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Local Estimation of Modeling Error in Multi-Scale

Modeling of Heterogeneous Elastic Solids

Tristan C. Moody, M.S.

The University of Kansas, 2008

Supervisor: Albert Romkes

This thesis presents the results of an investigation toward the develop-

ment of a new methodology of local estimation of modeling error in the analysis

of linear elastostatic problems of heterogeneous solids. Due to the increase in

the use of multiphase composites in structural engineering applications in the

past three or four decades, the numerical analysis of their mechanical response

has accordingly gained importance. However, it is well known that the mi-

croscopic heterogeneity of the material data generally leads to computational

problems that are beyond practical means.

Several methods have been developed that essentially seek to replace

the complex models with surrogate descriptions of the material behavior that

lead to computational feasibility. In this work, a relatively recent approach,

called Goal-Oriented Adaptive Modeling (GOAM), is considered, which was

introduced by Oden, et al. [15, 16, 21, 22]. The distinguishing feature in its

concept is that it seeks to construct surrogate, multi-scale material models

that are capable of providing accurate predictions of the microscopic features

of the material response that are of practical interest to the analyst. To do
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so, a homogenized surrogate model is first established, using existing classical

homogenization techniques, and its response is obtained. A goal-oriented as-

sessment is then made of the quality of the solution from the surrogate model

by computing estimates of the modeling error in the fine-scale response fea-

tures that are of interest to the analyst. Depending on the estimated error,

the model is accordingly enhanced in an iterative process by including some

fine-scale heterogeneous data in a small portion of the domain near the domain

of interest.

A crucial aspect of this process is the error estimate. For the method

to be of practical use, one must be able to verify the accuracy of the predic-

tions of any of the surrogate descriptions. Only then can one accept or reject

any of the surrogate descriptions, with or without some fine scale features. In

other words: the estimates are necessary to validate the models. Current error

estimates rely on the solution of a dual problem, related to the quantity of

interest of the response. The dual problem in these approaches is defined glob-

ally, requiring the heterogeneous material data for the entire domain. Thus,

the computation of the dual solution is just as prohibitively expensive as the

solution of the exact problem. To overcome this, surrogate models have been

proposed to compute the dual problem as well, further introducing an inaccu-

racy into the error estimate.

In this thesis, these problems are resolved by introducing a new, local

error estimator that can be computed exactly, therefore eliminating the need

for expensive global computations and enhancement iterations in the error

estimation process. The estimates are only applicable to quantities of interest
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involving stresses and gradients of displacement and quantities that can be

expressed as linear functionals of the material response. A two-dimensional,

heterogeneous, linearly elastic beam under bending and tensile loads is used

as a model problem to present numerical studies.
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Chapter 1

Introduction

This document presents the results of a detailed investigation toward a

new, local method of estimating modeling error in the multi-scale modeling of

heterogeneous elastic solids. In the following, the motivation for the research

efforts and a bibliographic background of current approaches and methodolo-

gies in this area are given in Sections 1.1 and 1.2, respectively.

1.1 Micro-Mechanical Behavior of Heterogeneous Elas-
tic Solids – Motivation for Research

The use of heterogeneous elastic solids—i.e. composites—in engineer-

ing is, strictly speaking, hardly a new development. Many historic building

materials are considered fibrous composites, that is, multiphasic materials con-

sisting of one or more reinforcing fiber phases surrounded and supported by a

matrix phase. Perhaps the most common example of such a composite, and

a naturally occuring one, is wood, which consists of cellulose fibers in a lignin

matrix. The use of man-made composites dates back to ancient Egypt where

the papyrus plant was used to make ropes, sails, baskets, and–most famously–

paper, as well as the use of straw-reinforced mud bricks, a precursor to today’s

reinforced concrete. Beginning in the 1950s, however, the development of ad-

vanced fibers such as boron and carbon has led to an explosion in the use of
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composites in engineering. Today’s advanced composites are much stiffer and

stronger for their weight than traditional engineering materials such as steel

and aluminum, and with the proper selection and processing of the constituent

components, the material properties can be tailored to the needs of specific

applications. These advantages, along with the ability to construct complex

geometry far more easily than with traditional engineering materials, has en-

couraged increasingly widespread use of these materials. A particular example

is in the aerospace industry, where designs are typically weight-critical, or in

athletics and recreation, where the additional strength of these materials al-

lows the creation of lighter, longer-lasting skis, tennis rackets, helmets, and

the like.

As the application of these heterogeneous materials has become more

common, especially in the use of critical structural components, it becomes

necessary to understand the mechanics of these materials. Traditional engi-

neering materials are typically considered to be homogeneous, and stresses and

strains are generally smooth over the entire structure, allowing relatively easy

predictions of the behavior of these materials. Composite structures, however,

are highly heterogeneous, and material properties vary enormously over length

scales as small as a few micrometers. This spacial variability creates a corre-

sponding variability in–and local concentration of–stresses and strains when

these structures are placed under load. Because the length scale of this vari-

ablilty is often several orders of magnitude smaller than that of the structure

as a whole, it is often exceedingly difficult, if not impossible, to precisely pre-

dict this micro-mechanical behavior for an entire composite structure through

computational means.
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For traditional, homogeneous engineering materials, critical material

properties relating to design are well-known. For example, the point at which

a particular aluminum alloy will permanently deform, or the load under which

a certain high-carbon steel will fracture, are relatively consistent from sample

to sample and across several length scales, due to the homogeneity of these

materials. For composite materials, however, the in situ loading for a compos-

ite structure that will create failure-inducing stresses and strains is dependent

on numerous factors, including:

• the volume fractions of the constituents,

• the arrangement of the fibers in the matrix,

• the shape of the fibers,

• residual stresses from the formation of the composite, and

• thermal stresses due to differences in thermal expansion coefficients be-

tween the fiber and the matrix.

Likewise, failure modes for traditional materials differ from those for

composites. In traditional materials, failure initiates due to microcracks, ex-

panding and joining together in rapid succession to form a fracture. Due to the

homogeneity of these materials, the location and nature of these fractures is

relatively consistent. In composites, however, failure does not typically occur

in a uniform way–in fact, micro-scale failures may occur for a sigficant amount

of time and loading before a visible macro-scale failure is evident. These micro-

scale failures are consist of some combination of the following failure modes,

as described by Herakovich [9] (see Figure 1.1):
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Figure 1.1: Examples of composite failure modes

(a) Fiber fracture (b) Matrix cracking (c) Fiber -matrix
debonding

(d) Fiber pullout (e) Fiber kinking (f) Fiber splitting
and radial interface

cracking
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(a) fiber fracture, in which the ultimate tensile strength of individual fibers

is exceeded, causing transverse fractures that cleave individual fibers,

(b) matrix cracking, in which the ultimate tensile strength of the matrix

material is exceeded at some point,

(c) fiber/matrix debonds, in which the bond connecting the fiber to the

matrix is broken,

(d) fiber pullout, a combination of fiber fracture and fiber/matrix debonds,

(e) fiber kinking, caused by compressive stresses that exceed the buckling

strength of the fiber, and

(f) radial interface cracking and fiber splitting, when stresses within or sur-

rounding a fiber exceed ultimate values.

Though average properties for composites can be determined that re-

flect, on some level, the macroscopic properties of the material, such as bulk

elasticity and ultimate strength, these properties, lacking information on the

heterogeneity of the material, cannot provide information on failure mecha-

nisms for a particular situation, nor do they reflect the progressive change in

the macro-scale material behavior caused by micro-scale damage. Indeed, the

failure of a handful of individual fibers may not cause catastrophic failure of

the material, but without the micro-scale information, neither the occurrence

nor the effect of this damage can be predicted.

It is to this end, then that a reliable and computable method of includ-

ing micro-scale information in the prediction of the response of heterogeneous
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elastic solids is necessary.

1.2 Modeling of Heterogeneous Materials – Bibliograph-
ical Remarks

The simulation of the elastostatic behavior of heterogeneous materials

such as composites has until recently been done predominantly by determin-

ing effective properties, i.e., averaged or smoothened bulk properties that are

only sensitive to the macro-scale behavior of the reponse of the material to

external loads. These properties are traditionally what are determined by

standard laboratory tests, such as the tensile, compressive, or torsional load-

ing of rods. A major focus of research has been to establish bounds on these

material parameters. Indeed, some of the most highly regarded work in me-

chanics of materials over the past several decades is devoted to this particular

topic. Some particularly well-known examples, the works of Hill [10]; Hashin

and Shtrikman [8], Balendran and Nemat-Nasser [1]; and Nemat-Nasser and

Hori [11] are noted. These averaging methods inspired new mathematical re-

search into the homogenization of partial differential equations. Of particular

interest are the works of Bensoussan et al. [2] and Sanchez-Palencia [18], in

which asymptotic expansions of the response are used, based on the assump-

tion that the microstructure is periodic. More recently, modern imaging and

computational methods have been utilized to determine effective properties of

actual specimens, using techniques such as the Voronoi Cell Finite Element

Method as in the works of Ghosh et al [5, 6]; Boundary Element Method,

as used by Fu et al [3]; and the adaptation of digital data obtained from

Computerized X-Ray Tomography, as done by Terada et al [20].
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Similarly, a multi-scale approach has been adopted in the works of

Guedes and Kikuchi [7] and Terada and Kikuchi [19]. These works use the

aforementioned homogenizaton techniques and include asymptotic perturba-

tions to account for micro-mechanical behavior. A similar approach was used

by Ghosh, Lee, and Moorthy [4] to study elasto-plastic behavior.

All of the aforementioned approaches are noted by their restriction

to materials with periodic microstructures. In the past several years, a new

approach has been developed that allows the actual micro-mechanical features

of materials to be used to predict the micro-scale behavior. This approach,

known as Hierarchical Modeling, involves the use of only enough micro-scale

information to determine vital features of the macro-scale response to within

preset accuracy levels. In this approach, homogenization methods are used,

but only as an intermediate step in a broader algorithm. Oden and Zohdi [17]

and Zohdi et al [23, 24] presented hierarchical adaptive modeling method for

elastostatic problems based on bounds of the modeling error in terms of its

global quantities, such as the energy, or L2, norm of the error. The goal of

this method is to provide a hierarchy of descriptions of the physical properties

that can be used in different subdomains of the material. In this approach,

a posteriori error estimates of the modeling error are used to determine the

level of complexity required for each subdomain.

The original method was known as the Homogenized Dirichlet Projec-

tion Method and involves two different levels of description: a homogenized,

macro-scale description and the exact micro-scale description. The algorithm

proceeds thusly: an initial approximation is made using homogenized prop-
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erties throughout the entire domain; then, a posteriori error estimates of the

modeling error are determined and an iterative process is started in which

critical regions of the material have the fine-scale problem solved using the ho-

mogenized solution as a Dirichlet boundary condition on the boundary of the

subdomain. This iterative proces continues by including progressively more

critical regions into the micro-scale analysis until the error estimate meets

tolerances set by the user.

Where the previous procedure uses global error estimates–that is, en-

ergy or L2 norms of the error–Oden and Vemaganti [16, 15, 21, 22] advanced

this work by introducing the Goal-Oriented Adaptive Local Solution Algorithm,

where error estimates in local quantities of interest are used. These estimates

allow the user to use goal-oriented adaptive strategies, in which a model is

adapted to yield accurate predictions of user-specified features of the response.

As mentioned previously, these works were created in the context of

elastostatic proglems. Recently, an extension of this approach to general

goal oriented engineering applications has been proposed by Oden and Prud-

homme [12, 13], using a residual-based analysis of the modeling error.

It is crucial to this method, then, to derive some way to estimate the

error in these solutions, since the actual modeling error obviously cannot be

determined. Most error estimates involve the solution of some dual problem,

through which the error in the desired quantity of interest can be extracted

from the surrogate solution. These dual problems, however, are typically global

in nature, requiring fine-scale information over the entire domain and thus

are usually just as difficult to solve as the exact problem. Consequently, the
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dual problem must itself be approximated by some surrogate model as well,

with progressive enhancements applied much in the same way as in the main

problem. Thus, not only must an adaptive modeling algorithm be applied

to the exact problem, it must be applied to the dual problem as well, which

is global in nature, greatly increasing computational expense and reducing

accuracy.

1.3 Goal of Research

The primary goal of this research is the development of an improved

methodology for estimation of modeling error for linear elastostatics problems

of heterogeneous solid materials, i.e. composites. This methodology will be

residual-based and will employ local, rather than global, integrals, significantly

reducing the computational expense of the error estimate. The development

of this methodology involves the following objectives:

• The development of a variational, i.e. integral statement of a dual prob-

lem based on local descriptions

• The consideration of quantities of interest that are linear functionals

of the micro-mechanical response, e.g., average tensile strain in a small

subdomain.

• The development of a modeling error estimate that only employs local

mechanical information and dual solutions, hence establishing estimators

that are tractable.

9



• Preliminary investigation of methods for local enhancements to the ho-

mogenized model.

To present the development of this methodology, this document is or-

ganized as follows:

• Chapter 2 explains the model problem used in this research and de-

scribes the formulation used to solve it.

• Chapter 3 then describes the adaptive algorithm used to develop a

computable surrogate problem that provides a desired level of accuracy

in terms of a quantity of interest.

• Chapter 4 presents both the current error estimation methodology in

use and the newly developed local error estimate

• Chapter 5 presents numerical verification results, and

• Chapter 6 presents conclusions and projected future research topics.

10



Chapter 2

Linear Elastostatics Problems

In this chapter, the general linear elastostatics problem is presented.

The model problem and important notations are introduced in Section 2.1. A

variational formulation of this problem, suitable for finite element analysis, is

then given in Section 2.2.

2.1 Model problem

An open, bounded domain Ω ⊂ Rd, d = 1, 2, 3 is considered, as shown

in Figure 2.1, containing a linearly elastic solid material. The boundary

∂Ω = Γt ∪ Γu, Γt ∩ Γu = ∅, meas(Γt) > 0, meas(Γu) > 0, with Γu

and Γt representing the portions of the boundary ∂Ω on which displacements

and tractions are specified, respectively. This solid body is subjected to trac-

tion t on Γt and a distributed volumetric body load f . Additionally, a zero

displacement is prescribed on Γu.

It is assumed that the body is composed of a multi-phase, composite,

linearly elastic material with highly oscillatory material properties, as shown

in Figure 2.1. Let u denote the displacement vector field defined on Ω, ∇u be

its spatial gradient, ∇·x be the divergence of some tensor or vector quantity x,

and · denote the inner product. Then, the Cauchy stress tensor σ satisfies the

linear constitutive equation σ = Eε, where ε is the strain tensor and E = E(x)

11



Figure 2.1: The model problem

E

Γu

Γt

A

A′ A A′

Ω

denotes the 4th order elasticity tensor, whose coefficients satisfy the following

symmetry and ellipticity conditions:

Eijkl(x) = Ejikl(x) = Eijlk(x) = Eklij(x)

α0 ξijξij ≤ Eijkl ξijξkl ≤ α1 ξijξij,

α0, α1 ∈ R, α0 > 0, α1 > 0

The deformations in the material are assumed to be small. Hence the strain-

displacement relations are linear:

ε =
1

2

(
∇u + (∇u)T

)
Thus, the linear eleastostatics problem can then be formulated in terms of the

following classical boundary value problem:

Find u such that:

−∇ · (E∇u) = f in Ω,

E∇u · n = t on Γt,

u = 0 on Γu,

(2.1)

12



where n denotes the unit normal to ∂Ω.

2.2 The Variational Formulation

The solution to the problem in (2.1) can rarely—in fact, almost never—

be solved analytically. Commonly, it is approximated by computing finite

element discretizations of its equivalent formulation. This variational formu-

lation can be obtained in several ways, e.g., using a Least Squares approach or

a Galerkin approach. Because the differential operator in (2.1) is self-adjoint,

a stable, non-degenerate–or Variationally Consistent–formulation is possible

using the Galerkin Method with Weak Form (GMWF). Let the space of test

functions be

V =

{
v :

∫
Ω

E∇v : ∇vdx < ∞, γ0(v)|Γu = 0

}
, (2.2)

where γ0 : H1(Ω) → H1/2(∂Ω) is the zeroth-order trace operator. Then mul-

tiplying both sides of the first equation in (2.1) by a test function v ∈ V and

integrating using Green’s identity yields the variational form:

Find u such that:

B(u,v) = F (v), ∀v ∈ V,
(2.3)

where,

B(u,v) =

∫
Ω

E∇u : ∇vdx,

F (v) =

∫
Ω

f · vdx +

∫
Γt

t · vds.
(2.4)

Remark 2.2.1. A variational form based on a least-squares formulation is not

considered in this thesis but will be pursued in future research efforts (see

Section 6.2).
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Chapter 3

Goal-Oriented Adaptive Modeling (GOAM)

The accomplishments of this thesis work are essentially a crucial con-

tribution to the GOAM method [15, 16, 21, 22]. This chapter provides a more

detailed description of this methodology and elaborates on all of the steps

involved. Section 3.1 introduces the homogenized description of the material,

which is used as an initial surrogate model in GOAM. The criteria for model

adaptation are introduced in Section 3.2. Section 3.3 then concludes with

a brief discussion of the successive model enhancements of the homogenized

description.

To illustrate the approach and steps of the GOAM method, a model

problem is considered as depicted in Figure 3.1. The problem concerns the

elasto-static response of a U-shaped heterogeneous elastic solid. The structure

is subject to applied uniform tractions t at the top edge and is fixed at the

bottom edge.

3.1 Initial Surrogate Descriptions – Classical Homoge-
nization

Following classical approaches, the GOAM method, as proposed by

Oden et al [15, 16, 21, 22], acknowledges that the full micromechanical re-

sponse of heterogeneous solids such as engineering composites cannot be re-

14



Figure 3.1: An example exact problem

Ω

Emat, νmat

Einc, νinc
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Figure 3.2: Homogenization of a heterogeneous solid

Ω

Emat, νmat

Einc, νinc E0, ν0

solved completely. The complexity of the microstructure would require numer-

ical discretizations, e.g. Finite Element approximations, involving numbers

of degrees of freedom that easily exceed available computational resources.

Hence, the GOAM method employs classical homogenization techniques to

establish an initial surrogate mathematical model (see Figure 3.2). As men-

tioned in Chapter 1, there are several approaches for achieving averaged or

effective material properties.

In this work, average values of the Hashin-Shtrikman [8] upper and

lower bounds (see Appendix 1 for a discussion on how these values are ob-

tained) are used to establish averaged, effective material coefficients E0,ijkl,

yielding a homogenized elasticity tensor E0. Based on the homogenized mate-

rial description E0, one can then seek the corresponding homogenized material
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response u0, which is a solution to the following homogenized version of (2.1):

Find u0 such that:
−∇ · (E0∇u0) = f in Ω,

E0∇u0 · n = t on Γt,

u0 = 0 on Γu,

(3.1)

By applying a Galerkin with Weak Form approach, its equivalent vari-

ational formulation is governed by:

Find u0 such that:
B0(u0,v) = F (v), ∀v ∈ V,

(3.2)

where,

B0(u0,v) =

∫
Ω

E0∇u0 : ∇vdx,

(3.3)
F (v) =

∫
Ω

f · vdx +

∫
Γt

t · vds.

3.2 Quantities of Interest

The homogenized models, although generally computable, yield rea-

sonably accurate predictions of macroscopic features of the material response.

As discussed in Section 1.2, they do not provide reliable information on local,

micromechanical response features that are crucial in micromechanical failure

mechanisms. Thus, depending on the interest and motivation of the analyst,

the homogenized predictions are not necessarily satisfactory.
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To provide a rigorous means to accept or reject the surrogate solution,

that is, to validate the model, the GOAM method introduces the notion of

the quantities of interest, in an effort to include critical microscopic features

of the response into the analysis and implement them as goals of the adapive

modeling process. Mathematically, this is extablished by expressing these

quantities in terms of functionals Q : V → R of the material response u. Of

particular interest in this thesis work are micromechanical features such as:

• The average axial strain in a small subdomain ω ∈ Ω:

Q(u) =
1

|ω|

∫
ω

εxx(u)dx =
1

|ω|

∫
ω

(∇uex · ex)dx =
1

|ω|

∫
ω

∂ux

∂x
dx (3.4)

where |ω| represents the area of ω.

• The average shear stress in a small subdomain ω ∈ Ω:

Q(u) =
1

|ω|

∫
ω

τxy(u)dx =
1

|ω|

∫
ω

(E∇u(ex) · (ey)) dx (3.5)

• The total reaction force in the y-direction on a Dirichlet portion of the

boundary Γu ∈ ∂Ω:

Q(u) =

∫
Γu

t(u) · eyds =

∫
Γu

(E∇u · n) · eyds (3.6)

The quantity of interest can be a nonlinear functional on V to be suit-

able for this method, but for the scope of this research, only linear quantities

of interest are addressed.
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3.3 Model Enhancement

Upon establishing the homogenized solution u0, the GOAM method

validates the homogenized model by computing estimates of the modeling

error in terms of the quantities of interest, i.e. Q(u)−Q(u0). Details on the

error estimation process are provided in Chapter 4.

In case the estimates exceed a user-set error tolerance, αtol, the sur-

rogate model is rejected and an iterative process of enhancements of the ho-

mogenized model is started. The enhancement is commonly implemented by

including part of the exact micromechanical features of the material. There

is no unique way to this, and to date, this remains an open issue. (See also

the comments in Chapter 6 on future work). Oden et al [14] provide two al-

ternatives: local and global enhancement. In both approaches, the domain Ω

is partitioned into subdomains ωk, as demonstrated in Figure 3.3. For each

subdomain, indicators of its contribution to the modeling error are computed.

Those regions with the highest contribution, ωcrit, are subsequently considered

for model enhancement.

3.3.1 Local Enhancement

In local enhancement, as illustrated in Figure 3.4, a local problem is

defined in the critical region ωcrit by solving the exact elastostatic PDE in ωcrit

and applying the homogenized solution u0 as a prescribed Dirichlet condition

on the boundary ∂ωcrit, i.e.:
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Figure 3.3: Partitioning the homogenized surrogate model

ωk

Ω

Figure 3.4: A local enhancement problem

E0, ν0

ωk

Emat, νmat

Einc, νinc

u0
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Find ũ such that:
−∇ · (E∇ũ) = f in ωcrit,

ũ = u0 on ∂ωcrit

(3.7)

The local enhancement technique benefits from greatly reduced com-

putational expense, as the domain of computation is much smaller than the

global problem. However, this is not without its drawbacks, as this method

effectively decouples the problem from the global domain, preventing the lo-

cal response from affecting the solution field in the neighboring subdomains,

creating accuracy issues and affecting the choice of subdomains to add to the

enhancement. In addition, since u0 6= u on ∂ωcrit, the Dirichlet condition in

itself has error that pollutes the local problem. In practical application, ωcrit

must be substantially large for this error to diffuse and not corrupt predictions

in ω, resulting in an increase in computational expense

3.3.2 Global Enhancement

In global enhancement, an enhanced problem is defined that considers

the entire domain Ω, but in which the exact material properties are applied

in the critical domain ωcrit and the homogenized properties are applied out-

side (see Figure 3.5). This leads to an enhanced surrogate description of the

material properties:

Ẽ(x) =

{
E0 for x ∈ Ω\ωcrit

E for x ∈ ωcrit

(3.8)

. The problem is then solved in Ω with the same loading criteria as the

homogenized problem:
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Figure 3.5: A global enhancement problem

E0, ν0

ωk

Emat, νmat

Einc, νinc

Find ũ such that:
−∇ · (Ẽ∇ũ) = f in Ω,

Ẽ∇ũ · n = t on Γt,

ũ = 0 on Γu,

(3.9)

Hence, this technique establishes a coupled problem, which improves

accuracy but increases computational expense (as the problem is solved glob-

ally).

3.3.3 The Adaptive Process

Whether local or global enhancements are employed, the Goal-Oriented

Adaptive Modeling method is an iterative process that seeks to establish a

surrogate model that can give a reasonably accurate approximation of a pre-
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defined goal, or quantity of interest, Q(u). This adaptive process, illustrated

in the flowchart in Figure 3.6 can be summarized in terms of the following

steps:

Step 1: The body Ω is partitioned into non-overlapping subdomains ωk, and

the quantity of interest Q(u) and its associated error tolerance αTOL is

assigned.

Step 2: Homogenized material properties are computed (see Appendix 1) and

collected into a surrogate elasticity tensor E0 as described in Section 3.1.

Step 3: The corresponding displacement field u0(x) is computed by solving

the surrogate problem described in (3.1) (generally by applying a finite

element discretization of (3.2)).

Step 4: The modeling error in the quantity of interest, Q(u) − Q(u0), is

estimated.

Step 5: If the error estimate is less than αTOL, then the analysis STOPS

and provides the analyst with Q(u0) as the prediction of the response in

the quantity of interest.

Step 6: The initial guess of a domain of influence ωcrit is determined by taking

the union of all subdomains that intersect with the domain upon which

the quantity of interest is defined.

Step 7: A new, enhanced problem is constructed by including the exact ma-

terial properties E in the domain of influence ωcrit according to one of

the two enhancement methods described in Subsections 3.3.1 and 3.3.2.
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Step 8: The enhanced displacement field ũi(x), i being the current enhance-

ment number, is solved, according to the enhancement technique chosen

(i.e. local or global, see Sections 3.3.1 and 3.3.2).

Step 9: The modeling error in the quantity of interest, Q(u) − Q(ui), is

againestimated.

Step 10: If the error estimate is less than αTOL, then the analysis STOPS

and provides the analyst with Q(ũi) as the prediction of the response in

the quantity of interest.

Step 11: If the error estimate exceed the tolerance level, then ωcrit is updated

by including neighbors of ωcrit that have high contribution to the error

in terms of computable indicators.

Step 12: The process repeats back to Step 7.

A visual illustration of the progression of this adaptive process is shown

for global enhancement in Figure 3.7 and for local enhancement in Figure 3.8.
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Figure 3.6: A flowchart of the GOAM algorithm

Partition

Apply
Homogenization

Solve Surrogate
Problem

Estimate Error
in Quantity
of Interest

START

FINISHED

Enhancement
Region

Determine New

Model
Surrogate
Enhance

yes

no

Error < αTOL?

25



Figure 3.7: The adaptive process using global enhancement
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Figure 3.8: The adaptive process using local enhancement
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Chapter 4

Modeling Error Estimation

One of the most important elements in the GOAM algorithm is the er-

ror estimate, which enables the validation of surrogate models and drives the

level to which the model is enhanced. For this algorithm to be practical, an

accurate and computable error estimate must be derived which will predict the

error in the quantity of interest due to differences between the exact and the

surrogate models. For the purposes of this research, only quantities of interest

are considered that are expressed as linear functionals of the response u. To

derive error estimates, a residual-based approach is used that was first intro-

duced by Oden and Prudhomme [12]. It was developed to enable estimation of

errors by using global descriptions (i.e. throughout the entire domain Ω). De-

tails on this approach are given in Section 4.1. The major contribution of this

thesis work, a new error estimator that is entirely based on local descriptions,

is presented in Section 4.2.

4.1 Residual-Based Error Estimation

Given the quantity of interest Q(u), and noting that u is the unique

solution to the boundary value problem (2.3), it is possible to interpret the

solution of the boundary value problem in terms of the quantity of interest
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equivalently as a constraint minimization problem [12]:

Q(u) = inf
v∈M

Q(v), M = {v ∈ V : F(q)−B(v,q) = 0, ∀q ∈ V } (4.1)

The solution of this constraint minimization problem is then governed

by the minimizer/saddle point (u,p) of the following Lagrangian

L(v,q) = Q(v) + F(q)−B(v,q) (4.2)

(A Lagrange multiplier which addresses the difference in dimension between

Q(·) and the other terms is assumed to be folded into Q(·) itself)

Thus, it is necessary to find the roots of the Gateaux derivative of the

Lagrangian, that is, where:

δL
(
(w,p), (v,q)

)
= lim

θ→0

1

θ

[
L

(
(w,p) + θ(v,q)

)
− L(w,p)

]
= 0

∀(v,q) ∈ V × V

(4.3)

Assuming that F(·), B(·, ·), Q(·) are linear functionals simplifies (4.3)

to:

[Q(v)−B(v,p)] + [F(q)−B(w,q)] = 0 ∀(v,q) ∈ V × V (4.4)

where (v,q) denotes the pair of test functions.

It is important to note that (4.4) can only be satisfied if

B(w,q) = F(q) ∀q ∈ V

B(v,p) = Q(v) ∀v ∈ V
(4.5)

It should be clear that (4.5)1, called the primal problem, is in fact iden-

tical to the variational boundary value problem (2.3) and thus has the unique
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solution w = u. Problem (4.5)2 is commonly referred to as the dual problem

and its solution p the dual solution. The dual solution can be understood as a

function indicating the distribution of the sensitivity of the quantity of interest

Q(u) to features of the material model of Ω (i.e. high values of p and/or its

derivatives at x implies high sensitivity). Although generally rarely employed

in engineering analysis, one commonly known example of a dual solution is

the Green’s function. The Green’s function is in fact the dual solution p when

Q(u) corresponds to the value of u at a point x0, i.e.:

Q(u) = u(x0) = δx0(u)

where δx0(·) denotes the (irregular) Dirac distribution.

In this thesis work, the situation is considered in which the solution u

is unattainable due to the complexity of the exact problem. Instead, an ap-

proximation z of u is considered. To quantify its inaccuracy, a primal residual

functional R : V × V → R is introduced as follows:

R(z,v) = F(v)−B(z,v) ∀v ∈ V (4.6)

Note that when z is identical to the exact solution u, the residual functional

is then zero.

A dual residual functional R : V × V → R is therefore introduced for

any approximation r of the dual solution p:

R(r,w) = Q(w)−B(r,w) ∀w ∈ V (4.7)

With the definitions of these functionals in place, the following theorem

can be stated:
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Theorem 4.1.1. Let z ∈ V be any kinematically admissible approximation of

u, where (u,p) is the solution to (4.5). Then the following equality holds:

Q(u)−Q(z) = R(z,p) (4.8)

Proof. Setting v in (4.5)2 equal to u and z respectively yields:

Q(u) = B(u,p)

Q(z) = B(z,p)

Thus,

Q(u)−Q(z) = B(u,p)−B(z,p)

Finally, applying the primal problem (4.5)1 gives

Q(u)−Q(z) = F(p)−B(z,p) = R(z,p)

In principle, Theorem 4.1.1 and (4.8) enable the quantification of the

error Q(u)−Q(z) if the dual solution is known.

Equation (4.8) clearly demonstrates the purpose of the dual solution p.

The residual functional R(z,v) encompasses and captures the inaccuracy in

terms of a global measure (i.e. in terms of integrals on Ω). The dual function

p, in turn, serves as a filter and extracts that part of this global measure that

contributes to the error in Q(u).

But, as said previously, p is typically impossible to obtain, so if one

uses an approximation r of p, then (4.8) can be rewritten as:

Q(u)−Q(z) = R(z,p− r + r)

= R(z, r) + R(z, ε)
(4.9)
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where ε = p− r.

The residual component R(z, r) is computable, but the remainder,

R(z, ε), since it depends on the unknown p, is not. In most cases, this re-

mainder is of the same order as the computable component and therefore

needs to be estimated.

To emphasize and highlight the challenges that lie in estimating the

remainder term, consider the case in which the approximation z is the solution

u0 of the homogenized problem, i.e.:

B0(u0,v) = F(v) (4.10)

where B0(·, ·) is as given in (3.3).

The GOAM method generally uses the same surrogate material descrip-

tion to compute an approximation of the dual solution, i.e., consider r = p0,

where p0 is the solution of the homogenized problem

B0(w,p0) = Q(w)

Hence in this case,

R(z, ε) = R(u0,p− p0)

Applying the definition of the residual (4.6) yields:

R(u0,p− p0) = F(p− p0)−B(u0,p− p0)

Subsequently, the solution of the homogenized problem (4.10) changes this

into:

R(u0,p− p0) = B0(u0,p− p0)−B(u0,p− p0)
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Recalling the definitions of B(·, ·) and B0(·, ·) in (2.4) and (3.3), respectively,

allows this expression to be rewritten as:

R(u0,p− p0) =

∫
Ω

E0∇u0 · ∇(p− p0)dx−
∫

Ω

E∇u · ∇(p− p0)dx

This residual expression presents two major challenges in its calcula-

tion:

• The integrals in this expression are of a global nature, that is, over the

entirety of the global domain Ω, at considerable computational expense.

• The dual solution p cannot be computed exactly, and so surrogate models

for the dual problem must be developed, yielding only an approximation,

at the expense of a second concurrently-performed model refinement pro-

cess.

4.2 Error Estimation based on Local Problem Descrip-
tions

This section introduces the derivation of a new error estimate that

also enjoys a residual-based approach but is solely based on local descriptions

and therefore only requires the solution of (tractable) local dual problems and

computation of local integrals. The need to employ surrogate models for the

dual problem is eliminated. In many cases, only a single dual problem needs

to be solved to estimate modeling errors in many different regions.

In accordance with the philosophy behind the GOAM method (see

Chapter 3), the estimation of modeling errors is sought in terms of quanti-

ties of interest Q(·) of the material response. Thus, let u(x) be the (unknown)
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exact fine-scale response of the material and ũi be any of the (multi-scale)

solutions obtained by using the GOAM method. Then the error Q(u)−Q(ũi)

is sought.

First, it is important to note that if u0 is the (initial) homogenized

solution (see Section 3.1), then the error can be decomposed as follows:

Q(u)−Q(ui) = Q(u)−Q(u0)︸ ︷︷ ︸
to be estimated

+Q(u0)−Q(ui)︸ ︷︷ ︸
computed directly

(4.11)

Since in the GOAM process both u0 and ũi are computed, (4.11) shows

that to establish an accurate estimate of the modeling error in any multi-scale

solution ui, it suffices to estimate the homogenization error Q(u)−Q(u0).

This statement is part of the basic concept underlying the estimation

process presented in this thesis work. In the following, the derivations focus

on estimation of the homogenization error. Estimates of Q(u) − Q(ũi) are

subsequently established by applying (4.11).

The goal is to only employ local descriptions that are signifiicant in

terms of the goals of the analyses. Thus, given a quantity of interest Q(u)

that is defined on a small subdomain ω ⊂ Ω (e.g. the examples in Section 3.2),

the estimation process focuses on employing problem descriptions on ω only.

In Section 2.1 it is stated that the fine-scale solution satisfies the elas-

tostatic PDE (2.1)1 in Ω. Since ω ⊂ Ω, it must hold that

−∇ · E∇u = f in ω (4.12)

Multiplying (4.12) by an arbitrary test function v ∈ H1(ω), integrat-

ing over ω, and subsequently applying Green’s Identity, the following local
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variational formulation is obtained:∫
ω

E∇u · ∇v dx =

∫
ω

f · v dx +

∫
∂ω

(E∇u+nω) · v ds ∀v ∈ H1(ω) (4.13)

where nω denotes the unit normal to the boundary ∂ω and E∇u+nω denotes

the traction applied to ∂ω by the surrounding external stress field. For the

purpose of this derivation, the latter is treated as an externally applied load..

By introducing the local bilinear and linear forms

Bω(u,v)
def
=

∫
ω

E∇u · ∇v dx

(4.14)
Fω(v)

def
=

∫
ω

f · v dx +

∫
∂ω

(E∇u+nω) · v ds

this allows (4.13) to be rewritten as

Bω(u,v) = Fω(v) ∀v ∈ H1(ω) (4.15)

Following the approach taken by Oden et al (see Section 4.1), seeking

u in terms of Q(u) that satisfies (4.15) can equivalently be prescribed by the

following constraint minimization problem:

Q(u) = inf
v∈M

Q(v)

M =
{
v ∈ H1(ω) : Bω(v,w)− F(w) = 0, ∀w ∈ H1(ω)

} (4.16)

As in Section 4.1, the solution of this contraint minimization problem

is governed by the minizer/saddle point (u,p) of the local Lagrangian:

Lω(v,q) = Q(v) + Fω(q)−Bω(v,q) (4.17)

Then the roots of the Gateaux derivative of the Lagrangian, are given

by:

δLω

(
(w,p), (v,q)

)
= lim

θ→0

1

θ

[
Lω

(
(w,p) + θ(v,q)

)
− Lω(w,p)

]
= 0

∀(v,q) ∈ H1(ω)×H1(ω)

(4.18)
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Again assuming linearity of Fω(·), Bω(·, ·), and Q(·) simplifies (4.18)

to:

[
Q(v)−Bω(v,p)

]
+

[
F(q)−Bω(w,q)

]
= 0 ∀(v,q) ∈ H1(ω)×H1(ω) (4.19)

where (v,q) denotes the pair of test functions.

Likewise, (4.19) is only satisfied if

Bω(w,q) = F(q) ∀q ∈ H1(ω)

Bω(v,p) = Q(v) ∀v ∈ H1(ω)
(4.20)

where (4.20)1 is known as the local primal problem, and (4.20)2 is known as

the local dual problem.

Proposition 4.2.1. 1. The solution p of the local dual problem (4.20)2

exists if and only if the quantity of interest is continuous with respect to

the seminorm
√

Bω(·, ·) on ω, that is:

∃C > 0 : Q(v) ≤ C
√

Bω(v,v), ∀v ∈ H1(ω). (4.21)

2. The solution p is unique up to an unknown constant.

Proof. Both assertions are established by invoking the Generalized Lax-Mil-

gram Theorem.

Due to the continuity requirement (4.21) on Q(·), errors in linear quan-

tities of interest involving displacement terms cannot be predicted using the

dual problem (4.20)2. These quantities of interest are continuous in terms

of the L2(ω) norm, but not in terms of the seminorm, meaning the solution
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p does not exist. However, linear quantities of interest in terms of stresses

and strains do satisfy the continuity requirement and lead to computable dual

solutions and successful predictions of error.

Compared to the previously established error estimation process de-

scribed in Section 4.1, the estimator described here distinguishes itself in two

important ways:

1. The dual problem (4.20)2 is computable. Unlike previous approaches, in

which the dual problem was defined globally, the dual problem presented

here is defined only on the domain of interest, a small subdomain ω ⊂ Ω,

allowing it to contain the necessary fine-scale information in the domain

of interest without requiring computationally prohibitive global integra-

tion. This allows p to be computed exactly and eliminates the loss of

accuracy associated with the use of a surrogate dual problem.

2. The dual problem only needs to be solved once. This is directly related to

the ability to solve the dual problem exactly. Since previous approaches

cast the dual problem in terms of global integrals, it was only possible

to approximate the dual problem by using some surrogate model. As

a result, each successive enhancement of the surrogate model required

an additional computation of the dual problem. With the local dual

problem, the solution p does not depend on the surrogate model and

only needs to be computed once, regardless of the number of adaptive

iterations necessary to achieve the desired target error.

Having the definition of the local dual problem in place, one can im-

mediately establish an assessment of the modeling error in the homogenized
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solution u0.

Lemma 4.2.1. Let u be the solution of the model problem (2.1) and p ∈ H1(ω)

be the solution of the local dual problem (4.20)2. Then, the following equality

holds for the homogenization error in the quantity of interest:

Q(u)−Q(u0) =

∫
ω

(E0 − E)∇u0 · ∇p dx +

∫
∂ω

(E∇unω − E0∇u0nω) : p ds

(4.22)

Proof. Choosing p for the test function v of the dual problem, one obtains

Q(u)−Q(u0) = Bω(u,p)−Bω(u0,p)

Substitution of the local primal problem (4.15) yields:

Q(u)−Q(u0) = Fω(p)−Bω(u0,p)

=

∫
ω

f · p dx +

∫
∂ω

(E∇unω) · p ds

−
∫

ω

E∇u0 · ∇p dx

=

∫
ω

f · p dx +

∫
∂ω

(E0∇u0nω) · p ds︸ ︷︷ ︸
−

∫
∂ω

(E0∇u0nω) · p ds +

∫
∂ω

(E∇unω) · p ds

−
∫

ω

E∇u0 · ∇p dx

Considering the homogenized surrogate PDE,

−∇ · (E0∇u0) = f , in ω (4.23)

38



and its equivalent variational form,∫
ω

E0∇u0 · ∇p dx =

∫
ω

f · p dx +

∫
∂ω

(E0∇u0nω) · p ds (4.24)

reveals that the collected term may be rewritten, giving:

Q(u)−Q(u0) =

∫
ω

E0∇u0 · ∇p dx +

∫
∂ω

(E∇unω − E0∇u0nω) · p ds

Remark 4.2.1. It is important to note that even though p is unique up to an

arbitrary constant, this degree of freedom does not affect the prediction of the

homogenization error (4.22). This can be illustrated by considering p + C,

where C is an arbitrary constant function:

Q(u)−Q(u0) =

∫
ω

(E0 − E)∇u0 : ∇(p + C)dx

+

∫
∂ω

[E∇unω − E0∇u0nω] : (p + C)ds

=

∫
ω

(E0 − E)∇u0 : ∇pdx +

∫
∂ω

[E∇unω − E0∇u0nω] : pds

+

∫
∂ω

[E∇unω − E0∇u0nω] : Cds

Noting, however, by (4.15) and (4.24) that the last term is identically equal

to zero then reduces the equation to (4.22).

The expression (4.22) is still not computable, as the traction E∇unω

depends on the surrounding fine-scale solution u, which is generally unsolvable.

The estimation of this term is based on the following observation:

Note that the exact and homogenized solutions satisfy PDEs (4.12) and

(4.23) in Ω. Hence, they must also satisfy these equations in the subdomain
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ω ⊂ Ω

−∇ · (E∇u) = f , in ω

−∇ · (E0∇u0) = f , in ω

Hence,

−∇ · (E∇u) = −∇ · (E0∇u0) in ω

and therefore,

−
∫

ω

∇ · (E∇u) dx = −
∫

ω

∇ · (E0∇u0) dx

Applying the Gauss divergence theorem then yields∫
∂ω

(E∇unω) ds =

∫
∂ω

(E0∇u0nω) ds

Thus, in the average sense, the traction of the homogenized solution is identical

to that of the fine-scale solution.

Therefore, it is proposed that in order to estimate the homogenization

error after the first step in the GOAM process, ( i.e. after the homogenized

solution has been computed), the term E∇unω in (4.22) may be estimated by

E0∇u0nω, and the following estimate is proposed:

Q(u)−Q(u0) ≈ η0 =

∫
ω

(E0 − E)∇u0 · ∇p dx (4.25)

Numerical verifications of this error estimate are provided in Section 5.1

and show that reasonable to good accuracy in estimating Q(u) − Q(u0) is

established.
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To estimate the error of subsequent enhanced solutions ũi, the estimate

η0 could be used in conjunction with (4.11), i.e.

Q(u)−Q(ũi) ≈ η0 + Q(u0)−Q(ũi) (4.26)

and numerical verifications of this estimate are shown in Section 5.1 as well.

However, as the accuracy of solutions ũi increase with each enhancement, the

inaccuracy in η0 eventually renders the estimate in (4.26) of less practical use

in later enhancement steps. It is preferable to use the additional information

obtained with the enhanced solution in the estimation process, i.e. use the

enhanced solution to obtain more accurate estimates of Q(u)−Q(u0), and ac-

cordingly by (4.11), of Q(u)−Q(ũi) as well. The following enhanced estimate

of Q(u)−Q(u0) is investigated in Section 5.1:

ηavg =
1

2

(
η0 + Q(ũ1)−Q(u0)

)
(4.27)
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Chapter 5

Numerical Verifications

In this chapter, the effectivity and accuracy of the goal-oriented er-

ror estimator (4.25) is verified. In Section 5.1, the results for a deterministic

model are presented, and in Section 5.2, the results are presented of a prelim-

inary investigation into the extension of the estimation process to stochastic

problems.

5.1 Verification of Modeling Error Estimates

Consider a two-dimensional, heterogeneous rectangular beam as illus-

trated in Figure 5.1. The beam has prescribed tractions t1 = 150 MPa and

t2 = 50 MPa and prescribed zero displacements along the edge x = 0. The

beam is comprised of a two-phase composite material whose constituents are

both linearly elastic and isotropic. The circular inclusions, with Young’s Mod-

ulus and Poisson Ratio Einc = 150 GPa and νinc = 0.2, have been randomly

interspersed throughout the matrix material, with Young’s Modulus and Pois-

son Ratio Em = 4 GPa and νm = 0.3, with a volume fraction of 0.258.

For this test problem, the global domain Ω is divided into a regular

grid of similar subdomains, ωk, k = 1, 2, · · · , 88, as illustrated in Figure 5.2,

on which the following quantities of interest are chosen:
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1. The average axial strain εxx:

Qx
i (u) =

1

|ωi|

∫
ωi

εxx(u)dx =
1

|ωi|

∫
ωi

∂ux

∂x
dx

2. The average axial strain εyy:

Qy
i (u) =

1

|ωi|

∫
ωi

εyy(u)dx =
1

|ωi|

∫
ωi

∂uy

∂y
dx

3. The average (engineering) shear strain γxy:

Qγ
i (u) =

1

|ωi|

∫
ωi

γxy(u)dx =
1

|ωi|

∫
ωi

(
∂ux

∂y
+

∂uy

∂x

)
dx

An overkill finite element approximation (see Figure 5.3 for the finite el-

ement mesh) of the exact solution u(x) is computed, with negligible numerical

approximation error, the results of which are presented in Figure 5.4. Like-

wise, a similar approximation of the homogenized solution (see Appendix 1) is

computed with the same mesh and solution parameters as the exact problem,

with results in Figure 5.5.

Additionally, for each of the 88 domains of interest, a series of three

enhanced problems are calculated with the same mesh and parameters using

the global enhancement method as defined in Section 3.3.2: the first contain-

ing enhanced data only in the subdomain on which the quantity of interest

is defined (ωQ), the second adding enhanced data on the immediately adja-

cent subdomains, and the third adding enhanced data up to two subdomains

from ωQ in the +x and −x directions over the full height of the beam. The

progressive growth of the enhanced region is illustrated for ωQ = ω8 by the

colored lines in Figure 5.2, and plots of the solution fields are shown in Fig-

ures 5.6, 5.7, and 5.8.
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As is clear in the solution of the exact problem, the presence of the

stiff inclusions induces large strain gradients, with high strain concentrations

in the matrix material immediately adjacent to the inclusions near the fixed

end of the beam. The homogenized solution, of course, does not exhibit any

such features and has a smooth strain field throughout the domain, with no

concentrations or large gradients. The enhanced solutions display similar be-

havior to the exact solution in the regions where the exact material properties

are provided.

Because the dual problem is local and independent of the location of

physical space, and because there are only two types of subdomains: those

with an inclusion and those without, only six different dual problems need to be

computed: one for each quantity of interest and subdomain type combination.

Because the dual solution is unique up to an unknown constant, a single point

needs to be fixed for computation to proceed. No further boundary conditions

need to be applied to ∂ω. These dual problems are accordingly computed using

the same numerical solution parameters used (i.e. mesh size and p-level) for

the homogenized, exact, and enhanced problems (see Figure 5.9 for the finite

element mesh), and their solutions are shown in Figures 5.10, 5.11, 5.12, 5.13,

5.14 and 5.15.

For this document, only the results for subdomains ω1 through ω16 were

tabulated, as the region formed by the union of these subdomains presents the

highest strain gradients and concentrations and thus would be of primary

interest to the analyst.

Using the solutions described above, the aforementioned quantities of

52



Figure 5.9: Finite element mesh for the dual problem
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Figure 5.10: Contour plots of dual solution – quantity of interest is local
average strain εxx with an inclusion
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Figure 5.11: Contour plots of dual solution – quantity of interest is local
average strain εxx without an inclusion
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Figure 5.12: Contour plots of dual solution – quantity of interest is local
average strain εyy with an inclusion
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Figure 5.13: Contour plots of dual solution – quantity of interest is local
average strain εyy without an inclusion
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Figure 5.14: Contour plots of dual solution – quantity of interest is local
average strain γxy with an inclusion
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Figure 5.15: Contour plots of dual solution – quantity of interest is local
average strain γxy without an inclusion
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interest are calculated for all of the defined subdomains for the homogenized,

the exact, and the three enhanced solutions. The values of the quantities

of interest are presented in Tables 5.1, 5.2, and 5.3. From these tables, two

important conclusions are immediately apparent:

1. In all cases, the quantity of interest of the homogenized solution rep-

resents a poor approximation of the exact quantity of interest sought.

Successive enhancements, however, improve the approximation rapidly.

2. The values of the quantity of interest Qx(·) are a full order of magnitude

higher than those of the other two quantities Qy(·) and Qγ(·). This

indicates that, for the analyst, Qx(·) is the most critical quantity to be

studied.

The errors in the quantity of interest—that is, the quantities to be

estimated—are presented, both in absolute and in relative form, in Tables 5.4,

5.5, 5.6, 5.7, 5.8, and 5.9. As is clear from these tables, the error in the quantity

of interest generally diminishes rapidly with each successive enhancement, and

by the third enhancement, the errors in the quantities of interest are nearly

zero. Since effectivity indices of error enhancements involve division by the

error, an error near zero will cause effectivity indices associated with that error

to appear poor. For the third enhancement, the error is on the order of 10−5.

Because of this, estimates and their effectivity indices will not be presented

for the third enhancement.

Two different estimates of the error are investigated. First, the estima-

57



tor derived in Section 4.2 and presented in (4.25),

Q(u)−Q(u0) ≈ η0 =

∫
ω

(E0 − E)∇u0 · ∇p dx

Q(u)−Q(ũi) ≈ η0,i = η0 + Q(u0)−Q(ũi)

The results of these estimates are tabulated in Tables 5.10, 5.11, and

5.12 for homogenization and enhancement error estimates based on η0, and in

Table 5.13 for the error estimates based on ηavg.

As is clear from these tables, the estimates based on η0 provide good

estimates of the error for the homogenized and first enhancement solutions,

but the performance for the central subdomains for the second enhancement

is poor, even of the wrong sign in some cases, as the error in this setting is

of the same order as the inaccuracy in η0. It is noteworthy, however, that

even though effectivity indices are generally unsatisfactory for η0,2, the error

estimates themselves still follow the same trend as the error, i.e. when the

error diminishes from one enhancement to the next, even by a large amount,

the estimate does as well. It is also worthwhile to note that the degradation

of the estimate is most pronounced for Qy(·), where errors are relatively small

to begin with, and that for the quantity of particular interest to the analyst

(Qx(·)), the estimate only experiences serious degradation along the central

two rows of the domain, where strains are small to begin with, and remains

reasonably good on the upper and lower rows of subdomains, where most

bending strains take place. Nevertheless, some way of improving this estimate

is needed to estimate the error for enhanced solutions.

As an initial attempt to improve this estimate, a second estimate, ηavg
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is numerically explored, defined as:

Q(u)−Q(u0) ≈ ηavg =
1

2

(
η0 + Q(ũ1)−Q(u0)

)
Q(u)−Q(ũi) ≈ ηavg,i = ηavg + Q(u0)−Q(ũi)

It is important to note that this estimate is proposed based on numerical

results obtained from the η0-based estimates. There is no rigorous theoretical

background upon which this estimate is based. As such, this estimate is only

explored for Qx(·). The results of this estimate are tabulated in Table 5.13.

As can be seen from this table,the improvement in this estimate is

drastic, with effectivity indices close to unity, even for many estimates of the

error in the second enhancement. Additionally, the estimates remain the same

sign as the error, even in regions of low error, and where the actual error itself

changes sign. Despite this marked improvement, it still important to note that

there is no rigorous theoretical basis for this estimate, and estimation of error

for the enhanced problems remains an open issue.
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Table 5.1: Quantity of interest Qx(u) for a deterministic
problem, applying three enhancements

i Qx
i (u) Qx

i (u0) Qx
i (u1) Qx

i (u2) Qx
i (u3)

1 -2.866e-01 -1.644e-01 -2.452e-01 -2.571e-01 -2.865e-01
2 -8.099e-02 -4.941e-02 -6.326e-02 -9.581e-02 -8.121e-02
3 9.703e-02 5.672e-02 7.260e-02 1.078e-01 9.722e-02
4 2.960e-01 1.722e-01 2.567e-01 2.703e-01 2.960e-01
5 -2.837e-01 -1.584e-01 -2.442e-01 -2.576e-01 -2.838e-01
6 -8.019e-02 -5.065e-02 -6.871e-02 -8.928e-02 -8.028e-02
7 9.728e-02 5.847e-02 7.929e-02 1.090e-01 9.751e-02
8 2.901e-01 1.661e-01 2.559e-01 2.642e-01 2.900e-01
9 -2.724e-01 -1.497e-01 -2.323e-01 -2.508e-01 -2.722e-01
10 -1.288e-01 -4.753e-02 -9.098e-02 -1.389e-01 -1.298e-01
11 9.091e-02 5.542e-02 7.566e-02 1.014e-01 9.076e-02
12 2.753e-01 1.574e-01 2.441e-01 2.532e-01 2.755e-01
13 -2.541e-01 -1.409e-01 -2.190e-01 -2.331e-01 -2.531e-01
14 -6.890e-02 -4.440e-02 -6.067e-02 -7.592e-02 -7.074e-02
15 8.949e-02 5.225e-02 7.136e-02 9.607e-02 8.856e-02
16 2.574e-01 1.487e-01 2.308e-01 2.397e-01 2.584e-01

60



Table 5.2: Quantity of interest Qy(u) for a deterministic
problem, applying three enhancements

i Qy
i (u) Qy

i (u0) Qy
i (u1) Qy

i (u2) Qy
i (u3)

1 5.667e-02 3.303e-02 3.884e-02 4.991e-02 5.670e-02
2 1.034e-02 7.010e-03 6.400e-03 1.132e-02 1.040e-02
3 -1.245e-02 -7.797e-03 -6.997e-03 -1.258e-02 -1.264e-02
4 -5.818e-02 -3.441e-02 -4.047e-02 -5.224e-02 -5.827e-02
5 8.030e-02 4.198e-02 4.858e-02 7.191e-02 8.042e-02
6 2.100e-02 1.310e-02 1.640e-02 1.957e-02 2.122e-02
7 -2.223e-02 -1.491e-02 -1.860e-02 -2.278e-02 -2.231e-02
8 -8.020e-02 -4.395e-02 -5.091e-02 -7.195e-02 -8.023e-02
9 7.566e-02 3.990e-02 4.631e-02 6.796e-02 7.575e-02
10 3.907e-02 1.276e-02 2.724e-02 3.342e-02 4.021e-02
11 -2.554e-02 -1.485e-02 -1.889e-02 -2.135e-02 -2.527e-02
12 -7.764e-02 -4.195e-02 -4.876e-02 -6.883e-02 -7.771e-02
13 7.176e-02 3.749e-02 4.350e-02 6.438e-02 7.192e-02
14 1.837e-02 1.183e-02 1.509e-02 1.484e-02 2.029e-02
15 -2.074e-02 -1.395e-02 -1.778e-02 -1.614e-02 -1.951e-02
16 -7.133e-02 -3.956e-02 -4.597e-02 -6.498e-02 -7.151e-02
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Table 5.3: Quantity of interest Qγ(u) for a deterministic
problem, applying three enhancements

i Qγ
i (u) Qγ

i (u0) Qγ
i (u1) Qγ

i (u2) Qγ
i (u3)

1 -4.078e-02 -2.386e-02 -1.385e-02 -3.440e-02 -4.094e-02
2 -2.967e-02 -1.458e-02 -1.974e-02 -1.879e-02 -2.931e-02
3 -3.273e-02 -1.521e-02 -2.072e-02 -2.009e-02 -3.251e-02
4 -4.665e-02 -2.535e-02 -1.523e-02 -3.688e-02 -4.701e-02
5 -1.913e-02 -1.183e-02 -1.709e-02 -8.179e-03 -1.937e-02
6 -5.952e-02 -2.758e-02 -4.596e-02 -4.562e-02 -5.924e-02
7 -5.756e-02 -2.770e-02 -4.622e-02 -4.342e-02 -5.729e-02
8 -2.233e-02 -1.189e-02 -1.711e-02 -1.379e-02 -2.258e-02
9 -2.539e-02 -1.200e-02 -1.976e-02 -2.102e-02 -2.629e-02
10 -7.673e-02 -2.760e-02 -6.274e-02 -6.834e-02 -7.714e-02
11 -5.843e-02 -2.753e-02 -4.651e-02 -5.164e-02 -5.750e-02
12 -2.622e-02 -1.188e-02 -1.955e-02 -1.948e-02 -2.591e-02
13 -2.473e-02 -1.230e-02 -2.062e-02 -2.509e-02 -2.761e-02
14 -5.286e-02 -2.727e-02 -4.608e-02 -5.017e-02 -5.477e-02
15 -5.409e-02 -2.721e-02 -4.599e-02 -4.868e-02 -5.128e-02
16 -2.887e-02 -1.222e-02 -2.049e-02 -2.099e-02 -2.682e-02
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Table 5.4: Total and relative errors in quantity of interest
Qx(u) for homogenized solution

i Qx
i (u)−Qx

i (u0)
Qx

i (u)−Qx
i (u0)

Qx
i (u)

(%)

1 -1.222e-01 42.628
2 -3.158e-02 38.991
3 4.032e-02 41.549
4 1.238e-01 41.819
5 -1.253e-01 44.154
6 -2.954e-02 36.841
7 3.881e-02 39.891
8 1.240e-01 42.751
9 -1.227e-01 45.050
10 -8.124e-02 63.088
11 3.549e-02 39.035
12 1.179e-01 42.823
13 -1.132e-01 44.549
14 -2.450e-02 35.560
15 3.724e-02 41.611
16 1.087e-01 42.242
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Table 5.5: Total and relative errors in quantity of interest
Qy(u) for homogenized solution

i Qy
i (u)−Qy

i (u0)
Qy

i (u)−Qy
i (u0)

Qy
i (u)

(%)

1 2.365e-02 41.722
2 3.328e-03 32.193
3 -4.657e-03 37.393
4 -2.377e-02 40.860
5 3.832e-02 47.725
6 7.901e-03 37.615
7 -7.326e-03 32.950
8 -3.625e-02 45.199
9 3.576e-02 47.268
10 2.631e-02 67.341
11 -1.069e-02 41.861
12 -3.570e-02 45.973
13 3.427e-02 47.763
14 6.536e-03 35.586
15 -6.791e-03 32.748
16 -3.178e-02 44.545
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Table 5.6: Total and relative errors in quantity of interest
Qγ(u) for homogenized solution

i Qγ
i (u)−Qγ

i (u0)
Qγ

i (u)−Qγ
i (u0)

Qγ
i (u)

(%)

1 -1.692e-02 41.484
2 -1.509e-02 50.870
3 -1.752e-02 53.532
4 -2.130e-02 45.659
5 -7.301e-03 38.154
6 -3.194e-02 53.668
7 -2.986e-02 51.880
8 -1.043e-02 46.739
9 -1.339e-02 52.745
10 -4.913e-02 64.031
11 -3.091e-02 52.892
12 -1.434e-02 54.696
13 -1.243e-02 50.261
14 -2.559e-02 48.412
15 -2.688e-02 49.698
16 -1.665e-02 57.669
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5.2 Initial Extention to Stochastic Problems

This section presents the results of a preliminary investigation into the

extension of the local error estimate to include stochastic problems. A model

problem similar to that used in the deterministic investigation is used here,

with all parameters, dimensions, loads, and material properties remaining the

same, with the exception of the material properties of the inclusions. The

inclusions for this investigation remain linearly elastic and isotropic, but the

Young’s Modulus and Poisson’s Ratio are random variables, occupying a trun-

cated Gaussian distribution: the Young’s Modulus varies between Emin
inc = 130

GPa and Emax
inc = 170 GPa, with a statistical mean of Eavg

inc = 150 GPa,

and a standard deviation of 28 GPa, and the Poisson’s Ratio varies between

νmin
inc = 0.17 and νmax

inc = 0.22, with a statistical mean of νavg
inc = 0.20 and a

standard deviation of 0.03. These properties apply for every inclusion in the

problem, thus creating a stochastic problem in an two-dimensional probability

space. Since the probability space is small in this case, reasonable accuracy

for the estimates can be obtained by integrating the probability distribution

with a five by five point Gaussian Quadrature rule.

For the error estimate in the stochastic case, one knows that the sto-

chastic solution u satisfies the following stochastic PDE:

−∇ · E(x, ω)∇u(x, ω) = f in Ω×A (5.1)

where A is the probability space. Following the approach in Section 4.2, the

following is also true:

−∇ · E(x, ω)∇u(x, ω) = f in ω ×A (5.2)
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and the resulting local variational statement is similarly developed:∫
A

∫
ω

E(x, ω)∇u · ∇v dx dP =

∫
A

∫
ω

f · v dx dP (5.3)

+

∫
A

∫
∂ω

(E(x, ω)∇unω) · v ds dP

∀v ∈ H1(ω)

where A is the (two-dimensional) probability space and P is the corresponding

probability measure defined on A, i.e.:

dP = p(ω) dω

where p(ω) is the probability density distribution. Recognizing that the prob-

lem is linear in the probability space allows the approach in Section 4.2 to be

applied, giving an estimate for the statistical average of the modeling error:

η0 =

∫
A

∫
ω

(
E0 − E(x, ω)

)
∇u0 · ∇p dx dP (5.4)

This procedure is performed using the average elastic strain in the x-

direction, εxx over ω8 (see Figure 5.2) as the quantity of interest. The prob-

ability space was integrated with the five by five Gaussian Quadrature rule.

Two enhancements are subsequently performed in an identical manner to the

deterministic approach.

The results of this investigation are presented in Tables 5.14, 5.15, 5.16,

5.17, and 5.18.

This preliminary investigation indicates that the stochastic extension

of this error estimation has a performance similar to the estimate used for

deterministic problems. The effectivity indices for the estimates are close to

unity.
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Table 5.14: Quantity of interest Qx(u) values for deter-
ministic problem with three enhancements

i Qx
i (u) Qx

i (u0) Qx
i (u1) Qx

i (u2)

avg 2.902e-01 1.661e-01 2.559e-01 2.642e-01

Table 5.15: Total and relative errors in quantity of inter-
est Qx(u) for homogenized solution

i Qx
i (u)−Qx

i (u0)
Qx

i (u)−Qx
i (u0)

Qx
i (u)

(%)

avg 1.241e-01 42.761

Table 5.16: Total and relative errors in quantity of inter-
est Qx(u) for two enhancements

i Qx
i (u)−Qx

i (u1)
Qx

i (u)−Qx
i (u1)

Qx
i (u)

Qx
i (u)−Qx

i (u2)
Qx

i (u)−Qx
i (u2)

Qx
i (u)

(%) (%)

avg 3.425e-02 11.804 2.492e-02 8.618
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Chapter 6

Concluding Remarks and Future Work

In this thesis, a new local estimator is presented for estimating mod-

eling error in quantities of interest within the GOAM framework. This new

estimator greatly reduces computational expense and increases accuracy over

previous global methods [12], which themselves required surrogate models to

be computed.

The main accomplishments of this thesis are summarized as follows:

6.1 Major Accomplishments

• A new residual-based error estimator, involving a local dual

problem has been developed that can be solved exactly with-

out requiring surrogate models.

Previously developed error estimates rely on global dual problems that

contain the same level of complexity as the exact problem itself, thus re-

quiring the development of surrogate models for the dual problem. This

leads to unnecessary complexity and relatively poor reliability of global-

dual-based error estimates. Using the local error estimate bypasses this

problem completely, as the full heterogeneity of the material in the local

subdomain can be used without the computational expense becoming

prohibitive. This means that the dual problem can be solved exactly,
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greatly incresing accuracy, and consequently, only a single computation

needs to be done for a given dual problem, further reducing computa-

tional expense over previous methods.

• The local dual problem and error estimator have been imple-

mented as extensions of the FINESSE finite element analysis

system.

The FINESSE analysis software used by the Computational Mechanics

Program of the Department of Mechanical Engineering at the University

of Kansas has been extended to allow the computation of the dual prob-

lem using the same computational infrastructure as the primal problem.

This allows the data from both simulations to be used transparently

in error estimation. This, in turn, enables the use of a wide range of

experiments.

• An initial application of the GOAM method has been imple-

mented.

To test the effectivity of the error estimator, the adaptive modeling algo-

rithm based on the GOAM method has been implemented in a computa-

tional infrastructure. It involves the construction of a homogenized sur-

rogate model using the average of the upper and lower Hashin-Shtrikman

bounds, after which a progressively enhanced series of surrogate models

is developed according to the GOAM algorithm. These problems use the

global enhancement method as described in Section 3.3.2, and a series

of three successive enhancements are used for each domain of interest

studied.
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• Experimental results indicate good effectivitys.

In the error estimation community, effectivity indices of error estimates

are considered good in an approximate range between 0.5 and 3. The

error estimate developed here yields error estimates with effectivity in-

dices as good as 1.21 for homogenization error and 1.78 for the first

enhancement using η0 and effectivity indices as good as 1.008 for ho-

mogenization error and 1.03 for the first enhancement using ηavg. It is

also worth noting that the experimental problem, though academic in

nature, indicates accurate estimates for a relatively large-scale hetero-

geneity. In most structural engineering applications, i.e. multi-phase

composites, the scale (ε) of the heterogeneity is much smaller. It is an-

ticipated that in those cases, the proposed estimators have even higher

accuracy and better effectivity indices.

• Estimates of modeling error in enhanced solutions have been

performed

Error estimates of the modeling error in the enhanced solutions of the

GOAM methos, using global enhancements, have numerically been in-

vestigated. Effectivity indices show good to reasonably good accuracy

in estimating enhanced errors.

6.2 Limitations and Future Work

The error estimate developed in this thesis is not without some limita-

tions. These, along with important extensions of this method to encompass a

wider array of problems will be addressed in future research. Major focuses of
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future research include:

• Extension of this method to include error estimates based on

Least Squares formulations

The current method, based on Galerkin Method with Weak Form, is only

useful for problems for which this formulation is stable–i.e. self-adjoint

problems, such as linear elastostatics and steady-state reaction-diffusion

problems. To be able to use these methods for non-self-adjoint or non-

linear problems, such as those involving plasticity, nonlinear quantities

of interest, fluid flow, and time-dependent problems, a Least Squares

formulation is required. In addition, the exploration of Least Squares

formulations is needed due to the unresolved issues in the error estima-

tion process. Firstly, using a local Least Squares integral formulation for

the dual problem potentially could enable the estimation of local quan-

tities of interest in terms of displacements, which is currently impossible

in the presented estimation framework. Secondly, the estimation of the

error in the enhanced solutions remains to be rigorously addressed. Cur-

rently, the estimation of the homogenization error (i.e., using η0 – see

(4.25)) is accurate. There is an inaccuracy in η0 that is caused by the fact

that the traction of the homogenized solution E0∇u0nω on the boundary

of the local domain is only equal to the actual fine-scale traction E∇unω

in the average sense, not pointwise on ∂ω. This inaccuracy causes the

effectivity indices of the estimator to deteriorate when estimating the

error of the enhanced solutions. In other words, the inaccuracy in η0 is

of the same order as the actual modeling error in those cases.
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One can potentially resolve/estimate the difference between E∇unω and

E0∇u0nω. However, in the worst case, these entities belong to H− 1
2 (∂ω).

To achieve bounds or estimates of such terms, one needs H-LaPlacian

terms (i.e. second-order derivatives) to be included in the local integral

formulations. Currently the only way to do this is by using a Least

Squares approach.

• Investigation into local methods of enhancement

Sections 3.3.1 and 3.3.2 describe current methods of enhancing the sur-

rogate model used in this framework, but as described previously, only

the global enhancement method currently provides an accurate simula-

tion, due to the decoupling inherent in the local enhancement method.

Thus, only global enhancements were used in the scope of this thesis,

but a further investigation into improvements in the local enhancement

method, specifically the exploration of strain compatibility equations, is

warranted.

• Extension of this method to stochastic problems

This thesis assumes that the material properties of the constituents of

the composite are deterministic. However, in nearly all practical appli-

cations of composite materials, the constituent material properties vary

widely and are generally known only in a statistical sense. Additionally,

it is generally impossible to know the exact global composite geometry

of real-world structures. To improve the simulation of real composite

structures, it is necessary to expand this method to include multiple

dimensions of stochastic behavior, using either Gaussian Quadrature
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integration of the probability space for relatively simple problems, or

Monte-Carlo simulations for more complex problems. An initial inves-

tigation into this area is presented in Section 5.2, but further research

and developments are needed.
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Appendix 1

Development of Homogenized Material
Properties

This appendix presents the method used to determine homogenized

surrogate material properties for use in Step 2 of the GOAM framework as

used in Chapter 5. The surrogate properties presented here represent the

average of the upper and lower Hashin-Shtrikman bounds [8].

To determine the homogenized properties, the material properties and

respective volume fractions (V ) of the inclusions and matrix must be known.

Any complete material description will suffice–this presentation uses Young’s

Modulus (E) and Poisson Ratio (ν) as well as Bulk Modulus (k) and Shear

Modulus (µ).

To begin, it is assumed that the constituent material properties are

given in terms of Young’s Modulus and Poisson Ratio. The first step is to con-

vert these properties into Bulk Modulus and Shear Modulus. These relations

are given by:

µinc =
Einc

2(1 + νinc)
µmat =

Emat

2(1 + νmat)

kinc =
Einc

3(1− 2νinc)
kmat =

Emat

3(1− 2νmat)

For efficiency of notation, the following terms are used:

Kinc = kinc +
µinc

3
Kmat = kmat +

µmat

3
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Then the following upper and lower bounds on K0 and µ0 are given:

K−
0 = Kmat +

Vinc

1
Kinc−Kmat

+ Vmat

Kmat+µmat

K+
0 = Kinc +

Vmat

1
Kmat−Kinc

+ Vinc

Kinc+µinc

µ−0 = µmat +
Vinc

1
µinc−µmat

+ Vmat(Kmat+2µmat)
2µmat(Kmat+µmat)

µ+
0 = µinc +

Vmat

1
µmat−µinc

+ Vinc(Kinc+2µinc)
2µinc(Kinc+µinc)

In this work, the average of these upper and lower bounds is selected:

K0 =
1

2
(K−

0 + K+
0 )

µ0 =
1

2
(µ−0 + µ+

0 )

This then gives a homogenized bulk modulus:

k0 = K0 −
µ0

3

and in turn, the homogenized Young’s Modulus is given by:

E0 =
9k0µ0

3k0 + µ0

and the Poisson Ratio is given by:

ν0 =
3k0 − 2µ0

2(3k0 + µ0)
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