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Broadscale spatial synchrony 
in a West Nile virus mosquito vector 
across multiple timescales
Lindsay P. Campbell 1,2*, Amely M. Bauer 1,2, Yasmin Tavares 3, Robert P. Guralnick 4 & 
Daniel Reuman 5

Insects often exhibit irruptive population dynamics determined by environmental conditions. We 
examine if populations of the Culex tarsalis mosquito, a West Nile virus (WNV) vector, fluctuate 
synchronously over broad spatial extents and multiple timescales and whether climate drives 
synchrony in Cx. tarsalis, especially at annual timescales, due to the synchronous influence of 
temperature, precipitation, and/or humidity. We leveraged mosquito collections across 9 National 
Ecological Observatory Network (NEON) sites distributed in the interior West and Great Plains region 
USA over a 45-month period, and associated gridMET climate data. We utilized wavelet phasor 
mean fields and wavelet linear models to quantify spatial synchrony for mosquitoes and climate and 
to calculate the importance of climate in explaining Cx. tarsalis synchrony. We also tested whether 
the strength of spatial synchrony may vary directionally across years. We found significant annual 
synchrony in Cx. tarsalis, and short-term synchrony during a single period in 2018. Mean minimum 
temperature was a significant predictor of annual Cx. tarsalis spatial synchrony, and we found a 
marginally significant decrease in annual Cx. tarsalis synchrony. Significant Cx. tarsalis synchrony 
during 2018 coincided with an anomalous increase in precipitation. This work provides a valuable step 
toward understanding broadscale synchrony in a WNV vector.

Mosquito borne pathogens are a major threat to human and veterinary health1. These pathogens are nested within 
dynamic systems that include one or more arthropod vectors and vertebrate hosts that must interact in space and 
time for transmission to be maintained in the natural environment2. Several factors contribute to the distribu-
tion and magnitude of transmission hazard in an area, including intrinsic population dynamics of vectors and 
hosts, and extrinsic environmental conditions that can affect the timing, abundances, and distributions of disease 
system components3. Mosquito vectors are one component in these systems, and like all insects, are ectotherms, 
with their distributions and abundances closely linked to exogenous environmental variables4. Because of these 
linkages and the role of mosquito vectors in pathogen transmission, environmental drivers of mosquito popu-
lation dynamics are often the focus of investigations attempting to understand outbreaks or epizootic events5. 
While informative, the majority of these studies have focused on environmental effects on local-scale variation 
in abundances and do not take into account how mosquito populations fluctuate together over space and time 
at broader scales and extents, despite the potential for synchronous or asynchronous population dynamics in 
different geographic locations to affect distributions of pathogen transmission6–8.

Spatial synchrony, i.e. similarities in temporal fluctuations of populations occurring across geographically 
distinct locations9, is an ecological phenomenon observed across multiple taxa and across local to broad geo-
graphic scales. In insects, spatial synchrony has most often been studied in groups that have periodic “outbreaks”, 
e.g. spongy moths or larch budmoths, and crop pests10–15. However, spatial synchrony has been less studied in 
mosquito vectors of human and veterinary pathogens16. Mechanistic drivers of spatial synchrony consist of dis-
persal between populations, exogenous environmental conditions (through a process called the Moran effect), 
and trophic interactions of the focal species with another species that exhibits synchrony or that is very mobile9. 
Given known correlations between the environment, particularly temperature and precipitation, and mosquito 
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population dynamics17,18, mosquito species are strong candidates for investigations of environmental causes of 
spatial synchrony across different spatiotemporal scales19.

One challenge to previous studies of spatial synchrony in mosquito populations is the need for relatively long 
and consistent collection records across disparate geographic locations. The result is that the majority of prior 
population studies occur over small geographic areas or elevational gradients8,16,19–21. However, broadscale spatial 
synchrony is not uncommon in other insect species. Sheppard et al.13 found broadscale spatial synchrony in 
the timing of adult flight onset of aphid species driven by climate conditions at multiple timescales, and Haynes 
and Walter12 highlight how understanding spatial synchrony in insects across scales can be useful to informing 
pest management decisions. In addition, vector borne disease dynamics in multiple systems have been linked 
to large-scale climate conditions, including anomalous or unusual conditions, for example: Rift Valley fever 
virus and heavy precipitation resulting from El Niño in East Africa22; broadscale chikungunya incidence associ-
ated with unusually dry conditions23; and dengue incidence and El Niño-associated dry conditions or elevated 
temperatures in Thailand24,25, among others26. Needed are studies to determine if mosquito vector abundances 
show strong spatially synchronous dynamics at broader extents and timescales and whether their dynamics are 
associated with climate conditions which often also vary over large spatial extents.

The National Ecological Observatory Network (NEON) conducts routine mosquito collections at 47 terrestrial 
core and terrestrial gradient sites in the United States27,28. The sampling design, temporal resolution, and proto-
cols of mosquito collections at NEON sites were designed specifically for the purpose of standardized monitor-
ing of mosquito population abundances, demography, diversity, and phenology, including comparisons among 
NEON sites at regional to continental scales28. This monitoring program uniquely provides a means to generate 
consistent and continuous time series collections to better understand mosquito population dynamics across 
broad geographic scales. Here, we use this resource to investigate whether significant spatial synchrony exists in 
temporal population dynamics of the West Nile virus (WNV) vector species Culex tarsalis across 90 mosquito 
traps across 9 widely distributed NEON sites that have the most continuous collection of data. In particular, we 
quantify effects of exogenous climate variables on spatial synchrony between study locations.

Culex tarsalis Coquillett is a key vector of WNV (family Flaviviridae, genus Flavivirus), the leading cause of 
mosquito-borne disease in humans in the United States (CDC 2021a). The virus is maintained in the natural 
environment between mosquito vectors and avian hosts, and “spills over” to humans and other animals (Camp-
bell et al. 2002, Reisen 2013). Cx. tarsalis are multivoltine with a wide geographic distribution29. The species 
is considered a particularly important vector of WNV in the midwest and western regions of the U.S. where it 
is often associated with agricultural irrigation or ditches30. Mosquitoes become active in late spring and early 
summer. In temperate zones, adult females overwinter and have been observed in underground sheltered areas, 
but they remain active year-round in warmer climates (Walter Reed Biosystematics Unit, 2024).

We hypothesized that we may find significant spatial synchrony in Cx. tarsalis abundances at multiple tem-
poral scales, including an annual effect. We also expected that average minimum or maximum temperature, 
humidity values, and precipitation may contribute to annual spatial synchrony across the study period. We tested 
this directly to determine which climate factors are most important. We also tested if unusual or extreme weather 
events, such as widespread heavy precipitation, which occurred in Summer 2018, contribute to significant spatial 
synchrony at shorter timescales. Temperature is a well-known driver of insect population dynamics and has been 
shown to affect Cx. tarsalis mosquito development timing31, while precipitation is critical in generating aquatic 
habitats required for multiple mosquito life stages4. Humidity can affect mosquito hydroregulation, impacting 
activity and survival32. Investigating the population dynamics of vector species and how they fluctuate together 
across large spatial scales has the potential to provide useful knowledge about risks mosquitoes pose, if outbreaks 
are predictable, and how those risks can be mitigated.

Results
Following QA/QC assembled monthly time series of estimated abundances of Cx. tarsalis mosquitoes we included 
nine NEON stations in our analyses over a 45 month period from 2016 to 2019, and associated gridMET climate 
data (Figs. 1 and 2). We utilized wavelet phasor mean fields (wpmf) to quantify spatial synchrony at multiple 
timescales for mosquitoes and climate (see Methods for full details of cleaning and analysis approach).

Results of wavelet phasor mean field (wpmf) analyses indicated significant spatial synchrony in Cx. tarsalis 
abundances at an annual timescale across the study period; and during a short-term, isolated event at the 2 to 
3 month timescale band between August and September 2018 (Fig. 3). Although the wpmf output also showed 
seasonal spatial synchrony (i.e. ~ every six months), this result was likely a harmonic of the annual timescale 
synchrony.

The plot of the wpmf for Cx. tarsalis showed a potential decrease in the strength of annual-timescale spatial 
synchrony across the study period. Comparing this possibility to an appropriate null hypothesis based on a 
bootstrapping technique (Methods) indicated a marginally significant (e.g. p-value between 0.05 and 0.10) 
decrease in the slope of Cx. tarsalis synchrony at the averaged 10 to 14 month timescale (p-value = 0.096), but 
when considering only the 12 month timescale on its own (p-value = 0.242). Wavelet methods are well known 
to commit “leakage,” whereby periodic variational content in time series at a given timescale is detected also at 
a range similar timescales. This is because of the finite length of time series, and tradeoffs between a wavelet’s 
abilities to localize a phenomenon in time and timescale space. For reasons of leakage, the results here using 
the 10 to 14 month band are probably more indicative of annual-timescale behavior than are the results using 
solely the 12-month timescale. Analogous slopes for climate variables at the same timescales were not significant 
(Supplementary Table 1), i.e., there was no evidence for changes in the strength of synchrony of climate variables.

The wpmf plots for four out of five environmental variables showed patterns of significant spatial syn-
chrony at similar timescales and time periods to Cx. tarsalis (Figs. 4 and 5B; Fig. 5A reproduces Fig. 3 for visual 
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comparison). As expected, cumulative precipitation and temperature variables showed significant annual syn-
chrony, with both mean minimum and maximum temperature demonstrating the strongest synchrony across 
the entire study period. Average minimum and maximum mean VPD showed significant synchrony across small 
portions of the study period at the annual timescale. Cumulative precipitation also showed significant spatial 
synchrony between August and September 2018 (Fig. 5B).

Results from wavelet linear model tests showed significant effects of synchrony in mean minimum tem-
perature on synchrony in Cx. tarsalis at the 10 to 14 month time scale (p-value = 0.049). Mean minimum vapor 
pressure deficit index, i.e., greater humidity, was marginally significant (p-value = 0.090), and mean maximum 
temperature (p-value = 0.125), mean maximum vapor pressure deficit index (p-value = 0.472), and cumulative 
precipitation (p-value = 0.725) were not significant. Mean minimum temperature explained a large portion of 
the synchrony (99.490%) with low cross-terms (-1.212), and residuals (1.722). A rank plot with corresponding 

Figure 1.   Map of NEON sites included in analyses. Abbreviations for sites follow NEON conventions. Yellow 
circles indicate terrestrial core sites and orange circles indicate terrestrial gradient sites. Background aerial map 
Earth Start Geographics SIO, Microsoft Corporation© 2024, available through Bing Maps and accessed through 
QGIS v 3.16.16.

Figure 2.   Time series of monthly mean number of Cx. tarsalis per trap hour for each NEON site.
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band tests for mean minimum temperature and wavelet linear model results for mean minimum temperature 
are available in Supplementary Fig. 1 and Supplementary Table 2.

Although spatial synchrony in cumulative precipitation was nominally significant between August and Sep-
tember 2018 at the 2 to 3 month timescale, the wavelet linear model test was not significant for 2 to 3 month 
timescales. This result was expected, given that synchrony in Cx. tarsalis was isolated to a short-term event and 
periodicity was not present at the 2 to 3 month timescale; wavelet linear models test for consistency of phase 

Figure 3.   Wavelet phasor mean field plot for Cx. tarsalis abundances. The study period is represented on 
the x-axis, and the timescale of spatial synchrony is on the y-axis. Color corresponds to the strength of phase 
synchrony in the data at each time and timescale; so areas in red indicate stronger synchrony. Contour lines 
indicate statistical significance at 95% confidence level.

Figure 4.   Wavelet phasor mean field (wpmf) plots for average minimum and maximum temperature and 
average minimum and maximum vapor pressure deficit values.
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relationships between response and putative predictor variables over the duration of the time series and across 
sampling locations, and apparently what happened on 2 to 3 month timescales in our Cx. tarsalis data was 
instead a one-off event. However, observations of precipitation values coinciding with this time period revealed 
that anomalously high precipitation occurred across several study sites, and a visual inspection of estimated 
abundance values across NEON sites showed an increase in Cx. tarsalis during this time period across multiple 
sites (Fig. 5C, see Data Availability).

Discussion
This study provides some evidence of broad scale spatial synchrony in Cx. tarsalis abundances, and results 
demonstrate that Cx. tarsalis populations can fluctuate together at an annual timescale and during short-term, 
isolated events. This work highlights the need for continued investigation to understand spatiotemporal and 
synchronous dynamics of mosquito vectors and their drivers. These dynamics, which our results suggest may 
be predictable, may help in understanding broader WNV system dynamics.

Our finding of significant spatial synchrony at an annual timescale was expected given the seasonal dynam-
ics of mosquitoes and insects in general33,34. Specifically, we found that mean minimum temperatures were a 
significant predictor of synchrony in Cx. tarsalis abundances at an annual timescale, i.e., mosquito synchrony 

Figure 5.   (A,B) Wavelet phasor mean field plots for Cx. tarsalis monthly mean number of mosquitoes per 
trap hour (reproducing Fig. 3) and monthly cumulative precipitation for the same time periods and locations. 
Time on the x-axis represents the monthly time series from April 1, 2016 to December 31, 2019. Timescale 
on the y-axis represents the timescale, or period. Red values enclosed in black lines indicate significant spatial 
synchrony. C Precipitation anomaly map for August to October 2018 adapted from NOAA (https://​www.​ncei.​
noaa.​gov/​access/​monit​oring/​us-​maps). Units are in inches representing the departure from average precipitation 
over the 1901 to 2000 time period. Areas in green represent greater than average precipitation and areas in 
brown represent less than average precipitation.

https://www.ncei.noaa.gov/access/monitoring/us-maps
https://www.ncei.noaa.gov/access/monitoring/us-maps
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on annual timescales was statistically attributable to synchrony in mean minimum temperatures on the same 
timescale range. Temperatures are known to produce synchronizing effects on insects through multiple mecha-
nisms, including a cessation of activity during winter diapause, temperature dependent development where 
minimum temperature thresholds must be met for development to occur at different life stages, and temperature 
dependent mortality at different life stages35. Each of these factors or combinations of these factors could have 
synchronizing effects on Cx. tarsalis activity and abundances, particularly across a large geographic area that 
includes temperate environments where populations undergo winter diapause36,37. In overwintering mosquitoes, 
termination of diapause begins with extended photoperiod and warming temperatures, which is then followed by 
a post-diapause development period that can result in synchronous spring activity once a minimum temperature 
threshold is reached38. In addition, minimum temperatures could produce synchronous abundances through 
mortality if minimum temperatures are too cold.

We found that the strength of annual Cx. tarsalis synchrony showed a marginally significant decrease across 
the study period, but we did not observe a significant decrease in the strength of annual synchrony of minimum 
temperature across the study period. According to the wavelet Moran theorem of13, two factors contribute to the 
strength of synchrony induced in a population variable by a synchronous environmental variable: the strength of 
synchrony of the environmental variable; and the strength/consistency of the relationship between the population 
variable and the environmental variable. Thus, annual timescale Cx. tarsalis synchrony could have been caused 
by temperature synchrony, and could have declined over our study period even while temperature synchrony 
held steady, if the influence of temperature on mosquito annual dynamics became less pronounced over the 
study period. This could have happened, for instance, if an overall warming trend in minimum temperatures 
interacted with threshold dependencies in mosquito life history processes so that thresholds were less frequently 
a limiting factor in the growth of some populations38,39. In general, warmer diapause temperature has been found 
to desynchronize eclosion in the green-veined white Pieris napi Linnaeus (Lepidoptera:Pieridae) butterflies40. 
Other factors could also contribute to a decrease in annual synchrony in Cx. tarsalis even while temperature 
synchrony remains strong: increased local stochasticity in population dynamics, altered biotic interactions, or 
increasing variation in asynchronous regional environmental conditions that drive local Cx. tarsalis dynamics 
could all result in reduced annual spatial synchrony across the study period.

An outstanding question that can only be addressed through continued long-term mosquito collections is 
whether the marginally significant result of a decrease in annual spatial synchrony in Cx. tarsalis observed here 
is part of a longer-term, consistent trend, or instead is part of a periodic phenomenon, so that the decline in 
synchrony will be reversed in due course12 provide a summary of insect populations where longer-term shifts 
in the strength of spatial synchrony have been observed, and highlight the need for longer-term monitoring 
to understand synchronous population dynamics and the effects of global climate change on insects. Reuman 
et al. (In Review) point out that, even for systems where time series length is long (those authors consider some 
time series which are almost 2000 years long), the evidence suggests that yet longer time series can reveal even 
longer-timescale synchrony. For mosquito vector species, understanding these patterns is particularly relevant 
because the strength of spatial synchrony across multiple timescales may be informative for understanding and 
predicting for the timing and abundance of mosquitoes, which relates through a set of other complex processes 
to transmission risk.

In addition to significant annual synchrony, we found evidence of significant synchrony during a single, 
short-term event that occurred between August and September 2018. These results demonstrate that spatial 
synchrony in Cx. tarsalis is not confined to annual cycles alone and emphasizes the need to consider how short 
durations or individual events can lead to one-off, spatially synchronous elevations in abundances. The timing 
of this event is relevant because it occurred during the peak WNV transmission season and during a year with 
broadscale spillover41. Here we show that precipitation between August and October 2018 was unusually high, 
with record breaking values occurring across several sites in and around our study area (Fig. 5C) (https://​www.​
ncei.​noaa.​gov/​access/​monit​oring/​us-​maps).

Although synchrony in precipitation was not a significant predictor of synchrony of Cx. tarsalis during this 
event, this result was not unexpected given that spatial wavelet analyses focus on periodicity, and single events 
that are short in duration may not trigger significant wavelet coherence in wavelet linear models. However, 
observations of strong spatial synchrony in Cx. tarsalis and knowledge of anomalous precipitation during the 
same time period warrants further investigation. Understanding not only interannual patterns but effects of 
the timing and distribution of intra-annual, widespread, anomalous weather events on mosquito population 
synchrony may reveal environmental drivers that are precursors to potential elevated vector borne disease 
transmission hazard. Investigation of such isolated events should probably proceed via statistical methods other 
than the wavelet approaches we have used here.

We close by noting some limitations of this work and next steps. First, while the geographic coverage of 
the NEON sites spanned a broad area, our study was limited to 90 mosquito traps across 9 locations owing to 
sampling coverage and distribution of Cx. tarsalis mosquitoes. Second, we lack the longer time series needed to 
determine synchrony on timescales longer than about 16 to 18 months. Third, short time series limit statistical 
power to detect environmental drivers of synchrony, especially on longer timescales, which is demonstrated 
in our finding of a marginally significant decrease in the strength of spatial synchrony in Cx. tarsalis abun-
dances over our study period. To establish significance of a relationship between mosquitos and temperature, 
the wavelet methods we used looked for consistency, across both space and time, in phase differences between 
annual-timescale fluctuations in Cx. tarsalis and temperature. But, on annual timescales, only a few oscillations 
of both variables occur during the duration of our data, limiting the potential of our methods to detect con-
sistent phase relationships. Longer datasets would mitigate this problem. In addition, although we conducted 
a broadscale analysis of Cx. tarsalis mosquitoes, the distribution of the NEON sites encompasses a relatively 
small portion of their geographic range, and our findings are specific to the study region. Although, evidence 

https://www.ncei.noaa.gov/access/monitoring/us-maps
https://www.ncei.noaa.gov/access/monitoring/us-maps
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indicates mosquito-mediated dispersal of West Nile virus in the western United States42, we consider it unlikely 
that dispersal is a driver of synchrony on the spatial scales we examine because of the large geographic distance 
between NEON sites in our analyses.

This work sets the stage for integrating longer time series over more sites, including in regions outside the 
United States where Cx. tarsalis are abundant and to other WNV mosquito vectors. Longer-term time series 
of mosquito collections from monitoring programs including NEON or from mosquito trap collections con-
ducted by mosquito control programs may provide the opportunity to investigate more robustly environmental 
correlations with unusual events and to identify common precursors, such as periodic ENSO oscillations, to 
synchronous population fluctuations.

Despite limitations, this work provides a first step toward understanding broad scale population synchrony 
in a key WNV mosquito vector. Our results highlight the need for additional investigations into effects of 
synchronous population dynamics on disease system dynamics during normal and unusual environmental 
conditions, over multiple timescales and different geographic areas. Future investigations will benefit from a 
systems approach that includes not only environmental correlates but other components of the WNV disease 
system, including avian host populations, migration phenology, and detected spillover events. Understanding 
the timing and distribution of inter- and intra-seasonal synchronous mosquito vector population dynamics 
across geographic scales may provide needed insight and a piece of the puzzle toward overcoming outstanding 
challenges in predicting the magnitude and extent of WNV transmission. Overcoming these challenges can 
ultimately help better inform prevention and control agencies.

Materials and methods
National Ecological Observatory Network (NEON) routine mosquito collections (Product: DP1.10043.001) 
between April 1, 2016 and December 31, 2019 were used in this analysis43. Mosquitoes at NEON sites are col-
lected using CO2 baited Centers for Disease Control (CDC) light traps, and within each NEON site, mosquitoes 
are typically collected at ten trap locations, referred to as plots. Traps are set at a minimum distance of 310 m, and 
here, the maximum distance between 2 traps occurred at one NEON site (SRER) with a distance of ~ 14.36 km. 
Terrestrial core sites collect mosquitoes every two weeks during the field season and then sample three trap 
locations weekly during the off season27,28. Following three consecutive trapping events with zero mosquitoes 
collected, terrestrial core sites change their sampling scheme to the off season protocol where traps are set weekly 
at three plots. This increase in temporal sampling at a reduced number of sites is designed to capture the return 
of adult mosquito flight activity following winter conditions. Terrestrial gradient sites collect mosquitoes every 
four weeks during the field season, cease collections when the terrestrial core site within their domain changes to 
the off season protocol, and then resumes collections when mosquito activity begins at the terrestrial core site27,28. 
Here, we conducted our analyses at a monthly temporal resolution and used the following steps to assemble time 
series of Cx. tarsalsis abundances for analyses.

First, we reduced site locations to those that had collected at least one Cx. tarsalis mosquito between 2016 
and December 2019 for a total of 26 candidate sites. Next, we performed QA/QC on individual sampling records 
to ensure that trap issues did not compromise sampling. We considered a trap collection compromised if any 
event occurred that could affect the mosquito counts collected or recorded. These events included interference 
with CO2 sublimation because of blockage, traps tipped over and on the ground, holes in catch cups, ants in 
catch cups, samples frozen and irretrievable from the sides of catch cups, damaged samples, or lost and discarded 
samples. In each of these cases, the number of mosquitoes or the magnitude of damage to the sample could not 
be assessed, introducing an unknown level of uncertainty to abundances. Individual counts recorded in NEON 
data reflect the number of mosquitoes per species identified out of a subsample of the total trap collection. In 
order to estimate the Cx. tarsalis abundance for each record, the individual count is divided by the proportion 
of the total trap collection identified. We calculated the estimated count and then created a monthly template 
beginning April 1, 2016 and ending December 31, 2019. If a trap collection did not include Cx. tarsalis, we entered 
a zero for the count, and if the trap was not set during the month, we entered NA.

Next, we estimated trapping effort and calculated Cx. tarsalis counts per trap hour per month across the 10 
locations within each of the 26 NEON candidate sites for each month of the study period, resulting in one value 
per site per month. Following this step, we checked sample coverage across the study period for each NEON site 
and reduced the analysis to nine sites with consistent sampling during active mosquito time periods. These sites 
consisted of six terrestrial core sites and three terrestrial gradient stations, and they are predominantly located 
in the interior West and Great Plains region (Fig. 1). Because the spatial wavelet analysis software we will apply 
(see below) requires continuous time series, we replaced NA values with zeros during winter and early spring 
months for temperate sites when collections did not occur, using the assumption supported in the literature36,37,44, 
that Cx. tarsalis mosquitoes were not active during winter time periods. We note that cessation of sampling dur-
ing winter must be preceded with 0 counts in abundance at the terrestrial core site within the NEON domain, 
providing a strong basis for making the assumption that mosquitoes are not active. All sites with mean number 
of mosquitoes per trap hour per month are available in supplementary materials, including NA values when 
sampling did not occur (see Data Availability).

After assembling and cleaning site-level data, we then calculated the centroid of the ten mosquito trap loca-
tions within each NEON site for each of the nine sites to obtain a single geographic point reference for environ-
mental data preparation. GridMET daily cumulative precipitation, minimum and maximum temperature, and 
minimum and maximum mean vapor pressure deficit index (a measure of humidity) at a 4 km spatial resolu-
tion were downloaded for each NEON site between April 1, 2016 and December 31, 2019 using the ‘climateR’ 
package45,46. Daily data was binned by month, and we calculated total cumulative precipitation for each month, 
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and average values for all other variables (e.g., minimum and maximum temperature and relative humidity) 
using functions available in the ‘dplyr’ package in R47.

Once monthly abundance and climate data were assembled, we used the ‘wsyn’ package in R for spatial 
synchrony analyses48. First, we used the ‘cleandat’ function with clev = 3 to individually de-mean, detrend, and 
standardize the variance of the monthly time series for Cx. tarsalis and each environmental variable. Next, we 
calculated wavelet phasor mean fields (wpmf) to quantify whether significant spatial synchrony occurred at one 
or more timescales for monthly estimated abundances of Cx. tarsalis and each environmental variable. Given 
a collection of time series measured at the same times (e.g., our Cx. tarsalis time series), the wpmf technique 
provides a plot which displays the strength of phase synchrony in the input time series as a function of time 
and timescale, with significance contours. Intense colors on the plot indicate strong synchrony at the given time 
and timescale. This method and a suite of closely related and now well developed methods have been applied 
numerous times to study synchrony of ecological time series15,49–56, and the methods are implemented, open 
source, in the wsyn package on CRAN48. The wsyn package includes a “vignette” which gives a straightforward, 
operational introduction to the methods implemented therein.

Next, we observed the wpmf plot for Cx. tarsalis to determine whether spatial synchrony was significant 
across one or more timescales. We then fit univariate wavelet linear models using the ‘wlm’ and ‘wlmtest’ func-
tions in wsyn to quantify whether spatial synchrony in the climate variables were significant predictors of spatial 
synchrony in Cx. tarsalis at the same timescales. Wavelet linear models were originally developed by13,54, and 
have now been applied several times in ecology15,49–53 to identify environmental causes of synchrony; they are 
especially useful when causes of synchrony may differ by timescale. These tools can identify not only which 
environmental drivers likely help cause synchrony on a given timescale band, they can also indicate the fractions 
of synchrony explained by each driver and by interactions between drivers. Wavelet linear model methods make 
statements of statistical significance based on resampling/randomization procedures; the number of randomiza-
tions in the ‘wlmtest’ function was set to 10,000. The ‘bandtest’ and ‘plotrank’ functions in wsyn were used to 
quantify significance. If a climate variable was identified as a significant driver of synchrony in Cx. tarsalis, the 
percent synchrony explained by the variable was then obtained from the wlm model, with associated cross-terms 
and residuals.

After observing the wpmf output for Cx. tarsalis, we tested whether a significant decrease in the strength of 
spatial synchrony occurred across the study period at the annual timescale by generating 10,000 “synchrony pre-
serving surrogates” using the ‘surrog’ function in wsyn, with surrtype = ‘aaft’54. Synchrony preserving surrogates 
are so-called surrogate datasets, i.e., artificial, bootstrapped datasets of the same structure as the original data 
(same number, length, and sampling frequency of time series), but which have been randomized in such a way 
that synchrony between the time series is maintained in its strength and timescale structure, but any directional 
changes through time in synchrony are eliminated. Thus, comparing patterns of change through time in the 
synchrony of real data against the same patterns computed for the surrogate datasets provides a test of whether 
synchrony has directionally changed, to a significant extent, against an appropriate null hypothesis.

We calculated the synchrony values for our observed Cx.tarsalis data at the 12 month and averaged 10 to 
14 month timescales, regressed these quantities against year to obtain two slopes, and calculated the same 
statistics for each of the 10,000 synchrony-preserving surrogate datasets. We then calculated the proportion of 
the 10,000 surrogate slopes which were less than the observed slopes to obtain a p-value for the test of the null 
hypothesis that observed decreases in annual-band Cx.tarsalis were no more than could have been expected by 
chance. Significance was measured with an ɑ < 0.05 and we report marginal significance with an ɑ < 0.10. We 
also tested whether a significant decrease in the strength of annual spatial synchrony was present in the climate 
variables, using the same methods.

Data availability
The data used in this study, including the data file prior to filling NA values, is available through GitHub (https://​
github.​com/​Campb​ell-​Lab-​FMEL/​Culex-​tarsa​lis-​synch​rony).

Code availability
All code used to perform analyses and to create figures is available through GitHub (https://​github.​com/​Campb​
ell-​Lab-​FMEL/​Culex-​tarsa​lis-​synch​rony).
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