COELENTERATA

ARTICLE 1
Pages 1-84, Plates 1-28, Figures 1-9

PENNSYLVANIAN LOPHOPHYLLIDID CORALS
By RUSSELL M. JEFFORDS

University of Kansas Publications
Paleontological Contributions Number 1
January 20, 1947

Printed by
Ferd Voiland, Jr., State Printer
Topeka, Kansas
1946
21-4260
THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS comprise publications of research in Paleontology carried on by personnel of the State Geological Survey of Kansas, the University of Kansas Museum of Natural History, or Departments concerned with the University of Kansas Science Bulletin; also, they may include reports of work by others done directly or indirectly under auspices of any branch of the University.

These publications are distributed from Lawrence, Kansas, being sent as exchanges to scientific institutions, libraries, and, on request, to individual specialists in paleontology throughout the world. Requests for numbers should be addressed to The Director of Libraries, University of Kansas, Lawrence, Kansas, accompanied by 25 cents for mailing charge on each number; payment of this charge is normally required in order to obtain copies.

The CONTRIBUTIONS are to be grouped in designated categories, such as Coelenterata, within which the successive papers will be numbered in order, as article 1, article 2, and so on. Ultimately, title pages covering a group of these related articles will be issued, for use in binding them together as a volume. Serial numbers that apply to the entire series of CONTRIBUTIONS, without reference to category, permit checking for completeness of accessions and, if desired, may be used for filing.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diagram showing percentages of corallites of Lophophyllidium plummeri, n. sp., and L. coniforme, n. sp., that reach various lengths</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Diagram showing relationship of length of corallite to diameter at different growth stages in Lophophyllidium and Stereostylus</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Diagram showing relationship of counter-cardinal diameter to the number of septa in Stereostylus lenis, n. gen., n. sp.</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Diagram showing relationship of the diameter of the corallite to the length of major septa in Lophophyllidium, Stereostylus, and Lophamplexus</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Diagram showing relationship of length of corallite to diameter at different growth stages in Lophophyllidium hadrum, n. sp., L. wewokanum, n. sp., and L. plummeri, n. sp.</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Outlines showing form and relative size of corallites belonging to Lophophyllidium</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Outlines showing form and relative size of corallites belonging to Stereostylus</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>Drawings showing insertion of major septa and development of other characters in Stereostylus lenis, n. gen., n. sp.</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>Outlines showing form and relative size of corallites belonging to Lophamplexus</td>
<td>78</td>
</tr>
</tbody>
</table>
PENNSYLVANIAN LOPHOPHYLLIDID CORALS
RUSSELL M. JEFFORDS

ABSTRACT

Lophophyllid corals comprise solitary conical and conico-cylindrical corallites having an axial column developed in part by a thickening of the counter septum, shortened cardinal septum, tabulæ but no dissepiments, and well-defined septal grooves. These corals occur in a larger proportion of Pennsylvanian deposits of the Midcontinent than other types of corals, and they seem to be especially useful in stratigraphic paleontology.

The family Lophophyllididae Moore & Jeffords (1945) is recognized to include Lophophyllidium Grabau (1928), Lophocarinophyllum Grabau (1922), Malomophyllum O'Keefe & Alumon (1937), Stereostylus, n. gen., Lophampylexus Moore & Jeffords (1941), Lophotichium Moore & Jeffords (1945), Clayphyllum Hudson (1942), Kinikoria Easton (1945), and Fasciculophyllum Thomson (1883). These genera are illustrated and described briefly, and a key is included for the differentiation of lophophyllid genera. Consideration is given to the morphology, ontogeny, and phylogenetic development of these corals. Also, a graphic representation of variation in several characters indicates that statistical treatment of quantitative data is useful in the rigorous comparison of lophophyllid faunas.

Late Paleozoic lophophyllid corals which have been referred generally to Lophophyllidium (Lophophyllum of authors) are shown to include several distinct genetic types, each characterized by a combination of several characters. Lophophyllidium (syn. Sinophyllum Grabau, 1928) is restricted to species having a large axial column that contains radiating laminae and septa that are not shortened in maturity. Corals in which lophophyllidoid characters are restricted to the immature region and resemble Amplexus above are assigned to Lophampylexus. A new genus, Stereostylus, is proposed to include those species characterized by a relatively smaller and laterally compressed column that lacks radiating laminae and by a marked reduction in the length of major septa in maturity. A total of 24 species are described, and 7 species are referred to Lophophyllidium, 10 species to Stereostylus, and 7 species to Lophampylexus. The single previously described form, Amplexus westii Brome (1898) is placed in Lophampylexus.

INTRODUCTION

Numerous investigations of the extensive deposits of Pennsylvanian rocks in central United States during the past twenty years have resulted in relatively precise delineation of a large number of individual formations and units of subordinate rank. As these stratigraphic studies progressed, paleontological research became more detailed, aiding in the correlation of beds over long distances and contributing to the solution of various local problems. Large collections from precisely determined stratigraphic horizons and exact localities became available for study also, so that the need for revision of previous work was apparent. Contributions to the knowledge of Pennsylvanian faunas include studies on practically all the groups of fossils but attention has been devoted particularly to the fusulines, brachiopods, and cephalopods.

In spite of the relative abundance of corals throughout the marine deposits of the Midcontinent, late Paleozoic corals have been practically ignored, and until recent years, only sporadically were attempts made to distinguish the many differing types. This lack of interest in North America contrasts strongly with the important use of corals as index fossils in the Lower Carboniferous of Europe and Asia, in the Middle and Upper Carboniferous of Russia, and in the Permian of Asia.

Somewhat intensive study of American late Paleozoic coral faunas was begun at the University of Kansas in 1940 and, although interrupted by the war, has furnished descriptions of many features of these faunas (Moore & Jeffords, 1941, 1945; Jeffords, 1942, 1944, 1945).

SCOPE OF PRESENT PAPER

Small solitary column-bearing corals that are designated collectively as lophophyllids are especially widespread and locally very abundant in Pennsylvanian rocks. Accordingly, attention is directed first to this type rather than to other more distinctive but less widely distributed corals. Studies on these other groups are under way, however, and publication is expected reasonably soon.

Lophophyllid corals of Morrowan and Bendian (Lampasan or Derryan) age and from Pennsian rocks have already been described (Moore & Jeffords, 1941, 1945, 1946; Jeffords, 1942). Therefore, this study considers primarily material from the Desmoinesian, Missourian, and Virgilian series of Middle and Upper Pennsylvanian (Upper Carboniferous) rocks. The basic coral material has been furnished by the extensive collections of the Kansas Geological Survey, but important additional specimens have been collected or borrowed for study. The collection included specimens from about 550 localities and more than 100 different stratigraphic units throughout the Pennsylvanian section. Lophophyllid corals are available from practically every formation, and commonly each locality yields more than a dozen specimens; some localities are represented by at least a thousand corallites. The greater proportion of the corals are from Kansas, Missouri, Oklahoma, and Texas; although corals from Nebraska, Colorado, Iowa, Arkansas, West Virginia, Pennsylvania, and Ohio were examined also.
It is the purpose of this paper to describe and illustrate the Pennsylvanian lophophyllid corals now available for study, and to differentiate the several allied lophophyllid genera. Consideration is given also to morphologic features and to ontogenetic development of the corals. This report does not, however, represent a complete study of all the lophophyllid corals; doubtless there are many different types not represented in the collection, and also corals seem not to have been collected as intensively as many better known fossils.

PREVIOUS STUDIES

Upper Carboniferous corals from North America have been described in several scattered papers, but mostly without consideration of important structural features. Thus, corals were referred to a few long ranging "species" that had little stratigraphic value or taxonomic significance. More recently, the type material of some of these species has been re-described and new forms characterized so that the stratigraphic utility of Pennsylvanian corals is becoming apparent (NEWELL, 1935; KELLY, 1942; JEFFORDS, 1942, 1944; EASTON, 1944; WELLS, 1944; and MOORE & JEFFORDS, 1945). Upper Carboniferous coral faunas of Europe and Asia have received appreciably more attention than the American faunas; important contributions being those of REED (1872) and FOERSTE (1888), however, the corals were referred to one of these genera have been reviewed previously (JEFFORDS, 1942, p. 187-189) and so needs only brief consideration here. Subsequent to the designation of the first two species of lophophyllid corals, which are Cyathaxonia profunda (edwards & HAIME 1851, p. 323) from Flint Ridge, Ohio, and C. prolifera McCheesney (1860, p. 75) from Missourian rocks near Springfield, Ill., lophophyllid corals were reported from many localities throughout Pennsylvania rocks of North America, but generally they were referred to one of these species. In agreement with proposals by MEek (1872) and FOERSTE (1888), however, the lophophyllid species were removed consistently from Cyathaxonia and placed in Lophophyllum Edwards & HAIME (1850). Between 1875 and 1924 other Pennsylvania lophophyllid corals were described as Cyathaxonia distorta (= Stereostylus distortus) Worthen (1875, p. 526), Lophophyllum profundum sauridens (= Lophophyllum sauridens) White (1877, p. 101), Amplexus vestiti (= Amplexus vestiti) Beede (1898, p. 17), Lophophyllum proliferum radicosum (= Stereostylus? radicosus) Girty (1911, p. 122), Cyathaxonia girtyi HAACK (1915, p. 486), and Cyathaxonia sp. (= Stereostylus sp.) MORGAN (1924, p. 192). ROWLEY (1901, p. 349) described a short broad conical coral from Missouri as Azophyllum? alleni, n. sp., and Girty (1915a, p. 318) referred this species to Lophophyllum. Some corals that are similar to A.? alleni in size, shape, and features of the calyx have been sectioned and found to represent forms allied to the Clisiophyllidae NICHOLSON & THOMSON (1883). Although these species were poorly defined, they have been reported repeatedly in faunal lists. Thus, Pennsylvania lophophyllid corals were interpreted as having little stratigraphic value.

In 1937 weathered corallites from Permian rocks of Texas were described as a new species which was designated as the genotype of a new genus Malonophyllum Okulitch & ALBRIGHTON (1937, p. 24).

Studies carried on in conjunction with the present investigations have furnished information on three species of lophophyllid corals from Permian rocks (MOORE & JEFFORDS, 1941) and 38 species from the Pennsylvanian (JEFFORDS, 1942; MOORE & JEFFORDS, 1945). These lophophyllid corals were referred to Lophophyllum, Sinophyllum, Malonophyllum, and Lophotichium.

Carboniferous and Permian lophophyllid faunas from areas outside North America are less completely known but comprise species from Asia and Europe that were described by KAYSER (1883), YAKOVLEV (1904), DOUGLAS (1920), GRABAU (1922, 1928), SOsChIgina (1925, 1928, 1939), SCHINDewolf (1930), Heritsch (1931, 1933, 1936, 1938), Huang (1932a), YOH & HUANG (1932), SMITH (1934, 1941), Merla (1934), DOBROlyubova (1936), FelseR (1937), Chi (1938), Hill (1940), and HUDSON (1942). Differentiation of the generic types within the lophophyllids was undertaken by GABAU in 1922 and 1928 by setting up the genera Lophocarinephyllum, Sinophyllum, and Lophophyllum.

Carboniferous and Permian lophophyllid faunas from areas outside North America are less completely known but comprise species from Asia and Europe that were described by KAYSER (1883), YAKOVLEV (1904), DOUGLAS (1920), GRABAU (1922, 1928), SOsChIgina (1925, 1928, 1939), SCHINDewolf (1930), Heritsch (1931, 1933, 1936, 1938), Huang (1932a), YOH & HUANG (1932), SMITH (1934, 1941), Merla (1934), DOBROlyubova (1936), FelseR (1937), Chi (1938), Hill (1940), and HUDSON (1942).

Differentiation of the generic types within the lophophyllids was undertaken by GABAU in 1922 and 1928 by setting up the genera Lophocarinephyllum, Sinophyllum, and Lophophyllum. Subsequently, Malonophyllum and Lophampexus were described from Permian rocks of North America, and Lophotichium from Pennsylvanian deposits of Oklahoma. HUDSON (1942) separated European Lower Carboniferous corals having many lophophyllid characters as a new genus called Claviphyllum, and EASTON (1945) described Kinkaida, a new genus from Upper Mississippian rocks of Illinois. Many of the complexities of the taxonomy of these genera have been reviewed previously (JEFFORDS, 1942).

METHODS OF STUDY

In preparation for this and correlative studies of the Pennsylvania coral faunas, the fossil collection of the Kansas Geological Survey was examined, and the corals were assembled for study. This material, comprising several thousand lots of corals, was segregated according to major allied types. Inasmuch as the external appearance of average specimens furnishes little information on the affinities of the corallites at first, accurate separation of the solitary corals required study of sectioned material
also. The lophophyllid corals then were examined, and the corallites from each stratigraphic unit were separated according to external features such as size, form, and ornamentation. Several representative corallites were selected from each of these groups for sectioning and preliminary study. Subsequently, additional specimens were sectioned where the original lot seemed to include several species or to permit more adequate study of variation and ontogenetic development.

The corallites selected for sectioning were cut transversely three or more times to show successive growth stages. These sections were photographed, and the corals were reassembled after identification of the counter-cardinal plane. The corallites or segments of them were cut longitudinally in a plane normal to the counter-cardinal septa, and these sections were photographed also. Most of the sawing was done by means of a toothless band saw using a mixture of carborundum powder and water. The addition of liquid soap or glycerine to the mixture aids appreciably in keeping the powder in suspension during sawing. A thin-bladed diamond saw was used for several dozen corals. The band saw is more satisfactory for the small and medium-sized calcite specimens, inasmuch as the sections do not require additional grinding or polishing, and it is possible to curve the sections so as to follow the curvature of the corallites. Moreover, specimens cut by means of the band saw may be reassembled readily without appreciable loss of external details. Thin sections and cellulose-acetate peels have been prepared for some of the material, but these techniques do not yield sufficiently better results to compensate for the greater time involved.

The sawed longitudinal and transverse sections were coated by thin oil, and positive prints were prepared at a uniform magnification of five times natural size. Commonly, it is desirable to photograph both the top and bottom of each transverse segment in order to show the rapid development in the immature region and to avoid the influence of abnormal structures or tabulae. The photographs of each specimen were mounted together for study and subsequent use in the preparation of the illustrations. These mounted photographs having uniform magnifications permit rapid comparison of large numbers of sections such as is impractical under the microscope. Transverse segments of corallites that are cut longitudinally are especially useful in that relationships of skeletal elements may be traced from longitudinal to transverse sections. Also, there is especial advantage in illustrating both longitudinal and transverse sections for the same individual. More than five hundred lophophyllid corallites were sectioned and photographed, some specimens. Inasmuch as each cut exposes two more species being represented by several dozen sectioned or less different views of the coral and as the majority of the corallites were sawed in four or more places, the number of sections available for study corresponds to at least three thousand thin sections.

The sections contained in this paper were prepared by reproducing the structures shown on photographs by means of waterproof India ink, and removing the original picture by a cyanide bleach. The photographs were compared with the specimens during this inking and in later retouching after bleaching so as to duplicate the skeletal pattern of the particular sections. These black and white illustrations afford a clear representation of the structures by removing adventitious features such as stains, replacement, calcite cleavages, and color variations in the matrix. Also, the relatively low cost of reproduction permits more adequate illustration of a species than by means of half-tones or full-tone plates. Photographs are given also for a few species in which the structural features could not be duplicated by means of line drawings.

Views of the exterior of the corallites were prepared for inexpensive reproduction by drawing the corallite over a photograph printed on stipple paper, and then bleaching. These diagrams show the major external features of size, shape, curvature, and prominent markings; minor details are not sufficiently diagnostic to merit more precise illustrations. In addition, outline drawings of the corallites were prepared from photographs to facilitate rapid comparison of the size and shape of the species. The internal structures of the genotype species of lophophyllid genera and a few other types that are discussed were prepared similarly from photographs of original illustrations. The sections and external views of the lophophyllid corals are given at uniform magnifications, and insofar as practicable each species is represented by several specimens.

Modern biologic studies have increasingly emphasized the importance of individual variation and the use of samples of populations rather than individuals in formulating taxonomic divisions (Simpson & Roe, 1939; Huxley, 1940; Mayr, 1942). Many paleontologists, also, recognize the value of quantitative data as an aid to the objective characterization of fossil forms. As the material representing fossil groups becomes more abundant, the stratigraphic utility of fossils is advanced importantly by the description and statistical treatment of variation. Uncertainties regarding the features subject to quantitative analysis preclude a thorough statistical treatment of the Pennsylvanian lophophyllid corals. The graphical representation of variation in several of the characters, however, indicates that quantitative data are of practical value in rigorous studies of these corals.

ACKNOWLEDGMENTS

I am deeply indebted to Dr. R. C. Moore for counsel and guidance in investigations of the late Paleozoic corals. Also, he has given many valuable suggestions regarding the preparation and presentation of this report. The Kansas Geological Survey
has made available its extensive collection of Pennsylvanian corals and also the equipment used in preparation of the material. R. C. Moore, J. M. Jewett, E. R. Laudon, A. L. Bowsher, R. H. King, and others of the University of Kansas have generously contributed coral specimens. Drs. L. M. Cline and W. M. Furnish have given several lots of Pennsylvanian corals, and Mr. Joe Harner of Nevada, Mo., has sent me several collections of corals from the Cherokee shale. About 800 corals from the Appalachian region have been loaned for study by the Carnegie Museum through the kindness of E. R. Eller. The cooperation of all these men is greatly appreciated.

Dr. Jewett has been especially helpful in correcting erroneous stratigraphic designations, and in furnishing information on the stratigraphic occurrence of the corals. My wife, Ann Jeffords, has given valuable assistance in photography and preparation of the illustrations. The drawings of the exteriors of the corals were prepared mostly by Mrs. Bernta Mansfield of University of Kansas. Appreciation is expressed also to E. C. Galbreath for assistance in the construction of a camera for making positive prints of the sawed sections.

MORPHOLOGY OF LOPHOPHYLLIDID CORALS

Terminology of the varied structures in corals has been largely clarified by several recent studies of morphology and nomenclature as by Grabau (1922), Hill (1935), Wedekind (1937), Sanford (1939), Vaughan & Wells (1943), Easton (1944a), and Smith (1945). Many of the terms are not interpreted uniformly as yet and none of the schemes of terminology has gained general acceptance. Some standardized morphologic terms are needed to facilitate description of the corals. One can hardly assume, however, that the average paleontologist will recognize or search out distinctions between the large number of terms that might be applied to each variant of a mutable structure. For example, vertical structures at the axis of a rugose coral have been described as a columella, pseudocolumella, stereocolumella, cystocolumella, acrocolumella, palicolumella, streptocolumella, sclerocolumella, parietal columella, central column, axial column, axial complex, axial structure, axial pillar, axial vortex, dibunophyloid axial column, clisiophyloid axial column, aulophyloid axial column, and aulos.

The structural elements in the lophophyllid corals are notably fewer than in certain other groups, and taxonomic subdivision is deemed to depend upon differences in several characters. Whereas generic separation of these corals is possible on the basis of a few key characters, specific distinctions rest largely on differences in the character of the following features.

Morphologic Characters Having Chief Value for Specific Distinction of Lophophyllid Corals

<table>
<thead>
<tr>
<th>External characters</th>
<th>Internal characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size, shape, and curvature of corallite</td>
<td>Theca</td>
</tr>
<tr>
<td>Septal grooves and inter- septal ridges</td>
<td>Length, arrangement, character, number, and rate of insertion of major septa</td>
</tr>
<tr>
<td>Calyx (commonly incompletely preserved)</td>
<td>Minor septa</td>
</tr>
<tr>
<td>Transverse markings</td>
<td>Fossula and pseudofossula</td>
</tr>
<tr>
<td>Radicles</td>
<td>Tabulae</td>
</tr>
<tr>
<td>Mode of attachment</td>
<td>Stereoplasma</td>
</tr>
<tr>
<td>Axial column</td>
<td>Carinae</td>
</tr>
<tr>
<td>Central column</td>
<td></td>
</tr>
</tbody>
</table>

Several of the structures are particularly significant in the classification and interpretation of these corals, and so merit brief consideration.

EXTERNAL FEATURES

Study of sectioned material indicates that external features alone are not adequate to differentiate many lophophyllid species, or even to distinguish these genera from each other or from some unrelated genera. Whereas the collections of corals available for study furnish a reliable indication of the medium and large growth stages, the smaller youthful corallites commonly are not collected. Figure 1 shows the percentage of individual coral-

![Graph showing percentage of corallite sizes](image)

Figure 1.—Diagram showing percentages of corallites of Lophophyllidium plummeri, n. sp., and L. coniforme, n. sp., reaching various lengths. These frequency data indicate that the collections contain relatively few of the smaller corallites, although they show an even distribution for medium and large corallites.

Table 1.—Cumulative frequency distribution of corallites of Lophophyllidium coniforme, n. sp., and L. plummeri, n. sp., showing lengths in millimeters.
lites reaching successive lengths as determined from measurements of the length of all complete individuals that were contained in several lots of corals. The curves are comparatively abrupt for lengths less than the modal length, but the lines slope normally for the larger sizes. Presumably, a complete collection of all corals that are present at a given outcrop would yield a smooth symmetrical sigmoidal curve that would differ from those in Figure 1 chiefly by an increase in the frequency of small corallites. The unsymmetrical nature of the frequency distribution suggests that the mode is more useful than the mean or median in comparing such data on coral assemblages.

Although the lophophyllid corals vary widely in corallite form, they may be divided into two major groups—conical or regularly expanding types, and conico-cylindrical types, in which a conical apical portion is followed by a cylindrical form. Some corallites follow these basic shapes closely so as to differ only in apical angle or in size. The majority, however, are modified in form by constrictions, wrinkles, and other features. The shape of corals that belong to a particular species is more or less limited in variation and aids in tentative identifications. Characteristic shapes are seen most readily by plotting measurements of the length and calicular diameter of a large number of individuals, or equivalent measurements made from a single corallite. Whereas the corallite shape of generally similar species may overlap somewhat, the grouping of the plotted points usually differs. On these graphs, conical corallites are indicated by a straight oblique series of points that represent a regular increase in diameter corresponding to the increase in length. For conico-cylindrical corallites, the diameter expands at a progressively decreasing rate as the length increases. Therefore, the median line representing such an assemblage of corallites is distinctly curved toward the vertical (Figs. 2, 5). Examination of these data shows minor but characteristic differences in the size and form of the corallite such as are missed by a casual inspection of the corals. Moreover, these graphs give a better indication of the variation in size and form of most individuals in a species than can be represented by measurements of a few corallites recorded in the text.

The corallites may be straight, or gently to strongly curved, and the curvature may be regular or the corallite may be bent abruptly one or more times. The irregular bends occur in the cylindrical portions of the corallites at a point of rejuvenation and probably represent renewed growth following a change in the position of the corallite. Regularly curved forms are not constant in the position of the curvature, although commonly an alar septum is on the concave side.

The majority of the lophophyllid corals were more or less firmly attached at the base to solid objects, such as brachiopod shells or crinoid columnals, but some species seem to have been free throughout life. The attachment may be accomplished by the development of a few short radicles near the apex, or by a thickening of the theca so as to cement one side of the apical region to a foreign object. Where the corallite was attached to the side of an object in the vertical plane, it developed without appreciable curvature; where the base was horizontal, the corallite grew obliquely at first along the base and then curved abruptly upward.

Some species are characterized by the occurrence of small hollow rootlets or radicles that project outward from the theca. Corresponding structures are developed by temporary extrusions of a tongue of edge-zone peripheral part of polyp over the margin of the wall towards the substratum, the tongue depositing a layer of epitheca around itself, then degenerating, leaving a hollow closed tube as an added element of stability for the corallum (Vaughan & Wells, 1943, p. 40).
The radicles may be regularly arranged or scattered over the entire coralite, restricted to one or more rows, or located only on one side of the apical region. Radicles near the apex served as a means of attachment for some coralites, but the purpose of numerous radicles that occur abundantly over other coralites is not readily apparent. The very spinose species occur most abundantly in elastic sediments, such as Wewoka, Wayland, and Cherokee shales, which suggests that the radicles may have been an adaptation for lateral support in soft muds on the sea bottom. This explanation is not entirely satisfactory, inasmuch as many spinose species were firmly attached near the apex so that radicles would not have been particularly useful as supports. Moreover, associated species that lack radicles were equally abundant in the same seas. These data suggest that radicles were derived originally as a means of attachment in the apical region and as an aid in the maintenance of an upright position for free coralites in soft muds. The extensive development of radicles, as in *Lophophyllidium spinosum*, n. sp., may represent adaptation for some biologic function such as in reproduction, or continued specialization associated with senescence.

Other surficial markings that occur in the lophophyllid corals, such as septal grooves, interseptal ridges, and wrinkles, have been considered previously (Jeffords, 1942, p. 194-197) and their descriptions need not be repeated here.

INTERNAL FEATURES

The structural elements of lophophyllid coralites are divisible into two main types, the vertical elements that comprise the theca, septa, and column, and the horizontal elements, such as tabulae, that are formed between the vertical structures. The calyx, as seen in weathered specimens, shows some features of the septa and column, but commonly it furnishes little information on the nature of the tabulae. Moreover, the elements in the calyx are incompletely developed and accordingly they seem to be markedly different from similar structures below the calyx.

Septa comprise radially arranged plates that extend from the apex or point of insertion to the calyx. In the lophophyllid corals, they are joined to the theca at the peripheral edge and are free along the axial edge except where stereoplasm fills in the spaces around them. As seen in transverse section, septa contain a dark median lamina that is bordered by areas of lighter calcite. Hill (1937, p. 48, Fig. 2) has shown for similar septa that “the median dark line . . . is due to the junction of two differently directed sets of fibres, laid down by the opposing sides of a septal invagination.” Rhopaloid septa may include also concentric lamination or bounded growth layers that are curved parallel to the axial edge of the septum. A median lamina is present in both the major and minor septa, and it permits identification of the position and extent of the septa in the theca and in the axial region of thickened specimens.

The manner of septal insertion and the characteristics of the resulting pseudofossulae in the lophophyllid corals has been reviewed at some length previously (Jeffords, 1942, p. 194-197).

The relatively solid axial column comprises the diagnostic feature of the lophophyllid corals. Transverse sections near the apex show that the column develops by an elongation and thickening of the counter septum; other septa may be fastened to the column by stereoplasm, but they do not enter it. As the coralite develops, the column becomes larger and separates from the counter septum or disappears in mature stages. In *Stereostylus*, *Lophamplexus*, and early stages of *Lophophyllum* the column contains a dark median lamina in the counter-cardinal plane that is continuous with the lamina of the counter septum. Seemingly, therefore, the column is formed by the deposition of materials in a short invagination of the base of the polyp along the counter-cardinal plane. Transverse sections of the mature region of coralites belonging to *Lophophyllum* show numerous other laminae that radiate outward through the column from different points along the median lamina. Also, there are concentric laminations that seem to be due to variations in the density of the skeletal material. In these forms, the column probably was deposited by lateral as well as a median invagination of the basal ectoderm. Median and radiating lamellae in the clisiophyllid genera, such as *Dibunophyllum*, comprise thin vertical skeletal elements, whereas these laminae in the column of the lophophyllid corals represent rather the line of junction of two inclined bands of microscopic fibers.

As the height of the calicular wall (theca) increased during growth, the polyp periodically raised itself in the calyx by constructing tabulose at somewhat regular intervals. No dissepiments—that is, small plates arched convexly upward between the septa and peripheral in position—are known in the Pennsylvanian corals here referred to the Lophophyllidae. Some authors, however, have erroneously identified intercepts of tabulae in transverse sections as dissepiments. Although intercepts of tabulae may appear in such sections as occasional or slightly offset bands between the septa so as to simulate dissepiments, tabulae and dissepiments are distinguished readily in longitudinal sections (Jeffords, 1942, Fig. 2). The position of transverse sections in relation to the tabulae is an important feature in the interpretation of internal structures, inasmuch as septa are more fully developed immediately above a tabula, and characters of fossulae and other structures may appear notably different in sections taken respectively just below and above a tabula.
ONTOGENETIC TENDENCIES

The fossilized remains of Paleozoic corals comprise an exoskeleton that doubtless was formed by the ectoderm of the polyp. Vertical elements, such as the septa and column, represent skeletal material deposited in invaginations at the base of the coral polyp. Horizontal or transverse elements, such as tabulae and dissepiments, were laid down by the more or less horizontal ectoderm at the base, which also probably formed most deposits of stereoplasm within the corallite. The living animal occupied only the calyx, and was excluded from the previously formed portions of the corallite by the transverse structures and by such stereoplasm as may have been deposited. In most lophophyllidid corals the polyp was held up above the floor of the calyx in the axial region by the column, but elsewhere it extended downward between the septa, especially at the cardinal fossula. The relationships of most skeletal elements of rugose corals to the arrangement of the organs within the polyp is little understood. External structures, such as radicles, were formed at the edge of the calyx, and internal features could not be modified after the base of the calyx had been raised by tabulae.

A corallite affords, therefore, a continuous record of the morphologic development of the individual and serial sections permit essentially complete studies of the ontogeny of the corallites (Fig. 8). The classic investigation of the ontogeny and phylogeny of the "Zaphrentis delanouei genus" by CAR.

RUTHERS (1910) clearly demonstrated the phylogenetic significance of ontogenetic characters shown by these corals, and his work has been confirmed by later research. Available evidence suggests that most, if not all, ontogenetic features are important in the interpretation of phylogeny.

Study of corals is rendered difficult, however, by the occurrence of tendencies in widely different genetic lines to develop similar structures and to evolve along nearly the same lines. These similar trends produce convergence. The common similarities include change from a conical to a cylindrical form, modification of bilateral symmetry to radial symmetry, decrease of tabulae accompanied by increase of dissepiments, and development of a simple axial column into a complex one. Ontogenetic studies are of primary importance in distinguishing closely allied forms from other convergent types that have reached essentially the same stage along an identical general trend.

FIGURE 3.—Diagram showing the relationship of the number of major septa to the diameter of the corallite in Stereostylus lenis, n. gen., n. gsp.

These data indicate that the number of septa at any particular diameter varies somewhat, but that the ratio of increase in septa decreases in maturity. Similar data on other species of lophophyllid corals show this general pattern, although the position of the median lines commonly does not coincide with that shown here.

Amplexus-like specialization of the tabulae seems to have been the end stage in several genetic lines so that it probably should be included with LANG's (1923) list of trends as an alternative development that is equivalent to the progressive increase in dissepiments. The method of raising the polyp in the calyx by means of dissepiments is not observed in these Pennsylvanian corals. An undescribed Upper Permian coral that contains a few dissepiments, however, may represent development in this direction.

Figure 8 shows the trend in the development of corallites may be shown by a series of transverse sections, as in Figure 8, or by graphic comparison of several characters seen in a large number of sections (Figs. 3, 4). These quantitative studies serve to show the variation within a species and also to indicate the gradual development of certain characters. The number of major septa increases rapidly in the immature region.
as the coral expands, but septa are inserted more slowly in the larger mature parts (Fig. 3). Near the apex the major septa reach nearly to the axis, but they extend inward differing distances near the calyx. As shown on Figure 4, the average radial length of the septa bears a close relation to the diameter of the section in the immature region. This relationship is less exact in larger sections, however, because of the influence of sections made through the calyx near the apex the major septa reach nearly to the axis, but as the coral expands, but septa are inserted more as the coral expands, but septa are inserted more slowly in the larger mature parts (Fig. 3). Near the apex the major septa reach nearly to the axis, but they extend inward differing distances near the calyx. As shown on Figure 4, the average radial length of the septa bears a close relation to the diameter of the section in the immature region. This relationship is less exact in larger sections, however, because of the influence of sections made through the calyx where the septa are incompletely developed.

GLOSSARY OF TERMS

An alphabetically arranged explanation of morphologic terms (mostly after Moore & Jeffords, 1945) is included in order to clarify the terminology used in this paper and as a convenience to readers. More comprehensive glossaries of terms used in other publications on rugose corals have been compiled recently by Easton (1944a, p. 15-21) and Smith (1945, p. 4-9).

Acceleration is the more rapid introduction of septa in certain quadrants of a coral than in others, giving rise to a greater number of septa in these parts at a given growth stage.

Alar is a term applied to two primary septa (protosepta) on opposite sides of a rugose coral and to more or less defined wide spaces (pseudofossulae) that may border the alar septa on the side facing the counter septum. One of the four insertion points of newly formed major septa joins each alar septum on the counter side and this relationship commonly serves for identification of the alar septa. On diagrams and in septal formulae the alar septa are indicated by the symbol A.

Apical indicates the immature lowermost part of a coralite, near the apex of cone-shaped forms.

Axial refers to the mid-line of the upwardly growing coral; this term may be applied to a centrally located columnar structure or to designate a region in the coral skeleton.

Brevisepta are much-shortened radial partitions of a coral that extend inward only part way from the periphery to the axis. The term also is used to describe the ontogenetic stage characterized by short septa and regularly spaced tabulae, as in Amplexus.

Calyx is the more or less deep cuplike hollow at the top of a coral skeleton that was occupied by the living animal.

Cardinal is a term that applies first to one of the four earliest-formed septa of a rugose coral; it lies in the plane of bilateral symmetry and insertion points of newly formed major septa adjoin it on either side. Secondarily, the name cardinal is applied to the depression (fossula) that is formed by the partial or complete abortion of the cardinal septum, and it is used also to designate the quadrants of septa that lie between the cardinal and alar septa. On diagrams and in septal formulae the cardinal septum is indicated by the symbol C. Transverse sections of corals illustrated in this paper are oriented with the cardinal septum directed downward.

Carinae are keel-like ridges on the sides of septa; they are straight or curved and run more or less longitudinally.

Column is a term applicable to varied sorts of axial structures of corals (including columnella and pseudocolumnella of authors), ranging from dense rodlike growths to delicate open meshwork.

Conical refers to the cone-like form of some corallites.

Conico-cylindrical is a term given to corallites that are conical near the apex but become cylindrical above.

Corallite is the name used for the hard parts of a coral individual.

Counter refers to one of the four first-formed septa of rugose corals, lying in the plane of bilateral symmetry opposite to the cardinal septum; it is also applied to the quadrants of septa contiguous to it. On diagrams and in septal formulae the counter septum is indicated by the symbol K. Transverse sections of corals figured in this paper are oriented with the counter septum directed upward.

Counter-lateral is a term applied to the pair of metasepta immediately adjacent to the counter septum.

Dissepiments are small curved plates built one on another so as to form vesicles; their convex surfaces are directed upward and toward the interior of the coral. Dissepiments do not occur in lophophyllid corals although several authors have designated intercepts of tabulae in transverse sections as dissepiments.

Fossula is a depression in the floor of a rugose coral calyx formed by the partial or complete abortion of a protoseptum, in nearly all cases the cardinal septum. The presence of a fossula may be indicated in transverse sections of a corallite by a distinct open space extending peripherally between some of the septa.

Growth lines are fine irregularities that encircle the exterior of some corals.
Inner wall is a term most commonly employed to designate a thickened wall-like structure at the inner edge of a zone of dissepiments; it is applied also to a curved wall that is formed by interseptal of tabulae.

Intereptal ridges are longitudinal elevations on the exterior of some rugose corals that mark slight outward bulges of the enclosing theca.

Laminae are subvertical plates of the axial region of some rugose corals, generally not confluent with septa; they may be discontinuous longitudinally. Some genera are characterized by a median lamella in the plane of the cardinal and counter septa and by radiating lamellae, which intersect the median lamina at different points.

Lamellae are sheet-like structures formed by the juxtaposition of two layers of skeletal material in septa and the column. They appear in transverse sections as indefinitely bounded dark bands that are formed by the junction of two differently directed layers of fibers. A lamina occurring in the plane of the cardinal and counter septa within the column is a median lamina; intersecting laminae are termed radiating laminae. Lamellae, unlike laminae, comprise distinct wall-like structural units.

Major septa are the relatively long septa of rugose corals that comprise the four first-formed protosepta and subsequently inserted pairs of metasepta appearing in definite order in the different quadrants.

Metasepta are major septa other than the protosepta. In the corals, the outer wall of the corallite is a term given to areas of the corallite or that part adjacent to the theca.

Minor septa are secondarily introduced septa, generally short, that appear nearly simultaneously between major septa.

Peripheral refers to the outer zone of a corallite or that part adjacent to the theca.

Polyp is the living organism that occupied the calyx.

Protosepta are the four first-formed septa of rugose corals (cardinal, counter, and two alar) that are introduced nearly simultaneously very early in the growth of the corallite and that define the tetrarotal development and bilateral symmetry of these fossils. Except the counter, they are the septa next to which insertion points of newly formed major septa are located. According to some investigators, an additional pair of septa (counter-laterals), which adjoin the counter septum, are classifiable as protosepta but these do not affect the four-fold arrangement of the septa.

Pseudofossula is a depression or space between septa on the floor of the calyx of some rugose corals, not formed by the partial or complete suppression of a septum. Pseudofossulae are developed on the counter side of the alar septa in many corals and are termed porpseudofossulae.

Quadrant is a term given to areas of the corallite in the Rugosa lying between any two adjacent protosepta; these areas are designated, respectively, as cardinal quadrants (adjointing the cardinal septum) and counter quadrants (adjointing the counter septum). Pseudofossulae are external tubular projections that occur on the theca of some solitary corals. **Rejuvenation** is a renewal of immature structural characters that is accompanied by a constriction of the corallite after maturity has been attained.

Rhopaloid is a descriptive term (derived from Greek, rhapolion, war club) applied to septa that thicken toward a rounded axial edge so as to appear club-shaped in transverse section. **Septa** are radial partitions that partly or completely divide the interior of rugose corallites into compartments. Commonly, the unqualified term septa refers to the major septa.

Septal formula designates the relative position of protosepta and the number of metasepta in respective quadrants in a consistent abbreviated manner. As employed in this paper, the formula begins with the counter septum, proceeds clockwise around the corallite, and ends at the cardinal septum—for example, counter septum (K), 9 metasepta, alar septum (A), 4 metasepta, cardinal septum (C), 3 metasepta, alar septum (A), 9 metasepta, and the counter septum again. Expressed as a formula, the septal arrangement of the septa in this section is K9A4C3A9K.

Septal grooves are longitudinal depressions on the exterior of some corals that mark inbuilding of the outer wall along lines at the edges of the septa.

Solitary corals are individuals that grow unattached to other corallites as contrasted with colonial forms.

Stereoplasma consists of organically deposited calcium carbonate and this term is especially used in referring to secondary thickening of various coral structures.

Tabulae are subhorizontal, arched, or upwardly concave platforms that are not limited by septa and that extend at least partly across the axial region of the corallite. Complete tabulae are those that reach across the axial area without intersecting an axial structure or other tabulae and that join the theca or dissepiments peripherally. Other tabulae are incomplete or anastomosing.

Tachylasmoidea (derived from the genus Tachylasma) refers to septal development in which some major septa are long and rhopaloid whereas others are short.

Theca is the term given to the outer wall of rugose corals; it is equivalent to epitheca of some authors.

Wrinkles are transverse folds or annulations encircling the theca on some corallites. Abrupt constrictions are caused by rejuvenation.

FAMILY LOPHOPHYLLIDIIDAE MOORE & JEFFORDS, 1945

DESCRIPTION

Small to medium-sized corallites having straight or gently to strongly curved conical and conico-cylindrical form comprise this family. The theca bears well-defined septal grooves and interseptal ridges, and is marked transversely by wrinkles and growth lines of varying prominence. The relatively deep calyx contains a spike-like column that projects from the central portion of the floor at least in immature stages. Septa, which have the “saphrentid” type of insertion (Hill, 1935, p. 505-506), are continuous, of one or two orders, and unjoined axially except in the apical region. These septa may be thin or rhopaloid in character, and they show more or less bilateral arrangement about the counter-cardinal plane. The counter quadrants are slightly to moderately accelerated. Except near the calyx the counter septum extends to the axis where its inner edge is strongly thickened so as to form a rod-like axial column. The cardinal septum is notably shortened and lies in a fossula; other major septa are subequal in length. Minor septa are introduced simultaneously between major septa in mature stages or they may be lacking. Alar pseudofossulae are developed in varying degrees of prominence, particularly in the immature stages. The diagnostic feature of these corals is the well-defined dense or relatively solid column that may project into the calyx or be discontinuous in mature stages. The
column commonly shows a median lamina along the plane of the counter-cardinal septa and this lamina is continuous with that of the counter septum near the apex. Advanced forms have in addition radiating laminae and concentric growth layers. Tabulae may be numerous, sparse, or lacking, and dissepiments are absent. Range, Mississippian to Permian.

DISCUSSION

The lophophyllid corals have been in an uncertain status as to family relationship, and the taxonomic confusion surrounding some of these genera, plus the lack of reliable information on the internal structure of several types, has not contributed to resolving the uncertainties (Moore & Jeffords, 1945, p. 80-81). Recognition and verification of the significance of all the features in lophophyllids is not now possible, in spite of the several different types that have been described and the data on ontogenetic development that have been published recently. The information now available, however, is comparable to that of other coral assemblages that are currently classified as families.

Lophophyllum, in which most early workers included the lophophyllid corals, has been placed in the broadly construed family Zaphrentidae Edwards & Haime (1850) by Zittel (1900), and this classification has been followed generally for a considerable period. As the phylogenetic relationships of many Paleozoic coral genera became somewhat clearer, more precisely defined families have been proposed for closely allied genera. Reasonably accurate evaluation of significant phylogenetic trends in many instances is rendered difficult or impossible because of the polyphylectic nature of some corals and the absence of pertinent information on the ontogenetic development of other genera. Thus, lophophyllid corals have been assigned to the Streptelasmidae Nicholson & Lydekker (1922; Sokhchina, 1925; Huang, 1932; Yoh & Huang, 1932), Zaphrentidae Edwards & Haime [Zaphrentithidae (E. & H.) Moore & Jeffords, 1945] (Girty, 1915; Okulitch & Albritton, 1937; Sokhchina, 1939), Lophophyllidae Grabau (1928, 1936; Chi, 1931, 1933; Heritsch, 1936; Sanford, 1939), Metriophyllidae Hill (Hudson, 1943; Easton, 1945), and as of uncertain family relationship (Girty, 1915a; Hill, 1940; Moore & Jeffords, 1941; Smith, 1941; Jeffords, 1942). In order to segregate these genera that show similar structural characters and phylogenetic relationships, along with somewhat restricted geologic range, the lophophyllid corals have been assigned to a separate family the Lophophyllidae (Moore & Jeffords, 1945, p. 92-93). Most of the same genera have been included in the Lophophyllidae by Grabau (1928), but *Lophophyllum*, the family type genus, is now considered to differ widely from the lophophyllid corals here treated.

The Lophophyllidae were established to include *Lophophyllum* Grabau (1928), *Sinophyllum* Grabau (1928), *Malonophyllum* Okulitch & Albritton (1937), *Fasciculophyllum* Thomson (1883), *Lophopalexus* Moore & Jeffords (1941), and *Lophoticium* Moore & Jeffords (1945). Sokhchinaophyllum* Grabau (1928) was doubtfully assigned to this family on the basis of similarities of axial structure. Later study has indicated that Kinkaidia Easton (1945) and *Claviphyllum* Hudson (1942) probably constitute early representatives of the Lophophyllidiidae. The inclusion of *Fasciculophyllum* and *Claviphyllum* in this family is tentative, inasmuch as these Mississippian genera may be merely convergent types that belong in another group.

Fasciculophyllum, which has *F. dybowskii* Thomson (1883) as genotype, was interpreted by Hill (1940, p. 130-132) as including corals similar to *Cyathophyllum* eruca McCoy (1851). Hudson (1942, p. 262) suggests, however, that *C.? eruca* is generically distinct from *F. dybowskii*, the syntypes of which have been lost (Hill, 1940, p. 130), and he has proposed the genus *Claviphyllum*, based on *C.? eruca*. The original illustrations of *F. dybowskii* (Thomson, 1883, Pl. 6, figs. 23-23a) comprise a generalized view of the exterior of the corallite and a single transverse section showing long thin major septa and seemingly an elongated counter septum. These illustrations and the accompanying description are not adequate for distinguishing *Fasciculophyllum*, but additional sectioned material representing corals accepted as belonging to *F. dybowskii* may show that *Claviphyllum* is a junior synonym of *Fasciculophyllum*.

Sokhchinaophyllum includes corallites that are much larger than corals here assigned to the Lophophyllidiidae and that have a somewhat thickened counter septum reaching the axis. Typically, one or more pairs of meta-septa are elongated and thickened at their inner edges. The internal structure has the general plan characteristic of the lophophyllid corals and one species from Wolfcampian rocks of Kansas and Oklahoma has so similar a septal development that it was assigned to *Sokhchinaophyllum* (Moore & Jeffords, 1941). Coralites assignable to *Sokhchinaophyllum* on the basis of Sokhchina's illustrations (1939, Pl. 8, fig. 3), however, are characterized by a cylindrical shape, a strong development of transverse wrinkles and growth lines, and an absence of longitudinal septal grooves. The presence or lack of these septal grooves on the exterior of the unweathered theca is judged to merit consideration along with internal structures in distinguishing the phylogenetic relationships of the solitary rugose corals. Therefore, it seems probable that the lophophyllid structures seen in species of *Sokhchinaophyllum* from Russia are the result of convergent development along a phylogenetic line characterized by a Caninia-like theca, much larger size than typical *Lophophyllum*, and tachylasmoid septa. Sokhchina (1922, p. 266-267) maintains that the genotype species of
Sochkineophyllum, which is Plerophyllum artiense Soschchina (1925), should not be transferred from Plerophyllum, inasmuch as particular arrangements of septa are specific characters and are subject to duplication in different phylogenetic lines. Taenialasmoid septal development has been observed in corals ranging in age from Mississippian to Upper Permian, but the relationships of many of the forms are incompletely resolved as yet (Hudson, 1943a, p. 82-86).

Timorphylum Gerth (1921, p. 69) has been assigned by Grabau (1928) to the Lophophyllidae, and the internal structures of this genus, as illustrated by Gerth and Grabau, generally resemble those of corals here included in the Lophophyllidae. The genotype and other Permian species of Timorphylum from Timor, as well as T. simulans Moore & Jeffords (1941, p. 102) from the Middle Permian of Texas, comprise corallites characterized by a notably small diameter, and elongate cylindrical shape, and commonly an irregularly bent form. Moreover, the theca differs from that of typical Lophophyllidiidae in bearing well-developed transverse wrinkles and numerous fine growth lines, and in lacking prominent septal grooves. Lophophyllum-like internal characters of Timorphylum, therefore, like those of Sochkineophyllum, are considered to be the result of homeomorphy.

Lophophyllum Edwards & Haimé (1850), Koninckophyllum Thomson & Nicholson (1876), Arachnolasma Grabau (1922), Thysanophyllum Nicholson & Thomson (1876), Yuanophyllum Yu (1931), Rossophyllum Stuckenberg (1888), and some other genera that have been allied with the lophophyllid corals differ importantly in the specialized development of dissepiments and in having an axial column of distinctly different type from that of Lophophyllum. Cyathaxonia Michelin (1847) and other genera included in the Cyathaxoni- dae Edwards & Haimé (1850) agree with the Lophophyllidiidae in having a solid axial column and in lacking dissepiments. The Lophophyllidiidae are distinguished, however, by the insertion of the minor septa subsequent to the metasepta—not at the same time, as in the Cyathaxoniidae—and by the presence of an axial column that is formed largely by a thickening of the counter septum.

NATURE AND RELATIONSHIPS

Early work on the rugose corals was limited to description of the external features of the corallites, supplemented by delineation of such few internal characters as were visible in the calyx or in weathered specimens. Thus, many species and genera had been introduced before the importance of internal structures became recognized and techniques for sectioning were developed. Generic diagnoses were revised gradually to include these internal structures as the primary characters, but the new generic concepts were developed mainly not from study of genotype species but from examination of the internal structures of species presumed on the basis of external features to be congeneric with the genotype species. Therefore, well-defined assemblages of species have come to be designated by old generic names and workers have tended to accept such generic assignments, inasmuch as they have lacked contradictory evidence derived from the genotype and have not attached to the genotype species and the holotype specimen the importance now accorded to them by the International Rules of Zoological Nomenclature. This procedure has resulted in the taxonomically incorrect use by many paleontologists of generic names such as Zaphrentis for Mississippian zaphrentid types, Campophyllum for specialized caninids from Mississippian and Pennsylvanian rocks, and Lophophyllum for corals like Cyathaxonia prolifera. In view of this confusion, generic concepts as applied to the Rugosa should be based on examination and evaluation of the characters shown by authentic type material of the genotype rather than the misleading generic concepts proposed by these early workers.

OF LOPHOPHYLLIDID CORALS

CHARACTERS OF LOPHOPHYLLIDID GENERA

The genera assigned to the Lophophyllidiidae are illustrated, described briefly, and compared mainly on the basis of internal structures seen in authentic genotype material.

Lophophyllidium

The genus Lophophyllidium Grabau (1928) is distinguished especially by the nature of its axial column, which is relatively large in diameter and contains well-defined radiating laminae associated with a distinct median lamina (Pl. 1, figs. 2-3; Pl. 2, figs. 23-24; Fig. 6). Tabulæ are commonly few and the lower one-third of the corallite may be filled by stereoplasm. Septa are long and stout. The corallites commonly are slightly curved and conico-cylindrical in form. Syn. Sinophyllum Grabau (1928), Lophophyllum (in part) of authors. Genotype, Cyathaxonia prolifera McChesney (1860). Pennsylvanian (Upper Carboniferous) and Permian.

Lophocarionophyllum

The distinctive features of the genus Lophocarionophyllum Grabau (1922) are hook-like carinate developed on the major septa and sides of the axial column (Pl. 2, figs. 12-16). Septa unite with the large column near the apex but become shortened higher in the corallite. Tabulæ are regularly spaced and nearly horizontal. Genotype, L. acanthisepturn Grabau (1922). Mississippian (Lower Carboniferous).
MALONOPHYLLUM

The genus *Malonophyllum* Okulitch & Albritton (1937) is based on badly weathered mature region, but become shortened near the calyx. Pseudofossulae are indistinct. The interior of the axial column weathers more readily than the outer part, indicating possibly a structure like that of *Lophophyllidium*. Data now available are not adequate to permit positive recognition of *Malonophyllum*. Genotype, *M. texanum* Okulitch & Albritton (1937). Permian.

STEROYSTYLS, new genus

This new genus of lophophyllid corals, called *Stereyostylus*, is illustrated on Plate 1, figure 1; Plate 14; Plate 20, figures 3-4, 6; and Figure 8. The axial column is moderately thick and laterally compressed; it contains a median lamina which is continuous with that of the counter septum but radiating laminae are lacking. Separation of the column and counter septum occurs only in late stages. Tabulae are numerous and slightly inosculating. Septa are numerous, and only slightly thickened counter septum occurs near the apex and are thin and rhopaloid in higher sections. The corallites are characterized by a relatively open interior that lacks deposits of stereoplasm near the apex. Syn. *Lophophyllidium* (in part) Moore & Jeffords (1941, 1945), Jeffords (1942). Genotype, *Stereyostylus lenis*, n. sp. Pennsylvanian (Upper Carboniferous) and Permian.

LOPHAMPLEXUS

Structural features of *Lophampexus* Moore & Jeffords (1941) are similar to those of *Stereyostylus* except for the disappearance or discontinuity of the axial column in the upper part of the corallite (Pl. 1, fig. 4). Septa and axial column are thin or only moderately thickened, and tabulae extend across the corallite above the calicular end of the column. Genotype, *L. eliasi* Moore & Jeffords (1941). Pennsylvanian (Upper Carboniferous) and Permian.

LOPHOTICHIUM

Characteristic peculiarities of *Lophotichium* Moore & Jeffords (1945) are steeply sloping or vertical tabulae near the apex so as to simulate septa but becoming less inclined upward in the corallite (Pl. 1, figs. 5-6). Thus, the number of structures resembling septa seems to decrease in sections successively higher in the corallite. Thin major septa are joined in palmate groups about the axial column in immature stages, but become shortened near the calyx. Genotype, *L. vesicum* Moore & Jeffords (1945). Pennsylvanian (Upper Carboniferous).

CLAVIPHYLLUM

Claviphyllum Hudson (1942) comprises relatively small corallites characterized by an elongate, only slightly thickened counter septum, and, in mature stages, by the elongated, rhopaloid nature of the third and fourth pairs of major septa on the cardinal side of the counter septum, and the second and third pairs of septa on the cardinal side of the alar septa (Pl. 2, figs. 1-11). Tabulae are numerous, anastomosing, and steeply inclined. Alar pseudofossulae are not well defined. Genotype, *Cyathopsis eruca* McCoy (1851). Mississippian (Lower Carboniferous).

KINKAIDIA

Corallites assigned to *Kinkaidia* Easton (1945) are characterized by a relatively open interior that lacks deposits of stereoplasm even near the apex (Pl. 2, figs. 17-22). The counter septum is elongated.

EXPLANATION OF PLATE 1

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; protosepta are indicated by small arrows. Longitudinal sections are mostly at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.—Stereyostylus lenis, n. gen., n. sp., genotype species, from the Frisco limestone member, Wyandotte limestone, Missourian series, Pennsylvanian (Upper Carboniferous), at Kansas City, Missouri (Univ. Kansas, No. 187521b)....</td>
<td>40</td>
<td>5-8.—Lophotichium vesicum Moore & Jeffords, genotype species, from the Hale formation, Morrowan series, Lower Pennsylvanian (Upper Carboniferous), southeast of Bragg, Oklahoma (After Moore & Jeffords, 1943)........</td>
<td>16</td>
</tr>
<tr>
<td>2-3.—Lophophyllidium proliferum (McChesney) Gradac, genotype of Lophophyllidium, from beds over Coal No. 8, Trivcell cylindab, Missourian series, Pennsylvanian (Upper Carboniferous), near Springfield, Illinois (After Jeffords, 1942)........</td>
<td>21</td>
<td>7-8.—Fasciculophyllum dybowskii Thomson, genotype species, from the E1 zone, Mississippian (Lower Carboniferous) at Charleston, Scotland (After Thomson, 1883)...........</td>
<td>18</td>
</tr>
<tr>
<td>4.—Lophampexus eliasi Moore & Jeffords, genotype species, from the Hughes Creek shale member, Foraker limestone, Council Grove group, Wolfcampion series, Lower Permian, near Grand Summit, Cowley County, Kansas (After Moore & Jeffords, 1941).........</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stereostylus

Lophophyllidium

Lophotichium

Lophamplexus

Fasciculophyllum

Jeffords—Pennsylvanian Lophophyllidid Corals
but not consistently thickened. Alar and counter-lateral septa are distinctly elongated also. Tabulae rise regularly from the theca to the column. Alar pseudofossulae are not well developed. Genotype, *K. trigonalis* Easton (1945). Mississippian (Lower Carboniferous).

FASCICULOPHYLLUM

The genus *Fasciculophyllum* Thomson (1883) is poorly known if *F. dybowskii* is generically distinct from *C.? eruca*. The type specimen (Pl. 1, figs. 7-8) is relatively small and bears a thick theca. Septa are long, thin, and not thickened axially. Ontogenetic development and features shown by longitudinal sections are lacking. Genotype, *F. dybowskii* Thomson (1883). Mississippian (Lower Carboniferous).

KEY TO LOPHOPHYLLIDID GENERA

Family Lophophyllididae: Solitary corallites having solid axial column, shortened cardinal septum, elongate counter septum extending to the column near the apex, counter quadrants accelerated, and well-defined septal grooves.

- Septa and column bearing carinae
 - Lophocarinophyllum
 - Septa and column lacking carinae
 - Fasciculophyllum

- Axial column continuous in mature stages
 - Lophamplexus
 - Axial column absent or discontinuous in mature stages

- Tabulae steeply inclined, vesicular
 - Major septa unequal: third and fourth pairs of septa on cardinal side of counter septum and second and third pairs of septa on cardinal side of alar septa elongated and rhopaloid
 - Claviphyllum
 - Major septa subequal: septa-like structures near apex formed by tabulae
 - Lophotichium

- Tabulae not notably vesicular or steeply inclined
 - Alar column large, cylindrical, characterized by radiating laminae and intercepting growth layers
 - Lophophyllidium
 - Axial column laterally compressed, containing median lamina but no radiating laminae

2. *Zaphrentis*, as used by most authors, refers to similarity with the Mississippian (Lower Carboniferous) species which have been placed in *Zaphrentis* (Zaphrentis of authors) but now are regarded as distinct from that genus. The term haplophyllum might be used more properly but the characters of *Haplophyllum* are comparatively uncertain, inasmuch as internal features of the type are not known. Therefore, use of the term *Zaphrentis* is continued until the relationships of these corals and the several taxonomic problems are resolved.

EXPLANATION OF PLATE 2

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; protosepta are indicated by small arrows. Longitudinal sections are mostly at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.

FIGURE

1-11.—Claviphyllum eruca (McCoy) Hudson, genotype of *Claviphyllum*, from the *E* zone, Mississippian (Lower Carboniferous) in Scotland and England (Figure 1 after Thomson, 1883; figures 2-3, 7-9 after Hudson, 1942; figures 4-6, 10-11 after Hill, 1940) 16

12-16.—Lophocarinophyllum acanthisep tum Grabau, genotype species, from the Taiyan series, Mississippian (Lower Carboniferous) in China (After Grabau, 1922) 15

FIGURE

17-22.—Kinkaidia trigonalis* Easton, genotype species, from the Kinkaid limestone, Elvira group, Mississippian (Lower Carboniferous) in Illinois (After Easton, 1945) 18

23-24.—Sinophyllum pendulum (Grabau) Grabau, genotype of *Sinophyllum*, from the Permian in South China (After Grabau, 1928). *Sinophyllum* is here considered to be a junior synonym of *Lophophyllidium*. 15
The transition from a Mississippian zaphrentoid coral, such as Rotiphyllum, Neoaphrentis, or Triplophyllites, to a lophophyllidoid coral is not demonstrated by any known series of species or ontogenetic development within a species. Moreover, it is probable that more than one of the related zaphrentids or other ancestral coral have given rise to lophophyllidids. Continued ontogenetic study of these allied corals should clarify the relationships.

The ontogenetic and phylogenetic development of rugose corals, as has been observed in a large number of genera, precludes the derivation of lophophyllid corals that lack dissepiments from the specialized Mississippian species included in Lophophyllum and Koninckophyllum.

Lophocarinophyllum, which is reported from Mississippian rocks of China, seems ancestral in time and structural features to the Pennsylvanian genera Lophophyllum, Stereostylus, and Lophampylexus. Serial transverse sections of corallites referred to Lophampylexus show a gradual development from Stereostylus by a reduction in the axial column and a tendency towards a breviseptal phase. The stratigraphic occurrence of the species of Lophampylexus and their relative specialization indicates, however, that this genus is polyphyletic in origin. The apical region in Stereostylus and Lophophyllum is relatively similar in major structural features. Thus, Lophophyllum may have developed from Stereostylus by increasing specialization of the column and other elements. Continued accentuation of radiating and circumscribing laminae of the column and increasing specialization in Lophophyllum seem to have produced an undescribed Upper Permian coral that contains a few scattered dissepiments.

The anastomosing nature of the steeply inclined tabulae and numerous septa of Claviphyllum suggest that further modification might have produced corals similar to Lophoticium. Kinkaidia, however, seems too specialized in septal development to have given rise to Stereostylus.

CLASSIFICATION OF PALEOZOIC CORALS

Solitary and colonial Paleozoic corals that are characterized by insertion of major septa at four points are included in the Rugosa Edwards & Haime (1856). This group is recognized as a subclass of the Anthozoa in the phylum Coelenterata. The terms Tetracoralla Haeeckel (1872) and Tetraseptata Grabau (1922) have been used also to indicate this four-fold grouping of the septa, but the Rugosa is an older and much more generally adopted name. Practically all rugose corals have only two cycles of septa (major and minor septa), and commonly they contain tabulae. Dissepiments may form an important part of the internal structure or they may be lacking. Rugose corals differ from Mesozoic and Cenozoic corals that are included in the subclass Hexacoralla chiefly in the nature of the insertion of septa.

Although several early authors have proposed classificatory terms intermediate between the Rugosa and family units (Dybowskii, 1873; Haeeckel, 1876; Nicholson & Lydekker, 1889; and Post, 1902), there is no generally accepted basis for division of rugose corals into orders. Seemingly, microscopic characters of the septa and the manner of septal insertion comprise important distinctions that may merit diagnosis as characters of ordinal rank when they can be applied to a larger percentage of the genera.
DESCRIPTIONS OF GENERA AND SPECIES

Genus Lophophyllidium Grabau, 1928

Solitary lophophyllid corallites of medium size and having gently curved or straight conico-cylindrical form are included in this genus. The relatively thick theca bears prominent septal grooves, and transverse wrinkles and growth lines are developed in varying degrees. Radicals are well developed or absent. The calyx, which is deep, is characterized by a spikelike column that projects upward from the central part of the sloping calicular floor. Major septa may be straight or slightly curved; and they are thickened at the inner edge in the immature region. Except for the counter septum, they do not reach the column, although deposits of stereoplasm commonly join the septa and axial region more or less solidly. The counter septum is elongated and thickened axially to form the column. The cardinal septum is thin, appreciably shortened, and lies in a large fossula. Alar pseudofossulae are not developed prominently. In the mature region, major septa are subequal, straight, relatively long, and separated from the axial column. Short minor septa may be observed in the upper portions of some species, although their grooves on the exterior of the theca suggest earlier insertion.

A relatively large axial column is present in all stages and bears a distinct median lamina, which, in the apical region, is seen to be a continuation of the lamina along the mid-line of the counter septum. Higher in the corallite the column becomes more cylindrical, separated from the counter septum, and shows numerous radiating laminae. These radiating laminae join the median lamina at several points and are surrounded by relatively dense deposits of stereoplasm. Tabellae-like structures, which probably are growth layers, may develop within the column so as to intersect these laminae. Transverse sections of advanced forms near the calyx show a slight protrusion of the column into the cardinal fossula; this feature may give the appearance of a former attachment with the cardinal septum. Tabulae are more or less numerous in some species, although the interior of many corallites is so thickened by stereoplasm as to conceal these structures. The tabulae, when observed, slope upward rather steeply from the periphery, flatten out somewhat, and then rise abruptly as they approach the axial column. Because of the thickening about the edges of the major septa in early mature portions of corallites, tabulae may be visible in longitudinal section only between the theca and this inner wall, and between the inner wall and the axial column. Dissepiments are absent.

Genotype.—Cyathazonia prolifera McChesney (1860), Missouri, Pennsylvanian (Upper Carboniferous), Illinois.

Discussion.—Many features of the relationships and taxonomic difficulties involved in the recognition of this genus have been reviewed at some length (Jeffords, 1942, p. 201-203), and they are merely summarized here.

Late Paleozoic lophophyllid corals of North America and other parts of the world were assigned for many years to the genus Lophophyllum Edwards & Haime (1850), which has L. konincki Edwards & Haime as genotype. Re-examination of corals from the type locality of the genotype (Carruthers, 1913) has suggested that L. konincki is a junior synonym of Cyathazonia tortuosa Michaelin (1846). On the basis of features observed in C. tortuosa, Lophophyllum is recognized to include solitary corals having septa, peripheral dissepiments, and a specialized axial column. Grabau (1928) proposed the genus Lophophyllidium, with Cyathazonia prolifera McChesney (1860, p. 75) as genotype, to include Pennsylvanian corals which differ from Lophophyllum in having a more simple septal structure, prominent solid axial column, and lack of dissepiments.

Lophophyllidium, however, has not yet been accepted in all quarters. Some workers are reluctant to submerge widely adopted usage in order to follow requirements of the International Rules for Zoological Nomenclature; others have been confused by certain misleading descriptions of morphologic features, such as the erroneous identification of tabulae as dissepiments; and some European workers have concluded that Carruthers was mistaken in including his specimens to be conspecific with L. konincki. Inasmuch as available objective information suggests that L. konincki is not congeneric with Cyathazonia prolifera (Lang, Smith & Thomas, 1940; Smith, 1941), taxonomic confusion is lessened appreciably by the recognition of Lophophyllidium as a valid genus until such time as further studies are made on L. konincki.

Preliminary studies of the Pennsylvanian lophophyllid corals (Jeffords, 1942) have suggested that several different genetic lines are present among the species assigned to Lophophyllidium. Available data were insufficient to permit reliable interpretation of the significance of various features, however, and so all lophophyllid corals having a persistent column were included in Lophophyllidium. Subsequent studies have shown that distinct types of lophophyllids can be recognized in the Pennsylvanian coral faunas, each type being characterized by a combination of several characters. Therefore, Lophophyllidium is here restricted to species having a relatively large axial column that contains radiating laminae and commonly a much thickened apical portion. The curved elongate conico-cylindrical shape is characteristic of all but the spinose species.

The genus Sinophyllum Grabau (1928), with Lophophyllum pendulum Grabau (1922, p. 48) as genotype, was proposed to include corals differing
from *Lophophyllidium* in the thick, pendulum-shaped outline of the axial column as seen in transverse section. *Sinophyllum* was stated to differ also in having an inner wall formed by flexed ends of major septa. Inasmuch as observations on Pennsylvanian and Permian lophophyllid corals have indicated that the inner wall seen in illustrations of the genotype species of *Sinophyllum* (pl. 2, figs. 23-24) does not differ from that of other lophophyllid corals, and as the diameter and shape of the axial column alone were judged not sufficiently diagnostic to warrant generic separation, *Sinophyllum* was considered a junior synonym of *Lophophyllum*. Inasmuch as both *Sinophyllum* and *Loplophyllum* (JEF.ORDS, 1942, p. 209-210). Later study, embracing a considerably larger number of specimens, indicates, in fact, that features of the axial column can be correlated with other characters so as to constitute a valid basis for generic division of these corals. Thus, corallites having a relatively large cylindrical column that contains radiating and intersecting laminae form one genetic group (*Lophophyllidium*), whereas another group (*Stereostylus*) includes those species characterized by a relatively smaller and laterally compressed column that lacks radiating laminae. Inasmuch as both *Lophophyllidium pendulum*, the genotype of *Sinophyllum*, and *Cyathaxonia prolifera*, the genotype of *Lophophyllidium*, are characterized by these radiating laminae and circumscribing layers, they belong with the former group. Therefore, *Sinophyllum* is still considered to be a junior synonym of *Lophophyllidium*.

Lophophyllidium is distinguished from *Lophocarinothamnium* by the lack of carinae, *Lophocarpamplexus* by the persistence of the axial column throughout the corallite, and from *Lophoticium* by the larger column and the markedly less inclined character of the tabulae. *Lophophyllidium* seems most closely allied to *Stereostylus*, and in earlier papers these corals were not separated. The character of the axial column as seen in transverse section, however, particularly the radiating laminae of *Lophophyllidium*, readily distinguish this genus from *Stereostylus*. Other characters of *Lophophyllidium* that are absent in *Stereostylus* include the more-cylindrical form (Fig. 5), thicker theca, extensive deposits of stereoplasma, and a rounded projection of the column into the cardinal fossula in adult stages. Moreover, the septa in *Lophophyllidium* increase in radial length proportionately with increases in the diameter of the corallite, whereas in *Stereostylus* the septa become relatively short in relation to the diameter of transverse sections (Fig. 4).

Besides the genotype and other species here referred to *Lophophyllidium*, the genus includes the corals described as *Lophophyllidium prolifera* (McCHESNEY BROWN (1909), GYRTY (1925a, p. 19), SOSKINNA (1928, p. 371), and HUANG (1932, p. 28); *L. profundum* (EDWARDS & HATME), CRONEIS (1930, p. 134); *L. pendulum* GRABAU (1922, p. 48; 1928, p. 100); *L. prolifera sauridens* WHITE (1877, p. 101) and KAYSER (1883); *Lophophyllidium magnificum* JEFFORDS (1942, p. 238); *L. extumidum* MOORE & JEFFORDS (1945, p. 93); and *L. eastoni* MOORE & JEFFORDS (1945, p. 108), and probably other forms too scantily described and illustrated to permit recognition of significant features.

Figure 5.—Diagram showing relationship of the length of corallite to diameter at different growth stages in *Lophophyllidium hadrum*, n. sp., *L. wewokanum*, n. sp., and *L. plummeri*, n. sp.

Corallites belonging to these species are rather similar in form and size. These data, however, indicate that *L. hadrum* is the most cylindrical, *L. wewokanum* the most conical, and *L. plummeri* intermediate in form. Measurements of length and diameter were made on complete corallites so that these data also indicate the variation in size and form within these species.
Occurrence.—Pennsylvanian (Morrowan to Virgilian) and Permian (Wolfcampian to lower Guadalupian) of North America, and Lower Permian of Russia and China.

Lophophyllidium hadrum, new species

Plate 3, figures 1-4; Plate 10, figure 1; Figures 5-6

This species comprises elongate corals that are conico-cylindrical in the lower part and cylindrical above. Commonly the corallites are curved slightly in the alar plane, particularly in the apical region. The theca is very thick, and externally it bears sharply incised longitudinal grooves and ridges. Transverse markings consist of a few growth lines and relatively numerous narrow wrinkles. The calyx is deep and contains the large column at the axis. Radicles are lacking. The complete type specimen is 37 mm in length, and 16.3 mm in diameter at the calyx. The variation in size and form is shown on Figure 5.

The distinctly conical apical part of these corallites is characterized by a shortened cardinal septum, a counter septum that is long and considerably thickened axially, and long thickened major septa. These septa are joined to the column and to each...
other by thick deposits of stereoplasm. Typically, the corallite is completely filled except for the interseptal spaces midway between the theca and the axial region. Somewhat higher in the corallite, the septa withdraw slightly from the column and become rhopaloïd. Stereoplasm may fill some of the spaces between the septa and the column. The counter septum is attached to the column, although it is very thin in relation to the large cylindrical column. In higher sections the septa maintain their slightly rhopaloïd character except in the calyx where they are thin. The cardinal septum remains notably shortened, and the counter septum withdraws from the column so as to become shorter than adjacent meta-septa. The septal formula in the apical region of the type specimen is K8A3C3A7K. In the calyx it is K8A3C3A7K. Minor septa are relatively short.

The axial column is joined to the counter septum in the apical region, and the median lamina of the septum is continuous with the lamina of the column. Slightly higher sections show a large oval column that is separated from the counter septum. A median lamina and several radiating laminae, which seem not to match the position of septa, characterize this and later stages. The column is cylindrical in the upper part of the corallite and lacks any indication of attachment with the counter septum. In the calyx of large corallites, the column may be more or less open so that the laminae appear as solid structures that are enclosed in porous stereoplasm. Tabulæ are largely concealed by stereoplasm in the apical region, but in the cylindrical portion of the corallite they are closely spaced and rise regularly towards the column. The cardinal fossula is moderately large and persists into the calyx; pseudo-fossulae are inconspicuous in the immature stages and are lacking higher in the septa.

Discussion.—The corals referred to this species are distinguished readily from associated corallites belonging to Stereoestylus by the elongated curved conico-cylindrical form and the lack of radicles. These corals are notably smaller in diameter than Lophophyllidium plumeri, n. sp. and L. wewokanum, n. sp. (Fig. 5), and the mature corallites are much larger than those of L. asarcum, n. sp. and L. lanoös, n. sp. L. hadrum approaches L. proliferum (McChesney, 1860) in the number of tabulæ and moderate specialization of the axial column. These species may be separated, however, by the greatly thickened theca and lesser amounts of stereoplasm found in L. hadrum.

Occurrence.—Cherokee shale, Desmoinesian series, Pennsylvanian (Upper Carboniferous). The type material was collected by J. B. Owen from the Cherokee shale at Tillman pit, NE NE sec. 23, T. 42 N., R. 26 W., Henry County, Missouri (Univ. Kansas loc. 323). Other specimens are from the Cherokee shale, 2 miles west of Pittsburg, Cherokee County, Kansas (Univ. Kansas loc. 5136), and the State Park, Crawford County, Kansas (Univ. Kansas loc. 999); abundant material from the cap rock above the Mineral coal collected by R. C. Moore and H. W. Compton along the road in secs. 4 and 8, T. 31 S., R. 24 E., southwest of Pittsburg, Kan. (Univ. Kansas locs. 7870 and 7874); and from a limestone in the upper Cherokee shale at a strap pit, 3 miles west of Oneita, Okla. (Univ. Kansas loc. 2999).

Material studied.—About 200 corallites were included in the available material, and representative specimens were sectioned for study.

Type.—University of Kansas No. 32321b, from Tillman pit, Henry County, Missouri.

Lophophyllidium wewokanum, new species

Plate 4, figures 4-7; Plate 7, figure 5; Plate 10, figures 4-5; Plate 11, figure 3; Figures 5-6

Lophophyllium profundum Girty, 1915, U. S. Geol. Survey, Bull. 344, p. 19, pl. 2, figs. 1-6a, pl. 6, figs. 12, 14.

This species includes moderately large corallites having an evenly curved conico-cylindrical form. The theca, which is thick, bears sharp septal grooves and broad flattened interseptal ridges; transverse wrinkles are rare although growth lines occur in abundance. Radicles are lacking. The calyx is

EXPLANATION OF PLATE 3

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; proto-septa are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of the transverse sections is indicated by small italic figures.

FIGURES PAGE
1-4.—Lophophyllidium hadrum, n. sp., from the Cherokee shale, Desmoinesian series, Pennsylvanian (Upper Carboniferous), Kansas and Missouri... 23
1a-c.—Specimen (Univ. Kansas No. 513621a) from the Cherokee shale, 2 miles west of Pittsburg, Cherokee County, Kansas. a-d. Transverse sections showing the gradual decrease in stereoplasm and increase in complexity of the column upward in the corallite. e, Longitudinal section slightly out of the axial plane at the base.
2a-d.—Specimen (Univ. Kansas No. 323211c) from the Cherokee shale at the type locality, Tillman pit, NE NE sec. 23, T. 42 N., R. 26 W., Henry County, Missouri. a-c. Transverse sections. d, Longitudinal section.
3a-e.—Specimen (Univ. Kansas No. 787021b) from the cap rock above the Mineral coal, Cherokee shale, along road in secs. 4 and 8, T. 31 S., R. 24 E., southwest of Pittsburg, Kan. a-b. Transverse sections. c, Longitudinal section showing the elongate conico-cylindrical form typical of this species.
Lopophyllidium hadrum, n. sp.

Jeffords—Pennsylvanian Lophophyllidid Corals
relatively deep and contains a large striated blade-like column in the lower portion. The type specimen is 36 mm in length and 13.3 mm in maximum diameter at the calyx. The form of the corallite and range in size are shown in Figure 5.

The interior of these corallites is notably thickened by stereoplasm so that features of the immature region are largely concealed. Near the apex septa are long except for the much shortened cardinal septum. The counter septum is extended into the column. In early maturity septa reach nearly to the column and they are slightly rhopaloid; the cardinal septum is very short and the counter septum is not continued into the column. At the base of the calyx the cardinal septum is about one-half the length of other septa, the counter septum is slightly shorter than adjacent metasepa, and other major septa extend as thin plates nearly to the column. Minor septa are developed near the calyx but they remain rudimentary. The septal formula about 6 mm above the apex of the type specimen is K7A3C3A7K, and in the calx it is K8A4C4A8K. These formulae indicate the strong counter acceleration.

The axial column is relatively large throughout the corallite and in longitudinal section it appears to be made up of conical laminae. In transverse sections near the apex the column is oval in outline and attached to the counter septum. Sections higher in the corallite show that the column is nearly cylindrical except for a sharp point projecting into the cardinal fossula. A median lamina, radiating laminae, and circumscribing layering is conspicuous in transverse sections. These circumscribing markings and the conelike structures seen in longitudinal sections represent growth layers that are secondary to the median and radiating laminae. Whereas these growth layers constitute a conspicuous feature of the column in polished sections, the median and radiating laminae alone are evident in thin sections of the column. Tabulae are largely concealed by stereoplasm; near the calyx they may be observed to rise abruptly from the theca to the column at irregular intervals. The cardinal fossula is very large and it forms a conspicuous open space as seen in transverse sections in the thickened immature region. Alar pseudofossilae are scarcely identifiable.

Discussion.—Girty (1915) classified the corals of the Wewoka formation as a conico-cylindrical form, Lophophyllum proliferum (McChesney) and a radicle-bearing from described as L. proliferum var. radicosum. He noted many features of corals here described as Lophophyllum wewokanum and recognized that these corals differed materially from some other lophophyllid corals. Girty’s observations on these corals are confirmed except that the radicle-bearing species do not seem to be gradational from the conico-cylindrical species, here named Lophophyllum wewokanum.

This species closely resembles Lophophyllum plummeri, n. sp. from the Wayland shale of Texas in general shape of the corallite, large axial column, and extensive deposits of stereoplasm. L. wewokanum is distinguished, however, by the broader corallite form (Fig. 5), greater number of major septa, and notably shorter cardinal septum. The breadth of the corallite and the larger column clearly separate L. wewokanum from L. hadrum, n. sp., which occurs in the Cherokee shale.

Occurrence.—Wewoka formation, Desmoinesian series, Pennsylvanian (Upper Carboniferous). The type material is from cen. W. side sec. 25, T. 5 N., R. 8 E., 1 mile northwest of Allen, Colgate quadrangle, Oklahoma (Univ. Kansas)

EXPLANATION OF PLATE 4

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of the transverse sections is indicated by small italic figures.

FIGURE 1-8.—Lophophyllum asparum, n. sp., from the Burro-oka shale member, Deer Creek formation, Shawnee group, Virgilian series, Pennsylvanian (Upper Carboniferous), at a quarry along U. S. Highway 60, 3 miles west of Pawhuska, Osage County, Oklahoma. a-e.—Specimen (Univ. Kansas No. 267521e), showing the decreasing stereoplasm in the upper parts of the corallite. Collected from west of cen. sec. 24, T. 5 N., R. 8 E., Colgate quadrangle, Oklahoma. a-d, Transverse sections. e, Longitudinal section. a-c.—Specimen (Univ. Kansas No. 267521c). a-b, Transverse sections. c, Longitudinal section. a-f.—Type specimen (Univ. Kansas No. 2675-21a) showing the increasing complexity of the axial column upward in the corallite. a-e, Transverse sections. f, Longitudinal section.

FIGURE 4a-d.—Specimen (Univ. Kansas No. 248021a) showing the decrease in stereoplasm in the upper parts of the corallite. Collected from west of cen. sec. 24, T. 5 N., R. 8 E., Colgate quadrangle, Oklahoma. a-d, Transverse sections. d, Longitudinal section.

5.—Transverse section in the calyx of specimen (Univ. Kansas No. 210921c) from the type locality, cen. W. side sec. 25, T. 5 N., R. 8 E., 1 mile northwest of Allen, Oklahoma.

6.—Transverse section of a small specimen (Univ. Kansas No. 116621a) from cen. S. side sec. 32, T. 7 N., R. 9 E., west of Lake Holdenville, Wewoka quadrangle, Oklahoma.

7a-c.—Transverse sections of the type specimen (Univ. Kansas No. 210921d) from the same locality as figure 5.
Lophophyllidium osorcum, n. sp.

Lophophyllidium wewokanum, n. sp.

Jeffords—Pennsylvanian Lophophyllidid Corals
The cardinal septum is thin but not markedly shortened, and the counter septum extends into the column and about their inner edges by stereoplasm. Higher in the corallite the septa are long and rhopaloid except for the short cardinal septum. Within the lower part of the calyx the septa are long, thin, and bilaterally directed about the counter-cardinal plane. Major septa increase in length regularly throughout growth (Fig. 4), and the rate of insertion of septa decreases but slightly in maturity. The septal formula about 3 mm above the apex of the type specimen is $K4A2C2-A4K$, and in the calyx it is $K6A3C3A6K$. Minor septa occur as rudimentary ridges in maturity.

The axial column is laterally compressed in the apical region, firmly attached to the counter septum, and united with the axial edges of other major septa by stereoplasm. Higher in the corallite the column separates from the counter septum and becomes more cylindrical in form; it contains prominent circumscribing growth layers and indistinct median and radiating laminae. Tabulae are largely concealed by the dense deposits of stereoplasm, but in a few longitudinal sections they are observed as relatively rare structures that rise steeply from the theca to join the column or thickened area about the axial edges of the septa. The cardinal fossula is large and in early stages it forms a prominent open space about the thin cardinal septum. Alar pseudofossulae are not large, but in the thickened immature region they form slightly larger spaces than those between metasepta.

Discussion. This species is characterized by a small conical form that becomes cylindrical only in a few large individuals. It may be separated from other species of *Lophophyllidium* readily by the small size, conical form, and bilateral arrangement of the septa in the calyx about the counter-cardinal plane. *L. coniforme* seems to show several primiti-...
JEFFORDS—Pennsylvanian Lophophyllidid Corals
tive characters, such as a conical form, prominent alar pseudofossulae, strong bilateral symmetry, and a relatively simple column for this genus. Whereas the structure of the axial column indicates that this species belongs in *Lophophyllidium*, other features approach those of *Stereostylus distinctus* and other species of the S. nevelli group (Jeffords, 1942).

Occurrence.—Lansing and Pedee groups, Missourian series, Pennsylvanian (Upper Carboniferous). The type specimen is from the Vilas shale, Lansing group, 2.5 miles west of Wann, Washington County, Oklahoma (Univ. Kansas loc. 1764). Other specimens are from the same formation 0.25 mile northwest of Wann, Oklahoma (Univ. Kansas locs. 1874, 2212); SE sec. 20, T. 29 S., R. 13 E., north of Copan, Washington county, Oklahoma (Univ. Kansas loc. 2209); along Kansas Highway 47, 6 miles east and 0.5 mile south of Fredonia, Wilson County, Kansas (Univ. Kansas loc. 7713). This species occurs also in the Hickory Creek shale member, Plattsburg limestone, Lansing group at NW cor. sec. 10, T. 27 S., R. 17 E., Wilson County, Kansas (Univ. Kansas loc. 1727); on east-west road, SE cor. sec. 32, T. 28 S., R. 16 E., about 2.5 miles east of Roger, Wilson County, Kansas (Univ. Kansas loc. 1745); brick plant quarry, cen. sec. 33, T. 29 S., R. 16 E., Wilson County, Kansas (Univ. Kansas loc. 1753); and SE NE cor. sec. 3, T. 30 S., R. 16 E., southeast of Fredonia, Wilson County, Kansas (Univ. Kansas loc. 4854). The Eudora shophora member, Stanton formation, Lansing group, has yielded this species at cen. W. edge sec. 24, T. 23 S., R. 16 E., Allen County, Kansas (Univ. Kansas loc. 1735); SE cor. sec. 6, T. 34 S., R. 15 E., Montgomery County, Kansas (Univ. Kansas loc. 1782); railroad cut SW cor. T. 29 N., R. 13 E., northeast of Copan, Oklahoma (Univ. Kansas loc. 2342); 7 miles northwest of Copan, Oklahoma (Univ. Kansas loc. 6751); 5 miles northeast of Copan, Oklahoma (Univ. Kansas loc. 6820); 3 miles north and 2 miles east of Copan, Oklahoma (Univ. Kansas loc. 7159); cen. 8. line sec. 21, T. 29 S., R. 13 E., Washington County, Oklahoma (Univ. Kansas loc. 7885); and old railroad cut, 5 miles north of Copan, Oklahoma (Univ. Kansas loc. 7020). Representatives of this species were identified also from the Weston shale, Pedee group at a brick plant quarry, near cen. SE sec. 1, T. 9 S., R. 22 E., southeast of Leavenworth, Leavenworth County, Kansas (Univ. Kansas loc. 1710); quarry north of airfield, Leavenworth, Kansas (Univ. Kansas locs. 5071); railroad cut near brick plant, east of Peru, Chautauqua County, Kansas (Univ. Kansas loc. 6784); and 0.75 mile east of Beverly Station, Platte County, Missouri (Univ. Kansas loc. 1725).

Material studied.—This species occurs abundantly at most of the localities, and the collections contain more than 1,500 corallites. Approximately 30 representative corallites were sectioned for study.

Type.—University of Kansas No. 176421f, from the Vilas shale, 2.5 miles west of Wann, Okla.

Lophophyllidium asarcum, new species

Plate 4, figures 1-3; Plate 7, figure 3; Plate 8, figures 2-3; Figure 6

Small conico-cylindrical corallites that are slightly curved in the plane of the alar septa are included in this species. The lowermost 2 or 3 mm are bent abruptly, and a small thickened base for attachment occurs commonly on the cardinal side. The theca is very thick and bears sharply incised septal grooves and ridges. Low wrinkles occur at more or less regular intervals; radicles are absent. The calyx is deep and contains the prominent cylindrical axial column. The type specimen is 20 mm in length and 5.8 mm in maximum diameter at the calyx. Other specimens average 20 mm in length and 7 mm in diameter; the maximum length is 23 mm and the maximum diameter is 10 mm.

The apical region of these corals contains long septa that are firmly joined in the axial area by dense deposits of stereoplas. Slightly higher sec-

EXPLANATION OF PLATE 6

All figures three times natural size. Transverse sections are oriented with the cardinal septum at the bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.

Figure 1-9.—Lophophyllidium coniforme, n. sp., from the Lansing and Pedee groups, Missourian series, Pennsylvanian (Upper Carboniferous). 28

1a-d.—Specimen (Univ. Kansas No. 702321c) from the Eudora shophora member, Stanton formation, Lansing group, at old railroad cut, 5 miles north of Copan, Washington County, Oklahoma. a-c, Transverse sections. d, Longitudinal section.

2.—Transverse section in the immature region of specimen (Univ. Kansas No. 176421g) from the Vilas shale, Lansing group, at the type locality of the species, 2.5 miles west of Wann, Washington County, Oklahoma.

3a-c.—Specimen (Univ. Kansas No. 171021c) from the Western shale, Pedee group, at a brick plant quarry, near cen. SE sec. 1, T. 9 S., R. 22 E., southeast of Leavenworth, Leavenworth County, Kansas. a-b, Transverse sections. c, Longitudinal section.

4a-b.—Transverse sections of a large specimen (Univ. Kansas No. 484421b) from the Hickory Creek shophora member, Plattsburg limestone, Lansing group, SE NE sec. 3.

5a-d.—Specimen (Univ. Kansas No. 175321) from the Weston shale, containing relatively small amounts of stereoplas. Collected from the Hickory Creek shophora member, Plattsburg limestone, cen. sec. 33, T. 29 S., R. 16 E., Wilson County, Kansas. a-c, Transverse sections. d, Longitudinal section.

6a-d.—Specimen (Univ. Kansas No. 175321a) from the same locality as figure 5. a-c, Transverse sections. d, Longitudinal section.

7a-d.—Specimen (Univ. Kansas No. 507121a) from the Weston shale at a quarry north of airfield, Leavenworth, Kansas. a-c, Transverse sections. d, Longitudinal section.

8a-e.—Moderately large specimen (Univ. Kansas No. 702321d) from the same locality as figure 1. a-d, Transverse sections. e, Longitudinal section.

9a-e.—Type specimen (Univ. Kansas No. 176421f) from the same locality as figure 2. a-d, Transverse sections. e, Longitudinal section.
Lophophyllidium coniforme, n.sp.

Jeffords—Pennsylvanian Lophophyllidid Corals
tions show long thick septa that are joined to the column only by scattered deposits. The cardinal septum is short and thin, whereas the counter septum is extended into the column. In the early mature portions of the corallites the septa are appreciably thickened and extend two-thirds the distance to the column. They may be slightly rhopaloid. Minor septa are present as distinct ridges between the major septa at this stage. The counter septum is partially or completely separated from the column. Near the calyx the major septa are long and slightly rhopaloid, the counter septum is equal in length to the metasepta, and the cardinal septum is short. The quadrants are accelerated subequally in the apical region, but in maturity the counter quadrants are strongly accelerated as shown by the septal formula of the upper part of the type section, which is KcAcSC3A6K.

The axial column is functionally joined to the counter septum in the apical region, but it becomes distinctly separated higher in the corallite. The column is laterally compressed in the youthful stages, but it is large and nearly cylindrical near the calyx. Typically, a median lamina and several radiating laminae are evident in the column, and near the calyx concentric laminations are recognized. In longitudinal section the upper part of the column seems to be formed by superposed cones of thickened stereoplasm, possibly adapted from the axial portions of tabulae. Tabulae are mostly concealed in the apical portions, but they appear as rather evenly spaced inclined structures in the mature regions. The cardinal fossula is prominent throughout growth, but alar pseudofossulae are inconspicuous even in the immature stages.

Discussion.—This species is characterized by its small size, comparatively few septa, and distinctly thickened area of attachment at the apex. Typically, the axial column remains attached to the counter septum until late maturity. Lophophyllidium asar-cum is much smaller than L. plummeri, n. sp., L. wewokanum, n. sp., and L. hadrum, n. sp., and is separated from L. lanosum by the more cylindrical form, abundant tabulae, and inconspicuous pseudofossulae.

Occurrence.—Burroak shale member, Deer Creek formation, Shawnee group, Virgilian series, Pennsylvanian (Upper Carboniferous). Collected at a quarry along U. S. Highway 60, 3 miles west of Pawhuska, Osage County, Oklahoma (Univ. Kansas loc. 2675).

Material studied.—Sixteen well preserved corallites were available, and six representative specimens were sectioned.

Type.—University of Kansas No. 267521a.

Lophophyllidium lanosum, new species

Plate 8, figure 5; Plate 6, figures 1-2; Figure 6

This species includes small to medium-sized corallites having a straight to slightly curved conical-cylindrical form. The theca bears conspicuous longitudinal grooves and ridges that are crossed by sharp wrinkles and coarse growth lines. Radicles are lacking. The calyx is moderately deep and contains in the lower part the laterally compressed axial column. The type specimen, which is about average size for mature individuals, is 17.5 mm in length and 9.6 mm in maximum diameter at the calyx.

The lower part of these corallites is essentially solid; spaces between the septa and around the column are filled by stereoplasm. The median lamina of the septa, excepting that of the counter...
Jeffords — Pennsylvanian Lophophyllidid Corals
septa assume a radial arrangement about the column and they are comparatively thin. The counter septum has withdrawn from the column. In late maturity the major septa extend nearly to the column and they are comparatively thin. The counter septum is not distinct from the metasepta. Minor septa occur as short vertical elements alternating between the major septa. Typically, the septa assume a radial arrangement about the counter-cardinal plane, and alternating major septa may be slightly shortened. The septal formula about 5 mm above the apex in the type specimen is K5A3C3A6K, and in the calyx of the same coralite is K6A8C3A6K.

The axial column in the mature stage is characterized by a median lamina and numerous radiating laminae that project to the periphery of the column. The column is large and slightly compressed in transverse section. Tabulae are not observed in the apical region owing to the dense thickening. They are relatively scarce in the mature region. The cardinal fossula is large, and it forms a conspicuous open space in the lower portions of the corallites. Alar pseudofoissulae are relatively prominent near the apex, although they disappear in maturity.

Discussion. — This species is characterized by prominent alar pseudofoissulae and large cardinal fossulae in the immature region, and the somewhat laterally compressed axial column. Lophophyllidium lanosum is much smaller than L. plummeri, n. sp., and lacks the abundant radicles seen in L. spinosum, n. sp. The apical region is solidly filled by stereoplasm, but the mature portions of the corallites are notably open. Strongly developed alar pseudofoissulae and other primitive characters are generally similar to those of the Stereostylus nevelli group although L. lanosum is distinguished by the character of the axial column.

Occurrence.—Jacksboro limestone, Graham group, Cisco (Virgilian) series, Pennsylvanian (Upper Carboniferous). The representatives of this species have been collected by R. H. Kiino from Rock Island railroad cut, 3.5 miles southeast of Jacksboro, Jacks County, Texas (Univ. Kansas loc. 7768).

Material studied.—The available material comprises four corallites, three of which were sectioned for study.

Type.—University of Kansas No. 778822c.

Lophophyllidium plummeri, new species

Plate 5, figure 4; Plate 7, figures 2, 6-7; Plate 9, figures 3-7; Plate 10, figures 2-3; Plate 11, figures 1-2, 5-6; Figures 1, 5-6

Lophophyllum profundum PLUMMER & MOORE, 1921, Univ. Texas Bull. 2192, p. 147, pl. 20, figs. 1, 2, 4, 5.

This species includes elongate slightly curved corallites having a conical form near the apex and being cylindrical above. In about one-half the individuals an alar septum is on the concave side; the others are straight or the concavity lies on the cardinal or counter side, or is intermediate in position. The theca, which is thick, bears very sharp ridges and septal grooves. Broad wrinkles and coarse growth lines run transversely across the corallites. Radicles are lacking, and the corals seem to have been attached by a very small area at the apex. The calyx is moderately deep and it contains the large striated column at the axis. The type specimen is 35 mm in length and 13 mm in maximum diameter at the base of the calyx. These corals range greatly in size as shown in Figures 1 and 5.

The corals referred to this species are more or less solidly filled in the lower parts by stereoplasm. Transverse sections near the apex show a large oval column that is continuous with the counter septum. The axial edges of the closely packed major septa extend to the periphery of the column, and the intervening spaces are filled with stereoplasm. The cardinal septum is very short. The thickening of the vertical elements decreases gradually upward, although stereoplasm is entirely absent only near the calyx in larger corallites. The cardinal septum is about two-thirds the length of adjacent septa in early maturity, and the counter septum is equal in length to the metasepta. The major septa are closely joined to the column by stereoplasm. Median laminae represent minor septa between the major septa, but commonly they do not appear within the theca until late maturity. Near the calyx the septa are long and rhopaloid, excepting the cardinal septum. In the calyx the septa are relatively thin. The septal formula about 6 mm above the apex of the type specimen is K5A4C3A6K, and the septal formula near the calyx is K6A5C5A6K. Moderately large corallites have about 22 major septa in the mature regions.

The axial column is laterally compressed near the apex and contains a median lamina that is continuous with the lamina of the counter septum. Progressively upward in the corallite the column becomes larger and more cylindrical in shape. The median lamina is joined at different points by numerous pairs of laminae that radiate outward through the column. The column is concentrically laminated as seen in transverse section, but thin sections indicate that these concentric markings are due largely to differences in color and density of the stereoplasm; the median and radiating laminae are the fundamental structural elements. The column is evenly rounded in the counter quadrants, but it develops a short projection into the cardinal fossula. Tabulae are largely concealed in the lower portions; a few tabulae are observed in the mature region between the theca and the thickened axial area. The cardinal fossula is large and may form an open space that is surrounded by dense calcite near the
Moreover, the cardinal septum is thicker and stouter in the Pennsylvanian fossils and rock formations. In many features of internal structure this species resembles conico-cylindrical corallites from the Weoka shale that are called Lophophyllidium wekkanum, n. sp. L. plummeri, however, is slightly more cylindrical and elongated in form (Fig. 5), and contains fewer major septa in the mature region. Moreover, the cardinal septum is thicker and stouter than in L. wekkanum. General similarity in external form and in many features of internal structure as shown by these species from widely separated stratigraphic horizons in the Pennsylvanian clearly indicates that careful study is necessary to avoid confusing such convergent types that occur in similar facies. This species is named for F. B. Plummer, of the Texas Bureau of Economic Geology, who has contributed importantly to knowledge of Pennsylvanian fossils and rock formations.

Discussion.—The external features of this species resemble conico-cylindrical corallites from the Weoka shale that are called Lophophyllidium wekkanum, n. sp. L. plummeri, however, is slightly more cylindrical and elongated in form (Fig. 5), and contains fewer major septa in the mature region. Moreover, the cardinal septum is thicker and stouter than in L. wekkanum. General similarity in external form and in many features of internal structure as shown by these species from widely separated stratigraphic horizons in the Pennsylvanian clearly indicates that careful study is necessary to avoid confusing such convergent types that occur in similar facies. This species is named for F. B. Plummer, of the Texas Bureau of Economic Geology, who has contributed importantly to knowledge of Pennsylvanian fossils and rock formations.

Occurrence.—Graham group, Cisco (Virgilian) series, Pennsylvanian (Upper Carboniferous). The type specimens are from the Wayland shale, 1 mile north of Gunsight, Eastland County, Texas (Univ. Kansas loc. 894). Other corallites are from the same formation 1 mile south of Gunsight, Texas (Univ. Kansas loc. 49); 1 mile north of Weeden school, northwest of Brownwood, Brown County, Texas (Univ. Kansas loc. 2170); 1 mile west of Graham, Young County, Texas (Univ. Kansas loc. 196) above the creek on Exall Lease, 4.5 miles southwest of Gunsight, Texas (Univ. Kansas loc. 395); 5 miles west of Eastland, Eastland County, Texas (Univ. Kansas loc. 51); and at the point of a hill on the south side of road, west of creek, 1 mile west of Graham, Texas (Univ. Kansas loc. 1157). Other specimens are from the Gunsight limestone in Breckenridge quadrangle, Stevens County, Texas (Univ. Kansas loc. 116); southwest side hill, 1.5 miles south of Avis, Jacks County, Texas (Univ. Kansas loc. 4710); 5 miles east of Cisco, Texas (Univ. Kansas loc. 3268); 1 mile south of Gunsight, Texas (Univ. Kansas loc. 2317); and at Weeden school, 12 miles northwest of Brownwood, Texas (Univ. Kansas loc. 895). The Jacksboro limestone 4.5 miles east of Jacksboro, Jacks County, Texas (Univ. Kansas loc. 7767) also contains representatives of this species. The corals from the Wayland shale and Gunsight limestone were collected by R. C. Moore, and those from the Jacksboro limestone by R. H. King.

Material studied.—About 1,500 well-preserved corallites were contained in the collections, and 33 specimens were sectioned for study.

Type.—University of Kansas No. 89421b, from the Wayland shale, 1 mile north of Gunsight, Texas.

Lophophyllidium spinosum, new species

Plate 6, figures 1-2; Plate 8, figures 6, 8; Plate 12, figures 1-4; Plate 13, figures 1-4; Figure 6

Lophophyllum profundum radians L. Plummer & Moore, 1931, Univ. Texas Bull. 2132, pl. 20, fig. 3.

Relatively large conical corals having a slight bend in the apical region are included in this species. Commonly, the cardinal septum is on the concave side of the corallite. The theca is thin and it bears sharp ridges and broad septal grooves; transverse markings comprise numerous low wrinkles and growth lines. The surface of the corallite from the apex to the top is covered by numerous radicles that are arranged in horizontal rows about 2.5 mm apart. These radicles are conical in form and contain a central hollow tube. The calyx, which is deep, contains the large bladelike axial column in the lower part. The type specimen is 29 mm in length and 20.3 mm in maximum diameter at the top of the calyx.

Transverse sections in the apical region of these corals show a long counter septum that is continuous with the laterally compressed column. The median lamina of the septum is continuous with that of the column. The cardinal septum is short, and the other major septa extend nearly to the column where they are thickened and joined by sterosperm. In early maturity the counter septum is

EXPLANATION OF PLATE 8

All figures three times natural size.

1.—Lophophyllidium coniforme, n. sp., from the Lansing and Pedee groups, Missourian series, Pennsylvanian (Upper Carboniferous). Specimens (Univ. Kansas No. 788521d) from the Eudora shale member, Stanton limestone, Lansing group, at sec. 21, T. 20 S., R. 13 E., Wilson County, Kansas. 28

2.—Lophophyllidium asarcum, n. sp., from the Burroak group, Deer Creek formation, Shawnee group, Virgilian series, Pennsylvanian (Upper Carboniferous), at quarry along U. S. Highway 60, 3 miles west of Pawhuska, Osage County, Oklahoma. 30

3.—Specimen (Univ. Kansas No. 26721c).

4, 7.—Stereoptyla annae, n. sp., from the Howard limestone, Wabansssee group, Virgilian series, Pennsylvanian (Upper Carboniferous). 58

4.—Specimen (Univ. Kansas No. 771721f) from mine dump east of U. S. Highway 60N at southwest edge of Osage City, Osage County, Kansas. 32

6.—Lophophyllidium tanusum, n. sp., from the Jacksboro limestone, Graham group, Cisco (Virgilian) series, Pennsylvanian (Upper Carboniferous), at Rock Island railroad cut, 3.5 miles southeast of Jacksboro, Jacks County, Texas. Type specimen (Univ. Kansas No. 776822e). 34

7.—Specimen (Univ. Kansas No. 771721x) from the same locality as figure 4.

8.—Specimen (Univ. Kansas No. 776722b) from the Jacksboro limestone, 4.5 miles east of Jacksboro, Texas. 34

8.—Specimen (Univ. Kansas No. 778821b) from the same locality as figure 5.
JEFFORDS—Pennsylvania Lophophyllidid Corals
The axial column has a well-defined median lamina in the apical region, and radiating and circumcising laminae increase in prominence upward as the column becomes progressively larger. In longitudinal section the column is not completely solid; small openings and tentlike laminae are conspicuous in most specimens. Tabulae are relatively numerous and rise steeply to join the column. They are spaced about 1.8 mm apart at the periphery. The cardinal fossula is indicated by the conspicuously shortened cardinal septum; alar pseudofossulae are weak. Stereoplasm forms about the rhopaloid edges of the septa in the immature region, but it does not form an extensive filling. In longitudinal section the corallite is divisible into a peripheral area crossed by tabulae, a more or less solid area representing the rhopaloid septa, a narrow tabular area, and the broad axial column.

Discussion.—This species is characterized by an abundance of radicles over the corallite and by the tachylasmoid development of the septa in maturity. The conical form, radicles, and open character of the immature region readily distinguish *Lophophyllidium spinosum* from the associated species, *L. plummeri*, n. sp., and from other species of *Lophophyllidium* described in this paper.

These corals differ notably from *L. proliferum* and other conico-cylindrical species referred to *Lophophyllidium* in the moderate occurrence of stereoplasm, numerous tabulae, and unequal length of the major septa in mature regions. The axial column, however, has the structure typical of *Lophophyllidium* and the septa increase in length throughout growth in the manner shown on Figure 4 for *L. coniforme*, n. sp. A few individuals (Pl. 12, figs. 1-2) are characterized by thin septa and axial column, but they are referred to *L. spinosum* inasmuch as they seem to grade into typical representatives of this species.

Occurrence.—Graham group, Cisco (Virgilian) series, Pennsylvanian (Upper Carboniferous). The type material is from the Wayland shale at the point of a hill on the south side of the road, west of creek, 1 mile west of Graham, Texas (Univ. Kansas loc. 1127). Other specimens are from the same formation above the creek on Exall Lease, 4.5 miles southwest of Gunsight, Texas (Univ. Kansas loc. 393); 1 mile north of Gunsight, Stephens County, Texas (Univ. Kansas loc. 894); 1 mile south of Gunsight, Texas (Univ. Kansas loc. 49); 5 miles west of Eastland, Eastland County, Texas (Univ. Kansas loc. 51); and 1.5 miles southeast of Necessity, Stephens County, Texas (Univ. Kansas loc. 2788). This species occurs also in the Gunsight limestone 5 miles east of Cisco, Texas (Univ. Kansas loc. 3268); 1 mile south of Gunsight, Texas (Univ. Kansas loc. 2317); 1.1 mile southeast of Avis, Jacks County, Texas (Univ. Kansas loc. 5089); and at Weeden school, 12 miles northwest of Brownwood, Brown County, Texas (Univ. Kansas loc. 895). Additional corals from the Jacksboro limestone at the Rock Island railroad cut, 3.5 miles southeast of Jacksboro, Jacks County, Texas (Univ. Kansas loc. 7765) and 4.5 miles east of Jacksboro, Texas (Univ. Kansas loc. 7767) are referred to this species. The corals from the Wayland shale and
Lophophyllidium lanosum, n. sp.

Lophophyllidium plummeri, n. sp.

Jerrold—Pennsylvanian Lophophyllid Corals
Gunsight limestone were collected by R. C. Moore, and those from the Jacksboro limestone by R. H. King.

Material studied.—About 500 individual specimens represent this species in the collection studied. Fifteen corallites were sectioned.

Type.—University of Kansas No. 115722, from the Wayland shale, 1 mile west of Graham, Texas.

GENUS STEREOSTYLSUS, NEW GENUS

This genus comprises small to large lophophyllid corals that have a moderately deep calyx. These corallites are conical to conico-cylindrical in form and straight or slightly curved. The theca is marked externally by distinct septal grooves, low transverse wrinkles, and growth lines. Rejuvenation occurs rarely and is confined to the more cylindrical types. The immature or apical region is characterized by long alar and metasepta that are joined to each other and to the axial column by stereoplasm. The cardinal septum is elongated and somewhat thickened about the inner edge. Higher in the corallites the cardinal septum remains notably short, the counter septum long, and other major septa somewhat shortened, but they may be more or less united axially by stereoplasm. In the mature regions the counter septum separates from the column, and except for the short cardinal septum, the major septa are long and commonly rhopaloid. Within the calyx the septa are short and not rhopaloid. Minor septa may alternate with major septa in the upper parts of the corallites of some species.

The axial column, which persists throughout the corallite, is laterally compressed and contains a median lamina that is continuous with that of the counter septum, but lacks other elements. In the lower and middle parts of the corallite, the column is attached to the counter septum but it may be separated in mature stages. Tabulae generally are relatively abundant, arch upward in varying degree, and are incomplete. Dissepiments are lacking. The cardinal fossula is relatively conspicuous through the development of these corallites, but alar pseudofossulae are prominent only in the apical region. The amount of stereoplasm deposited about the skeletal elements is variable but, except in the Stereostylus newelli group, is confined to deposits about the column and axial edges of the septa, particularly in the apical region.

Genotype.—Stereostylus lenis, n. sp., Missourian, Pennsylvanian, Kansas and Missouri.

Discussion.—Corals here referred to Stereostylus were included in Lophophyllidium in earlier studies (Moore & Jeffords, 1941, 1945; Jeffords, 1942), inasmuch as the significance of many lophophyllid features was incompletely understood. Additional investigations now have furnished data that permit recognition of at least two genetic lines—Lophophyllidium and Stereostylus. The latter genus may be distinguished generally from Lophophyllidium by examination of external features of the corallite. The form of the corallite referred to Stereostylus varies, but generally they are conical and bear low wrinkles. Lophophyllidium, on the other hand, is characterized by the more elongate conico-cylindrical, smoothly curved form of corallites, absence of prominent transverse wrinkles, and in some species by an abundance of large radicles. Sections of species of Stereostylus are distinguished by the smaller apical areas filled by stereoplasm, thinner or more rhopaloid septa, laterally compressed axial column, and lack of radiating and circumscribing laminae in the column. Also, the septa in the upper portions of corallites belonging to Stereostylus are shorter in relation to the diameter than in Lophophyllidium (Fig. 4).

Stereostylus is separated from Lophamplexus by the persistence of the column and longer septa, and from Lophotichium by the more gentle inclination of the tabulae, which do not simulate septa in the apical region.

Some or all the major septa of Stereostylus may become rhopaloid in mature parts of the corallites.

EXPLANATION OF PLATE 10

All figures three times natural size.

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>23</td>
</tr>
<tr>
<td>2-3.</td>
<td>33</td>
</tr>
<tr>
<td>4-5.</td>
<td>24</td>
</tr>
<tr>
<td>8.</td>
<td>33</td>
</tr>
</tbody>
</table>

FIGURE 1.—Lophophyllidium hadrum, n. sp., from the Cherokee shale, Desmoinesian series, Pennsylvanian (Upper Carboniferous). Specimen (Univ. Kansas No. 787021) from the cap rock above the Mineola coal along road in secs. 4 and 8, T. 31 S., R. 24 E., southwest of Pittsburg, Cherokee County, Kansas.

FIGURE 2.—Specimen (Univ. Kansas No. 4921b) from the Wayland shale, 1 mile west of Gunsight, Texas.

FIGURE 3.—Specimen (Univ. Kansas No. 4921r) from the same locality as figure 2.

FIGURE 4.—Specimen (Univ. Kansas No. 210322d) from just south of SE cor. sec. 32, T. 7 N., R. 9 E., 2 miles northwest of New Holdenville, Oklahoma.

FIGURE 5.—Specimen (Univ. Kansas No. 222321c) from west of cen. sec. 24, T. 5 N., R. 8 E., Colgate quadrangle, Oklahoma.
JEFFORDS—Pennsylvanian Lophophyllidid Corals
Commonly, all these septa, except the cardinal and counter, are approximately equal in length, but in some species alternate major septa are shortened or particular septa or pairs of septa are similarly elongated. However, distinct tachyloasmoid patterns like those of Claviphyllum are absent.

This genus includes many described lophophyloid corals, such as specimens referred to Lophophyllum proliferum (McChesney) MEER (1872, p. 144), and SOSCHKINA (1925, p. 88); L. profundum (EDWARDS & HAME) WORTHEN (1890, p. 79), MATHER (1915, p. 91), SAYRE (1930, p. 85), KELLY (1930, p. 136), and MORSE (1931, p. 305); L. acostatum SOSCHKINA (1928, p. 373); L. inaequale MERRA (1934, p. 210); L. orientale SMITH (1934, p. 128); L. sp. 4 DOBRLOUBOVA (1936, p. 90); Sinophyllum pendulum (GRABAU) HERITSCH (1933, p. 218); S. carnicum HERITSCH (1936, p. 113); S. multifasciatus irregulari FESLER (1937, p. 10); S. pendulum carinatum FESLER (1937, p. 9); and Cycathozoa sp. MORGAN (1924, p. 192). The Pennsylvanian species called Lophophyllum dunbari and Sochkinophyllum mirabile by MOORE & JEFFORDS (1941) are considered to belong to Stereostylus also. Lophophyllum mundulum, L. confertum, L. compressum, L. expansum, L. giryi, L. elongatum, and L. radiatum, which have been described from Lower Pennsylvanian deposits of Kansas and Oklahoma (JEFFORDS, 1942), are referred to Stereostylus, as are the corals described by MOORE & JEFFORDS (1945) as Lophophyllum conoideum, L. adaptatum, L. blandum, L. angustifolium, L. metum, and L. exilis.

In previous discussions of Pennsylvanian lophophyloid corals (JEFFORDS, 1942, p. 213) several species, such as Lophophyllum nevelli, L. minutum, and L. distinctum, were distinguished from the other species assigned to Lophophyllum by the restriction of the immature characters to a very small part of the apical region, the scarcity or absence of tabulae, and the large alar pseudofossule. The youthful sepa are separated into four symmetrical groups by the cardinal fossula, the two prominent alar pseudofossulae, and the two large interseptal spaces between the counter-laterals and counter septum. Mature parts have very straight septa with little or no axial thickening. Minor septa are very short or absent.

Also, the corallites have a characteristic broadly conical form. The evolutionary significance and classificatory importance of the characters of the axial column and other features of the lophophyloids are difficult to evaluate. Whereas Stereostylus is distinguished readily from Lophophyllum on the basis of the internal structure of the column and correlated features of the septa and external form, the S. nevelli group cannot be separated clearly from some species that seem assignable to Stereostylus. S. nevelli, S. distinctus, and a few other species are strikingly different from the genotype and similar species of Stereostylus. Intervening forms show a gradation from no tabulae to numerous tabulae, from inconspicuous alar pseudofossule to prominent pseudofossule, from a solidly filled apical region to a more or less open section, and from coralites having rapid development in immature stages to those developed normally. Therefore, corals of the S. nevelli group are retained in Stereostylus until knowledge of their peculiarities can be considerably extended.

Occurrence.—Pennsylvanian (Upper Carboniferous) and Permian, North America, Europe, and Asia.

Stereostylus lenis, new species

Plate 1, figure 1; Plate 14, figures 1-15; Plate 20, figures 3-4, 6; Figures 2-4 and 7-8

This species is characterized by small to medium-sized conical corallites that become cylindrical in maturity. Commonly they are slightly curved in the apical region, and the convex side bears a few short radicles or a flattened area of attachment. The

EXPLANATION OF PLATE 11

All figures three times natural size except as indicated. Transverse sections are oriented with the cardinal septum at bottom, longitudinal sections are at right angles to the counter-cardinal plane.

Figures 1. Lophophyllum plummeri, n. sp., from the Graham group, Cisco (Virgilian) series, Pennsylvanian (Upper Carboniferous) 33
2. Longitudinal section of specimen (Univ. Kansas No. 231721a) from the Gunsight limestone, 1 mile south of Gunsight, Texas. 3. Transverse sections of specimen (Univ. Kansas No. 226921c) from the Gunsight limestone, 5 miles east of Cisco, Texas. 4. Transverse section of specimen (Univ. Kansas No. 776921a) from the Jacksboro limestone, 4.5 miles east of Jacksboro, Jacks County, Texas. 5. Transverse section of specimen (Univ. Kansas No. 4921d) from the Wayland shale, 1 mile south of Gunsight, Texas. 6. Transverse section showing concentric layering of the axial column. 7. Transverse section (x12) of the axial column shown in figure 6a. 8. Lophophyllum wewokanum, n. sp., from the Wewoka formation, Desmoinesian series, Pennsylvanian (Upper Carboniferous). Transverse section of specimen (Univ. Kansas No. 210621a) from cen. W. side sec. 5, T. 5 N., R. 8 E., 1 mile northwest of Allen, Oklahoma. This thin section illustrates the complex character of the axial column 24 9. Lophophyllum coniferum, n. sp., from the Laning and Pedco groups, Mississippian series, Pennsylvanian (Upper Carboniferous). Transverse section in the upper part of specimen (Univ. Kansas No. 175321a) from the Hickory Creek shale member, Plattsburg limestone, Laning group, at cen. sec. 33, T. 29 S., R. 16 E., Wilson County, Kansas 25
Jeffords - Pennsylvanian Lophophyllidid Corals
position of the curvature is generally in the counter-cardinal plane. However, examination of 50 curved corallites from the type locality showed that the concavity was on the cardinal side in 22 individuals, the counter side in 19 individuals, the left alar side in 5 individuals, and the right alar side in 4 individuals. The theca, which is thin, bears distinct septal grooves and ridges that are crossed by growth lines and conspicuous wrinkles in the cylindrical portion. The calyx is deep and bears the spikelike axial column. The type specimen is 22 mm in length and 6.5 mm in diameter at the calyx. The variation in the size of the corallites is shown on Figure 2.

In the immature region of these corals the counter

![Figure 7](image-url)

Figure 7.—Outline drawings at natural size prepared from photographs of described species of *Stereostylus* showing the form, variation, and relative size of the corallites.

The stippled portions indicate probable restoration of incomplete specimens.
septum is thickened axially to form a distinct column, the cardinal septum is short, and other major septa extend nearly to the column. Progressively upward in the corallite the counter septum gradually separates from the column, the cardinal septum remains very short, and the major septa retreat slightly from the axial area. The septa are thickened throughout the corallite, but they do not become rhopaloid or joined axially. In the calyx the major septa are approximately equal in length except for the cardinal septum, and they are arranged bilaterally about the counter-cardinal plane. Minor septa are present in maturity as low ridges alternating between major septa. The septal formula for the type specimen about 1.5 mm above the apex is K4A1C1A8K, and in the mature stage it is K5A3C3-A5K.

The axial column is laterally compressed throughout growth, and it persists as a separate structure into the calyx. The column contains a median lamina that is continuous with the lamina of the counter septum in youthful stages. Radiating laminae are lacking. Tabulae are numerous, spaced about 1 mm apart, and mostly extending from the periphery to the column although a few may abut adjacent tabulae. The position of the cardinal fossula is indicated by the short cardinal septum, but the fossula is not prominent. Alar pseudofossulae are inconspicuous.

Discussion.—This species is characterized by thin theca, moderately thickened septa, and laterally compressed axial column. Although the apical region of these corals seems complete, microscopic examination showed that only rarely were there less than six major septa present at the tip. The apex is solidly filled by stereoplasm so that the earliest developmental stage could not be identified positively. There seems, however, to be a non-septate stage during which the corallite was cemented to the substratum, and the subsequent development of a single median septum in the counter-cardinal plane. Several corallites confirmed the appearance of the alar septa prior to the counter-lateral septa, however. The increase in number of septa and progressive development in other characters are shown on Figure 8. These sections, which were drawn by camera lucida, represent successive stages as thin transverse slices were ground away from a single small corallite.

The variation in the rate of insertion of major septa in *Stereostylus lenis* is shown also on Figure 3. Whereas the number of septa is not constant for particular diameters, there is a general trend toward a decrease in the rate of septal insertion in maturity.

Stereostylus lenis is distinguished from *Lophamplexus ulius*, n. sp., which also occurs in the Kansas City group, by the persistence of the axial column into the calyx. This species is separated from *S. micilus*, n. sp., *S. pandatus*, n. sp., and *S. blandus* (Moore & Jeffords, 1945) by the elongate cylindrical form and thinner skeletal elements.

Occurrence.—Kansas City group, Missourian series, Pennsylvanian (Upper Carboniferous). The abundant type material is from the Frisbie limestone member, Wyandotte limestone, from the quarry at 33d and Roanoke St., Kansas City, Missouri (Univ. Kansas locs. 1875 and 7176). This species is identified also from the Frisbie limestone member at the north end of Bell St., Kansas City, Mo. (Univ. Kansas loc. 7523); the Quindaro shale member, Kansas City, Mo. (Univ. Kansas loc. 3107); the Farley limestone member, Wyandotte limestone, at Kill Cr. bridge east of De Soto, Johnson County, Kansas (Univ. Kansas loc. 1700); at the bridge over Marshall Creek, on north-south highway, southeast of Welcott, Wyandotte County, Kansas (Univ. Kansas loc. 1861), middle of east side sec. 28, T. 10 S., R. 23 E., Wyandotte County, Kansas (Univ. Kansas loc. 3171); and at Penner’s Ford, south side sec. 32, T. 12 S., R. 22 E., 2 miles south of De Soto, Johnson County, Kansas (Univ. Kansas loc. 1712). Other specimens are from the Iola limestone at Kansas City, Missouri (Univ. Kansas loc. 804); Main St. cut, south of Union Station, Kansas City, Missouri (Univ. Kansas loc. 322); Monarch cement quarry, Humboldt, Allen County, Kansas (Univ. Kansas loc. 333); Lehigh cement quarry, Iola, Allen County, Kansas (Univ. Kansas loc. 3123); and near the waterworks, Kansas City, Missouri (Univ. Kansas loc. 3010). A single coral from the Westerville limestone at the quarry in Muncie, Kansas (Univ. Kansas loc. 352), seems to belong to this species also. These corals were collected by R. C.

EXPLANATION OF PLATE 12

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.

Figure 1-4.—*Lophophyllidium epinoesum*, n. sp., from the Graham group, Ciseo (Virgilian) series, Pennsylvanian (Upper Carboniferous), Texas 34

1a-d.—Specimen (Univ. Kansas No. 776722a) from the Jacksboro limestone, 4.5 miles east of Jacksboro, Jacks County, Texas. a-c. Transverse sections. d, Longitudinal section.

2a-c.—Specimen (Univ. Kansas No. 778921a) from the Jacksboro limestone, at the Rock Island railroad cut, 3.5 miles south-

Figure 3a-d.—Specimen (Univ. Kansas No. 4922a) from the Wayland shale, 1 mile south of Gun sight, Eastland County, Texas. a-c. Transverse sections. d, Longitudinal section.

4a-c.—Specimen (Univ. Kansas No. 115722a) from the Wayland shale at the type locality for the species, 1 mile west of Graham, Texas. a-b, Transverse sections. c, Longitudinal section.
Lophophyllidium spinosum, n. sp.

Jeffords—Pennsylvanian Lophophyllid Corals
Material studied.—This species occurs abundantly at the type locality and at many of the other localities. Approximately 2,500 well preserved corallites are contained in a collection, and about 35 specimens were sectioned for study.

Type.—University of Kansas No. 15733b, from the Frisbie limestone, 33d and Roanoke St., Kansas City, Missouri.

Stereostylus aages, new species

Plate 21, figures 7-9; Plate 26, figure 2; Figure 7

\[\text{Moderately large conical corallites that are straight or only slightly curved are included in this species. The theca, which is relatively thick, bears broad rounded septal grooves and narrow interseptal ridges. Transverse markings comprise a few fine growth lines and low wrinkles. Radicles are lacking, but rejuvenation may occur in the largest corallites. The calyx is deep and the column projects strongly into it. The type specimen is 27 mm in length and 14 mm in maximum diameter at the top of the calyx. Other mature corallites reach approximately the same size.}\]

\[\text{The apical region is characterized by long septa that abut the thickened axial portion of the counter septum. The cardinal septum is not shortened in this stage. Slightly higher in the calyx the major septa reach almost to the column, and commonly they are united to it and to each other by stereoplasm. The cardinal septum becomes notably shorter and thinner than other major septa. In early maturity the septa maintain their long length although they are relatively thin; they may be united at their axial edges by stereoplasm. Sections near the calyx of mature individuals show long septa that are somewhat rhopaloid; alternating septa may be slightly shortened. The counter septum separates from the column only in very late development, and the cardinal septum remains shortened throughout growth. Minor septa occur as rudimentary structures just below and in the calyx of large individuals. However, the minor septa adjacent to the counter septum are introduced relatively early and are distinctly longer than the others. The septal formula of the type specimen at the base of the calyx is K9A/C1A7K. The axial column is firmly attached to the counter septum except in the upper parts of the corallites and it remains laterally compressed throughout growth. Relatively numerous tabulae arch steeply towards the column in the upper half of the corals, but they are concealed by thickened skeletal elements near the apex. The alar pseudoossulae are moderately well developed near the apex; the cardinal fossulae is prominent throughout the corallites.}\]

Discussion.—This species is characterized by large conical corallites having thick theca, long subequal major septa, and a long minor septum on either side of the counter septum. Stereostylus aages differs from \textit{S. distinctus} (Jeffords, 1942) in the larger size and inconspicuous nature of the pseudofossulae, and from \textit{S. expansus} (Jeffords, 1942), in the more elongated form of the corallite and thicker theca in the apical region. \textit{S. abisus} from the Oread limestone is also characterized by a considerable thickening of the skeletal elements, but \textit{S. aages} is distinguished readily by its more conical form and thinner major septa in the upper parts of the corallite.

Occurrence.—Ardmore limestone, Cherokee group, Desmoinesian series, Pennsylvanian (Upper Carboniferous). The type specimen is from the bank of Whitebreast Creek, NW NW NE sec. 33, T. 73 N., R. 22 W., Lucas County, Iowa (Univ. Kansas loc. 7779). Other specimens are from SW NW NE sec. 19, T. 73 N., R. 21 W., Lucas County, Iowa (Univ. Kansas loc. 7854); and from Warren County, Iowa at NE SW SW sec. 14, T. 74 N., R. 22 W. (Univ. Kansas locs. 7502 and 7546), and center of north line NE sec. 11, T., 74 N., R. 23 W. (Univ. Kansas loc. 7853). These corals were collected by M. H. Wallace, a former student at the University of Kansas.

Material studied.—One or two well-preserved corallites were available from each of the localities, and four representative specimens were sectioned for study.

Type.—University of Kansas No. 777921a from Whitebreast Creek, Lucas County, Iowa.

EXPLANATION OF PLATE 13

All figures three times natural size. Transverse sections are oriented with the cardinal septum at the bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.

Figure 1-4. Lophophyllidium spinosum, n. sp., from the Graham group, Cisco (Virgilian) series, Pennsylvanian (Upper Carboniferous), Texas.

1a-d. Specimen (Univ. Kansas No. 278622a) from the Wayland shale, 1.5 miles southeast of Necessity, Texas. a-c, Transverse sections. d, Longitudinal section.

2a-d. Type specimen (Univ. Kansas No. 1157-22c) from the Wayland shale, 1 mile west of Graham, Young County, Texas. a-c, Transverse sections. d, Longitudinal section.

3. Transverse section in the immature region of specimen (Univ. Kansas No. 5121b) from the Wayland shale, 5 miles west of Eastland, Eastland County, Texas.

4a-c. Transverse sections of a large specimen (Univ. Kansas No. 776722b) from the Jacksboro Limestone, 4.5 miles east of Jacksboro, Texas.
Sterostylus adelus, new species

Plate 5, figure 6; Plate 18, figures 6-8; Figure 7

Relatively small conical corallites that are straight or slightly curved are referred to this species. The theca, which is thick, bears conspicuous fine grooves and broad interseptal ridges. These longitudinal markings are crossed transversely by a few low wrinkles and numerous deep growth lines. Radii are not observed, and most of the corallites seem to have been free or attached only by a very small area at the apex. The calyx is deep and broad. The type specimen is 21 mm in length and 8.2 mm in diameter at the calyx; other individuals may reach a slightly larger size.

The immature region is characterized by long thin septa that are joined to the column by the stereoplasm. The cardinal septum is short whereas the counter septum is thickened at the axis to form a distinct column. In the mature stage, septa are thin and rhopaloid. Except for the short cardinal septum, major septa reach nearly to the column. Minor septa are observed only in the larger specimens and they remain rudimentary. The septal formula in the apical region of the type specimen is K4A2-C8A6K, and in the mature stage it is K7A3C3A6K.

In the lower part of the calyx the counter septum is separated from the column, and it is not longer than other major septa. At this stage the septa are thin and distinctly rhopaloid, and the cardinal septum is very short. The axial column is relatively large near the apex, but it becomes relatively thinner and more compressed upward. Tabulae rise steeply from the periphery to the column, and in the mature immature region they are slightly inoculating. The cardinal fossula is large, and alar pseudofossulae are prominent in the youthful stage.

Discussion.—Corals referred to Sterostylus adelus are distinguished by their small size and conical form, and by the palmate grouping of the thin major septa in the mature region. The cardinal septum is relatively long near the apex, but rapidly shortens higher in the corallite. This species is separated readily from S. compressus (Jeffords, 1942), which occurs in the Millsap Lake group of Texas, by the narrower form, thinner septa, and more open apical region. S. adelus resembles S. pelaeus in the shape of the corallite, but the former species is appreciably smaller and has thinner major septa.

Occurrences.—Strawn (Desmoinesian) series, Pennsylvanian (Upper Carboniferous). The type specimens were collected by R. C. Moore from the East Mountain shale, Lone Camp group, at the brick plant 1 mile east of Mineral Wells, Texas (Univ. Kansas loc. 546). Other specimens were collected by M. H. Wallace from the Millsap Lake group, 3.5 miles east and 1 mile south of Rochelle, Texas (Univ. Kansas loc. 7170).

Material studied.—This species is represented by about 50 corallites from the type locality and 6 from the other outcrop. Representative specimens were sectioned for study.

Type.—University of Kansas No. 5421a from the East Mountain shale, east of Mineral Wells, Texas.

Sterostylus phainus, new species

Plate 15, figures 1-6; Plate 20, figure 5; Plate 28, figure 4; Figure 7

Lophophyllum profundum Sayas, 1930, Kansas Geol. Survey, Bull. 17, p. 85, pl. 1, figs. 3-5.

Moderately large slightly curved to straight corallites that develop from a conical to a cylindrical form comprise this species. The exterior of the theca is marked by prominent septal grooves and interseptal ridges that are crossed transversely by conspicuous rounded wrinkles and coarse growth lines. The apical region is somewhat flattened to serve as a point of attachment. The calyx is relatively deep. The type specimen is 43.5 mm in length and 12 mm in diameter at the calyx. Other individuals reach an observed maximum diameter of 15 mm.

The immature region of these corallites contains long and thickened major septa. The cardinal septum is slightly thinner and shorter than the other septa, and the counter septum is thickened axially to form the laterally compressed column. In early maturity the septa reach nearly to the column, and they are slightly rhopaloid. The cardinal septum is about three-fourths the length of the metasepta. Near the calyx the major septa are long and extend three-fourths the distance to the axis; a few of the septa may be somewhat shorter than others. The cardinal septum is only one-half as long as adjacent metasepta, and the counter septum is separated from the column or joined to it only by tabulae. Minor septa occur as short elements alternating between the other septa. The septal formula about 5 mm above the apex of the type specimen is K7A3C3¬A7K; about 15 mm higher near the calyx there is an additional pair of metasepta in the counter quadrants but the same number in the cardinal quadrants. Sections in the mature region of these corals show approximately 26 major septa.

The axial column is well developed throughout the corallite, and it is attached directly to the counter septum in youthful stages. Near the calyx the counter septum is joined to the column commonly by tabulae so that in transverse section the counter septum appears to extend around the column to join it at the cardinal side. Tabulae are numerous, slightly inoculating, and gently arched. Typically these tabulae are spaced about 0.4 to 0.6 mm apart at the periphery. Alar pseudofossulae are relatively inconspicuous, but the cardinal fossula is distinguished readily by the short cardinal septum.

Discussion.—This species is distinguished by the large conico-cylindrical form, regularly spaced tabulae, subequal major septa in maturity, and tendency in mature regions for the counter septum
PENNNSYLVANIAN LOPHOPHYLLIDID CORALS

Figure 8.—Camera lucida drawings (X 10), A to R, showing the insertion of major septa and development of other characters in Stereostylus lenis, n. sp.

A small corallite that showed the four-septa stage at the apex was ground so as to reveal successive growth stages. Although the earliest development could not be interpreted positively, other specimens suggest that the four-septa stage is preceded by a single counter-cardinal septum, and this by a non-septate period. Metasepta in the counter quadrants are indicated by numbers and in the cardinal quadrants by letters. Proto-septa are designated by letters C (cardinal), K (counter), and A (alar).
Stereostylus phainus resembles S. elongatus (Jeff-

to be joined to the cardinal end of the axial column. Stereostylus phainus resembles S. elongatus (Jeff-

1942) in the elongate form, but containsappreciably less stereoplasm and the corallites are somewhat more cylindrical. This species is larger than other species that occur in Missourian rocks such as S. lens, n. sp., and S. pelaeus, n. sp.

Occurrence—Drum limestone, Kansas City group, Mis-

48

sourian series, Pennsylvanian (Upper Carboniferous). The

type material was collected at the Atlas cement quarry, In-

dependence, Montgomery County, Kansas (Univ. Kansas

type material was collected at the Atlas cement quarry, In-

dependence, Montgomery County, Kansas (Univ. Kansas

type material was collected at the Atlas cement quarry, In-

dependence, Montgomery County, Kansas (Univ. Kansas

type material was collected at the Atlas cement quarry, In-

dependence, Montgomery County, Kansas (Univ. Kansas

1942) in the elongate form, but containsappreciably less stereoplasm and the corallites are somewhat more cylindrical. This species is larger than other species that occur in Missourian rocks such as S. lens, n. sp., and S. pelaeus, n. sp.

Occurrence—Drum limestone, Kansas City group, Mis-

sourian series, Pennsylvanian (Upper Carboniferous). The
type material was collected at the Atlas cement quarry, In-
dependence, Montgomery County, Kansas (Univ. Kansas
type material was collected at the Atlas cement quarry, In-
dependence, Montgomery County, Kansas (Univ. Kansas
type material was collected at the Atlas cement quarry, In-
dependence, Montgomery County, Kansas (Univ. Kansas

type material was collected at the Atlas cement quarry, In-
dependence, Montgomery County, Kansas (Univ. Kansas

type material was collected at the Atlas cement quarry, In-
dependence, Montgomery County, Kansas (Univ. Kansas

Material studied.—About 30 well-preserved corallites and other fragmentary remains were included in the collections. Twelve corallites were sectioned for study.

Type.—University of Kansas No. 75221a from the quarry at Independence, Kansas.

Stereostylus pelaeus, new species

Plate 16, figures 1-8; Plate 20, figures 1 and 7; Figure 7

This species includes broadly conical corallites that are gently to strongly bent near the apex. The curvature is irregular in position so that any of the protosepta may be on the concave side. The theca is moderately thick, and it bears sharply incised septal grooves and fine interseptal ridges. Transver-
verse markings comprise low wrinkles and fine growth lines. The convex side of the bent apical portion bears a few short radicles or other thickening to provide for attachment. Some of the corallites seem to have been free; others are attached to small crinoid columnals. The calyx is deep and con-
tains the broad bladelike column in the center. The

EXPLANATION OF PLATE 14

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.

Figure 1-15.—Stereostylus lens, n. gen., n. sp., from the Kansas City group, Missourian series, Pennsylvanian (Upper Carboniferous) 40

1.—Longitudinal section of specimen (Univ. Kansas No. 717624b) from the Frebie limestone member, Wyandotte limestone, at 53d and 21st, Kansas City, Missouri. This longitudinal section shows the appearance of sections that do not pass through the axial plane.

2.—Transverse section of specimen (Univ. Kansas No. 717624a) from the same locality as figure 1. The plane of the section slopes lightly from the counter to the cardinal septum.

3.—Transverse section of specimen (Univ. Kansas No. 717624c) from the same locality as figure 1. The plane of the section is cut obliquely similar to figure 2.

4.—Transverse section in the immature region of specimen (Univ. Kansas No. 717624d) from the same locality as figure 1. The plane of the section is cut obliquely similar to figure 2.

5.—Transverse section of specimen (Univ. Kansas No. 717624e) from the same locality as figure 1. The plane of the section is cut obliquely similar to figure 2.

6.—Transverse section of specimen (Univ. Kansas No. 717624f) from the same locality as figure 1. The plane of the section is cut obliquely similar to figure 2.
type specimen is 20.3 mm in length and 17.5 mm in maximum diameter at the calyx. Most of the specimens are approximately 19 mm in length and 12 mm in diameter.

Transverse sections in the apical region show a counter septum that is thickened slightly at the axis, a thin cardinal septum, and long major septa that are joined to each other and to the column by stereoplasm. In early maturity the cardinal septum is very short, and the counter septum is long and thin except for the enlargement at the axis. The major septa are distinctly rhopaloid and they are joined in a palmate arrangement about the column. Characteristically, there is a broad open area in the counter-cardinal plane that is divided in the counter quadrants by the column and thin counter septum. The grouping of the axial edges of the septa and the open area in the counter-cardinal plane persist to the calyx in mature corallites. Full maturity is shown in transverse sections by the separation of the column from the counter septum, the presence of long and slightly rhopaloid septa, and the bilateral arrangement of the septa about the counter-cardinal plane. Minor septa are rudimentary. The septal formula in the apical region of the type specimen is K4A2C2A4K; and about 7 mm higher it is K8A4C2A8K. There are about 30 major septa in the mature stages of these corals.

The axial column of this species is distinctly compressed laterally, and it remains attached to the counter septum until late maturity. In transverse sections above the apical region the column is separated from the fused edges of the septa by conspicuous open spaces although bars of stereoplasm may extend to the septa normal to the median lamina of the column. Tabulae are relatively numerous and rise steeply from the periphery to flatten somewhat as the column is reached. The cardinal fossula is very large and prominent throughout growth. Alar pseudofossulae are moderately well developed, but confined to the apical region.

Discussion.—This species is characterized by long subequal major septa, conical form, and open spaces between the counter laterals and counter septum. These features, together with the large alar pseudofossulae and cardinal fossula, resemble similar structures in the Stereostylus newelli group, but S. pelaeus is distinguished by the abundance of tabulae, lesser quantities of stereoplasm in the immature region, and the strong counter acceleration. This species differs notably from S. lenis, n. sp., S. milichus, n. sp., and S. phainus, n. sp. which occur in Missourian rocks also, but corals from shale and limestone deposits are expected to represent somewhat divergent types.

Occurrence.—Missourian series, Pennsylvanian (Upper Carboniferous). The type material was collected by N. D. Newell from the Francis formation at the brick plant quarry, sec. 4, T. 3 N., R. 6 E., Ada, Oklahoma (Univ. Kansas loc. 154). Other specimens referred to this species are from the same formation at the cen. W. side sec. 20, T. 7 N., R. 8 E., Oklahoma (Univ. Kansas loc. 2206); the Wann formation, Okehata group, 1.5 miles north and 0.5 mile east of Copan, Oklahoma (Univ. Kansas loc. 7544); the Nellie Bly formation, Skiatook group, at a railway cut north of the highway, 1.5 miles west of Castle, Oklahoma (Univ. Kansas loc. 2203); the Belle City Limestone (=Drum limestone), NE sec. 4, T. 4 N., R. 6 E., north of Ada, Oklahoma (Univ. Kansas loc. 105); and the Drum limestone, Kansas City group, at SW sec. 3, T. 33 S., R. 16 E., 3.5 miles southeast of Independence, Montgomery county, Kansas (Univ. Kansas loc. 356).

Material studied.—This species is represented by approximately 200 corallites, 20 of which are from the type locality. About 25 specimens were sectioned for study.

Type.—University of Kansas No. 15421a from the Francis formation, at Ada, Okla.

EXPLANATION OF PLATE 15

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.
Stereostylus phainus, n. sp.

Jeffords—Pennsylvania Lophphyllidid Corals
Stereeostylus mililichus, new species
Plate 17, figures 1-5; Figure 7

This species includes moderately large corallites that are conical near the apex and cylindrical above. The apical region is strongly curved and upper parts of the corals may be straight, evenly curved, or strongly bent. The theca, which is relatively thin, bears low ridges and grooves, numerous prominent wrinkles, and short radicles near the apex. A large area of attachment occurs along the convex side of the apical region. The calyx is moderately deep and contains a spikelike axial column at the base. The type specimen, which represents a large individual, is 44 mm in length and 13.5 in maximum diameter at the calyx.

The apical region of these corals contains numerous moderately thick septa that reach nearly to the column. The counter septum is thickened axially to form a thin column, and the cardinal septum is slightly shorter than the metasepta. Some-what higher in the corallite numerous stout septa extend two-thirds the distance to the axis, the counter septum is attached to the column, and the cardinal septum is only slightly shorter than other septa. In maturity major septa are long, subequal in length, and arranged radially about the axis. The septa do not become rhopaloid at any stage, and the counter septum separates from the column only in mature stages of the largest corallites. Minor septa occur as inconspicuous ridges between major septa in late maturity. The septal formula about 5 mm above the apex of the type specimen is K5A2C2A6K, and just below the calyx of the same specimen it is K8A3C3A8K. The axial column is relatively thin and laterally compressed through the corallite, and it is attached to the counter septum except in the largest individuals. The cardinal fossula is not prominent although identifiable by the slightly shortened cardinal septum; alar pseudofossulae are inconspicuous. Tabulae are numerous, spaced about 0.75 mm apart, generally to steeply arched, and reaching mostly from the theca to the column.

Discussion.—This species is characterized by large corallites that contain long major septa and very numerous tabulae. These corallites are appreciably larger than in Stereostylus lenis, n. sp., and S. pandatus, n. sp., and the concentration of tabulae and lack of skeletal thickening serve to distinguish this species from other species of Stereostylus described in this paper. Counter acceleration is especially marked in S. mililichus and the counter quadrants may contain more than twice the number of septa in the cardinal quadrants. A few of the larger corallites show several periods of rejuvenation. Seemingly these corallites reached the maximum diameter for the species and then underwent construction to permit additional upward growth.

Occurrence.—Stanton limestone, Kansas group, Missouri series, Pennsylvanian (Upper Carboniferous). The type material occurs in the Eudora shale member at the Santa Fe railroad cut near Vilas, Wilson County, Kansas (Univ. Kansas locs. 4519 and 5418). Other representatives of this species occur also in the same member off Kansas Highway 39, 3 miles west of Vilas, Kansas (Univ. Kansas loc. 7712); cen. 8, side NE sec. 14, T. 24 S., R. 17 E., Allen County, Kansas (Univ. Kansas loc. 7724); just west of NE cor. sec. 22, T. 24 S., R. 17 E., Woodson County, Kansas (Univ. Kansas loc. 1853); and cen. W. side sec. 30, T. 27 S., R. 16 E., Wilson County, Kansas (Univ. Kansas loc. 1718). The species occurs also in the Stoner (“Oath”) limestone member at Ross quarry, 1 mile southeast of Ottawa, Franklin County, Kansas (Univ. Kansas loc. 4321); SE sec. 5, T. 17 S., R. 30 E., east of Ottawa, Kansas (Univ. Kansas loc. 6830); cement plant quarry, Fredonia, Wilson County, Kansas (Univ. Kansas loc. 1743); and sec. 12, T. 29 S., R. 15 E., east of Fredonia, Kansas (Univ. Kansas loc. 4846).

EXPLANATION OF PLATE 16

All figures three times natural size. Transverse sections are oriented with the cardinal septum at the bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-8.</td>
<td>— S. pelaeus, n. sp., Missourian series, Pennsylvanian (Upper Carboniferous)</td>
</tr>
<tr>
<td>1a-f.</td>
<td>Type specimen (Univ. Kansas No. 15421a) from the Francis formation at the brick plant, sec. 4, T. 3 N., R. 6 E., Ada, Oklahoma.</td>
</tr>
<tr>
<td>2.</td>
<td>Transverse section in the immature region of specimen (Univ. Kansas No. 154-21d) from the same locality as figure 1.</td>
</tr>
<tr>
<td>3.</td>
<td>Transverse section of specimen (Univ. Kansas No. 226621a) from the Francis formation at cen. W. side sec. 20, T. 7 N., R. 8 E., Oklahoma.</td>
</tr>
<tr>
<td>4a-c.</td>
<td>Transverse sections of specimen (Univ. Kansas No. 754421e) from the Wann formation, Ochelela group, 1.5 miles north and 0.5 mile east of Copan, Washington County, Oklahoma.</td>
</tr>
<tr>
<td>5.</td>
<td>Transverse section of specimen (Univ. Kansas No. 15421b) from the same locality as figure 1.</td>
</tr>
<tr>
<td>6a-d.</td>
<td>Specimen (Univ. Kansas No. 290321a) from the Nellie Bly formation, Skiatook group, at railroad cut, north of highway, 1.5 miles west of Castle, Oklahoma.</td>
</tr>
<tr>
<td>7.</td>
<td>Slightly oblique longitudinal section of a small curved specimen (Univ. Kansas No. 15421e) from the same locality as figure 1.</td>
</tr>
<tr>
<td>8a-c.</td>
<td>Specimen (Univ. Kansas No. 754421a) from the same locality as figure 4.</td>
</tr>
</tbody>
</table>
Jeffords—Pennsylvanian Lophophyllid Corals

Stereostylus pelaeus, n. sp.
Material studied.—This species is represented by approximately 100 corallites, and 12 representative specimens were sectioned for study.

Type.—University of Kansas No. 541821a from the Eudora shale at the Santa Fe railroad cut near Vilas, Kansas.

Stereostylus pandatus, new species
Plate 18, figures 1-5; Plate 26, figure 3; Figure 7

Relatively small cylindrical corallites that are straight or irregularly bent are included in this species. The theca is relatively thin, and it bears fine longitudinal grooves and ridges that are crossed transversely by numerous low wrinkles and growth lines. Radicles occur nearly near the apex. The calyx is well preserved; presumably it was moderately deep. The type specimen, which represents a mature individual, is 27 mm in length and 6.8 mm in maximum diameter at the calyx. Other specimens commonly are not appreciably larger in diameter although they may be somewhat longer.

The immature region of this coral is relatively free from thickening and sterosperm. The septa are thin and extend nearly to the column, but they are not joined consistently by sterosperm. The cardinal septum is only slightly shorter than the meta-septa. In mature stages, the major septa extend one-half to two-thirds the distance to the column, and they do not become distinctly rhopaloid. The cardinal septum is slightly shortened, and the counter septum has withdrawn from the column. Sections in the calyx show thin septa that may be connected by tabulae at their inner edges. The septal formula in the apical region of the type specimen about 5 mm above the apex is K8A2C2A4K, and in the mature stage it is K6A3C3A6K. Mature corallites contain about 22 major septa near the calyx. Minor septa occur as low ridges alternating between the major septa in the uppermost parts of the larger corallites.

The axial column is relatively small in proportion to the diameter of the corallite. In the apical region it is oval in outline and attached to the counter-sep-
tum. Near the calyx the column is a separate structure that may be irregular in shape. A median lamina is present but radiating laminae are lacking. However, the column may bear irregular projections and intercepts of tabulae so as to appear branching or radiating in transverse section. Tabulae are closely spaced; about 0.5 mm apart. They extend regularly from the periphery to the column, and rarely are they inosculating. The cardinal fossula and alar pseudofossulae are inconspicuous.

Discussion.—This species is distinguished from Stereostylus abitus, n. sp., which occurs also in the Oread formation, by the smaller size of the corallites and the thinner skeletal structure. In the mature regions of S. pandatus the counter quadrants are more strongly accelerated than near the apex; the opposite relationship occurs in S. abitus. The tabulae are closely spaced as in S. milichus, n. sp., but the column is more irregular in form. S. pandatus is separated from S. phainus, n. sp., by the smaller and more cylindrical form and the pattern of the major septa in the mature region.

Occurrence.—Oread limestone, Shawnee group, Virgilian series, Pennsylvanian (Upper Carboniferous). The type material is from the Plattesmouth limestone member at Hartwell quarry, north of Baldwin, Douglas County, Kansas (Univ. Kansas loc. 4849). Other specimens are from the same member at a quarry NW SW NE sec. 15, T. 15 S., R. 18 E., northwest of Centra, Douglas County, Kansas (Univ. Kansas loc. 8001); Adams quarry, Midland, Kansas (Univ. Kansas loc. 1101); a quarry east of Barnhart, 12 miles west and 2 miles south of Baldwin, Kansas (Univ. Kansas loc. 5027); and at NE sec. 15 T. 15 S., R. 17 E., Douglas County, Kansas, (Univ. Kansas loc. 4977). Also, representatives of this species occur in the Toronto limestone member, Oread limestone, at the quarry on the west edge of the University of Kansas campus, Lawrence, Douglas County, Kansas (Univ. Kansas loc. 3272); 0.75 mile southwest of “Three Sisters,” 6 miles southwest of Lawrence, Kansas (Univ. Kansas loc. 7707); quarry at top of hill, 1 mile north of Baldwin, Douglas County, Kansas (Univ. Kansas loc. 4531); quarry in sec. 27, T. 14 S., R. 19 E., southwest of Lawrence, Kansas (Univ. Kansas loc. 4832); and at a quarry on Quayle farm, NW sec. 27, T. 14 S., R. 20 E., 1.5 miles north of Baldwin, Kansas (Univ. Kansas loc. 4830). Most of this material was collected for the Kansas Geological Survey by ARTHUR BIRDWELL.

EXPLANATION OF PLATE 17

All figures three times natural size. Transverse sections are oriented with the cardinal septum at the bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italics figures.

Table:

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pl. 17</td>
<td>52</td>
</tr>
<tr>
<td>1a-c</td>
<td>52</td>
</tr>
<tr>
<td>2a-d</td>
<td>52</td>
</tr>
<tr>
<td>3a-b</td>
<td>52</td>
</tr>
<tr>
<td>4a-c</td>
<td>52</td>
</tr>
<tr>
<td>5a-h</td>
<td>52</td>
</tr>
</tbody>
</table>

Figure | Pl. 17, figures 3 | Plate 26, figure 3; Figure 7

1a-b.—Transverse sections of specimen (Univ. Kansas No. 432121a) from the same locality as figure 1.

4a-c.—Specimen (Univ. Kansas No. 432121x) from the same locality as figure 1, a-b, Transverse section. c, Longitudinal section.

5a-h.—Type specimen (Univ. Kansas No. 541821a) from the same locality as figure 2, a-g, Transverse sections. h, Longitudinal section.
Material studied.—Each of the above localities are represented by numerous corallites so that more than a thousand specimens were available. About 20 representative specimens were sectioned.

Type.—University of Kansas No. 484921d from the Plattsmouth limestone member, Hartwell quarry, north of Baldwin, Kansas.

Stereo-stylus abitus, new species

Plate 19, figures 1-7; Figure 7

The corals included in this species comprise large conical cylindrical corallites that are slightly curved in the lower conical portion. The theca is thick, and it bears narrow septal grooves and broad interseptal ridges. Low wrinkles and growth lines occur irregularly. Radicles are lacking. The calyx is deep and contains the large pointed axial column in the center. The type specimen is 29 mm in length and 11 mm in diameter at the calyx. Other individuals range from much smaller in size to slightly larger. The apical region contains considerable thickening of the structural elements; septa are thick and joined to the column by stereoplasm. Somewhat higher sections show long septa that are joined together about the column by deposits of stereoplasm, a short cardinal septum, and a counter septum that is continued into the column. In the mature stage, the major septa are very long and distinctly rhopaloid except for the short cardinal septum. The septal formula about 4 mm above the apex of the type specimen is K6A2C2A4K. At the base of the calyx the septal formula is K6A4C4A7K. Minor septa occur as broad ridges in the mature stage, but they do not become elongated.

The axial column is large throughout the corallite. At the apex it is oval in outline and functionally joined to the counter septum; near the calyx it becomes more circular in outline and proportionately larger. The column is separated from the counter septum only in late maturity or in the calyx. Tabulae are relatively numerous; about 1.3 mm apart. Properly oriented longitudinal sections show tabulae that are inclined regularly from the column to the periphery. In the apical region the thickened septa and deposits of stereoplasm largely conceal the tabulae. The cardinal fossula is represented by the short cardinal septum, but this structure is not conspicuous. Alar pseudofossulae are distinct in youthful stages but become inconspicuous above.

Discussion.—This species is characterized by its large size and thickened skeletal elements. Stereo-stylus abitus resembles S. perversus, n. sp., from the Brownsville limestone in the rhopaloid septa and thick theca, but the former species is less conical in form and has fewer major septa in the mature region. The corallites of S. abitus are larger than those of S. annae, n. sp., and skeletal elements are notably thicker. Comparison of this species with associated corals from the Oread formation is given under description of S. pandatus, n. sp.

Occurrence.—Oread limestone, Shawnee group, Virgilian series, Pennsylvanian (Upper Carboniferous). The type material is from the Toronto limestone member at a quarry near the top of a hill, 1 mile north of Baldwin, Douglas County, Kansas (Univ. Kansas loc. 4831). Other specimens are from the same horizon in a quarry in sec. 27, T. 13 S., R. 19 E., southwest of Lawrence, Douglas County, Kansas (Univ. Kansas loc. 4832); 0.75 mile southwest of “Three Sisters,” 6 miles southwest of Lawrence, Kansas (Univ. Kan-

EXPLANATION OF PLATE 18

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.

FIGURE PAGE
1-5.—Stereo-stylus pandatus, n. sp., from the Oread limestone, Shawnee group, Virgilian series, Pennsylvanian (Upper Carboniferous)....................... 54

1a-c.—Type specimen (Univ. Kansas No. 484921d) from the Plattsmouth limestone member at Hartwell quarry, north of Baldwin, Douglas County, Kansas. a-d, Transverse sections. e, Longitudinal section.

2a-d.—Specimen (Univ. Kansas No. 484921e) from the same locality as figure 1. a-c, Transverse sections. d, Longitudinal section.

3a-c.—Specimen (Univ. Kansas No. 483121b) from the Toronto limestone member at a quarry 1 mile north of Baldwin, Kansas. a-d, Transverse sections. e, Longitudinal section.

4a-d.—Transverse sections showing slightly irregular nature of the column in specimen (Univ. Kansas No. 110121b) from the Plattsmouth limestone member, Adams quarry, Midland, Kansas.

6a-e.—Specimen (Univ. Kansas No. 484921b) from the same locality as figure 1. a-c, Transverse sections. d-e, Longitudinal sections.

6a-b.—Specimen (Univ. Kansas No. 484921c) from the same locality as figure 1. a-c, Transverse sections. d, Longitudinal section.

7a-c.—Specimen (Univ. Kansas No. 717021a) from the Millisap Lake group, Lone Canyon group, at brick plant quarry, 1 mile east of Mineral Wells, Texas. a-c, Transverse sections. d, Longitudinal section.
Stereostylus pandatus, n. sp.

Stereostylus adelus, n. sp.

Jeffords—Pennsylvania Lophophyllid Corals
Small conical corallites having a slightly to strongly curved form comprise this species. The theca is relatively thick and bears sharp septal grooves and ridges; transverse wrinkles are widely spaced. Commonly, the convex side of the apical portion is thickened or bears very short radicles for attachment; some corallites are attached to a crinoid columnal, brachiopod shell, or other hard object by a relatively large area of the corallite. The calyx is deep and contains a stereoplasmic filling is mostly lacking. *Stereostylus annae* resembles *S. lenis*, n. sp., in the thinness of the structural elements but the corallites are shorter and more conical in form. Also, the cardinal septum is consistently longer in *S. annae*.

This species is named for my wife, ANN, in acknowledgment of her assistance in the study of *lophophyllidid corals*.

Discussion.—This species is represented by small conical corallites that seem restricted to the Howard limestone. Whereas the theca is moderately thick, septa are thin and stereoplasmic filling is mostly lacking. *Stereostylus annae* resembles *S. lenis*, n. sp., in the thinness of the structural elements but the corallites are shorter and more conical in form. Also, the cardinal septum is consistently longer in *S. annae*.

This species is named for my wife, ANN, in acknowledgment of her assistance in the study of *lophophyllid corals*.

Occurrence.—Howard limestone, Wabaunsee series, Pennsylvanian (Upper Carboniferous). The material was collected by R. M. Jeffords and ALLEN GRAPHAM from a mine dump, east of U. S. Highway 50N at the southwest edge of Osage City, Osage County, Kansas (Univ. Kansas loc. 7717). Other specimens were collected by Arthur Bridwell at SW sec. 20, T. 14 S., R. 16.
The column in the apical region is formed by a thickening and elongation of the counter septum, and it is oval in cross-section. The column becomes more cylindrical and larger in relation to the corallite progressively upward and near the calyx it is separated from the counter septum. Tabulae are numerous and slightly inosculating except just below the calyx where they become regularly spaced. The cardinal fossula is indicated by the shortened cardinal septum, although the fossula does not form a conspicuous open space. Alar pseudofossulae are moderately well developed in the youthful stages but disappear later.

Discussion.—This species is characterized by relatively broad conical corallites having a large axial column. Alar pseudofossulae are not as well marked as in *Stereostylus pellaeus*, n. sp., and major septa are more numerous than in *S. absitus*, n. sp. A single specimen of coral from the Dover limestone (Pl. 22, fig. 1) is tentatively included in this species inasmuch as it is similarly thickened. The corallite, however, shows somewhat longer minor septa as well as other minor differences.

Occurrence.—Brownville limestone, Wabaunsee group, Virgilian series, Pennsylvanian (Upper Carboniferous). The type specimens were collected by R. C. Moons and others at Admire Junction, 0.5 mile north of Admire, Lyon County, Kansas (Univ. Kansas locs. 2175, 3405, and 4776). Other corallites were collected by R. C. Moons 7 miles southwest of Strohm, Oklahoma (Univ. Kansas loc. 59977); by M. H. Wallace at NE sec. 31, T. 18 S., R. 11 E., Lyon County, Kansas (Univ. Kansas loc. 7574); and by R. M. Jeffords at NW cor. sec. 21, T. 16 S., R. 12 E., Lyon County, Kansas (Univ. Kansas loc. 1277). A single corallite collected by R. M. Jeffords (Univ. Kansas loc. 8130) from the Dover limestone, Wabaunsee group, along U. S. Highway 50N, 3.8 miles east of Admire, is tentatively assigned to this species.

Material studied.—About 30 specimens, mostly from the type locality, are contained in the collection, and 8 representative corallites were sectioned for study.

Type.—University of Kansas No. 340221f, from Admire Junction, Kansas.

EXPLANATION OF PLATE 20

All figures three times natural size.

Joans—Pennsylvanian Lophophyllidid Corals

Jeffords—Pennsylvanian Lophophyllidid Corals
Genus Lophampexus Moore & Jeffords, 1941

Corals assigned to this genus comprise solitary conical to conico-cylindrical, straight, curved, or irregularly bent corallites of moderate size. The well-developed theca bears distinct septal grooves and interseptal ridges, and is marked transversely by fine growth lines and low wrinkles. Rejuvenation may occur in mature corallites. In the immature region of the corallite, major septa extend to the thickened inner edge of the counter septum; minor septa are lacking. The counter quadrants are moderately accelerated. Somewhat above the apex the septa are lacking. The counter quadrants are mod-
thickened inner edge of the counter septum; minor
regularly bent
transverse sections is indicated by small italic figures.

Discussion.—An “amplexoid” or breviseptal phase that is characterized by short septa, regularly spaced tabulae, and an absence of dissepiments seems to be a specialized phase reached independently by corals along several phylogenetic lines. The genotype of Amplexus, A. coralloides Sowerby (1814, p. 165), is incompletely known, so that its relationships are in doubt. Ampleximorphs, however, are reported to have developed from “Zaphrentis” and Columnaria by Weissmer (1897), Pierophyllum and Pentaphyllum by Schönwof (1940), Allotrophophyllum by Hill (1940), and “zaphrentids” by Easton (1945a). Lophampexus seems certainly to be derived from corals belonging to Stereostylus or to forms ancestral to that genus. Lophampexus was proposed to include Permian lophophyllid corals in which the axial column was discontinuous in the mature region, and Morrowan corals were referred to this genus in a later paper. The additional knowledge of these corals in which the corallite develops from a youthful lophophyllid phase to a mature breviseptal phase lacking a column indicates a wide variation in the structural features of the species. Some species referred to Lophampexus have a persistent lophophyllidoid development, whereas in other forms the lophophyllid stage is abbreviated and the cylindrical amplexoid characteristics are pronounced. Ontogenetic study of these corals indicates that the appearance of the breviseptal phase relates to the specialization of the species. Thus, advanced species are characterized by a restriction of the lophophyllid characters to a very small apical portion and by a strong development of the breviseptal phase. The tabulae are regularly spaced, arched at the periphery, hori-

Genotype.—Lophampexus eliasi Moore & Jeff-

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.
Stereostylus annae, n. sp.

Stereostylus aages, n. sp.

Jeffords—Pennsylvanian Lophophyllidid Corals
horizontal in the axial region, and mostly complete in the highly developed species. The degree of specialization, however, is not related to stratigraphic occurrence. Advanced species, such as *L. brevifolius*, *n. sp., L. phractus*, *n. sp., and *L. vagus*, *n. sp.,* occur in Desmoinesian and Missourian rocks, whereas structurally less advanced forms, such as *L. spanus*, *n. sp.,* and *L. eliasi* MOORE & JEFFORDS, occur in Virgilian and Lower Permian rocks, respectively. It seems probable, therefore, that the species included in *Lophamplexus* are polyphyletic in origin and developed independently and at different times from *Stereostylus.* Thus, the degree of specialization cannot be used reliably as an indication of stratigraphic horizon.

SMITH & LANG (1930, p. 179) have shown that one or more corallites of a corallum may develop distinctive characters. One such genomorphic group comprises normal corallites of *Lithostrotion* and also individuals in which the column is lacking (diphymporphs). The occurrence of similar variation in solitary rugose corals is less easily determined inasmuch as the ancestry of these corallites cannot be identified as certainly as in the case of a colonial form. The consistent occurrence of the characters ascribed to *Lophamplexus* in large numbers of corallites from single localities, as well as the areal distribution of several of the species, suggests strongly that these characters are of generic importance.

The apical portion of corallites assigned to this genus has a structure like that of *Stereostylus,* whereas a mature region of varying duration shows distinct breviseptal characters and the absence of an axial column. Thus, longitudinal and transverse sections made in this portion of the corallite resemble closely the structures of *Amplexus Sowerby* (1814) and *Amplexocarinia* SOCSCHINA (1928).

However, *Amplexocarinia* has been interpreted (MOORE & JEFFORDS, 1945, p. 140) as lacking lophophyllidoid characters in the apical region, and as having the immature region restricted to an extremely small part of the corallite. The discovery of corals in which the lophophyllidoid characters are well developed, although confined to a few millimeters of the corallite, as in *Lophamplexus brevifolius,* *n. sp.,* suggests that *Amplexus corrugatus* MATHER (1915) from Morrowan rocks of Oklahoma may belong with *Lophamplexus* rather than with *Amplexocarinia* as was concluded previously (MOORE & JEFFORDS, 1945, p. 142). *Lophamplexus* is distinguished readily from *Lophophyllidium,* *Stereostylus,* and other lophophyllid genera by the absence of the column in the mature portion of the corallite and by the tendency for all the major septa to become distinctly shortened (Fig. 4).

Identification of *Lophamplexus* is made largely by characters shown in longitudinal sections. Such sections may be cut obliquely in other genera, however, so as to conceal the presence of the column. Moreover, transverse sections through the calyx of many species of *Stereostylus* show shortened septa (incompletely developed), and the column may be lacking in the uppermost portion of the calyx. In properly oriented sections of *Lophamplexus,* however, the axial column can be observed to terminate below the floor of the calyx which is formed by tabulae. Careful examination of the transverse sections in the upper portion of the same or another corallite furnishes a check on whether the column actually disappears or was missed by an oblique section.

Occurrence.—Pennsylvanian (Morrowan to Virgilian) and Lower Permian (Wolfcampian); Kansas, Oklahoma, and Missouri.

EXPLANATION OF PLATE 22

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.

Figure 1-5.—*Stereostylus pervenus,* *n. sp.,* from the Brownville and Dover limestones, Wabaunsee group, Virgilian series, Upper Pennsylvanian (Upper Carboniferous) .. 60

1a-c.—Transverse sections of specimen (Univ. Kansas No. 31821a) from the Dover limestone along U. S. Highway 50N, 3.8 miles east of Admire, Lyon County, Kansas.

2a-c.—Type specimen (Univ. Kansas No. 3405-21f) from the Brownville limestone at Admire Junction, 0.5 mile north of Admire, Kansas. a-b, Transverse sections. c, Longitudinal section.

3a-d.—Specimen (Univ. Kansas No. 340521c) from the same locality as figure 2. a-c, Transverse sections. d, Longitudinal section.

4a-d.—Specimen (Univ. Kansas No. 340521e) from the same locality as figure 2. a-c, Transverse sections. d, Longitudinal section.

5.—Transverse section in the calyx of specimen (Univ. Kansas No. 340521b) from the same locality as figure 2.

6-7.—*Lophamplexus phractus,* *n. sp.,* from the horizon of the Stoner-Eudora members, Stanton limestone, Lansing group, Missourian series, Pennsylvanian (Upper Carboniferous), at NE cor. sec. 27, T. 24 S., R. 17 E., near Paqva, Woodson County, Kansas 74

6a-g.—Type specimen (Univ. Kansas No. 1877-21a). a-f, Transverse sections. g, Longitudinal section in which the axial column is seen only near the base of the section.

7a-c.—Transverse sections of a slightly crushed specimen (Univ. Kansas No. 187721b).
Stereostylus perversus, n.sp.

Lophampexus phractus, n.sp.
Lophampexus brevifolius, new species

Plate 23, figures 1-6; Plate 25, figures 2, 6; Figures 4, 9

Large cylindrical corallites that may be slightly bent in an irregular manner are included in this species. The theca, which is relatively thin, bears sharp ridges and septal grooves, numerous prominent growth lines, and a few low transverse wrinkles. Short radicles occur near the apex. The calyx has relatively thin walls so that it is not well preserved; seemingly it was steep-sided and flat across the floor. The type specimen is a relatively small corallite, 29.5 mm in length and 5.5 mm in maximum diameter. The maximum observed length is 45 mm for an incomplete corallite, and the maximum diameter in another specimen is 16 mm.

This species is characterized by a very rapid development from the lophophyllidoid to brevisephal stage, so that lophophyllidoid characters are not apparent more than about 10 mm above the apex. Transverse sections in this portion of the corallite show a long counter septum, which is thickened axially, and major septa that reach nearly to the column. The cardinal septum is not notably shortened. A few millimeters higher the major septa are shortened appreciably, and they are joined at their inner edges by uparched tabulae. The counter septum is long and not thickened. Sections in the brevisephal region just above this stage show short major septa that extend only about one-fourth the distance to the axis, a slightly shortened cardinal septum, and a counter septum that is equal in length to other major septa. Major septa, excepting the counter septum, are not thickened or rhopaloid at any stage in development. Minor septa appear only as low ridges alternating between the major septa in mature regions. The septal formula, indicating the strong counter acceleration, is K5A2C2A5K for the type specimen. Transverse sections through the corallite just below the calyx show about 25 to 30 major septa.

The axial column persists only a short distance upward from the apex and has not been observed to separate from the counter septum. The tabulae

EXPLANATION OF PLATE 23

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-16.</td>
<td>Lophampexus brevifolius, n. sp., from the Mammoth group, Desmoinesian series, Pennsylvaniaian (Upper Carboniferous).</td>
</tr>
<tr>
<td>1a-g.</td>
<td>Transverse sections of specimen (Univ. Kansas No. 105322b) in which the lophophyllidoid characters extend higher in the corallite than normal. Collected from the Oologah limestone, Garnett quarry, northeast of Tulsa, Oklahoma.</td>
</tr>
<tr>
<td>2a-b.</td>
<td>Apical portion of specimen (Univ. Kansas No. 105322b) from the same locality as figure 1. a, Transverse section. b, Longitudinal section showing the axial column just below the lowermost tabula.</td>
</tr>
<tr>
<td>3.</td>
<td>Transverse section of the brevisephal phase in a large corallite (Univ. Kansas No. 105322h) from the same locality as figure 1.</td>
</tr>
<tr>
<td>4a-b.</td>
<td>Specimen (Univ. Kansas No. 105323b) from the same locality as figure 1. a, Transverse section. b, Longitudinal section showing the constriction at the top caused by rejuvenation. The axial column reappears immediately above some of the tabulae.</td>
</tr>
<tr>
<td>5a-h.</td>
<td>Specimen (Univ. Kansas No. 72721a) from the Ft. Scott limestone at Claremore, Oklahoma. a-f, Transverse sections illustrating the transition from a lophophyllidoid to a brevisephal stage. g-h, Longitudinal sections.</td>
</tr>
<tr>
<td>6a-c.</td>
<td>Transverse sections spaced about 1 mm apart in the apical region of specimen (Univ. Kansas No. 105323f) from the same locality as figure 1.</td>
</tr>
<tr>
<td>7.</td>
<td>Longitudinal section of specimen (Univ. Kansas No. 105322a) from the same locality as figure 1.</td>
</tr>
<tr>
<td>8a-c.</td>
<td>Specimen (Univ. Kansas No. 105322d) from the same locality as figure 1. a-b, Transverse sections. c, Longitudinal section indicating the regular spacing of the tabulae.</td>
</tr>
<tr>
<td>9a-c.</td>
<td>Specimen (Univ. Kansas No. 105321) from the same locality as figure 1. a-b, Transverse sections in the brevisephal region. c, Longitudinal section.</td>
</tr>
<tr>
<td>10.</td>
<td>Transverse section in the apical region of specimen (Univ. Kansas No. 105322) from the same locality as figure 1.</td>
</tr>
<tr>
<td>11.</td>
<td>Transverse section of a large corallite (Univ. Kansas No. 105322m) from the same locality as figure 1. The long septa indicate that the section is immediately above a tabula.</td>
</tr>
<tr>
<td>12a-c.</td>
<td>Transverse sections about 1.5 mm apart in specimen (Univ. Kansas No. 105323d) from the same locality as figure 1.</td>
</tr>
<tr>
<td>13.</td>
<td>Longitudinal section of specimen (Univ. Kansas No. 105322p) from the same locality as figure 1.</td>
</tr>
<tr>
<td>14a-b.</td>
<td>Type specimen (Univ. Kansas No. 105322e) from the same locality as figure 1. a, Transverse section in the apical region. b, Longitudinal section showing disappearance of the lophophyllidoid characters in the brevisephal phase.</td>
</tr>
<tr>
<td>15a-b.</td>
<td>Transverse sections of specimen (Univ. Kansas No. 105323a) from the same locality as figure 1.</td>
</tr>
<tr>
<td>16a-b.</td>
<td>Specimen (Univ. Kansas No. 105322c) from the same locality as figure 1. a, Transverse section. b, Longitudinal section showing short axial column at the base.</td>
</tr>
</tbody>
</table>
Lophamplexus brevifolius, n. sp.

Jeffords—Pennsylvania Lophophyllid Corals
rise steeply from the periphery and flatten out abruptly in the axial area between the inner edges of the septa; in the apical region they terminate against the column but later they are relatively horizontal within the axial edges of the septa. The regular nature of the tabulae is indicated by the uniformity of the intercepts in transverse section where they seem to form an inner wall at differing distances from the theca. The cardinal fossula is scarcely distinguished, and alar pseudofossule are not larger than other intersertal spaces.

Discussion.—This species is distinguished readily from other species assigned to *Lophampelus* by the much shortened duration of the lophophyllidoid stage in relation to the brevisepetal period. *L. brevifolius* resembles *L. westii* (Beebe) in length and cylindrical form of the corallite but differs in the rare occurrence of rejuvenation and in rapid and persistent change to the brevisepetal stage. The much smaller corals that were called *Amplexocarinum* var. *corrugatum* (Matthes) by Moore & Jeffords (1945, p. 142) are characterized also by a long brevisepetal stage and the restriction of the immature region to the very apical part of the corallite. *L. brevifolius* is distinguished, however, by its much larger size and the pronounced lophophyllidid character of the immature region.

The corallites of this species occur commonly as fragments that rarely have the lophophyllidoid stage preserved. Such fragments give little indication of the generic relationships. However, the large size and cylindrical form permit recognition of the species.

Occurrence.—Marmaton group, Desmoinesian series, Pennsylvanian (Upper Carboniferous). The type material was collected by R. C. Moons, J. M. Jewett, and others from the Oologah limestone at Garnett quarry, sec. 28, T. 20 N., R. 14 E., northeast of Tulsa, Oklahoma (Univ. Kansas loc. 1053). Other specimens were collected from the Fort Scott limestone at Claremore, Rogers County, Oklahoma, by W. M. Furnish (Univ. Kansas loc. 7727); the Altamount limestone at a ford 1 mile east of Uniontown, Bourbon County, Kansas, by J. W. Beebe (Univ. Kansas loc. 4424); and from the base of the Oologah limestone, cen. north side sec. 2, T. 19 N., R. 14 E., near Tulsa, Okla. (Univ. Kansas loc. 5237).

Material studied.—About 250 well-preserved specimens were available from the Garnett quarry, and about 15 specimens from the other localities. In all, 33 corallites were sectioned for study.

Type.—University of Kansas No. 105322e from the Oologah limestone at Garnett quarry, northeast of Tulsa, Oklahoma.

Lophampelus westii (Beebe), new combination

Plate 24, figures 1-8; Plate 25, figures 4-5; Plate 26, figure 5; Figure 9

Amplexus westii Beebe, 1898, Kansas Univ. Quart., vol. 7, p. 17, pl. 1.

Lophophyllum westii [sic] Beebe, 1900, Kansas Geol. Survey, vol. 6, p. 18, pl. 2, figs. 8-8b; pl. 3, fig. 12; pl. 5, fig. 7.

This species includes long cylindrical corallites that are straight or gently to markedly bent. The relatively thin theca bears broad low intersertal ridges, sharply incised septal grooves, and rather closely spaced prominent transverse wrinkles and growth lines. A few corallites bear short projections or radicles which are confined to one side of the apical region and seem to have served to attach the corallite to the substratum. The calyx is not well preserved in the available material; seemingly it was moderately deep and the floor was approximately flat. The incomplete type specimen, which is a relatively small individual, has a maximum diameter of 9 mm and a length of 26 mm. The

EXPLANATION OF PLATE 24

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.

Figure 1-8. *Lophampelus westii* (Beebe), n. comb., from the Bronson group, Missouri series, Pennsylvanian (Upper Carboniferous). . . . 68

1a-c. Specimen (Univ. Kansas No. 81321b) from the Hertha limestone at a railroad cut near Trent, about 3.5 miles east of Erie, Neosho County, Kansas. a-b, Transverse sections. c, Longitudinal section.

2a-f. Specimen (Univ. Kansas No. 57321c) from the same locality as figure 1. a-c, Transverse sections. f, Longitudinal section.

3a-c. Specimen (Univ. Kansas No. 580421a) from the same locality as figure 1. a-b, Transverse sections. c, Longitudinal section.

Figure 4a-b. Transverse sections of specimen (Univ. Kansas No. 81325f) from the same locality as figure 4.

5a-b. Topotype specimen (Univ. Kansas No. 811021d) from the Hertha limestone at Kansas City, Missouri. a, Transverse section. b, Longitudinal section.

6a-d. Specimen (Univ. Kansas No. 57321b) from the same locality as figure 1. a-c, Transverse sections. d, Longitudinal section.

7a-b. Transverse sections of toptype specimen (Univ. Kansas No. 811021c) from the same locality as figure 7.

8a-d. Specimen (Univ. Kansas No. 81322d) from the same locality as figure 8. a-c, Transverse sections. d, Longitudinal section.
Lophamplexus westii (Beede)

Jeffords—Pennsylvanian Lophophyllid Corals
largest corallite, which is nearly complete, is 60 mm in length. The corallites average about 40 mm in length. Most of the specimens are abruptly constricted one or more times as a result of rejuvenation and may be bent abruptly at such points. This rejuvenation occurs after the corallites have reached the cylindrical stage and are 9 to 12 mm in diameter.

Near the apex, the counter septum is elongate and slightly thickened at the inner edge and the cardinal is short; other major septa are long and reach to or nearly to the column. Somewhat higher in the corallite the major septa (except the cardinal) extend about two-thirds the distance to the axis and the column is separated from the counter septum. In the mature region of the corallites the column disappears and the septa gradually shorten, commonly reaching less than one-half the distance to the axis. The cardinal septum is not distinctly shorter than other major septa. Minor septa are present in the mature breviseptal stage as low ridges alternating between major septa.

The axial column, which is developed from the corallite, is laterally compressed and not appreciably thickened in the apical region. Higher in the corallite the column is distinct from the counter septum and may become somewhat irregular in shape. Characteristically, the column is lacking in the breviseptal portions, but it appears commonly after rejuvenation. Regularly spaced tabulae, which are mostly 0.8 to 2 mm apart, rise from the theca at an angle of about 45 degrees and become horizontal about one-third the distance to the column. Where the column is absent, tabulae extend completely across the interior of the corallite. The cardinal fossula is only moderately distinct in transverse sections of the lower parts and is scarcely distinguished in the breviseptal stages. Alar pseudofossulae are inconspicuous and can be determined in sections only by the position of an incompletely developed septum in the counter quadrants.

Repeated periods of rejuvenation affect the corallites after maturity is reached so that adolescent characters may reoccur. Thus, a long septal stage having the axial column may be present immediately above an amplexoid breviseptal stage.

Discussion.—Beebe (1898) first described these corals as Amplexus westii as inasmuch as the tabulae resemble those of Amplexus and the counter septum did not seem distinctly elongated and thickened. Later this species was redescribed as Lophophyllum westii (Beebe, 1900) after other specimens had indicated that the counter septum was long in at least some of the corallites. However, it was recognized that the characters were intermediate between those of Amplexus and those ascribed to Lophophyllum. Similar specimens were studied by Girty (1915a), and he recognized the intermittent character of the column. Although the structural features were considered to be somewhat at variance with those of other species referred to Lophophyllum, the corals were not separated generically. As the studies of Beebe and Girty indicated, this specimen resembles the corals that have been assigned to Lophampexus. The reappearance of the column after a breviseptal stage is merely the result of rejuvenation and does not represent a character generally distinct from the other forms included in Lophampexus.

Beebe suggested that Amplexus westii was conspecific with corals from upper Missourian rocks of Illinois that were described as Cyathaxonia distorta WORTHEN (1875), and Girty (1915a) concurred in this view. Both of these forms are characterized by elongated, irregularly bent cylindrical corallites. However, in view of the lack of information on the internal structures of C. distorta and the difference in stratigraphic horizon, L. westii is considered to be distinct from the Illinois species.
Lophamplexus

JEFFORDS—Pennsylvanian Lophophyllumid Corals
The type collection of the University of Kansas contains several lots of corals labelled "Lophophyllum westi (BEEDE)—type," and presumably most of this material was studied by BEEDE. The holotype is not identified by number in publication and seemingly different specimens furnished the basis for measurements given in the two descriptions (BEEDE, 1898, p. 17; 1900, p. 18). However, the small specimen described as "the type" (BEEDE, 1900, p. 177, description of Pl. 3, fig. 13) is considered to represent the holotype.

Occurrence.—Bronson group, Missourian series, Pennsylvanian (Upper Carboniferous). The type material was collected by E. P. WITZ at Kansas City, Missouri, probably from the Hertha limestone (Univ. Kansas loc. 5110). Other specimens were collected by BEEDE & ROOKES from the Hertha limestone at a railroad cut near Trent, about 3.5 miles east of Erie, Neosho County, Kansas (Univ. Kansas loc. 813, 5804, and 573). Single specimens of this species are recognized from the "Bethany Falls limestone" (Hertha limestone), sec. 33, T. 73 N., R. 16 E., Lucas County, Iowa (Univ. Kansas loc. 48321a) from the Toronto limestone, Nebraska formation, Virgilian series, Pennsylvanian (Upper Carboniferous). Type specimen (Univ. Kansas loc. 48321a) from the Hertha limestone at Lone Star, 0.7 miles east of Lone Star, 1 mile southeast of Independence, Kansas (Univ. Kansas loc. 48321a).......

Material studied.—The type material used by BEEDE, which comprises the type and four other specimens from Kansas City, Missouri, and about 900 specimens from the Neosho County locality, were available for study. One specimen was identified from each of the other two localities. About 35 representative corals were sectioned.

Type.—University of Kansas No. 811021a from the "Upper Coal Measures" [Hertha limestone] at Kansas City, Missouri.

Lophampexus ulius, new species

Plate 25, figure 3; Plate 26, figure 1; Plate 27, figures 1-7; Figure 9

Small gently curved corals that develop from a conical to a cylindrical shape are included in this species. The theca, which is moderately thick in the lophophylioid stage and thin above, bears fine longitudinal grooves and ridges, and relatively conspicuous transverse growth lines and sharp wrinkles. Rejuvenation is indicated in most specimens by abrupt constrictions of the corallite. The type specimen is 27 mm in length and 7 mm in maximum diameter just below the calyx. Other mature specimens may be a few millimeters greater in diameter and slightly longer.

The lower part of the complete corallites is characterized by a distinct development of the lophophylioid stage. The counter septum is long and distinctly thickened at the axis, the cardinal septum is shortened, and other major septa are long and approximately equal in length. These septa are moderately thick but not rhopaloid. Lophophylioid characters become less marked towards the calyx as the corallite assumes a cylindrical form. In this brevisepetal stage the septa are shortened and the column is lacking. The septal formula in the apical region of the type specimen is K.A.A.C.A.A.K. Minor sepal may develop near the calyx, but they remain rudimentary. Tabulae are more or less irregular in the apical region, and they become typically amplexoid above. They are rather closely spaced, mostly about 1 mm apart. The column is distinctly thickened in the apical region and may be independent of the counter septum in the upper portion of the lophophylioid stage. The cardinal fossula is relatively distinct throughout the early growth and persists into the lower part of the brevispetal stage. Alar pseudofossulae are not identified easily.

Discussion.—The corals assigned to this species comprise a somewhat varied assemblage and may include representatives of distinct species. However, the divergent forms are mostly individual specimens, so that quantitative evaluation of the differences are not possible at this time. Several of the corals are represented only by the upper brevispetal portion of the corallite and resemble the
JEFFORDS—Pennsylvanian Lophophyllidid Corals
Morrowan corals referred to *Amplexocarinia* by Moore & Jeffords (1945, p. 142) in their small size and thin structural elements. One locality (Univ. Kansas loc. 1828) has yielded three specimens, one characterized by a protracted lophophyllid stage, another by the small and distinctly breviseptal characters, and a third corallite that seems to show a gradation between these types. Seemingly, under certain ecologic conditions these corals developed a breviseptal stage rapidly, without a great increase in diameter. This stage was then continued in certain specimens, but in others a lophophyllid stage developed subsequently and the diameter was increased.

Lophamplexus ulius is distinguished readily from *L. vestitii* (Beede), *L. brevifolius*, n. sp., and *L. vagus*, n. sp., by the small diameter of the corallites. The well-developed lophophyllid stage and thick column also are characteristic of this species.

Occurrence.—Kansas City group, Missourian series, Pennsylvanian (Upper Carboniferous). The type specimen was collected from the Argentine limestone member of the Wyandotte limestone at Wyandotte Dam, sec. 18, T. 10 S., R. 1 E., Wyandotte County, Kansas (Univ. Kansas loc. 7489). Other corallites which are referred to this species were collected from the Raytown limestone member of the Iola limestone at Main Street cut, Kansas City, Missouri (Univ. Kansas loc. 332); the Farley limestone member of the Wyandotte limestone at the Lone Star Cement quarry, Bonner Springs, by R. M. Jarrosses (Univ. Kansas loc. 1828), at Camp Nash, east of Bonner Springs, Wyandotte County, Kansas (Univ. Kansas loc. 1881), and from the Wyandotte limestone at the quarry in Loring, Wyandotte County, Kansas (Univ. Kansas loc. 6886).

Material studied.—This species is represented by one sectioned specimen from each of the localities except the Bonner Springs quarry where three specimens were identified with this species.

Type.—University of Kansas No. 748921a from the Argentine limestone at Wyandotte Dam.

Lophamplexus phractus, new species

Plate 22, figure 6-7; Plate 25, figure 1; Figure 9

This species includes moderately large cylindrical corallites that are gently curved in the plane of the alar septa. The theca, which is relatively thick, bears fine longitudinal grooves and interseptal ridges, and transverse markings consisting of a few low wrinkles and fine growth lines in the cylindrical portions. The nature of the calyx is not observed. The type specimen is 32 mm in length and 17.5 mm in maximum diameter at the calyx. Another specimen reaches about the same maximum diameter. Periods of rejuvenation seem to be rare.

The apical region is characterized by long thin major septa except for the distinctly shortened cardinal septum and the thickened counter septum. At a distance of about 15 mm above the apex, the counter septum is equal in length to the other major septa and the axial column has disappeared. In the early part of the breviseptal portion of the corallites, the major septa extend three-fourths the distance to the axis and are relatively stout. Near the calyx the septa become greatly shortened and connected about their inner edges by intercepts of the tabulare. The septal formula as seen in the apical

EXPLANATION OF PLATE 27

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.

Figure	**Page**
1-7. *Lophamplexus ulius*, n. sp., from the Kansas City group, Missourian series, Pennsylvanian (Upper Carboniferous) | 72
1a-d. Specimen (Univ. Kansas No. 33221d) from the Raytown limestone member, Iola limestone, at Main Street cut, Kansas City, Missouri. a-c, Transverse sections. d, Longitudinal section.
2a-c. Transverse sections of specimen (Univ. Kansas No. 182822b) from the Farley limestone member, Wyandotte limestone, at Lone Star Cement quarry, Bonner Springs, Wyandotte County, Kansas.
3a-f. Type specimen (Univ. Kansas No. 748921a) from the Argentine limestone member, Wyandotte limestone, at Wyandotte Dam, Wyandotte County, Kansas. a-c, Transverse sections. f, Longitudinal section.
4a-b. Specimen (Univ. Kansas No. 182821a) from the same locality as figure 2. a, Transverse section. b, Longitudinal section.
5a-b. Specimen (Univ. Kansas No. 188121a) from the Farley limestone member, Wyandotte limestone, at Camp Nash, east of De Soto, Johnson County, Kansas. a-b, Transverse sections. c, Longitudinal section.

Figure	**Page**
6a-d. Specimen (Univ. Kansas No. 689621a) from the Wyandotte limestone at a quarry in Loring, Wyandotte County, Kansas. a-b, Transverse section. d, Longitudinal section.
7a-c. Specimen (Univ. Kansas No. 182821b) from the same locality as figure 2. a-b, Transverse section. c, Longitudinal section.
8a-e. Type specimen (Univ. Kansas No. 2202-21a) from the Nellie Bly formation, Skiatook group, at brick plant, sec. 1, T. 19 N., R. 11 E., northeast of Sand Springs, Oklahoma. a-d, Transverse sections. e, Longitudinal section.
9a-c. Specimen (Univ. Kansas No. 171221a) from the Drum limestone, Kansas City group, at Kill Creek, 1 mile southeast of De Soto, Johnson County, Kansas. a-b, Transverse sections. c, Longitudinal section.
portion of the type specimen is K6A4C4A5K. There are about 26 major septa in the mature portions of these corals. Minor septa appear in the later part of the lophophyllidoid stage but they remain inconspicuous. The column is prominent in the apical region and decreases gradually upward by a progressive shortening of the counter septum. Tabulae are rather irregular in the lophophyllidoid portion of the corals, but they assume the typical amplexoid character in the brevisepetal stage, where they are regularly spaced and complete. Pseudofossulae are inconspicuous, whereas the cardinal fossula is a well-developed feature that persists far into the brevisepetal region.

Discussion.—The species here described resembles Lophampluxus brevifolius, n. sp., in the external appearance of the theca, but it has a much more extended lophophyllidoid stage. L. phractus may be separated from L. westii (BEEDE) by the greater number of septa and the rarity of periods of rejuvenation which results in the more or less complete disappearance of the septa in mature stages. This Lansing species is distinguished readily from L. lutarius, n. sp., by the lack of radicles, stouter septa, and more regular intercepts of the tabulae in sections across the brevisepetal region. L. ulius, n. sp., is a distinctly smaller coral.

Occurrence.—Horizon of the Stoner-Eudora members, Stanton limestone, Lansing group, Missourian series, Pennsylvanian (Upper Carboniferous). Collected by N. D. NEWELL from the NE cor. sec. 27, T. 24 S., R. 17 E., near Piqua, Woodson County, Kansas (Univ. Kansas loc. 1877). Material studied.—One relatively complete corallite and the upper part of another specimen were available for study of this species.

Type.—University of Kansas No. 187721a.

Lophampluxus vagus, new species

Plate 27, figures 8-9; Figure 9

This coral comprises straight cylindrical corallites which have a moderately thick theca. The exterior is marked by narrow low ridges and broad shallow septal grooves and by numerous transverse growth lines and low wrinkles. The calyx is not preserved. The type specimen is 29 mm in length and 10 mm in diameter near the calyx.

The lophophyllid portion of the corallite shows long thin major septa that extend nearly to the thin column. The cardinal septum is distinctly shortened. In the brevisepetal stage the major septa shorten to only one-half the radius, and they never are rhopaloid. The septal formula in the upper part of the type specimen is K6A4C4A5K. Minor septa occur as ridges between some of the major septa, particularly in the counter quadrants. The axial column is thin and reappears above a brevisepetal stage as the result of rejuvenation. Pseudofossulae are not easily identified, whereas the cardinal fossula is prominent throughout all growth stages.

Discussion.—This species is distinguished from other species referred to Lophampluxus by the broad shallow character of the septal grooves and by the somewhat anastomosing irregular character of the tabulae in the brevisepetal stage. L. westii (BEEDE) also has an axial column that appears subsequent to a brevisepetal stage, but L. vagus differs in the shorter septa and more regular appearance of the axial column as seen in transverse section.

A single corallite comprising only the cylindrical portion agrees with this species in the characters of the septa and tabulae of the mature region. However, the assignment of this coral from the Farley limestone to Lophampluxus vagus is questionable, inasmuch as its immature characters are unknown.

Occurrence.—Missourian series, Pennsylvanian (Upper Carboniferous). The type specimen is from the Nellie Bly formation, Skiatook group, at the brick plant, sec. 1, T. 19 N., R. 11 E., northeast of Sand Springs, Oklahoma (Univ. Kansas lac. 2002). Another specimen questionably assigned to this species was collected by N. D. NEWELL from the Drum limestone, Kansas City group, at Kill Creek, 1 mile southeast of De Soto, Johnson County, Kansas (Univ. Kansas loc. 1712).

EXPLANATION OF PLATE 28

All figures three times natural size. Transverse sections are oriented with the cardinal septum at bottom; protosepta are indicated by small arrows. Longitudinal sections are at right angles to the counter-cardinal plane; the position of transverse sections is indicated by small italic figures.

FIGURE 1-6.—Lophampluxus? lutarius, n. sp., from the upper part of the Boggay formation, Desmoinesian series, Pennsylvanian (Upper Carboniferous), at cen. sec. 7, T. 7 N., R. 3 E., southeast of Ada, Pontotoc County, Oklahoma. 79

1a-e.—Specimen (Univ. Kansas No. 160421c) showing well-developed brevisepetal characters. a-d, Transverse sections. e, Longitudinal section.

2a-c.—Transverse sections of the type specimen (Univ. Kansas No. 160421h).

3.—Transverse section of specimen (Univ. Kansas No. 160421a).

FIGURE 4.—Longitudinal section of specimen (Univ. Kansas No. 160421n).

6a-c.—Transverse sections in the apical region of specimen (Univ. Kansas No. 160421m).

6a-d.—Transverse sections near the apex of specimen (Univ. Kansas No. 160421k).

7.—Lophampluxus spanius, n. sp., from the Wildhorse limestone, Nelagoney formation, Virginian series, Pennsylvanian (Upper Carboniferous), along Naming road, 15.7 miles west of Skiatook, Oklahoma. 78

7a-e.—Type specimen (Univ. Kansas No. 7903-21d). a-d, Transverse sections. e, Longitudinal section.
Lophaeplexus? lutarius, n.sp.

Lophaeplexus spanius, n.sp.

Jeffords—Pennsylvanian Lophophyllidid Corals
Material studied.—The well-preserved type specimen and one other incomplete corallite were identified from the sectioned material.

Type.—University of Kansas No. 220221a from the Nellie Bly formation, northeast of Sand Springs, Oklahoma.

Lophamplexus spanius, new species

Plate 26, figure 6; Plate 28, figure 7; Figure 9

Relatively large, gently curved corallites that are conical near the apex but cylindrical above, are included in this species. The type specimen is slightly curved in the counter-cardinal plane so that the counter side is concave. The moderately thick theca bears distinct longitudinal markings that are crossed by fine growth lines and low wrinkles. The calyx comprises a horizontal floor surrounded by a high vertical wall. The apical portion of the corallite bears a broad area of attachment by which it was firmly fastened to the substratum. The type specimen is 51 mm in length and 18 mm in maximum diameter just below the calyx.

The apical region is characterized by a strong development of the lophophyllidoid characters. The counter septum is long and markedly thickened at the axis, the cardinal septum is thin but shortened, and other major septa mostly reach to the column. Somewhat higher sections show major septa that are long and slightly rhopaloid, a thin shortened cardinal septum, and short minor septa.

The column at this stage is large and laterally compressed. The septal formula of the type specimen, showing the slight counter acceleration, is K6A5-C5A7K. The breviseptal portions of the corallite are characterized by the cylindrical shape, the disappearance of the column, and thick shortened major septa. The minor septa are relatively long and appreciably thickened.

Tabulae are rather closely spaced and somewhat insculating in the breviseptal region. Commonly, they rise gently from the periphery to the inner edges of the septa and are flat or slightly sagging across the axial region. The cardinal fossula is well marked in the lophophyllidoid stage but becomes inconspicuous in the adult portions. Alar pseudo-fossulae are evident only in the early part of the lophophyllidoid stage.

Discussion.—The large diameter, stout septa, and long minor septa separate this species from other corals assigned to *Lophamplexus*, such as *L. brevifolius*, n. sp., *L. captiosus* Moore & Jeffords (1945, p. 121), and *L. eliasi* Moore & Jeffords (1941, p. 91). Moreover, the continuation of many of the major septa to the column and the palmate pattern of the septa, as seen in transverse sections of the apical region, is characteristic in *L. spanius*. The constriction of the corallite and concentration of the tabulae seen in the upper part of the longitudinal section (Pl. 28, fig. 7) are the result of partially

![Figure 9](image-url)

Figure 9—Outline drawings at natural size prepared from photographs of described species of *Lophamplexus* showing the form, variation, and relative size of the corallites. (For *L.? lutorius* read *L. lutarus*.)

The stippled portions indicate probable restoration of incomplete specimens.
completed rejuvenation. The column has started to reappear also.

Occurrence.—Wildhorse limestone, Nelagoney formation, Virgilian series, Pennsylvanian (Upper Carboniferous). Collected along Numing road, 15.7 miles west of Skiatook, Oklahoma (Univ. Kansas loc. 7902).

Material studied.—A single lophophyllidid coral was found among a number of specimens of an undescribed species of *Pseudozaphrentoides* from this locality. This coralite is well preserved and shows distinctive characters that warrant its description as a new species.

Type.—University of Kansas No. 790231d.

Lophamplexus? lutarius, new species

Plate 28, figures 1-6; Figure 9

Relatively straight conico-cylindrical corallites bearing fine septal grooves and rounded ridges that are crossed transversely by broad growth lines and numerous prominent wrinkles are included in this species. The calyx is deep and broad, and the theca is thin. The apical portion of the corallites is characterized by a few scattered spines or radicles. The type specimen is 19 mm in length and 10.5 mm in diameter just below the calyx; the largest corallite is 14 mm in diameter.

The apical portion of these corallites indicates the development of long thin septa that join axially or abut other major septa. The counter septum is not observed to be distinctly thickened axially. These immature characters give way upward to the breviseptal stage in which the septa are markedly shortened and approximately equal in length. Mature specimens show about 26 major septa; the proto-

septa are not identified in the sections of the mature portions of the corallites. Minor septa are rudimentary. Tabulae are spaced regularly about 1.5 mm apart in the breviseptal region. They arch upward at the periphery and level abruptly at the inner edges of the major septa. Thus, in transverse section tabulae seem to form an inner wall connecting the septa. The fossula and pseudofossulae are inconspicuous.

Discussion.—This species develops the distinct breviseptal characters of *Lophamplexus*, but the available material does not furnish adequate data on the lophophyllidid characters. Although these specimens may have been derived from a coral that lacked lophophyllidid features, it seems preferable to assign this species to *Lophamplexus*, which is relatively common in Pennsylvanian deposits.

Lophamplexus? lutarius resembles *L. phractus*, n. sp., from Missourian rocks in the reduction of the minor septa and thickness of the theca. However, the former species is characterized by the appreciably thinner and shorter septa. The corallites of *L.? lutarius* do not become completely cylindrical in upper portions as *L. brevifolius*, n. sp., and *L. vagus*, n. sp. This species also seems to lack prominent periods of rejuvenation.

Occurrence.—Shale in upper part of the Boggy formation, Desmoinesian series, Pennsylvanian (Upper Carboniferous). Collected by N. D. Newhall from the cen. sec. 7, T. 3 N., R. 8 E., southeast of Ada, Pontotoc County, Okla. (Univ. Kansas loc. 1604).

Material studied.—About 15 corallites were available for study, and 10 representative specimens were sectioned.

Type.—University of Kansas, No. 160421h.

STRATIGRAPHIC SUMMARY

The occurrence of corals in Pennsylvanian deposits of the Midcontinent is related closely to conditions under which these rocks were deposited. Moreover, particular assemblages of corals occur in rather narrowly limited facies. Such distinctive coral faunas include nodular masses or mound-like reefs of *Chaetetes* that occur immediately above persistent limestones in the Marmaton group, *Dibunophyllum* and other chiophyllids in thick massive limestones, and *Pseudozaphrentoides* (Campophyllum of authors) and *Syringopora* in shallow-water calcareous shales and thin limestones. Lophophyllid corals are found most abundantly in limestones and shales associated with brachiopods and bryozoans, although their occurrence is not uniform throughout any particular formation.

Species of *Lophophyllidum* are confined largely to shales or calcareous zones within a predominantly shaly section, such as the Cherokee, Wewoka, and Wayland shales. These species may be associated with a mixed fauna of brachiopods, sponges, and mollusks. *Stereostylus* occurs in shales, limestones, and sediments that are intermediate in composition. Species such as *S. lenis*, *S. milichus*, *S. pandatus*, and *S. annae* from relatively pure limestones are characterized by an elongate conico-cylindrical form, relatively thin skeletal elements, and minor deposits of stereoplasm. Species from shales, on the other hand, commonly are broadly conical in form and contain stout structures that are secondarily thickened by stereoplasm. *Lophamplexus* occurs in both shaly and limy sediments, but seems to be more abundant in limestones.

The short range, abundant occurrence, and numerous mutable characters of Pennsylvanian lophophyllidics suggest that these corals have considerable stratigraphic usefulness. Care is needed, however, to avoid correlation of faunas representing merely similar facies rather than faunas that are contemporaneous. Also, each sedimentary facies is represented by a distinct series of species so that the observed range of most species is dependent upon minor changes in conditions of deposition. Therefore, it is not practicable at this time to attempt definition of zones on the basis of lophophyllid corals.
Species of *Lophophyllidium*, *Stereostylus*, and *Lophamplexus* are described from rocks of Desmoinesian, Missourian, and Virgilian age as indicated on the following table. Desmoinesian corals include especially the conical species of the *Stereostylus newelli* type, radicle-bearing corals like *S. girtyi* (Jeffords, 1942) which may be a synonym of *S. radicosus* (Girty, 1911), *Lophophyllidium hadrum*, and *L. wewokanum*. In the Missourian series, *Lophamplexus westii* (Beede) occurs abundantly in the Hertha limestone, *Stereostylus lenis* is present throughout the pure limestone members of the Kansas City group, and *S. pelaeus* is recorded from the shaly facies of Oklahoma. Upper Missourian rocks (Lansing and Pedee groups) are distinguished particularly by a small conical species of *Lophophyllidium*, *L. coniforme*. Virgilian rocks in the northern Midcontinent contain species of *Stereostylus*, such as *S. pandatus*, *S. absitus*, and *S. perversus*, whereas equivalent deposits of north-central Texas are characterized by several species of *Lophophyllidium*.

Stratigraphic Distribution of Species

<table>
<thead>
<tr>
<th>Species</th>
<th>Desmoinesian</th>
<th>Missourian</th>
<th>Virgilian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lophophyllidium hadrum, n. sp...</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lophophyllidium wewokanum, n. sp...</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lophophyllidium coniforme, n. sp...</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lophophyllidium asarcum, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lophophyllidium lanorum, n. sp...</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lophophyllidium plummeri, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lophophyllidium spinosum, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stereostylus aages, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stereostylus adelus, n. sp...</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stereostylus pelaeus, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stereostylus phainus, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stereostylus lenis, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stereostylus malichus, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stereostylus absitus, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stereostylus pandatus, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stereostylus annae, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stereostylus perversus, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lophamplexus? lutarius, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lophamplexus brevifolius, n. sp...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lophamplexus westii (BEDE), n. comb...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lophamplexus vagus, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lophamplexus ulus, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lophamplexus phractus, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lophamplexus spanius, n. sp...</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

HAACK, E., 1972, Natürlich Schöpfungsgeschichte.

1937. The Permian corals of western Australia: Royal Soc. Western Australia, Jour., vol. 23, p. 43-63, pl. 1, text figs. 1-12.

1956c, "Gerontic" structures in the Carboniferous coral Rotiphyllum costatum (McCoy): Geol. Mag., vol. 90, no. 1, p. 23-29, text figs. 1-3.

1945, Description of Lower Pennsylvanian corals from Texas and adjacent states: Texas Univ., Pub. 4401, p. 77-208, pl. 14, figs. 1-214.

Reed, F. R. C., 1925, Upper Carboniferous fossils from Chital and the Panirs: Palaeontologia Indica, n. ser., vol. 6, mem. 4, p. 1-134, pls. 1-10.

INDEX

Allotrophophyllum, 20, 62
Amplexocarinia, 64
corrugata, 68
Amplexus, 11, 62, 64
coraloides, 62
corrugatus, 64
westii, 6, 70
Archoscolasma, 15
Azophyllum? alleni, 6
Camphophyllum, 15, 79
Chaeetes, 79
Classification of Paleozoic corals, 20
Claviphyllum, 6, 14, 16, 18, 20, 40
crurus, 18
Colummiria, 62
cyathaxonia, 6, 15, 40
distorta, 6, 70
pirtyi, 6
profunda, 6
protzera, 6, 15, 21
tortuosa, 21
Cyathopsis? erucia, 14, 16
Dibunophyllum, 10, 79
External features, 8
Fasciculophyllum, 16, 18
dybowski, 14, 16, 18
Genera, key to, 18
Glossary of terms, 12
Hopiphyllum, 18
Internal features, 10
Key to genera, 18
Kinkaidia, 6, 14, 16, 18, 20
triponiala, 18
Koninckophyllum, 15, 20
Lithostrotion, 64
Lophamphora, 6, 10, 11, 12, 14, 16, 18, 20, 38, 62, 79, 89
bresiolius, 79
celtis, 10, 62, 64, 78
taurus, 76, 78, 79, 89
phractus, 64, 70, 74, 78, 79, 89
spanus, 61, 72, 76, 78, 89
ulius 62, 70, 72, 74, 76, 78, 80
ugus 64, 74, 76, 78, 79, 89
westii, 6, 68, 70, 72, 74, 76, 78, 80
Lophamphanophyllum, 6, 15, 18, 20
nacteispetion, 16, 18
Lophophyllophilum, 15
key to genera, 18
Lophophyllophilum, 6, 10, 12, 14, 16, 18, 20, 21, 23, 38, 64, 79, 89
adapertum, 40
amphilophillum, 49
ascomus, 23, 24, 26, 30, 32, 34, 86
blundus, 40
compresus, 40
confertum, 40
colome, 8, 9, 32, 38, 30, 32, 34, 56, 40, 80
conidium, 40
daneri, 40
elongatus, 40
eule, 40
exopanum, 40
girya, 40
lastrum, 22, 23, 24, 26, 31, 35, 80
lagenom, 32, 21, 22, 34, 36, 80
metum, 40
minutum, 40
muscumal, 40
nervuli, 40
plumulos, 8, 23, 23, 24, 26, 28, 32, 33, 36, 38, 40, 80

driliferum, 16, 24, 26, 40
driliferum radicosum, 26
raditum, 49
sauridens, 6
spanum, 16, 28, 29, 32, 42, 44, 80
wittoukianum, 22, 23, 24, 26, 32, 34, 38, 40, 80
Lophophyllophilum, 6, 14, 16, 18, 20, 21
axostylum, 40
inaequale, 40
bomides, 21
orientale, 40
pseudulmus, 21
pseudum, 49
profundum sauridens, 6
profiliferum, 40
profiliferum radicosum, 6
Lophotichsum, 6, 14, 16, 18, 20, 38
verum, 16
Malonophyllum, 6, 14, 16
tezonum, 16, 32
Morphology, 8
Neocephalidea, 50
Ontogenetic tendencies, 11
Pentaphyllophilum, 62
Phylogenetic relationships, 18
Pleurophyllum, 15, 62
tartense, 15
Pseudon quaternionidea, 79
References, 81
Rhophoikosma, 20
Rusophyllum, 15
Rotiphyllum, 26
Sinophyllum, 6, 15, 21
charmaci, 40
multiseptus irregular, 40
pendulum, 40
pendulum carinatum, 40
Saukophyllum, 6, 14, 15
vaguel, 40
Stereostyla, 10, 12, 16, 18, 20, 38, 41, 64, 79, 89
axos, 41, 46, 62, 72, 80
abeitis, 41, 44, 54, 56, 60, 80
adeloius, 28, 41, 46, 54, 56, 80
axinus, 34, 41, 56, 60, 79, 80
blandus, 42
compressus, 46
distinctus, 30, 40, 44
7 distortus, 6
elongatus, 48
cpanse, 44
girya, 80
lenia, 9, 11, 16, 40, 41, 47, 48, 50, 52, 56, 60, 79, 80
milchus, 41, 50, 52, 54, 79, 80
nervulii, 30, 33, 38, 40, 50, 50
pandatus, 49, 41, 42, 50, 54, 56, 72, 79, 80
pelaeus, 41, 42, 40, 44, 50, 60, 80
percesus, 41, 56, 60, 64, 80
pharonia, 41, 46, 50, 54, 56, 72, 80
radicosa, 6, 80
Stratigraphic distribution of species, 80
Stratigraphic summary, 79
Trispinapectum, 79
Thysanophyllum, 15
Thomophyllum, 15
emulsum, 15
Triplophyllites palatinus, 20
Yunnophyllum, 15
“Zaphrentis,” 15, 62
delanoide, 11, 18
diapneis, 19, 20
parallelu, 18
tenella, 20
tenuis, 20

(84)