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Abstract

A matrix S ∈ C2m×2m is symplectic if SJS∗ = J , where J =
[

0
−Im

Im
0

]
. Symplec-

tic matrices play an important role in the analysis and numerical solution of matrix
problems involving the indefinite inner product x∗(iJ)y. In this paper we provide
several matrix factorizations related to symplectic matrices. We introduce a singular
value-like decomposition B = QDS−1 for any real matrix B ∈ Rn×2m, where Q is
real orthogonal, S is real symplectic, and D is permuted diagonal. We show the
relation between this decomposition and the canonical form of real skew-symmetric
matrices and a class of Hamiltonian matrices. We also show that if S is symplec-
tic it has the structured singular value decomposition S = UDV ∗, where U, V are
unitary and symplectic, D = diag(Ω,Ω−1) and Ω is positive diagonal. We study the
BJBT factorization of real skew-symmetric matrices. The BJBT factorization has
the applications in solving the skew-symmetric systems of linear equations, and the
eigenvalue problem for skew-symmetric/symmetric pencils. The BJBT factorization
is not unique, and in numerical application one requires the factor B with small norm
and condition number to improve the numerical stability. By employing the singular
value-like decomposition and the singular value decomposition of symplectic matrices
we give the general formula for B with minimal norm and condition number.

Keywords. Skew-symmetric matrix, symplectic matrix, orthogonal(unitary) symplectic
matrix, Hamiltonian matrix, eigenvalue problem, singular value decomposition (SVD),
SVD-like decomposition, BJBT factorization, Schur form, Jordan canonical form.
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1 Introduction

Let Jm =
[

0
−Im

Im
0

]
∈ R2m×2m. We will use J when the size is clear from the context. A

matrix S ∈ C2m×2m is symplectic if
SJS∗ = J.
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A matrix S ∈ C2m×2m is unitary symplectic if S is both unitary and symplectic. In the
real case S is orthogonal symplectic. A matrix A ∈ C2m×2m is Hamiltonian if

(AJ)∗ = AJ.

A matrix A ∈ C2m×2m is skew-Hamiltonian if

(AJ)∗ = −AJ.

A symplectic matrix is also called J-orthogonal. Symplectic similarity transformations
preserve the structures of Hamiltonian, skew-Hamiltanian and symplectic matrices. Based
on this fact symplectic matrices are used as the basic tool in the analysis and the numerical
solution of Hamiltonian, skew-Hamiltonian and symplectic eigenvalue problems [21, 7, 9,
17, 14, 1, 10]. Recently in [4, 5] it is showed that every real matrix B ∈ R2m×2m has
the symplectic URV factorization B = URV T , where U, V are orthogonal symplectic and
R is block upper triangular. Based on this factorization and its generalization several
numerically stable and structure preserving methods have be developed [4, 5, 3].

In this paper we study some other matrix decompositions related to symplectic matrices.
Our purpose is to provide some new insights about the symplectic matrices. We show that
for any real matrix B ∈ Rn×2m there exists a real orthogonal matrix Q and a real symplectic
matrix S such that

B = QDS−1, (1)

where

D =


p q m− p− q p q m− p− q

p Σ 0 0 0 0 0
q 0 Iq 0 0 0 0
p 0 0 0 Σ 0 0
n− 2p− q 0 0 0 0 0 0

,
and Σ is positive diagonal. We call this decomposition the SVD-like decomposition, because
it has the form and properties very similar to the singular value decomposition (SVD). If
A = UDV ∗ is the SVD of the matrix A then

AA∗ = UΣ2U∗, A∗A = V Σ2V ∗,

which are the Schur forms of the positive semidefinite matrices AA∗, A∗A respectively.
Similarly if the real matrix B has the SVD-like decomposition (1), by the symplectic
property JS−T = SJ , one has

BJBT = Q


0 0 Σ2 0
0 0 0 0
−Σ2 0 0 0

0 0 0 0

QT , (2)
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and

JBTB = S


0 0 0 Σ2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−Σ2 0 0 0 0 0

0 −Iq 0 0 0 0
0 0 0 0 0 0

S
−1. (3)

Let Σ = diag(σ1, . . . , σp). With appropriate permutations (2) gives the real Schur form of
the real skew-symmetric matrix BJBT ,

diag

([
0 σ2

1

−σ2
1 0

]
, . . . ,

[
0 σ2

p

−σ2
p 0

]
; 0, . . . , 0

)
;

and (3) gives the real Jordan canonical form of the real Hamiltonian matrix JBTB,

diag


[

0 σ2
1

−σ2
1 0

]
, . . . ,

[
0 σ2

p

−σ2
p 0

]
;

[
0 0
−1 0

]
, . . .

[
0 0
−1 0

]
︸ ︷︷ ︸

q

; 0, . . . , 0

 .

Therefore the SVD-like decomposition (1) contains the whole information about the eigen-
structures of the real skew-symmetric matrices and the real Hamiltonian matrices in the
product forms BJBT and JBTB, respectively. The structured Jordan canonical form for
general Hamiltonian matrices is given in [15].

We also show that every complex symplectic matrix S has the SVD

S = U

[
Ω 0
0 Ω−1

]
V ∗, (4)

where U, V are unitary symplectic, Ω is positive diagonal.
Finally we apply the SVD-like decomposition (1) and the structured SVD (4) to analyze

the norm and condition number of the factor B in the BJBT factorization. In [7, 2] it is
shown that for the real skew-symmetric matrix K ∈ Rn×n there exists a matrix B ∈ Rn×2m

with full column rank such that
K = BJBT .

The BJBT factorization is similar to the full rank factorization A = BBT for a real
symmetric positive semidefinite matrix A. Both factorizations are not unique. If A = BBT

then for every orthogonal matrix Q, A = (BQ)(QB)T is another full rank factorization.
Similarly if K = BJBT then for every symplectic matrix S, K = (BS)J(BS)T is another
BJBT factorization. However, these two factorizations have a major difference. For the full
rank factorization all different factors have the same singular values. But for the BJBT

factorization, because of the non-orthogonality of symplectic matrices, different factors
may have different singular values. One may seek for the factors with minimal norm and
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condition number. Such minimization problems have numerical significance. For instance,
to solve the system of linear equations Kx = b with K real skew-symmetric one may use
the BJBT factorization of K ([7]). Another example is that in [3] a numerical method is
given for solving the eigenvalue problem of a skew-Hamiltonian/Hamiltonian pencil, which
is equivalent to a skew-symmetric/symmetric pencil αK − βM . The main task of the
method is to compute certain condensed forms of B, JBT and M simultaneously, where
B is the factor of K = BJBT . In both examples for numerical stability a factor B with
small norm and condition number is required. In this paper we give the general form for
the factors B with minimal norm and condition number, respectively.

The SVD-like decomposition (1) also provides a different numerical way to solve the
eigenvalue problem for the matrices BJBT and JBTB. For a matrix in product/quotient
form it is a common idea to perform numerical computations on matrix factors rather
than on the explicitly generated matrix. In this way the numerical accuracy usually can
be improved. One classical example is the QZ algorithm for computing the eigenvalues
of the matrix B−1A. There are many numerical methods following this idea, e.g., [19,
6, 13, 16, 11]. The same idea can be used for solving the eigenvalue problems for the
matrices BJBT and JBTB by computing the SVD-like form of B. Following this idea a
numerical method is proposed in [20]. Here we only present the SVD-like decomposition
for theoretical purpose.

Some basic properties about symplectic matrices and skew-symmetric matrices will be
provided in Section 2. The SVD-like decomposition (1) will be proved in Section 3. The
structured SVD (4) will be given in Section 4. For the BJBT factorization the general
forms of the factors with minimal norm and minimal condition number, respectively, will be
given in Section 5. Some numerical methods for the BJBT factorization will be discussed
in Section 6. Finally our conclusion will be given in Section 7.

In this paper ||B|| denotes the spectral norm of B. κ(B) = ||B||
∣∣∣∣B†∣∣∣∣ denotes the

condition number of B, where B† is the pseudo-inverse of B.

2 Preliminaries

We list the following properties for real symplectic matrices, which can be found in [8, 17].

Proposition 1

1. The matrix J =
[

0
−Im

Im
0

]
is symplectic, and J−1 = JT = −J .

2. If X ∈ Cm×m is nonsingular then
[
X
0

0
X−∗

]
is symplectic. (Here X−∗ = (X−1)∗.)

3. If Y ∈ Cm×m is Hermitian then the matrix
[
Im
0

Y
Im

]
is symplectic.

4. If X, Y ∈ Cm×m satisfy XY ∗ = Y X∗ and detX 6= 0, then the matrix
[
X
0

Y
X−∗

]
is

symplectic.
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5. If S ∈ C2m×2m is symplectic then S∗, S−∗(= JSJ∗), S−1(= J∗S∗J) are symplectic.

6. If S1, S2 ∈ C2m×2m are symplectic then S1S2 is symplectic.

The following properties can also be found in [8, 17].

Proposition 2

1. A 2m × 2m real orthogonal symplectic matrix has the block form
[
U1

−U2

U2

U1

]
with

U1, U2 ∈ Rm×m.

2. Let C ∈ R2m×r. There exists a real orthogonal symplectic matrix U such that when
r > m,

C = UR = U

[
R11 R12

R21 R22

]
,

with R11, R21 ∈ Rm×m and R12, R22 ∈ Rm×(r−m); and when r ≤ m,

C = UR = U


R11

0
R21

0

 ,
with R11, R21 ∈ Rr×r. In both cases R11 is upper triangular and R21 is strictly upper
triangular.

The following lemmas give some factorizations which will be used later.

Lemma 1 Suppose that C ∈ Rn×2m and CJCT = 0. Then rankC = r ≤ min{n,m}, and
there exists a real symplectic matrix Z and a real orthogonal matrix Q such that

QTCZ =

[
Ir 0
0 0

]
.

Proof. See Appendix.

Lemma 2 Suppose that X ∈ R2n×2m and XJmX
T = Jn. Then there exists a real sym-

plectic matrix Z such that

XZ =

(n m− n n m− n
n I 0 0 0
n 0 0 I 0

)
.

Proof. See Appendix.
It is well known that every real skew-symmetric matrix K is orthogonally similar to a

matrix

diag

([
0 σ2

1

−σ2
1 0

]
, . . . ,

[
0 σ2

m

−σ2
m 0

]
; 0, . . . , 0

)
,
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where σ1, . . . , σm > 0.
With an appropriate permutation K has a real Schur-like decomposition

K = Q

 0 Σ2 0
−Σ2 0 0

0 0 0

QT , (5)

where Q is real orthogonal and Σ = diag(σ1, . . . , σm) > 0.
With this Schur-like form we have the following properties.

Proposition 3 Let K be skew-symmetric and let (5) be the Schur-like form of K. Then

1. ||K|| = ||Σ||2;

2.
∣∣∣∣K†∣∣∣∣ = ||Σ−1||2;

3. κ(K) = κ2(Σ).

4. rankK = 2m

Proof. Immediate.

3 SVD-like decomposition

The SVD-like decomposition (1) is presented in the following theorem.

Theorem 3 If B ∈ Rn×2m, then there exists a real symplectic matrix S and a real orthog-
onal matrix Q such that

QTBS = D =


p q m− p− q p q m− p− q

p Σ 0 0 0 0 0
q 0 I 0 0 0 0
p 0 0 0 Σ 0 0
n− 2p− q 0 0 0 0 0 0

,
where Σ = diag(σ1, . . . , σp) > 0. Moreover, rankB = 2p+ q.

Proof. Since BJBT is skew-symmetric, by (5) it has a Schur-like form

BJBT = U

 0 Σ2 0
−Σ2 0 0

0 0 0

UT ,

where U is real orthogonal and Σ = diag(σ1, . . . , σp) > 0. Let Γ = diag(Σ, Σ, In−2p) and
X := Γ−1UTB. Then

XJXT =

 0 Ip 0
−Ip 0 0

0 0 0

 . (6)
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Partition X = [XT
1 , X

T
2 , X

T
3 ]T conformably. Then (6) gives

[XT
1 , X

T
2 ]TJ [XT

1 , X
T
2 ] = Jp.

By Lemma 2 there exists a real symplectic matrix S1 ∈ R2m×2m such that

[XT
1 , X

T
2 ]TS1 =

[
Ip 0 0 0
0 0 Ip 0

]
.

Since (XS1)J(XS1)T = XJXT , by (6) and above block form

XS1 =

 Ip 0 0 0
0 0 Ip 0
0 X32 0 X34

 ,
and [X32, X34]Jm−p[X32, X34]T = 0. By Lemma 1 there exists a symplectic matrix Z and
an orthogonal matrix V such that V T [X32, X34]Z =

[
Iq
0

0
0

]
, and q ≤ min{n− 2p,m− p}.

Let Z = [Zij]2×2 with Zij ∈ R(m−p)×(m−p) for i, j = 1, 2. Define the symplectic matrix

S2 =


Ip 0 0 0
0 Z11 0 Z12

0 0 Ip 0
0 Z21 0 Z22

 .
Then

XS1S2 =

[
I2p 0
0 V

]
Ip 0 0 0 0 0
0 0 0 Ip 0 0
0 Iq 0 0 0 0
0 0 0 0 0 0

 .
Note that Γ and diag(I2p, V ) commute. Let S := S1S2 and Q := U diag(I2p, V )P , where

P = diag
(
Ip,
[

0
Iq

Ip
0

]
, In−2p−q

)
. Since B = UΓX, one has

QTBS = QTUΓXS = P TΓ


Ip 0 0 0 0 0
0 0 0 Ip 0 0
0 Iq 0 0 0 0
0 0 0 0 0 0

 =


Σ 0 0 0 0 0
0 Iq 0 0 0 0
0 0 0 Σ 0 0
0 0 0 0 0 0

 .

4 SVD of symplectic matrices

Every matrix has an SVD [12, p. 70]. But for a symplectic matrix the SVD has a special
structure, which will be given below. For completeness we consider both the complex and
real symplectic matrices.
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Theorem 4 Every symplectic matrix S ∈ C2m×2m has an SVD of the form

S = U

[
Ω 0
0 Ω−1

]
V ∗,

where U , V are unitary symplectic and Ω = diag(ω1, . . . , ωm) with ω1 ≥ . . . ≥ ωm ≥ 1.

Proof. Let
S = WDZ∗ (7)

be an SVD. Since S is symplectic we have S = JS−∗J∗. Then

S = J(WDZ∗)−∗J∗ = (JW )D−1(JZ)∗ (8)

is another SVD of S. If ω is a singular value of S obviously ω−1 is also a singular value of
S. So D can be expressed as D = diag(Ω,Ω−1), where Ω is positive diagonal with diagonal
elements arranged in decreasing order and bounded below by 1. Moreover, the two SVDs
(7) and (8) imply that

D(Z∗JZ)D = W ∗JW, D(W ∗JW )D = Z∗JZ, (9)

from which

D2(Z∗JZ)D2 = D(D(Z∗JZ)D)D = D(W ∗JW )D = Z∗JZ.

Without loss of the generality let Ω = diag(ω1I, . . . , ωpI, I) and ω1 > . . . > ωp > 1. From
the equation D2(Z∗JZ)D2 = Z∗JZ and the fact that Z∗JZ is skew-Hermitian we have

Z∗JZ =



0 X1

. . . . . .

0 Xp

Y11 Y12

−X∗1 0
. . . . . .

−X∗p 0
−Y ∗12 Y22


. (10)

Since Z and J are unitary so is the matrix Z∗JZ. This implies that
[

0
−X∗i

Xi
0

]
(i = 1, . . . , p)

are unitary. Therefore X∗iXi = I for i = 1, . . . , p. Moreover, Y :=
[
Y11

−Y ∗12

Y12

Y22

]
is also

skew-Hermitian and unitary. Note that Z∗JZ is similar to J . So Z∗JZ has m identical
eigenvalues i and −i respectively. Note also that from the block form (10) each matrix[

0
−X∗i

Xi
0

]
has the same number of eigenvalues i and −i. Then Y must have the same

number of eigenvalues i and −i, too. With this, as well as from its skew-Hermitian and
unitary properties, the matrix Y is unitarily similar to diag(iI,−iI). On the other hand
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the matrix J is also unitarily similar to diag(iI,−iI). So there exists a unitary matrix P
such that

Y = PJP ∗ = P

[
0 I
−I 0

]
P ∗.

Partition P = [Pij]2×2 conformably. Define the unitary matrix Z̃ =
[
Z̃11

Z̃21

Z̃12

Z̃22

]
, where

Z̃11 = diag(X1, . . . , Xp, P11), Z̃12 = diag(0, . . . , 0, P12),

Z̃22 = diag(I, . . . , I, P22), Z̃21 = diag(0, . . . , 0, P21).

Then (ZZ̃)∗J(ZZ̃) = J , indicating that V := ZZ̃ is unitary symplectic.
Using the fact that D and Z̃ commute and D is symplectic, from the first equation in

(9), we have

(WZ̃)∗J(WZ̃) = Z̃∗W ∗JWZ̃ = Z̃∗D(Z∗JZ)DZ̃ = DV ∗JV D = DJD = J,

i.e., the matrix U := WZ̃ is also unitary symplectic. Finally we have

S = WDZ∗ = WDZ̃Z̃∗Z∗ = (WZ̃)D(Z̃∗Z∗) = UDV ∗.

For real symplectic matrices we have the following real version.

Theorem 5 Every real symplectic matrix S ∈ R2m×2m has a real SVD,

S = U

[
Ω 0
0 Ω−1

]
V T ,

where U , V are real orthogonal symplectic, Ω = diag(ω1, . . . , ωm) with ω1 ≥ . . . ≥ ωm ≥ 1.

Proof. The proof is analogous to that of Theorem 4.
The results show that for the SVD of a symplectic matrix all matrices U, V and D can

be chosen symplectic. Moreover, the singular values are in (ω, ω−1) pairs.

5 BJBT factorizations

It is shown in [7, 2] that every real skew-symmetric matrix K ∈ Rn×n has a factorization
BJBT with B. The Cholesky-like factorization methods are also provided in [7, 2]. To
simplify our analysis we will only consider the factorizations with B ∈ Rn×2m of full column
rank, where m = (rankK)/2. (The rank of K is an even number by Proposition 3.) In
principle one can consider K = BJsB

T with any s ≥ m. But the problem can be analyzed
in a similar way.

A BJBT factorization can also be determined by the real Schur-like form (5) of K. In
fact, let Q be real orthogonal and Σ be positive diagonal, both defined as in (5). Define

Bo = Q

 Σ 0
0 Σ
0 0

 . (11)
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Then K = BoJB
T
o . As mentioned in Section 1 a skew-symmetric matrix K may have many

BJBT factorizations. In this section we will consider the factors with minimal norm and
minimal condition number.

We first give the general form of B.

Proposition 4 Let K be skew-symmetric and have the Schur-like form (5). If B satisfies
K = BJmB

T then there exists a real symplectic matrix S such that

B = Q

 Σ 0
0 Σ
0 0

S = BoS. (12)

Proof. Let B satisfy K = BJmB
T . By the Schur-like form (5), for Γ = diag(Σ,Σ, I)

one has

Γ−1QTKQΓ−1 = Γ−1QTBJm(Γ−1QTB)T =

[
Jm 0
0 0

]
,

Partition Γ−1QTB =
[
S
T

]
with S ∈ R2m×2m. Then SJmS

T = Jm and T = 0. Therefore

B = QΓ

[
S
0

]
= Q

 Σ 0
0 Σ
0 0

S = BoS.

Note that (12) is an SVD-like decomposition.
To get the general form of optimal factors we need the following results.

Lemma 6 Suppose that B ∈ Rn×2m has the form (12), where Q is real orthogonal, S is
real symplectic and Σ > 0 arranged as Σ = diag(σ1In1 , . . . , σrInr) with σ1 > . . . > σr > 0.
Suppose that the singular values of the symplectic matrix S are arranged as ω−1

m ≤ . . . ≤
ω−1

1 ≤ 1 ≤ ω1 ≤ . . . ≤ ωm. Then the following results hold.

(i) ||B|| ≥ σ1

√
ω2
n1

+ω−2
n1

2
≥ σ1.

Moreover, ||B|| = σ1 if and only if S has the SVD

S =


In1 0 0 0
0 U1 0 U2

0 0 In1 0
0 −U2 0 U1



In1 0 0 0

0 Ω̂ 0 0
0 0 In1 0

0 0 0 Ω̂−1

V T ,

where U :=
[
U1

−U2

U2

U1

]
and V are orthogonal symplectic, Ω̂ = diag(ωn1+1, . . . , ωm); and U ,

Ω̂ satisfy ∣∣∣∣∣∣∣∣[ Σ̂ 0

0 Σ̂

]
U

[
Ω̂ 0

0 Ω̂−1

]∣∣∣∣∣∣∣∣ ≤ σ1

with Σ̂ = diag(σ2In2 , . . . , σrInr).
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(ii) The smallest singular value of B satisfies σ2m(B) ≤ σr
√

2
ω2
nr

+ω−2
nr
≤ σr.

Moreover, σ2m(B) = σr if and only if S has the SVD

S =


U1 0 U2 0
0 Inr 0 0
−U2 0 U1 0

0 0 0 Inr




Ω̂ 0 0 0
0 Inr 0 0

0 0 Ω̂−1 0
0 0 0 Inr

V T ,

where U :=
[
U1

−U2

U2

U1

]
and V are orthogonal symplectic, Ω̂ = diag(ωnr+1, . . . , ωm); and U ,

Ω̂ satisfy ∣∣∣∣∣∣∣∣[ Σ̂ 0

0 Σ̂

]
U

[
Ω̂ 0

0 Ω̂−1

]∣∣∣∣∣∣∣∣ ≥ σr

with Σ̂ = diag(σ1In1 , . . . , σr−1Inr−1).

Proof. See Appendix.
We now give the general formula for the factors of the BJBT factorization with minimal

norm.

Theorem 7 Let K ∈ Rn×n be skew-symmetric and rankK = 2m. Then ||B|| ≥
√
||K|| for

every factor B satisfying K = BJmB
T . Moreover, suppose that K has the Schur-like form

(5), where Q is real orthogonal, Σ = diag(σ1In1 , . . . , σrInr) with σ1 > . . . > σr > 0. A
factor B satisfies ||B|| =

√
||K|| if and only if it has the form

B = Q

 Σ 0
0 Σ
0 0



In1 0 0 0
0 U1 0 U2

0 0 In1 0
0 −U2 0 U1



In1 0 0 0

0 Ω̂ 0 0
0 0 In1 0

0 0 0 Ω̂−1

V T ,

where U :=
[
U1

−U2

U2

U1

]
and V are real orthogonal symplectic, Ω̂ is positive diagonal; and U ,

Ω̂ satisfy ∣∣∣∣∣∣∣∣[ Σ̂ 0

0 Σ̂

]
U

[
Ω̂ 0

0 Ω̂−1

]∣∣∣∣∣∣∣∣ ≤√||K||
with Σ̂ = diag(σ2In2 , . . . , σrInr).

Proof. The first part is trivial. The second part follows directly from Proposition 4, (i)
of Lemma 6, and Proposition 3.

The general formula for B with minimal condition number is given in the next theorem.

Theorem 8 Let K ∈ Rn×n be skew-symmetric and rankK = 2m. Then κ(B) ≥
√
κ(K)

for every B satisfying K = BJmB
T . Moreover, suppose that K has the Schur-like form

(5), where Q is real orthogonal, Σ = diag(σ1In1 , . . . , σrInr) with σ1 > . . . > σr > 0. The
following are equivalent.
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(a) κ(B) =
√
κ(K).

(b) ||B|| =
√
||K|| and

∣∣∣∣B†∣∣∣∣ =
√
||K†||.

(c) B has the form

Q

[
Σ 0
0 Σ

]

In1 0 0 0 0 0
0 U1 0 0 U2 0
0 0 Inr 0 0 0
0 0 0 In1 0 0
0 −U2 0 0 U1 0
0 0 0 0 0 Inr





In1 0 0 0 0 0

0 Ω̃ 0 0 0 0
0 0 Inr 0 0 0
0 0 0 In1 0 0

0 0 0 0 Ω̃−1 0
0 0 0 0 0 Inr

V
T ,

where U :=
[
U1

−U2

U2

U1

]
and V are real orthogonal symplectic, Ω̃ is positive diagonal; and U ,

Ω̃ satisfy

σr ≤
∣∣∣∣∣∣∣∣[ Σ̃ 0

0 Σ̃

]
U

[
Ω̃ 0

0 Ω̃−1

]∣∣∣∣∣∣∣∣ ≤ σ1

with Σ̃ = diag(σ2In2 , . . . , σr−1Inr−1).

Proof. Let σ2m(B) and σ2m(K) be the smallest singular value of B and K respectively.
By Lemma 6,

||B|| ≥ σ1 =
√
||K||, σ2m(B) ≤

√
σ2m(K).

By the definition of pseudo-inverse,
∣∣∣∣B†∣∣∣∣ = 1/σ2m(B) and

∣∣∣∣K†∣∣∣∣ = 1/σ2m(K), we have

κ(B) = ||B||
∣∣∣∣B†∣∣∣∣ = ||B|| /σ2m(B) ≥

√
||K||/

√
σ2m(K) =

√
κ(K).

(a) ⇔ (b) can be proved by using above inequalities.
(b) ⇔ (c) is obtained by combining (i) and (ii) in Lemma 6.
Obviously, the factor Bo in (12) always has minimal norm and minimal condition num-

ber.

Example 1 Consider the skew-symmetric matrix

K =


0 0 4 0
0 0 0 1
−4 0 0 0
0 −1 0 0

 ,
which is nonsingular and is in Schur-like form. One has ||K|| = 4 and κ(K) = 4. The
general form for B to satisfy K = BJBT is

B =


2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

S,
12



where S is symplectic.
The general form for B to satisfy ||B|| =

√
||K|| = 2 is

B =


2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1




1 0 0 0
0 c 0 s
0 0 1 0
0 −s 0 c




1 0 0 0
0 ω 0 0
0 0 1 0
0 0 0 ω−1

V T ,

where 1
2
≤ ω ≤ 2, V is orthogonal symplectic, and the matrix

[
c
−s

s
c

]
is a Givens rotation,

which is orthogonal symplectic.
The general form for B to satisfy κ(B) =

√
κ(K) = 2 is

B =


2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

V T ,

where V is orthogonal symplectic.

Lemma 6 can also be used to solve the following optimization problems.

Corollary 9 Suppose that B ∈ Rn×2m and rankB = 2p. Then B has the SVD-like de-
composition as in (12). Moreover, let S be the set of 2m × 2m real symplectic matrices.
Then

min
Z∈S
||BZ|| = ||Σ|| ,

max
Z∈S

σ2m(BZ) = σ2m(Σ),

min
Z∈S

κ(BZ) = κ(Σ),

where Σ is positive diagonal defined in (12).

Proof. Since B has full column rank, by Theorem 3 it must have an SVD-like decom-
position (12), i.e., B = Q

[
Σ
0

0
Σ

]
S−1, where Q is real orthogonal, S is real symplectic and

Σ is positive diagonal.
For any symplectic matrix Z, BZ = Q

[
Σ
0

0
Σ

]
(S−1Z). Since for any real symplectic

matrix Z, S−1Z is symplectic, by (i) of Lemma 6, ||BZ|| ≥ ||Σ||. When Z = S one has
||BZ|| = ||Σ||. Therefore minZ∈S ||BZ|| = ||Σ|| .

The second identity can be proved in a similar way. The third identity follows from the
first two identities.

Corollary 10 Suppose that A ∈ R2m×2m is symmetric positive definite, and ρ(JA), ρ((JA)−1)
are the spectral radius of the matrices JA and (JA)−1, respectively. Let S be the set of
2m× 2m real symplectic matrices. Then

min
Z∈S

∣∣∣∣ZTAZ
∣∣∣∣ = ρ(JA),

max
Z∈S

σ2m(ZTAZ) = 1/ρ((JA)−1),

min
Z∈S

κ(ZTAZ) = ρ(JA)ρ((JA)−1).

13



Proof. Let A = LLT be the Cholesky factorization [12, p. 143]. Since A is positive
definite, LT is nonsingular. The results can be obtained by applying Corollary 9 to matrix
LT . The only thing that we still need to show is that ρ(JA) = ||Σ||2, ρ((JA)−1) = ||Σ−1||2.

This follows from the fact that with LT = Q
[

Σ
0

0
Σ

]
S−1, JA = JLLT = S

[
0
−Σ2

Σ2

0

]
S−1.

6 Methods for BJBT factorizations

In this section we will discuss the norm and condition number of the factor B computed
by several BJBT factorization methods.

I. Schur method. The Schur form of K provides a way to compute Bo as in (11).
Obviously Bo has both the minimal norm and condition number. Several numerical meth-
ods for computing the Schur form of K are available, e.g., [18, 12]. However the cost for
computing the Schur-like form by the QR-like algorithm is about O(10n3) flops. (Here we
borrowed the cost for the symmetric QR algorithm [12, p. 421].) So the Schur method is
much more expensive than the following Cholesky-like methods, which require only about
O(n3/3) flops [7, 2].

II. Cholesky-like methods. Such methods were developed in [7, 2]. Let us briefly explain
the procedure provided in [2]. Suppose K 6= 0. One can determine a permutation P1 such

that P T
1 KP1 =

[
K11

−KT
12

K12

K22

]
, where K11 ∈ R2×2 is nonsingular. It can be written

P T
1 KP1 =

[
RT

11 0
−KT

12R
−T
11 J

T
1 I

] [
J1 0
0 K1

] [
R11 −J1R

−1
11 K12

0 I

]
,

where matrix K1 = K22 + KT
12K

−1
11 K12 is still skew-symmetric. Repeat the reduction on

K1 and continue. One finally has

K = P̃ B̃ diag(J1, . . . , J1)B̃T P̃ T =: (P̃ B̃)J̃(P̃ B̃)T ,

where P̃ is a permutation. ( The procedure in [7] computes a factorization

K = (P̃ B̃) diag(K1, . . . , Km)(P̃ B̃)T ,

where K1, . . . , Km ∈ R2×2 are skew-symmetric and nonsingular.) Matrix J̃ can be written
J̃ = PJP T for some permutation P . Hence the method computes the BJBT factorization
K = (P̃ B̃P )J(P̃ B̃P )T . For numerical stability partial or complete pivoting strategy is
implemented in the reduction procedure.

It is not easy to give a prior estimate about the norm or the condition number of the
computed factor B. So it is not clear whether the methods can compute a factor with
relatively small norm or condition number. We did some numerical experiments to test
the method provided in [2] with complete pivoting. We chose several groups of random
matrices K with different size n. For each size we tested 20 skew-symmetric matrices.

14



The maximum and minimum values of the quantities γN := ||B||√
||K||

and γC := κ(B)√
κ(K)

, and

the norm and condition number of the corresponding matrices B and K are reported in
Table 1. We observed that γN is between 1 and 7 and γC is between 2 and 13. We also
tested some matrices K with large norm or condition number. Four groups of such matrices
were tested. The matrices were generated by performing different scaling strategies to the
randomly formed skew-symmetric matrices. In each case we tested 20 matrices with size
50×50. The numerical results are reported in Table 2. We observed that γN , γC are between
1 and 3. These two numerical examples show that the Cholesky-like factorization method
with complete pivoting computes the factors with small norm and condition number.

n γN γC ||B|| ||K|| κ(B) κ(K)
10 max 1.95 3.30 4.34 4.94 7.79 5.57

min 1.33 2.23 3.16 5.63 11.3 26.0
50 max 3.43 4.26 12.5 12.5 79.8 351.5

min 2.76 5.05 9.91 12.9 39.9 64.4
100 max 4.70 5.63 20.2 18.7 165.6 865.6

min 3.90 6.20 17.2 19.4 69.5 125.6
200 max 6.24 12.2 32.9 27.7 167.9 190.4

min 5.55 11.6 28.8 27.0 185.5 253.8

Table 1: Numerical results for Cholesky-like factorization I.

Group γN γC ||B|| ||K|| κ(B) κ(K)
1 max 1.67 2.48 23.8 201.9 85.5 1.2× 103

min 1.03 1.28 192.6 3.5× 104 1.1× 103 7.1× 105

2 max 1.58 2.20 38.8 601.7 131.9 3.6× 103

min 1.01 1.62 2.1× 105 4.2× 1010 8.4× 105 2.7× 1011

3 max 1.21 1.25 2.93 5.86 1.4× 105 1.2× 1010

min 1.0 1.22 2.74 7.52 1.5× 104 1.5× 108

4 max 2.13 2.64 14.3 44.8 2.6× 105 9.5× 109

min 1.23 1.26 18.2 220.8 3.9× 104 9.7× 108

Table 2: Numerical results for Cholesky-like factorization II.

For the second example we also tested the method with partial pivoting. But γN and
γC are much bigger than that with complete pivoting. When ||K|| or κ(K) is large γN can
be 70 times bigger and γC can be 700 times bigger.
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7 Conclusion

Several matrix decompositions related to symplectic matrices have been presented. The
first one is an SVD-like decomposition. The canonical forms of the skew-symmetric matrix
BJBT and the Hamiltonian matrix JBTB can be derived from such a decomposition for a
matrix B. The second one is the structured SVD of a symplectic matrix. Applying these
decompositions to the BJBT factorization of a skew-symmetric matrix K, the general
forms for the factors B with minimal norm and condition number, respectively, have been
formulated. Several BJBT factorization methods have been discussed. Numerical results
show that the Cholesky-like method with complete pivoting is usually a simple way to
compute the factors with small norm and condition number. Some other optimization
problems related to symplectic matrices were also solved.

Appendix

Proof of Lemma 1. Let C = Q
[
R
0

]
be the QR decomposition of C, where R ∈ Rr×2m is

of full row rank. Applying the symplectic QR decomposition (Proposition 2) to RT there
is an orthogonal symplectic matrix Z1 such that if r > m,

RZ1 =

[
R11 R12

R21 R22

]
,

and if r ≤ m,
RZ1 =

[
R11 0 R12 0

]
, (13)

where R11 ∈ Rs×s is lower triangular and R12 ∈ Rs×s is strictly lower triangular, with
s = min{r,m}; and if r > m, R21, R22 ∈ R(r−m)×m. The condition CJCT = 0 implies that
(RZ1)J(RZ1)T = 0. If r > m then one has

R11R
T
12 = R12R

T
11, R11R

T
22 = R12R

T
21.

By comparing the components of the matrices in the first equation and using the fact that
[R11, R12] is of full row rank, one can get that R11 is nonsingular and R12 = 0. Applying

this to the second equation one has R22 = 0. Now matrix R =
[
R11

R21

0
0

]
and R11 ∈ Rm×m

is nonsingular. But this implies that r = rankC = rankR = m, which is a contradiction.
Consequently r ≤ m (and it is obvious that r ≤ n). Now RZ1 has the form (13). Similarly
one can show that R11 ∈ Rr×r is nonsingular and R12 = 0. Defining the symplectic matrix
Z2 = diag(R−1

11 , Im−r;R
T
11, Im−r) one has RZ1Z2 =

[
Ir 0 0 0

]
. Hence for Z = Z1Z2,

we have QTCZ =
[
R
0

]
Z =

[
Ir
0

0
0

]
.

Proof of Lemma 2. By XJmX
T = Jn one has m ≥ n. Partition X =

[
X1

X2

]
with

X1, X2 ∈ Rn×2m. Then XJXT = J implies that XkJX
T
k = 0 for k = 1, 2 and X1JX

T
2 = In.

The last equation implies that rankX1 = rankX2 = n. Since X1JX
T
1 = 0 and rankX1 = n,
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by Lemma 1 there exists a symplectic matrix Z1 such that X1Z1 = [In, 0; 0, 0]. (The
orthogonal matrix Q is replaced by I here because X1 is already of full row rank.) Partition
X2Z1 = [X21, X22, X23, X24] conformably. From (X1Z1)J(X2Z1)T = In one has X23 = In.
Define the symplectic matrix

Z2 = diag

([
I 0
XT

24 I

]
,

[
I −X24

0 I

])
.

Then

XZ1Z2 =

[
In 0 0 0

X̃21 X22 In 0

]
,

where by XJXT = J matrix X̃21 is symmetric. Finally using the symmetry of X̃21 one
can construct a symplectic matrix

Z3 =


I 0 0 0
0 I 0 0

−X̃21 −X22 I 0
−XT

22 0 0 I

 .
Then for Z := Z1Z2Z3 the matrix XZ is in the asserted form.

Proof of Lemma 6. (i) By Theorem 5 the symplectic matrix S has the symplectic SVD
S = W

[
Ω
0

0
Ω−1

]
ZT , where W and Z are orthogonal symplectic, and Ω = diag(ω1, . . . , ωm),

with 1 ≤ ω1 ≤ . . . ≤ ωm. By the SVD of S and the decomposition (12), the matrices B
and

[
Σ
0

0
Σ

]
W
[

Ω
0

0
Ω−1

]
have the same singular values. So the singular values of B are just

the square root of the eigenvalues of the matrix

A =

[
Σ 0
0 Σ

]
W

[
Ω2 0
0 Ω−2

]
W T

[
Σ 0
0 Σ

]
=:

[
Σ 0
0 Σ

]
H

[
Σ 0
0 Σ

]
. (14)

Clearly

||A|| I −
[

Σ 0
0 Σ

]
H

[
Σ 0
0 Σ

]
≥ 0

or

||A||
[

Σ−2 0
0 Σ−2

]
≥ H.

Performing a congruence transformation on both matrices with J , and recognizing that

matrix H = W
[

Ω2

0
0

Ω−2

]
W T is symplectic and symmetric, one has

||A||
[

Σ−2 0
0 Σ−2

]
≥ H−1.

Combining the above two inequalities one obtains

2 ||A||
[

Σ−2 0
0 Σ−2

]
≥ H +H−1 = W

[
Ω2 + Ω−2 0

0 Ω2 + Ω−2

]
W T .
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Let Ex =

[
In1 0 0 0
0 0 In1 0

]T
. Since Σ = diag(σ1In1 , . . . , σrInr), for any unit norm vector

x ∈ rangeEx,

2 ||A||
σ2

1

= 2 ||A||xT
[

Σ−2 0
0 Σ−2

]
x ≥ xTW

[
Ω2 + Ω−2 0

0 Ω2 + Ω−2

]
W Tx,

or equivalently for any unit norm vector y = W Tx ∈ rangeW TEx,

2 ||A||
σ2

1

≥ yT
[

Ω2 + Ω−2 0
0 Ω2 + Ω−2

]
y. (15)

Note that the matrix
[

Ω2+Ω−2

0
0

Ω2+Ω−2

]
has the eigenvalues ω2

1 + ω−2
1 , ω2

1 + ω−2
1 , . . . , ω2

m +

ω−2
m , ω2

m + ω−2
m in non-decreasing order. This is because the function f(ω) = ω2 + ω−2 is

increasing for ω ≥ 1 and the diagonal elements of Ω are in non-decreasing order 1 ≤ ω1 ≤
. . . ≤ ωm. By the minmax theorem, e.g., [12, p.394], it follows that

2 ||A||
σ2

1

≥ min
S, rankS=2n1

max
y∈S

yT
[

Ω2 + Ω−2 0
0 Ω2 + Ω−2

]
y = ω2

n1
+ ω−2

n1
.

So we have

||B|| =
√
||A|| ≥ σ1

√
ω2
n1

+ ω−2
n1

2
≥ σ1.

When ||B|| = σ1, it is clear that ωn1 = 1. So at least n1 diagonal elements of Ω are 1.
Without loss of the generality we assume that Ω = diag(It, ωt+1, . . . , ωm), where t ≥ n1

and 1 < ωt+1 ≤ . . . ≤ ωm. Since ||B|| =
√
||A|| = σ1, by (15) for every unit norm vector

y ∈ W TEx, one has

yT
[

Ω2 + Ω−2 0
0 Ω2 + Ω−2

]
y = 2.

The matrix
[

Ω2+Ω−2

0
0

Ω2+Ω−2

]
has 2t copies of the smallest eigenvalue 2 with the corre-

sponding eigenspace = range

[
It 0 0 0
0 0 It 0

]T
. So every y must be in this eigenspace,

or

rangeW TEx ⊆ range


It 0
0 0
0 It
0 0

 .
By this and the block structure of the orthogonal symplectic matrix W (Proposition 2),

W TEx =


E1 E2

0 0
−E2 E1

0 0

 ,
18



with E1, E2 ∈ Rt×n1 . Let E =
[
E1

−E2

E2

E1

]
. Clearly

ETJtE = (W TEx)
TJm(W TEx) = Jn1 , ETE = (W TEx)

TW TEx = In1 .

By these facts and the symplectic QR decomposition (Proposition 2) there exists an or-
thogonal symplectic matrix F such that

F TE =


In1 0
0 0
0 In1

0 0

 . (16)

(This can be proved in a similar way as in Lemma 2 by using the extra condition that

ETE = In1 .) Since F is orthogonal symplectic it has the form
[
F1

−F2

F2

F1

]
with F1, F2 ∈ Rt×t.

Now define the orthogonal symplectic matrix

F̂ =


F1 0 F2 0
0 I 0 0
−F2 0 F1 0

0 0 0 I

 .
Then (16) implies that F̂ TW TEx = Ex, or

WF̂ =


In1 0 0 0
0 U1 0 U2

0 0 In1 0
0 −U2 0 U1

 ,
where

[
U1

−U2

U2

U1

]
=: U is orthogonal symplectic. The matrix F̂ commutes with diag(Ω,Ω−1).

Therefore, by setting V = ZF̂ one has S = (WF̂ )
[

Ω
0

0
Ω−1

]
V T as asserted. With this form∣∣∣∣∣∣∣∣[ Σ̂ 0

0 Σ̂

]
U

[
Ω̂ 0

0 Ω̂

]∣∣∣∣∣∣∣∣ ≤ σ1

is obviously the necessary and sufficient condition for ||B|| = σ1.
(ii) For A defined in (14), ||A−1|| = 1/(σ2m(B))2 since

A−1 =

[
Σ 0
0 Σ

]−1

H−1

[
Σ 0
0 Σ

]−1

and

H−1 = W

[
Ω−2 0

0 Ω2

]
W T .
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Replacing H and A in (i) by H−1 and A−1 we can show that

(σ2m(B))−1 =
√
||A−1|| ≥ σ−1

r

√
ω2
nr + ω−2

nr

2
≥ σ−1

r .

Hence

σ2m(B) ≤ σr

√
2

ω2
nr + ω−2

nr

≤ σr.

When σ2m(B) = σr the block structure of S can be obtained in the same way.
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