
Randomized Algorithms for Solving Singular Value
Decomposition Problems with MATLAB Toolbox

©2021

Xiaowen Li
B.S. Mathematics, Baylor, 2018

Submitted to the graduate degree program in Department of Mathematics and the Graduate
Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of

Master of Art.

Committee members

Agnieszka Międlar, Chairperson

Paul Cazeaux, Member

Hongguo Xu, Member

Date defended: May 10th, 2021

Mobile User



The Thesis Committee for Xiaowen Li certifies
that this is the approved version of the following thesis :

Randomized Algorithms for Solving Singular Value Decomposition Problems with MATLAB

Toolbox

Agnieszka Międlar, Chairperson

Date approved:

ii

Mobile User

Mobile User



Abstract

This thesis gives an overview of the state-of-the-art randomized linear algebra algorithms [3, 7,

9, 11, 13, 14, 15, 18] for singular value decomposition (SVD), including presentation of existing

pseudo-codes and theoretical error analysis. Our main focus is on presenting numerical exper-

iments illustrating image restoration using various randomized singular value decomposition

(RSVD) methods; theoretical error bounds, computed errors, and canonical angles analysis for

these RSVD algorithms.

This thesis also comes with a newly developed MATLAB toolbox that contains implementations

and test examples for some of the state-of-the-art randomized numerical linear algebra algo-

rithms introduced in [3, 7, 9, 11, 13, 14, 15, 18].

iii

Mobile User



Acknowledgements

I would like to thank my master’s research advisor – Dr. Agnieszka Międlar for her invaluable su-

pervision, support and tutelage during the course of my Master’s degree. Additionally, I would

like to express gratitude to my undergrad advisor Dr. Ron Morgan from Baylor University to lead

me to the field of numerical analysis. My appreciation also goes out to my family and friends

for their encouragement and support all through my studies especially during coronavirus time

periods.

iv

Mobile User



Contents

1 Introduction 1

1.1 Standard Numerical Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Randomized Numerical Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background/ Preliminary 3

2.1 Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Types of randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Two-Stage Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Randomized Singular Value Decomposition 6

3.1 General Randomized SVD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Power Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Orthonormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Single Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 Hermitian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.2 General Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Numerical Experiments 17

4.1 Illustration of various randomized SVD algorithms . . . . . . . . . . . . . . . . . . . 17

4.1.1 Algorithm 2 - General Randomized SVD Method . . . . . . . . . . . . . . . . 18

4.1.2 Algorithm 3 - Accuracy Enhanced Randomized SVD Method . . . . . . . . . 18

4.1.3 Algorithm 4 - Accuracy Enhanced Randomized SVD with Orthonormaliza-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v

Mobile User



4.2 Illustration of Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 General Randomized SVD - Fixed Rank Problem . . . . . . . . . . . . . . . . 21

4.2.2 Accuracy Enhanced Randomized SVD - Power Iteration . . . . . . . . . . . . 23

4.2.3 Accuracy enhanced randomized SVD with Orthonormalization - Power It-

eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Illustration of Canonical angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Conclusions 32

A Randomized NLA MATLAB Toolbox 34

vi

Mobile User



List of Figures

4.1 Original Sunflower image of rank 804. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Illustration of low-rank approximation of Sunflower image using Algorithm 2 with

no oversampling p = 0 and k = 10,50,100,400,800 (left to right). . . . . . . . . . . . 18

4.3 Illustration of low-rank approximation of Sunflower image using Algorithm 2 with

oversampling p = 10 and k = 10,50,100,400,800 (left to right). . . . . . . . . . . . . 18

4.4 Illustration of low-rank approximation of Sunflower image using Algorithm 3 with

q = 1 steps of power iteration and k = 10,50,100,400,800 (left to right). . . . . . . . 19

4.5 Illustration of low-rank approximation of Sunflower image using Algorithm 3 with

q = 2 steps of power iteration and k = 10,50,100,400,800 (left to right). . . . . . . . 19

4.6 Illustration of low-rank approximation of Sunflower image using Algorithm 4 with

q = 1 steps of power iteration and k = 10,50,100,400,800 (left to right). . . . . . . . 19

4.7 Illustration of low-rank approximation of Sunflower image using Algorithm 4 with

q = 2 steps of power iteration and k = 10,50,100,400,800 (left to right). . . . . . . . 20

4.8 Singular values of the three test matrices defined in (4.1) with parameter g ap =

1,2 and 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.9 Illustration of error bounds for Algorithm 1 obtained for test matrix A with fixed

p = 5, and different values of rank k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.10 Illustration of error bounds for Algorithm 1 obtained for test matrix A with fixed

rank k = 20 and different values of parameter p. . . . . . . . . . . . . . . . . . . . . . 22

4.11 Illustration of average errors obtained for the test matrix A with fixed rank k = 20

and oversampling parameter p = 5 over 100 runs of Algorithm 1. . . . . . . . . . . . 23

4.12 Illustration of error bounds for Algorithm 3 obtained for test matrix A with fixed

values of p = 5 and q = 1, and different values of k. . . . . . . . . . . . . . . . . . . . 24

vii

Mobile User



4.13 Illustration of error bounds for Algorithm 3 obtained for test matrix A with fixed

values of k = 20 and q = 1, and different values of p. . . . . . . . . . . . . . . . . . . 25

4.14 Illustration of average error bounds obtained for test matrix A with k = 20, p = 5,

and q = 1 over 100 runs of Algorithm 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.15 Illustration of error bounds of the test matrix A with fixed p = 5, q = 1, and k =

5,10,15,20,25,30 (left to right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.16 Illustration of error bounds of the test matrix A with fixed k = 20, q = 1, and p =

5,10,15,20,25 (left to right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.17 Illustration of average error bounds of the test matrix A with fixed k = 20, p = 5,

and q = 1 over 100 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.18 Illustration of the canonical angles determined for matrix A through Algorithm 2,

3 and 4 with q = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.19 Illustration of canonical angles of the test matrix A for Alg 3 with q = 0,1,2. The

solid lines correspond to the computed values, the dashed lines correspond to

bounds obtained using Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.20 Illustration of canonical angles of the test matrix A for Alg4 with q = 0,1,2.The

solid lines correspond to the computed values, the dashed lines correspond to

bounds obtained using Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

viii

Mobile User



List of Algorithms

1 Solving the Fixed Rank Problem[7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 General Randomized SVD Algorithm [13] . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Accuracy Enhanced Randomized SVD [13] . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Accuracy Enhanced Randomized SVD with Orthonormalization[13] . . . . . . . . . 12

5 Single-Pass Randomized SVD for a Hermitian Matrix [13] . . . . . . . . . . . . . . . 15

6 Single-Pass Randomized SVD for a General Matrix [13] . . . . . . . . . . . . . . . . . 16

ix

Mobile User



Chapter 1

Introduction

1.1 Standard Numerical Linear Algebra

Numerical Linear Algebra (NLA) plays an important role in applied mathematics, statistics and

computer science. Defined as

The study of algorithms for the problems of continuous mathematics.

- L. N. Trefethen, Oxford University (1992)[16],

numerical linear algebra, in general, involves studies of the following problems:

• Eigenvalue problems: Given a matrix A 2Rn£n find a scalar ∏ 2R (eigenvalue)

and a nonzero vector x 2Rn (eigenvector) such that Ax =∏x.

• Linear Systems: Given a matrix A 2Rn£n and vector b 2Rn find a vector x 2Rn

such that Ax = b.

• Least-Squares Problem: Given a matrix A 2 Rm£n and vector b 2 Rm find a

vector x 2Rn such that min
x

kb ° Axk2.

Term Numerical Linear Algebra was first introduced in a 1947 paper by von Neumann and

Go [17]. Standard NLA algorithms such as Krylov subspace iteration methods or popular ma-

trix factorization methods are developed and fully reliable for small to medium scale input

matrix problems. Modern applications, e.g., machine learning and modern massive data set

(MMDS) analysis, create challenges with much larger data sets and sometimes missing infor-

mation. Randomization seems to be a promising technique to address these challenges.

1

Mobile User



1.2 Randomized Numerical Linear Algebra

Randomized Numerical Linear Algebra (RNLA) is an interdisciplinary study field that lets ran-

domization into the classical already existing algorithms and adapt them to handle more effi-

ciently large-scale linear algebra problems. From a foundational perspective, RNLA has its roots

in the field of theoretical computer science, with deep connections to mathematics (convex

analysis, probability theory, or metric embedding theory) and applied mathematics (scientific

computing, signal processing, and numerical linear algebra) [3]. The efficiency relates to two

major concerns: run-time and storage. In the real-world, the clock speed is hardly improving

for hardware, but with RNLA applied, we are able to keep the run-time down from the algo-

rithm side; the cost of slow storage (hard drives, flash memory, etc.) is also going down rapidly

because of the RNLA algorithms. Moreover, RNLA provides a sound algorithmic and statistical

foundation for cloud computing and big data analysis.

RNLA addresses a variety of topics such as randomized matrix multiplication [2], random-

ized least-squares solvers [5], and low-rank approximation [10], to mention just a few. This

thesis will mainly focus on introducing randomized algorithms for singular value decomposi-

tion with low-rank matrices, with a MATLAB toolbox that contains implementations and test

examples for basic randomized algorithms.

2

Mobile User



Chapter 2

Background/ Preliminary

2.1 Randomization

The reason that randomization is involved is because we want to take the input matrix and

construct a sketch of this matrix with random sampling. Such sketch is a smaller or sparser

matrix that can still represent the essential information contained in the original input matrix.

Therefore all later computations can cost less but still give a reasonable accurate solution.

Such randomization has been considered and commonly used after the following observa-

tion:

Johnson-Lindenstrauss Lemma From a 1984 paper [8], the Johnson-Lindenstrauss Lemma

states that any n points in high dimensional Euclidean space can be mapped onto k dimensions

where k ∏O (l og n/≤2) without distorting the Euclidean distance between any two points more

than a factor of 1±≤. [1]

Lemma 1 (Johnson-Lindenstrauss [1]) Let ≤ be a real number such that ≤ 2 (0,1) , n be a positive

integer and k be an integer such that

k ∏ 4
°≤2

2
° ≤3

3

¢°1l og (n).

Then for any set V of n points in Rd , there is a map f : Rd !Rk such that

(1°≤)ku ° vk2 ∑ k f (u)° f (v)k ∑ (1+≤)ku + vk2, 8u, v 2V

3

Mobile User



Further this map can be found in randomized polynomial time. Repeating this projection O (n)

times can boost the success probability to any desired constant, giving us a randomized polyno-

mial time algorithm.

Lemma 1 shows that random embedding preserves Euclidean geometry. Which suggests that

we should be able to solve many computational problems of a geometric nature more efficiently

by translating them into a lower- dimensional space using sketching.

2.1.1 Types of randomization

There are several examples of considering randomization.

Element-wise sampling (Sparsification) We can review an m £n matrix A as a 2D array that

contains mn elements. We can denote each of such elements by ai j where i = 1, ...,m; j = 1, ...n.

Then to in order to produce a sketch that is less costly for computations comparing to the orig-

inal matrix size, instead of keeping all its elements, we can randomly select a portion of the

elements, and let the rest of the matrix to be 0. Again, the sketch should be smaller but should

still contain enough information, hence the way of sampling the entries is important. One

simple and common choice is to pick entries with probability proportional to their squared-

magnitudes.

Row/column sampling Every element in a matrix can be specified by it’s row and column

index. Therefore, we can also randomly pick a portion of the matrix by selecting rows and

columns. This method leads to much stronger worst-case bounds and is more commonly used

in randomized linear algebra [4] due to its lower complexity.

2.2 Two-Stage Approach

Given an m £n input matrix A, a target rank 1 ∑ k ∑ r ank(A), and an oversampling parameter

p ∏ 0. Our goal is to use randomization to compute a low-rank, e.g., rank k +p approximation

4

Mobile User



of matrix A, which can be performed in two stages:

Stage 1: Here, we obtain a low-dimensional subspace which contains the most important

information in matrix A. We start with generating an random n £ (k +p) Gaussian test matrix

≠.Then we form a matrix product Y = A≠. Since Y is likely to be ill-conditioned, we orthonor-

malize its columns to form an orthonormal basis Q of the low-dimensional space of interest.

This procedure is illustrate in Algorithm 1.

Algorithm 1 Solving the Fixed Rank Problem[7]

Inputs: An m £n matrix A, a target rank k, an oversampling parameter p.
Outputs: An m £ (k +p) orthonormal matrix Q which approximates the range of A

1: Generate an n £ (k +p) Gaussian test matrix≠.
2: Form Y = A≠.
3: Construct a matrix Q whose columns form an orthonormal basis for the range of Y .

Stage 2: In this stage we take advantage of the lower-dimensional space determined in Stage

1. We first obtain a reduced matrix by restricting an original matrix A to the lower-dimensional

space and then compute its desired factorization, e.g., the singular value decomposition (SVD)

(see Chapter 3).

5

Mobile User



Chapter 3

Randomized Singular Value Decomposition

In this chapter we will discuss several different variants of determining the randomized singular

value decomposition.

3.1 General Randomized SVD Algorithm

In Section 2.2, we have introduced a general two-stage procedure to obtain a low-rank factoriza-

tion of a given matrix A using randomization. Let us illustrate this approach on the example of

singular value decomposition. In particular, let us concentrate on describing the Stage 2. In the

case of general randomized SVD method, we start with forming matrix B =Q§A. Since matrix Q

computed in Stage 1 satisfy kA°QQ§Ak2 ∑ ", where "denotesasmal lnumber thati sl essthan1,

A º QB . Then we apply the standard algorithm to obtain the SVD of a small matrix B , i.e.,

B = eUßV §. Finally, by setting U =Q eU we complete Stage 2 with A ºUßV §.

Given the j th largest singular valueæ j of matrix A, we know that for each j ∏ 0 the minimizer

X satisfies

min
r ank(X )∑ j

kA°X k2 =æ j+1. (3.1)

Theorem 2 [7, Theorem 1.1] Suppose that A is a real m£n matrix. Select a target rank k ∏ 2 and

an oversampling parameter p ∏ 2, where k+p ∑ min{m,n}. Execute Algorithm 1 with a standard

Gaussian random test matrix ≠ to obtain an m £ (k +p) matrix Q with orthonormal columns.

Then

EkA°QQ§Ak ∑
"

1+
4
p

k +p

p °1
·
p

min{m,n}

#
æk+1,

6

Mobile User



where E denotes the expectation with respect to the random test matrix and æk+1 is the (k+1)th

largest singular value of the matrix A.

From Theorem 2 we know that the Stage 1 of our randomized SVD algorithm (1) generates ma-

trix Q such that the resulting approximation of A§A is within a polynomial factor (
∑

1+ 4
p

(k+p)min{m,n}
p°1

∏
)

of the theoretical minimum. So if we fix the size of matrix A as well as the target rank k, the error

is only determined by the singular values of matrix A.

Algorithm 2 General Randomized SVD Algorithm [13]

Inputs: An m £n matrix A, a target rank k, an oversampling parameter p.

Outputs: Orthonormal matrices U , V , and a diagonal matrix ß from a rank-(k + p) SVD

approximation of A.

Stage 1:

1: Generate an n £ (k +p) Gaussian test matrix≠.

2: Form Y = A≠.

3: Construct a matrix Q whose columns form an orthonormal basis for the range of Y .

Stage 2:

4: Form B =Q§A.

5: Compute an SVD of the small matrix: B = eUßV §.

6: Set U =Q eU .

If a factorization with exactly rank k is desired, we can truncate the last p components of

the SVD factorization of matrix B after line 5 in Algorithm 2. Larger oversampling parameter p

provides a more accurate output, but at the same time also less efficient. So, we can adjust the

value of p to trade accuracy with efficiency.

3.1.1 Complexity

To analyze the cost of the general randomized SVD method presented in Algorithm 2, there are

several terms that we need to define. First, depending on different sampling techniques used

7

Mobile User



in implementation, the exact cost for the sampling part of the algorithm varies. In general, the

cost of this step is O (n(k +p)) [6].

Second, the cost of matrix multiplication can also vary depending on the structure of the

matrices. Therefore, we denote the cost for a matrix vector multiplication with matrix A as

øA [6]. Then we are able to analyze the cost of the general randomized SVD algorithm as follows:

• øA(k +p) cost for a A≠matrix multiplication.

• O (m(k +p)2) cost of orthonormalizing the columns of the matrix Q.

• øA§(k +p) cost of forming matrix B by multiplying Q§A.

• O (n(k +p)2) cost of the classical SVD.

• O (m(k +p)2) cost of computing matrix U as QŨ .

Adding them together, gives the total cost of the general randomized SVD algorithm as

øA(k +p)+O (n(k +p)2).

3.2 Power Iteration

Following the above analysis, it is easy to observe that the general randomized SVD method can

perform badly if the singular values of the input matrix decay slowly. To solve this problem, we

can combine Algorithm 2 with a few steps of power iteration [7]. Let q be the number of steps

of a power iteration, i.e., q = 1 or q = 2 in most cases.

Let A =UßV § be the singular value decomposition of matrix A. By running q steps of power

iteration, the singular values of matrix A(q) (defined below) are the diagonal entries on matrix

8

Mobile User



ß2q+1:

A(q) = (A A§)q A

= ((UßV §)(UßV §)§)q A

= (UßV §V ßU§)q A

= (Uß2U§)q A. (3.2)

Therefore, we see that the singular spectrum decays exponentially with q steps of power

iteration. Comparing A(q) =Uß2q+1V § and the factorization of original matrix A =UßV §, since

SVD is unique, we see A(q) shares the same left and right singular vectors as A.

Algorithm 3 Accuracy Enhanced Randomized SVD [13]

Inputs: An m £n matrix A, a target rank k, an oversampling parameter p and an integer q
which is the number of steps in power iteration.
Outputs: Matrices U, V, and ß in an approximate rank-(k +p) SVD of A. Where U and V are
orthonormal, ß is diagonal.
Stage 1:

1: Generate an n £ (k +p) Gaussian sketching matrix≠.
2: Form Y = A≠.
3: Apply q steps of power iteration
4: for j = 1 : q do

Z = A§Y
Y = AZ

5: Construct a matrix Q whose columns form an orthonormal basis for the range of Y .
Stage 2:

6: Form B =Q§A.
7: Compute an SVD of the small matrix: B = ŨßV §.
8: Set U =QŨ .

Let us now provide an analysis of Algorithm 3.

Theorem 3 Suppose that A is a real m£n matrix. Select an exponent q (e.g. q = 1 or 2), a target

rank k and an oversampling parameter p, where k +p ∑ min{m,n}. Execute Algorithm 3 with a

standard Gaussian test matrix ≠ to obtain an m £ (k +p) matrix Q with orthonormal columns.

9

Mobile User



Then

EkA°QQ§Ak ∑
"

1+
4
p

(k +p)min{m,n}

p °1

#1/(2q+1)

æk+1,

æk+1 is the (k+1)th largest singular value of A.

Compare to Theorem 2, we can see that everything in the bracket is the same. Power iteration

drives the leading constant to one exponentially fast as the exponent q increases.

Assumption 4 [15] Let’s make an assumption based on the Stage 1 of Algorithm 3. Let ≠1 2

Ck£(k+p) by taking the partition of the matrix V §≠

V §≠=

2
64

V §
k ≠

V §
?≠

3
75=

2
64
≠1

≠2

3
75 ,

where≠ is a random Gaussian matrix from Stage 1 of Algorithm 3. We also assume that

r ank(≠1) = k.

The singular value gap at index k is inversely proportional to the singular value ratio

∞k = kß?k2kß°1
k k2 =

æk+1

æk
< 1.

Where ßk is the Diagonal matrix that contains the first kth largest singular values of matrix

A, and ß? contains the rest of singular values of A.

From this assumption, the first equation, r ank(≠1 = k) guarantees that the starting guess ≠

has a significant influence over the right singular vectors, the second inequality ∞k < 1 en-

sures that the k-dimensional subspace range (Uk ) and also the right singular vectors formed

k-dimensional subspace range (Vk ) are both well-defined. In practice, we want ∞k ø 1, so that

there is a large singular value gap. With these assumptions, we can state the following theorem

introduced in [15].

10

Mobile User



Theorem 5 [15] Let U , V be obtained from Algorithm 3. Define the the canonical angles µ j =

\(Uk ,U ) and ∫ j =\(Vk ,V ). Then under the Assumption 4, µ j and ∫ j satisfy

sin(µ j ) ∑
∞

2q+1
j k≠2≠

†
1k2

q
1+∞

4q+2
j k≠2≠

†
1k2

2

sin(∫ j ) ∑
∞

2q+2
j k≠2≠

†
1k2

q
1+∞

4q+4
j k≠2≠

†
1k2

2

for j = 1, ...,k

3.3 Orthonormalization

Algorithm 3 now makes the randomized SVD method more compatible with the matrix that has

singular spectrum decays slowly. But its accuracy can still be further improved due to round-off

errors. While the power q increases, the columns of the sample matrix mentioned in algorithm

3,

Y = A(q)≠ (3.3)

, tend to get closer and closer to the dominant left singular vector. Which causes all information

that based on smaller singular values to get lots to round-off errors. [13]

And this can be solved by adding orthonormalization between each step of power iteration.

This will make the algorithm more costly but at the same time more accurate.

11

Mobile User



Algorithm 4 Accuracy Enhanced Randomized SVD with Orthonormalization[13]

Inputs: An m £n matrix A, a target rank k, an over-sampling parameter p and an integer q

which is the number of steps in power iteration.

Outputs: Matrices U , V , and ß in an approximate rank-(k+p) SVD of A. Where U and V are

orthonormal, ß is diagonal.

Stage 1:

1: Generate an n £ (k +p) Gaussian test matrix≠.

2: Form Y = A≠.

3: Construct a matrix Q whose columns form an orthonormal basis for the range of Y.

4: Apply power iterations:

5: for j = 1 : q do

W = or th(A§Q) ;

Q = or th(AW ) ;

Stage 2:

6: Form B =Q§A.

7: Compute an SVD of the small matrix: B = ŨßV §.

8: Set U =QŨ .

Based on Algorithm 4, we can introduce the following error analysis.

Theorem 6 [13, Theorem 2] Suppose that A is an m£n matrix. Select an exponent q (e.g. q = 1 or

2), a target rank and an oversampling parameter p, where k +p ∑ min{m,n}. Draw a Gaussian

matrix ≠ of size n £ (k + p), define Y = A(q)≠ and Q to be the m £ (k + p) orthonormal matrix

resulting from orthonormalizing the columns of Y . Then

EkA°QQ§Ak ∑
"≥

1+
s

k
p °1

¥
æ

2q+1
k+1 +

e
p

k +p

p

≥mi n(m,n)X

j=k+1
æ

2(2q+1)
j

¥1/2
#1/(2q+1)

, (3.4)

where æk+1 is the (k+1)th largest singular value of A.

12

Mobile User



We can simplify this result by considering the worst case where there is no decay in the

singular values after the kth term, i.e., æk+1 =æk+2 = ... =æmi n(m,n). Then,

EkA°QQ§Ak ∑
"≥

1+
s

k
p °1

¥
+

e
p

k +p

p
·
p

min{m,n}°k

#1/(2q+1)

æk+1. (3.5)

Now as the exponent q increases, the power iteration scheme drives the factor in front of æk+1

to one exponentially fast.

3.4 Single Pass

Randomization can also improve efficiency from the storage side.

All randomized SVD algorithms we have introduced so far require the access to the large

input matrix A twice, for both Stage 1 and Stage 2. It is possible for us to modify the algorithm

such that each entry of matrix A is accessed only once, so a significantly amount of storage can

be reduced.

3.4.1 Hermitian Matrices

In the case of the Hermitian input matrix, a single-pass algorithm can be directly developed

from Algorithm 2. For the single pass randomized SVD method with Hermitian matrix Stage 1

is the same as in Algorithm 1. We first draw an n £ (k +p) Gaussian random matrix≠ and form

the matrix Y = A≠. Then we construct a matrix Q whose columns form an orthonormal basis

for the range of Y . This yields

A ºQQ§A. (3.6)

Given that A is a Hermitian matrix, we have that A = A§, therefore

A º AQQ§. (3.7)

13

Mobile User



Replacing A in (3.7) with (3.6) gives

A ºQQ§AQQ§. (3.8)

Setting

C :=Q§AQ, (3.9)

allows us to apply the eigenvalue decomposition of matrix C to find bU and D such that C =

bU D bU§. With U :=Q bU we get the following result

A ºQCQ§ =QÛ DÛ§Q§ =U DU§. (3.10)

Since our goal is to build a single pass algorithm, we cannot compute matrix C explicitly. In-

stead, we will multiply both side of equation (3.9) by Q§≠ on the right to obtain

C (Q§≠) =Q§AQ(Q§≠). (3.11)

Now by equation (3.7),

C (Q§≠) =Q§(AQQ§)≠ºQ§A≠=Q§Y . (3.12)

If we ignore the approximation error, we can compute matrix C as the solution of the linear

system

C (Q§≠) =Q§Y . (3.13)

This leads to our single-pass randomized SVD method for a Hermitian matrix given in Algo-

rithm 5.

Since computing matrix C resulting additional approximation error, this single-pass method

is less accurate compared to previously discussed two-pass methods.[13]

14

Mobile User



Algorithm 5 Single-Pass Randomized SVD for a Hermitian Matrix [13]

Inputs: An n £n Hermitian matrix A, a target rank k, an oversampling parameter p.
Outputs: Matrices U , and D in an approximate rank-k EVD of A. Where U is orthonormal,
ß is diagonal.
Stage 1:

1: Generate an n £ (k +p) Gaussian test matrix≠.
2: Form Y = A≠.
3: Let Q denote the orthonormal matrix formed by Y .

Stage 2:
4: Let C denote the k £k solution of C (Q§≠) = (Q§Y )
5: Compute an eigenvalue decomposition of the small matrix C = bU D bU§.
6: Set U =Q bU .

3.4.2 General Matrices

Algorithm 5 works only for Hermitian input matrix limiting its use. Let us now consider the

single-pass idea in the case of general input matrices. First, in Stage 1, we need to apply ran-

domized sampling simultaneously to both the row and the column space of matrix A [13]. We

start with generating two random Gaussian matrices ≠c 2 Cn£(k+p) and ≠r 2 Cm£(k+p), and

forming two sketches Yc = A≠c and Yr = A§≠r . Then we construct two matrices Qc = or th(Yc )

and Qr = or th(Yr ). For Stage 2, we execute a projection step to obtain a smaller matrix

C =Q§
c AQr . (3.14)

To develop a single-pass algorithm, we start with left multiplying (3.14) by≠§
r Qc , i.e.,

≠§
r QcC =≠§

r QcQ§
c AQr º≠§

r AQr = Y §
r Qr . (3.15)

Then, we right multiply (3.14) by Q§
r ≠c , i.e.,

CQ§
r ≠c =Q§

c AQr Q§
r ≠c ºQ§

c A≠c =Q§
c Yc . (3.16)

15

Mobile User



This allows us to obtain C as the least-square solution of the two equations

(≠§
r Qc )C = Y §

r Qr and C (Q§
r ≠c ) =Q§

c Yc .

All discussed steps form our single-pass randomized SVD method for general matrices pre-

sented in Algorithm 6.

Algorithm 6 Single-Pass Randomized SVD for a General Matrix [13]

Inputs: An m £n matrix A, a target rank k, an oversampling parameter p.
Outputs: Orthonormal matrices U, V, and diagonal ß in an approximate rank-k SVD of A.
Stage 1:

1: Generate two Gaussian matrices≠c and≠r of size n £ (k +p) and m £ (k +p), respectively.
2: Form Yc = A≠c , Yr = A≠r .
3: Construct orthonormal matrices Qc and Qr consisting of the k dominant left singular vec-

tors of Yc and Yr .
Stage 2:

4: Compute C as the solution of the joint system of equations formed by (≠§
r Qc )C = Y §

r Qr and
C (Q§

r ≠c ) =Q§
c Yc

5: Compute an SVD of the small matrix: C = bUß bV §.
6: Set U =Qc bU and V =Qr bV .

16

Mobile User



Chapter 4

Numerical Experiments

4.1 Illustration of various randomized SVD algorithms

First, we are going to use image reconstruction example to show the performance of all methods

discussed in Chapter 3.

Figure 4.1 is the original image that we are going to use in this experiment. This figure is

converted to a 804£1092 matrix of rank 804.

Figure 4.1: Original Sunflower image of rank 804.

17

Mobile User



4.1.1 Algorithm 2 - General Randomized SVD Method

First, Figure 4.2 presents rank-k approximations of the Sunflower image with fixed p = 0 and k =

10,50,100,400,800 obtained using Algorithm 2. Figure 4.3 present the rank-k approximation

obtained with fixed p = 10, k = 10,50,100,400,800.

Figure 4.2: Illustration of low-rank approximation of Sunflower image using Algorithm 2 with
no oversampling p = 0 and k = 10,50,100,400,800 (left to right).

Figure 4.3: Illustration of low-rank approximation of Sunflower image using Algorithm 2 with
oversampling p = 10 and k = 10,50,100,400,800 (left to right).

Comparing these two figures horizontally, we see that for the same value of parameter p

the larger target rank k the better the quality of the approximation, i.e., the restored images are

more clear. Then comparing vertically, we observe that with the same target rank k, the larger

the oversampling parameter p is, the more clear the restored picture.

4.1.2 Algorithm 3 - Accuracy Enhanced Randomized SVD Method

Similar experiment was performed with Algorithm 3. We first fix the number of power iterations

q involved in Step 1 and let k = 10,50,100,400,800. The corresponding results are presented in

Figure 4.4 for q = 1, and Figure 4.5 for q = 2.

18

Mobile User



Figure 4.4: Illustration of low-rank approximation of Sunflower image using Algorithm 3 with
q = 1 steps of power iteration and k = 10,50,100,400,800 (left to right).

Figure 4.5: Illustration of low-rank approximation of Sunflower image using Algorithm 3 with
q = 2 steps of power iteration and k = 10,50,100,400,800 (left to right).

Comparing these two figures horizontally, we see that with the same value of parameter q ,

when the target rank k gets larger the restored picture is more clear.

4.1.3 Algorithm 4 - Accuracy Enhanced Randomized SVD with Orthonor-

malization

Let us now repeat the above experiment with Algorithm 4. Figure 4.6 for q = 1, and Figure 4.7

present the results for q = 1 and q = 2, respectively.

Figure 4.6: Illustration of low-rank approximation of Sunflower image using Algorithm 4 with
q = 1 steps of power iteration and k = 10,50,100,400,800 (left to right).

19

Mobile User



Figure 4.7: Illustration of low-rank approximation of Sunflower image using Algorithm 4 with
q = 2 steps of power iteration and k = 10,50,100,400,800 (left to right).

Comparing these two figures horizontally, we see that with the same value of parameter q ,

when the target rank k gets larger, the restored pictures are more clear.

4.2 Illustration of Error Bounds

Our next experiment will illustrate the theoretical error bounds presented in Theorem 2, 3 and

4 derived for the Stage 1 of Algorithm 2, 3 and 4, respectively, and compare them with the com-

puted error kA°QQ§Ak2. Let us consider a set of test matrices A defined as in [15, Section 6.1].

We take a set of sparse matrices A 2R3000£300 with prescribed decay of singular values, location

and size/value of the singular values gap. Given a sparse vectors x j 2 R3000 and y j 2 R300 with

nonnegative entries, the location r of the gap between the singular values of a test matrix A and

its size determined by the parameter g ap we define A according to the following formula

A =
rX

j=1

gap
j

x j yT
j +

300X

j=r+1

1
j

x j yT
j . (4.1)

Notice that the singular values of such constructed matrix A decay like 1
j .

First, let us consider three test matrices A each with a different size of the g ap parameter,

i.e., small, medium and large gap corresponding to the value g ap = 1,2 or 10, respectively, be-

tween the 15th and 16th largest singular values, i.e., r = 15. Figure 4.8 shows the exact singular

values of each of the three constructed test matrices.

20

Mobile User



Figure 4.8: Singular values of the three test matrices defined in (4.1) with parameter g ap = 1,2
and 10.

4.2.1 General Randomized SVD - Fixed Rank Problem

Let us now fix the size of the g ap to be 10 and take the corresponding test matrix A from (4.1)

to be the input of the Algorithm 1. Since Theorem 2 provides a theoretical upper bound of the

expectation value of the 2°nor m of the difference between the original input matrix A and

its low-rank approximation, i.e., kA°QQ§Ak2, in the following paragraphs we will compare this

theoretical bound (the estimated error) with the size of the actual error kA°QQ§Ak2 (computed

error).

Error analysis with fixed p and different ranks k For this experiment, we fix the value of the

oversampling parameter p = 5 choose different target ranks k to be 5,10,15,20,25,30. Figure 4.9

illustrates the computed errors and estimated errors for Algorithm 1 with different values of k.

Error analysis with fixed rank k and different values of parameter p Here, we fix the value of

the target rank k = 20 and choose different values of p = 5,10,15,20,25. Figure 4.10 illustrates

21

Mobile User



Figure 4.9: Illustration of error bounds for Algorithm 1 obtained for test matrix A with fixed
p = 5, and different values of rank k.

the computed errors and estimated errors for Algorithm 1 with different values of parameter

p = 5,10,15,20,25.

Figure 4.10: Illustration of error bounds for Algorithm 1 obtained for test matrix A with fixed
rank k = 20 and different values of parameter p.

22

Mobile User



Average of computed errors over 100 runs With fixed target rank k = 20 and oversampling

parameter p = 5, Figure 4.11 presents an average computed and estimated errors over 100 runs

of Algorithm 1.

Figure 4.11: Illustration of average errors obtained for the test matrix A with fixed rank k = 20
and oversampling parameter p = 5 over 100 runs of Algorithm 1.

4.2.2 Accuracy Enhanced Randomized SVD - Power Iteration

We use the same test matrix A and the same experiment parameters as above for the accuracy

enhanced randomized SVD method in Algorithm 3. Here, Stage 1 of the algorithm incorporates

few steps, e.g., q = 1 or 2 of power iteration method.

Error analysis with fixed parameters p and q, and different values of k For this experiment,

we fix the oversampling parameter p = 5 and the number of the power iteration steps q = 1, and

vary the value of target rank parameter k = 5,10,15,20,25,30. Figure 4.12 presents the com-

puted error and estimated error of Algorithm 3 with different values of k.

23

Mobile User



Figure 4.12: Illustration of error bounds for Algorithm 3 obtained for test matrix A with fixed
values of p = 5 and q = 1, and different values of k.

Error analysis with fixed values of k and q, and different values of parameter p For this ex-

periment, we fix a target rank k = 20 and the number of power iteration steps q = 1 and choose

different values of oversampling parameter p = 5,10,15,20,25. Figure 4.14 presents the com-

puted error and estimated error of Algorithm 3 with different values of p.

Average of computed error over 100 runs With fixed rank k = 20, oversampling parameter

p = 5 and number of power iteration steps q = 1, Figure 4.14 presents an average computed and

estimated errors over 100 runs of Algorithm 3. Note that with the fixed values of parameters k,

p and q , the estimated error from Theorem 3 is constant.

24

Mobile User



Figure 4.13: Illustration of error bounds for Algorithm 3 obtained for test matrix A with fixed
values of k = 20 and q = 1, and different values of p.

Figure 4.14: Illustration of average error bounds obtained for test matrix A with k = 20, p = 5,
and q = 1 over 100 runs of Algorithm 3.

25

Mobile User



4.2.3 Accuracy enhanced randomized SVD with Orthonormalization - Power

Iteration

Similarly, for (Alg 4) the Accuracy enhanced randomized SVD with Orthonormalization, the

following figures are generated.

Error analysis with fixed p, q and varies k For this experiment, we fix the oversampling pa-

rameter p to be 5, q to be 1 and choose k to be 5, 10, 15, 20, 25, 30, respectively. And compute

the computed error and estimated error for different k.

Figure 4.15: Illustration of error bounds of the test matrix A with fixed p = 5, q = 1, and k =
5,10,15,20,25,30 (left to right).

Error analysis with fixed k, q and varies q For this experiment, we fix the oversampling pa-

rameter k to be 20, q to be 1 and choose p to be 5, 10, 15, 20, 25, respectively. And compute the

computed error and estimated for different p.

26

Mobile User



Figure 4.16: Illustration of error bounds of the test matrix A with fixed k = 20, q = 1, and p =
5,10,15,20,25 (left to right).

Average of computed error over 100 runs With fixed k = 20, p = 5, q = 1, this experiment run

the stage 1 of algorithm 4 for 100 times and generates the average computed error. Note that

with k, p and q fixed, the estimated error from theorem 6 is also fixed.

27

Mobile User



Figure 4.17: Illustration of average error bounds of the test matrix A with fixed k = 20, p = 5, and
q = 1 over 100 runs.

4.3 Illustration of Canonical angles

For this experiment we take the same test matrices A as above with the g ap = 2 between the

15th and 16th largest singular values. We consider the target rank k = 25 and the oversampling

parameter p = 5.

Let us first recall the singular value decomposition of matrix A. Given a target rank k we

write the singular value decomposition of matrix A as follows:

A = [Uk U?]

2
64
ßk

ß?

3
75

2
64

V §
k

V §
?

.

3
75 (4.2)

Here, ßk 2 Ck£k and ß? 2 C(m°k)£(n°k) are diagonal matrices; the columns of Uk and U? are

the corresponding left singular vectors, and the columns of Vk and V? the corresponding right

singular vectors of matrix A. We also denote by Ak =UkßkV §
k the best rank-k approximation of

matrix A.

28

Mobile User



Our goal is to determine how well range(Û ) approximates the range(Uk ) and we will achieve

this my measuring the canonical angles between these two subspace, i.e., calculating the

sin\(Uk , bU ). (4.3)

We will consider bU resulting from Algorithm 2, 3 and 4.

Canonical angles computed by Algorithms 2, 3 and 4 with q = 0 Figure 4.18 shows the com-

puted canonical angles for Algorithm 2, 3 and 4 applied to the test matrix A and q = 0 steps

of power iteration. We see that since q = 0 to Algorithm 3 and 4 did not perform any steps

of power iteration in Stage 1 which makes them easily comparable to Algorithm 2 which first

solves the general fixed rank problem, see Algorithm 1. This observation is validated with the

results presented on Figure 4.18.

Figure 4.18: Illustration of the canonical angles determined for matrix A through Algorithm 2, 3
and 4 with q = 0.

29

Mobile User



Computed and estimated canonical angles for Algorithm 3 We plot the canonical angles in

solid lines, and the corresponding bounds from Theorem 5 in dashed lines. The results are

based on Algorithm 3 with input matrix A and the steps of a power iteration to be q = 0,1,2:

Figure 4.19: Illustration of canonical angles of the test matrix A for Alg 3 with q = 0,1,2. The
solid lines correspond to the computed values, the dashed lines correspond to bounds obtained
using Theorem 5

From the figure 4.19, we observe that when q increases, the size of the canonical angle be-

comes smaller. So the ’sketch’ is becoming more accurate. Then within the same value q , as

the index increases, the canonical angle increases. As we setup the matrix A with a size 2 g ap

between 15th and 16th singular values, all the canonical angles below index 15 are captured

accurately.

Computed and estimated canonical angles for Alg 4 Now we apply the same experiment

above with algorithm 4. We still use the same estimate bounds stated in Theorem 5, since by

our construction of Algorithm 4, we should expect a similar error analysis but more accurate

when q is large, since algorithm 4 is designed to limit the round-off errors in algorithm 3.

30

Mobile User



Figure 4.20: Illustration of canonical angles of the test matrix A for Alg4 with q = 0,1,2.The
solid lines correspond to the computed values, the dashed lines correspond to bounds obtained
using Theorem 5

We are getting the same (which is what we expected) observation as from last experiment.

If we compare this figure 4.20 with last figure 4.19, we can also see that the difference between

the computed error and the estimate error is later from this figure when q = 2(large). Which

confirms the expectation that algorithm 4 reduces the round off error that algorithm 3 has when

q is large.

31

Mobile User



Chapter 5

Conclusions

In this report, we present different versions of randomized algorithms for calculating the singu-

lar value decomposition and the corresponding theoretical error bounds. We first introduce the

general randomized SVD and then consider incorporating few steps of power iteration within

the Stage 1 to make the algorithms efficient when the singular spectrum of the input matrix

decays slowly. Orthonormalization can be involved in each power iteration step to reduce the

round-off error and further improve the accuracy. On the other hand, we can save the storage

costs making the randomized SVD algorithm only access each entry of input matrix A once. We

first introduce this single-pass method for the Hermitian input matrix A and then extend it to

work for general matrices.

In the first (image restoration) experiment, we illustrate the performance of various ran-

domized SVD methods and observe that when the value of target rank k and/or oversampling

parameter p increases, the reconstructed images are more and more accurate.

The second experiment compares the theoretical error bounds with the actually computed

errors. We can see that our computed errors are always below the theoretical bounds, and both

estimated and computed errors decrease when the target rank k and/or oversampling parame-

ter p increase.

Finally, the third experiment illustrates the quality of approximations obtained with ran-

domized SVD in terms of canonical angles. We observe that when the number of power iter-

ations steps q is larger, the canonical angles get smaller, confirming that the corresponding

random ’sketch’ provides good approximation of the original matrix A.

Future work may include more experiments with cross-comparisons between the error per-

32

Mobile User



formance of Algorithm 3 and Algorithm 4 when the number of power iteration steps q gets

large. Since Algorithm 4 is designed to reduce the round-off error with respect to Algorithm 3,

we should expect to see significantly lower error for Algorithm 4 for large values of q .

33

Mobile User



Appendix A

Randomized NLA MATLAB Toolbox

Code Link: As a part of this project, we have created a simple randomized numerical linear al-

gebra MATLAB Toolbox which can be found on GitHub https://github.com/LeeeeeLy/Randomized-

NLA-Matlab-Toolbox

In the following we will briefly describe the structure of our toolbox.

Main Functions:

• FixedRank.m - This is an implementation of Proto-Algorithm: Solving the Fixed-Rank

Problem from paper [11].

This function takes an input matrix A, a target rank k, and a oversampling parameter

p and output a m £ (k + p) matrix Q whose columns are orthonormal and whose range

approximates the range of A.

• RandSVD.m - This is implementation of Prototype for Randomized SVD from paper [11].

This function takes an input matrix A, a target rank k, and an exponent q (q = 0,1,2) and

approximate a rank-2k factorization A ºUßV §, where U and V are orthonormal, and ß

is nonnegative and diagonal.

• randRF.m - This is implementation of Algorithm 4.1 from paper [11].

This function takes an m£n matrix A and an integer l , it computes an m£ l orthonormal

matrix Q whose range approximates the range of A.

34

Mobile User

https://github.com/LeeeeeLy/Randomized-NLA-Matlab-Toolbox
https://github.com/LeeeeeLy/Randomized-NLA-Matlab-Toolbox


• Adaptive_randRF.m - This is implementation of Algorithm 4.2 from paper [11].

This function takes an m £n matrix A, a tolerance ≤, and an integer r (e.g., r = 10), it

computes an orthonormal matrix Q such thatk(I °QQ§)Ak ∑ ≤, with probability at least

1min{m,n}10°r .

• randPI.m - This is implementation of Algorithm 4.3 from paper [11].

This function takes an m£n matrix A and integers l and q , it computes an m£l orthonor-

mal matrix Q whose range approximates the range of A.

• randSI.m - This is implementation of Algorithm 4.4 from paper [11].

This function takes an m£n matrix A and integers l and q , it computes an m£l orthonor-

mal matrix Q whose range approximates the range of A.

• FastRandRF.m - This is implementation of Algorithm 4.5 from paper [11].

This function takes an m£n matrix A and an integer l , it computes an m£ l orthonormal

matrix Q whose range approximates the range of A. This function involved with sub sam-

pled random Fourier transform (SRFT), see function SRFT.m in the Sub-Function session.

• DirectEigvalueDecopo.m - This is implementation of Algorithm 5.3 from paper [11].

This function takes an Hermitian matrix A and a basis Q that can be generated by Fixe-

dRank.m, this computes an approximate eigenvalue decomposition A ºU§U , where U

is orthonormal, and§ is a real diagonal matrix.

To generate an input hermitian matrix, please visit and download the random hermitian

matrix generator function[12].

• EigvalueDecopoRow.m - This is implementation of Algorithm 5.4 from paper [11].

This function takes an Hermitian matrix A and a basis Q that can be generated by Fixe-

dRank.m, this computes an approximate eigenvalue decomposition A ºU§U§ , where U

35

Mobile User

https://www.mathworks.com/matlabcentral/fileexchange/25912-random-hermitian-matrix-generator
https://www.mathworks.com/matlabcentral/fileexchange/25912-random-hermitian-matrix-generator


is orthonormal, and§ is a real diagonal matrix. This function is faster than DirectEigval-

ueDecopo.m but less accurate.

To generate an input hermitian matrix, please visit and download the random hermitian

matrix generator function[12].

• EigvalueDecopoNystrom.m - This is implementation of Algorithm 5.5 from paper [11].

This function takes a positive semidefinite matrix A and a basis Q that can be generated

by FixedRank.m, this computes an approximate eigenvalue decomposition A º U§U§,

where U is orthonormal, and§ is nonnegative and diagonal.

• EigvalueDecopoOnePass.m - This is implementation of Algorithm 5.6 from paper [11].

This function takes an Hermitian matrix A, a random test matrix≠, a sample matrix Y =

A≠, and an orthonormal matrix Q that can be generated by FixedRank.m, this computes

an approximate eigenvalue decomposition A ºU§U§. This algorithm requires only one

pass for the input matrix A; Comparing to previous algorithms it takes less storage.

• BasicRandSVD.m - This in implementation of RSVD from paper [13].

This function takes an m£n matrix A, a target rank k, and an over-sampling parameter p

and computes matrices U , D , and V in an approximate rank-(k +p) SVD of A (so that U

and V are orthonormal, D is diagonal, and A ºU DV §.

To generate an input hermitian matrix, please visit and download the random hermitian

matrix generator function[12].

• AERandSVD.m - This is implementation of ALGORITHM: ACCURACY ENHANCED RAN-

DOMIZED SVD from paper [13].

This function takes an m£n matrix A, a target rank k, an over-sampling parameter p, and

a exponent q . It computes matrices U , D , and V in an approximate rank-(k +p) SVD of A

(so that U and V are orthonormal, D is diagonal, and A ºU DV §. This algorithm is more

accurate Compares to BasicRandSVD.m.

36

Mobile User

https://www.mathworks.com/matlabcentral/fileexchange/25912-random-hermitian-matrix-generator
https://www.mathworks.com/matlabcentral/fileexchange/25912-random-hermitian-matrix-generator
https://www.mathworks.com/matlabcentral/fileexchange/25912-random-hermitian-matrix-generator
https://www.mathworks.com/matlabcentral/fileexchange/25912-random-hermitian-matrix-generator


• AEORandSVD.m - This is implementation of ALGORITHM: ACCURACY ENHANCED RAN-

DOMIZED SVD (WITH ORTHONORMALIZATION) from paper [13].

This function takes an m£n matrix A, a target rank k, an over-sampling parameter p, and

a exponent q . It computes matrices U , D , and V in an approximate rank-(k +p) SVD of A

(so that U and V are orthonormal, D is diagonal, and A ºU DV §. This algorithm reduces

the truncating error from the power iteration with large q in AERandSVD.m.

• SPRandEVDH.m - This is implementation of ALGORITHM: SINGLE-PASS RANDOMIZED

EVD FOR A HERMITIAN MATRIX from paper [13].

This function takes an n £n Hermitian matrix A, a target rank k, and an over-sampling

parameter p and computes matrices U and D in an approximate rank-k EVD of A (so

that U is an orthonormal matrix, D is a diagonal matrix, and A ºU DU§. This algorithm

requires only one pass or the input matrix A; Comparing to previous algorithms it takes

less storage.

To generate an input hermitian matrix, please visit and download the random hermitian

matrix generator function[12].

• SPRandSVD.m - This is implementation of ALGORITHM: SINGLE-PASS RANDOMIZED

SVD FOR A GENERAL MATRIX from paper [13].

This function takes an m£n matrix A, a target rank k, and an over-sampling parameter p

and computes matrices U , D , and V in an approximate rank-k SVD of A (so that U and V

are orthonormal, D is diagonal, and A ºU DV §. This function extends SPRandEVDH.m

to general input matrix.

• randPowerMethod.m - This is implementation of Algorithm 4 from paper [14].

This function takes a Hermitian matrix A, a number q for maximum number of iterations

and a stopping tolerance ≤, it computes estimated ª for a maximum eigenvalue of A.

37

Mobile User

https://www.mathworks.com/matlabcentral/fileexchange/25912-random-hermitian-matrix-generator
https://www.mathworks.com/matlabcentral/fileexchange/25912-random-hermitian-matrix-generator


To generate an input hermitian matrix, please visit and download the random hermitian

matrix generator function[12].

• randomizedLanczos.m - This is implementation of Algorithm 5 from paper [14].

This function takes a Hermitian matrix A, a number q for maximum number of iterations

and computes estimated (ª; y) for a maximum eigenpair of A.

To generate an input hermitian matrix, please visit and download the random hermitian

matrix generator function[12].

38

Mobile User

https://www.mathworks.com/matlabcentral/fileexchange/25912-random-hermitian-matrix-generator
https://www.mathworks.com/matlabcentral/fileexchange/25912-random-hermitian-matrix-generator
https://www.mathworks.com/matlabcentral/fileexchange/25912-random-hermitian-matrix-generator
https://www.mathworks.com/matlabcentral/fileexchange/25912-random-hermitian-matrix-generator


Function name Reference

Algorithm # or name

listed in the reference

EigvalueDecopoRow [7] 5.4

EigvalueDecopoOnePass [7] 5.6

EigvalueDecopoNystrom [7] 5.5

DirectEigvalueDecopo [7] 5.3

FastRandRF [7] 4.5

Adaptive_randRF [7] 4.2

AEORandSVD [13]
ACCURACY ENHANCED RANDOMIZED SVD

(WITH ORTHONORMALIZATION)

AERandSVD [13] ACCURACY ENHANCED RANDOMIZED SVD

BasicRandSVD [13] RSVD

FixedRank [7]
Proto-Algorithm: Solving the Fixed

-Rank Problem

randomizedLanczos [14] 5

randPI [7] 4.3

randPowerMethod [14] 4

randRF [7] 4.1

randSI [7] 4.4

RandSVD [7] Prototype for Randomized SVD

SPRandEVDH [13]
SINGLE-PASS RANDOMIZED EVD

FOR A HERMITIAN MATRIX

SPRandSVD [13]
SINGLE-PASS RANDOMIZED SVD

FOR A GENERAL MATRIX

39

Mobile User



Sub Functions:

• SRFT.m - This function proceed the subsampled random Fourier transform and produce

an n £ l matrix≠ in the form

≠=
r

n
l

DF R,

where

* D is an n £n diagonal matrix whose entries are independent random variables

uniformly distributed on the complex unit circle.

* F is the n £n unitary discrete Fourier transform, whose entries take the values

fpq = n° 1
2 e°2ºi (p°1)(q°1)/n for p, q = 1,2, ...,n.

* R is an n £ l matrix that samples l coordinates from n uniformly at random.

• SPD.m - This function randomly generates a symmetric positive defined matrix A with

dimension n £n.

• maxeig.m - This function returns the maximum absolute eigenvalue of input matrix A.

Function name For

SRFT subsampled random Fourier transform

SPD generates a random spd matrix

maxeig returns the max eigenvalue

Drivers:

• imagedriver.m - Image reconstruction using different methods of randomized SVD. This

driver produce all experiment results for experiment 4.1 Illustration of various Random-

ized SVD listed in this report.

• driver_bound.m - Analysis on error bounds of different methods of the 1st stage of ran-

domized SVD. This driver produce all experiment results for experiment 4.2 Illustration

of Error Bounds listed in this report.

40

Mobile User



To compile and run this test driver, please download the following file from GitHub:

– controlledgap.m - This function takes input: m,n as the size of desired matrix A,

r as the position of the gap and g ap for the size of the gap, and returns the testing

matrix A that contains such a gap between its singular values at the defined position.

Introduced in paper [15].

• driver_sin.m - Canonical angles for different methods of randomized SVD. This driver

produce all experiment results for experiment 4.3 Illustration of Canonical angles listed

in this report.

To compile and run this test driver, please download the following files from GitHub:

– controlledgap.m - This function takes input: m,n as the size of desired matrix A,

r as the position of the gap and g ap for the size of the gap, and returns the testing

matrix A that contains such a gap between its singular values at the defined position.

Introduced in paper [15].

– angle_bounds.m - This function takes the right singular vectors V , the starting guess

≠, the singular values s, a target rank k and the number of subspaces q , outputs both

the bounds for sin(µ(U1,Uh)) and sin(µ(V1,Vh)). Introduced in paper [15].

– subspace_angles.m - This function computes the canonical angles between two sub-

spaces U and Uh . Introduced in paper[15].

Driver file name For

imagedriver image experiment on chapter 3

driver_bound bound experiment on chapter 3

driver_sin canonical angles experiment on chapter 3

41

Mobile User

https://github.com/arvindks/randsvs/blob/master/testmatrices/controlledgap.m%20
https://github.com/arvindks/randsvs/blob/master/testmatrices/controlledgap.m%20
https://github.com/arvindks/randsvs/blob/master/core/angle_bounds.m
https://github.com/arvindks/randsvs/blob/master/core/subspace_angles.m


Driver file name For

imagedriver image experiment on chapter 3

driver_bound bound experiment on chapter 3

driver_sin canonical angles experiment on chapter 3

Data files:

• Sunflower.txt - An 804£1092 matrix converted from a photo of Kansas Sunflowers.

File name For

Sunflower matrix converted from a photo of Kansas Sunflowers

42

Mobile User



References

[1] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and

Lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.

[2] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo algorithms for

matrices II: Computing a low-rank approximation to a matrix. SIAM Journal on computing,

36(1):158–183, 2006.

[3] Petros Drineas and Michael W Mahoney. Lectures on randomized numerical linear alge-

bra. The Mathematics of Data, 25:1, 2018.

[4] Petros Drineas, Michael W. Mahoney, and Shan Muthukrishnan. Sampling algorithms for

l2 regression and applications. In Proceedings of the seventeenth annual ACM-SIAM sym-

posium on Discrete algorithm, pages 1127–1136, 2006.

[5] Petros Drineas, Michael W. Mahoney, Shan Muthukrishnan, and Tamás Sarlós. Faster least

squares approximation. Numerische Mathematik, 117(2):219–249, 2011.

[6] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with random-

ness: Stochastic algorithms for constructing approximate matrix decompositions. 2009.

[7] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with random-

ness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM

Review, 53(2):217–288, 2011.

[8] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a

Hilbert space. Contemporary Mathematics, 26(1):189–206, 1984.

43

Mobile User



[9] Ravindran Kannan and Santosh Vempala. Randomized algorithms in numerical linear al-

gebra. Acta Numerica, 26:95, 2017.

[10] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert.

Randomized algorithms for the low-rank approximation of matrices. Proceedings of the

National Academy of Sciences, 104(51):20167–20172, 2007.

[11] Michael W. Mahoney. Randomized algorithms for matrices and data. arXiv preprint

arXiv:1104.5557, 2011.

[12] Marcus. Random Hermitian Matrix Generator. MATLAB Central File Exchange, Retrieved

April 28, 2021.

[13] Per-Gunnar Martinsson. Randomized methods for matrix computations. The Mathematics

of Data, 25:187–231, 2019.

[14] Per-Gunnar Martinsson and Joel A. Tropp. Randomized numerical linear algebra: Foun-

dations & algorithms. arXiv preprint arXiv:2002.01387, 2020.

[15] Arvind K. Saibaba. Randomized subspace iteration: Analysis of canonical angles and uni-

tarily invariant norms. SIAM Journal on Matrix Analysis and Applications, 40(1):23–48,

2019.

[16] Lloyd N. Trefethen. The definition of numerical analysis. Technical report, Cornell Univer-

sity, 1992.

[17] John Von Neumann and Herman H. Goldstine. Numerical inverting of matrices of high

order. Bulletin of the American Mathematical Society, 53(11):1021–1099, 1947.

[18] David P Woodruff. Sketching as a tool for numerical linear algebra. arXiv preprint

arXiv:1411.4357, 2014.

44

Mobile User


	Introduction
	Standard Numerical Linear Algebra
	Randomized Numerical Linear Algebra

	Background/ Preliminary 
	Randomization
	Types of randomization 

	Two-Stage Approach

	Randomized Singular Value Decomposition
	General Randomized SVD Algorithm
	Complexity

	Power Iteration
	Orthonormalization
	Single Pass
	Hermitian Matrices
	General Matrices


	Numerical Experiments
	Illustration of various randomized SVD algorithms
	Algorithm 2 - General Randomized SVD Method
	Algorithm 3 - Accuracy Enhanced Randomized SVD Method
	Algorithm 4 - Accuracy Enhanced Randomized SVD with Orthonormalization

	Illustration of Error Bounds
	General Randomized SVD - Fixed Rank Problem
	Accuracy Enhanced Randomized SVD - Power Iteration
	Accuracy enhanced randomized SVD with Orthonormalization - Power Iteration

	Illustration of Canonical angles

	Conclusions
	Randomized NLA Matlab Toolbox 

