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Abstract

The objective of this thesis is to extend results to a new quadratic case in support of a collection

of existing results in adaptive control and parameter estimation of Markov chains.

In the first chapter, we introduce Markov chains and discuss some of their important properties.

This chapter will help the reader understand the characteristics of Markov chains, which will be

useful in later chapters discussing results on adaptive control of these stochastic processes. In

the second chapter, we introduce Martingales and discuss some of their important properties.

Martingales are important tools used in the methods of parameter estimation of Markov chains in

the later chapters.

In the third chapter, we focus on adaptive control of Markov chains. First, we consider con-

trolled Markov chains and some general connections with martingales, namely the Law of Large

Numbers and the Central Limit Theorem of Markov chains. Then, we introduce the adaptive

control environment with a controlled Markov chain with an unknown parameter. It is after this

that we discuss previous important results in [6],[1], and [3] on adaptive control and parameter

estimation of Markov chains. Then in the fourth chapter, we outline the processes used and results

attained in [8] for a linear case of adaptive control of Markov chains, which we then extend to a

quadratic case in the final chapter.

For the main results, we perform the process discussed in [7] for the following problem. We

consider a controlled Markov chain with a finite state space, whose transition probabilities are

assumed to depend quadratically on an unknown real parameter α. Particularly, we study the

behavior of the maximum likelihood estimate of α at each time n as n increases under an arbitrary

realizable control. We show that the results of [8] extend to the quadratic case with a few additional

assumptions. These results are that the sequence of estimates of α converge almost surely, though

not necessarily to the true parameter. We characterize those realizations for which convergence

does not lead to the true value, and suggest corrections to the control to attain convergence to the

true value. In support of previous results, we show that the maximum likelihood estimate converges

to a value α∗ indistinguishable from the true value under a control feedback law induced by α∗.
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1 An Overview of Markov Chains

1.1 Introduction

Markov chains are stochastic models describing sequences of possible events that satisfy the Markov

property:

Property 1 (Markov Property). A stochastic process that satisfies the Markov property is “memo-

ryless”, so the probability of each event only depends on the state attained from the previous event,

i.e. for a sequence of random variable {Xn}n≥0 and possible states i0, . . . , in+1,

P (Xn+1 = in+1|X0 = i0, . . . , Xn = in) = P (Xn+1 = in+1|Xn = in).

Markov chains are very useful stochastic processes due to their “memorylessness,” as all neces-

sary information for prediction is known based on the current state. Since the collection of states

can be many different things, Markov chains have been used to model things such as weather

forecasts, stock prices and GDP growth, population dynamics, and various games of chance. This

paper will focus on discrete-time Markov chains.

Definition 1. A discrete-time Markov chain is a stochastic process with a finite or countable

state space that satisfies the Markov property.

The changes of state in a Markov chain are called transitions, and the probability of these

changes of state are called transition probabilities.

Definition 2. A homogeneous Markov chain is a Markov chain wherein the transition proba-

bilities are independent of time n.

Definition 3. The one-step transition probability is the probability of going from state i at

time n to state j at time n+ 1, denoted

P (Xn+1 = j|Xn = i) = Pn,n+1
ij .

For a homogeneous Markov chain, these transition probabilities are denoted as simply Pij as

they are independent of time. These one-step transition probabilities form a transition probability
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matrix P = [Pij ] with the number of columns and number of rows equal to the number of states.

This matrix is a stochastic matrix, so the entries Pij ≥ 0 for all i, j and
∑

j Pij = 1 for all i. A

Markov chain is completely characterized by a state space, a transition probability matrix P, and

an initial state distribution across the state space.

Markov chains can be used to predict future behavior beyond the “next step”. Considering the

passage of some time n, we can make predictions on a state obtained at time m+ n based on the

current state at time m.

Definition 4. The n-step transition probability is the transition probability of going from state

i to state j in n steps, denoted by

P (Xm+n = j|Xm = i) = P
(n)
ij .

Recursively, these transition probabilities can be found by

P
(n)
ij =

∑
k

PikP
(n−1)
kj , P

(1)
ij = Pij ,

summing over all states k. The n-step transition probability matrix P(n) = Pn.

1.2 Irreducible Markov Chains

The states of a Markov chain and how they relate to one another are key characteristics in prediction

by Markov processes.

Definition 5.

(i) State j is accessible from state i if there is a positive probability that state j can be reached

from state i in a finite number of transitions, i.e. P
(n)
ij > 0 for some finite time n.

(ii) State i and state j communicate if they are each accessible from the other. This is denoted

i ∼ j.

Note, communication between states i ∼ j is an equivalence relation which yields equivalence

classes, called communicating classes. Then, we can study the communicating classes of a Markov

chain, and even focus specifically on the communicating class induced by our current state in order
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to make state predictions for a future time. This information could tell us a few useful things.

First, we could determine that a specific initial state i virtually cuts off some states as possible

future states because they are not accessible from state i. Thus, our predictions would be limited

to states that are accessible from i. Another notable case is defined below, in which a Markov chain

contains only one communicating class.

Definition 6. A Markov chain is irreducible if all states communicate.

Irreducible Markov chains let us know that at any time n, we cannot eliminate any state from

the foreseeable future of our process. If we have multiple communicating classes, there are at least

two states that do not communicate with each other. Then, being in one of these states tells us

that we will never reach the other in the future of our process.

Definition 7. A set of states C is closed if no one-step transition is possible from a state in C to

a state outside of C.

If there are no sets of states that are closed other than the set of all states, then the Markov

chain is irreducible. Consider the following example of a transition probability matrix:

Example 1. Let P be a transition probability matrix of the form

P =



A1 0 · · · 0

0 A2
. . .

...

...
. . .

. . . 0

0 · · · 0 An


,

where Ak are stochastic matrices. Then, we can determine that P and the corresponding Markov

chain are not irreducible as each Ak represents a closed set of states: no one-step transition is

possible from states described in Ak to states described in Aℓ. In this case, we say that P is

decomposable.

1.3 Classification of States

The states in a Markov chain can be further classified by the following:
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Definition 8.

(i) The period of state i, denoted d(i), is the greatest common divisor of all integers n ≥ 1

for which there is a positive probability of going from state i back to state i in n steps, i.e.

P
(n)
ii > 0.

(ii) A state i is periodic if d(i) ≥ 2.

(iii) A Markov chain is aperiodic if every state has period d(i) = 1.

Proposition 1. If i ∼ j, then d(i) = d(j).

By this proposition, we have that any communicating class has a constant period among all the

states in the class. Thus, if we know the period of one state, we know the period of all states in

that communicating class.

For the next set of definitions, we will consider the return to a state i. Let us define for n ≥ 1

the probability that, after starting in state i, the first return to state i occurs at time n as

f
(n)
ii = P (Xn = i,Xm ̸= i for m = 1, . . . , n− 1|X0 = i).

From this concept of first return, we can define the probability that a process starting in state i

returns to state i in some finite time as

fii =

∞∑
n=0

f
(n)
ii ,

where f
(0)
ii = 0.

Definition 9.

(i) A state i is recurrent if after the process begins in state i, the probability of returning to

state i in a finite number of steps is 1, i.e. fii = 1.

(ii) A state i is transient if after the process begins in state i, there is a positive probability of

never returning to state i (i.e. state i is nonrecurrent). For a transient state i, fii < 1.

Proposition 2. Suppose i ∼ j. If i is recurrent, then j is recurrent.
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Like proposition 1, this gives us information on an entire communicating class. If any state in

the communicating class is recurrent, we know that all states in the class are recurrent.

We can further classify recurrent states. To do so, let us first define the mean recurrence time

mi. Let Ri = min{n ≥ 1|Xn = i} be the first return time, and then define

mi = E[Ri|X0 = i] =

∞∑
n=1

nf
(n)
ii .

Definition 10.

(i) A recurrent state i is null if the average recurrence time is infinite, i.e. mi =

∞∑
n=1

nf
(n)
ii = ∞.

(ii) A recurrent state i is positive-recurrent if it is not a null state.

(iii) A recurrent state i is ergodic if it is neither null nor periodic.

Note, a recurrent state in a Markov chain with finite states cannot be null as the average

recurrence time will be finite. Furthermore, a Markov chain with finite states cannot contain only

transient states by the Pigeonhole principle as eventually we would run out of new states to obtain

at some finite time. If all states in a Markov chain are ergodic, then the chain is ergodic. Ergodic

implies irreducible, and we can determine that every state will be obtained at some finite time.

Definition 11. A state i is absorbing if once state i is reached, it cannot be left.

1.4 Examples of Markov Chains

Example 2. In this example, let us classify the states for a Markov chain with transition proba-

bility matrix

P =


0 1/2 1/2

1/2 0 1/2

1/2 1/2 0

 .
A diagram of this Markov chain is shown below:
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Let us classify each state in this chain:

• State A: Notice, starting in state A, we can return to state A in 2 steps (A → B → A)

and also in 3 steps (A → B → C → A). Note, gcd(2, 3) = 1, so state A has period

d(A) = 1. Also, notice A is recurrent. Therefore state A is ergodic.

• State B: Starting in state B, we can return to state B in 2 steps (B → A → B) and

in 3 steps (B → C → A → B), so state B has period d(B) = 1. Since state B is also

recurrent, state B is ergodic.

• State C: Starting in state C, we can return to state C in 2 steps and in 3 steps, so state

C has period d(C) = 1. Since state C is also recurrent, state C is ergodic.

Note A is accessible from B and C, B is accessible from A and C, and C is accessible from

A and B. Then we know

A ∼ B, A ∼ C, B ∼ C.

Then alternatively, since A,B,C are in the same communicating class, after determining

state A had period d(A) = 1 and was recurrent we could conclude that states B and C also

had period 1 and were recurrent. Also, since every state communicates, our Markov chain is

irreducible. Since every state has period 1, our Markov chain is aperiodic.

Example 3. In this example, let us classify the states for a Markov chain with transition proba-

bility matrix

6



P =



1/3 0 1/3 0 0 1/3

1/2 1/4 1/4 0 0 0

0 0 0 0 1 0

1/4 1/4 1/4 0 0 1/4

0 0 1 0 0 0

0 0 0 0 0 1


.

A diagram of this Markov chain is shown below:

Classification of states:

• State A has period d(A) = 1 as we have the possible path A → A, and state A is

transient as the paths through state C and state F will never return to A.

• State B has period d(B) = 1 and is transient as the paths through state A and state C

with never return to B.

• State C has period d(C) = 2 as the only paths from state C to state C are of the form

C → E → C → . . .→ E → C. State C is recurrent.
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• State D has period d(D) = 0 and is transient as no path from state D will ever return.

• State E has period d(E) = 2 and is recurrent as E ∼ C.

• State F has period d(F ) = 1 and is recurrent, so state F is ergodic. Notice that state F

is also absorbing as nothing can leave state F .

Lastly, notice {C,E} form a closed set as after state C is attained, only states E and C are

attainable in the future.

Example 4. For this example, let us create a model for fall weather in Lawrence, Kansas. Define

our state space as {A = “sunny”, B = “cloudy”, C = “stormy”}. Say given a sunny day, the

probability the next day is also sunny is 2
3 , the probability the next day is cloudy is 2

9 , and

the probability the next day is stormy is 1
9 . On a cloudy day, say the probability the next

day is sunny is 1
4 , the probability the next day is cloudy is 3

8 , and the probability the next

day is stormy is 3
8 . On a stormy day, say the probability the next day is sunny is 2

5 and the

probability the next day is stormy is 3
5 . Now we have the transition probability matrix

P =


2/3 2/9 1/9

1/4 3/8 3/8

2/5 0 3/5

 .

A diagram of this Markov chain is shown below:

Classification of states:

• State A has period d(A) = 1 and is recurrent. Therefore state A is ergodic.

8



• State B has period d(B) = 1 and is recurrent as A ∼ B. Therefore state B is ergodic.

• State C has period d(C) = 1 and is recurrent as A ∼ C. Therefore state C is ergodic.

Note, since every state communicates, our Markov chain is irreducible. Since every state has

period 1, our Markov chain is aperiodic.

These classifications make sense considering the natural weather transitions we can observe:

sunny, cloudy, and stormy weather are recurrent, can occur multiple days in a row (period

1), and each state sunny, cloudy, and stormy is accessible from every other state.

1.5 Long Run Behavior of Markov Chains

An important consideration of any system is its long run behavior. In this section, we will consider

the long run behavior of Markov chains.

Definition 12. Let P be a transition probability matrix on a finite number of states 1, . . . , N . P

is regular if there exists a positive integer k such that Pk has all positive entries, i.e. P
(k)
ij > 0 for

all i, j.

A Markov chain with a regular transition probability matrix is also said to be regular. Regular

Markov chains possess a limiting probability distribution π = (π1, π2, . . . , πN ), where πj > 0 for all

j and
∑

j πj = 1:

lim
n→∞

P (Xn = j|X0 = i) = πj > 0

for all j = 1, . . . , N . Note, this distribution is independent of the initial state. Then we can

conclude that in the long run, the probability of the Markov chain being in state j is almost surely

πj , independent of our initial state at time 0.

We can find the limiting distribution πj from the system of N linear equations

πj =
N∑
i=1

πiPij

for j = 1, . . . , N where
∑

j πj = 1.

Let us denote the matrix of limiting distributions (π1, . . . , πN ) corresponding to a regular
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Markov chain as

Π =


π1 · · · πN
...

...

π1 · · · πN

 .
Proposition 3. For a regular transition probability matrix P and limiting distributions matrix Π,

we have

lim
n→∞

Pn = Π.

Define matrix T such that for transition probability matrix P and limiting distributions matrix

Π

P = Π+ T.

Proposition 4. For transition probability matrix P, limiting distributions matrix Π, and matrix

T s.t. P = Π+ T ,

Pn = Π+ Tn.

Example 5. Consider state space {1, 2} and transition probability matrix

P =

1/2 1/2

2/5 3/5

 .
Note P(1) has all positive entries, so P is regular. Let us find the limiting distributions. We have

the system 
π1 =

1
2π1 +

2
5π2

π2 =
1
2π1 +

3
5π2

10



Then, since π1 + π2 = 1, we have π1 = 1− π2. Notice by substituting, we have

π1 = 1− π2 =⇒ π2 =
1

2
(1− π2) +

3

5
π2

=⇒ π2 =
1

2
− 1

2
π2 +

3

5
π2

=⇒ 3

2
π2 −

3

5
π2 =

1

2

=⇒ 9

10
π2 =

1

2

=⇒ π2 =
5

9
.

Then π2 =
5

9
=⇒ π1 = 1− 5

9
=

4

9
. Thus, in the long run we have the probability of this Markov

chain being in state 1 is 4/9, and the probability of this Markov chain being in state 2 is 5/9.

1.6 Markov Chains with Returns

Now consider a Markov chain with state space {1, . . . , N} in which a return is gained for transi-

tioning from state i to state j. Denote this return rij , and let us define the return matrix

R = [rij ]

for i = 1, . . . , N and j = 1, . . . , N .

Now, just as we were interested in predicting what state a Markov chain would have attained

after some time n, if our Markov chain yields returns after each transition we might also be interested

in predicting the accumulated returns after time n. Let vi(n) be the expected return after n-steps,

assuming the Markov chain is in state i at time t = 0. Let

qi =
N∑
j=1

pij · rij ,

which represents the expected return after one step. Then for i = 1, . . . , N ,

vi(n) =
N∑
j=1

[
pij
(
rij + vj(n− 1)

)]
= qi +

N∑
j=1

pij · vj(n− 1),

and Vi(0) = 0. In vector form, we have v(n) = q+ Pv(n− 1).
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Proposition 5. For probability transition matrix P, limiting distributions matrix Π, and matrix

T s.t. P = Π+ T , we have that

v(n) = nΠq+ (I − T )−1(I − Tn)q.

Note, by propositions 3 and 4,

lim
n→∞

Pn = Π =⇒ lim
n→∞

(Π + Tn) = Π =⇒ lim
n→∞

Tn = 0.

Then for large n we have

v(n) = nΠq+ v

where v = (I − T )−1q. Now, notice

lim
n→∞

1

n
v(n) = lim

n→∞

1

n
(nΠq+ v) = lim

n→∞

(
Πq+

1

n
v

)
= Πq.

Let g = Πq. If P is regular, then the rows of Π are the same, and gi = gj for all i, j ∈ {1, . . . , N}.

Thus, let us define

g =

N∑
i=1

πigi.

We say that g is the value of the game on the Markov chain with transition probability matrix P

and return matrix R.

2 An Overview of Martingales

2.1 Introduction

Martingales are stochastic processes in which the conditional expectation of the next value in the

process is the current value, regardless of past values.

Definition 13. A discrete-time martingale is a stochastic process {Xn}n≥0 in which for any

time n,

E(Xn+1|X0, X1, . . . , Xn) = Xn.

12



Similarly to Markov chains, martingales are useful stochastic processes as information about

the past is not useful for predicting the future of the process. For this reason, martingales are

used to model “fair” games as ones future success in the game does not depend on past success

or failures. Discrete-time martingales are also used in biodiversity and biogeography to model the

number of individuals of a particular species of a fixed size at any given time.

2.2 Examples of Martingales

Example 6. An unbiased random walk, a stochastic process that describes a path of successive

random steps on some space, is a martingale. For a simple example, consider a walk on Z

starting at 0, where each step either contributes +1 or −1 to the position. For this walk to

be unbiased, each step has an equal probability (p = 0.5) to move +1 or −1. Say at time n,

our position Xn = a. Then notice

E(Xn+1|Xn = a) = 0.5(a+ 1) + 0.5(a− 1) = 0.5a+ 0.5 + 0.5a− 0.5 = a = Xn.

Thus, our unbiased random walk is a martingale.

Example 7. A gambler’s fortune is a martingale if all the betting games the gambler plays are

fair. Let Xn be a gambler’s fortune after n tosses of a fair coin, i.e. p = 0.5 a toss comes up

heads, p = 0.5 a toss comes up tails. Suppose the gambler wins $5 if the coin comes up heads

and loses $5 if it comes up tails. Then, notice

E(Xn+1|Xn) = 0.5(Xn + 5) + 0.5(Xn − 5) = 0.5Xn + 0.25 + 0.5Xn − 0.25 = Xn.

Thus the gambler’s fortune is a martingale for fair betting games. As in example 6, the

symmetry of the “unbiased” and “fair” assumptions yields our desired martingale result.

Example 8. Pólya’s urn is a statistical model in which we have an urn containing a number of

different colored marbles, and each iteration involves drawing a random marble, noting the

color, and returning the marble along with k more marbles of the same color. For a given

color, the fraction of marbles of said color in the urn is a martingale.

Suppose on the n-th iteration, there are 75 green marbles and 25 non-green marbles in the

13



urn. Let k = 5, so whichever color marble is drawn next, 5 more marbles of that same color

will be added to the urn. So, we have Xn = 75/100 = 0.75 in respect to he number of green

marbles, and

E(Xn+1|Xn = 75/100) = (75/100)(80/105) + (25/100)(75/105)

= 60/105 + 74/420

= 0.75

= Xn.

Thus, the fraction of green marbles in the urn is a martingale.

2.3 Submartingales and Supermartingales

A few generalizations of the martingale concept are submartingales and supermartingales. In these

cases, future prediction still does not depend on the past of the process, however the conditional

expectation of the next value is not necessarily the current value. Rather, the current value gives

an upper or lower bound of the expected next value.

Definition 14. A discrete-time submartingale is a stochastic process {Xn}n≥0 in which for

any time n,

E(Xn+1|X0, X1, . . . , Xn) ≥ Xn.

Definition 15. A discrete-time supermartingale is a stochastic process {Xn}n≥0 in which for

any time n,

E(Xn+1|X0, X1, . . . , Xn) ≤ Xn.

Following are a few notable propositions pertaining to submartingales and supermartingales:

Proposition 6. If {Xn}n≥0 is a submartingale, then {−Xn}n≥0 is a supermartingale. Similarly,

if {Xn}n≥0 is a supermartingale, then {−Xn}n≥0 is a submartingale.

Proposition 7.

(i) If {Xn}n≥0 is a martingale, then the sequence {E(Xn)}n≥0 is constant.
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(ii) If {Xn}n≥0 is a submartingale, then the sequence {E(Xn)}n≥0 is increasing.

(iii) If {Xn}n≥0 is a supermartingale, then the sequence {E(Xn)}n≥0 is increasing.

Proposition 8. Suppose {Xn}n≥0 is a martingale.

(i) If f is a convex function, then {f(Xn)}n≥0 is a submartingale.

(ii) If f is a concave function, then {f(Xn)}n≥0 is a supermartingale.

Particularly, if {Xn}n≥0 is a martingale, {|Xn|}n≥0 and {X2
n}n≥0 are positive submartingales.

The inequalities in the next section utilize these submartingales.

Proposition 9. Suppose {Xn}n≥0 is a submartingale. Then for all n,

E(Xn+1) ≥ E(Xn).

2.4 Martingale Convergence Theorem

Among all stochastic processes, an important consideration is whether a process will converge. This

gives strong prediction information for the future of the process. Before presenting the Martingale

Convergence Theorem, we will define different types of convergence of random variables.

Definition 16. Let Xn, n ≥ 0 and X be random variables.

(i) We say that Xn converges in probability to X, Xn
P−→ X, if ∀ ε > 0

lim
n→∞

P (|Xn −X| ≥ ε) = 0.

(ii) We say that Xn converges almost surely to X, Xn
a.s.−−→ X, if ∀ ε

lim
N→∞

P (|Xn −X| < ε ∀n ≥ N) = 1.

It it also useful to note that almost sure convergence Xn
a.s.−−→ X implies convergence in proba-

bility Xn
P−→ X.

Before stating the Martingale Convergence Theorem, the following inequalities are also pertinent

in its proof.
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Proposition 10 (Schwartz’s Inequality). Let X,Y be random variables s.t. E
(
|X|2

)
< ∞ and

E
(
|Y |2

)
<∞. Then

E
(
|XY |

)
≤ E

(
|X|2

)1/2 · E(|Y |2
)1/2

.

Proposition 11 (Doob-Kolmogorov Martingale Inequality). If {Xn}n≥0 is a martingale and E
(
X2

n

)
<

∞ for all n, then

P (max{X0, X1, . . . , Xn} ≥ ϵ) ≤
E
(
X2

n

)
ϵ2

.

Theorem 1 (Martingale Convergence Theorem). If {Xn}n≥0 is a martingale and ∃M < ∞ s.t.

E(|Xn|) ≤M for all n, then there exists a random variable X s.t.

Xn
a.s.−−→ X.

2.5 Law of Large Numbers and Central Limit Theorem for Martingales

For the strong law of large numbers for martingales, let {Xn}n≥0 be a sequence of random variables

such that, with probability 1,

E(X0) = 0, E(Xn+1|X0, X1, . . . , Xn) = 0.

Let Sn = X0 + . . .+Xn. The sequence {Sn}n≥0 forms a martingale:

E(Sn+1|S0, . . . , Sn) = Sn.

Theorem 2 (Strong Law of Large Numbers for Martingales). Let {Xn}n≥0 be a sequence of random

variables s.t. E(X0) = 0 and E(Xn+1|X0, X1, . . . , Xn) = 0. Let Sn = X0+. . .+Xn. If

∞∑
n=1

X2
n

n2
<∞,

then

Sn
n

a.s.−−→ 0.

Theorem 3 (Central Limit Theorem for Martingales). Let {Xn}n≥0 be a martingale and suppose

E(Xn+1 −Xn|X0, . . . , Xn) = 0, |Xn+1 −Xn| ≤ k
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with probability 1 for some fixed k and for all n. Suppose |X0| ≤ k with probability 1. Define

σ2n = E
(
(Xn+1 −Xn)

2|X0, . . . , Xn

)
and let τν = min

{
n :

n∑
i=0

σ2i ≥ ν

}
. Then as ν → ∞

Xτν√
ν

D−→ X ∼ N(0, 1).

These two theorems will be revisited in a connection to controlled Markov chains.

3 An Overview of Adaptive Control of Markov Chains

3.1 Introduction to Controlled Markov Chains

Markov chains are desirable stochastic processes because it is not necessary to store past information

to make predictions. However, the trajectory of the chain might not naturally lead to the desired

state. This is where control theory comes into play: introducing control actions to the process

ideally allows us to steer the chain in our desired direction.

In this paper, we are interested in a finite controlled Markov chain. The model is as follows:

Let the sequence of random variables {Xn}n≥0 be the state variables from a finite state space I.

Let the sequence of random variables {un}n≥0 be the control actions, defined as functions of the

state variables s.t.

U(Xn) = un.

Then the transition probabilities of this controlled Markov chain are of the form

P (Xn+1 = j|Xn = i) = p(i, j;un), j ∈ I

where at time n, Xn is observed as state i ∈ I, and based on this information un is selected as the

control action from a prespecified set U .

In [4], Kumar and Varaiya have presented a simple example of a controlled Markov chain. I will

present a similar example, which also demonstrates the usefulness of controlled Markov chains.

Example 9. Consider a system whose condition at time n, which is described as the state Xn,

can take the values 1 or 2 such that Xn = 1 or Xn = 2 depending on whether the system is in an

operational condition or a failed condition. Without control actions, the behavior of this system
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is autonomous. Suppose the system is operational at time n (Xn = 1) and it has probability p of

staying operational at the next time (Xn+1 = 1) and probability 1 − p of failing at the next time

(Xn+1 = 2). Suppose p only depends on the current state at time n. Lastly, let us say once the

system has failed, it remains failed, so if Xn = 2, then Xn+1 = 2 with probability 1.

Note, {Xn}n≥0 is a Markov chain with transition probability matrix

P =

p 1− p

0 1

 .
Let us introduce two control actions, u1n and u2n. Let u

1
n denote the intensity of usage of the system

at time n, taking values 0 for not used, 1 for lightly used, and 2 for heavily used. We will say that

the higher intensity of usage, the more likely the system is to fail. Let u2n denote the intensity of

maintenance performed on the system, taking values 0 for low amounts of maintenance and 1 for

high amounts of maintenance. The more maintenance performed on the system, the less likely the

system is to fail. Let un = (u1n, u
2
n). Now we have the controlled transition probabilities

P (Xn+1 = 1|Xn = 1, Xn−1, . . . ;un, un−1, . . .) = p1(u
1
n)− p2(u

2
n)

P (Xn+1 = 2|Xn = 1, Xn−1, . . . ;un, un−1, . . .) = 1− [p1(u
1
n)− p2(u

2
n)]

P (Xn+1 = 1|Xn = 2, Xn−1, . . . ;un, un−1, . . .) = p2(u
2
n)

P (Xn+1 = 2|Xn = 2, Xn−1, . . . ;un, un−1, . . .) = 1− p2(u
2
n).

In matrix form,

P(u) =

p1(u1n)− p2(u
2
n) 1− [p1(u

1
n)− p2(u

2
n)]

p2(u
2
n) 1− p2(u

2
n)

 .
Now, with controlled Markov chains, the current state is observed, and we choose a control action

based upon this observation. We do so by a control feedback law taking in the observation and

putting out the best control choice, say ϕ(Xn) = un. Let us say ϕ(1) = (2, 0) and ϕ(2) = (0, 1).
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Then we have the transition probability matrix

Pϕ =

p1(2)− p2(0) 1− [p1(2)− p2(0)]

p2(1) 1− p2(1)

 .
From this, we can see that changing the feedback law, i.e. changing the amount of usage of the

system and maintenance on the system, we can affect the probability of the system remaining

operational or failing.

3.2 Controlled Markov Chains and Martingales

In [5], Mandl describes some results of the reward of the controlled Markov chain from theory on

martingales. The reward of the previously described chain up to time N is given by

CN =
∑
n=0

c(i, j;un).

Mandl then sets out to construct a martingale as a basis on which the Law of Large Numbers and

Central Limit Theorem of controlled Markov chains can be derived.

To construct the martingale, Mandl defines Θ a real number, wi, wj auxiliary constants, and

φ(i, un) =
∑
j

p(i, j;un)
[
c(i, j;un) + wj

]
− wi −Θ.

Then Mandl sets

Yn = c(i, j;un)−Θ+ wj − wi − φ(i, un) =⇒ E(Yn|X0, . . . , Xn) = 0,

and

BN =

N−1∑
n=0

Yn

is a martingale with respect to {X0, . . . , XN}.

The Strong Law of Large Numbers for martingales (section 2.5, theorem 2) yields

lim
N→∞

BN

N
= 0 a.s.
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To obtain the Law of Large Numbers for controlled Markov chains, one last property is required.

Property 2. The states i ∈ I that are recurrent for a Markov chain with transition matrix

[p(i, j;U(i))], i, j ∈ I form only one irreducible set.

Then we can find constants Θ, wi s.t. φ(i, U(i)) = 0 for i ∈ I.

Theorem 4 (Law of Large Numbers for Controlled Markov Chains). Suppose φ(i, U(i)) = 0 for

i ∈ I. If

lim
n→∞

un − U(Xn) = 0 a.s.,

then

lim
N→∞

CN

N
= Θ a.s.

From this theorem, we also have

lim
N→∞

1

N

N−1∑
n=0

c2(Xn, un) = σ2,

where

c2(i, un) =
∑
j

p(i, j;un)
[
c(i, j;un)−Θ+ wj − wi

]2
i, j ∈ I

and σ2 is attainable with auxiliary constants w2i, i ∈ I.

Then with regard to the martingale BN , the following theorem is obtained.

Theorem 5 (Central Limit Theorem for Controlled Markov Chains). Suppose σ2 > 0, φ(i, U(i)) =

0 for i ∈ I, and

∑
j

p(i, j;U(i))
[
(c(i, j;U(i))−Θ)2 + 2

(
c(i, j;U(i))−Θ

)
wj + w′

2j

]
− w′

2i − σ2 = 0,

where w′
2i = w2i + w2

i for i ∈ I. If

lim
n→∞

un − U(Xn) = 0 a.s.,

then for N → ∞
CN −NΘ

σ
√
N

∼ N(0, 1).
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3.3 Adaptive Control of Markov Chains

In a perfect world, all parameters of a Markov chain would be known in order to choose the best

control at each step. However, in many cases the behavior of a Markov chain depends on some

unknown parameters, so the controls are adjusted based on estimates of the unknown parameters

from observations of the process at time n.

In the paper [6], Mandl considered a controlled Markov chain {Xn}n≥0, taking values in a finite

set I with transition probabilities that depend upon the control actions un at time n and parameter

α:

P (Xn+1 = j|Xn = i) = p(i, j;un, α).

At each time n, Xn is observed, and un is selected based on Xn. The parameter α has the constant

true value α◦, which is unknown.

Mandl constructs the adaptive control law based upon maximum likelihood estimation of the

unknown parameter. The maximum likelihood estimate at time n is denoted αn.

For the main result, Mandl establishes the following assumptions:

(A1) For i, j ∈ I either

p(i, j;u, α) > 0 ∀u, α or p(i, j;u, α) = 0 ∀u, α.

(A2) Identifiability Condition: For each α ̸= α′, there exists i ∈ I so that

[p(i, 1;u, α), . . . , p(i, I;u, α)] ̸= [p(i, 1;u, α′), . . . , p(i, I;u, α′)],

for all u ∈ U .

The identifiability condition is very strict, but allows Mandl to achieve the following desired

result:

Theorem 6 (Mandl). Let (A1), (A2) hold. Then as n→ ∞,

αn
a.s.−−→ α◦.
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In other words, the Identifiability Condition yielded the result that the sequence of maximum

likelihood estimates αn would converge almost surely to the true parameter α◦. This is a best-case

scenario, however the Identifiability Condition has been argued to be impractical. Counterexamples

to this condition are given in [1] and [3].

3.3.1 Finite Parameter Set

In [1], Borkar and Varaiya wish to consider the same controlled Markov chain as Mandl, but without

the strict Identifiability Condition. They similarly consider the controlled Markov chain {Xn}n≥0,

taking values in a finite set I with transition probabilities that depend upon the control actions un

at time n and parameter α:

P (Xn+1 = j|Xn = i) = p(i, j;un, α).

The parameter α has the constant true value α◦, which is unknown.

Borkar and Varaiya also construct the adaptive control law from maximum likelihood estimation

of the unknown parameter. The maximum likelihood estimate αn is then used in selecting the

control action un = ϕ(αn, Xn), where ϕ(α, ·) is a stationary control law, and the corresponding

likelihood functions Ln(α) at time n are noted to be positive martingales. Their main objective is

to analyze the asymptotic behavior of αn and un, and specifically when the identifiability condition

proposed by Mandl may not hold.

For their main results, Borkar and Varaiya assume that α◦, the true parameter, is known to

belong to a finite parameter set A. There are two further assumptions:

(A3) There exists ε > 0 s.t. for every i, j, either

p(i, j;u, α) > ε ∀u, α or p(i, j;u, α) = 0 ∀u, α.

(A4) For every i, j there is a sequence i1, . . . , ir s.t. ∀u, α,

p(is−1, js;u, α) > 0, s = 1, . . . , r,
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where i0 = i, ir+1 = j.

Note, (A3) is adapted from (A1) in [6]. (A4) guarantees that the Markov chain generated from

transition probabilities p(i, j;ϕ(α, i), i) has a single recurrent class, which is a necessary assumption

for identification.

The main result Borkar and Varaiya achieved in this paper is stated in the following theorem:

Theorem 7 (Borkar-Varaiya). There is a set W of zero measure, a random variable α∗ ∈ A, and

a finite random time N s.t. for ω /∈W , n ≥ N(ω),

αn(ω) = α∗(ω), un(ω) = ϕ(α∗(ω), Xn(ω)),

p((i, j;ϕ(α∗(ω), i), α∗(ω)) = p(i, j;ϕ(α∗(ω), i), α◦),

for all i, j ∈ I.

Written more generally, they determined αn converges almost surely to a random variable α∗

s.t.

p(i, j;ϕ(α∗, i), α∗) = p(i, j;ϕ(α∗, i), α◦), ∀ i, j.

Thus, asymptotically, the transition probabilities of their adaptive control system are the same

whether the parameter is α∗ or the true α◦, meaning the two parameters are indistinguishable.

3.3.2 Compact Parameter Set

Now in [3], Kumar’s main objective is to make Borkar and Varaiya’s assumption of a finite parameter

set more general, while still considering when Mandl’s identifiability condition may not hold. To

do this, Kumar considers a compact parameter set.

Kumar considers the same controlled Markov chain {Xn}n≥0 with transition probabilities

p(i, j;un, α) that depend upon the control actions un and parameter α. The parameter α has

the unknown true value α◦. Kumar assumes that α◦ belongs to a compact parameter set A instead

of the finite set assumed by Borkar and Varaiya.

Similarly to Borkar and Varaiya, at each time n Kumar takes maximum likelihood estimate αn

of parameter α◦, then applies the control action un = ϕ(αn, Xn).

For the main results, Kumar establishes the following assumptions:
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(A5) The transition probabilities p(·, ·; ·, ·) and the control law ϕ(·, ·) are continuous.

(A6) For every i, j, either

p(i, j;u, α) > 0 ∀u, α, or p(i, j;u, α) = 0 ∀u, α.

(A7) For every i, j, there exists a sequence i = i0, i1, . . . , ir = j s.t.

p(is−1, is;us, α) > 0 ∀s = 1, . . . , r.

Note, (A6) mimics (A1) from [6] and (A3) from [1], and (A7) mimics (A4) from [1].

The main results Kumar achieved in this paper is stated in the following theorem:

Theorem 8 (Kumar). There exists a null set W , P (W ) = 0 s.t. if for some ω ∈ W c the control

converges to ψ, then

p(i, j;ψ(i), α∗) = p(i, j;ψ(i), α◦)

for all i, j and every limit point α∗ of {αn}n≥0.

As an important consequence, if limn→∞ αn(ω) = α∗, then

p(i, j;ϕ(α∗, i), α∗) = p(i, j;ϕ(α∗, i), α◦) ∀i, j.

Thus, if the parameter estimates do converge, or more generally if only the control laws converge

to some feedback law ψ, then under ψ the transition probabilities corresponding to any limit point

of {αn} are the true transitions probabilities (corresponding to α◦).

4 Parameter Estimation in a Linear Case

In this paper, we will extend the results in [8] from a linear case to a quadratic case. Before

extending to the quadratic case, however, this section will survey Sagalovsky’s results and methods

in the linear case.

In [8], the main objective is to build upon Borkar and Varaiya’s consideration when Mandl’s

Identifiability Condition may not hold. To start, Sagalovsky establishes the same setup as Borkar
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and Varaiya in [1]. So, Sagalovsky considers the controlled Markov chain {Xn}n≥0 taking values

in a finite set I with transition probabilities that depend upon the control actions un selected at

time n based on previous observations and parameter α:

P (Xn+1 = j|Xn = i;un, α) = p(i, j;un, α).

Again, the parameter α has the true value α◦, which is unknown.

Then, Sagalovsky considers a model where the transition probabilities depend linearly on α:

p(i, j;un, α) = a(i, j;un)α+ b(i, j;un),

where a, b are known real functions. Assuming α◦ belongs to a bounded interval A = (α, α),

Sagalovsky also estimates the unknown parameter by its maximum likelihood estimate αn. To do

so, the likelihood of a given α at time n is defined as

P (X0, . . . , Xn|X0, α) =
n−1∏
m=0

p(Xm, Xm+1;um, α)

and the log-likelihood as

Ln(α) =

n−1∑
m=0

log p(Xm, Xm+1;um, α) =

n−1∑
m=0

log
[
a(Xm, Xm+1;um)α+ b(Xm, Xm+1;um)

]
.

Let am = a(Xm, Xm+1;um) and bm = b(Xm, Xm+1;um), so we have the simpler log-likelihood

function

Ln(α) =

n−1∑
m=0

log
[
amα+ bm

]
.

Let ajm = a(Xm, j;um) and bjm = b(Xm, j;um). Then, Sagalovsky defines the maximum likelihood

estimate (MLE) αn at time n to be the element of A (the closure of A) s.t. Ln(αn) ≥ Ln(α)

∀α ∈ A. The MLE is found over the closure of A to ensure such an αn exists.
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Note

L′
n(α) =

n−1∑
m=0

am
amα+ bm

L′′
n(α) = −

n−1∑
m=0

(
am

amα+ bm

)2

≤ 0.

Since the second derivative is nonpositive, there exists at least one α̂n maximizing Ln(α) for α ∈ A.

This α̂n is unique if ∃m < n s.t. am ̸= 0. In what follows Sagalovsky assumes this m exists, so α̂n

is called αn as it is unique.

To find the maximizing αn, Sagalovsky considers the sign of L′
n(α).

For the main results, Sagalovsky establishes the following assumptions:

(A8) ∀i, j, either

p(i, j;u, α) ≥ ϵ > 0 ∀u, α or p(i, j;u, α) = 0 ∀u, α.

(A9) un = ϕ(αn, xn) and a(i, j;ϕ(α, i)) are continuous in α for every i, j.

(A10) For every i, j, there exists a sequence i = i0, i1, . . . , ir, ir+1 = j s.t.

p(is−1, is;us, α) > 0 ∀s = 1, . . . , r + 1.

Notice again the similarities between (A8) and (A1) [6], (A3) [1], (A6) [3], and between (A10)

and (A4) [1], (A7) [3].

Sagalovsky achieved the following important result:

Theorem 9 (Sagalovsky). Under (A8), except for a P -null set of realizations, if the sequence {αn}

of MLE’s has an accumulation point α∗ ̸= 0, then

∞∑
m=0

∑
j∈I

aj
2

m

 <∞.

This implies ajm → 0 for each j = 1, . . . , I. Sagalovsky notes that this gives the intuitive

feeling that, for αn not to converge to the true value, the transitions should give increasingly less
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information on α as n grows as the term a(i, j;u) is the term that relates to α.

Theorem 10 (Sagalovsky). Under (A8), for all realizations not in a P -null set,

αn → α∗ as n→ ∞.

So under (A8), {αn} converges almost surely, though not necessarily to the true parameter α◦.

Lastly, under (A8)-(A10), Sagalovsky states that if {αn} has an accumulation point α∗, then

p(i, j;ϕ(α∗, i), α∗) = p(i, j;ϕ(α∗, i), α◦) ∀i, j.

Thus, asymptotically, the transition probabilities of this adaptive control system are the same

whether the parameter is α∗ or the true α◦, meaning the two parameters are indistinguishable

(similar to Borkar and Varaiya).

Sagalovsky also explains that the above result with the case that {αn} does not converge to the

true parameter actually yields a rule to modify the control law ϕ as to guarantee convergence to

the true parameter α◦: if necessary, modify ϕ(αn, Xn) so that

∞∑
m=0

∑
j∈I

aj
2

m

 = ∞.

5 Extension to a Quadratic Case

In [7], Pasik-Duncan extends Sagalovsky’s results in the linear case to a two-dimensional linear case,

and leaves the extension (using similar methods) to the quadratic case to the reader. In this paper,

the objective is to present these methods to extend the results in the last section to a quadratic

case.

5.1 Model

We consider a Markov chain {Xn}n≥0 which takes values from a finite state space I = {1, 2, . . . , I}.

The transition probabilities P (Xn+1 = j|Xn = i) are assumed to depend on an unknown real

parameter α. These transition probabilities are also affected by the control action un selected at

27



time n based on the previous observations on the direction of the chain. Denote

P (Xn+1 = j|Xn = i;un, α) = p(i, j;un, α).

Suppose parameter α has the unknown true constant value α◦. The specific model we will consider

in this section is quadratic, where the transition probabilities depend quadratically on α, i.e.

p(i, j;un, α) = a(i, j;un)α
2 + b(i, j;un)α+ c(i, j;un), (1)

where a(·, ·; ·), b(·, ·; ·), c(·, ·; ·) are known real functions.

The control un only depends on the procession of the chain from time 0 up to and including the

current state. It is assumed this procession is observed exactly, so defining the σ-algebra generated

by X0, X1, . . . , Xm

Fm = σ{X0, X1, . . . , Xm}

allows un to be Fm-measurable for m = 0, 1, . . .. We will write f ∈ Fm to denote Fm-measurability

of a given function f .

Recall, the true value α◦ for parameter α is unknown. However, we assume it is known that α◦

belongs to an interval J with endpoints α < α. For simplicity, assume α◦ = 0, and α < −1 and

α > 1, that way −1, 1 ∈ J .

We want to control the procession of the chain with our choices of controls un. To choose

the best control un at time n, we need to estimate α◦. As in the preceding papers discussed in

the previous sections, we will estimate α◦ using maximum likelihood estimation. We define the

likelihood of a given α at time n as

P (X0, X1, . . . , Xn|X0;u0, u1, . . . , un−1, α) =

n−1∏
m=0

p(Xm, Xm+1;um, α)
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and the log-likelihood

Ln(α) =
n−1∑
m=0

log p(Xm, Xm+1;um, α)

=

n−1∑
m=0

log
[
a(Xm, Xm+1;um)α2 + b(Xm, Xm+1;um)α+ c(Xm, Xm+1;um)

]
,

α ∈ J . Let am = a(Xm, Xm+1;um), bm = b(Xm, Xm+1;um), and cm = c(Xm, Xm+1;um). Further,

let ajm = a(Xm, j;um), bjm = b(Xm, j;um), and cjm = c(Xm, j;um). Note am, bm, cm ∈ Fm+1 and

ajm, b
j
m, c

j
m ∈ Fm for j = 1, . . . , I. Now we have the simpler log-likelihood function

Ln(α) =

n−1∑
m=0

log
[
amα

2 + bmα+ cm
]
,

α ∈ J . Now, we will define the maximum likelihood estimate (MLE) of α◦ at time n as αn, the

element in J s.t.

Ln(αn) ≥ Ln(α) ∀α ∈ J.

Since we defined the MLE over the closure of J , J , we can guarantee the existence of at least one

such MLE. If there is more than one element that satisfies our maximum likelihood criteria, we can

choose αn to be the smallest such element.

5.2 Assumptions and Formulation

In this section, we will outline the assumptions and their contributions used to achieve our conver-

gence results. Recall for the transition probabilities of a Markov chain we have

I∑
j=1

p(i, j;u, α) = 1 ∀α, u.

Then from our defined model (1), it follows that

I∑
j=1

a(i, j;u) = 0,

I∑
j=1

b(i, j;u) = 0,

I∑
j=1

c(i, j;u) = 1 ∀ i, u. (2)
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Further, since 0 ≤ p(i, j;u, α) ≤ 1 ∀ i, j, u, α, and α can take on the values −1, 1, we have that

0 ≤ |a(i, j;u)| ≤ c(i, j;u) ≤ 1, 0 ≤ |b(i, j;u)| ≤ c(i, j;u) ≤ 1, (3)

0 ≤ |a(i, j;u)− b(i, j, u)| ≤ c(i, j;u) ≤ 1 (4)

∀ i, j ∈ I and ∀u.

We will now make the following assumption also employed in [6], [1], [3], and [8].

(A11) For all i, j ∈ I, either

p(i, j;u, α) = 0 ∀u, α or p(i, j;u, α) ≥ K > 0 ∀u, α.

This assumption allows us to determine topology of the chain, which should be known and should

not be altered by the choice of control u. The only other true restriction is the uniform lower bound

provided by K.

We will not consider the P -null set of realizations where transitions with 0 probability occur.

Hence, under (A11), Ln(α) is infinitely differentiable in α and we can compute

L′
n(α) =

n−1∑
m=0

2amα+ bm
amα2 + bmα+ cm

, (5)

L′′
n(α) = −

n−1∑
m=0

2a2mα
2 + 2ambmα+ b2m − 2amcm
(amα2 + bmα+ cm)2

. (6)

To ensure that the likelihood function Ln(α) achieves its maximum and its second derivative is a

nonpositive function, let us make the following assumptions:

(A12) For all m, either

am, bm ≥ 0 or am, bm ≤ 0.

(A13) For all m,

am · cm < 0.

From (6), it follows that there exists at least one α̂n maximizing Ln(α) for α ∈ J and that this

α̂n is unique if ∃m < n s.t. am ̸= 0, bm ̸= 0, and cm ̸= 0. It could be the case for some realization
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am = bm = cm = 0 for all m. Then Lm(α) would be constant in α and we would take αm = α

for all m. In this case the results we claim in this section will hold. For this reason we consider in

what follows that ∃m s.t. am ̸= 0, bm ̸= 0, and cm ̸= 0 and that n is larger than this m.

To find the maximizing α̂n, we will consider the sign of L′
n(α). Define for m = 0, 1, . . .

Dm(α) =
2amα+ bm

amα2 + bmα+ cm
(7)

and note

L′
n(α) =

n−1∑
m=0

Dm(α), and Dm(α) ∈ Fm+1. (8)

Define also

Em(α) = E(Dm(α)|Fm) =

I∑
j=1

(
2ajmα+ bjm

ajmα2 + bjmα+ cjm

)
· cjm, (9)

Vm(α) = Var(Dm(α),Fm), (10)

where cjm = p(Xm, j;u, α
0 = 0). Now we have

Em(α0 = 0) =

I∑
j=1

(
bjm

cjm

)
· cjm =

I∑
j=1

bjm = 0 (11)

by (2), and

dEm(α)

dα
= −

n−1∑
m=0

(
2(ajm)2α2 + 2ajmb

j
mα+ (bjm)2 − 2ajmc

j
m

(ajmα2 + bjmα+ cjm)2

)
· cjm ≤ 0, (12)

in which case we have

α < 0 =⇒ Em(α) ≥ 0, α > 0 =⇒ Em(α) ≤ 0. (13)

We will consider the behavior of L′
n(α) at a given α < 0. A symmetric argument can be used for

α > 0. Fixing α, for simplicity we will write Dm, Em for Dm(α), Em(α), etc.
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Define

Ym = Dm − Em ∈ Fm+1, (14)

with E(Ym|Fm) = 0, and let

An =

n−1∑
m=0

Em ∈ Fn−1, (15)

Vm = Var(Ym|Fm), (16)

Mn =
n−1∑
m=0

Ym ∈ Fn. (17)

Note, Mn is a square integrable martingale. Also, let

Mn =

n−1∑
m=0

Vm. (18)

Then we have M2
n −Mn is a martingale. Note

L′
n =

n−1∑
m=0

(Ym + Em) =Mn +An (19)

Now, some computations are needed in order to proceed further:
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Em =

I∑
j=1

(
2ajmα+ bjm

)
· cjm

ajmα2 + bjmα+ cjm
(20)

=
I∑

j=1

(
2ajmα+ bjm

)
· cjm

ajmα2 + bjmα+ cjm
(21)

=

I∑
j=1

(
2ajmα+ bjm

)(
1− (ajmα2 + bjmα)

ajmα2 + bjmα+ cjm

)
(22)

= 2
I∑

j=1

ajmα+
I∑

j=1

bjm −
I∑

j=1

2(ajm)2α3 + 3ajmb
j
mα2 + (bjm)2α

ajmα2 + bjmα+ cjm
(23)

= −
I∑

j=1

2(ajm)2α3 + 3ajmb
j
mα2 + (bjm)2α

ajmα2 + bjmα+ cjm
(24)

= −α
I∑

j=1

2(ajm)2α2 + 3ajmb
j
mα+ (bjm)2

ajmα2 + bjmα+ cjm
, (25)

where we used (2). From our assumptions on am, bm, cm and that α < 0, we have that Em ≥ 0.

Let us estimate the ratio Vm/Em:

Vm
Em

≤

I∑
j=1

(
2ajmα+ bjm

)2
cjm

(ajmα2 + bjmα+ cjm)2

I∑
j=1

(
2ajmα+ bjm

)2
cjm

ajmα2 + bjmα+ cjm

≤

1

K

I∑
j=1

(2ajmα)2

ajmα2 + bjmα+ cjm

I∑
j=1

(
2ajmα+ bjm

)2
|α|

ajmα2 + bjmα+ cjm

=
1

K|α|
. (26)

So, we have

Vm ≤ Em

K|α|
(27)

The increasing process Mn plays an important role in defining the behavior of the martingale Mn.

We have the following lemma from [7]:
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Lemma 1. For all realizations not in a P -null set,

lim
n→∞

Mn <∞ =⇒ Mn →M <∞ as n→ ∞ (28)

lim
n→∞

Mn <∞ =⇒ Mn

Mn

→ 0 as n→ ∞. (29)

Proof.

lim
n→∞

Mn <∞ =⇒ L′
n(α)

An
= 1 +

Mn

An
→ 1 +

M

limn→∞An
→ 1 as n→ ∞,

lim
n→∞

Mn = ∞ =⇒ L′
n(α)

An
= 1 +

Mn

An
→ 1 as n→ ∞,

using (27).

Theorem 11. For all realizations not in a P -null set

An =

n−1∑
m=0

Em → ∞ =⇒ L′
n(α)

An
→ 1 as n→ ∞

for α < 0.

From (A11) and ajmα2 + bjmα+ cjm ≤ 1 for each j ∈ I, it follows that for α < 0,

I∑
j=1

[
2(−α)3(ajm)2 − 3α2ajmb

j
m + (−α)(bjm)2

]
≤ Em(α) (30)

≤

I∑
j=1

[
2(−α)3(ajm)2 − 3α2ajmb

j
m + (−α)(bjm)2

]
K

. (31)

Then, note that for all α < 0,

n−1∑
m−0

I∑
j=1

[
2(ajm)2 − 3ajmb

j
m + (bjm)2

]
→ ∞ =⇒ L′

n(α) → ∞ as n→ ∞. (32)

An analogous argument can be made for α > 0. This leads us to the following corollary.
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Corollary 1. For every realization except on a P -null set

n−1∑
m−0

I∑
j=1

[
2(ajm)2 − 3ajmb

j
m + (bjm)2

]
→ ∞ as n→ ∞ =⇒


L′
n(α) → ∞ as n→ ∞

L′
n(α) → −∞ as n→ ∞

(33)

This leads us to the following theorem:

Theorem 12. If the sequence {α̂n} of maximum likelihood estimates has an accumulation point

α∗ ̸= 0, then for every realization except on a P -null set

∞∑
m=0

 I∑
j=1

[
2(ajm)2 − 3ajmb

j
m + (bjm)2

] <∞ (34)

Proof. Consider a realization where (33) holds and the sequence {α̂n} has an accumulation point

α∗ < 0 (symmetric argument for α∗ > 0). Then there exists a subsequence {nk} s.t.

lim
k→∞

α̂nk
= α∗ < 0.

So, there exists k0 s.t.

k > k0 =⇒ α̂nk
<

1

2
α∗ < 0.

Now, by (5)

L′
nk
(α∗) ≤ L′

nk
(α̂nk

) ∀ k > k0. (35)

Recall, for α̂nk
< 0 to be the MLE, we should have L′

nk
(α̂nk

) ≤ 0. Then from (35) we obtain

L′
nk

(
1

2
α∗
)

≤ 0 (36)

for all k > k0 and
1

2
α∗ < 0. So for

1

2
α∗ < 0,

L′
n

(
1

2
α∗
)

→ −∞ as n→ ∞. (37)

Now (37), (35), and (33) imply the desired result (34).
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Corollary 2. Except for a P -null set of realizations, if the sequence {α̂n} if maximum likelihood

estimates has an accumulation point α∗ ≤ 0, then

2(ajm)2 − 3ajmb
j
m + (bjm)2 → 0 as m→ ∞ =⇒ ajm → 0, bjm → 0 as m→ ∞. (38)

Recall a(·, ·; ·) and b(·, ·; ·) relate the unknown parameter α to the transition probabilities. So,

(38) tells us that for {α̂n} not to converge to α0 = 0, the transition probabilities should give less

and less information on α has time n goes on.

Theorem 13. Under (A11), except for a P -null set of realizations,

α̂n → α∗ as n→ ∞ (39)

for α∗ ∈ J .

From Theorem 12, we know almost surely

∞∑
m=0

 I∑
j=1

[
2(ajm)2 − 3ajmb

j
m + (bjm)2

] = ∞ =⇒ α̂n → α0 = 0, (40)

so we only have to consider those realizations where

∞∑
m=0

 I∑
j=1

[
2(ajm)2 − 3ajmb

j
m + (bjm)2

] <∞. (41)

Let us consider the limit behavior of L′
n(·) for those realizations where (41) holds. By (30)-(31)

and (41) we have

∞∑
m=0

Em(α) < 0 (42)

for α < 0.

Consider now the following lemma, complementary in some sense to Theorem 7:
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Lemma 2. For a given α ∈ J s.t. α ̸= 0 and for every realization not in a P -null set

∞∑
m=0

Em(α) <∞ =⇒ L′
n(α) → c as n→ ∞. (43)

Proof. Assume α < 0. Recall that

L′
n(α) =Mn +

n−1∑
m=0

Em.

Since we know by Lemma 1 that
n−1∑
m=0

Em converges, we only have to proveMn converges as n→ ∞.

From (27) we have the following inequality

n−1∑
m=0

Vm ≤ 1

K|α|

n−1∑
m=0

Em. (44)

Convergence of
n−1∑
m=0

Em implies convergence of
n−1∑
m=0

Vm. Now we can use Lemma 1, which tells us

that for all realizations not in a P -null set, Mn →M <∞.

Now, we show L′(α) is continuous, differentiable, and strictly decreasing. Call the limit in (43)

c = L′(α). From (6) and (A11) we have

0 ≥ L′
n(α) ≥ − 1

K2

n−1∑
m=0

[
2a2m + 2ambm + b2m − 2amcm

]
(45)

≥ − 1

K2

n−1∑
m=0

 I∑
j=1

[
]2(ajm)2 − 3ajmb

j
m + (bjm)2

] . (46)

From this inequality it follows that L′
n(α) is a nonincreasing function converging for all α, and

the limit function c = L′(α) is uniformly bounded in α for those realizations where (41) holds.

Then

L′′(α) = −
n−1∑
m=0

2a2mα
2 + 2ambmα+ b2m − 2amcm
(amα2 + bmα+ cm)2

. (47)

It follows that L′(α) is strictly decreasing for all realizations for which ∃m s.t. am, bm, cm ̸= 0. So,
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Theorem 13 holds. The following lemma characterizes the behavior of L′
n(α):

Lemma 3. Except for a P -null set of realizations

∞∑
m=0

 I∑
j=1

[
2(ajm)2 − 3ajmb

j
m + (bjm)2

] <∞ =⇒ L′
n(α) → L′(α) as n→ ∞ (48)

uniformly in α.

The function L′(α) is continuous, differentiable, and strictly decreasing.

Let us now return to the proof of Theorem 13. We have that J is compact, so we just need

to show the sequence {α̂n} does not oscillate. It is enough to show that it is not the case that

∃[q, r] ⊆ J where q < r and ∃{n1m}, {n2m} subsequences of 1, 2, . . . s.t.

α̂n1
m
< q and α̂n2

m
> r ∀m. (49)

Assume (49) holds. Then from the definition of Ln and α̂n,

Ln1
m
(q) ≤ 0, Ln1

m
(r) ≤ 0 ∀m

Ln2
m
(q) ≥ 0, Ln2

m
(r) ≥ 0 ∀m,

so as the limits exist by Lemma 3, it follows that L′(q) = L′(r) = 0, but this cannot be the case as

q ̸= r and L′(·) is strictly decreasing.

5.3 Adaptive Control and Results

Having the convergence of estimates of our unknown parameter, we can now use adaptive control.

We will make another assumption:

(A14) Suppose

un = ϕ(αn, Xn)

and a(i, j;ϕ(α, i)) and b(i, j;ϕ(α, i)) are continuous functions in α for all i, j ∈ I.

Proposition 12. Assume (A11) and (A14). Except for a P -null set, if the sequence {α̂n} → α∗ ̸=
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α◦ = 0 as n→ ∞, then

a(i, j;ϕ(α∗, i)) = 0, b(i, j;ϕ(α∗, i)) = 0 (50)

for every j ∈ I and for every state i that is reached i.o.

Proof. If we discard the P -null set where (39) does not hold, then we have that α̂n → α∗ as n→ ∞.

By Corollary 2,

0 = lim
m→∞

ajm = lim
m→∞

a(Xm, j;ϕ(α̂m, Xm)), 0 = lim
m→∞

bjm = lim
m→∞

b(Xm, j;ϕ(α̂m, Xm)) (51)

for j = 1, . . . , I. If a state i is reached i.o. we can take a subsequence mk s.t. Xmk
= i for all k.

Along this sequence,

0 = lim
k→∞

a(Xmk
, j;ϕ(α̂mk

, Xmk
)) = lim

k→∞
a(i, j;ϕ(α̂mk

, i)) = a(i, j;ϕ(α∗, i)),

0 = lim
k→∞

b(Xmk
, j;ϕ(α̂mk

, Xmk
)) = lim

k→∞
b(i, j;ϕ(α̂mk

, i)) = b(i, j;ϕ(α∗, i)),

where we have used the continuity from (A14).

We would like to extend (51) to all states in I, so we will make the following assumption:

(A15) For all i, j ∈ I there exists the sequence i0, . . . , ir s.t.

p(is−1, is;u, α) > 0

for s = 1, . . . , r + 1 where i0 = i and ir = j.

From Theorem 11, it follows under (A15) that all states are reached i.o. almost surely, and thus

Proposition 12 holds for all i ∈ I. Now, we also have the following proposition:

Proposition 13. Assume (A11), (A14), (A15). Except for a P -null set of realizations, if the
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sequence {α̂n} converges to α∗, then

p(i, j;ϕ(α∗, i), α∗) = p(i, j;ϕ(α∗, i), α◦) (52)

for every i, j ∈ I.

Proof. The equation (52) holds if α∗ = α0. If α∗ ̸= α◦, let us consider the set of all realizations

where Proposition 12 holds and every state i is reached i.o. Then

p(i, j;ϕ(α∗, i), α∗)− p(i, j;ϕ(α∗, i), α◦)

= a(i, j;ϕ(α∗, i))(α∗)2 + b(i, j;ϕ(α∗, i))α∗ + c(i, j;ϕ(α∗, i))

− a(i, j;ϕ(α∗, i))(α◦)2 − b(i, j;ϕ(α∗, i))α◦ − c(i, j;ϕ(α∗, i))

= a(i, j;ϕ(α∗, i))
[
(α∗)2 − (α◦)2

]
+ b(i, j;ϕ(α∗, i))

[
α∗ − α◦]+ 0

= 0 ·
[
(α∗)2 − (α◦)2

]
+ 0 ·

[
α∗ − α◦] (by Proposition 12)

= 0.

As in Theorem 7 in [1], we can consider ϕ(α, ·) as giving a feedback control law to be used when

we know α, and (52) can be interpreted as, under the control law specified by the estimated value

α∗, α◦ is indistinguishable from α∗. Theorem 8 provides a rule to modify the control law ϕ(·, ·) to

guarantee convergence to the true value α◦: If necessary, modify ϕ(αn, Xn) to have

∞∑
m=0

 I∑
j=1

[
2(ajm)2 − 3ajmb

j
m + (bjm)2

] = ∞.

5.4 Concluding Remarks and Future Investigations

We have now shown, in support of previous results, that the maximum likelihood estimate converges

to a value α∗ indistinguishable from the true value under a control feedback law induced by α∗.

More specifically, we have shown that all results by Sagalovsky in [8] extend to the quadratic case

with the additional assumptions discussed.
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As mentioned in [7], these results can be extended to controlled Markov chains with transition

probabilities depending on α by higher degree polynomials, but the computations become very

difficult. Additionally, no known effort has been made to consider a controlled Markov chain with

transition probabilities depending on α via a convex function. Thus, there should be future inves-

tigations on such a model to contribute to this collection of results. Furthermore, computational

investigations of these results would add a new dimension and possibly lead to further interest

based on useful application of adaptive control of Markov chains. Lastly, most of the above results

use maximum likelihood estimation to estimate the parameter α. Investigation into other forms of

estimation, notably weighted least squares estimation, and a behavioral comparison to the asymp-

totic behavior of the maximum likelihood estimation would be interesting. Further suggestions for

continued investigations can be found in [1], [3], [2], [7], [8].
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