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Abstract

The objective of this thesis is to extend results to a new quadratic case in support of a collection
of existing results in adaptive control and parameter estimation of Markov chains.

In the first chapter, we introduce Markov chains and discuss some of their important properties.
This chapter will help the reader understand the characteristics of Markov chains, which will be
useful in later chapters discussing results on adaptive control of these stochastic processes. In
the second chapter, we introduce Martingales and discuss some of their important properties.
Martingales are important tools used in the methods of parameter estimation of Markov chains in
the later chapters.

In the third chapter, we focus on adaptive control of Markov chains. First, we consider con-
trolled Markov chains and some general connections with martingales, namely the Law of Large
Numbers and the Central Limit Theorem of Markov chains. Then, we introduce the adaptive
control environment with a controlled Markov chain with an unknown parameter. It is after this
that we discuss previous important results in [6],[1], and [3] on adaptive control and parameter
estimation of Markov chains. Then in the fourth chapter, we outline the processes used and results
attained in [8] for a linear case of adaptive control of Markov chains, which we then extend to a
quadratic case in the final chapter.

For the main results, we perform the process discussed in [7] for the following problem. We
consider a controlled Markov chain with a finite state space, whose transition probabilities are
assumed to depend quadratically on an unknown real parameter «. Particularly, we study the
behavior of the maximum likelihood estimate of « at each time n as n increases under an arbitrary
realizable control. We show that the results of [8] extend to the quadratic case with a few additional
assumptions. These results are that the sequence of estimates of o converge almost surely, though
not necessarily to the true parameter. We characterize those realizations for which convergence
does not lead to the true value, and suggest corrections to the control to attain convergence to the
true value. In support of previous results, we show that the maximum likelihood estimate converges

to a value o indistinguishable from the true value under a control feedback law induced by a*.

iii



Acknowledgements

I would like to thank my research advisor Dr. Bozenna Pasik-Duncan for providing guidance
and encouragement. She was able to assess my interests and direct me through an exciting research
journey.

I would also like to thank Dr. Tyrone Duncan and Dr. Margaret Bayer for serving on my Thesis
Committee. Their questions and suggestions helped me fine tune my thesis and also consider new
viewpoints for further investigations.

I would like to thank the Mathematics and Statistics Department at the University of Central
Oklahoma and Mathematics Department at the University of Kansas for supporting me through
my higher education.

I would like to specifically thank Dr. Britney Hopkins, Dr. Michael Fulkerson, and Dr. Scott
Williams at the University of Central Oklahoma for inspiring me to further my education at the
University of Kansas.

I would also like to give credit to the Math 750 course on Stochastic Adaptive Control for
introducing me to a field of mathematics that I had not seen before.

Finally, I would like to thank my parents for supporting me through my education, especially

through the times of high stress, and cheering me on to success.

v



Contents

1 An Overview of Markov Chains

1.1
1.2
1.3
14
1.5
1.6

Introduction . . . . . . ..o
Irreducible Markov Chains . . . . . . . . . . . . .
Classification of States . . . . . . . . . . . . . . e
Examples of Markov Chains . . . . . . . . . .. ..
Long Run Behavior of Markov Chains . . . . . .. .. .. ... ... .. ......

Markov Chains with Returns . . . . . . . . . . . . . .

2 An Overview of Martingales

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3

Introduction . . . . . . . Lo
Examples of Martingales . . . . . . . . . ..
Submartingales and Supermartingales . . . . . .. ... 0oL
Martingale Convergence Theorem . . . . . . . . . . .. .. ... .

Law of Large Numbers and Central Limit Theorem for Martingales . . . . . . . . ..

An Overview of Adaptive Control of Markov Chains

Introduction to Controlled Markov Chains . . . . . . . . . .. ... ... ... ....
Controlled Markov Chains and Martingales . . . . . . . . . .. ... ... ......
Adaptive Control of Markov Chains . . . . . . . . . ... ... ... ... ......
3.3.1 Finite Parameter Set . . . . . . . . . . ...

3.3.2 Compact Parameter Set . . . . . . . . . . ... ... ...

Parameter Estimation in a Linear Case

5 Extension to a Quadratic Case

5.1
5.2
5.3
5.4

Assumptions and Formulation . . . . . . . . .. .. .. ... ..
Adaptive Control and Results . . . . . . . . .. . ... ... ... ... ...

Concluding Remarks and Future Investigations . . . . . . .. ... ... ... ....

11

12
12
13
14
15
16

17
17
19
21
22
23

24



1 An Overview of Markov Chains

1.1 Introduction

Markov chains are stochastic models describing sequences of possible events that satisfy the Markov

property:

Property 1 (Markov Property). A stochastic process that satisfies the Markov property is “memo-
ryless”, so the probability of each event only depends on the state attained from the previous event,

i.e. for a sequence of random variable { X, }n>0 and possible states ig, ..., int+1,
P(Xn+1 == Z.n—‘rl‘XO = io, “ e ,Xn == Zn) - P(Xn+1 - in+1|Xn == Zn)

Markov chains are very useful stochastic processes due to their “memorylessness,” as all neces-
sary information for prediction is known based on the current state. Since the collection of states
can be many different things, Markov chains have been used to model things such as weather
forecasts, stock prices and GDP growth, population dynamics, and various games of chance. This

paper will focus on discrete-time Markov chains.

Definition 1. A discrete-time Markov chain is a stochastic process with a finite or countable

state space that satisfies the Markov property.

The changes of state in a Markov chain are called transitions, and the probability of these

changes of state are called transition probabilities.

Definition 2. A homogeneous Markov chain is a Markov chain wherein the transition proba-

bilities are independent of time n.

Definition 3. The one-step transition probability is the probability of going from state i at

time n to state j at time n + 1, denoted
. . n+1
P(Xnp1 = j|X, =) = P

For a homogeneous Markov chain, these transition probabilities are denoted as simply P;; as

they are independent of time. These one-step transition probabilities form a transition probability



matrix P = [Pj;] with the number of columns and number of rows equal to the number of states.
This matrix is a stochastic matrix, so the entries P;; > 0 for all 4,5 and ) ;Pij = 1ftoralli. A
Markov chain is completely characterized by a state space, a transition probability matrix P, and
an initial state distribution across the state space.

Markov chains can be used to predict future behavior beyond the “next step”. Considering the
passage of some time n, we can make predictions on a state obtained at time m 4+ n based on the

current state at time m.

Definition 4. The n-step transition probability is the transition probability of going from state

i to state j in n steps, denoted by

P(Xin = j|1Xm = 1) = P,

Recursively, these transition probabilities can be found by

)

(n) _ (n—1) 1 _
P =Y "pPyP, ", Py =Py
k

summing over all states k. The n-step transition probability matrix P = P

1.2 Irreducible Markov Chains

The states of a Markov chain and how they relate to one another are key characteristics in prediction

by Markov processes.
Definition 5.

(i) State j is accessible from state i if there is a positive probability that state j can be reached

from state i in a finite number of transitions, i.e. Pi(j") > 0 for some finite time n.

(ii) State i and state j communicate if they are each accessible from the other. This is denoted
i~ 7.
Note, communication between states ¢ ~ j is an equivalence relation which yields equivalence

classes, called communicating classes. Then, we can study the communicating classes of a Markov

chain, and even focus specifically on the communicating class induced by our current state in order



to make state predictions for a future time. This information could tell us a few useful things.
First, we could determine that a specific initial state ¢ virtually cuts off some states as possible
future states because they are not accessible from state i. Thus, our predictions would be limited
to states that are accessible from . Another notable case is defined below, in which a Markov chain

contains only one communicating class.
Definition 6. A Markov chain is irreducible if all states communicate.

Irreducible Markov chains let us know that at any time n, we cannot eliminate any state from
the foreseeable future of our process. If we have multiple communicating classes, there are at least
two states that do not communicate with each other. Then, being in one of these states tells us

that we will never reach the other in the future of our process.

Definition 7. A set of states C is closed if no one-step transition is possible from a state in C to

a state outside of C.

If there are no sets of states that are closed other than the set of all states, then the Markov

chain is irreducible. Consider the following example of a transition probability matrix:

Example 1. Let P be a transition probability matrix of the form

A, 0 -+ 0
0 A
P= ,
0
0o --- 0 A,

where Ay, are stochastic matrices. Then, we can determine that P and the corresponding Markov
chain are not irreducible as each Aj represents a closed set of states: no one-step transition is
possible from states described in Aj to states described in A,. In this case, we say that P is

decomposable.

1.3 Classification of States

The states in a Markov chain can be further classified by the following:



Definition 8.

(i) The period of state i, denoted d(i), is the greatest common divisor of all integers n > 1
for which there is a positive probability of going from state © back to state i in n steps, i.e.

P >0,
(ii) A state i is periodic if d(i) > 2.
(iii) A Markov chain is aperiodic if every state has period d(i) = 1.
Proposition 1. Ifi ~ j, then d(i) = d(j).

By this proposition, we have that any communicating class has a constant period among all the
states in the class. Thus, if we know the period of one state, we know the period of all states in
that communicating class.

For the next set of definitions, we will consider the return to a state 7. Let us define for n > 1

the probability that, after starting in state ¢, the first return to state i occurs at time n as
= P(X, =i, Xy #iform=1,...,n—1|Xy=1i).

From this concept of first return, we can define the probability that a process starting in state ¢

returns to state ¢ in some finite time as

n=0

where fi(io) = 0.
Definition 9.

(i) A state i is recurrent if after the process begins in state i, the probability of returning to

state i in a finite number of steps is 1, i.e. f;; = 1.

(ii) A state i is transient if after the process begins in state i, there is a positive probability of

never returning to state i (i.e. state i is nonrecurrent). For a transient state i, fi; < 1.

Proposition 2. Suppose i ~ j. If i is recurrent, then j is recurrent.



Like proposition 1, this gives us information on an entire communicating class. If any state in
the communicating class is recurrent, we know that all states in the class are recurrent.
We can further classify recurrent states. To do so, let us first define the mean recurrence time

m;. Let R; = min{n > 1|X,, = i} be the first return time, and then define

mi = E[R|Xo =i =Y nf".

n=1

Definition 10.

o0
(i) A recurrent state i is null if the average recurrence time is infinite, i.e. m; = Z nfl(ln) = 00.

n=1

(ii) A recurrent state i is positive-recurrent if it is not a null state.
(iii) A recurrent state i is ergodic if it is neither null nor periodic.

Note, a recurrent state in a Markov chain with finite states cannot be null as the average
recurrence time will be finite. Furthermore, a Markov chain with finite states cannot contain only
transient states by the Pigeonhole principle as eventually we would run out of new states to obtain
at some finite time. If all states in a Markov chain are ergodic, then the chain is ergodic. Ergodic

implies irreducible, and we can determine that every state will be obtained at some finite time.

Definition 11. A state i is absorbing if once state i is reached, it cannot be left.

1.4 Examples of Markov Chains

Example 2. In this example, let us classify the states for a Markov chain with transition proba-
bility matrix
0 1/2 1/2
P=1{1/2 0 1/2
1/2 1/2 0

A diagram of this Markov chain is shown below:



1/2

1/R2

Let us classify each state in this chain:

e State A: Notice, starting in state A, we can return to state A in 2 steps (A - B — A)
and also in 3 steps (A - B — C — A). Note, gcd(2,3) = 1, so state A has period

d(A) = 1. Also, notice A is recurrent. Therefore state A is ergodic.

e State B: Starting in state B, we can return to state B in 2 steps (B — A — B) and
in 3 steps (B — C — A — B), so state B has period d(B) = 1. Since state B is also

recurrent, state B is ergodic.

e State C: Starting in state C, we can return to state C' in 2 steps and in 3 steps, so state

C has period d(C') = 1. Since state C is also recurrent, state C' is ergodic.

Note A is accessible from B and C, B is accessible from A and C', and C' is accessible from
A and B. Then we know
A~B, A~C, B~C.

Then alternatively, since A, B,C' are in the same communicating class, after determining
state A had period d(A) = 1 and was recurrent we could conclude that states B and C also
had period 1 and were recurrent. Also, since every state communicates, our Markov chain is

irreducible. Since every state has period 1, our Markov chain is aperiodic.

Example 3. In this example, let us classify the states for a Markov chain with transition proba-

bility matrix



1/3 0 1/3 0 0 1/3

1/2 1/4 1/4 0 0 0

0O 0 0 01 0
P =

1/4 1/4 1/4 0 0 1/4

0O 0 1 00 0

0O 0 0 00 1

A diagram of this Markov chain is shown below:

18

1/4

Classification of states:

e State A has period d(A) = 1 as we have the possible path A — A, and state A is

transient as the paths through state C and state F' will never return to A.

e State B has period d(B) = 1 and is transient as the paths through state A and state C

with never return to B.

e State C has period d(C) = 2 as the only paths from state C' to state C' are of the form

C—-FEF—C—...—> E— (C. State C is recurrent.



e State D has period d(D) = 0 and is transient as no path from state D will ever return.
e State E has period d(E) = 2 and is recurrent as E ~ C.

e State F' has period d(F') = 1 and is recurrent, so state F' is ergodic. Notice that state F'

is also absorbing as nothing can leave state F'.

Lastly, notice {C, E'} form a closed set as after state C' is attained, only states F and C are

attainable in the future.

Example 4. For this example, let us create a model for fall weather in Lawrence, Kansas. Define
our state space as {4 = “sunny”, B = “cloudy”,C' = “stormy” }. Say given a sunny day, the
probability the next day is also sunny is %, the probability the next day is cloudy is %, and
the probability the next day is stormy is %. On a cloudy day, say the probability the next
day is sunny is %, the probability the next day is cloudy is %, and the probability the next
day is stormy is %. On a stormy day, say the probability the next day is sunny is % and the

probability the next day is stormy is % Now we have the transition probability matrix

2/3 2/9 1/9
P=|1/4 3/8 3/8
2/5 0 3/5

A diagram of this Markov chain is shown below:

/5

Classification of states:

e State A has period d(A) =1 and is recurrent. Therefore state A is ergodic.



e State B has period d(B) =1 and is recurrent as A ~ B. Therefore state B is ergodic.

e State C has period d(C) =1 and is recurrent as A ~ C. Therefore state C is ergodic.

Note, since every state communicates, our Markov chain is irreducible. Since every state has

period 1, our Markov chain is aperiodic.

These classifications make sense considering the natural weather transitions we can observe:
sunny, cloudy, and stormy weather are recurrent, can occur multiple days in a row (period

1), and each state sunny, cloudy, and stormy is accessible from every other state.

1.5 Long Run Behavior of Markov Chains

An important consideration of any system is its long run behavior. In this section, we will consider

the long run behavior of Markov chains.

Definition 12. Let P be a transition probability matriz on a finite number of states 1,...,N. P
is regular if there exists a positive integer k such that P* has all positive entries, i.e. PZ(Jk) >0 for

all i,7.

A Markov chain with a regular transition probability matrix is also said to be regular. Regular
Markov chains possess a limiting probability distribution 7 = (71, m2,...,7n), where m; > 0 for all
jand . ,m =1

nli_)rr;OP(Xn =jlXo=14)=m >0

for all j = 1,...,N. Note, this distribution is independent of the initial state. Then we can
conclude that in the long run, the probability of the Markov chain being in state j is almost surely
m;, independent of our initial state at time 0.

We can find the limiting distribution 7; from the system of N linear equations

N
T =Y Py
i=1
for j =1,..., N where ijj =1.
Let us denote the matrix of limiting distributions (71,...,7y) corresponding to a regular



Markov chain as

7"'1 o .. 7TN

7]'1 [P 7TN

Proposition 3. For a regular transition probability matriz P and limiting distributions matriz 11,
we have

lim P" =1I.

n—oo

Define matrix 7" such that for transition probability matrix P and limiting distributions matrix

P=II+T.

Proposition 4. For transition probability matriz P, limiting distributions matrixz I, and matriz
T st P=1I4+T,
Pr=I1+T1".

Example 5. Consider state space {1,2} and transition probability matrix

1/2 1/2

2/5 3/5

Note P has all positive entries, so P is regular. Let us find the limiting distributions. We have
the system
T = %71‘ 1+ %ﬂ 2

1 3
Ty = 571 + T2

10



Then, since m; + mo = 1, we have m; = 1 — mo. Notice by substituting, we have

1 3
m=1—m — 7T2:§(1*7T2)+57T2
b3
M =g M2t pm
. 3 3 1
—Tg — —Ty = —
27577 2
. 9 1
1077 2
— 5
Ty = —.
79
5 5 4 . . .
Then w9 = 9 = m=1- 9= 9 Thus, in the long run we have the probability of this Markov

chain being in state 1 is 4/9, and the probability of this Markov chain being in state 2 is 5/9.

1.6 Markov Chains with Returns

Now consider a Markov chain with state space {1,..., N} in which a return is gained for transi-

tioning from state ¢ to state j. Denote this return r;;, and let us define the return matrix
R = [ry]

fori=1,...,Nand j=1,...,N.

Now, just as we were interested in predicting what state a Markov chain would have attained
after some time n, if our Markov chain yields returns after each transition we might also be interested
in predicting the accumulated returns after time n. Let v;(n) be the expected return after n-steps,

assuming the Markov chain is in state ¢ at time ¢t = 0. Let

N
qi = E Dij - Tij,
Jj=1

which represents the expected return after one step. Then for : =1,..., N,
N N
vi(n) = [pij (rij +vj(n — 1))} =g+ _pij-vj(n—1),
=1 j=1

and V;(0) = 0. In vector form, we have v(n) = q+ Pv(n —1).

11



Proposition 5. For probability transition matriz P, limiting distributions matriz 11, and matriz

T s.t. P=11+T, we have that
v(n) =nllq+ (I —T)"YI - T")q.
Note, by propositions 3 and 4,

lim P" =11 = lim (I+7") =1 = lim 7" =0.

n—o0 n—o0 n—oo

Then for large n we have

v(n) =nllq+v

where v = (I — T)"'q. Now, notice

n—oo n n—oo N

1 1 1
lim —v(n) = lim — (nllq+v) = ILm <Hq + v> = Ilq.
n—00 n

Let g = Ilq. If P is regular, then the rows of II are the same, and g; = g; for all ¢,j € {1,...,N}.

Thus, let us define
N
9= Z T Gi-
i=1

We say that g is the value of the game on the Markov chain with transition probability matrix P

and return matrix R.

2 An Overview of Martingales

2.1 Introduction

Martingales are stochastic processes in which the conditional expectation of the next value in the

process is the current value, regardless of past values.

Definition 13. A discrete-time martingale is a stochastic process { Xy }n>0 in which for any
time n,

E<Xn+1‘X0a X17 s 7Xn) = Xn

12



Similarly to Markov chains, martingales are useful stochastic processes as information about
the past is not useful for predicting the future of the process. For this reason, martingales are
used to model “fair” games as ones future success in the game does not depend on past success
or failures. Discrete-time martingales are also used in biodiversity and biogeography to model the

number of individuals of a particular species of a fixed size at any given time.

2.2 Examples of Martingales

Example 6. An unbiased random walk, a stochastic process that describes a path of successive
random steps on some space, is a martingale. For a simple example, consider a walk on Z
starting at 0, where each step either contributes +1 or —1 to the position. For this walk to
be unbiased, each step has an equal probability (p = 0.5) to move +1 or —1. Say at time n,

our position X,, = a. Then notice

E(Xn1|Xn =a) =05(a+1) +0.5(a— 1) = 0.5a + 0.5+ 0.5a — 0.5 = a = X,.

Thus, our unbiased random walk is a martingale.

Example 7. A gambler’s fortune is a martingale if all the betting games the gambler plays are
fair. Let X, be a gambler’s fortune after n tosses of a fair coin, i.e. p = 0.5 a toss comes up
heads, p = 0.5 a toss comes up tails. Suppose the gambler wins $5 if the coin comes up heads

and loses $5 if it comes up tails. Then, notice

E(Xpi1|Xn) = 0.5(X, +5) + 0.5(X,, — 5) = 0.5X,, + 0.25 + 0.5X,, — 0.25 = X,,.

Thus the gambler’s fortune is a martingale for fair betting games. As in example 6, the

symmetry of the “unbiased” and “fair” assumptions yields our desired martingale result.

Example 8. Pdlya’s urn is a statistical model in which we have an urn containing a number of
different colored marbles, and each iteration involves drawing a random marble, noting the
color, and returning the marble along with k& more marbles of the same color. For a given

color, the fraction of marbles of said color in the urn is a martingale.

Suppose on the n-th iteration, there are 75 green marbles and 25 non-green marbles in the

13



urn. Let & = 5, so whichever color marble is drawn next, 5 more marbles of that same color
will be added to the urn. So, we have X,, = 75/100 = 0.75 in respect to he number of green

marbles, and

E(Xp41|X, = 75/100) = (75/100)(80/105) + (25,/100)(75/105)
= 60/105 + 74,/420
= 0.75

= X,.

Thus, the fraction of green marbles in the urn is a martingale.

2.3 Submartingales and Supermartingales

A few generalizations of the martingale concept are submartingales and supermartingales. In these
cases, future prediction still does not depend on the past of the process, however the conditional
expectation of the next value is not necessarily the current value. Rather, the current value gives

an upper or lower bound of the expected next value.

Definition 14. A discrete-time submartingale is a stochastic process {Xp}n>0 in which for
any time n,

E(Xni1|X0, X1, .., X0) > X,

Definition 15. A discrete-time supermartingale is a stochastic process { Xy }n>0 in which for
any time n,

E(Xp41|Xo0, X1,...,X5) < X,
Following are a few notable propositions pertaining to submartingales and supermartingales:

Proposition 6. If {X,},>0 is a submartingale, then {—X,}n>0 is a supermartingale. Similarly,

if {Xn}n>0 is a supermartingale, then {—Xy}n>0 is a submartingale.
Proposition 7.

(i) If {Xn}n>0 is a martingale, then the sequence {E(Xy)}n>0 is constant.

14



(i) If {Xn}n>0 is a submartingale, then the sequence {E(Xy)}n>0 is increasing.
(iii) If {Xyn}n>0 is a supermartingale, then the sequence {E(Xy)}n>0 is increasing.
Proposition 8. Suppose { X, }n>0 is a martingale.

(i) If f is a convex function, then {f(Xy)}n>0 is a submartingale.

(ii) If f is a concave function, then {f(X,)}n>0 is a supermartingale.

Particularly, if {X,}n>0 is a martingale, {|X,|}n>0 and {X2},,>0 are positive submartingales.

The inequalities in the next section utilize these submartingales.

Proposition 9. Suppose {X,,}n>0 is a submartingale. Then for all n,
E(Xni1) > E(Xy).

2.4 Martingale Convergence Theorem

Among all stochastic processes, an important consideration is whether a process will converge. This
gives strong prediction information for the future of the process. Before presenting the Martingale

Convergence Theorem, we will define different types of convergence of random variables.
Definition 16. Let X,,, n > 0 and X be random variables.

(i) We say that X,, converges in probability to X, X, EiR X, ifVe>0

lim P(|X, — X|>¢)=0.
n—oo

(ii) We say that X, converges almost surely to X, X,, = X, if Ve

lim P(| X, - X|<eVn>N)=1.
N—00

It it also useful to note that almost sure convergence X, — X implies convergence in proba-
bility X, 2> X.
Before stating the Martingale Convergence Theorem, the following inequalities are also pertinent

in its proof.

15



Proposition 10 (Schwartz’s Inequality). Let X,Y be random variables s.t. E(|X|?) < co and
E(]Y]?) < co. Then
B(xY]) < B(XP)" - 2(yP)"

Proposition 11 (Doob-Kolmogorov Martingale Inequality). If { X, }n>0 is a martingale and E (X?l) <

oo for all n, then

P(maX{XOaXla s 7Xn} > E) <

Theorem 1 (Martingale Convergence Theorem). If {X,,}n>0 is a martingale and 3 M < oo s.t.

E(|Xy|) < M for all n, then there exists a random variable X s.t.

X, — X.

2.5 Law of Large Numbers and Central Limit Theorem for Martingales

For the strong law of large numbers for martingales, let {X,, },,>0 be a sequence of random variables

such that, with probability 1,

E(Xy) =0, E(Xp41|Xo0,X1,...,X,)=0.

Let S, = Xo + ...+ X,,. The sequence {S,},>0 forms a martingale:

E(Sn41/S0, .., 50) = Sh.

Theorem 2 (Strong Law of Large Numbers for Martingales). Let { X, }n>0 be a sequence of random

o0
X2
variables s.t. E(Xo) = 0 and E(Xp+1|Xo, X1,...,X,) =0. Let S, = Xo+. . .+X,. Ifz — <00,
n
=1
then !
CUEN
n

Theorem 3 (Central Limit Theorem for Martingales). Let {X,,}n>0 be a martingale and suppose

E(Xns1— Xn| X0, Xn) =0, | Xns1— Xo| <k

16



with probability 1 for some fixed k and for all n. Suppose |Xo| < k with probability 1. Define
n
o2 = E((XnH - X,)?|Xo,... ,Xn) and let 7, = min< n : Za? >v . Then as v — o0

n
=0

These two theorems will be revisited in a connection to controlled Markov chains.

3 An Overview of Adaptive Control of Markov Chains

3.1 Introduction to Controlled Markov Chains

Markov chains are desirable stochastic processes because it is not necessary to store past information
to make predictions. However, the trajectory of the chain might not naturally lead to the desired
state. This is where control theory comes into play: introducing control actions to the process
ideally allows us to steer the chain in our desired direction.

In this paper, we are interested in a finite controlled Markov chain. The model is as follows:
Let the sequence of random variables {X,, },>0 be the state variables from a finite state space I.
Let the sequence of random variables {u,},>0 be the control actions, defined as functions of the
state variables s.t.

U(X,) = up.

Then the transition probabilities of this controlled Markov chain are of the form

P(Xn—i-l :]‘Xn — Z) :p(i7j;un)v .7 el

where at time n, X,, is observed as state i € I, and based on this information w,, is selected as the
control action from a prespecified set U.

In [4], Kumar and Varaiya have presented a simple example of a controlled Markov chain. I will
present a similar example, which also demonstrates the usefulness of controlled Markov chains.
Example 9. Consider a system whose condition at time n, which is described as the state X,
can take the values 1 or 2 such that X;, =1 or X,, = 2 depending on whether the system is in an

operational condition or a failed condition. Without control actions, the behavior of this system
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is autonomous. Suppose the system is operational at time n (X, = 1) and it has probability p of
staying operational at the next time (X, +; = 1) and probability 1 — p of failing at the next time
(Xn+1 = 2). Suppose p only depends on the current state at time n. Lastly, let us say once the
system has failed, it remains failed, so if X,, = 2, then X,,;1 = 2 with probability 1.

Note, { X}, }n>0 is a Markov chain with transition probability matrix

p 1—p
0 1

P:

Let us introduce two control actions, u’ and u2. Let u) denote the intensity of usage of the system
at time n, taking values 0 for not used, 1 for lightly used, and 2 for heavily used. We will say that
the higher intensity of usage, the more likely the system is to fail. Let u2 denote the intensity of
maintenance performed on the system, taking values 0 for low amounts of maintenance and 1 for
high amounts of maintenance. The more maintenance performed on the system, the less likely the

system is to fail. Let u, = (u},u2). Now we have the controlled transition probabilities

P(Xpi1=1Xn =1, Xp 1,3 Up, Un—1, - ..) = p1(up) — pa(ud)
P(Xn+1 = 2‘Xn =1, X0 1, . iuUp,Up_1,.. ) =1- [pl(urlz) _pQ(urgz)]
P(Xpp1=11X, =2, X0 1, ..U, U1, -..) = pa(u?)

n

P(Xni1=21Xn=2,Xp1,...;Un,Up_1,...) = 1 — pa(u?).

In matrix form,
pi(uy) —p2(un) 1= [pi(uy) — p2(uy)]
P(u) =
p2(u;) 1 — pa(uy)
Now, with controlled Markov chains, the current state is observed, and we choose a control action
based upon this observation. We do so by a control feedback law taking in the observation and

putting out the best control choice, say ¢(X,) = wu,. Let us say ¢(1) = (2,0) and ¢(2) = (0,1).
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Then we have the transition probability matrix

p1(2) —p2(0) 1—[p1(2) — p2(0)]

pa(1) 1—ps(1)

P? =

From this, we can see that changing the feedback law, i.e. changing the amount of usage of the
system and maintenance on the system, we can affect the probability of the system remaining

operational or failing.

3.2 Controlled Markov Chains and Martingales

In [5], Mandl describes some results of the reward of the controlled Markov chain from theory on

martingales. The reward of the previously described chain up to time N is given by

Cn = Zc(i,j;un).

n=0

Mandl then sets out to construct a martingale as a basis on which the Law of Large Numbers and
Central Limit Theorem of controlled Markov chains can be derived.

To construct the martingale, Mandl defines © a real number, w;, w; auxiliary constants, and
(i, un) =Y p(i, jiun) [c(i, Ji un) +w;] — wi — ©,
J
Then Mandl sets

Y, =c(i,jiun) — © +wj —w; —o(i,u,) = E(Y,|Xo,...,Xn) =0,

and
N-1
By=)Y_Y,
n=0
is a martingale with respect to {Xo,..., Xn}.

The Strong Law of Large Numbers for martingales (section 2.5, theorem 2) yields



To obtain the Law of Large Numbers for controlled Markov chains, one last property is required.

Property 2. The states i € I that are recurrent for a Markov chain with transition matriz

[p(i,7;U(1))], i,5 € I form only one irreducible set.
Then we can find constants ©,w; s.t. ¢(i,U(i)) =0 for i € I.

Theorem 4 (Law of Large Numbers for Controlled Markov Chains). Suppose ¢(i,U (7)) = 0 for

iel. If
lim u, —U(X,)=0 a.s.,
n—oo
then
. N
1 _— =
Ny =9 as
From this theorem, we also have
| V-1
. _ 2
I S

=0

3

where

ca(i,un) = p(i, Jun) [cli, Jyun) — O +wj —wi]” 4,5 €1
j

and o2 is attainable with auxiliary constants wo;, i € I.

Then with regard to the martingale By, the following theorem is obtained.

Theorem 5 (Central Limit Theorem for Controlled Markov Chains). Suppose a2 > 0, ¢(i,U(i)) =
0 foriel, and

S 0 1 UG [(e60,3: U (0)) — ©) + 2(eli 12 U(0)) — O)w; + why] — why — 0> = 0,
J
where wh;, = wa; +w? fori € I. If

lim u, —U(X,)=0 a.s.,

n—oo

then for N — oo
Cy —NO

&~ N,

20



3.3 Adaptive Control of Markov Chains

In a perfect world, all parameters of a Markov chain would be known in order to choose the best
control at each step. However, in many cases the behavior of a Markov chain depends on some
unknown parameters, so the controls are adjusted based on estimates of the unknown parameters
from observations of the process at time n.

In the paper [6], Mandl considered a controlled Markov chain {X,, }»>0, taking values in a finite
set I with transition probabilities that depend upon the control actions u,, at time n and parameter
o

P(Xny1 = j| Xy = 1) = p(i, j;un, @).

At each time n, X,, is observed, and u,, is selected based on X,,. The parameter o has the constant
true value a°, which is unknown.

Mandl constructs the adaptive control law based upon maximum likelihood estimation of the
unknown parameter. The maximum likelihood estimate at time n is denoted «,.

For the main result, Mandl establishes the following assumptions:

(A1) For i,j € I either

p(i,7;u, ) >0 Yu,ao  or  p(i,j;u,a) =0 Yu,a.

(A2) Identifiability Condition: For each o # o/, there exists i € I so that

I:p(i7 ]‘;u7 a)? R 7p(Z7I) u7 a)] # [p(27 ]‘;u7 al)? R 7p(i7 I;’“‘? al):l?

forallu e U.

The identifiability condition is very strict, but allows Mandl to achieve the following desired

result:

Theorem 6 (Mandl). Let (Al),(A2) hold. Then as n — oo,

a.s. o
oy — .

21



In other words, the Identifiability Condition yielded the result that the sequence of maximum
likelihood estimates o, would converge almost surely to the true parameter ®. This is a best-case
scenario, however the Identifiability Condition has been argued to be impractical. Counterexamples

to this condition are given in [1] and [3].

3.3.1 Finite Parameter Set

In [1], Borkar and Varaiya wish to consider the same controlled Markov chain as Mandl, but without
the strict Identifiability Condition. They similarly consider the controlled Markov chain {X, }»>0,
taking values in a finite set I with transition probabilities that depend upon the control actions u,,

at time n and parameter a:

P(Xn+1 = j|Xn = l) :p(%]?unaa)

The parameter o has the constant true value °, which is unknown.

Borkar and Varaiya also construct the adaptive control law from maximum likelihood estimation
of the unknown parameter. The maximum likelihood estimate «,, is then used in selecting the
control action u, = ¢(a,, X,), where ¢(a,-) is a stationary control law, and the corresponding
likelihood functions L,,(«) at time n are noted to be positive martingales. Their main objective is
to analyze the asymptotic behavior of o, and u,, and specifically when the identifiability condition
proposed by Mandl may not hold.

For their main results, Borkar and Varaiya assume that a°, the true parameter, is known to

belong to a finite parameter set A. There are two further assumptions:

(A3) There exists € > 0 s.t. for every 1, j, either

p(i,j;u, ) > ¢ Yu,a  or  p(i,j;u,a) =0 Yu, .

(A4) For every i,j there is a sequence i1, ..., i, s.t. Yu, q,

plis—1,jsiu, ) >0, s=1,...,r
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where io = i, 7:r+1 = j

Note, (A3) is adapted from (Al) in [6]. (A4) guarantees that the Markov chain generated from
transition probabilities p(i, j; ¢(«, ), i) has a single recurrent class, which is a necessary assumption
for identification.

The main result Borkar and Varaiya achieved in this paper is stated in the following theorem:

Theorem 7 (Borkar-Varaiya). There is a set W of zero measure, a random variable o* € A, and

a finite random time N s.t. forw & W, n > N(w),

an(w) = a’(w), un(w) = o(a’ (W), Xn(w)),

p((i, J; p(a*(w), i), & (w)) = p(i, j; p(a* (w), i), a°),

foralli,jel.

Written more generally, they determined a,, converges almost surely to a random variable a*

s.t.

p(i, ji ¢l i), o) = p(i, j; (0™, i), %), Vi, j.

Thus, asymptotically, the transition probabilities of their adaptive control system are the same

whether the parameter is o* or the true a°, meaning the two parameters are indistinguishable.

3.3.2 Compact Parameter Set

Now in [3], Kumar’s main objective is to make Borkar and Varaiya’s assumption of a finite parameter
set more general, while still considering when Mandl’s identifiability condition may not hold. To
do this, Kumar considers a compact parameter set.

Kumar considers the same controlled Markov chain {X,},>0 with transition probabilities
p(%, j; un, ) that depend upon the control actions w, and parameter a. The parameter o has
the unknown true value o®. Kumar assumes that a° belongs to a compact parameter set A instead
of the finite set assumed by Borkar and Varaiya.

Similarly to Borkar and Varaiya, at each time n Kumar takes maximum likelihood estimate «,
of parameter a°, then applies the control action u, = ¢(an, Xp).

For the main results, Kumar establishes the following assumptions:
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(A5) The transition probabilities p(-,-;-,-) and the control law ¢(-,-) are continuous.

(A6) For every 1, j, either

p(i,j;u,a) >0 Yu,or, or p(i,j;u,a) =0 Yu,a.

(A7) For every i, 7, there exists a sequence ¢ = ig,i1,...,i = J s.t.

p(is—1,is;us,0) >0 Vs=1,...,7.

Note, (A6) mimics (A1) from [6] and (A3) from [1], and (A7) mimics (A4) from [1].
The main results Kumar achieved in this paper is stated in the following theorem:

Theorem 8 (Kumar). There exists a null set W, P(W) =0 s.t. if for some w € W€ the control

converges to 1, then
p(ia J; ¢(2)a a*) - p(i7j§ 1/1(1)7 040)
for alli,j and every limit point a* of {a }n>0-

As an important consequence, if lim,, o o, (W) = o, then

p(i,j; ¢(a”, i), o) = p(i, j; o(a”,4),a°) Vi, j.

Thus, if the parameter estimates do converge, or more generally if only the control laws converge
to some feedback law 1, then under 1) the transition probabilities corresponding to any limit point

of {a,} are the true transitions probabilities (corresponding to a°).

4 Parameter Estimation in a Linear Case

In this paper, we will extend the results in [8] from a linear case to a quadratic case. Before
extending to the quadratic case, however, this section will survey Sagalovsky’s results and methods
in the linear case.

In [8], the main objective is to build upon Borkar and Varaiya’s consideration when Mandl’s

Identifiability Condition may not hold. To start, Sagalovsky establishes the same setup as Borkar
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and Varaiya in [1]. So, Sagalovsky considers the controlled Markov chain {Xp,},>0 taking values
in a finite set I with transition probabilities that depend upon the control actions u, selected at

time n based on previous observations and parameter a:

Again, the parameter « has the true value «°, which is unknown.

Then, Sagalovsky considers a model where the transition probabilities depend linearly on a:

Pty Js Un, @) = a(i, j; up ) + b(3, j; up),

where a,b are known real functions. Assuming «o° belongs to a bounded interval A = (a, @),
Sagalovsky also estimates the unknown parameter by its maximum likelihood estimate a,,. To do

so, the likelihood of a given « at time n is defined as

n—1

P(Xo, ..., Xn|X0,0) = [ P(Xim, Xns 13 i, )
m=0
and the log-likelihood as
n—1 n—1
Ln(a) = Z 1ng(Xm, Xm—i-l; Um, a) = Z log [a(Xma Xm-&-l; Um)a + b(Xma Xm—i—l; Um)] .
m=0 m=0

Let am = a(Xp, Xmi1;um) and by, = b( X, Xint1;Um), so we have the simpler log-likelihood
function

n—1

Ln(a) = log [ame + by

m=0
Let al, = a(Xm, j; um) and bl, = b(Xpm, J; um). Then, Sagalovsky defines the maximum likelihood
estimate (MLE) «,, at time n to be the element of A (the closure of A) s.t. Ly(ay) > Ly(a)

Va € A. The MLE is found over the closure of A to ensure such an «,, exists.
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Note

n—1 a
L — . m
(@) et
m=0
n—1 a 2
L' o) = — —7 | <o.
== 3 ()

Since the second derivative is nonpositive, there exists at least one &, maximizing L, («) for a € A.
This &, is unique if Im < n s.t. a,, # 0. In what follows Sagalovsky assumes this m exists, so &,
is called «, as it is unique.

To find the maximizing «,,, Sagalovsky considers the sign of L] ().

For the main results, Sagalovsky establishes the following assumptions:
(A8) Vi, j, either

p(i,j;u,a) > €>0 Yu,a  or p(i,j;u,a) =0 Vu,a.

(A9) up = ¢(aun, zp) and a(i, j; ¢(a, 7)) are continuous in « for every i, j.

(A10) For every i, j, there exists a sequence i = ig,i1,...,%,ir41 = J S.t.

plis—1,is;us,0) >0 Vs=1,...,r+1.

Notice again the similarities between (A8) and (A1) [6], (A3) [1], (A6) [3], and between (A10)
and (A4) [1], (A7) [3].

Sagalovsky achieved the following important result:

Theorem 9 (Sagalovsky). Under (A8), except for a P-null set of realizations, if the sequence {ca,}

of MLE’s has an accumulation point a® # 0, then

o0
j2
E E A < oQ.
m=0 | jeI

This implies af, — 0 for each j = 1,...,I. Sagalovsky notes that this gives the intuitive

feeling that, for «;,, not to converge to the true value, the transitions should give increasingly less
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information on a as n grows as the term a(, j;u) is the term that relates to a.

Theorem 10 (Sagalovsky). Under (A8), for all realizations not in a P-null set,
o, = o asn — oo.

So under (A8), {a,} converges almost surely, though not necessarily to the true parameter a°.

Lastly, under (A8)-(A10), Sagalovsky states that if {,} has an accumulation point a*, then
p(i, jsp(a”,i),a”) = p(i, j; p(a”, i), a®) Vi, j.

Thus, asymptotically, the transition probabilities of this adaptive control system are the same
whether the parameter is o™ or the true a°, meaning the two parameters are indistinguishable
(similar to Borkar and Varaiya).

Sagalovsky also explains that the above result with the case that {«,} does not converge to the
true parameter actually yields a rule to modify the control law ¢ as to guarantee convergence to

the true parameter a°: if necessary, modify ¢(a,, X,,) so that

[e.e]

ST w b = oo

m=0 | jeI
5 Extension to a Quadratic Case

In [7], Pasik-Duncan extends Sagalovsky’s results in the linear case to a two-dimensional linear case,
and leaves the extension (using similar methods) to the quadratic case to the reader. In this paper,

the objective is to present these methods to extend the results in the last section to a quadratic

case.
5.1 Model
We consider a Markov chain {X,, },,>0 which takes values from a finite state space I = {1,2,...,I}.

The transition probabilities P(X,+1 = j|X,, = i) are assumed to depend on an unknown real

parameter «. These transition probabilities are also affected by the control action u, selected at
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time n based on the previous observations on the direction of the chain. Denote
P(XnJrl = ]|Xn = 1 Up, a) = p(i,j; Unp, a)'

Suppose parameter o has the unknown true constant value a°®. The specific model we will consider

in this section is quadratic, where the transition probabilities depend quadratically on «;, i.e.
p(i,j; Un, a) = (I(i, J; un)a2 + b(i,j; un)a + C(i, J; un)a (1)

where a(-,-;+),b(+,;-),c(-, ;) are known real functions.

The control u,, only depends on the procession of the chain from time 0 up to and including the
current state. It is assumed this procession is observed exactly, so defining the o-algebra generated
by Xo, X1,..., Xm

Fm =0{Xo0, X1,..., X}

allows u,, to be Fp,-measurable for m = 0,1,.... We will write f € F,, to denote F,,-measurability
of a given function f.

Recall, the true value a° for parameter « is unknown. However, we assume it is known that a°
belongs to an interval J with endpoints o < @. For simplicity, assume a° = 0, and a < —1 and
a > 1, that way —1,1 € J.

We want to control the procession of the chain with our choices of controls u,. To choose
the best control u, at time n, we need to estimate a°. As in the preceding papers discussed in
the previous sections, we will estimate a°® using maximum likelihood estimation. We define the
likelihood of a given « at time n as

n—1

P(X07X17' . .,Xn|X0;u0,u1,. . '7un—17a) = H p(XmaXm+1§Um7a)

m=0
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and the log-likelihood

n—1

Ln(Oé) = Z 10gp<Xm7Xm+laumaa)

m=0

n—1
= Z log [a(Xm, Xma1; um)a2 + (X, Xont 15 um) + (X, Xons1; um)],
m=0

a € J. Let am = a(Xm, X415 Um)s bm = b( Xy Xng1; Um), and ¢, = (X, Xont1; U ). Further,
let al, = a(Xom, 73 Um), b, = b(Xom, J; um), and = (X, 73 um). Note ap, by, ¢ € Frns1 and

ain, bin, € Fm for j=1,...,1. Now we have the simpler log-likelihood function

n—1

Ln(a) = > 10g [ame® + bma + cm),

m=0

a € J. Now, we will define the maximum likelihood estimate (MLE) of a° at time n as «,, the

element in J s.t.

L (an) > Lp(a) VaelJ.

Since we defined the MLE over the closure of J, .J, we can guarantee the existence of at least one
such MLE. If there is more than one element that satisfies our maximum likelihood criteria, we can

choose «,, to be the smallest such element.

5.2 Assumptions and Formulation

In this section, we will outline the assumptions and their contributions used to achieve our conver-

gence results. Recall for the transition probabilities of a Markov chain we have

I
Zp(i,j;u,a) =1 Ya,u.

j=1
Then from our defined model (1), it follows that
I I

a(i, jiu) =0, Y bi,jiu) =0, > c(i,jiu)=1 Vi, u. (2)
j=1

J=1 J=1
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Further, since 0 < p(i, j;u,a) < 1 Vi, j,u,a, and o can take on the values —1, 1, we have that

0 <la(i,jsu)| < c(i,jiu) <1, 0 <[b(i,f;u)| < c(i,jsu) <1, (3)

Vi,j € I and Vu.

We will now make the following assumption also employed in [6], [1], [3], and [8].

(A11) For all i,5 € I, either

p(i,j;u,a) =0 Yu,a  or  p(i,j;u,a) > K >0 Yu,a.

This assumption allows us to determine topology of the chain, which should be known and should
not be altered by the choice of control u. The only other true restriction is the uniform lower bound
provided by K

We will not consider the P-null set of realizations where transitions with 0 probability occur.

Hence, under (A11), L,(«) is infinitely differentiable in o and we can compute

n—1

, B 2am0 + by,
Ln(a) - Z CLmOZQ + bma +Cm7 (5)
m=0
— 2a2,a% + 2a;mbpa + b2, — 2ap,c
L// mvYm m m'
mzz: ama + meé + Cm) (6)

To ensure that the likelihood function L, («) achieves its maximum and its second derivative is a

nonpositive function, let us make the following assumptions:
(A12) For all m, either

Umy b >0 or  am,bn <0.

(A13) For all m,

Am - Cm < 0.

From (6), it follows that there exists at least one &, maximizing L, () for a € J and that this

G is unique if Im < n s.t. ay £ 0, by, £ 0, and ¢, # 0. It could be the case for some realization
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am = by, = ¢, = 0 for all m. Then L,,(«) would be constant in o and we would take oy, = a

for all m. In this case the results we claim in this section will hold. For this reason we consider in

what follows that Im s.t. a,, # 0, b, # 0, and ¢, # 0 and that n is larger than this m.

To find the maximizing é&,, we will consider the sign of L] («). Define for m = 0,1, ...

2ama + by,
D —
m(@) ama? + bpa + e

and note

n—1

L (a) = Z Dy (), and Dyp(a) € Fpga.

m=0

Define also

2al,a + b, ;
E,(a) = E(D,,(a)|Fn) = . : — | -,
(@) = E(Dp ()| Fim) ;<afnaz+b¥na+c7m>

Vin(a) = Var(Dy,(a), Fin),

1

where ¢}, = p(Xm, j;u,a = 0). Now we have

i I
Em(QO:O):Z<l;T> =Y b, =0

by (2), and

dBp(a) nil 2(adn)202 + 2ad,bh 0+ (b1,)? — 2aduch, o
do (@ha? + bna + cn)? "

m=0

in which case we have

a<0 = E,(a)>0, a>0 = E,(a)<0.

(11)

(12)

(13)

We will consider the behavior of L/ («) at a given av < 0. A symmetric argument can be used for

a > 0. Fixing «, for simplicity we will write D, Ey, for Dy, (a), Epn (), etc.
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Define

with E(Y,,|Fn) =0, and let

n—1
An: ZEmEFn—la
m=0

n—1

Mn:ZYmefn.

m=0

Note, M, is a square integrable martingale. Also, let

(14)

(16)

(17)

(19)

n—1
My =Y Vn.
m=0
Then we have M? — M, is a martingale. Note
n—1
Ly, = (Ym+En) =M, + A,
m=0

Now, some computations are needed in order to proceed further:
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(2ama + v ) CJm
Chn

I
M~

En (20)
= alna? + blo +
I .
| . o
=" (2a),a+b,) — (21)
= alna? 4+ bha + ¢y,
1 J a2
— 3" (2ad,a 40, (1 — —moT HIma) (22)
= al,o? + bl + &,

Il
DO

! 1 i j j
j=1 j=1 j=1 ama2 + meé + C]m

i 2(a)%aB + 3ambjma + ()% (24)
= al, a2 + bha + cly

. i 2(ahn)20? + 3afpbha + (b)) (25)
o aha? + blha + cy ’

where we used (2). From our assumptions on a,, by, ¢, and that o < 0, we have that E,, > 0.

Let us estimate the ratio V;,,/ Ep,:

2
i <2ama+bj) i I (2ama)2
V. ]_1 aﬁnoﬁ—i-b o+ cl )2 Kj 1 ahno? + blha + cy 1 26)
m ) 26
> 2
Em I <2amoz+b] e I (2ama+bj ) || Kla|
= aha® + bha+ ;ama2+b + ch
So, we have
Ep,
v, < —m 27
< Kl (27)

The increasing process M,, plays an important role in defining the behavior of the martingale M,,.

We have the following lemma from [7]:
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Lemma 1. For all realizations not in a P-null set,

lim M, <oo = M, - M <oo asn— oo (28)
n—oo
. M,
lim M, <oco = — —0 asn — oo. (29)
n—00 Mn
Proof.
_ L M, M
lim M, < oo = n(@) =14+ 514+—— 51 asn— oo,
n—00 An An hmn%oo An
_ L M,
lim M, =00 = n(@) =14+=-"—>1 asn— oo,
n—00 A, A,
using (27).
O
Theorem 11. For all realizations not in a P-null set
n—1 L, (Oé)
An:ZEm%oo = ?47”%1 asn — 0o
m=0
for a < 0.
From (A11) and ala? +bha + ¢, < 1 for each j € I, it follows that for o < 0,
[2(—a)*(a),)? = 3a®ad,bl, + (—a)(8),)*] < Ep() (30)
j=1
I . . . .
[2(=a)*(ad,)? — 3a”ad, b, + (—a)(b),)?]
<= . (31
< = (31)
Then, note that for all a < 0,
Z Z [2(a?,)? — 3al bl + (b),)?] - 00 = Ll (a) 300 asn— oo. (32)
m—0 j=1

An analogous argument can be made for o > 0. This leads us to the following corollary.
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Corollary 1. For every realization except on a P-null set

n-1 [ , o , L (o) >0 asn— oo
Z Z [2(a,)? — 3al b, + (b0,)°] - 00 asn— o0 => (33)
m=0j=1 L (a) > —00 asn—

This leads us to the following theorem:

Theorem 12. If the sequence {Gy,} of mazimum likelihood estimates has an accumulation point

a* #£ 0, then for every realization except on a P-null set

00 I
S [266h,)? — 3ad,bl, + ()% | < oo (34)
m=0 \ j=1

Proof. Consider a realization where (33) holds and the sequence {&y,} has an accumulation point

a* < 0 (symmetric argument for o* > 0). Then there exists a subsequence {ny} s.t.

lim &,, =a* <O0.
k—o00

So, there exists k¥ s.t.

1
E>E — o?nk<§oz*<0.

Now, by (5)
L, (o) < L), () Vi > k. (35)
Recall, for &y, <0 to be the MLE, we should have L}, (&y,) <0. Then from (35) we obtain
ro(L s
Ly, (507) <0 (36)

1 1
for all k£ > k° and ia* < 0. So for §a* < 0,

1
L, <2a*> — —00  as n — o0. (37)

Now (37), (35), and (33) imply the desired result (34).
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O
Corollary 2. Exzcept for a P-null set of realizations, if the sequence {&y} if maximum likelihood

estimates has an accumulation point o <0, then

2(al))? —3al, bl + (b)) =0 asm—oc0 = al, -0, ¥

). —0 asm — oo. (38)

Recall a(-,-;+) and b(,-;-) relate the unknown parameter « to the transition probabilities. So,
(38) tells us that for {d,} not to converge to a” = 0, the transition probabilities should give less

and less information on « has time n goes on.

Theorem 13. Under (A11), except for a P-null set of realizations,

ap — " asn — oo (39)

for o* € J.

From Theorem 12, we know almost surely

00 I
S D [2(ad,)? = 3ad,bl, + (b,)%] | =00 = G —a® =0, (40)
m=0 \ j=1

so we only have to consider those realizations where

o) I
S D [20a))% = Bajbi, + (4,)?] | < oo (a1)
m=0 \ j=1

Let us consider the limit behavior of L/ () for those realizations where (41) holds. By (30)-(31)

and (41) we have

i Ep(a) <0 (42)

m=0

for o < 0.

Consider now the following lemma, complementary in some sense to Theorem 7:
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Lemma 2. For a given o € J s.t. a # 0 and for every realization not in a P-null set

o0
ZEm )<oo = L (a) >c asn— oo. (43)

m=0

Proof. Assume « < 0. Recall that
Lh(a) = M, + Z Em

n—1
Since we know by Lemma 1 that Z FE,, converges, we only have to prove M, converges as n. — 0.

m=0
From (27) we have the following inequality

Sl S, "

m=0 m=0

n—1 n—1

Convergence of Z E,, implies convergence of Z Vim. Now we can use Lemma 1, which tells us
m=0 m=0
that for all realizations not in a P-null set, M,, - M < oo.

O

Now, we show L’(«) is continuous, differentiable, and strictly decreasing. Call the limit in (43)

¢=L'(a). From (6) and (A11) we have

n—1
0> Ly(a) > —% D [2a0, + 2aubm + b7, — 2amcn] )
m=0
1 n—1 1 ] o )
> = >0 | 2 [12(a])? = Sajubl, + (41)7] | - (46)
m=0 \ j=1

From this inequality it follows that L] («) is a nonincreasing function converging for all «, and
the limit function ¢ = L'(«) is uniformly bounded in « for those realizations where (41) holds.

Then
nd 2a2,0% + 2a;,bpma + b2, — 2amcm

L//
(ama? + bpa + ¢p)?

(47)

m=0
It follows that L'(«) is strictly decreasing for all realizations for which Im s.t. a,, by, ¢ # 0. So,
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Theorem 13 holds. The following lemma characterizes the behavior of L/ («):
Lemma 3. FExcept for a P-null set of realizations

o0

I
Z [2(a?,)? — 3al, bl + (b0,)°] | <oo = Li(a) > L'(a) asn— oo (48)

m=0 \ j=1
uniformly in o.

The function L'(«) is continuous, differentiable, and strictly decreasing.
Let us now return to the proof of Theorem 13. We have that J is compact, so we just need
to show the sequence {&,} does not oscillate. It is enough to show that it is not the case that

Jlg,7] C J where ¢ < r and 3{nl,}, {n2,} subsequences of 1,2, ... s.t.
Gpi <q and  Qu2 > Ym. (49)
Assume (49) holds. Then from the definition of L,, and &,

Ln1 (q) S 0, Ln1 (’I“) S 0 VYm

m m

Lngn (Q) >0, Lngn (T) >0 Vm,

so as the limits exist by Lemma 3, it follows that L'(¢) = L'(r) = 0, but this cannot be the case as

q # r and L'(-) is strictly decreasing.

5.3 Adaptive Control and Results

Having the convergence of estimates of our unknown parameter, we can now use adaptive control.

We will make another assumption:

(A14) Suppose

Up = Qb(ana Xn)
and a(i, j; ¢(a, 1)) and b(i, j; (e, 7)) are continuous functions in « for all 4,5 € I.

Proposition 12. Assume (All) and (Al4). Ezcept for a P-null set, if the sequence {&,} — o™ #
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a® =0 asn — oo, then
a(i, j; ¢(a”, i) = 0, b(i, j; #(a*,1)) = 0 (50)

for every j € I and for every state i that is reached i.o.

Proof. 1f we discard the P-null set where (39) does not hold, then we have that &, — a* as n — oc.

By Corollary 2,

0= lim af, = lim a(Xm,j;¢(Gm, Xm)), 0= lim b, = lim b(Xm,j;$(Gm, Xm))  (51)

m—o0 m—r0o0 m—o0

for j =1,...,1. If a state i is reached i.0. we can take a subsequence my, s.t. X,,, =1 for all k.

Along this sequence,

0= lim a(Xpm,,J; ¢(Gmys X)) = Jim a(i, J; (Gmy, 1) = a(i, j; p(a, 1)),

k—o0

0= lm b(Xm,, j; ¢(Gmy, Xmy)) = Um b(7, j5 (G, 7)) = b(i, 75 (@, 7)),
—00 k—o0

where we have used the continuity from (A14).

We would like to extend (51) to all states in I, so we will make the following assumption:
(A15) For all 7,5 € I there exists the sequence 1o, ..., s.t.
plis—1,is;u, ) >0

fors=1,...,r+ 1 where 79 = ¢ and 7, = j.

From Theorem 11, it follows under (A15) that all states are reached i.o. almost surely, and thus

Proposition 12 holds for all ¢ € I. Now, we also have the following proposition:

Proposition 13. Assume (All), (Al4), (A15). Except for a P-null set of realizations, if the
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sequence {&y,} converges to a*, then
p(i, j; ¢(a”, i), @) = p(i, j; ¢(a”, i), a°) (52)

for every i, € I.

Proof. The equation (52) holds if a* = a. If a* # a°, let us consider the set of all realizations

where Proposition 12 holds and every state ¢ is reached i.o. Then

p(i, js #(a”, i), ") — p(i, j; ¢(a”, 1), a°)
= a(i, j; ¢(a*,1))(a")® + b(i, j; (™, i)™ + ¢(i, j; (™, 7))
— ali, j; p(a*,1))(a°)? = b(i, ; p(a*, 7))o — e(i, j; p(a*, 7))
= a(i, j; p(a*, 1)) [(@")? = (°)?] +b(i, j; $(a*,0)) [ — a®] +0
=0-[(a*)? = (a®)?] +0- [a* —a°] (by Proposition 12)

=0.

As in Theorem 7 in [1], we can consider ¢(a, ) as giving a feedback control law to be used when
we know «, and (52) can be interpreted as, under the control law specified by the estimated value
a*, a° is indistinguishable from «*. Theorem 8 provides a rule to modify the control law ¢(-,-) to

guarantee convergence to the true value a°: If necessary, modify ¢(a,, X;,) to have

[e.9]

I
Z [2(aZn)2 — 3al bl + (bjm)ﬂ = oo.

m=0 \ j=1

5.4 Concluding Remarks and Future Investigations

We have now shown, in support of previous results, that the maximum likelihood estimate converges
to a value o* indistinguishable from the true value under a control feedback law induced by «o*.
More specifically, we have shown that all results by Sagalovsky in [8] extend to the quadratic case

with the additional assumptions discussed.
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As mentioned in [7], these results can be extended to controlled Markov chains with transition
probabilities depending on « by higher degree polynomials, but the computations become very
difficult. Additionally, no known effort has been made to consider a controlled Markov chain with
transition probabilities depending on « via a convex function. Thus, there should be future inves-
tigations on such a model to contribute to this collection of results. Furthermore, computational
investigations of these results would add a new dimension and possibly lead to further interest
based on useful application of adaptive control of Markov chains. Lastly, most of the above results
use maximum likelihood estimation to estimate the parameter a. Investigation into other forms of
estimation, notably weighted least squares estimation, and a behavioral comparison to the asymp-
totic behavior of the maximum likelihood estimation would be interesting. Further suggestions for

continued investigations can be found in [1], [3], [2], [7], [8]
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