is mostly
ignored in the computations of J-integral using finite element processes.
Numerical studies are presented in chapter 4 to illustrate significance of this

aspect in the J-integral computations.

If one considers calculus of continuous and differentiable functions, then
integrand in (3.86) must at least be continuous so that integral over I' is

Riemann. Furthermore, regardless of the finite element formulation strategy we

ao—i' du, . . .
must show that I—J—’dxdyZO holds, otherwise J-integral is not path
X, ox
independent. !
. ao—ij . J AT
(a) Computations of requires u,,v, € C* (") ; J22 when
X .

J
using strong form of GDEs in LSP. In this case J-integral is

automatically Riemann.
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(b) When using weak form of GDEs in LSP, we could choose

u,,v,€ C”(Q") ; J=1 so that J-integral is Riemann. In this case

0

can be calculated using interpolation functions or derivatives of
u and v. When the solutions are not sufficiently converged these
two approaches may not give the same stresses. Studies show that the
approach using derivatives of displacements is more accurate in terms

of J-integral computations

(c) In finite element processes using Galerkin method with weak form
we could choose u,,v,€ C”(Q") ; J>1. For this choice the J-

integral is Riemann.

When the integrand in (3.86) exhibits discontinuity across two element
boundaries for I' (in tangential as well as normal direction to I'), the integral
over I' in (3.86) becomes Lebesgue. The discontinuity of integrand in the

tangential direction only exists at the corner nodes.

When integrals are Riemann in (3.86), the choice of mating element boundaries
constituting I is irrelevant. But when the integral over I' is in Lebesgue sense,
different choices will yield different results unless the finite element
computations are sufficiently converged. Numerical studies are presented in

Chapter 4 to illustrate this.

dy % n,

B dx
Jrif| =1
dy =ndl’
dx=—-n dI’

Figure 3.1: J-integral contour I’
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Chapter 4

EQUATION CHAPTER 4 SECTION 1
Numerical Studies: J-integral
Computations in A,p,k Framework

4.1 Introduction

In this chapter various numerical studies are presented for J-integral computations
in hpk framework. For this purpose we consider a model problem of a rectangular
domain of width 2b and height 2h with sharp center crack of length 2a (Figure 4.1). Let
the load 0 consist of uniform tension in the y direction. We consider mode I fracture
for linear elastic plane strain case and homogeneous isotropic material behavior. We

have the following boundary conditions:

On AC : v=0
Ju
—=0 (due to symmetry) (4.1)
dy
7,=0 (due to symmetry)

On AB : 7,=0 (free surface) (4.2)
o, =0 (no normal tractions)

On CF : 7,=0 (free surface) (4.3)
o.=0 (no normal tractions)

On DEF : c,=p (applied stress) 4.4
7,=0 (free surface)
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On BD : u=0

ﬂ =0 (due to symmetry) (4.5)
ox
7. =0 (due to symmetry)

When 2b and 2h are large compared to 2a, we can assume the crack of length
2a to be in an infinite domain i.e. in this case the size of the domain is sufficiently large
so that boundaries do not influence the stress field created by the crack. In this case one

could obtain the mode I stress intensity factor theoretically [1-3],
K,=0o7a (4.6)

where K, is the mode I stress intensity factor and O is the applied stress in the
y direction far away from the crack. It can be shown that for mode I plane strain, the J-

integral and K, are related [1 - 3] by:

K} 4.7)

This means that for the case of 2b — o0, 2h — o0 (compared to 2a), one could
calculate J-integral numerically using any desired path (since it is path independent) and
then use 4.2 to obtain K,. If the numerical computations of J-integral do not have

numerical errors, then K, calculated using numerically computed J-integral must be

identically same as given by (4.6) when 2b, 2h are large compared to 2a. This is an

essential test to validate a numerical strategy of computing J-integrals to ensure that the

stress intensity factor K, using numerically calculated J-integral value and (4.7) indeed

would not be in error.
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(a) Schematic of the model problem
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—a— Crack tip

(b) Boundary value problem domain (quarter of the entire domain)

Figure 4.1: Schematic and domain of the model BVP (center crack panel)
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In practical applications 2b and 2h may in fact be finite (henceforth referred to

as finite medium) and small enough so that the stress field created by the crack may be

influenced by the boundaries. In such cases (4.6) is not valid. To obtain accurate values

of K, in a finite medium we can proceed as follows.

(2)

(b)

If a numerical computational strategy has been validated using (4.0)

and (4.7) for an infinite medium then one could use this strategy to
obtain | numerically and then use (4.7) to find K, . By validation we

mean that the choice of integral forms (in finite element context), 4
(mesh), p and £ are appropriate enough to provide an exceptional
correlation with (4.6) using (4.7) for an infinite medium. Then, one
could use similar 4,p,£ and the same integral form for a finite medium

with reasonable assurance of good accuracy of J-integral.

In the second approach, based on ¢ and 2a, one finds the value of

K, for an infinite medium. This obviously is not correct for the

finite medium containing the crack at hand and hence must be

corrected. Thus, if K, is the theoretical value of the stress intensity
factor for an infinite medium with crack size 2a (given by (4.6)) and
if K/ is the stress intensity factor for the finite medium with same

crack size then we could write:
K/ =K,C’ (45)

where C’ is the correction factor that must be applied to K, to

account for the finite size of the medium. If has been shown that

C’ =C’(bla,hla) (4.9)
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That is, the correction factor C’ depends upon the ratios b/a and h/a. For an
infinite medium b/a and h/a approach infinity and hence C’ must approach unity in

which case K f =K, . In the published work, expressions to calculate C 7 values are

reported which one could use to calculate K] [44, 45]. However, these expressions are
only available for the case of infinite strips (infinite height and finite width), where the
analytical solution is expressed as a truncated infinite series. In such case, C'is a
function of b/a only. One of these available expressions [46] is Isida’s equation (4.10).
For the case of finite height and finite width, calculated values of C’ have been

presented for specific values of b/a and h/a [44, 47] using numerical methods.

o] aoms]

C’ = 1+0.5948(

S|
wla
wlg

8
+0.3367(£j +0.2972(ﬁj +0.2713 (ﬁj (4.10)
b b b
a H a a
+0.2535[—j +o.2404(—j +0.2300(—j
b b b

When analytical expressions for C’ are not available, the determination of C”
in the published work is based largely on numerical computations of K/ using J-integral

and (4.7) which for a finite medium becomes,

1-v?
g2 )(K,f ) (4.11)
E
The ratio of K] /K, is reported as correction factor C” . In this approach the

accuracy of C’ is highly dependent on the accuracy of J’ (J-integral for finite medium)
which in tern is dependent on the computational methods employed in the numerical

calculations. This procedure is dependent on many aspects and needs care to ensure that

74



in fact J/ has the correct value so that C/ would have the right value for finite

medium.

4.2 General Discussion Related to Present

Numerical Studies

All numerical studies presented here are based on finite element computations in
hpk framework ie. we have control over discretization (4), degree of local
approximation (p) and the global differentiability of local approximation (4-1). Since the
numerical studies consider 2-D plane strain linear elastic behavior with homogeneous
and isotropic medium, the differential operator (strong form of GDEs) in the
description of the associated BVP is self-adjoint. Hence, the integral forms based on
Galerkin method with weak form (Gal/WF) as well as last squares processes (LSP) are
variationally consistent (VC). Thus, both approaches produce symmetric positive definite

algebraic systems in the finite element computations. As shown in chapter 3, in LSP one

could use weak form of GDEs (i.e. PDEs in displacements u and v, and stresses 0;)

or strong form of GDEs (t.e. PDEs in displacements u# and v). Both forms of GDEs
and the associated finite element processes were presented in chapter 3. We make some

important remarks.

Remarks:

1) In Gal/WF the integrand in the integral form contains fist order detivatives of

displacements as well as the test function. Hence approximations u, and v, of

class C"(Q°) would yield Riemann integrals in the weak integral form but with

these approximations the computation of residuals from the equilibrium

equations would be in the Lebesgue sense.
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If we use u, and v, of class C”(Q°), then the integrals in weak form for

Gal/WF would be in the Lebesgue sense and the computation of A, is not

possible.

When using strong form of GDEs in LSP, u, and v, of class C 2(Q°) would
yield Riemann integrals in the integral form as well as in the computations of A, .

On the other hand, when u, and v, are of class C ©Q°), integrals in the LSP

are in the Lebesgue sense and residual computations become Lebesgue.

In case of weak form of GDEs in LSP, one could use u,,v, and (O'l.j)h of class

C"(Q°), in which case all integrals are Riemann, and when the local

approximations for u, and v, , and (0,)" are of class C* (Q°), the integrals in

the LSP and residual computations become Lebesgue.

The choice of Riemann or Lebesgue measure is not arbitrary. Riemann integrals
preserve physics in the computations for coarser discretizations and lower p-
levels where as Lebesgue measures can give spurious results. Upon convergence
L.e. solutions independent of 4 and p, the Lebesgue measures obviously approach

Riemann.

Another significant point to note is that for the J-integral to be path independent

(see chapter 3), we must show that,

d0., Ju.
A = k Z 740 =0 4.12
! jaxk ox *12

A

The continuity of the integrand in (4.12) ensures that (4.12) is in Riemann sense

and requires O; to be of class C"(Q°) which implies that u, and v, must be
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(8)

of class C*(Q°) in Gal/WF and LSP using strong form of GDEs. In case of

LSP using weak form of GDEs, 0, can be of class c'(Q°). (this also has some

[}

consequences [48, 49,50, 54]).

The computation of J-integral requires the path I' to be continuous and

differentiable (see chapter 3). Otherwise the J-integral is not defined.

Based on (6) and (7) it is straight forward to conclude that if J-integral
computations are to be done accurately then: (i) (4.12) must hold (ii) integrand in
the J-integral must be continuous along the path 1" as well as normal to the path
(iii) the path I" must be continuous and differentiable (iv) we must show that the
field used in computing J-integral is independent of 4,p and £ When all of the

above hold we have the right value of J/ for a finite medium and we could

calculate K] using (4.11).

The numerical studies presented in this thesis are designed to illustrate the

various aspect described above. Accurate computation of J’ and hence K is possible

when all of the above requirements are met in the computations.

4.3 QOutline of Numerical Studies

The following is an outline of the numerical studies presented in this thesis.

Case (a) Integral form: Gal/WF

h-convergence studies

Solution classes: C*(Q°), C"(Q)
p-level: 5
a=04,b=0.8, h=0.7
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Case (b)

Case (¢)

Case (d)

E=1.25,v=0.25, 0=0.001
Meshes: 45, 180, 444 element graded discretizations

Integral form: Gal/WF

Influence of h/a forlarge b/a (6) on J-integral computations

Solution classes: C''(Q°)

p-level: 5

a=04,a=1.2

E=125,v=0.25, 0=0.001

Meshes: 180 element graded discretizations at the zone of interest
and coarser rectangular element mesh for the remainder

of the domain

Integral form: Gal/WF

Influence of b/a forlarge h/a (12) on J-integral computations

Solution classes: C''(Q°)

p-level: 5

a=04,a=12

E=125,v=0.25, 0=0.001

Meshes: 180 element graded discretizations at the zone of interest
and coarser rectangular element mesh for the remainder

of the domain

Integral form: Gal/WF

Influence of solutions of higher order global differentiability on
J-integral computations

a=04,bla=16, h/a=35 (close to infinite medium)

E=125,v=0.25, 0=0.001
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Meshes: 180 element graded discretizations at the zone of interest
and coarser mesh for the remainder of the domain

We study the following classes of solutions and p-levels,
CP(Q) ; plevel: 35,7
c'(Q ; p-level: 3,57
C*(Q% ; p-level: 5,7

c*Q°) ; p-level: 7

Case (e) Integral form: Gal/WF
Influence of non differentiable integral paths on J-integral
computations

Solution classes: C''(Q°)

p-level: 5

a=04,bla=16, h/a=35 (close to infinite medium)
E=125,v=0.25, 0=0.001

Meshes: 180 element graded discretizations at the zone of interest

and coarser mesh for the remainder of the domain

Case (f) Integral form: Gal/WF

Influence of differentiable but non circular paths on J-integral
computations

Solution classes: C''(Q°)
p-level: 5

a=0.1,b/a=8, h/a="T (half circular-half elliptical paths)
a=04,bla=8, h/a="T (circular paths)

E=125,v=0.25, 0=0.001

Meshes: 480, 1920 element graded discretizations

180 element graded discretizations at the zone of interest

and coarser mesh for the remainder of the domain
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Case (g) Integral form: LSP using weak form of GDEs
Influence of solutions of higher order global differentiability on
J-integral computations
a=04,bla=16, h/a=35 (close to infinite medium)
E=125,v=025, 0=0.001
Meshes: 180 element graded discretizations at the zone of interest
and coarser mesh for the remainder of the domain

We study the following classes of solutions and p-levels,
CP(Q) ; plevel: 35,7
C"'(Q) ; plevel: 3,57
C*(Q% ; p-level: 5,7

c*Q°) ; p-level: 7

In all numerical studies we employ nine-nodes p-version elements of class

C" (Q°) and choose J as indicated with each study listed above.

4.4 Case (a); Integral Form: Gal/WF; h-convergence

Studies

In this section we present a series of /-convergence studies using local
approximations of classes C*(Q°) and C"(Q°) with p-level of 5. Choices of a, bl/a
and h/a are not critical i.e. for a given choice we wish to demonstrate /-convergence
for a given p-level for the two classes of local approximations. We choose a=0.4,
b=0.8, h=0.7, E=1.25 and v=0.25, 0=0.001. A quarter of the domain is
modeled using 45, 180 and 444 element graded discretizations. We discuss the details of

the discretizations in the following.
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(i)

(iif)

The first mesh consist of a 45 element graded discretization. The details
of the entire mesh are shown in Figure 4.2 (a). The mesh details at the
crack tip are shown in Figure 4.2 (b). The path closest to the crack tip
(path 1) has a circular radius of 0.0005. A total of 6 paths are used for J-
integral computations. All paths are circular rings with radia listed in

Table 4.1.

The second mesh consists of 180 element graded discretization. The
details of the entire mesh are shown in Figure 4.3 (a). The mesh details at
the crack tip are shown in Figure 4.3 (b). The path closest to the crack tip
(path 1) has a circular radius of 0.000375. A total of 13 paths are used for
J-integral computations. All paths are circular rings with radia listed in

Table 4.2.

The third mesh consists of 444 element graded discretization. The details
of the entire mesh are shown in Figure 4.4 (a). The mesh details at the
crack tip are shown in Figure 4.4 (b). The path closest to the crack tip
(path 1) has a circular radius of 0.000375. A total of 35 paths are used for
J-integral computations. All paths are circular rings with radia listed in

Table 4.3.
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(-0.4,0.7) (0.0,0.7) (0.4,0.7)

(-0.4,035) (0.4,0.3%)

Differentiable
Paths

(-0.4,0.0) (0.4,0.0)
H Path 5 0.174204
Path ¢

d
|‘
Crack

(a) A 45 element graded discretization

or=0.00025
m r=0.00035

3 0.00025 0.0005 Path-....
——  Crack 4» 2
Path 1

(b) Discretization details at the crack tip

Figure 4.2: A 45 element graded finite element discretization of the quarter domain
(a=0.4, b=0.8, h=0.7)
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(-0.1859,0.7)  (0.0,0.7)  (0.1859,0.7)
(-0.4,0.7) (0.4,0.7)
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(-0.4,0.35)

Dijfferentiable (0.4,035)
Paths
.
(-0.4,0.1503 ) (0.4,0.1503)

(-0.4,0.0)

: (0.4,0.0)
P N Path 12 0.287102
(Y 4

Crack Path 13
(a) A 180 element graded discretization

o r=0.00025

mr=10.00035

O mid-point between o and =
@ mid-point between o and 0.0

-0.000375 - O.{l{ui{IZS -0.000125 0.0 0.000125 0.00025 0.000375 Path 2

Crack 4}| Path 1

(b) Discretization details at the crack tip

Figure 4.3: A 180 element graded finite element discretization of the quarter domain
(a=0.4, b=0.8, h=0.7)
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(a) A 444 element graded discretization

o r=0.00025

m 1r=0.00035

O mid-point between o and =
® mid-point between o and 0.0

-0.000375 - [I.[Iﬁ[IZS -0.000125 0.0  0.000125 0.00025 0.000375 Path 2 ...

—_ Crack 4H Path 1

(b) Discretization details at the crack tip

Figure 4.4: A 444 element graded finite element discretization of the quarter domain

(a=0.4, b=0.8, h=0.7)
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4.4.1 Solutions of class ¢%0(2¢ )

For the three meshes shown in Figures 4.2 — 4.3, finite element solutions are

computed at p-level of 5 using local approximations for u and v of class C*(Q¢) and

J-integral J’ is computed using these solutions. The paths used in J-integral

computations are listed in Tables 4.1 to 4.3. Since in this case the local approximations
are of class C*(Q°), the integrand in the J-integral computation is discontinuous at the
inter-element boundaries along the paths as well as normal to the path. Therefore the
J’ computations are in Lebesgue sense. Figure 4.5 shows that for a given path T there
are two possible choices: I, or I',. Due to the fact that integrand in the J-integral is not
continuous normal to I, the choice of T, or ', may influence J/ if the solution of
class C™(Q°) are not sufficiently converged. For this reason, J/ is computed using
paths ', and T, for each path shown in Tables 4.1 — 4.3. The computed values of J'
using both I'} and I', for the three discretizations are shown in Tables 4.1 — 4.3 for

each path. To illustrate the influence of the choice of I', or I', for each path I', we

define % difference in 2 ways:

%' difference _ (Jf)r1 _(Jf)rz (100) (4.13)
using I', reference (J ! )F
%. difference _ (v’ )rz - )Fl (100) 4.14)
using I', reference (J / )F

These are also tabulated in tables 4.1 — 4.3 for each path for the three

discretizations. We discuss the results in the following. In the case of the 45 element
mesh, the influence of the choice of I', or I', can be cleatly observed from the %

differences due to the fact that for such coarse mesh the finite element solution is not
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sufficiently converged and hence the error caused due to Lebesgue measure depends on

the choice of the path and is reflected in the % difference.

14 N|
N \ 4|
Crack
(a) Path I for J-integral computations
4
|‘

Crack
(b) Path I, or I (two choices for ') for J-integral computations

Figure 4.5: Choice of paths for I': T, or I, for solutions of class C”
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Table 4.1: A 45 Element mesh (a=0.4, h=0.7, b=0.8) with Gal/WF: C” solutions

and p=5
: s g % Difference using % Difference using 3 5
Path Radius Ji2 - T path Ji2 T, path T, as reference T, as reference C': T, path C': T path
1 0.000500 8.19608E-07 9.83467E-07 -16.3321 140392 13188 1.4224
2 0.001000 9585801 E-07 Q85349E-07 0.0473 -0.0473 1.4242 1.4238
3 0.001500 9.55290E-07 QEA264E-07 01074 -0.1076 1.4238 1.4230
4 0.003833 9.55940E-07 QE4264E-07 01754 -0.1757 1.4243 1.4230
5 0.026056 9 BE248E-07 9.25508E-07 4.2163 -4.4019 1.4319 1.4014
B 0174204 9.64890E-07 Q24727E-07 4.1624 -4.3432 1.4309 1.4008

For 180 and 444 element meshes the % difference diminishes. Except for the last

path, the % difference in tables 4.2 and 4.3 are in the same proximity confirming that
180 element mesh results are sufficiently converged. The computations of C’ are also

tabulated for the three discretizations for both choices of paths in each mesh. C I values

also confirm the accuracy of 180 element mesh. From Tables 4.2 and 4.3, we observe

that all paths yield almost the same values of C’ . We note that that path 1 has a radius

of 0.000375 i.e. extremely close to the crack tip.

Table 4.2: A 180 Element mesh (a=0.4, h=0.7, b=0.8) with Gal/WF: C” solutions

and p=5
% Difference using % Difference using
Path Radius Ji2: Ty path 120 T, path I as reference I; asreference ' Ty path C: Ty path
1 0.000375 955411 E0O7 951453E07 04174 -0.4192 14239 1.4209
2 0.000553 9 543BE-0O7V 954729E-07 0.003 -0.0081 14234 1.4234
3 0.0009594 9.54733E-07 9 54720E-07 0.0066 -0.0065 14234 14234
4 0.00165939 9.54735E-07 954703E-07 0.0080 -0.0080 14234 14234
=} 0.002953 9.54788E-07 954702E-07 0.0020 -0.00%0a 14234 1.4234
B 0.005187 954791E07 9 A4R9TEDT 0.00598 -0.0095 1.4234 1.4234
7 0.009163 954792E07 9 A4E94E-07 0.0103 -0.0103 1.4234 1.4233
&3 0.016240 954793607 9 54690E-07 0.0103 -0.0108 14234 1.4233
9 0.023337 9.54734E-07 9 54687E-07 00112 -0.o112 14234 1.4233
10 0.051260 9.54734E-07 9 54687E-07 0.0111 -0a1m 14234 14233
11 0091172 9547I1E07 954719E07 0.0076 -0.0076 14234 14234
12 0152217 98477 4EO7 95431 0E-07 -0.0142 00142 14234 1.4235
13 0.287102 9 54R82E-07 9 AB7B2E07 -0.2159 0.2194 14233 1.4249
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Table 4.3: A 444 Element mesh (a=0.4, h=0.7, b=0.8) with Gal/WF: C* solutions

and p=5
p ) I B % Difference using % Difference using 5 b
ath Radius Ji2 0Ty path J¥2 T, path T as reference T, as reference C": Ty path C" T path
1 0.000375 9.41485E-07 951148E-07 -1.0263 1.0159 14135 1.4207
2 0.000525 9 54696E-07 9 54642E-07 0.0056 -0.0056 14234 1.4233
3 0.000705 9 54R92E-07 9 54805E-07 -0.0118 00118 14233 1.4234
4 0.000921 9 54808E-07 9 54786E-07 0.0023 -0.0023 14234 1.4234
i 0.001180 9 54735E-07 9 54754E-07 0.0033 -0.0033 14234 1.4234
5 0.001491 9 54763E-07 9 54817E-07 -0.0056 0.0056 14234 1.4234
7 0.001864 9.54815E-07 9.54734E-07 0.0028 -0.0026 14234 1.4234
g 0002312 9 54794E-07 9 54796E-07 -0.0002 0.0002 14234 1.4234
9 0.002850 9 54796E-07 9 54776E-07 0.0021 -0.0021 14234 1.4234
10 0.003495 954781E-07 9 54792E-07 -0.0011 0.0011 14234 1.4234
11 0.004269 9 54730E-07 9 54809E-07 -0.0019 0.0018 14234 1.4234
12 0.005193 9 54808E-07 9 54804E-07 0.0004 -0.0004 14234 1.4234
13 0.006312 9 54806E-07 9 54737E-07 0.0018 -0.0019 14234 1.4234
14 0.007649 9.54785E-07 954793E-07 -0.0004 0.0004 14234 1.4234
15 0.009254 9 54793E-07 9.54794E-07 -0.0001 0.0001 14234 1.4234
16 0.011180 9 54795E-07 9 54805E-07 -0.0011 0.0011 14234 1.4234
17 0.0134 9.54804E-07 9.54804E-07 0.0001 -0.0001 14234 1.4234
158 0.016265 9 54803E-07 9 54798E-07 0.0008 -0.0006 14234 1.4234
19 0.019593 954797E-07 9 54802E-07 -0.0006 0.0008 14234 1.4234
20 0023556 9.54801E-07 9 54802E-07 -0.0001 0.0001 14234 1.4234
21 0028375 9.54801E-07 9.54801E-07 0.0000 0.0000 14234 1.4234
22 0034129 9.54801E-07 9.54801E-07 0.0000 0.0000 14234 1.4234
23 0.041030 9 54800E-07 9 54800E-07 0.0000 0.0000 14234 1.4234
24 0.049311 9.54800E-07 9.54802E-07 -0.0002 0.0002 14234 1.4234
25 0059248 9 54800E-07 9 54802E-07 -0.0002 0.0002 14234 1.4234
26 0071172 9.54801E-07 9 54802E-07 -0.0002 0.0002 14234 1.4234
27 0.085452 9 54801E-07 9 54805E-07 -0.0004 0.0004 14234 1.4234
28 0102653 9 54804E-07 9 54810E-07 -0.0006 0.0008 14234 1.4234
29 0123259 9 54810E-07 9.54817E-07 -0.0008 0.0008 14234 1.4234
30 01475985 9 54818E-07 9 54830E-07 -0.0012 0.0012 14234 1.4235
31 0177657 9.54834E-07 9.54851E-07 -0.0015 0.0018 14235 1.4235
32 0213264 9 54861E-07 954837E-07 -0.0027 0.0027 14235 1.4235
33 0.255991 9 54909E-07 9 54945E-07 -0.0041 0.0041 14235 1.4235
34 0.307265 9 54996E-07 9 55003E-07 -0.0005 0.0008 14236 1.4236
35 0368793 9 55160E-07 9 55933E-07 -0.0861 0.0860 14237 1.4243

This study demonstrates the /-convergence of the process for solutions of class
C*(Q°) with fixed p-level of 5. For the solutions of class C ©Q°), computation of A;

is not possible, hence, it is not possible to determine how well the GDEs are satisfied by
the computed solution. Overall, the 180 element mesh appears satisfactory and there

seams no need to use 444 element mesh at least for p-level of 5.
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4.4.2 Solutions of class C11(Q¢)

In this study we employ local approximations of class C''(Q°) at p-level of 5.
All other details of 45, 180 and 444 element discretizations and the choices of paths for
J-integral computations remain the same as in case of the solutions of class Cc*(Q).
Due to the fact that local approximations are of class C 11(f_le) , the integrand in the J-
integral is continuous along the entire path I' as well as normal to the path. In this case
J-integral computations are in Riemann sense for all paths. Therefore, paths I', and T,
would yield identical results and they do. Due to C"'(Q¢) nature of local approximation,
it is possible to compute A, (though in Lebesgue because 0 ate of class Cc”(Q)) to
determine its proximity to zero. Results are presented in Tables 4.4 — 4.6. Even from the
45 element discretization, C’ values are well within acceptable range for all paths.

Virtually indistinguishable values of C’ in Table 4.5 and 4.6 that are independent of the

paths confirm: (i) extremely good accuracy of 180 element mesh (ii) extremely good
accuracy of J’ even when the path T is of radius 0.000375 (iii) improved accuracy for
same 4 and p but higher & (2 compared to 1 for C*(Q¢)) shows the benefit of higher
global differentiability and the importance of the J-integral in the Riemann sense. A, of

the O(10™*) confirms that GDEs are satisfied well. Since 180 graded mesh yields good

converged solutions at p-level of 5, in all further studies presented here, we maintain this
mesh for lengths of 0.8 in the x-direction and 0.7 in the y-direction, and a coarser

rectangular element mesh for the remainder of the domain.
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Table 4.4: A 45 Element mesh (a=0.4, h=0.7, b=0.8) with Gal/WF: C" solutions

and p=5
Path  Radius J¥2 . T, path A ct
1 0.000500 9.57517ED7 1.437E07 1.4255
2 0.001000 9565660507 1304607 1.4241
3 0.001500 954504507 1.441E-07 1.4232
4 0.003333 9.48735E07 1.799E-07 1.4189
5 0.026056 956100507 3631E09 1.4244
B 0.174204 9525B5E07  -4.044E08 1.4292

Table 4.5: A 180 Element mesh (a=0.4, h=0.7, b=0.8) with Gal/WF: C" solutions

and p=5

Path Radius J¥2 Ty path A of
1 0.000375 89.55441E-07 1.631E07 1.4239
2 0.000595 954816E-07 1.617E07 1.4234
- 0.000994 95478307 1.612E07 1.4234
4 0.001629 9.54735E-07 1.610E07 1.4234
5 0.002953 954788E-07 1.605E07 1.4234
a] 0.005187 54791E-07 1.607 07 1.4234
7 0.009163 954792E07 1.605E07 1.4234
g 0.01s240 9.54793E-07 1.604E07 1.4234
e 0.028837 954784E-07 1.603E07 1.4234
10 0.051260 895479407 1.601E07 1.4234
11 0.091172 54791E-07 1.600E07 1.4234
12 0162217 E477AE-O7 1.600E07 1.4234
13 0.287102 9.54682E-07 1.606E-07 1.4233
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Table 4.6: A 444 Element mesh (a=0.4, h=0.7, b=0.8) with Gal/WF: C" solutions

and p=5
Path Radius J¥2 . T path A ¢!
1 0.000375 9 55245E-07 1641 E-07 1.4238
2 0.000525 9 54782E-07 1.623E-07 1.4234
3 0.000705 9 54764E-07 1619E-07 1.4234
4 0.000921 9 54760E-07 1.618E-07 1.4234
g 0.001180 9 54760E-07 1.618E-07 1.4234
5 0.001491 9 54759E-07 1.6168E-07 1.4234
7 0.001854 9 54759E-07 1.E13E-07 1.4234
& 0.002312 9 54759E-07 1.619E-07 1.4234
g 0.002850 9 54759E-07 1.B13E-07 1.4234
10 0.003495 9 54759E-07 1.613E-07 1.4234
11 0.004269 9 54759E-07 1 E13E-07 1.4234
12 0.005198 9 54759E-07 1.E13E-07 1.4234
13 0.006312 9 54759E-07 1.B13E-07 1.4234
14 0.007649 9 54759E-07 1.B13E-07 1.4234
15 0.009254 9 54759E-07 1 B19E-07 1.4234
16 0.011180 9 54759E-07 1.B13E-07 1.4234
17 0.013491 9 54759E-07 1.E13E-07 1.4234
18 0.016265 9 54759E-07 1.B13E-07 1.4234
19 0.019593 9 54759E-07 1.E13E-07 1.4234
20 0.023586 9 54759E-07 1 B19E-07 1.4234
21 0.028378 9 54753E-07 1.B13E-07 1.4234
22 0034129 9 54759E-07 1 B19E-07 1.4234
23 0.041030 9 54759E-07 1.B20E-07 1.4234
24 0049311 9 54759E-07 1.B20E-07 1.4234
25  0.059248 9 54759E-07 1.B20E-07 1.4234
26 007172 9 547R9E-07 1.620E-07 1.4234
27 0.085482 9 54759E-07 1.B20E-07 1.4234
28 0.102653 9 54759E-07 1.B20E-07 1.4234
29 0123259 9 54759E-07 1.B20E-07 1.4234
30 0147985 9 54759E-07 1. B20E-07 1.4234
3 0177657 9 547R9E-07 1.B20E-07 1.4234
32 0213264 9 54759E-07 1.620E-07 1.4234
33 0.255991 9 54759E-07 1.620E-07 1.4234
34 0.307%s 9 54759E-07 1.B20E-07 1.4234
35 0368793 9 54762E-07 1.620E-07 1.4234
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4.5 Case (b); Integral Form: Gal/WF; Influence of
h/afor Large b/a (6) on J-integral Computations

Since K, is only valid for an infinite medium containing the crack, in this section

we investigate the influence of h/a for a fixed b/a (6) (latge enough so that the width
has no effect on the results). We consider two crack lengths: a=0.4 and a=1.2. First,

we consider the discretizations:
(i) Consider a=0.4

The choice of b/a=6 implies that b=2.4 for a=0.4. We consider h/a
equal to 3, 4, 5, 6, 8, 10 and 12 which correspond to h values of 1.2, 1.6, 2.0, 2.4, 3.2 and
4.0. Since the 180 element discretization used in section 4.4 worked extremely well for
a=04, b=0.8 and h=0.7, we consider a zone at the crack tip of this same size
containing the 180 element mesh shown in Figure 4.3. The remainder of the domain is

discretized using a coarser mesh of rectangular elements. Details are shown in figure 4.6.
(ii) Consider a=1.2

In this case b/a =6 implies that b=7.2 for a=1.2. We consider h/a equal to
3,4, 5,0, 8,10 and 12 which correspond to h values of 3.6, 4.8, 6.0, 7.2, 12 and 14.4.
For the discretization, we adopt a strategy similar to that used for a=0.4 except that
180 element mesh for length of 0.4, width of 0.8 and height of 0.7 is centered at the half
crack tip as shown in Figure 4.7. The remainder of the domain is discretized coarsely

using rectangular elements. Details are shown in Figure 4.7.
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Elements shown are only a
h schematic representation of
the actual discretization

(a) Schematic of the mesh for (h/a) and (b/a) studies for a=0.4
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(b) A 180 element discretization shown in figure 4.3
used for the shaded region of figure 4.6 (a)

Figure 4.6: Discretization for (h/a) study for b/a=6 (b=2.4) with a=0.4
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(a) Schematic of the mesh for (h/a) and (b/a) studies for a=1.2
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(b) A 180 element discretization shown in figure 4.3
used for the shaded region of figure 4.7 (a)

Figure 4.7: Discretization for (h/a) study for b/a=6 (b=7.2) with a=1.2
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4.5.1 Numerical Studies for a=0.4

Based on the studies in section 4.4, we choose local approximations of class

C"(Q°) at plevel of 5. J/ | A, and C’ for each h/a are tabulated in tables 4.7(a) —
4.7(b). We note that in all cases A, of the O(10™") confirm that GDEs are satisfied well

and that path independence of J-integral computations is valid in all cases. C’ value of
1.1193 for h/a =3 indicates dependence of C’ on h/a. Progressively decreasing C”
with progressively increasing h/a confirms decreasing dependence of C/ on increasing
hila.When h/a=12, C’ =1.0177 indicates that the center crack is close to being in
the infinite medium. Path independence of C’ for each h/a is another confirmation of

high accuracy and assurance of the validity of computations of J/ that approaches J

for progressively increasing h/a.

Table 4.7a: Influence of h/a (3,4,5) for large b/a (6) and a=0.4: A 180 element
mesh in region of near the crack tip (Figure 4.6) using Gal/WF: C"
solutions and p=5

hia =13 hia=4 hfa=5
Path Radius | J%2: T, path Ay cf J¥2 . T, path A Ef J2: T, path Ay i

0.000375 | 590786E-07 1.005E-07
0.000558 | 590399E-07 S.995E-03
0.000924 | 590379E-07 S.963E-08
0.001659 | 590380E-07 S.951E-08
0.002953 | 590352E-07 S941E-03
0.005187 | 590383E-07 S9.932E-08
0002163 | 590384607 9.923E-03
0.016240 | 590385E-07 S.915E-08
0.028837 | 590385E-07 S.905E-03
10 0.051260 | 590385E-07 9.900E-03
11 0091172 | 590385E07 9.894E-05
12 0162217 | 590384E-07 9.890E-05
13 0287102 | 590365E-07 9.900E-05

1597 | 5.49573E-07 9.378E03 10793 | 527509E-07 9.002E08 1.0580
1593 | 5.49214E-07 9300B03 10796 | 2.271684E-07 8S28E08 1.0877
1583 | 5.49195E-07  9.269E03 10795 | 527146E-07 G§B9BEOS 1.0577
183 | 5.49196E-07  9.258E-08 1079 | 8.27147E-07 G§BE7EOS 1.0577
153 | 5.49193E-07  9.2459B08 10798 | 527148E-07 8E78E08 1.0577
11583 | 549199E07 524008 1079 | 5.271580E-07 8670E-08 1.0577
1193 | 5.49200E-07 9.233B08 10786 | 59.27150BE-07 8©.863E-03 1.0577
1593 | 5.49200E-07 9.225BE08 1079 | 527151E-07 GB55E08 1.0577
11583 | 549200E-07 S.218B08 10796 | 527151E-07 8849E-08 10577
1583 | 5.49200E-07 921ME08 1079 | 827151E-07 GB42E08 1.0577
1593 | 549200E-07 9.206E-08 10796 | 527150E-07 8E37EO8 1.0577
11583 | 549186E-07 S5204B-08 1079 | 5.27145E-07 8.636E-03 1.0577
1593 | 5.491B4E-07  9.2253BE08 10795 | 827109E-07 GB58E08 1.0576
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Table 4.7b: Influence of h/a (6,8,10) for large b/a (6) and a=0.4: A 180 element
mesh in region near the crack tip (Figure 4.6) using Gal/WF: C"
solutions and p=5

hia =6 hia=48 hfa =10
Path Radius | J%2: T, path Ay ! J¥2 . T, path Ay ! A2 T, path Ay &t
1 0000375 | 607I36E07 BESBE-08 10376 | 494135E-07 B432E08 10240 | 489004E-07 8380E08 10187
2 0000598 | 507004E-07 8586E-08 10373 | 493815607 B6.363E05 10237 | 488562607 B.311E-08 10182
3 0000994 | 50B987E-D7 8555E-08 10372 | 493798E07 G5.335E05 10237 | 488546E-07 8.283E-08 10182
4 0001699 | 50B987E-D7 8547E-08 10372 | 493799EL7 G.325E05 10237 | 488546E-07 B.273E-08 10182
£ 0002953 | 50B989E-07 8639E-05 10372 | 49380MEL7 B.316E05 10237 | 488648E-07 B.265E-03 1.0182
6 0005187 | 508990E-07 8531E-08 10372 | 493802E-07 G.309E05 10237 | 488549E-07 B.257E-08  1.0182
7 0009163 | 508991E-07 8524E-08 10372 | 493803E07 B.302E05 10237 | 488550E-07 B.250E-08 1.0182
8 0016240 | 508991E-07 8517E-08 10372 | 493803E07 B.295E05 10237 | 4.88550E-07 B.243E-08 10182
9 0028837 | 508992E-07 8510E-08 10372 | 493803E07 G.289E05 10237 | 488551E-07 B.237E-08 10182
10 0.051260 | 506991E-07 SA04E-08 10372 | 493803E-07 8283E-08 10237 | 488550E-07 S82Z3EDS 10182
11 0091172 | 506990E-07 S600E-08 10372 | 493802E-07 8278E058 10237 | 4.88549E-07 8IZ7E0S 10182
12 0162217 | 506985E-07 B499E-08 10372 | 493797E-07 8278E-08 10237 | 4.88544E-07 8IZXEE08 10182
13 0267102 | 506947E-07 B522E-08 10372 | 493789E-07 8301E08 10236 | 488506E-07 8250E08 10182

Table 4.7c: Influence of h/a (12) for large b/a (6) and a=0.4: A 180 element mesh
in region near the crack tip (Figure 4.6) using Gal/WF: C" solutions

and p=5

hfa=12
Path Radius | J%2: T, path A cf
1 0.000375 | 488029E-07 8328E-08 1.0177
2 0000595 | 487709E07 8283E-08 1.0173
3 0000994 | 487693E07 8231E08 1.0173
4 0001695 | 487694E07 B8221E-08 1.0173
5 00029535 | 487695E07 B8213E-08 1.0173
6 0005187 | 487696E-07 BS205E-08 1.0173
7 0009163 | 487697E07 B.193E-08 1.0173
g 0016240 | 487698E07 B.192E-08 1.0173
9 0028837 | 487695E07 B.186E-08 1.0173
10 0.031260 | 487698E-07 81B0E-08 1.0173
11 0091172 | 487696E-07 8175E-08 1.0173
12 0182217 | 487691E-07 BAFSE-08 1.0173
13 0287102 | 48¥653E-07 BA99E-08 1.0173
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4.5.2 Numerical Studies for a=1.2

Studies similar to those for a=0.4 were also conducted for a=1.2 at p-level of 5

and using local approximations of class C"(Q°). Results for J', A, and C’ are
summarized in tables 4.8(a) — 4.8(c). We note that values of A, of the O(10™) assure

path independence of J/ in the computational process. With progressively increasing

h/a (from 3 to 12) we note a decrease of C/ =1.1192 for h/a=3 to C, =1.01171

for h/a=12. Path independence of C’ is clearly observed for each h/a. For
hla=12, C’ =1.01171 (nearly equal to 1) indicating close to infinite size of the
domain (compared to a). Since C’ is a function of b/a and h/a, and not the specific

size of the crack, we expect C7 values in tables 4.7(a) — 4.7(c) for a =0.4 to match with
those in tables 4.8(a) — 4.8(c) for a =1.2 for corresponding values of h/a (b/a being

same in both cases) which in fact they do up to three or four decimal places. This study

is exceptionally good confirmation of the accuracy of the entire J/ computational

process.

Table 4.8a: Influence of h/a (3, 4, 5) for large b/a (6) and a=1.2: A 180 element
mesh in region of near the crack tip (Figure 4.7) using Gal/WF: C"
solutions and p=5

hia=13 hfa=4 hia=5
Path Radius | J¥2:T, path A it J%2 . T, path A if J¥2: T, path A of

0000375 | 1.77189E-06  3.007E-07
0000898 | 1.77072E-06 2.982E-07
0.000994 | 1.77066E-06 2.972E-07
0001698 | 1.77067E-06  2.965E-07
0002953 | 1.77067E-06 2.9685E-07
0.005187 | 1.77068E-06 2.962E-07
0.009163 | 1.77068E-06 Z.960E-07
0016240 | 1.77068E-06 2.957E-07
9 0028837 | 1.77068E-06 2.955E-07
10 0051260 | 1.77060E-06  2.952E-07
11 0091172 | 1.77073E-06  2.965E-07
12 0BZ217 | 177082E-06  2.932E-07
13 0287102 | 177213E-06  2.832E07

1185 | 164821E06 2797E-0F 1.0795 | 1.58201E-06 2655E-07 1.0578
1152 | 164713E06 2774E-07  1.0794 | 1.53097E-06 2BB2E07 1.0875
13 164707E-06  27B4E-07  1.0794 | 1.58091E06 2B53E-07 1.0575
1131 164707E06  27B1E-07  1.0784 | 1.58091E06 2B50E-07 1.0575
113 164708E-06 2758E-07 1.0794 | 158092E-06 2GB48E-07 1.0575
1152 | 164708E-06 2756E-0F 1.0794 | 1.58092E-06 2B45E-07 1.0575
1592 | 1 B470BE-06  2753E-07  1.0794 | 1.53093E-06 2B43E-07 1.0575
1152 | 164708E-06 2751E-07 1.0794 | 1.58093E-06 2641E07 1.0575
182 | 1 64708E-06  2749E-07  1.0794 | 1.58093E-06 2639507 1.0875
182 | 1B4709E-06  2747E-D7 1.0794 | 1.58093E-06 2636E07 1.0575
182 | 16B4713E-06  2742E-07  1.0794 | 1.58097E-06 2632E07 1.05875
182 | 1B4731E06  2728E-07  1.0795 | 1.58114E-06 2619507 1.0576
186 | 164842E-06 2B35E-0F  1.0798 | 1.88220E-06 2.530E-07 1.0579
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Table 4.8b: Influence of h/a (6, 8, 10) for large b/a (6) and a=1.2: 180 element
mesh in region of near the crack tip (Figure 4.7) using Gal/WF: C"
solutions and p=5

hia=E hia =8 hfa =10
Path Radius | J%2: T, path Ay it J¥2 . T, path Ay cf JUZ . T, path Ay it
1 0000375 | 1.62149E-06 2A5832E07 1.0374 148190E06 2515E07  1.0238 1.46635E-06 2.488E-07 1.0185
2 0.0005928 | 1.52049E-06 2561E-07  1.0371 1A48093E06 2494E07  1.0235 146541E06 2468E-07 1.0181
3 0.000994 | 1.52043E-06 2552E-07 10371 148087E-06  2486E-07 1.0235 T4B536E-06  2459E07  1.0181
4 0001699 | 1.52044E-06 2549E-07  1.0371 1 48088E06 2483E07 1.0235 1.46536E-06 2.456E-07 1.0181
5 0002953 | 1.52044E-06 2546E-07  1.0371 1 48088E-06 2480E-07 1.0235 TABE3VEDE  2454E-07  1.0181
6 0.005187 | 1.52045E-06 2544E-07 1.0371 1 48088E06 2473E07 1.0235 146537E-06  2452E07  1.0181
7 0009163 | 1.52045E-06 2542E-07 1.0371 1 4808%E-06 2476E-07 1.0235 146537E-06  2.450E-07  1.0181
8 0018240 | 1.52045E-06 2540E-07 1.0371 14808%E-06 2474E07  1.0235 146537E-06 2. 448E-07  1.0181
9 0028837 | 1.52045E-06 2.538E-07 1.0371 1A48082E06 2472E07  1.0235 146538E-06 2446E-07 1.0181
10 0051260 | 1.52046E-06 2536E-07 10371 148090E06  2470E-07  1.0235 146538E-06 2. 444E07  1.0181
11 0091172 | 1.52049E-06 2532E-07 1.0371 148093E06 2466E-07 1.0235 146541 E06 2 440E07  1.0181
12 DAB2217 | 1.520B6E-06 2.519E-07  1.0371 148109E06  2453E07  1.0236 14BE57E0B  2427E07  1.0182
13 0287102 | 1582167E-06 2433E07 10375 148208E06 23F70ED7  1.0239 1.46655E-06 2.345E07  1.0185

Table 4.8c: Influence of h/a (12) for large b/a (6) and a=1.2: 180 element mesh in
region of near the crack tip (Figure 4.7) using Gal/WF: C" solutions
and p=5

hia =12
Path Radius | J¥2: T, path Ay cf

0000375 | 1.46339E-06 2483E07 10174
0.000598 | 1.46243E-06 2.463E07 1.0171
0.000994 | 1.46238E-06 2454E07  1.0171
0001699 | 1.46238E-06 2451E07  1.0171
0002953 | 1.46239E-06 2.449E07 10171
0005187 | 1.46239E-06 2.447E07 10171
0009163 | 1.46239E-06 2.445E07  1.0171
0016240 | 1.46239E-06 2.443E07 10171
0.028337 | 1.46240E-06 2441E07 10171
0051260 | 1.46240E-06 2439E07  1.0171
0091172 | 1.46243E-06 2435E07 1.0171
0AB2217 | 1.46289E-06  242ZE07 10171
0287102 | 1.46357E-06 2.340E07 10175
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4.6 Case (c); Integral Form: Gal/WF; Influence of
b/afor Large h/a (12) on J-integral Computations

This study is similar to the one presented in case (b) except that here we study

the influence of b/a on J/ fora fixed h/a (12). In this case also we consider a=0.4

and a=1.2. The mesh design strategy is exactly same as that described for case (b).

For both values of a (0.4 and 1.2) we computed solutions of class C"'(Q°) at p-

level of 5 and then J/, A, and C’ for each value of h/a and for each path. Path

number, path radius, J ! A, and C’ for a=04 for different values of b/a are

tabulated in tables 4.9(a) — 4.9(c). Similar quantities for a=1.2 are given in tables 4.10(a)

—4.10(c). For both values of a we note the following,

1. Path independence of C ! for each b/ a
2. As b/a is increased, C’ approaches unity
3. C7 values for each b/a in tables 4.9 and 4.10 for the two values of

a match very — very closely confirming that C’ is independent of a
and that it is only a function of b/a and h/a which are same for

the corresponding tables 4.9 and 4.10.

4. For both values of @ computed values of C are in extremely close

agreement with those reported by Isida [46].

(1) — (4) confirm accuracy and validity of the formulation and computational

process used for J I calculations.
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Figure 4.8 (a) shows plots C’ versus b/a for h/a=12, and Figure 4.8 (b)
shows C’ versus h/a for b/a=6, both for a=04 and a=1.2. We see virtually
indistinguishable difference for two values of a. That is, C F'=c’(bla,hla) and C’
is not a function of a. It is shown that for large h/a ratio, as the b/a ratio increases,

C’ converges to 1. Convergence to unity can also be obtained by decreasing a

(increase of the b/a ratio).

Table 4.9a: Influence of b/a (2, 3) for large h/a (12) and a=0.4: A 180 element
mesh in region of near the crack tip (Figure 4.6) using Gal/WF: C"
solutions and p=5

bfa=2  Cf lsida [46]=11867 bfa=3  CF lsida [46]=10726
Path Radius | J%2:T, path Ay cf Ji2 - T, path Ay et
1 0000375 | GE4490E07 1135E-07 11875 | 542739E07 9263E08 10732
2 0000596 | GG40S5E-07 1126E07 116871 | 542384E07 9186E-08 10728
3 0000994 | 6.64033E-07 1122E07 11671 | 542365E07 9155E08 10728
4 0001699 | GE4034E-07 1120E07 116871 | 542366E-07 9144E08 10728
§ 0002953 | 6.64036E-07 1.119E07  1.1671 | 54236BE07 913BE08 10728
6 00051687 | GE4036E-07 1 11BE07 11871 | 542369607 917E08 10728
7 0009163 | 664039E-07 1 17E07 116871 | 542370E07 9119E08 10728
8 0016240 | 6.64039E-07 1.116ED7 11671 | 542F0E07 9.112E08 10728
9 0028837 | G64039E-07 1 115E07 116871 | 54237 1E07 9106E08 10728
10 0051260 | BB4039E07 1115607 11871 | 542370E-07 9099E08 10728
11 0091172 | BB403GED7 1114607 11871 | 542369E-07 9094E08 10728
12 0162217 | BB4DIBED7 1115607 11871 | 542360E-07 9095E08 10728
13 0287102 | BE39IZEDY 1A2ME07 11870 | 547308E-07 9126E08 10728

Table 4.9b: Influence of b/a (4, 5) for large h/a (12) and a=0.4: A 180 element
mesh in region of near the crack tip (Figure 4.6) using Gal/WF: C"
solutions and p=5

ba=4  C' lsida [46]=1.0391 bfa=5  C' lsida [46]=1.0248
Path  Radius | J%2: T, path Ay ¢t J%2: T, path Ay cf

0000375 | 5.09384E-07 S.692E-03 1.0397 | 4952183E07 G450BE03  1.0231
0000598 | 5.02051E07  S8.621E-08 10393 | 494895E07 833103 10243
00003594 | 5.03034E-07 B.592E-08  1.0393 | 494570BE07 8.353E03 10243
0001693 | 5.09034E-07 8.A581E-08 1.0393 | 494873E07 834208 10243
0002953 | 5.09036E-07 B8.573E-08 10393 | 494831E07 833408 10243
0003187 | 5.09037E07 ©.665E-08 1.0393 | 494852E07 G§.326E03 10243
0009163 | 5.09038E-07 8S.558E-08 1.0393 | 494853E07 8.319E08 10243
0016240 | 5.09039E-07 B8.551E-08  1.0393 | 494833E07 8.313E08 10243
9 0028837 | 5.09039E-07 B8A544E-03 10393 | 4248353E07 83506E03 10248
10 0051260 | 5.09035E-07 8.538E-08 10393 | 494833E07 8301E08 10243
11 0091172 | 8.09037E07 84534808 1.0393 | 494832E07 G.256E03 10243
12 0162217 | 5.02031E07 8.534E-08 10393 | 494876E07 8296E08 10243
13 0287102 | 5.08987E07 BS.561E-08  1.0393 | 494836E07 832108 10247

[t I A B R U SRR
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Table 4.9c: Influence of b/a (6) for large h/a (12) and a=0.4: A 180 element mesh
in region of near the crack tip (Figure 4.6) using Gal/WF: C"
solutions and p=5

ba=6 C' lsida[48]= 1.0169

Path Radius | J%2: T path Ay ct
1 0000375 | 483029E-07 8.328E08 10177
2 0000593 | 48770907 B.259E-08 10173
3 0000994 | 4.87693E07 B8.231E08 10173
4 0001699 | 487E94E07 B221E08 10173
5 0002953 | 4.87695E-07 S.213E08 10173
6 0005187 | 487696E07 B.205E08 10173
7 0009163 | 487697E07 B.183E-08 10173
3 0016240 | 487695E-07 S192E08 10173
9 0028837 | 4.87698E07 BS.186E08 10173
10 0051260 | 487E58E-07 8.180E-08 10173
11 009172 | 487696E07 8175E08 10173
12 0162217 | 487691E07  817V5E08 10173
13 0287102 | 487653E07 8199E08 10173

Table 4.10a: Influence of b/a (2, 3) for large h/a (12) and a=1.2: A 180 element
mesh in region of near the crack tip (Figure 4.7) using Gal/WF: C"
solutions and p=5

bfa=2  CY lsida [46]=11867 bta=3  Cf Isida [46]=10726
Path Radius | J%2: T, path A &t J¥2: T, path Ay 53]

0000375 | 1.99223E06 3.382BE07
0000595 | 1.92092E06  3.354E07
0000994 | 1.92085E06  3.343E07
0001699 | 1.99085E06 3.339E07
00029583 | 1.99086E-06 3.335E07
0005187 | 1.92087E-06  3.332E-07
0009163 | 1.92087E-06  3.330E-07
0016240 | 1.92087E-06  3.327E07
9 0028837 | 1.990587E-08 3324E07
10 0051260 ) 1.99083E-06 3321EO7
11 0021172 ) 1.99092E-06 3 316ELO7
12 0162217 | 1.99113E-06  3300E07
13 0287102 | 1.9923%E-06 3193E07

1871 162765606 2782E07 1.0730
A867 | 1BZ2B58E06 2730E07 10726
A867 | 1BZ2B52E-06 2730E07 10726
A867 | 1B2652BE06 27Z7E07 10728
A867 | 1B2653E06 2724B07 10728
A867 | 1BZ2B53E06 2722E07 10726
A867 | 1B2B53E06 2 718E07 10726
A867 | 1B2B53E06 2717EO07 10726
A867 | 1BZ2B54E-06 2715E07 10728
A867 | 1BZ2B54E-06 2713E07 10728
A867 | 1B2B57E-O6  2708E07 10726
A868 | 1B2675E-06  2625E07 10727
1872 | 1B2783E-06 2B04E07 10731
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Table 4.10b: Influence of b/a (4, 5) for large h/a (12) and a=1.2: A 180 element
mesh in region of near the crack tip (Figure 4.7) using Gal/WF: C"
solutions and p=5

bfa=4  C' lsida [46]=1.039 ba=5  C' lsida [46]=1.0248
Path Radius | J%2: T, path Ay ct J¥2 . T, path Ay ct

0000375 | 1.82762E-06 2.892E07 10395 | 148997606 Z2822B07 10252
0000598 | 1.52662E-06 2571E07 10392 | 1.484959E06 Z250M1E07 10248
00003294 | 1.52656E-06  2562E07  1.0351 14849406 Z2A4D2E07 10249
0001699 | 1.52656E-06 25589E07  1.0351 1.48494E-06 2485E07 10249
0002953 | 1.52657E-06 2557E07  1.0391 1.48495E06 2AGFEOD7 10249
0005187 | 1.52657E-06 2.554E07 1.0351 1.48495E06 2.485E07 10249
0009163 | 1.52655E-06 2552E07 1.0351 1.48496E-06 2482E07 10249
0016240 | 1.52658E-06 2550E07  1.0391 1.48496E-06 2 480E07 10249
9 0028537 | 1.52658E-06 2.548E-07 10352 | 148486BE06 Z478E07 10249
10 0051260 | 1.52658E-068 2546E-07 10352 | 1.484896E-06 Z476EL0O7 1.0248
11 0091172 | 1582661606 2542807 10352 | 1.48489E06 Z2472B07 1.0249
12 0482217 | 1.582678E-068 2529E07 10382 | 1.48516E06 Z.4B0E07 1.0250
13 0287102 | 1.52780E-06 2443E07 1039 | 1.48615E06 Z377E07 10253

00~ 00 (M b= L) b —

Table 4.10c: Influence of b/a (6) for large h/a (12) and a=1.2: A 180 element
mesh in region of near the crack tip (Figure 4.7) using Gal/WF: C"
solutions and p=5

bfa=6 C' lsida[46]= 1.0169

Path Radius | J¥2:T path A o4
1 0000375 | 1.46339E-06 2 483E-0F 10174
2 0000598 | 1.46243E-06 2 463E-07 10171
3 0000994 | 1.46238E06 2454E07 10171
4 0001699 | 1.46238E06 2451E07 10171
5 0002953 | 1.46239E-06 2 449E-07 10171
6 0005187 | 1.46239E06 2447E07 10171
7 0009163 | 1.46239E-06 2445E07 10171
8 0016240 | 1.46239E-06 2 443E07 10171
9 0028837 | 1.46240E06 24MEL7 10171
10 0051260 | 1.46240E-06 2 439E-0F 10171
11 0091172 | 14624306 2435E07 10171
12 062217 | 14B250E-06 2 422E07 10171
13 0287102 | 146357 E06 2 340E07 10175
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4.7 Case (d); Integral Form: Gal/WF; Influence of
solution of Higher Classes on J-integral

Computations

In this study we investigate the influence of higher order global differentiability
on J-integral computations. We consider a=04, b/a=35 (h=14.0) and b/a=16
(b=4.8). The domain is close to infinite compared to the size of the crack. We consider
a discretization strategy similar to that shown in Figure 4.6. The zone at the crack tip is
modeled using a 180 element graded mesh shown in Figure 4.3 and the remainder of the

domain is modeled using a coarse mesh. We investigate the following classes of solutions

and p-levels:
Cc®(Q°) ; plevel of 3, 5,7
Cc"'(Q°) ; plevel of 3,5, 7
C*(Q°) ; plevel of 5,7
C*(Q) ; plevel of 7

Integral paths, path radius, J I K ,f , A, and C’ are summarized in tables

4.11(a) — 4.11(d). We make the following observations and remarks.
(1) Since h/a and b/a are very large, we can consider the center crack to be in

a infinite medium, and a 180 element mesh in the crack zone has proven to

be excellent, we expect C/ =1 in all studies.
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(2) For all cases we note that C’ =1.00—— indicating exceptional accuracy of

all computed results for various orders of global differentiability listed above.

(3) Closer examination of C’ reveals improvement in the second and fourth

decimal places for :

(a) increasing p-level for C®(Q%), C'(Q°) and C*(Q°) classes of

b

solutions

(b) increasing order of global differentiability

@) A, well below O(07®) confirm path independence of J-integral in

computations.
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4.8 Case (e); Integral Form: Gal/WF; Influence of
Non-differentiable Integral Paths on the J-

integral Computations

In chapter 3 we have shown that for the J-integral to be valid the integral path I"
should be continuous and differentiable. Non differentiable paths are quite common in
finite element fracture mechanics studies that insist on using linear local approximations
for triangular or quadrilateral elements in which the element sides are straight lines. In

the study presented here non-differentiable paths are artificially created by using zij-zag

choices of boundaries to illustrate the damage done to the J/ computation by using
such paths. The points where the path is non-differentiable will be referred to as sharp
corners. We consider h/a=35, b/a=16 and a=0.4. The domain is close to infinite
compared to the size of the crack. We consider a discretization strategy similar to that
shown in Figure 4.6. The zone at the crack tip is modeled using 180 element graded
mesh shown in Figure 4.3 and the remainder of the domain is modeled using a coarse
mesh. Figure 4.9 shows various circular differentiable integration paths as well as the
non-differentiable paths artificially created by using element boundaries. Each non-
differentiable path contains four sharp corners. Figure 4.10 and Figure 4.11 also show
non-differentiable paths for the same discretization. Each non-differentiable path in
Figure 4.10 contains 10 sharp corners where as those in Figure 4.11 contain 22 sharp

corners for each path. Computations are performed using local approximations of class

C"(Q°) with p-level of 5. For the non-differentiable paths shown in Figure 4.9 through
Figure 4.11, J U A, and % error (compared to ] using theoretical value of K, for

infinite medium) are computed and are tabulated in table 4.12. J’ | A, and % error for

the corresponding differentiable paths are also tabulated for comparison purposes.
Progressive deterioration (i.e. increase in % error) of the computed results for increasing
number of sharp corners is quite clear. Introducing 4 sharp corners along the integration
paths increases the % error values up to -3.4654. When the number of sharp corners is
increased to 10, the % error is increased to values up to -5.0433. When 22 sharp corners

are considered, % error values up to -10.1928 are observed.
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the actual discretization
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(a) Schematic of the mesh for (h/a) of 35 (b/a) of 16 and a=0.4

Al

B o Path11 Path12 Path 13
Crack 7l

4

A

(b) A 180 element discretization shown in figure 4.3
for the shaded region of figure 4.9 (a)

—  Crk 4}| Pathl  Path2 ...

(c) Mesh details at the crack tip

Figure 4.9: Discretization for 4 sharp corners study for h/a=35,b/a=16 and a=0.4
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(a) Schematic of the mesh for (h/a) of 35 (b/a) of 16 and a=0.4

QI

}I ..... Path11 Path12 Path 13

d
N Crack

(b) A 180 element discretization shown in figure 4.3
for the shaded region of figure 4.10 (a)

— Crack 4” Path 1 Path2 .......

(c) Mesh details at the crack tip

Figure 4.10: Discretization for 10 shatp corners study for h/a=35, b/a=16 and a=0.4
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(a) Schematic of the mesh for (h/a) of 35 (b/a) of 16 and a=0.4

Al

I4 >| ,,,,, Path11 Path12 Path 13
[ Crack |

(b) A 180 element discretization shown in figure 4.3
for the shaded region of figure 4.11(a)

Crack ;I Path1  Path2 ...
(c) Mesh details at the crack tip

Figure 4.11: Discretization for 22 sharp corners study for h/a=35,b/a=16 and a=0.4
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4.9 Case (f); Integral Form: Gal/WF; Accuracy of J-
integral Computations for Differentiable but

Non-circular Paths

We consider a=0.1, h/a=7, b/a=0.8. Figure 4.12 shows a 480 element
graded discretization. To the right of the crack tip, the paths are circular but to the left of
the crack tip they are elliptic. All paths are continuous and differentiable. Figure 4.13
shows a 1920 element more refined and graded discretization with similar J-integral
paths. In the zone near the crack tip, almost-circular paths (see table 4.13 and 4.14) are
considered so that the J-integral values from these paths could be compared with those

that are noncircular and are located outside the zone near the crack tip. We consider

solutions of class C"(Q) and p-level of 5. Tables 4.13 and 4.14 give the path
description, J/, A, and C, . The two discretizations yield identical results. Results

from the circular paths are tabulated in Table 4.15. Each path in this case also yields

almost same values of C’ which only differ from the C’ in Tables 4.13 and 4.14 at the
third decimal place. Excessively distorted elements to the left of the crack tip in
discretizations of Figure 4.12 and Figure 4.13 do not affect the accuracy of the

computations.
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(0.1,0.7)  (0.0,0.7) (0.35,0.7) (0.7,0.7)

Elliptical
Differentiable .
Paths Clircular
Differentiable
Paths
(0.7,0.525)
(-0.1,0.35) (0.7,035)

(0.7,0.175)
(-0.1, 0.1457)
(-0.1,0.0754)
(-0.1,0.0335)
(-0.1,0.0) L] (0.7,0.0)
Mﬂ ......... Path36  Path37 0.637546
. L Path 38
(a) A 480 element discretization
o r=10.00025
= r=0.00035

¢ mid-point between o and =
® mid-point between o and 0.0

-0.000375 -0.(Iu(I025 -0.000125 0.0 '(I.UG(IIZS (l.(l0u025 0.000375 Path2 .......
}I Path 1
Crack |

(b) Discretization details at the crack tip

Figure 4.12: A 480 element graded discretization of quarter domain: non circular
differentiable J-integral paths (a=0.1)
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(-0.1,0.7)
Elliptical
Differentiable (0.7,0.6125)
Paths
Clircular
D'ffle,‘;'l’;'“b'e (0.7,0.525)
(-0.1,0.525)
(0.7,0.4375)
(-0.1,0.35) (0.7,035)
(0.7,0.2625)
(0.7,0.175)
(-0.1, 0.1457)
(0.1, 0.0754) (0.7,0.0875)
(-0.1,0.0335)
Wiy (0.7,0.0)
-0.1,0.0 -
0 ) ‘('1';1(31( y Path74 Path75 0.668777

Path 76
(a) A 1920 element discretization

o r=10.00025

m r=0.00035

O mid-point between o and =
® mid-point between o and 0.0

N Path1

-0.000375 -0.00025 -0.000125 0.0 ' 0.000125 0.00025 0.000375‘ Path3

Crack Path2

(b) Discretization details at the crack tip

Figure 4.13: A 1920 element graded discretization of quarter domain: non circular

differentiable J-integral paths (a=0.1)
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Table 4.13: Influence of differentiable but non circular paths: A 480 Element
mesh (a=0.1, b/a=8, h/a=7): using Gal/WF: C" solutions and p=5

(Figure 4.12)
Path 2 mliqrr?:jlsrsﬂ\xis Semiminor Axis| J52 . Iy path Ay c
1 0000375 00003745 1.244631E-07 1 334E-08 1.0278
2 0000525 0.000516 1.244629E-07 1 2B5E-08 1.0278
3 0000705 0000674 1.244603E-07 1 259E-08 1.0278
4 0000921 0000853 1.244598E-07 1 259E-08 1.0278
A 0001180 0.001054 1.2446597 E-07 1 260E-08 1.0278
[ 0oo1491 0.001280 1.244597 E-O7 1 259E-08 1.0278
7 0001864 0001535 1.244597 E-07 1 259E-08 1.0278
& 0002312 0o01a22 1244597 E-07 1 2609E-08 1.0278
9 0002850 0002145 1.244597 E-07 1 259E-08 10278
10 0003495 0.002508 1.2446597 E-07 1 260E-08 1.0278
14 0004269 0002918 1244597 E-07 1 269E-08 10278
12 0005198 0003379 1.244597 E-07 1 259E-08 1.0278
13 000312 0.003a98 1.2446597 E-O07 1 260E-08 1.0278
14 0007649 0004453 1.244597 E-O7 1 259E-08 1.0278
15 0009254 0.005141 1.244597 E-07 1 258E-08 1.0278
16 0011180 0005882 1244597 E-07 1 268E-08 1.0278
17 0013491 0006717 1.244597 E-07 1 258E-08 10278
18 0016265 0007657 1244597 E-07 1 268E-08 1.0278
19 0019593 0008715 1244597 E-07 1 268E-08 1.0278
20 0023586 0.009907 1.244597 E-07 1 258E-08 1.0278
21 0023378 0011249 1244597 E-07 1 267E-08 1.0278
22 0034129 0012760 1.244597 E-O7 1 257VE-08 10278
23 0041030 0014461 1.244596E-07 1 257E-08 1.0278
24 0043311 0016376 1244596 E-07 1 257E-08 1.0278
25 0059248 0018533 1.244595E-07 1 257E-08 1.0278
26 0071172 0020962 1244595 E-07 1 267E-08 1.0278
7 0085482 0023697 1244595 E-07 1 26RE-08 1.0278
2a 0102653 0026776 1.244595E-07 1 266E-08 1.0278
29 0123268 0030243 1244595 E-07 1 266RE-08 1.0278
30 0.147985 0034147 1244595 E-07 1 255E-08 1.0278
)l 0177657 0033543 12446596 E-07 1 265E-08 1.0278
32 0213264 0043493 1244597 E-07 1 264E-08 1.0278
33 0255991 0049067 1.244597 E-07 1 254E-08 10278
34 0307265 0055343 12446595 E-07 1 264E-08 1.0278
35 0363793 0062409 1244591 E-07 1 254E-08 1.0278
36 0442626 0070366 1.244587 E-07 1 254E-08 1.0278
7 0A31226 0079326 1244586 E-07 1 265E-08 1.0278
3& 0R37547 0089415 1244584 E-07 1 257E-08 1.0278
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Table 4.14a: Influence of differentiable but non circular paths (1 — 38): A 1920
Element mesh (a=0.1, b/a=8 h/a=7): using Gal/WEF: C" solutions
and p=5 (Figure 4.13)

Radius

i g g fa. f
Path S s s Semiminar Axis | V2 0 Ty path Ay c
1 0000375 0.000375 1244573E-07 1.240B08  1.0273
2 0.000450 0.000445 1244569607 1.238E08  1.0273
3 0000525 0.000516 1 244570E-07 1.238E08  1.0273
4 0000615 0.000535 1244570B-07 1.238E08  1.0273
5 00007 05 0.000674 1244570E-07 1.238E08  1.0273
= 0.000813 0.000763 1.244570E-07 1.230E08  1.0273
7 0.000921 0.000853 1.244570E-07 1.230E08  1.0273
g 0001051 0.000953 1244570E-07 1.238E038  1.0273
g 0001180 0.001054 1244570E-07 1.238E08  1.0273
10 0001336 0.001167 1.244570E-07 1.230E08  1.0273
1 0.001481 0.001280 1.244570E-07 1.230E08  1.0273
12 0001673 0.001407 1244570E-07 1.238E038  1.0273
13 0001564 0.001535 1244570E-07 1.238E08  1.0273
14 0.002088 0.001678 1.244570E-07 1.230E08  1.0273
14 0002312 0.001822 1.244570E-07 1.230E08  1.0273
16 0002581 0.001583 1244570B-07 1.238E08  1.0273
17 0002550 0.002145 1244570E-07 1.238E08  1.0273
13 000372 0.002326 1244570E-07 1.238E08  1.0273
19 0.003455 0.002508 1.244570E-07 1.230E08  1.0273
20 0003582 0.002713 1244570B-07 1.238E038  1.0273
21 0004269 0.002918 1244570E-07 1.238E08  1.0273
22 0004733 0.003148 1244570E-07 1.238E08  1.0273
23 0.005158 0.003378 1.244570E-07 1.230E08  1.0273
24 00057 55 0.003635 1 244570E-07 1.238E038  1.0273
28 00068312 0.003598 1244570E-07 1.238E08  1.0273
26 0008281 0.004130 1244570E-07 1.238E08  1.0273
&7 0007649 0.004483 1.244570E-07 1.230E08  1.0273
28 0005452 0.004812 1244570E-07 1.238E08  1.0273
29 0009254 0.005141 1244570E-07 1.238E08  1.0273
a0 omoz17 0.005512 1244570E-07 1.238E08  1.0273
31 0011180 0.005682 1.244570E-07 1.230E08  1.0273
32 02336 0.008300 1.244570E-07 1.230E08  1.0273
33 0013481 0.006717 1244570E-07 1.238E08  1.0273
34 0014578 0.007187 1244570E-07 1.238E08  1.0273
25 0016265 0.007657 1.244570E-07 1.230E08  1.0273
a6 0017929 0.008186 1.244570E-07 1.230E08  1.0273
a7 0019553 0.0087 15 1244570E-07 1.238E08  1.0273
3 0021589 0.009311 1244570E-07 1.238E08  1.0273
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Table 4.14b: Influence of differentiable but non circular paths (39 — 76): A 1920
Element mesh (a=0.1, b/a=8, h/a=7): using Gal/WF: C 1 solutions
and p=5 (Figure 4.13)

Path Sem'iqr:ejlsrsAxis Semirminor Axis | J¥2: T, path A ct
39 0023586 0.009907 1244570E-07  1.23BE-08 1.0278
A0 0025382 0.]os73 1 244670E-07  1.238E-08 1.0278
41 00283738 0.011249 1244670E-07 1.238E-08 1.0278
42 0031254 0.012004 1244570E-07  1.23BE-08 1.0278
43 0034129 0.0 2760 1244570E-07  1.23BE-08 1.0278
44 0037579 0.013610 1.244570E-07  1.238E-08 1.0278
Fita) 0041030 0.0144R1 1244670E-07 1.238E-08 1.0278
45 0045170 0.015418 1244570E-07 1.Z38E-08 1.0278
47 0049311 0016376 1244570E-07  1.23BE-08 1.0278
48 0054279 0.017455 1.244570E-07  1.238E-08 1.0278
49 00529243 0.018533 1244670E-07 1.238E-08 1.0278
a0 00eEs210 0.09747 1244670E-07 1.238E-08 1.0278
51 0071172 0.020962 1244570E-07  1.23BE-08 1.0278
52 0078327 0.022329 1244570E-07  1.23BE-08 1.0278
53 0.0a5482 0.023697 1 244670E-07 1.238E-08 1.0278
54 0094067 0.025236 1244670E-07 1.238E-08 1.0278
55 0102653 0026776 1244570E-07  1.23BE-08 1.0278
fala] 0112956 0.028509 1244570E-07  1.23BE-08 1.0278
a7 0123258 0.030243 1.244570E-07  1.238E-08 1.0278
fatal 0138622 0.032195 1 244570E-07 1.238E-08 1.0278
59 0.147985 0.034147 1244570E-07 1.Z38E-08 1.0278
B0 0162821 0.036345 1244570E-07  1.23BE-08 1.0278
B1 0A77BET 0.038543 1.244570E-07  1.238E-08 1.0278
E2 0.1954R0 0.041018 1 244570E-07 1.238E-08 1.0278
B3 0213264 0.0434583 1244570E-07 1.Z38E-08 1.0278
G4 0234628 0.045280 1244570E-07 1.Z38E-08 1.0278
b5 0255991 0.049067 1244570E-07  1.238BE-08 1.0278
BB 0281628 0.052205 1.244570E-07  1.23BE-08 1.0278
B7 0307265 0.055343 1244670E-07 1.238E-08 1.0278
Jats] 0338029 0.058876 1244570E-07 1.Z38E-08 1.0278
B9 03687593 0.062409 1244570E-07  1.23BE-08 1.0278
7o 0405709 0.056539 1.244570E-07  1.235E-08 1.0278
71 0442626 0.0703R6 1 244570E-07 1.238E-08 1.0278
72 0486926 0.07 4846 1244570E-07 1.Z38E-08 1.0278
73 0431226 0.079326 1244569E-07  1.238E-08 1.0278
74 0584387 0.084370 1.244569E-07  1.238E-08 1.0278
7a 0B37547 0.089415 1 244669E-07  1.238E-08 1.0278
76 0BEE773 0.094707 1244569E-07 1.Z38E-08 1.0278

Table 4.15: A 180 Element mesh (a=0.4, b/a=8, h/a=7) in region of near the
crack tip: using Gal/WF: C " solutions and p=5 (discretization
similar to Figure 4.6)

Path  Radius J%2 T, path A ct
1 0000375 | 4.98396E-07 850508 1.0284
2 0000598 | 49B070E07  G.435E-08 1.0281
3 0000994 | 498053E07  S.40BE-DS 1.0281
4 0001699 | 4.055054E07  B.39GE-08 1.0281
5 (0002953 | 4588056E07  B.385E-08 1.0281
6 0005157 | 498057E07 6.380E-08 1.0281
7 0009163 | 498058E07  B.373E-08 1.0281
8 0016240 | 495055E07  5.386E-DS 1.0281
5 (0028637 | 495058E07  B.360E-08 1.0281
10 0051260 | 4.980S8E07  6.354E-08 1.0281
11 0091172 | 498057EO7 B.349E08 1.0281
12 0162217 | 4980s2E07  B.349E08 1.0281
13 0287102 | 498014E07 8372608 1.0280
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4.10 Case (g); Integral Form: LSP using weak form of
GDEs; Influence of the Solution of Higher

Classes on J-integral Computations

In this study we investigate the influence of higher order global differentiability
on J-integral computations using LSP with weak form of GDEs. We consider a=04,
bla=35 (h=14.0) and b/a=16 (b=4.8). The domain is close to infinite compared
to the size of the crack. We consider a discretization strategy similar to that shown in
Figure 4.6. The zone at the crack tip is modeled using 180 element graded mesh shown
in Figure 4.3 and the remainder of the domain is modeled using a coarse mesh. We

investigate the following classes of solutions and p-levels:

Cc®(Q°) ; plevel of 3, 5,7
Cc"'(Q) ; plevel of 3,5, 7
C*(Q°) ; plevel of 5,7
C*(Q) ; p-level of 7

Integral paths, path radius, J I K ,f , A, and C’ are summarized in tables

4.16(a) — 4.16(d). We make the following observations and remarks.

(1) Since h/a and b/a are very large, we can consider the center crack to be in

a infinite medium, and a 180 element mesh in the crack zone has proven to

be excellent, we expect C/ =1 in all studies.
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(2) For all cases we note that C’ =1.00—— indicating exceptional accuracy of

all computed results for various orders of global differentiability listed above.

(3) Closer examination of C’ reveals improvement in second and fourth

decimal places for :

2) increasing p-level for C®(Q¢), C(Q°) and CZ(Q°) classes of
g p

solutions

(b) increasing order of global differentiability

@) A, well below O(07®) confirm path independence of J-integral in

computations.

(5) While it might appear (examining C”) that there is no apparent gain in going
to higher classes, this is not so. We note that C* —C" — C* — C”
results in progressively reduced total degrees of freedom. Thus, a comparable
accuracy is obtained with progressively higher classes in spite of substantial

reduction in total degrees of freedom.
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Table 4.16¢c: Influence of higher order global differentiability for b/a=16, h/a=35
and a=0.4: A 180 element mesh in region of near the crack tip (Figure
4.6) using LSP using weak form of GDEs: C* solutions

G2 p=5 % Reduction in dofs from G 2% =27 50 G2 p=7 % Reduction in dofs from %% = 14.04
from 11 = 2131 from G711 =10.44
% Error % Error
Path | .Jf2: T path A K based an K, J¥2: T path A Ki' Laced an K. &f
1 4 AG307E-07 -3.221E-07 1.0309E-03 26813 09732 | 466883E-07 -3324E-07 1.1158E-03 04633  0.9954
2 4 56142E-07 -3.143E-07 1.1029E-03  1.6149 009839 | 467000E-07 -3.184E-07 1.1159E-03 04508  0.9955
3 4 BI2BSE-07  -3.234E-07  1.1115E-03 08476 09915 | 4E8930E-07 -3.196E-07 1.1182E-03 0.2453  0.9975
1 4 B7297E-07 -3.371E-07 1.1163E-03 04191 09958 |470784E-07 -32MEO7 11205E-03 0.0483  0.9995
5 4B97IE-07  -3296E-07 1.1192E-03 01602 09984 |471878E-07 -3221E-07 1.1218E-03 -0.0678  1.0007
E A71116E-07 -3.306E-07 1.1209E-03 00131 09999 | 472808607 -3226E-07 1.1225E-03 -0.1345  1.0013
7 4 71963E-07 -3.312E-07  1.1219E-03  -0.0768 10008 | 472863607 -3229E-07 1.1220E-03 -0.1722  1.0017
= A 72A4BE-07  -3JIGE-07  11224E-03 -0.1282 10013 | 473062E-07 -32]ME-OF 11232E-03 -0.1932  1.0019
g9 472716E-07 -3.319E-07 1.1228E-03 01566 10016 |473171E07 -32EO07F 1.1233E-03 -0.2047  1.0020
10 |4.72869E-07 -3.322E07 1.1229E-03 -0.1728 10017 |473230E07 -3.232E-07 11234E03 -0.2110  1.0021
11 |4.72971E-07 -3.326E07 1.1231E-03  -0.1836 1.0018 | 473262E07 -3.232E-07 1.1234E03 -0.2144  1.0021
12 |473043E-07 -3323E07 1.1231E-03  -01913 10019 | 473279E07 -3232E-07 11234E03 -02163  1.0022
13 |4.73082E-07 -3322E07 1.1232E-03 -0.1954 10020 | 473290E07 -3.232E-07 11234E03 -0.2174  1.0022

Table 4.16d: Influence of higher order global differentiability for b/a=16, h/a=35
and a=0.4: A 180 element mesh in region of near the crack tip (Figure
4.6) using LSP using weak form of GDEs: C* solutions

C** p=T % Reduction in dofs from ©*? =30.08
from G171 = 2715
from C2F = 18.66

% Error
Ul £ f
Path JiY2: Ty path A Ky based on K, &

1 4 49335E-07 -2Z31E07 1.0952E-03 22974 049770
2 4 58767E-07 -2346E07 1.10B1E-03 1332 0.9867
3 4 B4560E-07 -2396E07 1.1130E-03 07112 09929
4 4 B8201E-07 -2425E07 1.1174E-03 03228 0.9965
5 4.70357E-07 -2444E07 1.1199E-03 00936 0.9991
g 471605E-07 -2.455E07 1.1214E-03 -00339  1.0004
7 472310E-07 -2462E-07 1.1223E-03 -0.1135  1.0011
8 4.72700E-07 -24B5E07 1.1227E-03  -01548 10015
9 4.72915E-07 -2467EO7 1.1230E-03 -01777  1.0018
10 4730ME-07 -2467E07 11231E-03  -0.1900  1.0018
11 4.73095E-07 -2468E-07 1.1232E-03 -0.1968  1.0020
12 473135607 -24B9E07 1.1233E-03 -02010  1.0020
13 4. 73204E-07 -2A76E-OF 1.1233E-03 -02083  1.0021
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Chapter 5

Summary and Conclusions

In this chapter we summarize the work presented in this thesis and draw some

conclusions.
Summary
1) The numerical computations of J-integral are presented for linear elastic fracture

@)

)

mechanics in /p,k framework using finite element formulations based on
Galerkin method with weak form and least squares method. The center crack
panel in plane strain with uniaxial tension (mode I fracture) is used as a model

problem.

For linear elasticity, the differential operators in the mathematical models (strong
form of GDEs) are self-adjoint and hence both the Galerkin method with weak
form and the least squares method yield unconditionally stable computational

processes.

In the present work we do not employ quarter point or singular elements or any
other special means at the crack tip. The studies presented here are straight
forward computations with graded meshes. A significant strength of the work is
that J-integral values for path radius as small as 0.000375 (dimensionless) from
the crack tip are as accurate as those away from it (half crack lengths of 0.1, 0.4
and 1.2 were considered). For all paths chosen and listed in the tables there is
very insignificant variation in the values of the J-integral from one path to the

othet.
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)

©)

@)

)

Stress intensity factors and correction factors obtained from the numerical

studies presented here compare very well with those reported in the literature

[40].

Conclusions

The use of /,p,k framework in which £ is the order of the approximation space
permits global differentiability of order (&-1) (i.e. higher order global
differentiability) in the design of the computations. The higher order global
differentiability is necessitated due to physics, calculus of continuous and
differentiable functions and the higher order global differentiability
characteristics of the theoretical solutions. Minimally conforming spaces are
discussed and it is demonstrated that minimum order of continuity must
correspond to the highest orders of the derivatives of the dependent variables in

the GDEs and the integral forms in order for the integrals to be Riemann.

A derivation of the J-integral is presented (based on Rice) and it is shown that
path independence of the J-integral in the computational processes requires that
the GDEs be satisfied in the pointwise sense for each element in the area
bounded by I', the J-integral path. If this condition is not met by the numerical

solution, then path independence of J-integral cannot be ensured. With the local
approximations of class C* used currently, these computations are not possible.
When local approximations are of class C'' or higher (as in the present work)
A, can be computed accurately. All our numerical studies show A, to be

O(10™*) or lower confirming that GDEs are satisfied accurately by the

computed numerical solution and hence, ensuring the path independence of the

J-integral in the computations.

It is shown that the J-integral path I' must be continuous and differentiable,
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)

®)

otherwise dI' along the path is not defined at the points of discontinuity.
Numerical studies are presented to illustrate the damage done to the J-integral
computations if the path I' is non-differentiable. Progressively increased lack of

differentiability yields progressively deteriorated J-integral values.

The continuity of the integrand in the J-integral along the path I' as well as
normal to the path I' is essential for uniqueness of a path and for accurate
values of J-integral. This can be ensured either by using local approximation of
minimally conforming class or by ensuring weak convergence of the solutions of

lower classes.

Solution of the higher classes shows benefit. Similar accuracy as the converged
solution of lower class is achieved with solution of higher classes but for much
reduced dofs as demonstrated in the numerical studies using least squares

formulation.

In conclusion, accurate computations of J-integral are straight forward in Ap,£

framework using Galerkin method with weak form or least square processes provided: (i)

The approximation spaces are minimally conforming. (i) The J-integral path is

continuous and differentiable. (iif) The integrand in the J-integral is continuous along the

path I' as well as normal to the path I', and (iv) GDEs ate satisfied accurately in the

pointwise sense for each element in the region bounded by the J-integral path I°,

otherwise path independence of the J-integral is lost. All these requirements are really

dictated by the physics and calculus of continuous and differentiable functions. The

methodology presented here requires no special treatments at the crack tip.
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