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Abstract

The primary focus of this thesis is to present a framework to develop higher order

global differentiability local approximations for 2-D and 3-D distorted element geome-

tries. The necessity and superiority of higher order global differentiability approxima-

tions in designing finite element computational processes has been demonstrated by

Surana and co-workers [1–4]. It has been shown by Surana et al. [5] that when the ele-

ment geometry is rectangular, higher order global differentiability approximations can

be easily derived using tensor product of 1-D higher order continuity approximations.

When the element geometries are distorted, the tensor product approach cannot be

utilized in deriving these approximation functions. This thesis presents a systematic

procedure for deriving desired order global differentiability approximations for 2-D

and 3-D elements of distorted geometries.

The curved element in 2-D xy or 3-D xyz physical coordinate space is mapped to a

master element in ξη or ξηζ natural coordinate space. The master elements considered

for 2-D quadrilateral, 2-D triangular and 3-D hexahedral elements are a 2 unit square,

a 2 unit equilateral triangle and a 2 unit cube respectively. For the master element,

2-D C00 or 3-D C000 p-version local approximations are considered and appropriate

degrees of freedom and the corresponding approximation functions from appropriate

nodes are borrowed to derive the higher order approximations and the correspond-

ing derivative degrees of freedom at the corner nodes. These degrees of freedom can

be transformed from natural coordinate space to the physical coordinate space by us-

ing Jacobians of transformations for the derivatives of various orders. The choice of

these degrees of freedom and the corresponding functions being borrowed in deriv-

ing these desired functions for the derivative dofs is not arbitrary and must be made

in such a way that all lower degree admissible functions and the corresponding dofs

are borrowed before considering the higher degree functions and the corresponding

dofs. Pascal’s rectangle, Pascal’s triangle and Pascal’s pyramid provide a systematic

selection process for accomplishing this selection process for 2-D quadrilateral, 2-D

triangular and 3-D hexahedral geometries respectively.

Numerical studies are presented to illustrate the behavior and performance of the

v



approximations developed. The applicability of the developed approximation func-

tions to all physical problems is demonstrated by solving model problems which are

described by self-adjoint, non self-adjoint and non-linear differential operators. In all

cases, various finite element quantities of interest (error or residual functional, error

norms) are computed and a study of their convergence rates with h, p and k refine-

ment is made.
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Chapter 1

Introduction

The mathematical theory of finite element method has been developed using Sobolev

spaces, theory of distribution and measures based on Lebesgue integrals. In this ap-

proach, the behaviors over sets of measure zero can be ignored. Thus, when a domain

of definition is discretized into sub-domains (finite elements), the integrand behavior

over inter sub-domain boundaries is neglected in the formulations as well as com-

putations. This approach permits use of C0 local approximations in space as well as

time if the integrands in the integral forms contain only first order derivatives. If the

governing differential equations (GDEs) contain higher order derivatives (higher than

one), they are recast as a system of first order differential equations through the use

of integration by parts in Galerkin method with weak form or auxiliary variables and

auxiliary equations in least squares processes. These approaches ensure that integrand

have only first order derivatives so that C0 local approximations can be employed. In

such weak formulations that require C0 interpolations, one must establish the conver-

gence of the solution to the strong solution (at least in weak sense). This is possible

in simple cases [6–10] but is difficult to establish when the differential operators in the

GDEs are highly complex or non-linear.

Convergence of the approximation in a finite element process has been convention-

ally studied in two ways. (i) increasing the number of elements such that the finite

element characteristic length approaches zero while maintaining a fixed degree of the

local approximation. This is referred to as the ’h’ version of finite element method
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(ii) increasing the degree of the local approximation while maintaining a fixed finite

element characteristic length. This is referred to as the ’p’ version of finite element

method. Surana et al. [1–4] have shown that global differentiability of order (k-1)

resulting from local approximations in scalar product spaces of order ’k’ is an inde-

pendent parameter in all finite element processes. This led to the development of

the ’k’ version of finite element method in which k is an independent finite element

framework in addition to h and p. Authors [1–4] have shown that higher order global

differentiability local approximations: (1) allow us to incorporate the desired physics

in the design of a computational process (2) eliminate the need for auxiliary equations

and auxiliary variables in least squares processes, thereby reducing the number of vari-

ables significantly especially for 2-D and 3-D cases. (3) with the proper choices of the

order k of the approximation space all integrals in the formulation become Riemann

integrals as apposed to Lebesgue integrals. (4) improved accuracy is achieved for the

same number of degrees of freedom compared to C0 processes. (5) higher order global

differentiability local approximations is rather a natural way to design a computational

process with desired continuity and differentiability features that are dictated by the

physics.

In the hpk mathematical and computational framework [1–4], higher order deriva-

tives of the dependent variables may be retained in the integral forms yet preserving

the continuity of the integrand over the whole discretization by appropriate choice

of k, the order of the approximation space. Since higher order spaces contain higher

order global differentiability local approximations, construction of such local approx-

imations for 2-D and 3-D elements with distorted geometries in xy and xyz spaces is

critical and constitutes the main focus of this work.

1.1 Literature review

The approximation functions in the finite element method are usually associated with

a mesh entity (e.g. vertex, edge, face, region) and their selection can greatly influence

the quality of finite element solution. Use of C0 local approximations for boundary
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value problems (in which independent variables are x, y and z) and initial value prob-

lems (in which independent variables are x, y, z and t) has remained the basis of the

finite element literature over the last forty years. C0 local approximations based on

Lagrange, Legendre or Chebyshev functions have dominated the up to date develop-

ments in finite element processes [11–14]. With the development of p-version of the

finite element method, hierarchical approximation functions became popular as they

removed the need for new functions for every p-level for an element. Hierarchical ba-

sis has the feature of obtaining the basis of degree p+1 as a correction to the degree

p basis. The shape functions also resulted in (i) improved conditioning (conditioning

number of the stiffness matrix improved by orders of magnitude) (ii) faster rate of con-

vergence (iii) immediate estimate of the error in solution [15–19]. p-version hierarchical

local approximations for various kinds of elements (triangular, quadrilateral, tetrahe-

dral, hexahedral) based on Lagrange, Legendre or Chebyshev polynomials for fixed

node configurations in 1-D, 2-D and 3-D revolutionized the finite element computa-

tions [20–30] . These developments permitted convergence studies with progressively

increasing p-levels without rediscretizations.

Due to the wide acceptance of the C0 basis functions in finite element processes,

developments in the area of higher order global differentiability local approximations

remained virtually non-existent. However, the concept of higher order global differen-

tiability and the benefits of using it have been recognized long ago and implemented

to some extent.

Strang [31] pointed out that the jumps produced in the first derivatives normal to

the inter-element boundaries constitute the fundamental weakness of C0 approxima-

tion functions. According to him, these jumps provide a measure of deviation of the

computed solution from the true C1 behavior. Bazeley et al. [32] suggested that if

such elements pass the ”patch test”, then the weak convergence of C0 solution to C1

is guaranteed. Strang [31] proved that this indeed is the case and also pointed out

that with the inter-element discontinuity of the first derivatives, the strain energy be-

comes unbounded and therefore such approximation functions are not admissible in

the true mathematical sense. However, if the theory of distribution and the notion
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of generalized derivatives is followed, the strain energy remains finite since the inte-

grals are evaluated in the Lebesgue sense. Although the weak convergence to C1 can

be achieved with C0 approximation functions using h, p and hp adaptive processes,

adaptivity may be completely avoided by employing basis functions of class C1.

Although, global differentiability has been recognized as an important aspect in all

numerical computations, very little has been done to design mathematical and compu-

tational processes in which higher-order global smoothness is achievable. Alternative

techniques such as the diffuse element method [33] and the element free methods [34]

have been proposed to smoothen the higher order continuity requirement. Hermite

basis functions and associated higher order finite elements have been used in solid

mechanics (e.g. classical beam and plate bending elements) and other areas. Some lit-

erature on these can be found in Reference [35]. If C1 continuity is required as in case

of plate bending, compatibility has been traditionally enforced by separate constraint

equations. Peano [36] presented the simplest form of these constraints while formu-

lating hierarchical basis for C1 element. Wang et. al. [37] implemented C1 triangu-

lar element based on p-version of finite element method by adding corrective rational

functions to the polynomial basis. Other references to higher order elements can be

found in References [38–41].

Surana et al. [5] presented a systematic development of higher order global dif-

ferentiability p-version 1-D Ci; i = 0, 2, . . . k local approximations based on lagrange

monomials. The authors utilized tensor product in 2-D xy spaces and 3-D xyz spaces

to derive local approximations of classes Cij and Cijk in which i, j and k can be cho-

sen arbitrarily. These developments are restricted to rectangular family of elements in

which the natural coordinate axes ξ, η, ζ must be parallel to x, y, z axes and pointing in

the same directions as xyz axes. In other words, when the element geometries are dis-

torted with curved sides and faces, the tensor product approach fails. This obviously

limits the usefulness of higher order global differentiability local approximations for

domains with boundaries parallel to x, y and z axes. Ci, Cij , Cijk local approximations

have been successfully utilized by Surana et al. [42, 43] in a variety of applications,

some of which are discussed in the following.
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While solving the gas dynamics equations using the space-time least squares finite

element method with the p-version C00 basis functions in space and time, Surana and

Van Dyne [42, 43] noted that the presence of discontinuities in the first derivatives of

dependent variables in space and time generate solution perturbations that amplify

with time marching and eventually leads to the failure of the computational process.

This problem was eliminated by using C11 basis functions in space and time, thereby

enforcing continuity of the first normal derivatives of dependent variables at the inter-

element boundaries strongly. The necessity and merits of using C11 basis functions in

2-D incompressible Newtonian flows and polymer flows have been reported by Nayak

[44]. Surana and Bona [45] reported solutions of class C1 and C11 for stationary and

transient one dimensional convection-diffusion and Burgers equation which demon-

strated superior performance of C1 and C11 approximations over the traditionally ac-

cepted C0 and C00 solutions. Remarkable success of C1 and C11 basis functions in

boundary value problems and initial value problems has been the motivating factor in

generalization of these concepts and the subsequent development of hpk framework

of finite element method. A major limitation in all the papers discussed on k version of

finite element method is that the domains of definition need to be rectangular. Success-

ful application of hpk framework to physical problems requires development of local

approximations which enforce inter-element continuity of desired order derivative of

the dependent variables for any arbitrary geometric shape of the elements.

1.2 Scope of present study

The use of hpk mathematical and computational framework for boundary value prob-

lems and initial value problems with arbitrary irregular domains necessitates the de-

velopment of higher order global differentiability Cij and Cijk local approximations

for distorted element geometries in 2-D xy and 3-D xyz spaces and is the main thrust

of the work presented here. Ahmadi, Surana and Reddy [46] presented a system-

atic procedure for deriving higher order global differentiability Cij p-version local ap-

proximations for distorted 2-D quadrilateral elements in x, y space based on lagrange
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monomials. This work is summarized in this thesis and is extended for legendre and

chebyshev functions as well. A framework and complete derivation is presented for

higher order global differentiability Cij local approximations for distorted triangular

elements in xy space using L1, L2, L3 area coordinates. C00 p-version hierarchical local

approximations are used as starting point and the basis for the developments of Cij

local approximations. Cijk higher order global differentiability local approximations

are also developed for 3-D distorted elements of hexahedral family in xyz space. C000

p-version local approximation of lagrange, legendre and chebyshev type are used as a

starting point and basis for the development of Cijk local approximations.

In all cases, various model problems and pertinent finite element quantities of in-

terest (error or residual functional, L2 norm of error in solution etc.) are used to assess

the validity and performance of the developed approximations. Comparisons of the

numerical results will be made with Cij , Cijk local approximations [5] based on ten-

sor product approach for model problems in which the boundaries of the domains are

parallel to global x, y, z axes.
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Chapter 2

Higher order global differentiability

local approximations for 2-D

distorted element geometries

2.1 Introduction

In this chapter we present derivations of higher order global differentiability local ap-

proximations for 2-D distorted element geometries. We consider 2-D distorted quadri-

lateral elements as well as triangular elements. Surana et al. [5] have presented 1-D

higher order continuity local approximations based on 1-D C0 p-version hierarchical

local approximations of Lagrange, Legendre or Chebyshev type. Authors in reference

[5] also presented derivation of 2-D and 3-D higher order global differentiability local

approximations of arbitrary order using tensor product of 1-D higher order continuity

local approximations. These approximation functions require the element geometries

to be rectangular and the natural coordinate axes ξ, η and ζ to be parallel to physi-

cal coordinate axes x, y, z as well as pointing in the same directions. This obviously

limits the usefulness of these elements to domains in which the boundaries of the do-

main are parallel and perpendicular to the global xyz axes. Irregular domains with

irregular boundaries obviously require the use of distorted element geometries in the

discretizations.

7



The higher order global differentiability local approximations for distorted geome-

tries cannot be derived using the tensor product approach utilized in reference [5].

In this chapter, we present derivations of the higher order global differentiability lo-

cal approximations for distorted quadrilateral and triangular family of elements. Ah-

madi, Surana and Reddy [46] developed basic strategy for distorted quadrilateral ele-

ments using Lagrange monomials. This work is extended for Legendre and Chebyshev

monomials. This work is further modified and extended for 2-D triangular elements

of distorted geometries.

2.2 Higher order global differentiability local approximations

for distorted quadrilateral elements

First we consider 2-D higher order global differentiability approximations (HGDA) for

rectangular family of undistorted elements. Following reference [5], we begin with 1-D

HGDA in x and y and the corresponding nodal operators shown in Figure 2.1(a) de-

rived using 1-D C0 p-version hierarchical approximations. A tensor product of the 1-D

nodal operators and the corresponding 1-D HGDA yields the desired 2-D nodal opera-

tors and the corresponding HGDA (Figure 2.1(b)). The 2-D Cij tensor product element

in Figure 2.1(b) has four corner nodes (1,3,5,7), four mid-side nodes (2,4,6,8) and one

center node (9). The mid-side nodes are hierarchical in one direction (nodes 2 and 6

along ξ direction and nodes 4 and 8 along η direction) and the center node is hierarchi-

cal in two directions (along ξ and η). The tensor product element is characterized by

function value and its derivatives with respect to x and y as degrees of freedom at the

corner nodes. The choice of 1-D C0 p-version hierarchical approximation functions i.e.

Lagrange, Legendre or Chebyshev determines whether the corresponding 2-D HGDA

are Lagrange, Legendre or Chebyshev type. This approach requires the elements in the

xy space to be rectangular with x and y axes parallel to ξ and η and point in the same

direction.
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If the elements in xy space are distorted, we could possibly discuss an alternative.

The curved element is first mapped from xy physical coordinate space to 2 unit square

in ξη natural coordinate space. We can consider 1-D higher order global differentiabil-

ity approximations in ξ, η space as shown in Figure 2.2(a). Comparing to Figure 2.1(a),

we notice that degrees of freedom at the corner nodes are now derivatives with respect

to ξ and η as apposed to x and y. A tensor product of these 1-D approximations would

yield higher order differentiability approximations in ξ, η space as illustrated in Figure

2.2(b). The approximation functions Ñ correspond to derivative degrees of freedom

with respect to ξ and η and are different from N .

The requirement of higher order global differentiability in xy space necessitates that

the derivative degrees of freedom at the corner nodes (and some at mid-side nodes) be

transformed from ξη space to xy space. For example, in case of C11 HGDA, ∂
∂ξ , ∂

∂η ,
∂2

∂ξ∂η need to be transformed to ∂
∂x , ∂

∂y , ∂2

∂x∂y and for C22 HGDA, ∂
∂ξ , ∂

∂η , ∂2

∂ξ2 , ∂2

∂η2
∂2

∂ξ∂η ,
∂3

∂ξ2∂η
, ∂3

∂ξ∂η2 , ∂4

∂ξ2∂η2 need to be transformed into ∂
∂x , ∂

∂y , ∂2

∂x2 , ∂2

∂y2
∂2

∂x∂y , ∂3

∂x2∂y
, ∂3

∂x∂y2 ,
∂4

∂x2∂y2 . Due to the fact that degrees of freedom (dofs) in ξη space for Cij higher order

approximations are not complete sets, this transformation is not possible. For C11 case,
∂
∂ξ , ∂

∂η can be transformed into ∂
∂x , ∂

∂y but there is no feasible resolution for transforming
∂2

∂ξ∂η into ∂2

∂x∂y . In case of C22, we can transform ∂
∂ξ , ∂

∂η to ∂
∂x , ∂

∂y and ∂2

∂ξ2 , ∂2

∂η2 , ∂2

∂ξ∂η to ∂2

∂x2 ,
∂2

∂y2 , ∂2

∂x∂y . However, we cannot transform ∂3

∂ξ2∂η
, ∂3

∂ξ∂η2 , ∂4

∂ξ2∂η2 into their counterparts

in xy space. Similar situation exists for orders higher than two as well. Thus, the

derivation of HGDA for 2-D distorted elements in xy space requires a fundamentally

different approach.
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2.2.1 Guidelines:

In deriving the desired HGDA for 2-D distorted elements of quadrilateral family in xy

space, we obey the following guidelines.

(a) The distorted element geometry is mapped from xy physical coordinate space

into ξη natural coordinate space, which for quadrilateral geometry is a 2 unit

square (Figure 2.3(a) and (b)). The origin of the ξ, η coordinate system is located

at the center of the map and we have the following for the mapping of points,

 x

y

 =
n∑

i=1

N˜ i(ξ, η)

 xi

yi

 (2.1)

In which, (xi, yi) are the cartesian coordinates of the nodes and N˜ i(ξ, η) are the

shape functions. We could use eight node configuration (i.e. n=8) with serendip-

ity functions [47] for this purpose.

(b) If possible, we would like to consider C00 p-version hierarchical local approxima-

tion as a starting point in the derivation of 2-D HGDA. Figure 2.3(c) shows nodal

degrees of freedom for a standard C00 p-version hierarchic element in which ϕ is

the field variable being interpolated. The degrees of freedom at the corner nodes

of this element consists of only function values.

(c) Different degrees of freedom are needed at the corner nodes than those for the 2-

D HGDA generated using tensor product. This is due to the fact that dofs in ten-

sor product 2-D HGDA do not transform from xy to ξη or vice-versa. Obviously

the choices of the dofs at the corner nodes are dictated by the transformation

between xy and ξη spaces.
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(d) The degrees of freedom for 2-D HGDA element should be such that they can be

transformable using standard Jacobians of transformation from natural coordi-

nate space to physical coordinate space. The choices of nodal operators (or dofs)

at the corner nodes listed in Table 2.1 for C11, C22 and C33 HGDA satisfy this

requirement. We note that for C11, the derivative operators are a complete set of

first order operators. For C22 HGDA, the set of C11 is augmented by a complete

second order set and so on.

(e) Since C00 p-version hierarchical approximations are used as a starting point and

that in these local approximations function value is the only degree of freedom

at the corner nodes, we must establish some rules that allow us to borrow some

dofs from C00 p-version hierarchical approximations to generate the desired dofs

at the corner nodes of the 2-D HGDA distorted element.

Table 2.1: Choices of nodal operators at the corner nodes for Cij 2-D distorted quadri-
lateral elements in xy space

Type of HGDA Nodal Operators at the corner nodes

C11 1 , ∂
∂x , ∂

∂y

C22 1 , ∂
∂x , ∂

∂y , ∂2

∂x2 , ∂2

∂y∂x , ∂2

∂y2

C33 1 , ∂
∂x , ∂

∂y , ∂2

∂x2 , ∂2

∂y∂x , ∂2

∂y2 , ∂3

∂x3 , ∂3

∂y∂x2 , ∂3

∂y2∂x
, ∂3

∂y3
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2.2.2 Transformation matrices

In this section we present details of the transformation matrices essential to derive 2-D

HGDA for distorted quadrilateral geometries in xy space. Figure 2.3(c) shows nodal

degrees of freedom for C00 p-version hierarchical element in which ϕ is dependent

variable. From Equation (2.1), we obtain the following for mapping of lengths in (ξ, η)

and (x, y) spaces,

 dx

dy

 = [J ]

 dξ

dη

 (2.2)

Using Murnaghan’s notation [48] we can write,

[J ] =

 x y

ξ η

 (2.3)

in which the quantities in numerator define a row and those in the denominator

define column wise differentiation of the terms in numerator. Thus,

[J ] =

 x y

ξ η

 =

 xξ xη

yξ yη

 (2.4)

where subscript denotes differentiation, i.e. xξ = ∂x
∂ξ , xη = ∂x

∂η etc.

Using the C00 p-version hierarchical approximations for a nine node element (Fig-

ure 2.3(c)), the field variable ϕ can be approximated as [24],

ϕ(ξ, η) = [N(ξ, η)]{δe} (2.5)

in which [N(ξ, η)] is a row matrix of C00 p-version hierarchical local approximations

and {δe} are the corresponding nodal dofs (arranged in some suitable fashion).
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We define,

{ϕ}ξη
1 =

[
∂ϕ

∂ξ
,

∂ϕ

∂η

]T

(2.6)

{ϕ}xy
1 =

[
∂ϕ

∂x
,

∂ϕ

∂y

]T

(2.7)

{ϕ}ξη
2 =

[
∂2ϕ

∂ξ2
,

∂2ϕ

∂η∂ξ
,

∂2ϕ

∂η2

]T

(2.8)

{ϕ}xy
2 =

[
∂2ϕ

∂x2
,

∂2ϕ

∂y∂x
,

∂2ϕ

∂y2

]T

(2.9)

{ϕ}ξη
3 =

[
∂3ϕ

∂ξ3
,

∂3ϕ

∂η∂ξ2
,

∂3ϕ

∂η2∂ξ
,

∂3ϕ

∂η3

]T

(2.10)

{ϕ}xy
3 =

[
∂3ϕ

∂x3
,

∂3ϕ

∂y∂x2
,

∂3ϕ

∂y2∂x
,

∂3ϕ

∂y3

]T

(2.11)

where T denotes transpose of a matrix.

We note that Equations (2.6) and (2.7) are complete first order derivative sets, Equa-

tions (2.8) and (2.9) are complete second order derivative sets and Equations (2.10) and

(2.11) are complete third order derivative sets in ξη and xy coordinate spaces. In this

manner, we can define {ϕ}ξη
i and {ϕ}xy

i as complete sets of the derivatives of order ’i’

in (ξ, η) and (x, y) spaces. Next we define the rules of transformation between the sets

of different order derivatives in (ξ, η) and (x, y) spaces.
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{ϕ}ξη
i = [Ji]{ϕ}xy

i (2.12)

Obviously,

[J1] =

 xξ yξ

xη yη

 = [J ]T (2.13)

Using chain rule of differentiation, we can determine the transformation matrices

for higher order derivatives of the dependent variable. We will use the following no-

tations for higher order derivatives of physical coordinate x with respect to natural

coordinates ξ and η

xξ =
∂x

∂ξ
; xi

ξ =
(

∂x

∂ξ

)i

; xξi =
∂ix

∂ξi
; xξiηj =

∂i+jx

∂ξi∂ηj
(2.14)

and

xη =
∂x

∂η
; xi

η =
(

∂x

∂η

)i

; xηi =
∂ix

∂ηi
; (2.15)

Similarly, the following notations hold for derivatives of physical coordinate y with

respect to natural coordinates ξ and η.

yξ =
∂y

∂ξ
; yi

ξ =
(

∂y

∂ξ

)i

; yξi =
∂iy

∂ξi
; yξiηj =

∂i+jy

∂ξi∂ηj
(2.16)

and

yη =
∂y

∂η
; yi

η =
(

∂y

∂η

)i

; yηi =
∂iy

∂ηi
; (2.17)

Following these notations, the transformation matrices for the second order deriva-

tives are as follows:
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{ϕ}xy
2 = [J2]−1

[
{ϕ}ξη

2 − [J1
2 ]{ϕ}xy

1

]
(2.18)

[J2] =


xξ

2 2xξyξ yξ
2

xξxη xξyη + xηyξ yηyξ

xη
2 2xηyη yη

2

 [J1
2 ] =


xξ2 yξ2

xξη yξη

xη2 yη2

 (2.19)

Similarly, transformation matrices for the third order derivatives are as follows:

{ϕ}xy
3 = [J3]−1

[
{ϕ}ξη

3 − [J1
3 ]{ϕ}xy

2 − [J2
3 ]{ϕ}xy

1

]
(2.20)

[J3] =


xξ

3 3xξ
2yξ 3xξyξ

2 yξ
3

xξ
2xη 2xηxξyξ + xξ

2yη 2xξyηyξ + yξ
2xη yηyξ

2

xη
2xξ 2xηxξyη + xη

2yξ 2xηyηyξ + yη
2xξ yξyη

2

xη
3 3xη

2yη 3xηyη
2 yη

3

 (2.21)

[J1
3 ] =


3xξxξ2 3xξ2yξ + 3yξ2xξ 3yξyξ2

xηxξ2 + 2xξxξη xξ2yη + 2xξηyξ + xηyξ2 + 2xξyξη yηyξ2 + 2yξyξη

xξxη2 + 2xηxξη xξyη2 + 2xξηyη + xη2yξ + 2xηyξη yη2yξ + 2yηyξη

3xηxη2 3xη2yη + 3yη2xη 3yηyη2

 (2.22)

[J2
3 ] =


xξ3 yξ3

xξ2η yξ2η

xξη2 yξη2

xη3 yη3

 (2.23)
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From Equation (2.12) we can write

{ϕ}xy
i = [Ji]−1{ϕ}ξη

i (2.24)

2.2.3 C11 HGDA for 2-D distorted quadrilateral elements in xy space

In order to show specific details of the development, we consider C11 HGDA. Figure

2.4(a) shows the dofs at the corner nodes of C11 HGDA element (subscript indicates

differentiation). Comparing Figure 2.4(a) with C00 p-version element of Figure 2.3(c),

we note that the element of Figure 2.4(a) requires ϕx and ϕy as additional dofs at each

of the four corner nodes i.e. a total of eight dofs for the four corner nodes. We need

to borrow eight dofs and the corresponding C00 p-version approximation functions to

generate these dofs and the corresponding approximation functions for the 2-D C11

HGDA element. This would obviously result in reduction of dofs at the hierarchical

nodes of the 2-D HGDA element. In doing so we must follow a systematic procedure.

For this case, the choice of dofs from C00 element is rather straightforward. We bor-

row two dofs which are associated with the lowest p-levels (i.e. p = 2 and 3) and the

corresponding approximation functions from each of the four mid-side nodes. This

implies that the degrees of freedom corresponding to ∂2ϕ
∂ξ2 , ∂3ϕ

∂ξ3 from nodes 2, 6 and ∂2ϕ
∂η2 ,

∂3ϕ
∂η3 from nodes 4 and 8 and the corresponding approximation functions are borrowed.

These dofs must be eliminated to generate the derivative dofs at the corner nodes of

2-D C11 HGDA element (Figure 2.4(a)). Figure 2.4(b) shows the dofs at the hierarchi-

cal nodes of the 2-D HGDA element. The derivation of the 2-D C11 HGDA element is

shown in a later section.

We note that the dofs removed from the mid side nodes of the C00 p-version ele-

ment correspond to p-levels 2 and 3 and hence consistent with the tensor product C11

element. The first degree of freedom at the mid side nodes of the C11 HGDA element

corresponds to p-level of 4. For C11 HGDA element, we do not need to borrow any

dofs from the center node of C00 p-version element.
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2.2.4 C22 HGDA for 2-D distorted quadrilateral elements in xy space

Here we consider 2-D C22 HGDA for distorted quadrilateral elements in xy space. Fig-

ure 2.5(a) shows dofs at the corner nodes of the element. Comparing this with C00

HGDA of Figure 2.3(c), we note that ϕx, ϕy, ϕx2 , ϕxy and ϕy2 are additional dofs at

each of the four corner nodes, i.e. a total of twenty. We need to borrow twenty dofs

and the corresponding C00 p-version approximation functions to generate these dofs

and the corresponding approximation functions for the 2-D C22 HGDA element. This

would obviously result in reduction of dofs at the hierarchical nodes of the 2-D HGDA

element. For this case, the choice of dofs from C00 element is a little involved. We bor-

row four dofs which are associated with the p-levels 2, 3, 4 and 5 and the corresponding

approximation functions from each of the four mid-side nodes to maintain conformity

with C22 tensor product element. This implies that the degrees of freedom correspond-

ing to ∂2ϕ
∂ξ2 , ∂3ϕ

∂ξ3 , ∂4ϕ
∂ξ4 , ∂5ϕ

∂ξ5 from nodes 2, 6 and ∂2ϕ
∂η2 , ∂3ϕ

∂η3 , ∂4ϕ
∂η4 , ∂5ϕ

∂η5 from nodes 4 and 8 and

the corresponding approximation functions are borrowed. This would result in a total

of 16 degrees of freedom.

The remaining four degrees of freedom required are borrowed from the center node

(node 9). The degrees of freedom are borrowed from center node of the C00 tensor

product element in such a way that the dofs corresponding to a lower p-level are se-

lected before those corresponding to higher p-levels. Figure 2.6 shows the dofs gener-

ated at the center node of a C00 element corresponding to p-levels pξ (along ξ direction)

and pη (along η direction). The dofs illustrated with a circle are selected in deriving a

C22 HGDA element. They correspond to (pξ, pη) pairs of (2, 2), (3, 2), (2, 3) and (3, 3).

Degree of freedom corresponding to p-level pair of (3, 3) is chosen over (4, 2) or (2, 4)

to ensure symmetry with respect to pξ and pη. Symmetry in the degrees of freedom

pairs is maintained to preserve the symmetry of finite element solutions for symmet-

ric discretizations. These dofs must be eliminated from C00 p-version approximations

to generate the derivative dofs at the corner nodes of 2-D C11 HGDA element (Fig-

ure 2.5(a)). Figure 2.5(b) shows the dofs at the hierarchical nodes of the 2-D HGDA

element.
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2.2.5 C33 HGDA for 2-D distorted quadrilateral elements in xy space

Here we consider 2-D C33 HGDA for distorted quadrilateral elements in xy space.

Compared to a C00 HGDA of Figure 2.3(c), we note that ϕx, ϕy, ϕx2 , ϕxy, ϕy2 , ϕx3 , ϕx2y,

ϕxy2 and ϕy3 are additional dofs at each of the four corner nodes, i.e. a total of thirty

six. Hence, we need to borrow thirty six dofs from the hierarchical nodes of C00 HGDA

element, keeping in mind that the remaining dofs at the mid side nodes must begin

with p-level of eight. This is to ensure that C33 HGDA is in conformity with C33 tensor

product element. This allows us to borrow twenty four dofs (corresponding to p-levels

of 2, 3, 4, 5, 6 and 7) from each of the mid side nodes (nodes 2, 4, 6, 8) of Figure2.3(c),

making a total of twenty four. The remaining twelve dofs needed to generate the dofs

at the corner nodes of C33 HGDA element must come from the center node (node 9).

From Figure 2.6, the dofs illustrated with circle and square are the dofs selected

from the center node of C00 tensor product element in deriving a C33 HGDA element.

The additional dofs correspond to (pξ, pη) pairs of (2, 2), (3, 2), (2, 3), (3, 3), (2, 4), (2, 5),

(3, 4), (3, 5), (4, 2), (4, 3), (5, 2) and (5, 3). These degrees of freedom are chosen in such a

way that symmetry is ensured with respect to pξ and pη.

With the discussion of the concepts relating to the transformation of the matrices,

selection of the dofs and appropriate guidelines, we now proceed to the derivation of

the Cij approximations for distorted quadrilateral elements.
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2.2.6 Derivation of Cij approximations for distorted quadrilateral elements

We describe a new methodology which utilizes C00 p-version hierarchical interpolation

functions as a starting point to generate desired order global differentiability approx-

imations for distorted quadrilateral elements. Since the approximation functions are

functions of natural coordinates ξ, η, i.e. Ni = Ni(ξ, η), the desired derivative degrees

of freedom need to be generated first in ξη space and then transformed into xy space.

The matrices described in Section 2.2.2 assist us in transforming the desired derivative

degrees of freedom from one coordinate space to another.

The dofs in {δe} of a nine node C00 p-version hierarchical element from Equation(2.5)

are separated into those corresponding to corner nodes (denoted by co), mid-side nodes

(m) and center node (denoted by c ) as follows:

ϕ(ξ, η) = [a]{δe
co}r1 + [b]{δe

mc}el + [c]{δe
m}r2 + [d]{δe

c}r3 (2.25)

where the subscript ’r1’ denotes the degrees of freedom retained from the corner

nodes. Subscript ’el’ corresponds to the degrees of freedom borrowed from the mid-

side nodes and the center node to derive the new derivative degrees of freedom at

the corner nodes of a Cij HGDA element. Finally, subscripts ’r2’ and ’r3’ denote the

remaining degrees of freedom from mid-side nodes and center node (after borrow-

ing the required degrees of freedom). [a], [b], [c] and [d] are row matrices containing

C00 p-version local approximations corresponding to the dofs in the r1, el, r2, r3 sets

respectively.

For a C11 HGDA element, {δe
mc}el consists of dofs from mid-side nodes only since

we do not need any dofs from the center node, i.e. {δe
mc}el ={δe

m}el, which consists of

the following:

{δe
m}e =

{
∂2ϕ
∂ξ2

∣∣∣∣
2

, ∂3ϕ
∂ξ3

∣∣∣∣
2

, ∂2ϕ
∂η2

∣∣∣∣
4

, ∂3ϕ
∂η3

∣∣∣∣
4

, ∂2ϕ
∂ξ2

∣∣∣∣
6

, ∂3ϕ
∂ξ3

∣∣∣∣
6

, ∂2ϕ
∂η2

∣∣∣∣
8

, ∂3ϕ
∂η3

∣∣∣∣
8

}T

(2.26)

For classes higher than C11, {δe
mc}el will consist of dofs from mid-side nodes as well
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as center node as discussed in Sections 2.2.4 and 2.2.5.

Let the desired new derivative dofs at the corner nodes of a Cij HGDA element be

denoted by {δe}xy
n . In case of a C11 HGDA element, these dofs will consist of complete

set of first order derivatives of the dependent variable evaluated at the four corner

nodes, i.e.

{δe}ξη
n =

{
ϕξ|1 , ϕη|1 , ϕξ|3 , ϕη|3 , ϕξ|5 , ϕη|5 , ϕξ|7 , ϕη|7

}T

(2.27)

where subscript denotes differentiation i.e. ϕξ|1 = ∂ϕ
∂ξ |node 1 = ∂ϕ

∂ξ |(ξ=−1 , η=−1)

For classes higher than C11, the new derivative dofs at the corner nodes will be

augmented with the complete sets of derivatives up to the class being derived.

Differentiating Equation (2.25) with respect to ξ and η and evaluating the resulting

expression at each of the four corner nodes, we get

{δe}ξη
n = [A]{δe

co}r1 + [B]{δe
mc}el + [C]{δe

m}r2 + [D]{δe
c}r3 (2.28)

Solving for the degrees of freedom to be eliminated i.e. {δe
mc}el in Equation (2.28),

we get

{δe
mc}el = [B]−1{δe}ξη

n − [B]−1[A]{δe
co}r1 − [B]−1[C]{δe

m}r2 − [B]−1[D]{δe
c}r3 (2.29)

Substituting Jacobian of transormation from Equation (2.24) into the above equa-

tion, we can transform the new derivative dofs from ξη space to xy space. Equation

(2.29) can thus be written as

{δe
mc}el = [B]−1[Ji]{δe}xy

n − [B]−1[A]{δe
co}r1− [B]−1[C]{δe

m}r2− [B]−1[D]{δe
c}r3 (2.30)

Now, substituting {δe
mc}el from Equation (2.30) into Equation (2.25),

ϕ(ξ, η) = [a]{δe
co}r1 + [b]

(
[B]−1[Ji]{δe}xy

n − [B]−1[A]{δe
co}r1

−[B]−1[C]{δe
m}r2 − [B]−1[D]{δe

c}r3

)
+ [c]{δe

m}r2 + [d]{δe
c}r3

(2.31)

26



Collecting terms in the Equation (2.31), we get the final form of the Cij HGDA local

approximations as follows:

ϕ(ξ, η) =
(
[a]− [b][B]−1[A]

)
{δe

co}r1+[b][B]−1[Ji]{δe}xy
n

+
(
[c]− [b][B]−1[C]

)
{δe

m}r2+
(
[d]− [b][B]−1[D]

)
{δe

c}r3

(2.32)

2.2.7 Limitations of 2-D C11 global differentiability local approximations

for distorted quadrilateral elements

In the proposed framework, 2-D Cij global differentiability local approximations are

derived by borrowing appropriate degrees of freedom and the corresponding approx-

imation functions from the hierarchical nodes of C00 element. In Equation 2.32, [a], [c]

and [d] contain C00 local approximations which are retained at corner, mid-side and

center nodes whereas [b] contains C00 local approximation functions which are bor-

rowed from mid-side and center nodes. [A], [B], [C] and [D] are matrices containing

derivatives of C00 approximations collected in [a], [b], [c] and [d] with respect to ξ and

η evaluated at the corner nodes. The approximation functions for the C11 distorted

element at the corner, mid-side and center nodes (which are retained) are obtained by

modifying the corresponding functions for the C00 element by [b][B]−1[A], [b][B]−1[C]

and [b][B]−1[D] respectively.

In case of 2-D C11 HGDA element, the new derivative degrees of freedom intro-

duced at the corner nodes are first order derivatives with respect to x and y. The nature

of the C00 local approximation functions and the coordinates of the corner nodes (ξ and

η coordinates are either +1 or −1) always result in all the coefficients of [D] matrix to

be zeros regardless of the p-level. The coefficients of matrices [A], [B], [C] however are

not all zero. This results in the approximation functions at the center node of C11 dis-

torted element to coincide with those corresponding to C00 element (since [b][B]−1[D]

is a row matrix containing all zeros). As a consequence, we have an incomplete C11

HGDA distorted element, which is prone to yield inaccurate results for coarser dis-

cretizations. When we derive approximation functions for C22 and higher order ele-

ments, the derivative degree of freedoms introduced at the corner nodes include mixed
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derivatives with respect to x and y. The mixed derivatives of the C00 approximation

functions in [d] (center node) evaluated at the corner nodes are not all zero and hence

we do have some non-zero coefficients in [D] matrix. For the current work, we only

consider 2-D Cij ; i, j ≥ 2 and an alternative way to generate C11 HGDA element is

under investigation.

Remarks

1. The derivation presented above is general and is independent of the nature of the

C00 interpolation functions. Hence, [a], [b] , [c] and [d] vectors can contain approx-

imation functions of any kind (for example, Lagrange, Legendre or Chebyshev

functions) The type of approximation functions chosen would determine the na-

ture of the interpolation functions for the resulting 2-D Cij HGDA element.

2. The matrices [A], [B], [C], [D] contain derivatives of C00 approximation functions

with respect to ξ and η evaluated at the corner nodes. They can be precomputed

once and used to generate approximation functions of any order Cij ; i, j ≥ 2

element.

3. The approximation functions being borrowed from the mid-side nodes and cen-

ter node should be such that: (i) lowest degree admissible functions (correspond-

ing to a lower p-level) should be selected first (ii) and a symmetric pattern main-

tained in selecting the approximation functions.
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2.3 Higher order global differentiability approximations for

distorted triangular elements

The framework presented to derive Cij HGDA for distorted triangular elements is par-

allel to that used for 2-D distorted quadrilateral elements yet differs in many aspects

due to the basic nature of the C00 p-version basis functions for triangular elements. This

section presents development of higher order global differentiability local approxima-

tions for 2-D triangular elements using 2-D C00 p-version hierarchical approximations

as a basis. The degrees of freedom and the corresponding approximation functions

are borrowed from C00 p-version element to generate the derivative degrees of free-

dom and the corresponding approximation functions for Cij triangular elements. The

requirement of higher order global differentiability (in xy space) necessitates that the

derivative degrees of freedom at the vertex or corner nodes (and some at mid-side

nodes) be transformed from ξη space to xy space. The admissible choices of degrees of

freedom and approximation functions is discussed and presented in deriving approx-

imation functions for higher order continuity triangular elements of various orders. A

systematic procedure is presented for accomplishing this ensuring the uniqueness of

the Cij approximations.

2.3.1 Guidelines

In deriving the desired HGDA for 2-D distorted elements of triangular family in xy

space, we obey the following guidelines

(a) The distorted element geometry is mapped from xy physical coordinate space

into ξη natural coordinate space. The master element in this case is a 2 unit equi-

lateral triangle (Figure 2.7(a) and (b)). The master element consists of three vertex

or corner nodes (nodes 1, 3 and 5), three mid-side nodes (nodes 2, 4 and 6) and

one internal node (node 7). The mid-side and internal nodes are generally hier-

archical in nature.
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(a) 2 D distorted triangle in physical 

coordinate space xy

(b) Map of the element of (a) in 

natural coordinate space ξηξηξηξη
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Figure 2.7: 2-D distorted p version hierarchical triangular element with p - level pξ = pη

=p in ξ and η directions
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The origin of the ξ, η coordinate system is located at the node 2 of the equilateral

triangle (Figure 2.7(b)) and we have the following for the mapping of points,

 x

y

 =
n∑

i=1

N̄i(L1, L2, L3)

 xi

yi

 (2.33)

In Equation(2.33), (xi, yi) are the cartesian coordinates of the nodes and N̄i(L1, L2, L3)

are the shape functions. The shape functions for triangle are in terms of standard

barycentric or area coordinates L1, L2, L3. We could use six node configuration

with parabolic shape functions [47] for this purpose.

The area coordinates L1, L2, L3 can be related to the orthogonal natural coordi-

nates ξ, η, through the relations introduced by Szabo [26].

L1 = 1
2(1− ξ − η√

3
)

L2 = 1
2(1 + ξ − η√

3
)

L3 = η√
3

(2.34)

The relations in Equation (2.34) will be utilized to convert the approximation

functions given in Equation (2.33) from barycentric coordinates L1, L2, L3 to nat-

ural coordinates ξ, η. The relation to map points given in Equation (2.33) can be

thus rewritten as follows x

y

 =
n∑

i=1

N̄i(ξ, η)

 xi

yi

 (2.35)

(b) If possible, we would like to consider C00 p-version hierarchical local approxima-

tion as a starting point in the derivation of 2-D HGDA. The choice of 2-D C0 p-

version hierarchical approximation functions i.e. Lagrange, Legendre or Cheby-

shev determines whether the corresponding 2-D HGDA are Lagrange, Legendre

or Chebyshev type. Szabo and Babuska [26] presented a C00 p-version element

based on Legendre polynomials which is shown in Figure 2.7(c). The approxi-

mation functions are separated into those corresponding to the vertex or corner
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nodes, mid-side nodes and an internal node as follows:

1. Nodal shape functions

Three nodal shape functions are chosen at the three vertices of the tri-

angle (nodes 1, 3, 5).

N1 = L1

N3 = L2

N5 = L3

(2.36)

2. Shape functions corresponding to Mid-Side nodes

(p-1) mid-side shape functions are defined in terms of Legendre poly-

nomials (Pi) at each of the three mid-side nodes (2, 4, 6) thus giving a

total of (3p− 1) shape functions

N2
i = L1 L2 Ψi(L2 − L1)

N4
i = L2 L3 Ψi(L3 − L2)

N6
i = L1 L3 Ψi(L1 − L3)

(2.37)

where Ψ is defined as follows

Ψi(α) =
Pi(α)− Pi−2(α)√

2(2i− 1)
× 4

(1− α2)
; i = 2, 3, . . . p (2.38)

In the above equation, α assumes a value of (L2−L1), (L3−L2), (L1−L3)

for mid-side shape functions corresponding to nodes 2, 4 and 6 respec-

tively.

The first few terms of Ψi(α) are:

Ψ2(α) = −
√

6;

Ψ3(α) = −
√

10α;

Ψ4(α) = −
√

7
8(5α2 − 1)

and so on

(2.39)
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3. Internal shape functions

From Pascal’s triangle the total number of shape functions correspond-

ing to an approximation of degree p requires to be equal to (p+1)(p+2)
2 for

completeness. From the sum of approximation functions corresponding

to nodal shape functions and side modes, we require (p−1)(p−2)
2 addi-

tional shape functions to satisfy this condition of completeness. These

shape functions are defined at an internal node and have the character-

istic of being non-zero only in the interior of the triangular domain and

vanishing along all the three sides. The internal shape functions associ-

ated with the master element (at an internal node, node 7) for p ≥ 3 are

as follows

N7
j (L1, L2, L3) = L1 L2 L3 Pp−i−2(L2 − L1) Pi−1(2L3 − 1)

where i = 1, 2, . . . (p− 2)

and j = 1, 2, . . . (p− 1)(p− 2)/2

(2.40)

For example, for a p-level of 3, we have one internal shape function

N7
1 = L1 L2 L3 (2.41)

For a p-level of 4, we have the following three internal shape functions.

N7
1 = L1 L2 L3

N7
2 = L1 L2 L3 P1(L2 − L1)

N7
3 = L1 L2 L3 P1(2L3 − 1)

(2.42)

Therefore, the C00 triangular element consists of 55 shape functions (three

nodal, 24 mid-side and 28 internal shape functions) for a p level of 9.

To preserve consistency of the coordinate system, we transform all the ap-

proximation functions presented for a C00 p-version element which are in

terms of area coordinates to natural coordinates using the relations in Equa-

tion (2.34).
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(c) Selection of the derivative degrees of freedom at the vertices of a 2-D HGDA tri-

angular element is very critical and is dictated by the transformation between xy

and ξη spaces. The following choices of nodal operators (or dofs) at the vertices

listed in Table 2.2 for C11, C22 and C33 HGDA satisfy the requirement. We note

that for C11, the derivative operators are a complete set of first order operators.

For C22 HGDA, the set of C11 is augmented by a complete second order set and

so on. This selection of degrees of freedom is consistent with the the framework

developed for 2-D distorted quadrilateral elements.

(d) Since C00 p-version hierarchical approximations are used as a starting point,

which have only function value as a degree of freedom at the vertices, we must

establish some rules that allow us to borrow some dofs from C00 p-version hi-

erarchical approximations to generate the desired dofs at the vertices of the 2-D

HGDA for the distorted element.

Table 2.2: Choices of dofs at the corner nodes for Cij 2-D distorted triangular elements
in xy space

Type of HGDA Nodal Operators at the corner nodes

C11 1 , ∂
∂x , ∂

∂y

C22 1 , ∂
∂x , ∂

∂y , ∂2

∂x2 , ∂2

∂y∂x , ∂2

∂y2

C33 1 , ∂
∂x , ∂

∂y , ∂2

∂x2 , ∂2

∂y∂x , ∂2

∂y2 , ∂3

∂x3 , ∂3

∂y∂x2 , ∂3

∂y2∂x
, ∂3

∂y3

(e) The discussion presented in Section 2.2.2 on the transformation matrices for higher

order derivatives of the dependent variable holds true for 2-D distorted triangu-

lar elements and hence is not repeated here. We note that the elements of trans-

formation matrices presented for different order derivatives need to be evaluated

using C00 p-version approximation functions corresponding to a triangle.
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2.3.1.1 C11 HGDA for 2-D distorted triangular elements in xy space

In order to show specific details of the development, we consider C11 HGDA. Figure

2.8(a) shows the dofs at the vertices of C11 HGDA element (subscript indicates differ-

entiation). Comparing 2.8(a) with C00 p-version element of Figure 2.7(c), we note that

the C00 element requires ϕx and ϕy as additional dofs at each of the three vertices i.e.

a total of six dofs for the three vertices. We borrow six dofs and the corresponding

C00 p-version approximation functions to generate the desired derivative dofs and the

corresponding approximation functions for the 2-D C11 HGDA element. This would

obviously result in reduction of dofs at the hierarchical nodes of the 2-D HGDA ele-

ment. In doing so we must follow a systematic procedure.

For this case, the choice of dofs from C00 element is rather straightforward. We

borrow dofs corresponding to p levels 2, 3 from mid-side nodes 2, 4 and 6. These dofs

must be eliminated from C00 p-version approximations to generate the derivative dofs

at the vertices of 2-D C11 HGDA element as shown in Figure 2.8(a). Figure 2.8(b) shows

the dofs at the hierarchical nodes of the 2-D HGDA element.

The first degree of freedom at the mid side nodes of the C11 HGDA element cor-

respond to p-level of 4. For C11 HGDA element, we do not need to borrow any dofs

from the internal node of C00 p-version element.
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(a) Nodal dofs at the corner nodes of a 2-D C11

HGDA element

ξ

η

1 3

5

2

46
7

y x ϕϕϕ ,, y x ϕϕϕ ,,

y x ϕϕϕ ,,

(b) Nodal dofs at the hierarchical nodes of a C11

HGDA element 

ξ

η

1 3

5

2

46 7

  j
s3

δ

j
s1

δ

j
s2

δ

  ;  p .. 4,  j=

n
iδ

2/)2p)(1p(..,2,1 −−=i

where

Figure 2.8: Nodal dofs for C11 2-D HGDA distorted triangular element
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2.3.2 C22 HGDA for 2-D distorted triangular elements in xy space

Here we consider 2-D C22 HGDA for distorted triangular elements in xy space. Figure

2.9(a) shows dofs at the corner nodes of the element. Comparing this with C00 HGDA

of Figure 2.7(c), we note that ϕx, ϕy, ϕx2 , ϕxy and ϕy2 are additional dofs at each of

the three vertex nodes, a total of fifteen. Hence, we need to borrow fifteen dofs from

the hierarchical nodes of C00 element shown in Figure 2.7(c), keeping in mind that the

remaining dofs at the mid-side nodes C00 element must begin with p-level of six. This

is due to the fact that a quintic polynomial describes a C22 approximation in 1-D. This

allows us to borrow four dofs (corresponding to p-levels of 2, 3, 4 and 5) from each of

the mid side nodes of Figure 2.7(c), making a total of twelve. The remaining three dofs

needed to generate the dofs at the corner nodes of C22 HGDA element must come from

the internal node.

The degrees of freedom are borrowed from internal node of the C00 p-version ele-

ment in such a way that the dofs corresponding to a lower p-level are selected before

those corresponding to higher p-levels. Figure 2.9(b) shows the dofs at the hierarchical

nodes of the 2-D HGDA element.

With the discussion of the concepts relating to the selection of the dofs and ap-

propriate guidelines, we now proceed to the derivation of the Cij approximations for

distorted triangular elements.
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(a) Nodal dofs at the corner nodes of a C22 HGDA 
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(b) Nodal dofs at the hierarchical corner nodes of a 

C22 HGDA element 
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Figure 2.9: Nodal dofs for 2-D C22 HGDA distorted triangular element
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2.3.3 Derivation of Cij approximations for distorted triangular elements

We propose a new methodology which utilizes C00 p-version hierarchical interpola-

tion functions as a starting point and generates desired order global differentiability

approximations for distorted triangular elements. Since the approximation functions

are functions of natural coordinates ξ, η, i.e. Ni = Ni(ξ, η), the desired derivative de-

grees of freedom need to be generated first in ξη space and then transformed into xy

space. The matrices described in Section 2.2.2 assist us in transforming the desired

derivative degrees of freedom.

Using the C00 p-version hierarchical approximations for a seven node element (Fig-

ure 2.7(c)), the field variable ϕ can be approximated as,

ϕ(ξ, η) = [N(ξ, η)]{δe} (2.43)

in which [N(ξ, η)] is a row matrix of C00 p-version hierarchical local approximations

and {δe} are the corresponding nodal dofs (arranged in some suitable fashion). The

dofs in {δe} of Equation(2.43) are separated into those corresponding to vertex or cor-

ner nodes (denoted by co), mid-side nodes(denoted by m) and internal node (denoted

by i ) as follows:

ϕ(ξ, η) = [a]{δe
co}r1 + [b]{δe

mi}el + [c]{δe
m}r2 + [d]{δe

i }r3 (2.44)

where a subscript ’r1’ denotes the degrees of freedom retained from corner nodes.

Subscript ’el’ corresponds to the degrees of freedom borrowed from the mid-side nodes

and the internal node to derive the new derivative degrees of freedom at the corner

nodes of a Cij HGDA element. Finally, ’r2’ and ’r3’ denotes the degrees of freedom re-

maining from mid-side nodes and internal node (after borrowing the required degrees

of freedom). [a], [b], [c] and [d] are vectors containing C00 p-version local approxima-

tions corresponding to the dofs in the r1, el, r2 and r3 sets respectively.

For a C11 HGDA element, {δe
mi}el consists of dofs from mid-side nodes only, since

we do not need any from the internal node, i.e. {δe
mi}el = {δe

m}el, which would contain
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the following dofs:

{δe
m}e =

{
δ2|2 , δ3|2 , δ2|4 , δ3|4 , δ2|6 , δ3|6

}T

(2.45)

For classes higher than C11, {δe
mi}el will consist of dofs from mid-side nodes as well

as internal node.

Let the desired new derivative dofs at the corner nodes of a Cij HGDA element be

denoted by {δe}xy
n . In case of a C11 HGDA element, these dofs will consist of complete

set of first order derivatives of the dependent variable evaluated at the three corner

nodes, i.e.

{δe}ξη
n =

{
ϕξ|1 , ϕη|1 , ϕξ|3 , ϕη|3 , ϕξ|5 , ϕη|5

}T

(2.46)

where subscript denotes differentiation i.e. ϕξ|1 = ∂ϕ
∂ξ |node1 = ∂ϕ

∂ξ |ξ=−1,η=0

For classes higher than C11, the new derivative dofs at the corner nodes will be

augmented with the complete sets of derivatives up to the class being derived.

Differentiating Equation (2.44) with respect to ξ and η and evaluating the resulting

expression at each of the three corner nodes, we get

{δe}ξη
n = [A]{δe

co}r1 + [B]{δe
mi}el + [C]{δe

m}r2 + [D]{δe
i }r3 (2.47)

Solving for degrees of freedom to be eliminated i.e. {δe
mi}el in Equation (2.47), we

get

{δe
mi}el = [B]−1{δe}ξη

n − [B]−1[A]{δe
co}r1 − [B]−1[C]{δe

m}r2 − [B]−1[D]{δe
i }r3 (2.48)

Substituting Jacobian of transformation from Equation (2.24) into the above equa-

tion, we can transform the new derivative dofs from ξη space to xy space. Equation

(2.48) can thus be written as

{δe
mi}el = [B]−1[Ji]{δe}xy

n − [B]−1[A]{δe
co}r1− [B]−1[C]{δe

m}r2− [B]−1[D]{δe
i }r3 (2.49)
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Now, substituting {δe
mi}el from Equation (2.49) into Equation (2.44),

ϕ(ξ, η) = [a]{δe
co}r1 + [b]

(
[B]−1[Ji]{δe}xy

n − [B]−1[A]{δe
co}r1

−[B]−1[C]{δe
m}r2 − [B]−1[D]{δe

i }r3

)
+ [c]{δe

m}r2 + [d]{δe
i }r3

(2.50)

Collecting terms in the Equation (2.50), we get the final form of the Cij HGDA local

approximations as follows:

ϕ(ξ, η) =
(
[a]− [b][B]−1[A]

)
{δe

co}r1+[b][B]−1[Ji]{δe}xy
n

+
(
[c]− [b][B]−1[C]

)
{δe

m}r2+
(
[d]− [b][B]−1[D]

)
{δe

i }r3

(2.51)

2.3.4 Limitations of 2-D C11 global differentiability local approximations

for distorted triangular elements

In the proposed framework, 2-D Cij global differentiability local approximations are

derived by borrowing appropriate degrees of freedom and the corresponding approx-

imation functions from the hierarchical nodes of C00 element. In Equation 2.51, [a], [c]

and [d] contain C00 local approximations which are retained at corner, mid-side and

internal nodes whereas [b] contains C00 local approximations functions which are bor-

rowed from mid-side and internal nodes. [A], [B], [C] and [D] are matrices containing

derivatives of C00 approximations collected in [a], [b], [c] and [d] with respect to ξ and

η evaluated at the corner nodes. The approximation functions for the C11 distorted el-

ement at the corner, mid-side and internal nodes (which are retained) are obtained by

modifying the corresponding functions for the C00 element by [b][B]−1[A], [b][B]−1[C]

and [b][B]−1[D] respectively.

In case of 2-D C11 HGDA element, the new derivative degrees of freedom intro-

duced at the corner nodes are first order derivatives with respect to x and y. The na-

ture of the C00 local approximation functions and the coordinates of the corner nodes

(ξ and η coordinates are either +1, 0,
√

3 or −1) always result in all the coefficients of

[D] matrix to be zeros regardless of the p-level. The coefficients of matrices [A], [B], [C]

however are not all zero. This results in the approximation functions at the internal
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node of C11 distorted element to coincide with those corresponding to C00 element

(since [b][B]−1[D] is a row matrix containing all zeros). As a consequence, we have an

incomplete C11 HGDA distorted element, which is prone to yield inaccurate results for

coarser discretizations. When we derive approximation functions for C22 and higher

order elements, the derivative degree of freedoms introduced at the corner nodes in-

clude mixed derivatives with respect to x and y. The mixed derivatives of the C00

approximation functions in [d] (internal node) evaluated at the corner nodes are not all

zero and hence we do have some non-zero coefficients in [D] matrix. For the current

work, we only consider 2-D Cij ; i, j ≥ 2 HGDA elements and an alternative way to

generate C11 HGDA element is under investigation.

Remarks

1. The derivation presented above is general and is independent of the nature of the

C00 interpolation functions. Hence, [a], [b], [c] and [d] vectors can contain approx-

imation functions of any kind (for example, Lagrange, Legendre or Chebyshev

functions) The type of approximation functions chosen would determine the na-

ture of the interpolation functions for the resulting 2-D Cij HGDA element.

2. The matrices [A], [B], [C] and [D] contain derivatives of C00 approximation func-

tions with respect to ξ and η evaluated at the corner nodes. They can be pre-

computed once and used to generate approximation functions of any order Cij

element.

3. The approximation functions being borrowed from the mid-side nodes and in-

ternal node should be such that: (i) lowest degree admissible functions (corre-

sponding to a lower p-level) should be selected first (ii) and a symmetric pattern

maintained in selecting the approximation functions.
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2.4 Summary

This chapter presents a framework to derive higher order global differentiability lo-

cal approximations for 2-D distorted quadrilateral and triangular elements. The dis-

torted element in physical coordinate space xy is mapped into a master element in

natural coordinate space ξη which is a 2 unit square and 2 unit equilateral triangle for

quadrilateral and triangular elements respectively. The higher order global differen-

tiability approximations are first generated in ξη space and then transformed into xy

space. 2-D C00 hierarchical approximations are used as a starting point and the basis

for the developments of Cij local approximations. C00 hierarchical elements have only

function values of the field variable being approximated as a degree of freedom at the

corner nodes (inter-element nodes). To derive higher order distorted elements, addi-

tional degrees of freedom which enforce desired order inter-element continuity need

to be introduced at these corner nodes. The degrees of freedom chosen in developing

the framework consists of a complete set of derivatives of order i (=j) in deriving Cij

global differentiability approximations. The approximation functions being borrowed

from the mid-side nodes and internal node should be such that: (i) lowest degree ad-

missible functions (corresponding to a lower p-level) should be selected first (ii) and

a symmetric pattern maintained in selecting the approximation functions. In Chapter

3, derivation of 3-D Cijk elements of hexahedral type is discussed by extending the

framework presented in this chapter.
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Chapter 3

Higher order global differentiability

local approximations for 3-D

distorted element geometries

3.1 Introduction

In this chapter we present derivations of higher order global local approximations for

3-D distorted element geometries of hexahedral type. Surana et. al. [5] presented

derivation of 3-D higher order global differentiability local approximations of arbi-

trary order using tensor product of 1-D higher order continuity local approximations.

These approximation functions require the element geometries to be rectangular and

the natural coordinate axes ξ, η and ζ to be parallel to x, y, z as well as pointing in

the same directions. This obviously limits the usefulness of these elements to domains

in which the boundaries of the domain are parallel and perpendicular to the global

xyz axes. Irregular domains with irregular boundaries obviously require the use of

distorted element geometries in the discretizations.

The higher order global differentiability local approximations for distorted geome-

tries cannot be derived using the tensor product approach utilized in reference [5]. In

this chapter, we present derivations of the higher order global differentiability local ap-

proximations for distorted hexahedral family of elements. Ahmadi, Surana and Reddy
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[46] developed basic strategy for distorted quadrilateral elements that also forms the

basis for 3-D distorted elements.

Following reference [5], we begin with 1-D HGDA in x, y and z and the corre-

sponding nodal operators shown in Figure 3.1(a) and (b) derived using C0 p-version

hierarchical 1-D approximations. A tensor product of the 1-D nodal operators and the

corresponding 1-D HGDA yields the desired 3-D nodal operators and the correspond-

ing HGDA. The choice of 1-D C0 p-version hierarchical approximation functions i.e.

Lagrange, Legendre or Chebyshev determines whether the corresponding 3-D HGDA

are Lagrange, Legendre or Chebyshev type. This approach requires the elements in

the xyz space to be straight sided with ξ , η and ζ axes parallel to x, y, z and point in

the same direction. If the elements in xyz space are distorted then, we could possibly

discuss an alternative. Consider 1-D higher order global differentiability approxima-

tions in ξ, η, ζ space (similar to Figure 3.1(a) and (b), but derivatives with respect to

x, y, z become those with respect to ξ, η, ζ. A tensor product of these 1-D approx-

imations would yield higher order differentiability approximations in ξ, η, ζ space.

The requirement of higher order global differentiability (in xyz space) necessitates that

the derivative degrees of freedom at the corner nodes (and some at mid-side and face

nodes) be transformed from ξηζ space to xyz space. For example for C111 HGDA, ∂
∂ξ ,

∂
∂η , ∂

∂ζ , ∂2

∂ξ∂η , ∂2

∂ξ∂ζ , ∂2

∂η∂ζ , ∂3

∂ξ∂ηζ need to be transformed to ∂
∂x , ∂

∂y , ∂
∂z , ∂2

∂x∂y , ∂2

∂x∂z , ∂2

∂y∂z

and ∂3

∂x∂y∂z . Due to the fact that degrees of freedom in ξ, η, ζ space for Cijk higher or-

der approximations are not complete sets, this transformation is not possible. For C111

case, ∂
∂ξ , ∂

∂η , ∂
∂ζ can be transformed into ∂

∂x , ∂
∂y , ∂

∂z but there is no feasible resolution for

transforming ∂2

∂ξ∂η , ∂2

∂ξ∂ζ , ∂2

∂η∂ζ , ∂3

∂ξ∂η∂ζ into ∂2

∂x∂y , ∂2

∂x∂z , ∂2

∂y∂z , ∂3

∂x∂y∂z . Similar situation ex-

ists for higher orders as well. Thus, the derivation of HGDA for 3-D distorted elements

in xyz space requires a fundamentally different approach.
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Figure 3.1: 1-D nodal operators and approximation functions in x, y and z
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3.2 Guidelines:

In deriving the desired HGDA for 3-D distorted elements of hexahedral family in xyz

space, we follow the ensuing guidelines.

(a) The distorted element geometry is mapped into ξηζ natural coordinate space into

a 2 unit cube (Figure 3.2(a) and (b)). The master element consists of eight corner

nodes (nodes 1, 3, 5, 7, 13, 15, 17, 19), twelve mid-side nodes (nodes 2, 4, 6, 8,

9, 10, 11, 12, 14, 16, 18, 20), six face nodes (21, 22, 23, 24, 25, 26) and one center

node (node 27). The mid-side nodes are hierarchical in one direction whereas face

nodes are hierarchical in two directions. The center node is hierarchical along all

three coordinate axes ξ, η and ζ. The origin of the ξ, η, ζ coordinate system is

located at the center node of the cube and we have the following for the mapping

of points,


x

y

z

 =
n∑

i=1

N̂i(ξ, η, ζ)


xi

yi

zi

 (3.1)

In which, (xi, yi, zi) are the cartesian coordinates of the nodes and N̂i(ξ, η, ζ) are

the shape functions. We could use twenty node configuration with serendipity

functions [49] for this purpose.

(b) If possible, we would like to consider C000 p-version hierarchical local approx-

imation as a starting point in the derivation of 3-D HGDA. Figure 3.2(c) shows

nodal degrees of freedom for a standard C000 p-version hierarchic element in

which ϕ is the field variable being interpolated. The degrees of freedom at the

corner nodes of this element consists of only function values.
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(a) A 27-node distorted element

in xyz space
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27 Node :  kjikji / ζ∂η∂ξ∂ϕ∂ ++

;   ...p , 3 ξ= ,2i η= ...p , 3 ,2j
ζ= ...p , 3    ,2k;

(c) Dofs for C000 p-version hierarchical  element with  

p - levels pξξξξ , pηηηη and pζζζζ in ξξξξ ,  ηηηη and ζζζζ directions

Figure 3.2: 3-D distorted element mapped to natural coordinate space and C000 p-
version element
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(c) Different degrees of freedom are needed at the corner nodes than those for the

3-D HGDA generated using tensor product. This is due to the fact that dofs in

tensor product 3-D HGDA do not transform from xyz to ξηζ or vice-versa. Obvi-

ously the choices of the dofs at the corner nodes are dictated by the transforma-

tion between xyz and ξηζ spaces.

(d) The degrees of freedom for 3-D HGDA element should be such that they can be

transformable using standard jacobians of transformation from natural coordi-

nate space to physical coordinate space. The choices of nodal operators (or dofs)

at the corner nodes listed in Table 3.1 for C111 and C222 HGDA satisfy the re-

quirement. We note that for C111, the derivative operators are a complete set of

first order operators. For C222 HGDA, the set of C111 is augmented by a complete

second order set and so on.

(e) Since C000 p-version hierarchical approximations are used as a starting point and

that in these local approximations function value is the only degree of freedom at

the corner nodes, we must establish some rules that allow us to borrow some dofs

from C000 p-version hierarchical approximations to generate the desired dofs at

the corner nodes of the 3-D HGDA for the distorted element.

Table 3.1: Choices of dofs at the corner nodes for Cijk 3-D distorted hexahedral ele-
ments in xyz space

Type of HGDA Nodal Operators at the corner nodes

C111 1 , ∂
∂x , ∂

∂y , ∂
∂z

C222 1 , ∂
∂x , ∂

∂y , ∂
∂z , ∂2

∂x2 , ∂2

∂y2
∂2

∂z2 , ∂2

∂y∂x , ∂2

∂x∂z , ∂2

∂y∂z
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3.3 Transformation matrices

In this section we present details of the transformation matrices essential to derive

3-D HGDA for distorted hexahedral geometries in xyz space. Figure 3.2 (c) shows

nodal degrees of freedom for C000 p-version hierarchical element in which ϕ is depen-

dent variable. From Equation (3.1), we obtain the following for mapping of lengths in

(ξ, η, ζ) and (x, y, z) spaces,


dx

dy

dz

 = [J ]


dξ

dη

dζ

 (3.2)

Using Murnaghan’s notation [48] we can write,

[J ] =

 x y z

ξ η ζ

 (3.3)

in which the quantities in numerator define a row and those in the denominator

define column wise differentiation of the terms in the numerator. Thus,

[J ] =

 x y z

ξ η ζ

 =


xξ xη xζ

yξ yη yζ

zξ zη zζ

 (3.4)

where subscript denotes differentiation, i.e. xξ = ∂x
∂ξ , xη = ∂x

∂η , xζ = ∂x
∂ζ etc.

Using the C000 p-version hierarchical approximations for a twenty seven node ele-

ment (Figure 3.2(c)),the field variable ϕ can be approximated as [5],

ϕ(ξ, η, ζ) = [N(ξ, η, ζ)]{δe} (3.5)

in which [N(ξ, η, ζ)] is a row matrix of C000 p-version hierarchical local approximations

and {δe} are the corresponding nodal dofs (arranged in some suitable fashion).
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We define,

{ϕ}ξηζ
1 =

[
∂ϕ

∂ξ
,

∂ϕ

∂η
,

∂ϕ

∂ζ

]T

(3.6)

{ϕ}xyz
1 =

[
∂ϕ

∂x
,

∂ϕ

∂y
,

∂ϕ

∂z

]T

(3.7)

{ϕ}ξηζ
2 =

[
∂2ϕ

∂ξ2
,

∂2ϕ

∂η2
,

∂2ϕ

∂ζ2
,

∂2ϕ

∂η∂ξ
,

∂2ϕ

∂ζ∂ξ
,

∂2ϕ

∂η∂ζ

]T

(3.8)

{ϕ}xyz
2 =

[
∂2ϕ

∂x2
,

∂2ϕ

∂y2
,

∂2ϕ

∂z2
,

∂2ϕ

∂y∂x
,

∂2ϕ

∂z∂x
,

∂2ϕ

∂y∂z

]T

(3.9)

where T denotes transpose of a matrix.

We note that Equations (3.6) and (3.7) are complete first order derivative sets, Equa-

tions (3.8) and (3.9) are complete second order derivative sets in ξηζ and xyz spaces.

In this manner, we can define {ϕ}ξηζ
i and {ϕ}xyz

i as complete sets of the derivatives

of order i in (ξ, η, ζ) and (x, y, z) spaces. Next we define the rules of transformation

between the sets of different order derivatives in (ξ, η, ζ) and (x, y, z) spaces.

{ϕ}ξηζ
i = [Ji]{ϕ}xyz

i (3.10)

Obviously,

[J1] =


xξ yξ zξ

xη yη zη

xζ yζ zζ

 = [J ]T (3.11)

Using chain rule of differentiation, we can determine the transformation matrices
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for higher order derivatives of the dependent variable.

We will use the following notations for higher order derivatives of x with respect

to natural coordinates ξ, η and ζ

xξ =
∂x

∂ξ
; xi

ξ =
(

∂x

∂ξ

)i

; xξi =
∂ix

∂ξi
; xξiηj =

∂i+jx

∂ξi∂ηj
(3.12)

xη =
∂x

∂η
; xi

η =
(

∂x

∂η

)i

; xηi =
∂ix

∂ηi
; xξiζj =

∂i+jx

∂ξi∂ζj
(3.13)

xζ =
∂x

∂ζ
; xi

ζ =
(

∂x

∂ζ

)i

; xζi =
∂ix

∂ζi
; xηiζj =

∂i+jx

∂ηi∂ζj
(3.14)

Similar notations hold true for the derivatives of y and z with respect to ξ, η and ζ

Following these notations, the transformation matrices for the second order derivatives

are as follows:

{ϕ}xyz
2 = [J2]−1

[
{ϕ}ξηζ

2 − [J1
2 ]{ϕ}xyz

1

]
(3.15)

[J2] =



xξ
2 yξ

2 zξ
2 2xξyξ 2xξzξ 2yξzξ

xη
2 yη

2 zη
2 2xηyη 2xηzη 2yηzη

xζ
2 yζ

2 zζ
2 2xζyζ 2xζzζ 2yζzζ

xηxξ yηyξ zηzξ xξyη + xηyξ xξzη + xηzξ yξzη + yηzξ

xξxζ yζyξ zζzξ xζyξ + xξyζ xζzξ + xξzζ yζzξ + yξzζ

xηxζ yηyζ zηzζ xζyη + xηyζ xζzη + xηzζ yζzη + yηzζ


(3.16)
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[J1
2 ] =



xξ2 yξ2 zξ2

xη2 yη2 zη2

xζ2 yζ2 zζ2

xξη yξη zξη

xξζ yξζ zξζ

xηζ yηζ zηζ


(3.17)

From Equation (3.10) we can write

{ϕ}xyz
i = [Ji]−1{ϕ}ξηζ

i (3.18)

3.4 C111 HGDA for 3-D distorted quadrilateral elements in xyz

space

In order to show specific details of the development, we consider C111 HGDA. Figure

3.3(a) shows the dofs at the corner nodes of C111 HGDA element (subscript indicates

differentiation). Comparing Figure 3.3(a) with C000 p-version element of Figure 3.2(c),

we note that the element of Figure 3.3(a) requires ϕx, ϕy and ϕz as additional dofs

at each of the eight corner nodes i.e. a total of twenty four dofs for the eight corner

nodes. We borrow twenty four dofs and the corresponding C000 p-version approxima-

tion functions to generate these dofs and the corresponding approximation functions

for the 3-D C111 HGDA element. This would obviously result in reduction of dofs

at the hierarchical nodes of the 3-D HGDA element. For this case, the choice of dofs

from C000 element is rather straightforward. We borrow two dofs which are associated

with the lowest p-levels (i.e. p = 2 and 3)and their corresponding approximation func-

tions from each of the twelve mid-side nodes which would give us the required twenty

four dofs and corresponding approximation functions. These dofs must be eliminated

from C000 p-version element to generate the derivative dofs at the corner nodes of C111

HGDA element as shown in Figure 3.3(a). Figure 3.3(b) shows the dofs at the hierar-

chical nodes of the 3-D C111 HGDA element.
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27 Node :  nmlnml / ζ∂η∂ξ∂ϕ∂ ++

;   ...p , 5 ξ= ,4i η= ...p , 5 ,4j
ζ= ...p , 5    ,4k;

;   ...p , 3 ξ= ,2l η= ...p , 3 ,2m
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(b)  Dofs at the hierarchical nodes for C111 HGDA element

Figure 3.3: Nodal dofs for 2-D C111 HGDA distorted hexahedral element
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We note that the dofs removed from the mid side nodes of the C000 p-version ele-

ment correspond to p-levels 2 and 3 and hence consistent with the tensor product C111

element. The first degree of freedom at the mid side nodes of the C111 HGDA element

correspond to p-level of 4. For C111 HGDA element, we do not need to borrow any

dofs from the face nodes or center node of C000 p-version element.

3.5 C222 HGDA for 3-D distorted hexahedral elements in xyz

space

Here we consider 3-D C222 HGDA for distorted quadrilateral elements in xyz space.

Figure 3.4(a) shows dofs at the corner nodes of the element. Comparing this with C000

HGDA of Figure 3.2(c), we note that ϕx, ϕy, ϕz , ϕx2 , ϕy2 , ϕz2 , ϕxy, ϕxz and ϕyz are

additional dofs at each of the eight corner nodes, a total of seventy two. Hence, we

need to borrow seventy two dofs from the hierarchical nodes of C000 HGDA element

shown in Figure 3.4(b), keeping in mind that the remaining dofs at the mid side nodes

of Figure 3.2(c) element must begin with p-level of six. This is to ensure that C222

HGDA is in conformity with C222 tensor product element. This allows us to borrow

four dofs (corresponding to p-levels of 2, 3, 4 and 5) from each of the mid side nodes

of Figure 3.2(c), making a total of forty eight. The remaining twenty four dofs needed

to generate the derivative dofs at the corner nodes of C222 HGDA element must come

from the six face nodes.
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ζ= ...p , 7    ,6k;

;   ...p , 3 ξ= ,2l
η= ...p , 3 ,2m ζ= ...p , 3    ,2k;

(b)  Dofs at the hierarchical nodes for C222 HGDA element

7 n   ≥+m;7 m    ≥+lwhere 7 n   ≥+l;

;  ...p , 3 ξ= ,2a ;   ...p , 3 η= ,2b
ζ= ...p , 3 ,2c

Figure 3.4: Nodal dofs for 3-D C222 HGDA distorted hexahedral element
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The degrees of freedom are borrowed from face nodes of the C000 tensor product

element in such a way that the dofs corresponding to a lower p-level are selected before

those corresponding to higher p-levels. Figure 3.5 shows the dofs generated at two of

the face nodes which are hierarchical along ξ and η directions (nodes 21 and 26 from

Figure 3.2(c)). Similar figures can be produced for face nodes 22 and 24 (hierarchical

along ξ and ζ directions) and face nodes 23 and 25 (hierarchical along η and ζ direc-

tions). The dofs illustrated with a circle are the four dofs selected from face nodes 21

and 26 in deriving a C222 HGDA element. They correspond to (pξ, pη) pairs of (2, 2),

(3, 2), (2, 3) and (3, 3). Degree of freedom corresponding to p-level pair of (3, 3) is cho-

sen over (4, 2) or (2, 4) to ensure symmetry with respect to pξ and pη. Similarly four

nodes need to be selected from face nodes 22, 24, 23 and 25. Symmetry in the degrees

of freedom pairs is maintained to preserve the symmetry of finite element solutions for

symmetric discretizations.

With the discussion of the concepts relating to the transformation of the matrices,

selection of the dofs and appropriate guidelines, we now proceed to the derivation of

the Cijk approximations for distorted hexahedral elements.
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23, 25 ( η and ζ directions) of C000 p-version element for C222 HGDA element

Figure 3.5: Dofs at the face nodes of a C000 p-version hierarchical element
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3.6 Derivation of Cijk approximations for distorted hexahedral

elements

We propose a new methodology which utilizes C000 p-version hierarchical interpola-

tion functions as a starting point and generates desired order global differentiability

approximations for distorted hexahedral elements. Since the approximation functions

are functions of natural coordinates ξ, η, ζ, i.e. Ni = Ni(ξ, η, ζ), the desired derivative

degrees of freedom need to be generated first in ξηζ space and then transformed into

xyz space. The matrices described in Section 3.2.2 assist us in transforming the desired

derivative degrees of freedom.

The dofs in {δe} of a twenty seven node C000 p-version hierarchical element from

Equation(3.5) are separated into those corresponding to corner nodes (denoted by co),

mid-side nodes (denoted by m), face nodes (denoted by f ), center node (denoted by

c) as follows:

ϕ(ξ, η, ζ) = [a]{δe
co}r1 + [b]{δe

mf}el + [c]{δe
mf}r2 + [d]{δe

c}r3 (3.19)

where a subscript ’r1’ denotes the degrees of freedom retained from corner nodes,

’r2’ denotes the degrees of freedom remaining from mid-side nodes and face nodes

(after borrowing the required degrees of freedom), ’r3’ denotes the degrees of freedom

retained from center node. Subscript ’el’ corresponds to the degrees of freedom bor-

rowed from the mid-side nodes and the face node to derive the new derivative degrees

of freedom at the corner nodes of a Cijk HGDA element. [a], [b] ,[c] and [d] are vectors

containing C000 p-version local approximations corresponding to the dofs in the r1, el

and r2, r3 sets respectively.

For a C111 HGDA element, {δe
mf}el consists of dofs from mid-side nodes only, since

we do not need any from the face node, i.e. {δe
mf}el={δe

m}el. For classes higher than

C111, {δe
mf}el will consist of dofs from mid-side nodes as well as face nodes.

Let the desired new derivative dofs at the corner nodes of a Cijk HGDA element

59



be denoted by {δe}xyz
n . In case of a C111 HGDA element, these dofs will consist of

complete set of first order derivatives of the dependent variable evaluated at the eight

corner nodes, i.e.

{δe}ξηζ
n =

{
{δe

1}ξηζ , {δe
3}ξηζ , {δe

5}ξηζ , {δe
7}ξηζ , {δe

13}ξηζ , {δe
15}ξηζ , {δe

17}ξηζ , {δe
19}ξηζ

}T

(3.20)

with

{δe
1}ξηζ =

{
∂ϕ

∂ξ
,

∂ϕ

∂η
,

∂ϕ

∂ζ

}T

at node 1

(3.21)

where subscript denotes differentiation i.e. ∂ϕ
∂ξ |node 1 = ∂ϕ

∂ξ |(ξ=−1 , η=−1 , ζ=−1)

For classes higher than C111, the new derivative dofs at the corner nodes will be

augmented with the complete sets of derivatives up to the class being derived.

Differentiating Equation (3.19) with respect to ξ , η and ζ and evaluating the result-

ing expression at each of the eight corner nodes, we get

{δe}ξηζ
n = [A]{δe

co}r1 + [B]{δe
mf}el + [C]{δe

mf}r2 + [D]{δe
c}r3 (3.22)

Solving for {δe
mf}el in Equation (3.22), we get

{δe
mf}el = [B]−1{δe}ξηζ

n − [B]−1[A]{δe
co}r1− [B]−1[C]{δe

mf}r2− [B]−1[D]{δe
c}r3 (3.23)

Substituting Jacobian of transformation from Equation (3.18) into the above equa-

tion, we can transform the new derivative dofs from ξηζ space to xyz space. Equation

(3.23) can thus be rewritten as

{δe
mf}el = [B]−1[Ji]{δe}xyz

n −[B]−1[A]{δe
co}r1−[B]−1[C]{δe

mf}r2−[B]−1[D]{δe
c}r3 (3.24)
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Now, substituting {δe
mf}el from Equation (3.24) into Equation (3.19) and collecting

terms, we get the final form of the Cijk HGDA local approximations as follows:

ϕ(ξ, η, ζ) =
(
[a]− [b][B]−1[A]

)
{δe

co}r1+[b][B]−1[Ji]{δe}xyz
n

+
(
[c]− [b][B]−1[C]

)
{δe

mc}r2+
(
[d]− [b][B]−1[D]

)
{δe

c}r3

(3.25)

3.6.1 Limitations of 3-D C111 and C222 global differentiability local approx-

imations for distorted hexahedral elements

In the proposed framework, 3-D Cijk global differentiability local approximations are

derived by borrowing appropriate degrees of freedom and the corresponding approxi-

mation functions from the hierarchical nodes of C000 element. In Equation 3.25, [a] and

[d] contain C000 local approximations which are retained at corner, and center nodes.

[b] contains C000 local approximation functions which are borrowed from mid-side and

face nodes whereas [c] contains the C000 local approximations functions retained from

mid-side and face nodes. [A], [B], [C] and [D] are matrices containing derivatives of

C00 approximations collected in [a], [b], [c] and [d] with respect to ξ, η and ζ evaluated at

the corner nodes. The approximation functions for the higher order distorted elements

at the corner, mid-side, face and center nodes (which are retained) are obtained by

modifying the corresponding functions for the C000 element by [b][B]−1[A], [b][B]−1[C]

and [b][B]−1[D] respectively.

In case of 3-D C111 and C222 HGDA elements, the new derivative degrees of free-

dom introduced at the corner nodes are first and second order derivatives (with respect

to x, y and z) respectively. The nature of the C000 local approximation functions and

the coordinates of the corner nodes (ξ , η and ζ coordinates are either +1 or −1) al-

ways result in all the coefficients of [D] matrix to be zeros regardless of the p-level. The

coefficients of matrices [A], [B], [C] however are not all zero. This results in the approx-

imation functions at the center node of C111 and C222 distorted elements to coincide

with those corresponding to C000 element (since [b][B]−1[D] is a row matrix containing

all zeros). As a consequence, we have incomplete C111 and C222 HGDA distorted el-

ements, which are prone to yield inaccurate results for coarser discretizations. When
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we derive approximation functions for C333 and higher order elements, the derivative

degree of freedoms introduced at the corner nodes include mixed derivatives of third

order or higher with respect to ξ, η and ζ. The third and higher order mixed derivatives

of the C000 approximation functions in [d] (center node) evaluated at the corner nodes

are not all zero and hence we do have some non-zero coefficients in [D] matrix. For the

current work, we only consider 3-D Cijk ; i, j, k,≥ 3 HGDA elements and alternative

ways to generate C111 and C222 HGDA elements are under investigation.

3.7 Summary

In this chapter, a framework to derive higher order global differentiability local ap-

proximations for Cijk elements of hexahedral type is presented. The distorted element

in physical coordinate space xyz is mapped into a 2 unit cube in natural coordinate

space ξηζ. The higher order global differentiability approximations are first generated

in ξηζ space and then transformed into xyz space using Jacobian of transformation

matrices. 3-D C000 hierarchical approximations are used as a starting point and the

basis for the developments of Cijk local approximations. New degrees of freedom are

introduced at the corner nodes (inter-element nodes) which enforce the higher order

inter element continuity. The degrees of freedom chosen in developing the framework

consists of a complete set of derivatives of order i(= j = k) in deriving Cijk global

differentiability approximations. The derivation presented is general and is indepen-

dent of the nature of the C000 interpolation functions. The type of C000 approximation

functions (for example, Lagrange, Legendre or Chebyshev functions) chosen would

determine the nature of the interpolation functions for the resulting 3-D Cijk HGDA

element. The approximation functions being borrowed from the mid-side nodes and

face nodes should be such that: (i) lowest degree admissible functions (corresponding

to a lower p-level) should be selected first (ii) and a symmetric pattern maintained in

selecting the approximation functions.
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Chapter 4

Assessment of accuracy and

convergence rates of higher order

continuity 2-D elements with

distorted geometries

4.1 Introduction

A finite element discretization consists of (1) finite subdomains (or finite elements)

that are interconnected with each other at their boundaries and (2) interpolation of the

quantities of interest over each element (local approximation). The precise approxima-

tion of the quantities of interest over entire domain is controlled by (a) the nature of

subdivision (i.e. number and type of elements (uniform or graded mesh)) (b) nature

of local approximation (linear, parabolic etc.), (c) inter-element behavior of the local

approximations of the discretization and (d) the nature of the differential operator ap-

pearing in the governing equations.

Surana et al. [1-3] classified the boundary value problems based upon the strict

mathematical nature of the differential operators into three categories: (1) those de-

scribed by self-adjoint differential operators (2) those described by non self-adjoint dif-

ferential operators and (3) those described by non-linear differential operators.
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In chapters 2 and 3, a general framework is presented for deriving desired order

global differentiability local approximations for 2-D and 3-D distorted element geome-

tries. 2-D C00 or 3-D C000 p-version hierarchical approximations are used as a basis

and appropriate degrees of freedom and corresponding approximation functions are

borrowed to generate the higher order global differentiability approximations (HGDA)

in two or three dimensions.

In this chapter we consider Galerkin method with weak form (GAL) and Least

squares processes (LSP) for self-adjoint operators whereas only Least squares processes

for non self-adjoint and non-linear operators [1–3] to present various numerical studies

using standard model problems. The numerical studies are intended to assess perfor-

mance of the developed HGDA elements of distorted geometries as well as those based

on tensor product.

In all the numerical studies presented here, various of interest are computed for

model problems defined by self-adjoint, non self-adjoint and non-linear differential

operators [6–10]:

(1) Least squares error or residual functional ( I ) : If an approximation ϕh of ϕ in

Ω̄T is substituted in boundary value problem Aϕ − f = 0, we get the residuals

(or errors) E. Least squares error functional is constructed by taking the sum of

squares of E over the whole domain Ω̄T , i.e. I is an inner product of E with itself,

defined as,

I(ϕh) = (E,E) =
∫

Ω
ET EdΩ (4.1)

(2) Functional corresponding to Galerkin method with weak form ( I ) : If the op-

erator A is self-adjoint,using integration by parts in Galerkin method, we obtain

weak form B(ϕ, v) = l(v) of the boundary value problem (where v = δϕ). In this

case, we can construct functional I as follows,

I(ϕh) =
1
2

B(ϕ, ϕ)− l(ϕ) (4.2)
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(3) L2 - norm of error in solution : If ϕ and ϕh are square integrable functions de-

fined over Ω̄T , then L2 - norm of error can be written as (Consider 1-D case) :

‖ e ‖0 = ‖ϕ− ϕh‖0 =
( ∫

Ω̄T

|ϕ− ϕh|2 dΩ
)

1
2 (4.3)

(4) H1 - norm of error in solution : If ϕ and ϕh are square integrable functions

defined over Ω̄T , then H1 - norm of error can be written as

‖ e ‖H1(Ω̄T ) =
( ∫

Ω̄T

(
|ϕ− ϕh|2 + |ϕ′ − ϕ′h|2

)
dΩ

)
1
2 (4.4)

where ’ denotes all first order derivatives

(5) H2 - norm of error in solution : If ϕ and ϕh are square integrable functions

defined over Ω̄T , then H2 - norm of error in the solution can be written as

‖ e ‖H2(Ω̄T ) =
( ∫

Ω̄T

(
|ϕ− ϕh|2 + |ϕ′ − ϕ′h|2 + |ϕ′′ − ϕ′′h|2

)
dΩ

)
1
2 (4.5)

where ’ and ” denote all first and second order derivatives

All the computed quantities of interest (
√

I , L2 - norm of error, H1 - norm of error,

H2 - norm of error) are always plotted on a logarithmic scale against logarithmic

values of the characteristic length of discretization (he) or logarithmic values of

the degrees of freedom (dofs). The slopes of such plots enable us to determine

the convergence rates of the corresponding quantities of interest.

Numerical studies

The numerical studies for all the model problems considered in this chapter can be

broadly divided into the following groups:

(1) Undistorted discretizations: The domains of definition of the model problems

are discretized with rectangular meshes. For these discretizations, tensor product

elements have the best performance and hence can be considered as benchmark
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results. When higher order global differentiability distorted elements are used,

they are provided with all the benefits. The results obtained would indeed be

their best performance hence, their comparison with tensor product elements

will be meaningful.

(a) h-convergence study: For the rectangular domains, a study is performed

with fixed p-level and varying characteristic length of discretization. The

quantities of interest and their convergence rates are computed for both ten-

sor product and HGDA elements (plotted against (i) discretization length

(he) and (ii) total number of degrees of freedom).

(b) p-convergence study: For the same rectangular domains, another study is

conducted with a fixed characteristic length of discretization and progres-

sively increasing p levels. The quantities of interest and their convergence

rates are computed for both tensor product and HGDA elements (plotted

against the degrees of freedom).

(2) Distorted discretizations: The domains in (1) are now discretized with quadri-

lateral elements of irregular or distorted shapes. The higher order global differ-

entiability distorted elements are used for these discretizations and the results

are compared with the undistorted discretizations.

(a) h-convergence study: For these distorted discretizations, a study is per-

formed with a fixed p-level and varying characteristic length of discretiza-

tion. The quantities of interest and their convergence rates are computed

for distorted discretizations and compared with the solutions obtained us-

ing rectangular meshes.

(b) p-convergence study: Another study is conducted with a fixed characteris-

tic length of discretization and progressively increasing p levels. The quan-

tities of interest and their convergence rates are computed for distorted dis-

cretizations and compared with the solutions obtained using rectangular

meshes.
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4.2 Model Problem # 1 : 2-D steady state Poisson’s equation

The governing differential equation (GDE) for 2-D steady state Poisson’s equation is

given by:

∂2u

∂x2
+

∂2u

∂y2
= −f(x, y) over Ω = (−a, a)× (−b, b) (4.6)

with boundary conditions

u(x,−b) = u(a, y) = u(x, b) = u(−a, y) = 0 (4.7)

where f(x, y) is such that the theoretical solution is given by

u(x, y) = (an − xn)(bm − ym) (4.8)

For computations, a = b = 1 and m = n = 8 are considered.

The differential operator describing the governing differential equation is self-adjoint

and hence both Galerkin method with weak form and Least squares processes are vari-

ationally consistent [1–3]. When an approximation uh(x, y) of u(x, y) is considered, the

local approximations need to be at least of class C2,2(Ω̄e) since the governing differ-

ential equation contains second order derivatives of dependent variable. However, if

we permit weak convergence of second order derivatives of uh, the requirement can

be lowered to C1,1(Ω̄e). Local approximations of class C0,0(Ω̄e) are not admissible in

case of least squares process using strong form of the GDE (i.e. Equation (4.6)). Figure

4.1(a) shows a schematic of the domain Ω used in the computations.

4.2.1 Undistorted discretizations

The domain of definition Ω ((−1, 1)×(−1, 1)) is discretized uniformly with rectangular

elements. The following uniform discretizations for h-convergence are considered:

(1) 4 element uniform discretization (2 x 2) : characteristic length : he = 1
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(2) 16 element uniform discretization (4 x 4) : characteristic length : he = 0.5

(3) 64 element uniform discretization (8 x 8) : characteristic length : he = 0.25

(4) 256 element uniform discretization (16 x 16) : characteristic length : he = 0.125

(5) 1024 element uniform discretization (32 x 32) : characteristic length : he = 0.0625

The first and second uniform discretizations are shown in Figure 4.1(b) and (c).

x

y

2

2
(0,0)

u = 0

u = 0

u = 0

u = 0

(a) Schematic of Ω

(b) 2 x 2 uniform discretization ( he =1 ) (c) 4 x 4 uniform discretization ( he = 0.5 )

h
e

h
e

Figure 4.1: Schematic, uniform discretizations for 2-D steady state Poisson’s equation
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4.2.2 Numerical studies for Undistorted discretizations : h-convergence

The numerical solutions are obtained using C11, C22 and C33 HGDA elements em-

ploying the minimum p-level required by the corresponding HGDA elements. The

minimum p-levels required for C11, C22 and C33 HGDA elements are 3, 5 and 7 re-

spectively. The numerical studies are obtained by progressively refining the discretiza-

tion (adding more elements) thereby reducing the characteristic length of discretiza-

tion. Since the differential operator is self-adjoint, solutions are computed using both

Galerkin method with weak form and Least squares processes.

(i) Figures 4.2 (a)-(d) show the C11 (p=3) solutions computed for both tensor product

and HGDA elements plotted against the characteristic length of discretization.

Figures 4.3 (a)-(d) and 4.4 (a)-(d) show similar plots computed with C22 (p=5)

and C33 (p=7) HGDA elements. The convergence rates of all the solutions in

Figures 4.2-4.4 are listed in Table 4.1.

(ii) Figures 4.5 (a)-(d) show the C11 (p=3) solutions computed for both tensor product

and HGDA elements plotted against the total number of degrees of freedom.

Figures 4.6 (a)-(d) and 4.7 (a)-(d) show similar plots for C22 (p=5) and C33 (p=7)

HGDA elements. The convergence rates of all the solutions in Figures 4.5-4.7 are

listed in Table 4.2

(iii) Figures 4.8(a)-(d) and 4.9(a)-(d) show comparison of numerical solutions obtained

using C22 and C33 HGDA elements for a p level of 7 plotted against characteris-

tic length and degrees of freedom respectively. The convergence rates of all the

solutions in Figures 4.8-4.9 are listed in Table 4.3.

69



0 0.5 1
−6

−5

−4

−3

−2

−1

0

1

2

3

−log(he)

log
 √I

 

 

Distorted : LSP (1.89)
Tensor product : LSP (1.93)
Distorted : GAL (1.95)
Tensor product : GAL (1.95)

(a) √I versus he

0 0.5 1
−6

−5

−4

−3

−2

−1

0

1

2

3

−log(he)

log
(H

1  no
rm

 of
 er

ro
r)

 

 

Distorted : LSP (2.08)
Tensor product : LSP (2.91)
Distorted : GAL (2.78)
Tensor product : GAL (2.72)

(c) H1 norm of error in u versus he

0 0.5 1
−6

−5

−4

−3

−2

−1

0

1

2

3

−log(he)
log

(L
2 N

or
m 

of
 er

ro
r)

 

 
Distorted : LSP (2.09)
Tensor product : LSP (3.89)
Distorted : GAL (3.65)
Tensor product : GAL (3.6)

(b) L2 norm of error in u versus he

0 0.5 1
−6

−5

−4

−3

−2

−1

0

1

2

3

−log(he)

log
(H

2  no
rm

 of
 er

ro
r)

 

 

Distorted : LSP (1.97)
Tensor product : LSP (1.93)
Distorted : GAL (1.9)
Tensor product : GAL (1.95)

(d) H2 norm of error in u versus he

Figure 4.2: Comparison of Distorted HGDA and Tensor product elements versus dis-
cretization length for 2-D Poisson’s equation : C11, pξ = pη = 3, Undis-
torted discretizations
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Figure 4.3: Comparison of Distorted HGDA and Tensor product elements versus dis-
cretization length for 2-D Poisson’s equation : C22, pξ = pη = 5, Undis-
torted discretizations
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(b) L2 norm of error in u versus he
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(d) H2 norm of error in u versus he

Figure 4.4: Comparison of Distorted HGDA and Tensor product elements versus dis-
cretization length for 2-D Poisson’s equation : C33, pξ = pη = 7, Undis-
torted discretizations
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Table 4.1: Convergence rates for 2-D Poisson’s equation : h-convergence, Undistorted
discretizations using Distorted HGDA and Tensor product elements

6.015.995.936.18C33  : p=7

4.14.0143.71C22  : p=5

1.951.91.931.97C11 ; p=3

Tensor ProductDistortedTensor ProductDistorted

GALLSP

Cij

6.896.96.916.12C33  : p=7

4.934.955.024.1C22  : p=5

2.722.782.912.08C11 ; p=3

Tensor ProductDistortedTensor ProductDistorted

GALLSP

Cij

7.867.877.866.09C33  : p=7

5.915.936.024.06C22  : p=5

3.63.653.892.09C11 ; p=3

Tensor ProductDistortedTensor ProductDistorted

GALLSP

Cij

6.015.985.935.99C33  : p=7

4.14.0144.05C22  : p=5

1.951.951.931.89C11 ; p=3

Tensor ProductDistortedTensor ProductDistorted

GALLSP

Cij

(a) √I versus he

(b) L2 - norm of error versus he

(c)  H1 - norm of error versus he

(d)  H2 - norm of error versus he
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Figure 4.5: Comparison of Distorted HGDA and Tensor product elements versus de-
grees of freedom for 2-D Poisson’s equation : C11, pξ = pη = 3, Undis-
torted discretizations
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Figure 4.6: Comparison of Distorted HGDA and Tensor product elements versus de-
grees of freedom for 2-D Poisson’s equation : C22, pξ = pη = 5, Undis-
torted discretizations
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Figure 4.7: Comparison of Distorted HGDA and Tensor product elements versus de-
grees of freedom for 2-D Poisson’s equation : C33, pξ = pη = 7, Undis-
torted discretizations

76



Table 4.2: Convergence rates for 2-D Poisson’s equation : h-convergence, Undistorted
discretizations using Distorted HGDA and Tensor product elements

3.143.013.13.11C33  : p=7

2.1122.061.85C22  : p=5

0.970.950.960.97C11 ; p=3

Tensor ProductDistortedTensor ProductDistorted

GALLSP

Cij

3.63.463.613.08C33  : p=7

2.542.472.592.05C22  : p=5

1.361.371.451.03C11 ; p=3

Tensor ProductDistortedTensor ProductDistorted

GALLSP

Cij

3.953.953.953.06C33  : p=7

2.952.963.012.03C22  : p=5

1.771.81.911.03C11 ; p=3

Tensor ProductDistortedTensor ProductDistorted

GALLSP

Cij

3.1433.13.01C33  : p=7

2.1122.062.0C22  : p=5

0.970.960.960.93C11 ; p=3

Tensor ProductDistortedTensor ProductDistorted

GALLSP

Cij

(a) √I versus dofs

(b) L2 - norm of error versus dofs

(c)  H1 - norm of error versus dofs

(d)  H2 - norm of error versus dofs
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Figure 4.8: Comparison of Cij Distorted HGDA elements versus discretization length
for 2-D Poisson’s equation : C22 (k = 3), C33 (k = 4), pξ = pη = 7, Undis-
torted discretizations
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Figure 4.9: Comparison of Cij Distorted HGDA elements versus degrees of freedom
for 2-D Poisson’s equation : C22 (k = 3), C33 (k = 4), pξ = pη = 7, Undis-
torted discretizations
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Table 4.3: Convergence rates for 2-D Poisson’s equation : k-convergence, Undistorted
discretizations using C22 (k = 3) and C33 (k = 4) Distorted HGDA elements

3.013.115.996.18C33  : p=7

2.992.986.015.99C22  : p=7

GALLSPGALLSP

H2 - norm vs dofsH2 - norm vs he

Cij

3.463.086.96.12C33  : p=7

3.482.976.995.96C22  : p=7

GALLSPGALLSP

H1 - norm vs dofsH1 - norm vs he

Cij

3.953.067.876.09C33  : p=7

3.972.947.985.91C22  : p=7

GALLSPGALLSP

L2 - norm  vs dofsL2 - norm  vs he

Cij

33.015.985.99C33  : p=7

2.993.316.016.65C22  : p=7

GALLSPGALLSP

√√√√I versus dofs√√√√I versus he

Cij

(a) √I 

(b) L2 - norm of error

(c)  H1 - norm of error

(d)  H2 - norm of error 
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Discussion of results

(1) From Figures 4.2-4.9, the error or residual functional values for Galerkin method

with weak form and Least squares processes for both distorted and HGDA el-

ements are approximately same (for a given he or dofs). However, for a given

characteristic length of discretization or given number of degrees of freedom,

Galerkin method with weak form (using HGDA elements) has lower values of

errors in L2, H1 and H2 - norms) compared to Least squares processes (using

HGDA elements). This is also true when comparing Galerkin method with weak

form and Least squares processes using tensor product elements.

(2) From Table 4.1, the convergence rates depend on the p-level used in the com-

putations. The convergence rates for the computed norms using tensor product

approximations (for both Galerkin method with weak form and Least squares

processes) are in the vicinity of (p − 1) for residual or error functional and error

in the H2-norm (i.e. ≈ 2 for C11 (p=3), ≈ 4 for C22 (p=5) and ≈ 6 for C33 (p=7)).

However, the convergence rates for L2 - norm of error in solution is close to (p+1)

(i.e. ≈ 4 for C11 (p=3), ≈ 6 for C22 (p=5) and ≈ 8 for C33 (p=7)). The convergence

rates for error in H2-norm is p (i.e. ≈ 3 for C11 (p=3), ≈ 5 for C22 (p=5) and ≈

7 for C33 (p=7)). For Galerkin method with weak form the convergence rates

for computed quantities are close to the values observed in case of tensor prod-

uct elements. However, with HGDA elements using Least squares processes the

convergence rate for all the computed quantities is approximately (p − 1) (i.e. ≈

2 for C11 (p=3), C22 (p=5) and C33 (p=7)).

(3) From Table 4.2, the convergence rates of the computed quantities do not have

an explicit relation to the p-level used in the computations as observed in (2).

The convergence rates seem to be dependent on both the p-level and order of

approximation k.

(4) From Figures 4.8-4.9, the error or residual functional values from all four for-

mulations (Galerkin method with weak form and Least squares processes with

C22 and C33 HGDA elements) are approximately the same. From Table 4.3, in
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case of Galerkin method with weak form, the convergence rates and the values

of all quantities of interest computed using both C22 and C33 HGDA elements

are almost same. In Least squares formulation, the convergence rates as shown

in Table 4.3 for C22 and C33 HGDA elements are approximately the same. From

Figures 4.5-4.7, we observe that for a given value of characteristic length or given

number of degrees of freedom, C33 HGDA element gives a lower value of the

quantity of interest compared to C22 HGDA element, thus illustrating the benefit

of higher order global differentiability.

4.2.3 Numerical studies for Undistorted mesh : p-convergence

The numerical solutions are obtained using C22 and C33 HGDA elements with progres-

sively increasing p-levels beginning with the minimum p-level required by the corre-

sponding HGDA element. The minimum p-levels required for C22 and C33 HGDA

elements are 5 and 7 respectively. The values in parenthesis indicate the convergence

rate corresponding to the computed quantity for each HGDA element. The numerical

studies are conducted using both Galerkin method with weak form and Least squares

processes.

(i) Figures 4.10(a)-(d) show the numerical solutions computed for two different undis-

torted discretizations (4 and 16 elements) with C22 HGDA element. Figures

4.11(a)-(d) show similar plots for C33 HGDA element. In both cases, we observe

for a given accuracy, coarser discretization is beneficial.

(ii) Figures 4.12(a)-(d) show the numerical solutions computed for HGDA elements

and tensor product elements for a 4 element undistorted discretization with C22

HGDA element. Figures 4.13(a)-(d) show similar plots for C33 HGDA element.

From Figures 4.12 and 4.13, the tensor product element has lower values of com-

puted quantities of interest for a given number of degrees of freedom hence mer-

itorious.

(iii) Figures 4.14(a)-(d) show comparison of numerical solutions calculated using C22

and C33 HGDA elements for a 4 element undistorted discretization. For a given
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formulation (Galerkin method with weak form or Least squares processes), the

computed quantities of interest for C33 HGDA element have a lower value com-

pared to those corresponding to C22 HGDA (for a given number of degrees of

freedom), thus illustrating the benefit of higher order global differentiability.

Remarks

(1) From Figures 4.10 - 4.13, for a given number of degrees of freedom, HGDA ele-

ment using Least squares processes has a lower value of error or residual func-

tional compared to the value obtained using Galerkin method with weak form.

For all other error norms, Galerkin method with weak form has lower error

norms in computed quantities of interest compared to Least squares process.

(2) When the domain of definition is rectangular, tensor product elements are ex-

pected to have the best performance. This is evident from the plots of all quanti-

ties of interest for any order of approximations.

(3) The convergence rates of the computed quantities of interest in Figures 4.11, 4.13

and 4.14 are very high due to the numerical solution at p-level of 8 being in the

close vicinity of the theoretical solution.
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Figure 4.10: Comparison of 4 element and 16 element discretizations using Distorted
HGDA elements for 2-D Poisson’s equation : C22, Undistorted discretiza-
tions

84



2 2.5 3

−14

−12

−10

−8

−6

−4

−2

0

2

log(dofs) , dof : Degrees of freedom

log
 √

I

 

 

p=7

p=8

4 el : LSP (59.3)
16 el : LSP (44.6)
4 el : GAL (47.5)
16 el : GAL (32.8)

(a) √I versus dofs

2 2.5 3

−14

−12

−10

−8

−6

−4

−2

0

2

log(dofs)

log
(H

1  no
rm

 of
 er

ro
r)

 

 

p=7

p=8

4 el : LSP (55.2)
16 el : LSP (39.4)
4 el : GAL (47.9)
16 el : GAL (34.1)

(c) H1 norm of error in u versus dofs

2 2.5 3

−14

−12

−10

−8

−6

−4

−2

0

2

log(dofs)

log
(L

2 N
or

m 
of

 er
ro

r)
 

 

p=7

p=8

4 el : LSP (56.7)
16 el : LSP (39.7)
4 el : GAL (48.4)
16 el : GAL (35.5)

(b) L2 norm of error in u versus dofs

2 2.5 3

−14

−12

−10

−8

−6

−4

−2

0

2

log(dofs)

log
(H

2  no
rm

 of
 er

ro
r)

 

 

p=7

p=8

4 el : LSP (54)
16 el : LSP (38.4)
4 el : GAL (47.6)
16 el : GAL (32.9)

(d) H2 norm of error in u versus dofs

Figure 4.11: Comparison of 4 element and 16 element discretizations using Distorted
HGDA elements for 2-D Poisson’s equation : C33, Undistorted discretiza-
tions
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Figure 4.12: Comparison of Distorted HGDA and Tensor product elements for 2-D
Poisson’s equation : C22, 4 element Undistorted discretization
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Figure 4.13: Comparison of Distorted HGDA and Tensor product elements for 2-D
Poisson’s equation : C33, 4 element Undistorted discretization
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Figure 4.14: Comparison of Cij Distorted HGDA elements for 2-D Poisson’s equation
: C22 (k = 3), C33 (k = 4), 4 element Undistorted discretization
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4.2.4 Distorted discretizations

In this numerical study, the domain of definition is discretized using elements of non-

rectangular shapes. The longest side among all the elements in the entire discretization

is chosen as the characteristic length for such a discretization. We consider the follow-

ing distorted discretizations for h-convergence:

(1) 4 element distorted discretization (2 x 2) : characteristic length : he = 1.5

(2) 16 element distorted discretization (4 x 4) : characteristic length : he = 0.75

(3) 64 element distorted discretization (8 x 8) : characteristic length : he = 0.375

(4) 256 element distorted discretization (16 x 16) : characteristic length : he = 0.1875

(5) 1024 element distorted discretization (32 x 32) : characteristic length : he = 0.09375

The first and second distorted discretizations are shown in Figure 4.15(a) and (b).

(a) 2 x 2 distorted discretization ( h
e

=1.5 ) (b) 4 x 4 distorted discretization ( h
e

= 0.75 )

h
e

h
e

Figure 4.15: Schematic, distorted discretizations for 2-D steady state Poisson’s equation
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4.2.5 Numerical studies for Distorted mesh : h-convergence

For these studies, tensor product elements are not applicable since the elements are

not rectangular. However, since the domain of definition is still rectangular, we can

compare the numerical solutions computed with HGDA elements with those using

tensor product but rectangular discretizations. The p-level is kept fixed and the char-

acteristic length is progressively reduced. Since the differential operator is self-adjoint,

solutions using both Galerkin method with weak form and Least squares processes are

computed.

(i) Figures 4.16(a)-(d) show the C11 (p=3) HGDA solutions computed for distorted

discretizations and compared with the results obtained with undistorted dis-

cretizations. The solutions are plotted versus the characteristic length of dis-

cretization. Figures 4.17 (a)-(d) and 4.18 (a)-(d) show similar plots for C22 (p=5)

and C33 (p=7) elements. The convergence rates of all the solutions plotted in

Figures 4.16-4.18 are listed in Table 4.4.

(ii) Figures 4.19 - 4.21 show numerical solutions obtained in (i) as a function of the

total number of degrees of freedom and Table 4.5 lists the convergence rates of

all the solutions.

(iii) Figures 4.22(a)-(d) and 4.23(a)-(d) show comparison of solutions computed using

C22 and C33 elements (for a p level of 7) plotted against characteristic length

and degrees of freedom respectively. The convergence rates of all the solutions

plotted in Figures 4.22-4.23 are listed in Table 4.6.
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(b) L2 norm of error in u versus he
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(d) H2 norm of error in u versus he

Figure 4.16: Comparison of Undistorted and Distorted discretizations versus dis-
cretization length for 2-D Poisson’s equation : C11 HGDA element, pξ =
pη = 3
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(b) L2 norm of error in u versus he
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(d) H2 norm of error in u versus he

Figure 4.17: Comparison of Undistorted and Distorted discretizations versus dis-
cretization length for 2-D Poisson’s equation : C22 HGDA element, pξ =
pη = 5
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(b) L2 norm of error in u versus he
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(d) H2 norm of error in u versus he

Figure 4.18: Comparison of Undistorted and Distorted discretizations versus dis-
cretization length for 2-D Poisson’s equation : C33 HGDA element, pξ =
pη = 7
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Table 4.4: Convergence rates for 2-D Poisson’s equation : h-convergence, Undistorted
and Distorted discretizations using Distorted HGDA elements

4.865.994.986.18C33  : p=7

4.14.0143.71C22  : p=5

1.861.91.951.97C11 ; p=3

Distorted 

mesh

Undistorted 

mesh

Distorted 

mesh

Undistorted 

mesh

GALLSP

Cij

5.886.95.536.12C33  : p=7

4.934.954.514.1C22  : p=5

2.792.782.32.08C11 ; p=3

Distorted 

mesh

Undistorted 

mesh

Distorted 

mesh

Undistorted 

mesh

GALLSP

Cij

6.947.875.276.09C33  : p=7

5.85.934.494.06C22  : p=5

3.773.652.212.09C11 ; p=3

Distorted 

mesh

Undistorted 

mesh

Distorted 

mesh

Undistorted 

mesh

GALLSP

Cij

4.865.984.755.99C33  : p=7

3.444.013.414.05C22  : p=5

1.871.951.781.89C11 ; p=3

Distorted 

mesh

Undistorted 

mesh

Distorted 

mesh

Undistorted 

mesh

GALLSP

Cij

(a) √I versus he

(b) L2 - norm of error versus he

(c)  H1 - norm of error versus he

(d)  H2 - norm of error versus he
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(c) H1 norm of error in u versus dofs
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(b) L2 norm of error in u versus dofs
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(d) H2 norm of error in u versus dofs

Figure 4.19: Comparison of Undistorted and Distorted discretizations versus degrees
of freedom for 2-D Poisson’s equation : C11 HGDA element, pξ = pη = 3
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(c) H1 norm of error in u versus dofs
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Undistorted : LSP (2.03)
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(b) L2 norm of error in u versus dofs
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(d) H2 norm of error in u versus dofs

Figure 4.20: Comparison of Undistorted and Distorted discretizations versus degrees
of freedom for 2-D Poisson’s equation : C22 HGDA element, pξ = pη = 5
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(a) √I versus dofs
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Undistorted : LSP (3.08)
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(c) H1 norm of error in u versus dofs
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Undistorted : LSP (3.06)
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(b) L2 norm of error in u versus dofs
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Undistorted : LSP (3.11)
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(d) H2 norm of error in u versus dofs

Figure 4.21: Comparison of Undistorted and Distorted discretizations versus degrees
of freedom for 2-D Poisson’s equation : C33 HGDA element, pξ = pη = 7
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Table 4.5: Convergence rates for 2-D Poisson’s equation : h-convergence, Undistorted
and Distorted discretizations using Distorted HGDA elements

2.443.012.53.11C33  : p=7

1.7121.81.85C22  : p=5

0.970.950.960.97C11 ; p=3

Distorted

mesh

Undistorted

mesh

Distorted

mesh

Undistorted

mesh

GALLSP

Cij

2.953.462.783.08C33  : p=7

2.312.472.252.05C22  : p=5

1.381.371.131.03C11 ; p=3

Distorted

mesh

Undistorted

mesh

Distorted

mesh

Undistorted

mesh

GALLSP

Cij

3.493.952.653.06C33  : p=7

2.92.962.242.03C22  : p=5

1.861.81.091.03C11 ; p=3

Distorted

mesh

Undistorted

mesh

Distorted

mesh

Undistorted

mesh

GALLSP

Cij

2.4432.393.01C33  : p=7

1.7221.712.02C22  : p=5

0.920.960.880.93C11 ; p=3

Distorted

mesh

Undistorted

mesh

Distorted

mesh

Undistorted

mesh

GALLSP

Cij

(a) √I versus dofs

(b) L2 - norm of error versus dofs

(c)  H1 - norm of error versus dofs

(d)  H2 - norm of error versus dofs
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(c) H1 norm of error in u versus he
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C22, p=7 : LSP (6.74)
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(b) L2 norm of error in u versus he
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C22, p=7 : LSP (4.94)
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(d) H2 norm of error in u versus he

Figure 4.22: Comparison of Cij Distorted HGDA elements versus discretization length
for 2-D Poisson’s equation : C22 (k = 3), C33 (k = 4), pξ = pη = 7 ,
Distorted discretizations
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C33, p=7 : LSP (2.39)
C22, p=7 : GAL (2.4)
C33, p=7 : GAL (2.44)

(a) √I versus dofs
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C22, p=7 : LSP (2.97)
C33, p=7 : LSP (2.78)
C22, p=7 : GAL (2.91)
C33, p=7 : GAL (2.95)

(c) H1 norm of error in u versus dofs
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C22, p=7 : LSP (3.35)
C33, p=7 : LSP (2.65)
C22, p=7 : GAL (3.42)
C33, p=7 : GAL (3.49)

(b) L2 norm of error in u versus dofs
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C22, p=7 : LSP (2.46)
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(d) H2 norm of error in u versus dofs

Figure 4.23: Comparison of Cij Distorted HGDA elements versus degrees of freedom
for 2-D Poisson’s equation : C22 (k = 3), C33 (k = 4), pξ = pη = 7,
Distorted discretizations
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Table 4.6: Convergence rates for 2-D Poisson’s equation : k-convergence, Distorted dis-
cretizations using C22 (k = 3) and C33 (k = 4) Distorted HGDA elements

2.442.54.864.98C33  : p=7

2.42.464.824.94C22  : p=7

GALLSPGALLSP

H2 - norm vs dofsH2 - norm vs he

Cij

2.952.785.885.53C33  : p=7

2.912.975.845.96C22  : p=7

GALLSPGALLSP

H1 - norm vs dofsH1 - norm vs he

Cij

3.492.656.945.27C33  : p=7

3.423.356.886.74C22  : p=7

GALLSPGALLSP

L2 - norm  vs dofsL2 - norm  vs he

Cij

2.442.394.864.75C33  : p=7

2.42.354.824.73C22  : p=7

GALLSPGALLSP

√√√√I versus dofs√√√√I versus he

Cij

(a) √I 

(b) L2  - norm of error

(c)  H1 - norm of error

(d)  H2 - norm of error 
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Remarks

(1) The best performance of HGDA elements is obtained when the domain of dis-

cretization is rectangular. From Tables 4.4-4.5, the convergence rates utilizing

undistorted discretizations are higher than those corresponding to the distorted

discretizations.

(2) From Figures 4.16-4.18, for a given formulation (Least squares processes or Galerkin

method with weak form), for a given value of discretization length, computed

quantities of interest corresponding to distorted discretizations have a slightly

lower value compared to those obtained with Undistorted discretization.

(3) In all the numerical studies, Galerkin method with weak form has lower values

of computed quantities of interest (except error or residual functional) compared

to Least squares processes for a given he or dofs.

(4) From Table 4.6, for Galerkin method with weak form, the convergence rates and

the values of the computed quantities are approximately same for both C22 and

C33 HGDA elements. However, for least squares processes, from Figures 4.22

and 4.23 for a given value of characteristic length or given number of degrees

of freedom, C33 HGDA element gives a lower value of the quantity of interest

compared to C22 HGDA element, thus illustrating the benefit of k.
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4.2.6 Numerical studies for Distorted mesh : p-convergence

Numerical studies are conducted using C22 and C33 HGDA elements with progres-

sively increasing p-levels starting from the minimum p-level required by the corre-

sponding HGDA element. The numerical solutions are computed using a fixed char-

acteristic length of discretization. The values in parenthesis indicate the convergence

rate. Galerkin method with weak form and Least squares processes are both consid-

ered for these numerical studies.

(i) Figures 4.24(a)-(d) show the solutions computed for two different distorted dis-

cretizations (4 and 16 elements) with C22 HGDA element. Figures 4.25(a)-(d)

show similar plots for C33 HGDA element. In both cases, to obtain a given value

of quantity of interest, we need lesser number of degrees of freedom for four ele-

ment mesh (coarser of the two meshes) compared to the sixteen element mesh.

(ii) Figures 4.26(a)-(d) show the solutions computed with C22 HGDA elements us-

ing distorted discretizations compared with solutions obtained using undistorted

discretizations. Figures 4.27(a)-(d) show similar plots for C33 HGDA element.

(iii) Figures 4.28(a)-(d) show comparison of solutions calculated using C22 and C33

HGDA elements for a 4 element distorted discretization with progressively in-

creasing p levels.
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Remarks

(1) From Figures 4.24 and 4.26, for a given number of degrees of freedom, HGDA

element using Least squares processes has a lower value of error or residual func-

tional compared to the value obtained using Galerkin method with weak form.

For all other error norms, Galerkin method with weak form has lower computed

quantities of interest for a given number of degrees of freedom.

(2) The convergence rates of the computed quantities of interest in Figures 4.25, 4.27

and 4.28 are very high due to the numerical solution at p-level of 8 being in the

close vicinity of the theoretical solution.
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(b) L2 norm of error in u versus dofs

2 2.5 3

−14

−12

−10

−8

−6

−4

−2

0

2

log(dofs)

log
(H

2  no
rm

 of
 er

ro
r)

 

 

p=5
p=7

p=8

4 el : LSP (0.799)
16 el : LSP (3.47)
4 el : GAL (3.63)
16 el : GAL (6.21)

(d) H2 norm of error in u versus dofs

Figure 4.24: Comparison of 4 element and 16 element discretizations using Distorted
HGDA elements for 2-D Poisson’s equation : C22, Distorted discretiza-
tions
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Figure 4.25: Comparison of 4 element and 16 element discretizations using Distorted
HGDA elements for 2-D Poisson’s equation : C33, Distorted discretiza-
tions
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Figure 4.26: Comparison of Distorted and Undistorted discretizations using Distorted
HGDA elements for 2-D Poisson’s equation : C22, 4 element discretiza-
tion
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Figure 4.27: Comparison of Distorted and Undistorted discretizations using Distorted
HGDA elements for 2-D Poisson’s equation : C33, 4 element discretiza-
tion
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Figure 4.28: Comparison of Cij Distorted HGDA elements for 2-D Poisson’s equation
: C22 (k = 3), C33 (k = 4), 4 element Distorted discretization
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4.3 Model Problem # 2 : 2-D steady state convection diffusion

equation

The governing differential equation for 2-D steady state convection diffusion equation

is given by:

∂u

∂x
+

∂u

∂y
− 1

Pe

(
∂2u

∂x2
+

∂2u

∂y2

)
= 0 over Ω = (0, 1)× (0, 1) (4.9)

with boundary conditions

u(x, 0) =
1− e(x−1)Pe

1− e−Pe
; u(0, y) =

1− e(y−1)Pe

1− e−Pe
(4.10)

and

u(x, 1) = u(1, y) = 0 (4.11)

where Pe is the Peclet number. A theoretical solution is given by

u(x, y) =

(
1− e(x−1)Pe

)(
1− e(y−1)Pe

)(
1− e−Pe

)(
1− e−Pe

) (4.12)

From the theoretical solution, we observe that u(x, y) is analytic for all values of Pe and

is of class CL,L, where L = ∞.
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Since the differential operator is non self-adjoint, only least squares finite element

method is variationally consistent. The differential operator contains up to second

order derivatives of the dependent variable, hence C2,2 local approximations are min-

imally conforming if the integrals in the LSP are to be Riemann. If we accept Lebesgue

integrals in the LSP, then C11 local approximations are admissible.

For computations, we consider Pe=10. Figure 4.29(a) shows a schematic of the do-

main Ω.

4.3.1 Undistorted Discretizations

We consider the following uniform discretizations for h-convergence:

(1) 4 element uniform discretization (2 x 2) : characteristic length : he = 0.5

(2) 16 element uniform discretization (4 x 4) : characteristic length : he = 0.25

(3) 64 element uniform discretization (8 x 8) : characteristic length : he = 0.125

(4) 256 element uniform discretization (16 x 16) : characteristic length : he = 0.0625

(5) 1024 element uniform discretization (32 x 32) : characteristic length : he = 0.03125

The first and second uniform discretizations are shown in Figure 4.29(b) and (c).
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Figure 4.29: Schematic, uniform discretizations for Convection-Diffusion equation

112



4.3.2 Distorted discretizations

The domain of definition is now discretized using non-rectangular quadrilateral ele-

ments. The longest side among all the elements in the entire discretization is chosen as

the characteristic length for such a discretization. The following distorted discretiza-

tions are considered for h-convergence studies:

(1) 4 element distorted discretization (2 x 2) : characteristic length : he = 0.75

(2) 16 element distorted discretization (4 x 4) : characteristic length : he = 0.375

(3) 64 element distorted discretization (8 x 8) : characteristic length : he = 0.1875

(4) 256 element distorted discretization (16 x 16) : characteristic length : he = 0.09375

(5) 1024 element distorted discretization (32 x 32) : characteristic length : he = 0.046875

The first and second distorted discretizations are shown in Figure 4.30(a) and (b).

(a) 2 x 2 distorted discretization ( h
e

=0.75 ) (b) 4 x 4 distorted discretization ( h
e

= 0.375 )

h
e

h
e

Figure 4.30: Schematic, distorted discretization for 2-D Convection-diffusion equation
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4.4 Model Problem # 3 : 2-D steady state non-linear Poisson’s

equation

The governing differential equation for 2-D steady state non-linear Poisson’s equation

is given by:

u
∂u

∂x
+ u

∂u

∂y
− ∂2u

∂x2
− ∂2u

∂y2
= f(x, y) over Ω = (−a, a)× (−b, b) (4.13)

with boundary conditions

u(x,−b) = u(a, y) = u(x, b) = u(−a, y) = 0 (4.14)

where f(x, y) is such that the theoretical solution is given by

u(x, y) = (an − xn)(bm − ym) (4.15)

For computations, we consider a = b = 1 and m = n = 8

In this case, the differential operator is non-linear hence all other methods of ap-

proximation are variationally inconsistent except least squares method. The remarks

regarding minimally conforming approximations made for Model problem # 2 hold

here as well due to the fact that in this case also we have up to second order deriva-

tives in Equation (4.13).
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Surana et al. [1–4] have shown that when the differential operators in the BVPs

are non-linear only least squares processes in which non-linear algebraic equations are

solved using Newton’s linear method are variationally consistent with the approxi-

mation that the term containing the second variation of residual be neglected in the

second variation of the least squares functional. Figure 4.31(a) shows a schematic of

the computational domain Ω.

4.4.1 Undistorted Discretizations

We consider the following uniform discretizations for h-convergence studies:

(1) 4 element uniform discretization (2 x 2) : characteristic length : he = 1

(2) 16 element uniform discretization (4 x 4) : characteristic length : he = 0.5

(3) 64 element uniform discretization (8 x 8) : characteristic length : he = 0.25

(4) 256 element uniform discretization (16 x 16) : characteristic length : he = 0.125

(5) 1024 element uniform discretization (32 x 32) : characteristic length : he = 0.0625

The first and second uniform discretizations are shown in Figure 4.31(b) and (c).
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Figure 4.31: Schematic, uniform discretizations for 2-D non-linear Poisson’s equation
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4.4.2 Distorted Discretizations

The domain of definition is now discretized using non-rectangular distorted elements.

The longest side among all the elements in the entire discretization is selected as the

characteristic length for such a discretization. We consider the following distorted dis-

cretizations for h-convergence:

(1) 4 element distorted discretization (2 x 2) : characteristic length : he = 1.5

(2) 16 element distorted discretization (4 x 4) : characteristic length : he = 0.75

(3) 64 element distorted discretization (8 x 8) : characteristic length : he = 0.375

(4) 256 element distorted discretization (16 x 16) : characteristic length : he = 0.1875

(5) 1024 element distorted discretization (32 x 32) : characteristic length : he = 0.09375

The first and second distorted discretizations are shown in Figure 4.32(a) and (b).

(a) 2 x 2 distorted discretization ( h
e

=1.5 ) (b) 4 x 4 distorted discretization ( h
e

= 0.75 )

h
e

h
e

Figure 4.32: Schematic, distorted discretizations for 2-D non-linear Poisson’s equation
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4.5 Numerical studies for Model Problems # 2 and 3

Numerical studies for the model problems discussed in Sections 4.3 and 4.4 are pre-

sented together since it is observed that the behavior of the computed solutions is the

same in both cases. Only Least squares finite element formulation is considered in the

numerical studies.

4.5.1 Numerical solutions for Undistorted discretizations : h-convergence

The numerical solutions are computed using C11, C22 and C33 HGDA elements as

well as tensor product elements employing the minimum p-level. The minimum p-

levels required for C11, C22 and C33 HGDA elements are 3, 5 and 7 respectively. The

progressively refined uniform discretizations are considered in the numerical studies.

(i) Figures 4.33 (a)-(d) show results for C11 (p=3) approximation using tensor prod-

uct and HGDA elements plotted against he for 2-D steady state convection-diffusion

equation. Figures 4.34 (a)-(d) and 4.35 (a)-(d) show similar plots for C22 (p=5) and

C33(p=7) HGDA elements and Table 4.7 lists the convergence rates of all the so-

lutions.

(ii) Figures 4.36 - 4.38 show similar plots as in (i) for 2-D non-linear Poisson’s equa-

tion. The convergence rates for these solutions are listed in Table 4.8.

(iii) Figures 4.39 (a)-(d) show the C11 (p=3) numerical solutions computed for both

tensor product and HGDA elements plotted against the total number of degrees

of freedom for 2-D convection-diffusion equation. Figures 4.40 (a)-(d) and 4.41

(a)-(d) show similar plots for C22 (p=5) and C33 (p=7) HGDA elements. The con-

vergence rates obtained for each computed quantity are listed in Table 4.9.

(iv) Figures 4.42 - 4.44 show similar plots as in (iii) computed for 2-D non-linear Pois-

son’s equation. The convergence rates obtained for each computed quantity are

listed in Table 4.10.

(v) Figures 4.45(a)-(d) and 4.46(a)-(d) show comparison of numerical solutions ob-

tained using C22 and C33 HGDA elements for a p level of 7 plotted against charac-
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teristic length and degrees of freedom respectively for 2-D convection-diffusion

equation. The convergence rates for these solutions are listed in Table 4.11.

(vi) Figures 4.47(a)-(d) and 4.48(a)-(d) show similar comparison as in (v) of C22 and

C33 HGDA elements for non-linear Poisson’s equation. The convergence rates

are listed in Table 4.12.
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Figure 4.33: Comparison of Distorted HGDA and Tensor product elements versus dis-
cretization length for 2-D Convection-diffusion equation : C11, pξ =
pη = 3, Undistorted discretizations
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Figure 4.34: Comparison of Distorted HGDA and Tensor product elements versus dis-
cretization length for 2-D Convection-diffusion equation : C22, pξ =
pη = 5, Undistorted discretizations
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Figure 4.35: Comparison of Distorted HGDA and Tensor product elements versus dis-
cretization length for 2-D Convection-diffusion equation : C33, pξ =
pη = 7, Undistorted discretizations
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Table 4.7: Convergence rates for 2-D Convection-diffusion equation : h-convergence,
Undistorted discretizations using Distorted HGDA and Tensor product ele-
ments

5.635.88C33  : p=7

3.934.01C22  : p=5

1.912.09C11 ; p=3

Tensor ProductDistortedCij

(a) √I versus he

(b) L2 - norm of error versus he

(c)  H1 - norm of error versus he

(d)  H2 - norm of error versus he

7.096.34C33  : p=7

6.094.2C22  : p=5

3.781.42C11 ; p=3

Tensor ProductDistortedCij

6.736.63C33  : p=7

5.034.21C22  : p=5

2.971.49C11 ; p=3

Tensor ProductDistortedCij

5.695.99C33  : p=7

3.943.57C22  : p=5

1.931.57C11 ; p=3

Tensor ProductDistortedCij
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Figure 4.36: Comparison of Distorted HGDA and Tensor product elements versus dis-
cretization length for 2-D non-linear Poisson’s equation : C11, pξ = pη =
3, Undistorted discretizations
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Figure 4.37: Comparison of Distorted HGDA and Tensor product elements versus dis-
cretization length for 2-D non-linear Poisson’s equation : C22, pξ = pη =
5, Undistorted discretizations
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Figure 4.38: Comparison of Distorted HGDA and Tensor product elements versus dis-
cretization length for 2-D non-linear Poisson’s equation : C33, pξ = pη =
7, Undistorted discretizations
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Table 4.8: Convergence rates for 2-D non-linear Poisson’s equation : h-convergence,
Undistorted discretizations using Distorted HGDA and Tensor product ele-
ments

5.935.99C33  : p=7

44.05C22  : p=5

1.931.88C11 ; p=3

Tensor ProductDistortedCij

(a) √I versus he

(b) L2 - norm of error versus he

(c)  H1 - norm of error versus he

(d)  H2 - norm of error versus he

7.96.09C33  : p=7

6.034.05C22  : p=5

3.752.14C11 ; p=3

Tensor ProductDistortedCij

6.916.13C33  : p=7

5.024.09C22  : p=5

2.952.12C11 ; p=3

Tensor ProductDistortedCij

5.936.18C33  : p=7

43.71C22  : p=5

1.931.97C11 ; p=3

Tensor ProductDistortedCij
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Figure 4.39: Comparison of Distorted HGDA and Tensor product elements versus de-
grees of freedom for 2-D Convection-diffusion equation : C11, pξ = pη =
3, Undistorted discretizations
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Figure 4.40: Comparison of Distorted HGDA and Tensor product elements versus de-
grees of freedom for 2-D Convection-diffusion equation : C22, pξ = pη =
5, Undistorted discretizations
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Figure 4.41: Comparison of Distorted HGDA and Tensor product elements versus de-
grees of freedom for 2-D Convection-diffusion equation : C33, pξ = pη =
7, Undistorted discretizations
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Table 4.9: Convergence rates for 2-D Convection-diffusion equation : h-convergence,
Undistorted discretizations using Distorted HGDA and Tensor product ele-
ments

2.942.95C33  : p=7

2.022C22  : p=5

0.961.03C11 ; p=3

Tensor ProductDistortedCij

(a) √I versus dofs

(b) L2 - norm of error versus dofs

(c)  H1 - norm of error versus dofs

(d)  H2 - norm of error versus dofs

3.563.19C33  : p=7

3.042.1C22  : p=5

1.870.7C11 ; p=3

Tensor ProductDistortedCij

3.513.33C33  : p=7

2.592.1C22  : p=5

1.490.73C11 ; p=3

Tensor ProductDistortedCij

2.973.01C33  : p=7

2.031.78C22  : p=5

0.970.77C11 ; p=3

Tensor ProductDistortedCij
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Figure 4.42: Comparison of Distorted HGDA and Tensor product elements versus de-
grees of freedom for 2-D non-linear Poisson’s equation : C11, pξ = pη =
3, Undistorted discretizations
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Figure 4.43: Comparison of Distorted HGDA and Tensor product elements versus de-
grees of freedom for 2-D non-linear Poisson’s equation : C22, pξ = pη =
5, Undistorted discretizations
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Figure 4.44: Comparison of Distorted HGDA and Tensor product elements versus de-
grees of freedom for 2-D non-linear Poisson’s equation : C33, pξ = pη =
7, Undistorted discretizations
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Table 4.10: Convergence rates for 2-D non-linear Poisson’s equation : h-convergence,
Undistorted discretizations using Distorted HGDA and Tensor product el-
ements

3.13.01C33  : p=7

2.062.02C22  : p=5

0.960.93C11 ; p=3

Tensor ProductDistortedCij

(a) √I versus dofs

(b) L2 - norm of error versus dofs

(c)  H1 - norm of error versus dofs

(d)  H2 - norm of error versus dofs

3.973.06C33  : p=7

3.012.02C22  : p=5

1.851.06C11 ; p=3

Tensor ProductDistortedCij

3.613.08C33  : p=7

2.592.04C22  : p=5

1.471.04C11 ; p=3

Tensor ProductDistortedCij

3.13.11C33  : p=7

2.061.85C22  : p=5

0.970.97C11 ; p=3

Tensor ProductDistortedCij
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Figure 4.45: Comparison of Cij Distorted HGDA elements versus discretization length
for 2-D Convection-diffusion equation : C22 (k = 3), C33 (k = 4, pξ =
pη = 7, Undistorted discretizations
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Figure 4.46: Comparison of Cij Distorted HGDA elements versus degrees of freedom
for 2-D Convection-diffusion equation : C22 (k = 3), C33 (k = 4), pξ =
pη = 7, Undistorted discretizations
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Table 4.11: Convergence rates for 2-D Convection-diffusion equation : k-convergence,
Undistorted discretizations using C22 (k = 3) and C33 (k = 4) Distorted
HGDA elements

2.955.88C33  : p=7

2.585.19C22  : p=7

√√√√I versus dofs√√√√I versus heCij

(a) √I 

(b) L2 - norm of error

(c)  H1 - norm of error

(d)  H2 - norm of error 

3.196.34C33  : p=7

2.996.01C22  : p=7

L2 - norm versus dofsL2 - norm versus heCij

3.336.63C33  : p=7

2.825.67C22  : p=7

H1 - norm versus dofsH1 - norm versus heCij

3.015.99C33  : p=7

2.294.6C22  : p=7

H2 - norm versus dofsH2 - norm versus heCij
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Figure 4.47: Comparison of Cij Distorted HGDA elements versus discretization length
for 2-D non-linear Poisson’s equation : C22 (k = 3), C33 (k = 4, pξ =
pη = 7, Undistorted discretizations
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Figure 4.48: Comparison of Cij Distorted HGDA elements versus degrees of freedom
for 2-D non-linear Poisson’s equation : C22 (k = 3), C33 (k = 4), pξ =
pη = 7, Undistorted discretizations
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Table 4.12: Convergence rates for 2-D non-linear Poisson’s equation : k-convergence,
Undistorted discretizations using C22 (k = 3) and C33 (k = 4) Distorted
HGDA elements

3.015.99C33  : p=7

3.336.69C22  : p=7

√√√√I versus dofs√√√√I versus heCij

(a) √I 

(b) L2 - norm of error

(c)  H1 - norm of error

(d)  H2 - norm of error 

3.066.09C33  : p=7

2.955.92C22  : p=7

L2 - norm versus dofsL2 - norm versus heCij

3.086.13C33  : p=7

2.965.96C22  : p=7

H1 - norm versus dofsH1 - norm versus heCij

3.116.18C33  : p=7

2.965.94C22  : p=7

H2 - norm versus dofsH2 - norm versus heCij
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Discussion of results

(1) From Figures 4.33-4.44, the tensor product elements have higher convergence

rates compared to distorted elements. In all cases a lower value of computed

quantity of interest for tensor product elements is observed compared to the dis-

torted elements for a given value of characteristic length or number of degrees of

freedom.

(2) From Tables 4.7 and 4.8, we observe that the convergence rates depend on the p-

level used in the computations. The convergence rates for the computed norms

using tensor product approximations are in the vicinity of (p − 1) for residual or

error functional and error in the H2-norm (i.e. ≈ 2 for C11 (p=3),≈ 4 for C22 (p=5)

and ≈ 6 for C33 (p=7)). However, the convergence rates for L2 - norm of error in

solution is close to (p + 1) (i.e. ≈ 4 for C11 (p=3), ≈ 6 for C22 (p=5) and ≈ 8 for

C33 (p=7)). The convergence rates for H2 - norm of error in solution is p (i.e. ≈

3 for C11 (p=3), ≈ 5 for C22 (p=5) and ≈ 7 for C33 (p=7)). When we use HGDA

elements using Least squares processes we observe that the convergence rate for

all the computed quantities is approximately (p − 1) (i.e. ≈ 2 for C11 (p=3), C22

(p=5) and C33 (p=7)).

(2) From Tables 4.9 and 4.10, the convergence rates of the computed quantities do

not have an explicit relation to the p-level used in the computations as observed

in (2).

(3) From Tables 4.11 and 4.12, the convergence rates for C22 and C33 HGDA elements

are approximately same, but from Figures 4.45 - 4.48, for a given value of charac-

teristic length or given number of degrees of freedom, C33 HGDA elements give

a lower value of the quantity of interest compared to C22 HGDA element.

4.5.2 Numerical solutions for Undistorted mesh : p-convergence

The numerical solutions are computed using C22 and C33 HGDA elements as well

as tensor product elements with progressively increasing p-levels beginning from the

minimum p-level. The minimum p-levels required for C22 and C33 elements are 5 and
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7 respectively. Since the operators are non self-adjoint and non-linear, we only consider

Least squares processes for these numerical studies.

(i) Figures 4.49(a)-(d) show the solutions computed for two different undistorted

discretizations (4 and 16 elements) with C22 HGDA element for 2-D convection-

diffusion equation. Figures 4.50(a)-(d) show similar plots for C33 HGDA element.

In both cases, we observe that to obtain a given value of quantity of interest, we

need lesser number of degrees of freedom for four element mesh

(ii) Figures 4.51 and 4.52 show plots similar to (i) for 2-D non-linear Poisson’s equa-

tion.

(iii) Figures 4.53(a)-(d) show the solutions computed for HGDA elements and tensor

product elements for a 16 element undistorted discretization with C22 HGDA

element for 2-D convection-diffusion equation. Figures 4.54(a)-(d) show similar

plots for C33 HGDA element. From Figures 4.53 and 4.54, we observe that ten-

sor product element has lower values of computed quantities of interest for a

given number of degrees of freedom hence superior performance compared to

the distorted element.

(iv) Figures 4.55 and 4.56 show plots explained in (iii) for 2-D non-linear Poisson’s

equation computed using a 4 element uniform discretization.

(v) Figures 4.57(a)-(d) show comparison of numerical solutions calculated using C22

and C33 HGDA elements for 2-D convection-diffusion equation with a 16 element

undistorted discretization. The computed quantities of interest for C33 HGDA

element have a lower value compared to those corresponding to C22 HGDA (for

a given number of degrees of freedom)

(vi) Figure 4.58 shows the behavior explained in (v) for 2-D non-linear Poisson’s

equation computed using a 4-element uniform discretization
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Remarks

(1) When the domain of definition is rectangular, tensor product elements are ex-

pected to have the best performance. This is evident from the plots of all quanti-

ties of interest for any order of approximation.

(3) The convergence rates of the computed quantities of interest in plots containing

C33 HGDA element for both model problems are very high due to the numerical

solution at p-level of 8 being in the close vicinity of the theoretical solution.
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Figure 4.49: Comparison of 4 element and 16 element discretizations using Distorted
HGDA elements for 2-D Convection-diffusion equation : C22, Undis-
torted discretizations
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Figure 4.50: Comparison of 4 element and 16 element discretizations using Distorted
HGDA elements for 2-D Convection-diffusion equation : C33, Undis-
torted discretizations
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Figure 4.51: Comparison of 4 element and 16 element discretizations using Distorted
HGDA elements for 2-D non-linear Poisson’s equation : C22, Undistorted
discretizations
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Figure 4.52: Comparison of 4 element and 16 element discretizations using Distorted
HGDA elements for 2-D non-linear Poisson’s equation : C33, Undistorted
discretizations
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Figure 4.53: Comparison of Distorted HGDA and Tensor product elements for 2-D
Convection-diffusion equation : C22, 16 element Undistorted discretiza-
tion
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Figure 4.54: Comparison of Distorted HGDA and Tensor product elements for 2-D
Convection-diffusion equation : C33, 16 element Undistorted discretiza-
tion
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Figure 4.55: Comparison of Distorted HGDA and Tensor product elements for 2-D
non-linear Poisson’s equation : C22, 4 element Undistorted discretiza-
tion
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Figure 4.56: Comparison of Distorted HGDA and Tensor product elements for 2-D
non-linear Poisson’s equation : C33, 4 element Undistorted discretiza-
tion
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Figure 4.57: Comparison of Cij Distorted HGDA elements for 2-D Convection-
diffusion equation : C22 (k = 3), C33 (k = 4), 16 element Undistorted
discretization
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Figure 4.58: Comparison of Cij Distorted HGDA elements for 2-D non-linear Poisson’s
equation : C22 (k = 3), C33 (k = 4), 4 element Undistorted discretization
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4.5.3 Numerical studies for Distorted discretizations: h-convergence

Since the domain of definition is still a square, the numerical solutions can be com-

puted with HGDA elements utilizing distorted discretizations and compared with the

solutions obtained with undistorted discretizations. The p-level of the approximations

used is kept fixed and the characteristic length progressively reduced.

(i) Figures 4.59(a)-(d) show the C11 (p=3) HGDA solutions for 2-D Convection-diffusion

equation computed for distorted discretizations and compared with the solutions

obtained with undistorted discretizations. The solutions are plotted against the

characteristic length of discretization. Figures 4.60 (a)-(d) and 4.61 (a)-(d) show

similar plots for C22 (p=5) and C33 (p=7) HGDA elements. The convergence rates

of all the solutions are listed in Table 4.13.

(ii) Figures 4.62 - 4.64 show similar plots as in (i) for 2-D non-linear Poisson’s equa-

tion. The convergence rates for these solutions are listed in Table 4.14.

(iii) Figures 4.65 - 4.67 show solutions obtained in (i) as a function of the total number

of degrees of freedom for 2-D convection diffusion equation. The convergence

rates are listed in Table 4.15.

(iv) Figures 4.68 - 4.70 show solutions obtained in (ii) as a function of the total number

of degrees of freedom for 2-D non-linear Poisson’s equation. The convergence

rates are listed in Table 4.16.

(v) Figures 4.71(a)-(d) and 4.72(a)-(d) show comparison of solutions for C22 and C33

HGDA elements for a p level of 7 plotted against characteristic length and degrees

of freedom respectively. The convergence rates for these solutions are listed in

Table 4.17.

(vi) Figures 4.73 and Figures 4.74 show similar plots as in (v) for 2-D non-linear Pois-

son’s equation. The convergence rates are listed in Figure 4.18.
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Figure 4.59: Comparison of Undistorted and distorted discretizations versus dis-
cretization length for 2-D Convection-diffusion equation : C11 HGDA el-
ement, pξ = pη = 3
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Figure 4.60: Comparison of Undistorted and distorted discretizations versus dis-
cretization length for 2-D Convection-diffusion equation : C22 HGDA el-
ement, pξ = pη = 5
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Figure 4.61: Comparison of Undistorted and distorted discretizations versus dis-
cretization length for 2-D Convection-diffusion equation : C33 HGDA el-
ement, pξ = pη = 7
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Table 4.13: Convergence rates for 2-D Convection-diffusion equation : h-convergence,
Undistorted and Distorted discretizations using Distorted HGDA elements
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Figure 4.62: Comparison of Undistorted and distorted discretizations versus dis-
cretization length for 2-D non-linear Poisson’s equation : C11 HGDA ele-
ment, pξ = pη = 3
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Figure 4.63: Comparison of Undistorted and distorted discretizations versus dis-
cretization length for 2-D non-linear Poisson’s equation : C22 HGDA ele-
ment, pξ = pη = 5
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Figure 4.64: Comparison of Undistorted and distorted discretizations versus dis-
cretization length for 2-D non-linear Poisson’s equation : C33 HGDA ele-
ment, pξ = pη = 7
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Table 4.14: Convergence rates for 2-D non-linear Poisson’s equation : h-convergence,
Undistorted and Distorted discretizations using Distorted HGDA elements

4.755.99C33  : p=7

3.424.05C22  : p=5

1.841.88C11 ; p=3

Distorted

mesh

Undistorted

mesh
Cij

(a) √I versus he

(b) L2 - norm of error versus he

(c)  H1 - norm of error versus he

(d)  H2 - norm of error versus he

5.236.09C33  : p=7

4.534.05C22  : p=5

2.172.14C11 ; p=3

Distorted

mesh

Undistorted

mesh
Cij

5.546.13C33  : p=7

4.514.09C22  : p=5

2.252.12C11 ; p=3

Distorted

mesh

Undistorted

mesh
Cij

4.996.18C33  : p=7

3.573.71C22  : p=5

1.891.97C11 ; p=3

Distorted

mesh

Undistorted

mesh
Cij
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Figure 4.65: Comparison of Undistorted and distorted discretizations versus degrees
of freedom for 2-D Convection-diffusion equation : C11 HGDA element,
pξ = pη = 3
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Figure 4.66: Comparison of Undistorted and distorted discretizations versus degrees
of freedom for 2-D Convection-diffusion equation : C22 HGDA element,
pξ = pη = 5
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Figure 4.67: Comparison of Undistorted and distorted discretizations versus degrees
of freedom for 2-D Convection-diffusion equation : C33 HGDA element,
pξ = pη = 7
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Table 4.15: Convergence rates for 2-D Convection-diffusion equation : h-convergence,
Undistorted and Distorted discretizations using Distorted HGDA elements

2.632.95C33  : p=7

1.842C22  : p=5

0.991.03C11 ; p=3

Distorted

mesh

Undistorted

mesh
Cij

(a) √I versus dofs

(b) L2 - norm of error versus dofs

(c)  H1 - norm of error versus dofs

(d)  H2 - norm of error versus dofs

3.013.19C33  : p=7

2.022.1C22  : p=5

0.780.7C11 ; p=3

Distorted

mesh

Undistorted

mesh
Cij

2.943.33C33  : p=7

2.062.1C22  : p=5

0.810.73C11 ; p=3

Distorted

mesh

Undistorted

mesh
Cij

2.683.01C33  : p=7

1.871.78C22  : p=5

0.710.77C11 ; p=3

Distorted

mesh

Undistorted

mesh
Cij
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Figure 4.68: Comparison of Undistorted and distorted discretizations versus degrees
of freedom for 2-D non-linear Poisson’s equation : C11 HGDA element,
pξ = pη = 3
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Figure 4.69: Comparison of Undistorted and distorted discretizations versus degrees
of freedom for 2-D non-linear Poisson’s equation : C22 HGDA element,
pξ = pη = 5
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Figure 4.70: Comparison of Undistorted and distorted discretizations versus degrees
of freedom for 2-D non-linear Poisson’s equation : C33 HGDA element,
pξ = pη = 7
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Table 4.16: Convergence rates for 2-D non-linear Poisson’s equation : h-convergence,
Undistorted and Distorted discretizations using Distorted HGDA elements

2.393.01C33  : p=7

1.712.02C22  : p=5

0.900.93C11 ; p=3

Distorted

mesh

Undistorted

mesh
Cij

(a) √I versus dofs

(b) L2 - norm of error versus dofs

(c)  H1 - norm of error versus dofs

(d)  H2 - norm of error versus dofs

2.633.06C33  : p=7

2.262.02C22  : p=5

1.071.06C11 ; p=3

Distorted

mesh

Undistorted

mesh
Cij

2.783.08C33  : p=7

2.252.04C22  : p=5

1.111.04C11 ; p=3

Distorted

mesh

Undistorted

mesh
Cij

2.513.11C33  : p=7

1.781.85C22  : p=5

0.930.97C11 ; p=3

Distorted

mesh

Undistorted

mesh
Cij
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Figure 4.71: Comparison of Cij Distorted HGDA elements versus discretization length
for 2-D Convection-diffusion equation : C22 (k = 3), C33 (k = 4), pξ =
pη = 7, Distorted discretizations
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Figure 4.72: Comparison of Cij Distorted HGDA elements versus degrees of freedom
for 2-D Convection-diffusion equation : C22 (k = 3), C33 (k = 4), pξ =
pη = 7, Distorted discretizations
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Table 4.17: Convergence rates for 2-D Convection-diffusion equation : k-convergence,
Distorted discretizations using C22, (k = 3) and C33, (k = 4) Distorted
HGDA elements

2.635.23C33  : p=7

2.044.1C22  : p=7

√√√√I versus dofs√√√√I versus heCij

(a) √I 

(b) L2 - norm of error

(c)  H1 - norm of error

(d)  H2 - norm of error 

3.015.99C33  : p=7

2.324.66C22  : p=7

L2 - norm versus dofsL2 - norm versus heCij

2.945.86C33  : p=7

4.038.11C22  : p=7

H1 - norm versus dofsH1 - norm versus heCij

2.685.33C33  : p=7

1.553.11C22  : p=7

H2 - norm versus dofsH2 - norm versus heCij
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Figure 4.73: Comparison of Cij Distorted HGDA elements versus discretization length
for 2-D non-linear Poisson’s equation : C22 (k = 3), C33 (k = 4), pξ =
pη = 7, Distorted discretizations
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Figure 4.74: Comparison of Cij Distorted HGDA elements versus degrees of freedom
for 2-D non-linear Poisson’s equation : C22 (k = 3), C33 (k = 4), pξ =
pη = 7, Distorted discretizations
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Table 4.18: Convergence rates for 2-D non-linear Poisson’s equation : k-convergence,
Distorted discretizations using C22, (k = 3) and C33, (k = 4) Distorted
HGDA elements

2.394.75C33  : p=7

2.364.75C22  : p=7

√√√√I versus dofs√√√√I versus heCij

(a) √I 

(b) L2 - norm of error

(c)  H1 - norm of error

(d)  H2 - norm of error 

2.635.23C33  : p=7

3.216.45C22  : p=7

L2 - norm versus dofsL2 - norm versus heCij

2.785.54C33  : p=7

2.855.72C22  : p=7

H1 - norm versus dofsH1 - norm versus heCij

2.514.99C33  : p=7

2.364.74C22  : p=7

H2 - norm versus dofsH2 - norm versus heCij
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Remarks

(1) The HGDA elements have best performance when discretizations contain undis-

torted elements. From Tables 4.13-4.16, we observe that the convergence rates

for formulations utilizing Undistorted discretizations are higher than those cor-

responding to the distorted discretizations.

(2) From Figures 4.71 and 4.74, for a given value of characteristic length or given

number of degrees of freedom, C33 HGDA element gives a lower value of the

quantity of interest compared to C22 HGDA element as seen in earlier studies.
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4.5.4 Numerical studies for Distorted mesh : p-convergence

Numerical studies are presented using C22 and C33 HGDA elements with progres-

sively increasing p-levels starting with the minimum p-level required by the corre-

sponding HGDA element. Least squares formulation is used to compute the solutions.

(i) Figures 4.75(a)-(d) show the solutions for 2-D convection-diffusion equation com-

puted for two different distorted discretizations (4 and 16 elements) with C22

HGDA element. Figures 4.76(a)-(d) show similar plots for C33 HGDA element.

In both cases, to obtain a given value of quantity of interest, we need lesser num-

ber of degrees of freedom for four element mesh

(ii) Figures 4.77 and 4.78 show similar plots as in (i) for non-linear Poisson’s equa-

tion.

(iii) Figures 4.79(a)-(d) show the numerical solutions computed with C22 HGDA el-

ement using distorted and undistorted discretizations. Figures 4.80(a)-(d) show

similar plots for C33 HGDA element.

(iv) Figures 4.81 and 4.82 show similar numerical solutions as in (iii) for non-linear

Poisson’s equation.

(v) Figures 4.83(a)-(d) show comparison of numerical solutions for 2-D convection-

diffusion equation obtained using C22 and C33 HGDA elements for a 16 element

distorted discretization with progressively increasing p levels.

(vi) Figure 4.84 shows comparison of C22 and C33 HGDA elements for 2-D non-linear

Poisson’s equation.

(vii) The convergence rates of the computed quantities of interest for both model prob-

lems calculated using C33 HGDA element are very high due to the numerical

solution at p-level of 8 being in the close vicinity of the theoretical solution.
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Figure 4.75: Comparison of 4 element and 16 element discretizations using Distorted
HGDA elements for 2-D Convection-diffusion equation : C22, Distorted
discretizations
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Figure 4.76: Comparison of 4 element and 16 element discretizations using Distorted
HGDA elements for 2-D Convection-diffusion equation : C33, Distorted
discretizations
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Figure 4.77: Comparison of 4 element and 16 element discretizations using Distorted
HGDA elements for 2-D non-linear Poisson’s equation : C22, Distorted
discretizations
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Figure 4.78: Comparison of 4 element and 16 element discretizations using Distorted
HGDA elements for 2-D non-linear Poisson’s equation : C33, Distorted
discretizations
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Figure 4.79: Comparison of Distorted and Undistorted discretizations using Distorted
HGDA elements for for 2-D Convection-diffusion equation : C22, 16 ele-
ment discretization
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Figure 4.80: Comparison of Distorted and Undistorted discretizations using Distorted
HGDA elements for for 2-D Convection-diffusion equation : C33, 16 ele-
ment discretization
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Figure 4.81: Comparison of Distorted and Undistorted discretizations using Distorted
HGDA elements for for 2-D non-linear Poisson’s equation : C22, 4 element
discretization
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Figure 4.82: Comparison of Distorted and Undistorted discretizations using Distorted
HGDA elements for for 2-D non-linear Poisson’s equation : C33, 4 element
discretization
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Figure 4.83: Comparison of Cij Distorted HGDA elements for 2-D Convection-
diffusion equation : C22 (k = 3), C33 (k = 4), 16 element Distorted
discretization
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Figure 4.84: Comparison of Cij Distorted HGDA elements for 2-D non-linear Poisson’s
equation : C22 (k = 3), C33 (k = 4), 4 element Distorted discretization
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4.6 Summary

In this chapter, numerical studies for model problems defined by self-adjoint (2-D

Poisson’s equation), non self-adjoint (2-D Convection-diffusion equation) and non-

linear (2-D non-linear Poisson’s equation) differential operators are solved using the

HGDA elements developed in Chapter 2. The studies are conducted with rectangular

as well as non-rectangular discretizations. For rectangular meshes, solution is com-

puted with HGDA as well as tensor product elements and a comparison of their con-

vergence rates is made. For rectangular discretizations, tensor product elements have

best performance and hence can be considered as benchmark results. For (rectangu-

lar or non-rectangular discretization), we conduct two studies: (i) h-convergence (ii)

p-convergence. Galerkin method with weak form (GAL) and Least squares processes

(LSP) are used for self-adjoint operators whereas only Least squares processes is uti-

lized for non self-adjoint and non-linear operators In all the numerical studies pre-

sented here, various of interest are computed to assess performance of the developed

HGDA elements.
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Chapter 5

Summary, Conclusions and Future

work

This thesis presents a general framework and a systematic procedure for the develop-

ment of higher order global differentiability local approximations for 2-D and 3-D dis-

torted element geometries. Although, global differentiability has been recognized as

an important aspect in all numerical computations, very little has been done to design

mathematical and computational processes in which higher-order global smoothness

is achievable. In chapter 1, a brief literature review of the work done in developing

higher order global differentiability elements is presented.

Surana et al. [5] have shown that when the element geometry is rectangular, higher

order global differentiability approximations (HGDA) can be easily derived using ten-

sor product of 1-D higher order continuity approximations. When the element geome-

tries are distorted, the tensor product approach cannot be utilized in deriving these

approximation functions. Thus, the derivation of HGDA for 2-D and 3-D distorted

elements in xy and xyz space requires a fundamentally different approach.

The curved element in 2-D xy or 3-D xyz physical coordinate space is mapped to a

master element in ξη or ξηζ natural coordinate space. We borrow appropriate degrees

of freedom and corresponding approximation functions from a standard set of 2-D C00

or 3-D C000 p-version hierarchical local approximations to derive the desired derivative

degrees of freedom at the corner nodes of the new 2-D or 3-D HGDA element being
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generated. The new derivative degrees of freedom at the corner nodes of a Cij or Cijk

HGDA element are chosen in such a way that these can be transformed from natural

coordinate space to the physical coordinate space using Jacobians of transformations

for the derivatives of various orders. Pascal rectangle, Pascal triangle and Pascal pyra-

mid provided a systematic selection process for accomplishing this selection process

for 2-D rectangular, 2-D triangular and 3-D hexahedral geometries respectively.

The framework to derive higher order global differentiability local approximations

for 2-D distorted element geometries is presented in Chapter 2. We consider 2-D dis-

torted quadrilateral elements as well as triangular elements. C00 p-version hierarchical

approximations are used as a basis in deriving HGDA elements. The required degrees

of freedom are borrowed from the mid-side nodes and center node of C00 hierarchical

element and the Jacobians of transformation presented. The degrees of freedom are

borrowed from the hierarchical nodes in such a way that (i) lowest degree admissible

functions (corresponding to a lower p-level) are selected first (ii) a symmetric pattern

is maintained in selecting the approximation functions.

In Chapter 3, the framework presented in Chapter 2 is extended to 3-D distorted

elements of hexahedral geometry. C000 p-version hierarchical approximations are used

as a basis in deriving the desired HGDA elements. The rules of borrowing degrees of

freedom from the hierarchical nodes (mid-side and face nodes) remain the same as in

case of 2-D HGDA elements.

Numerical studies are presented in Chapter 4. Various quantities of interest (least

squares error or quadratic functional, L2 norm, H1 norm, H2 norm of error in the so-

lution) are computed for model problems described by self-adjoint, non self-adjoint

and non-linear differential operators. For self-adjoint operator, we consider Galerkin

method with weak form as well as Least squares processes while only Least squares

process is considered for non self-adjoint and non-linear operators [1–4]. The model

problems considered are 2-D steady state Poisson’s equation, Convection-diffusion

equation and non-linear Poisson’s equation. The numerical studies assess the per-

formance of the developed HGDA elements of distorted geometries as well as those

based on tensor product.
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Surana et al. [1–4] have shown that higher order global differentiability local ap-

proximations:

(1) allow us to incorporate the desired physics in the design of a computational pro-

cess

(2) eliminate the need for auxiliary equations and auxiliary variables in least squares

processes, thereby reducing the number of variables significantly, especially for

2-D and 3-D cases.

(3) with the proper choices of the order k of the approximation space all integrals in

the formulation become Riemann integrals as apposed to Lebesgue integrals.

(4) provide improved accuracy for the same number of degrees of freedom com-

pared to C0 processes.

With the development of a general framework to derive desired order global dif-

ferentiability local approximations for distorted element geometries, the objective of

applying hpk framework to irregular domains of definitions of boundary value prob-

lems or initial value problems is made possible. In conclusion, higher order global dif-

ferentiability local approximations is rather a natural way to design a computational

process with desired continuity and differentiability features that are dictated by the

physics.

Future work

The work presented here demonstrates that C11 HGDA elements for quadrilateral

shapes need further work. The C11 local approximations derived using the approach

presented here are such that center node approximation functions remain the same as

those for C00 local approximations. The same holds in case of C11 triangular HGDA

local approximations. In addition, numerical studies need to be performed for C11

HGDA triangular elements. The infrastructure for C11 triangular elements including

quadrature has been tested and appears to perform well. A complete infrastructure for

deriving 3-D HGDA hexahedral family of elements of distorted shape has also been
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presented. The C111 and C222 HGDA local approximations for these elements also

seem to have the same problem as C11 HGDA elements and need further investiga-

tion. The numerical studies for the 3-D hexahedron family of HGDA elements need

to be performed. An extension of the infrastructure presented for triangular elements

needs to be considered for 3-D tetrahedron family.
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Appendix A

Numerical Integration

Irregular or curved domains in Finite element method are accurately represented by

distorted or non-rectangular elements. The derivation of local approximation func-

tions for irregular elements is complicated and hence these elements are mapped into

master elements over which these interpolations can be easily derived. For example, in

two dimensions, quadrilateral elements are usually mapped into a 2-unit square and

triangular elements are mapped into a 2-unit equilateral triangle. In computing stiff-

ness matrices in finite element method, integral statements defined over these distorted

geometries are transformed into expressions involving natural coordinate axes. This

transformation results in complex expressions and the integrals are generally solved

using numerical integration techniques (such as Gauss-Legendre numerical integra-

tion scheme).

Integral expressions are usually of the form:

I =
∫ ∫

Ωe

F (x, y)dxdy (A.1)

where Ωe represents a typical finite element. The integrand is a function of the

global coordinates x and y and may contain not only functions but also derivatives

with respect to the global coordinates. The integrand is rewritten in terms of coordi-

nates ξ and η of the master element. The mapping x =
n∑

i=1

Ni(ξ, η)xi, y =
n∑

i=1

Ni(ξ, η)yi

transforms the element so that the integration is performed on the standard element
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Ωst. Under this mapping, the above integral can be rewritten as

I =
∫ ∫

Ωst

F (ξ, η)|J | dξdη (A.2)

where |J | is the determinant of the Jacobian matrix defined by

[J ] =

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 (A.3)

Integration over a master rectangular element [47]

Standard quadrature rules for integrals over a rectangular master element Ωst are de-

rived from the one-dimensional quadrature formulae. We have

I =
∫ ∫

Ωst

F (ξ, η)|J | dξdη ≈
m∑

i=1

n∑
j=1

F (ξi, ηj)WiWj |J | (A.4)

where m and n denote the number of quadrature points in the natural coordinate axes

ξ and η, ξi, ηj denote gauss points and Wi and Wj denote the corresponding Gauss

weights [47]. The number of points are selected in such a way that the expression can

be integrated exactly. A polynomial of degree p is integrated exactly with (p + 1)/2

points in both ξ and η and therefore m = n.

Integration over a master triangular element [26]

In case of triangles, the mapping functions are usually in terms of area coordinates L1,

L2, L3. In general, the quadrature rules using area coordinates [50] should be used.

However, the area coordinates L1, L2, L3 can be related to the orthogonal natural coor-
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dinates ξ, η, through the relations introduced by Szabo [26].

L1 = 1
2(1− ξ − η√

3
)

L2 = 1
2(1 + ξ − η√

3
)

L3 = η√
3

(A.5)

Szabo [26] introduced the following mapping to transform the standard quadrilat-

eral element into the standard triangular element by collapsing the side η = 1 of the

standard quadrilateral element into the point ξt = 0, η =
√

3.

ξ =
1
2
ξr(1− ηr) , η =

√
3

2
(1 + ηr) (A.6)

where ξr and ηr are the natural coordinates of the master element corresponding to

quadrilateral elements. For this mapping, we have the following transformation of the

derivatives with respect to natural coordinates corresponding to master rectangular

and triangular elements.

 ∂
∂ξr

∂
∂ηr

 =


1−ηr

2 0

− 1
2ξr

√
3

2


 ∂

∂ξ

∂
∂η

 (A.7)

Let the determinant of the Jacobian of transformation in the above equation be

denoted by |J1|.

For the integration of the finite element integrals over the master triangular ele-

ments, we have the following:

I =
∫ ∫

Ωstt

F (ξ, η) |J | dξdη =
∫ ∫

Ωstr

F (ξr, ηr) |J | |J1| dξrdηr (A.8)

where Ωstt and Ωstr represent standard triangular and rectangular master elements.

This is less efficient than the integration rules employing area coordinates [50] but

allows us to utilize the quadrature rules for standard rectangular elements.

197



Bibliography

[1] KS. Surana, AR. Ahmadi, and JN. Reddy. The k-version of Finite Element Method

for Self-Adjoint Operators in BVP. International Journal of Computational Engineer-

ing Science (IJCES), 3(2):155–218, 2002.

[2] KS. Surana, AR. Ahmadi, and JN. Reddy. The k-Version Of Finite Element Method

For Non-Self-Adjoint Operators In BVP. International Journal of Computational En-

gineering Science (IJCES), 4(4):737–812, 2003.

[3] KS. Surana, AR. Ahmadi, and JN. Reddy. k–version of Finite Element Method for

Non-Linear Operators in BVP. International Journal of Computational Engineering

Science (IJCES), 5(1):133–207, 2004.

[4] KS. Surana, S. Allu, and JN. Reddy. k–version of Finite Element Method for Ini-

tial Value Problems: Mathematical and Computational Framework. International

Journal of Computational Engineering Science (IJCES), 8(3):123–136, 2007.

[5] KS. Surana, SR. Petti, AR. Ahmadi, and JN. Reddy. On p-version hierarchical

interpolation functions for higher-order continuity finite element models. Interna-

tional Journal of Computational Engineering Science, 2(4):653–673, 2001.

[6] C. Johnson. Numerical solution of Partial Differential Equations by the Finite Element

Method. Cambridge University Press, Cambridge, UK, 1987.

[7] PG. Ciarlet. The Finite Element Method for Elliptic Problems. North Holland, The

Netherlands, 1978.

[8] GF. Carey and JT. Oden. Finite Elements, Mathematical Aspects. Prentice Hall, En-

glewood Cliffs, NJ, 1984.

198



[9] G. Strang and G. Fix. An Analysis of The Finite Element Method. Prentice Hall,

Englewood Cliffs, NJ, 1973.

[10] JN. Reddy. Functional Analysis and Variational Methods in Engineering. McGraw-

Hill, New York, 1986.

[11] OC. Zienkiewicz and CJ. Parekh. Transient Field Problems: Two-Dimensional

and Three-Dimensional Analysis by Isoparametric Finite Elements. International

Journal of Numerical Method of Engineering, 2:61–71, 1970.

[12] WK. Liu and T. Belytschko. Efficient linear and nonlinear heat conduction with

a quadrilateral element. International Journal for Numerical Methods in Engineering,

20:931–948, 1984.

[13] P. Silvester. High-order polynomial triangular finite elements for potential prob-

lems. Int. J. Eng. Sci, 7:849–861, 1969.

[14] RL. Taylor. On completeness of shape functions for finite element analysis. Inter-

national Journal for Numerical Methods in Engineering, 4(1):17–22, 1972.

[15] OC. Zienkiewicz, BM. Irons, FC. Scott, and J. Campbell. Three dimensional stress

analysis. Proc. IUTAM Symp. on High Speed Computing of Elastic Structures, pages

413–433, 1971.

[16] I. Babuska and MR. Dorr. Error estimates for the combined h and p versions of

the finite element method. Numerische Mathematik, 37(2):257–277, 1981.

[17] B. Guo and I. Babuska. The hp-version of the finite element method. Part 1: The

basic approximation results. Part 2: General results and applications. Comput.

Mech, 1:21–41, 203–226, 1986.
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