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Abstract

The main focus of this dissertation is to investigate the existence and stability of solitary

waves to dispersive partial differential equations and, in particular to nonlinear Schrödinger

equations with defects nonlinearity.

First we identify necessary and sufficient conditions for the existence of appropriately

localized waves for the inhomogeneous semi-linear Schrödinger equation driven by the

subLaplacian dispersion operators (−∆)s,0 < s ≤ 1. We construct these waves and we

establish sharp asymptotics, both at the singularity 0 and for large values. We show the non-

degeneracy of these waves. Finally, we provide spectral and orbital stability classification,

under slightly more restrictive assumptions.

Then we study the concentrated NLS on Rn, with power non-linearities, driven by

the fractional Laplacian, (−∆)s, s > n
2 . We construct the solitary waves explicitly, in an

optimal range of the parameters, so that they belong to the natural energy space Hs. Next,

we provide a complete classification of their spectral stability. Finally, we show that the

waves are non-degenerate and consequently orbitally stable, whenever they are spectrally

stable.

Incidentally, our construction shows that the soliton profiles for the concentrated NLS

are in fact exact minimizers of the Sobolev embedding Hs(Rn) ↪→ L∞(Rn), which pro-

vides an alternative calculation and justification of the sharp constants in these inequalities.
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Lastly, we consider the degenerate semi-linear Schrödinger and Korteweg-de Vries

equations in one spatial dimension. We construct special solutions of the two models,

namely standing wave solutions of NLS and traveling waves, which turn out to have com-

pact support and are thus known as compactons. We show that the compactons are unique

bell-shaped solutions of the corresponding PDE’s and for appropriate variational problems

as well. We provide a complete spectral characterization of such waves, for all values of

p. Namely, we show that all waves are spectrally stable for 2< p≤ 8, while a single mode

instability occurs for p > 8. This extends previous work of Germain, Harrop-Griffiths and

Marzuola, [42], who have previously established orbital stability for some specific waves,

in the range p < 8.
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Chapter 1

Introduction

1.1 Preliminaries

1.1.1 Function spaces, Fourier transform and basic operators

In order to fix the notations, we shall use the standard expressions for ‖·‖Lp(Rn),1≤ p≤∞,

or just ‖.‖p as well as the following expression for the Fourier transform and its inverse

f̂(ξ) =

∫
Rn

f(x)e−2πix·ξdx, f(x) =

∫
Rn

f̂(ξ)e2πix·ξdξ.

The operators (−∆)s,0< s < 1 are defined in a classical way on the Schwartz class1 S via

̂(−∆)sf(ξ) = (2π|ξ|)2sf̂(ξ). Accordingly, the Sobolev spaces are taken

‖f‖Ḣs := ‖(−∆)s/2f‖L2 ,‖f‖Hs = ‖f‖Ḣs +‖f‖L2 .

1and then by extension in any Banach space for which S is a dense subspace
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More generally, the Sobolev spaces Wα,p,α > 0,1< p <∞ are introduced as completions

of the Schwartz family in the norms

‖f‖Wα,p := ‖(−∆)s/2f‖Lp +‖f‖Lp .

The use of weighted spaces is necessitated by the context, so we introduce

‖f‖L̇q,−b =

(∫
Rn
|x|−b|f(x)|qdx

)1/q

.

The following commutator identity, see p. 1703, [36], will be of special interest

[(−∆)s,x ·∇x] = 2s(−∆)s. (1.1.1)

We will also need properties of the kernel of the operator (I+ (−∆)s)−1, s > 0 . We state

a precise result next.

Lemma 1. Let 0< s < 1. Then, the function Gs(x) : Ĝs(ξ) = (1 + (4π2|ξ|2)s)−1 satisfies.

• There is C = Cs,n, so that

Gs(x)≤ Cs,n|x|−n

when |x|> 1 .

• For |x| ≤ 1, there is

Gs(x)∼


|x|2s−n+O(1) 2s < n

ln(2/|x|) +o(x) 2s= n

1 +o(x) 2s > n

.

• Gs > 0, Gs ∈ L1(Rn).
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Regarding ∇Gs, we have the following bounds, in the regime 2s < n

|∇Gs(x)| ≤ C

 |x|−n−1 |x|> 1

|x|2s−n−1 |x| ≤ 1
(1.1.2)

Proof. First, take a partition of unity, so that there is a function ϕ, supported in {ξ : |ξ|< 1}

and ζ(ξ) := ϕ(ξ)−ϕ(2ξ), whence ϕ(ξ)+
∑∞

k=1 ζ(2−kξ) = 1. Let |x|> 1, say |x| ∼ 2l, l≥

0. We have the partition of unity

1 = ϕ(2lξ) + (1−ϕ(2lξ)) = ϕ(2lξ) +
∞∑

k=1−l
ζ(2−kξ)

whence

Gs(x) =

∫
1

1 + (4π2|ξ|2)s
e−2πix·ξdξ =

∫
1

1 + (4π2|ξ|2)s
e−2πix·ξϕ(2lξ)dξ+

+
∞∑

k=1−l

∫
1

1 + (4π2|ξ|2)s
e−2πix·ξζ(2−kξ)dξ.

In the first integral, we estimate the integrand by absolute value, whence we obtain the

bound C2−ln ∼ |x|−n. For a given x, we identify j ∈ [1,n], so that |xj | ≥ 2l

n . Integrating

by parts N times in the variable xj (and N > n+ 1) and taking absolute values implies a

bound
∞∑

k=1−l

1

(2k|xj |)N
2kn . 2−ln ∼ |x|−n.

For |x|< 1, let us consider the case 2s < n, as the others are similar and somewhat simpler.

Say |x| ∼ 2−l, l ≥ 0. We now use the partition of unity

1 = ϕ(2−lξ) +
∞∑

k=l+1

ζ(2−kξ)

3



Again, for the integral with ϕ(2−lξ) we estimate by the absolute values

∣∣∣∣∫ 1

1 + (4π2|ξ|2)s
e−2πix·ξϕ(2−lξ)dξ

∣∣∣∣≤ C2l(n−2s) ∼ |x|2s−n,

while for the other integrals, we again integrate by parts N times in |xj | ≥ 2−l

n . The esti-

mates are again
∞∑

k=l+1

1

(2k|xj |)N
2k(n−2s) ≤ C2l(n−2s) ∼ |x|2s−n.

For ∇Gs, the bounds (1.1.2) follow in an identical manner, once we recognize that taking

derivatives results in an extra power of |x|−1.

The statement Gs > 0 (and in fact Gs is bell-shaped), can be proved via the representa-

tion
1

1 + (4π2|ξ|2)s
=

∫ ∞
0

e−t(1+(4π2|ξ|2)s)dt=

∫ ∞
0

e−te−t(4π
2|ξ|2)s)dt

and the well-known fact that ê−|ξ|2s is a bell-shaped function, as long as 0< s≤ 1. Thus,

‖Gs‖L1 =

∫
Gs(x)dx= Ĝs(0) = 1.

1.1.2 Rearrangements

In this subsection, we discuss the techniques of rearrangements. Let A be a measurable set

of finite volume in Rn. Its symmetric rearrangement A∗ is the open centered ball whose

volume agrees withA, i.e. A∗= {x∈Rn : |ωn||x|n<V ol(A)}. For characteristic functions

of measurable sets, define (χA)∗ := χA∗

Definition 1. Let f : Rn→ R be a measurable function that vanishes at infinity, i.e. for all

t > 0 we have df (t) := |{x : |f(x)|> t}|<∞.

4



We define the symmetric decreasing rearrangement f∗ of f by symmetrizing its level set,

namely f∗(x) :=
∫∞

0 χ{|f(x)|>t}∗dt and df∗(t) = df (t). A function is called bell-shaped, if

f = f∗. In particular, f = f∗ ≥ 0.

Recall the rearrangement inequality

∫
Rn
f(x)g(x)dx≤

∫
Rn
f∗(x)g∗(x)dx, (1.1.3)

valid for all functions vanishing at infinity. In addition, if one of the functions, say f , is

strictly decreasing, the equality is possible only if g is bell-shaped, i.e. g = g∗.

Next, we state the Polya-Szegö inequalities, which will be instrumental in our approach.

Lemma 2. For β ∈ (0,1) and f ∈ Hβ(Rn), its decreasing rearrangement f∗ ∈ Hβ(Rn)

and

‖(−∆)
β
2 f‖L2 ≥ ‖(−∆)

β
2 f∗‖L2 . (1.1.4)

The full proof of this result is standard. It can be found, for example, in Appendix A, [33].

The next result is the Hardy’s inequality.

Lemma 3. Let a < b and f ∈H1(R), so that f(a) = 0. Then,

∫ b

a

|f(x)|2

|x−a|2
dx≤

∫ b

a
|f ′(x)|2dx. (1.1.5)

Remark: This is a slightly more general version of the classical statement

∫ ∞
−∞

|f(x)|2

|x|2
dx≤

∫ ∞
−∞
|f ′(x)|2dx.

5



for function f : f(0) = 0. But it is clear that from the classical version, one obtains by an

approximation argument that

∫ b

0

|g(x)|2

|x|2
dx≤

∫ b

0
|g′(x)|2dx

for every g : g(0) = 0, b > 0. It is then clear that the formulation (1.1.5) reduces to this

form, by taking g : g(x) = f(x+a).

Our next proposition deals with a control of the weighted norms appearing in (2.2.2) in

terms of a Sobolev embedding.

1.1.3 Weighted Sobolev inequality

Proposition 1. For either one of the cases,

• n= 1,σ ∈ [1
2 ,1), 0< a < 1, 2≤ q <∞,

• n= 1,0< σ < 1
2 , 0< a < 2σ, 2≤ q < 2 + 4σ−2a

1−2σ ,

• n≥ 2, 0< σ < 1, 0< a < 2σ, 2≤ q < 2 + 4σ−2a
n−2σ ,

there exists C, depending on all parameters, so that

(∫
Rn
|x|−a|φ|qdx

) 1
q

≤ C‖φ‖Hσ(Rn). (1.1.6)

Remark:Note that the assumptions in Proposition 1 ensure that a < n. Also, for q = 2,

there is the estimate

(∫
Rn
|x|−a|φ|2dx

) 1
q

≤ Cε‖φ‖H a
2+ε(Rn)

, (1.1.7)

for every ε > 0.

6



Proof. For the case n ≥ 2, σ > 0, 0 < a < 2σ, and 2 ≤ q < 2 + 4σ−2a
n−2σ , we proceed as

follows. By Sobolev embedding, we have, since n
(

1
2 −

1
q

)
< σ,

(∫
|x|>1

|x|−a|φ|qdx

) 1
q

≤

(∫
|x|>1

|φ|qdx

) 1
q

≤ C‖φ‖Lq ≤ C‖φ‖Hσ .

Next, for |x|< 1

(∫
|x|<1

|x|−a|φ|qdx

) 1
q

≤ C

 ∞∑
j=0

2ja
∫
|x|˜2−j

|φ|qdx


1
q

And by Hölder inequality we have for every r ≥ q,

∫
|x|˜2−j

|φ|q ≤
(∫
|φ|r
) q
r

(2−jn)(1− qr ).

Thus (∫
|x|<1

|x|−a|φ|qdx

) 1
q

≤

 ∞∑
j=0

(2−jn)(1− qr )+ja‖φ‖q
Lr(|x|˜2−j)


1
q

.

Select any r ∈ (q,∞), so that

a < n
(

1− q
r

)
, n

(
1

2
− 1

r

)
< σ

That is,
1

2
− σ
n
<

1

r
<

1− a
n

q
,

which is possible, due to the restriction 2≤ q < 2 + 4σ−2a
n−2σ . We have

 ∞∑
j=0

(2−jn)(1− qr )+ja‖φ‖q
Lr(|x|˜2−j)


1
q

=

 ∞∑
j=0

(2j(a−n(1− qr ))‖φ‖q
Lr(|x|˜2−j)


1
q

7



≤ Cr sup
j
‖φ‖Lr(|x|˜2−j) ≤ Cr‖φ‖Lr ≤ Cr‖φ‖

H
n( 1

2−
1
r )
≤ Cr‖φ‖Hσ .

where in the last step we have used the Sobolev embedding and n
(

1
2 −

1
r

)
< σ. The case

n= 1,σ ∈ (0, 1
2),a < 2σ,2≤ q < 2 + 4σ−2a

1−2σ is done in an identical manner.

For the case n = 1,σ ≥ 1
2 ,2≤ q <∞ is as follows. By Sobolev embedding Hσ(R) ↪→

Lq(R), so (∫
|x|>1

|x|−b|φ|qdx

) 1
q

≤

(∫
|x|>1

|φ|qdx

) 1
q

≤ C‖φ‖Hσ .

The term
(∫
|x|<1 |x|

−b|φ|qdx
) 1
q

is controlled in the same way as above, we omit the details.

The Sobolev embedding will be of great importance, Ẇ s,p(Rn) ↪→ Lq(Rn), for 1 <

p < q <∞ : s ≥ n
(

1
p −

1
q

)
. Also, recall that for s > n

p , there is the embedding2 W s,p ↪→

C [s−np ],γ(Rn) : 0 < γ < s− n
p . As is well-known, the embedding H

n
2 (Rn) ↪→ L∞(Rn)

fails, but sometimes an useful replacement estimate is the following for all δ ∈ (0, n2 ),

‖f‖L∞ ≤ Cδ(‖f‖Ḣ n
2−δ

+‖f‖
Ḣ
n
2 +δ). (1.1.8)

The Sobolev embedding will be useful in the sequel, so we state it here - for each

1< r < q <∞,

‖f‖Lq ≤ Cr,q‖f‖
Ẇ

1
r−

1
q ,r
.

Next, we need the following endpoint Gagliardo-Nirenberg inequality

‖f‖Lq ≤ Cq‖f ′‖
1
3+ 2

3q

L2 ‖f‖
2
3 (1− 1

q )

L1 ,1≤ q <∞. (1.1.9)
2Here {x}= x− [x], where [x] = max{n : n≤ x}

8



1.1.4 The basics of the Hamiltonian index theory

We follow the setup described in [62], but the earlier versions of these results, [56, 83, 55,

68] provided much impetus in the developments of these methods.

Consider the Hamiltonian eigenvalue problem of the form

JLg = λg,g ∈H (1.1.10)

where H is a Hilbert space, J :D(J )⊂H∗→H , and

L :H→H∗

We will give a brief introduction of the analysis of the number of unstable eigenvalues of

(1.1.10). Assume that 〈Lu,v〉 is bounded symmetric bilinear form on H×H , which gives

rise to a self-adjoint operator (L,D(L)) Moreover, there exist a decomposition of H in L

invariant subspaces

H =H−⊕kerL⊕H+

where H−,H+ are the negative and positive subspaces respectively. More precisely, upon

introducing the self-adjoint projections P−=χ(−∞,0)(L),P+ =χ(0,+∞)(L), we takeH−=

P−[H],H+ = P+[H]. Assume in addition that the Morse index of L, that is n(L) =

dim(H−) <∞, while there exists δ > 0, so that 〈Lu,u〉 ≥ δ‖u‖2, for all u ∈D(L)∩H+.

For any λ ∈ σp.p.(JL), introduce the generalized eigenspace

Eλgen := ∪∞j=1E
λ
j ,E

λ
j = {f ∈H : (JL−λI)jf = 0}

9



Assume also that the dual space H∗ satisfies

{〈g ∈H∗ : 〈g,u〉= 0,∀u ∈H−⊕H+〉} ⊂D(J ).

Further since, Ker(L)⊂E0
gen, decompose E0

gen = ker(L)⊕E0, where E0 is finite dimen-

sional with basis say {ψi}ni=1 ⊂D(L). Let D be the matrix with entries

Dij = 〈Lψi,ψj〉.

Next, we need to introduce the notion of negative Krein signature of a purely imaginary

eigenvalue. More specifically, for iµ ∈ σp.p.(JL),µ > 0, consider Eiµ := Ker(JL−

iµ),Piµ : H → Eiµ and kiµi = n(L|Eiµ) = n(PiµLPiµ). Finally, we define the total Krein

signature

k≤0
i =

∑
µ6=0:iµ∈σp.p.(JL)

kiµi .

In the most common case, when iµ is a simple eigenvalue, with say an eigenvector ψµ, iµ

is of negative Krein signature exactly when the real quantity 〈Lψµ,ψµ〉< 0. In such a case

kiµi = 1.

By [62] see also [83][56] we have the following Hamiltonian-Krein index formula

kHam. := kr + 2kc+ 2k≤0
i = n(L)−n(D) (1.1.11)

where kr is the number of real positive eigenvalues of JL (counted with their multiplici-

ties), kc is the number of eigenvalues ofJLwith positive real and imaginary part, and lastly

k≤0
i is the total Krein signature introduced above. Note that kHam = 0 implies spectral sta-

bility for the model (1.1.10), as kHam counts all the instabilities, since kHam ≥ kr +kc.
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In the particular case n(L) = 1, the formula (1.1.11) reduces the situation to two cases,

namely kHam = 1, if n(D) = 0 and kHam = 0, if n(D) = 1. We have already discussed that

kHam = 0 is a case of stability. If however kHam. = 1, by parity considerations, it follows

that kr = 1, while kc = ki = 0. In any event, this implies that the system has a real unstable

growing mode. Thus, we have the following useful corollary of (1.1.11).

Corollary 1. If n(L) = 1, the the eigenvalue problem (1.1.10) is spectrally stable if n(D) =

1, and it has exactly one real unstable mode, if n(D) = 0.

1.1.5 Ground states of dispersive PDEs with standard NLS as case

study

In this section, the breakdown of the necessary steps needed to show the existence and

stability of solitary waves for dispersive partial differential equations is given. In particular,

the general Hamiltonian nonlinear fractional Schrödinger equation

iut+ (−∆)su−F (|u|2).u= 0,u : R+×Rn→ C, s > 0. (1.1.12)

In the last chapter we consider degenerate nonlinear Schrödinger and KdV equation. The

most familiar case is when s= 1,F ≡ |u|pu. The Nonlinear Schrödinger equation

iut+ ∆u+ |u|p−1u= 0, (1.1.13)

will be the prime example for this chapter. These models have many physical applications,

the prominent ones are in nonlinear optics.
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Another very important application is the study and existence and properties of the

ground states, for the case of NLS is the standing wave solutions in the form eiωφω
3,φω > 0.

If we plug this solitary wave into (1.1.12) we have the elliptical profile equation

(−∆)sφω +ωφω−F (φω)φω = 0. (1.1.14)

Or as in our prime example

−∆φω +ωφω−φpω = 0. (1.1.15)

From now on we will focus on the NLS equations, we will return to KdV in (4).

Next is to consider the linearized problems. To that end taking the ansatz u= eiωt(φω+

~v(t,x)) and plugging it into the NLS equation (1.1.12) we obtain,

 v1

v2


t

=

 0 1

−1 0


 L+ 0

0 L−


 v1

v2

=: JL~v (1.1.16)

where we ignore any O(v2) term. Here ~v = <v+ i=v := v1 + iv2 and the following frac-

tional Schrödinger operators are introduced

L− = (−∆)s+ω−F (φω), (1.1.17)

L+ = (−∆)s+ω−F ′(φω)φω (1.1.18)

with their domain H being a Hilbert space (H2s(Rn) for continuous F ).

For our specific example

3Here the subscript is to emphasize the dependency of ω not to be confuse with partial derivative with
respect to ω
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L− = −∆ +ω−φp−1, (1.1.19)

L+ = −∆ +ω−pφp−1 (1.1.20)

with domain (H1(Rn).

Clearly from the definition given in (1.1.16) we have

J :=

 0 1

−1 0

 ,L :=

 L+ 0

0 L−

 ,

and the assignment

 v1

v2

→ eλt

 v1

v2

=: eλt~v, we obtain the following time-independent

linearized eigenvalue problem

JL~v = λ~v. (1.1.21)

Taking (1.1.14) into account, one immediate observation is that L−φω = 0, also in the

presence of transitional symmetry, taking the derivatives formally of (1.1.14) with respect

to any xi, i= 1, . . . ,n we have L+∂xiφω = 0.

The spectral properties of the operatorL± play crucial role in the stability of the solitary

waves. It is in general easy to see that zero is the bottom of the spectrum forL− see theorem

3 of [80]. As for the kernel of L+, the conclusion is not as straight forward as L−. In the

absence of symmetry Ker[L+] = {0}, note that proving this result is highly non trivial

see (2.5). We give the definition of non-degenerate and weakly-non-degenerate as given in

[80].

Definition 2. We say that the wave φω is non-degenerate if Ker[L+] = span[∂iφω], i =

1, . . . ,n]. We say that φω is weakly non-degenerate if φω ⊥Ker[L+].
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Next, we give the formal notions of stability.

Definition 3. We say that the wave φω as a solution to the NLS problem (1.1.12) is spec-

trally stable if for (1.1.21) the set of solutions to (1.1.21) is empty.

We say that the wave φω is an orbitally stable solution of (1.1.21), if for any ε > 0∃δ > 0

such that for any initial data so that ‖u0−φω‖H1(Rn) < δ, then u satisfies

sup
t>0

inf
θ∈[0,2π],y∈Rn

‖u(t, .−y)− eiθφω‖H1(Rn) < ε.

Remark 1.1.1. The notion of stability may depends on the operator or models as:

• The notion of spectral stability depends entirely on the spectrum of the operator L.

• the notion of orbital stability depends on the number of symmetries in the model.

Next we construct the waves and discuss their stability. Prior to construction of the

waves, it is natural to ask for the range of parameters for which the solution of (1.1.14)

exists. To that end we compute the Pohozaev identity.

First we start by taking the inner product of (1.1.14) with φω and integrate by part

assuming of course φω has enough smoothness and decay properties we arrive at

∫
Rn
|(−∆)

s
2φω|dx+ω

∫
Rn
φ2
ωdx=

∫
Rn
H(φω)dx

Next is to take the inner product of (1.1.14) with x.∇xφω =
∑n

j xj∂jφω taking into

account the commutation formula (1.1.1) we get

(s− n
2

)

∫
Rn
|(−∆)

s
2φω|dx+f1(n,p,α)

∫
Rn
H(φω)dx=

nω

2

∫
Rn
φ2
ωdx.

From this equations solving for
∫
Rn |(−∆)

s
2φω|dx and

∫
RnH(φω)dx we have the fol-

lowing relations
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∫
Rn
|(−∆)

s
2φω|dx= f(s,ω,p,n,α)

∫
Rn
φ2
ωdx

and

∫
Rn
H(φω)dx= g(s,ω,p,n,α)

∫
Rn
φ2
ωdx

From here we can infer that if H(φω) > 0 then the solutions of (1.1.14) exists if

f(s,ω,p,n,α)> 0,g(s,ω,p,n,α) which gives us the necessary conditions for the existence

of such solutions.

Remark 1.1.2. One can claim that the range above for the existence of the special solutions

is the same as for the local well-posedness of (1.1.12).

Applying this to our example, in particular (1.1.15) we have the following relations

∫
Rn
|∇φω|2dx=

2ω(p+ 1)

2n− (n−2)(p+ 1)

∫
Rn
φ2
ωdx

and

∫
Rn
φp+1
ω dx=

ωn(p+ 1)−2n

2n− (n−2)(p+ 1)

∫
Rn
φ2
ωdx

So for existence of (1.1.15) we need to have p≤ n+2
n−2 ,n > 2

Variational Setup:

We construct the waves in (1.1.14) variationally. This can be accomplished in two ways.

The first is via the so called Weinstein functional, first introduced by Micheal Weinstein

[49]. Consider the following functional
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Iω[u] =

∫
Rn |(−∆)

s
2u|dx+ω

∫
Rn u

2dx(∫
RnH(u)dx

)κ(p)

Here κ(p) is a number that makes the denominator a norm.

With appropriate assumptions and careful analysis, one can show that the unconstraint

minimization problem Iω[u]→min has solution(sometimes bell-shaped, or even unique)in

the appropriate space. Moreover, the miminizer satisfies (1.1.14) upto scaling.

Note that the waves constructed using this approach are not necessary normalized waves

thus some of them are unstable.

Another approach is to construct the waves by imposing a constraint on the L2−norm.

To be more precise, one can consider the following constrained minimization problem.

 I[u] =
∫
Rn |(−∆)

s
2u|dx−

∫
RnH(u)dx →min∫

Rn u
2dx= λ, λ > 0

The question of the existence to the above minimization problem is hard to answer

despite many recent progress. The difficulty of the variational problem and how to address

it is not the focus of this work, but interested readers can check [80]. The point is that the

normalized waves are stable. Thus the range of existence for the normalized waves is the

same as the range of stability.

We will consider both approach for our example (1.1.15).

We start with the Weinstein functional

Iω[u] =

∫
Rn |∇u|

2dx+ω
∫
Rn u

2dx(∫
Rn u

p+1dx
) 2
p+1

.
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Assume that ω > 0, and u ∈ H1(Rn)∩L∞(Rn),u 6= 0, then 0 <
∫
Rn u

p+1dx <∞,

thus Iω[u] is well-defined. Next, take advantage of the scaling. To do that, for every

u 6= 0, Iω[u]> 0, consider the non-negative number

m(ω) := inf
u∈S

Iω[u].

Note that if φ is a minimizer for I1[u]→ min, then φω = φ(ω
1
2x) is a minimizer for

Iω[u]→min, and

m(ω) =m(1)ω
n−2

2(p+1)
(p−n+2

n−2 )
.

For the minimization to well-posed we need the estimate for some constant C > 0

‖u‖p+1 ≤ C‖u‖H1 .

The above estimate follows from Sobolev embedding inequality with p ≤ n+2
n−2 which

is the range we obtained from Pohozaev above, and also is the same for H1 local well-

posedness see [82, 17]. Thus we have

I1[u]≥ 1

C
.

Hence the variational problem is well-posed.

Now, to construct normalized wave of (1.1.15), consider the constrained variational

problem

 I[u] =
∫
Rn |∇u|

2dx− 1
p+1

∫
Rn u

p+1dx →min∫
Rn u

2dx= λ, λ > 0
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For the above problem to be well-pose, we need the following estimate for some con-

stant C > 0

‖u‖p+1 ≤ C‖u‖Ḣα .

Again this is Sobolev embedding inequality but this time with

1< p <
4

n
+ 1,α = n(

1

2
− 1

p+ 1
).

Even though the above estimate is not enough to show well-posedness of the normalized

waves, this can be accomplished using Hölder and Young’s ε inequalities to show that

I[u]≥−Cε,λ.

Remark 1.1.3. We will see that the range for existence of normalized range is the range

for which the waves are stable. One can easily claim that all normalized waves are stable.

Another question one might ask is whether the only stable waves are the normalized

ones.

The final step to construct these waves goes through minimizing sequences and notion

of convergence. Since we are operating in functions spaces the most important topological

property is compactness. Sometimes one can boil down the minimization problem to set

of minimizers that are bell-shaped. Using the bell-shape properties one can get a point

wise bound for the waves. This bound help to establish the so called the Kolmogorov-

Relich-Riesz criteria for compactness in Lp. This together with the lower semi-continuity

of the weak convergence in Hilbert space and the properties of the minimizing sequences

helps to show convergence. For more details on concrete examples please see proposi-
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tions(23)(3)(22). As for the analysis of the existence of waves of our prime example see

[81].

Next, we discuss the Euler-Lagrange equation (1.1.15). Take a test function h∈V∞0 (Rn\

{0}, and consider u= φ+ εh. Due to scaling let
∫
φp+1dx= 1. Since φ is a minimizer we

should have

Iω[φ+ εh]≥m(1) =N(φ).

Where N(φ) :=
∫
|∇φ|2 +

∫
φ2 and D(φ) :=

∫
φp+1dx. Thus,

N(φ+ εh) =

∫
|∇u(φ+ εh)|2 +

∫
(φ+ εh)2

=

∫
|∇uφ+ ε|∇uh|2 +

∫
(φ2 + 2εhφ+ ε2h2)

=

∫
|∇uφ|2 +

∫
φ2 + 2ε(〈(∇uφ,∇uh〉+ 〈h,φ〉) +O(ε2)

=N(φ) + 2ε〈(−∆ + 1)φ,h〉+O(ε2).

Similarly,

D(φ+ εh) =

∫
(φ+ εh)p+1dx= 1 + (p+ 1)ε〈φp,h〉+O(ε2).

It follows that

I1(φ+ εh) =
N(φ+ εh)

D[φ+ εh]
2
p+1

=
N(φ) + 2ε〈(−∆ + 1)φ,h〉+O(ε2)

1 + 2ε〈φp,h〉+O(ε2)

= N [φ] + 2ε〈(−∆ + 1)φ−N(φ)φp,h〉+O(ε2).

As this holds for arbitrary function h and for all small ε, we have established upto scaling

of N(φ) that φ solves (1.1.15) in a distributional sense.
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Finally, fix h to be a real-valued function, h ∈ C∞0 (Rn). Starting again with the in-

equality
N(φ+ εh)

D(φ+ εh)
2
p+1

≥N(φ),

but expanding to the second order ε2 , we obtain

N [φ] + ε2[〈L+h,h〉+N [φ](p+ 3)(〈φp,h〉)2] +O(ε3)≥N [φ],

after taking into account 〈(−∆ + 1)φ−N(φ)φp,h〉 = 0. After taking limits as ε→ 0, we

derive

〈L+h,h〉 ≥ −N [φ](p+ 3)(〈φp,h〉)2. (1.1.22)

In particular, 〈L+h,h〉 ≥ 0, if
∫
φp(x)h(x)dx= 0.

This implies that L+ is positive on co-dimension one subspace {φp}⊥.

After constructing the waves, the natural next step is to study the stability of such waves.

This heavily depends on the spectral properties of the operators L±. To this end we look

closely into such properties.

Spectral Properties of L±

Before diving into the spectral properties for the operators we first start to investigating the

self-adjointness and domain of the operators. The scope of this thesis is not the study of the

general operators (1.1.17). For interested reader see [72], and for very specific examples see

the next three chapters where we study specific cases of (1.1.17) for different nonlinearities.

Continuing with the NLS, the Friedrich’s extensions of (1.1.19) are self-adjoint oper-

ators with domain H1(Rn). Note that domain H1(Rn) follows directly from Gagliardo

Nirenberg Sobolev inequality. Next we introduce the quadratic forms D±[g,g] := 〈L±g,g〉
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with form domainH1(Rn)×H1(Rn). Following the usual Friedrich’s procedure, it suffices

to show thatD± is bounded from below, which again follows from the Sobolev embedding.

• Another key property is the that the continuous spectrum of L± is [ω,∞). This fol-

lows from the Weyl’s theorem since φ→ 0 as |x| →∞.

• Next is to show that L+ has exactly one negative eigenvalue. To that end, since

〈L+φ,φ〉=−(p−1)m(ω)
∫
φp+1 < 0, together with (1.1.22) we have n(L+) = 1.

• ForL−, note that by inspectionL−φ= 0.And assume−α2 is the smallest eigenvalue

of L−, then

−α2 = inf
‖u‖=1

〈L−u,u〉.

On the other hand sinceL−φ= 0, for any bell-shaped solution ψ : ‖ψ‖= 1 of (1.1.15)

we have

0 = 〈L−φ,ψ〉= 〈φ,L−ψ〉= 〈φ,−α2ψ〉=−α2〈φ,ψ〉< 0

a contradiction, thus this established the Coercivity of L−, that is , L−|{φ⊥} ≥ 0.

The positivity of the second eigenfunction of L+ plays a key role in the degeneracy of

the waves. For (1.1.17) see [36] while for (1.1.15) the positivity of the waves see [59].

Above we have established the basic Hamiltonian index theory. After analysis the spec-

tral properties ofL± we can state the following corollary. Before we do that note that for the

eigenvalue problem in the form (1.1.21) we have that J is invertible and anti-symmetric.

We already see that n(L+) = 1,n(L−) = 0, thus n(L) = 1.

Formally we can see that the eigenvalue zero ofL+ is of multiplicity n, withKer[L+] =

span{∂1φω, . . . ,∂nφω}.
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So,

Ker[L] =


 0

φω

 ,
 ∂1φω

0

 , . . . ,
 ∂nφω

0


 := {ϕ0,ϕ1, . . . ,ϕn}.

Clearly J −1 =−J :Ker[L]→Ker[L]⊥.

Introducing the matrix D as

Dij := 〈L−1[J −1ϕi],J −1ϕj〉.

Then by the index counting theorem developed in [56], if det(D) 6= 0, then

kr + 2kc+ 2k−i = n(L)−n(D).

Note that Since ∂iφω is odd in the ith variable, while ∂jφω is odd in the jth variable we

have

Dij = 〈L−1
− ∂iφω,∂jφω〉= 0.

Also Since L−1
− is positive on Ker[L−]⊥ and ∂iφω ⊥Ker[L−] we then have

Dii = 〈L−1
− ∂iφω,∂iφω〉> 0.

This reduces to n(D) = 〈L−1[J −1ϕ0],J −1ϕ0〉= 〈L−1
+ φω,φω〉.

Continuing on our formal land, we can also compute formally L+[∂ωφω] =−φω,which

yieldsL−1
+ φω =−∂ωφω. So to compute the stability condition also known as Vakhitov–Kolokolov

stability criterion 〈L−1
+ φω,φω〉, the standard scaling argument is deployed.

First note that taking the argument above about L−1
+ φω into account we have
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〈L−1
+ φω,φω〉= 〈−∂ωφω,φω〉=−1

2
∂ω‖φω‖22.

Note that φω := ω
1
p−1φ(ω

1
2x) solve the profile equation (1.1.15). Thus

〈L−1
+ φω,φω〉=−1

2
∂ω‖φω‖22 =−1

2
∂ω

[
ω

2
p−1−

n
2

]
‖φ‖22.

Hence 〈L−1
+ φω,φω〉 < 0 if and only if 1 < p < 1 + 4

n . Thus this is the range of p for

which (1.1.21) is Spectrally stable. Note that this is the same range for orbital stability.
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Chapter 2

Existence and stability of solitary waves for the

inhomogeneous NLS

2.1 Introduction

The main object of consideration in this chapter will be the dynamics of the solutions to the

Cauchy problem for the fractional inhomogeneous nonlinear Schrödinger equation1 More

precisely, we consider

 iut+ (−∆)su−|x|−b|u|p−1u= 0,(t,x) ∈ R×Rn,n≥ 1,

u(0,x) = u0(x)
(2.1.1)

where we henceforth restrict ourselves to parameters (b,p,s), satisfying the following nat-

ural assumptions b > 0,p > 1, s ∈ (0,1). This chapter has been published in [69]. Our

goal in this article is the construction and the stability of solitary waves for (2.1.1). More

specifically, the solitons are in the form of standing waves, that is special solutions in the

1see Section 1.1.1 for precise definitions of the fractional derivative operator

24



form u(x,t) = e−iωtΦω(x),Φ> 0. These satisfy the profile equation2

(−∆)sΦ +ωΦ−|x|−bΦp = 0,x ∈ Rn. (2.1.2)

The nonlinear Schrödinger equation arises in various physical contexts such as non-

linear optics and plasma physics[82]. The equation with the inhomogeneous nonlinearity

model the beam propagation in an inhomogeneous medium [10]. Fractional NLS also ap-

pears in many physical models like water models, quantum mechanics, Lévy stable process

and the fractional Brownian motion[27]. Finally, the model (2.1.1), with b > 0 appears as

an example, with a broken translational invariance, where special treatment is needed for

the analysis of the associated eigenvalue problems.

We now turn to a review of the literature regarding the well-posedness results for

(2.1.1).

2.1.1 The model - well-posedness results for the classical case s= 1

The classical model, s = 1, b = 0,p > 1 has been extensively studied in the literature, in

terms of well-posedness of the Cauchy problem, long time behavior etc.. As these results

are by now classical and well-known, we will not review them here, but we will rather refer

the interested reader to the following sources [15, 44, 43, 61, 14, 18, 16, 30, 19, 20, 58, 9].

Recently the well-posedness of (2.1.1) appeared in the literature for the Laplacian

case, i.e. s = 1. in fact, Farah [31] proved a Gagliardo-Nirenberg type estimate and

use it to establish sufficient conditions for global existence and blow-up in H1(Rn) for

4−2b
n < p < 4−2b

n−2 and 0 < b < min(2,n), which was later extended by Dinh [26]. More-

over, Guzmán [46] showed that (2.1.1) is globally well-posed for the initial data in Hs(Rn)

with 0 ≤ s ≤ 1 using the contraction mapping principle based on the Strichartz estimates.

2The sense in which (2.1.2) holds is to be made precise later on, see Section 2.3 below.
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In [39], the author showed the global well-posedness in H1(Rn) of (2.1.1) with s = 1,

using the assumption that if the initial data u0 satisfies ‖u0‖L2 < ‖ψ‖L2 , where ψ is the

unique positive radial soliton of (2.1.2). Moreover they also showed strong instability of

the standing waves.

In the paper [84], the author showed the global existence and blow up of solutions in

R2, under various assumptions on the initial data. In addition, the paper [32] showed that

if the initial datum u0 ∈ H1(R3) satisfies that the momentum as well as the Hamiltonian

of (2.1.1) with s= 1,n= 3 is dominated by same conserved quantities of (2.1.2) similarly,

‖∇u0‖
1+b
2

L2 ‖u0‖
1−b
2

L2 < ‖∇Q‖
1+b
2

L2 ‖Q‖
1−b
2

L2 where Q satisfies (2.1.2), then the solution u to the

Cauchy problem is global in H1(R3) for 0< b < 1, and asymptotically linear both forward

and backward in time for u0 radial and 0 < b < 1/2. In [28], the author studied the decay

properties of global solutions for the equation(s = 1) when 1 < p < 4−2b
n−2 for n ≥ 3 and

using this they showed the energy scattering for the equation in the case 1 + 4−2b
n < p <

1 + 4−2b
n−2 . In [23], the authors have studied the global well-posedness for the defocusing

inhomogeneous NLS, whose scaling critical index sc < 0. In [12], the authors showed

the L2−norm concentration for the finite time blow-up solution for the focusing INLS.

The same authors later in [11] investigated the blow-up and scattering criteria above the

threshold for the same equation. Chen, [21] has considered the model (2.1.1), with non-

linearity |x|b|u|p−1u,b > 0. He has identified essentially sharp conditions under which the

solutions exist globally and others, under which the solutions blow up in finite time.

We now turn our attention to the issue of the existence of the solitary waves and their

stability.
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2.1.2 Solitary waves and stability in the classical case s= 1

The question for existence of solitary waves (2.1.2) and their stability was investigated in

some specific instances of nonlinearity g(x, |u|2)u in the late 90’s in [53]. Specifying to the

case V (x)|u|p−1u, and in particular to the case, V = V (ε|x|),0 < ε << 1 was considered

in [34], [63], see also the more recent work [51].

A general problem modeled by (2.1.1), was studied systematically for first time in the

work of De Bouard-Fukuizumi, [10]. More precisely, they consider classical NLS (i.e.

s= 1) with focussing nonlinearity V (x)|u|p−1u, where V ≥ 0,

V ∈ L
2n

n+2−(n−2)p
loc. (Rn), lim

x→∞
V (x)|x|b = 1, (2.1.3)

which of course contains the important case V (x) = |x|−b, under the constraints 0 < b <

2,n ≥ 3,1 < p < 1 + 4−2b
n−2 . In this work, they show the existence of non-negative solitary

wave solutions under the same assumptions. Furthermore, they showed that there exists

ω∗ > 0, so that the stability of the said solitary waves holds in the range 0 < b < 2,n ≥

3,1 < p < 1 + 4−2b
n , when the spectral parameter ω ∈ (0,ω∗). The key step in the stability

proof is to show that the linear operator associated with the second variation of a Lyapunov

functional3, which is non-degenerate, for this they adapt a method of [54]. The work in a

way supplements the earlier work [37], where the instability of the waves was shown in the

range p > 1+ 4−2b
n ,n≥ 3, for small enough ω > 0. Further, more general instability results

have appeared in [64].

The authors in [40],[38] proved similar results (both for the stable and unstable waves,

with frequency ω close to zero), but in the case of non-degeneracy of the linearized operator

they employ the spherical of harmonics of the Laplacian.

3Although a key assumption, namely b < 2 has to be revised to b < 3
2 in the case n = 3, more on this

below
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2.1.3 The fractional case 0< s < 1

The case of the fractional Schrödinger operator, that is s ∈ (0,1), has also received con-

siderable attention in recent years. Regarding the well-posedness for the standard power

non-linearity, we mention the work of Dinh, [27] and the references therein. The paper

[78] studied the well-posedness of (2.1.1) with b < 0. Unfortunately, we are not aware of

any local and global well-posedness results for (2.1.1). It looks however that the work [22]

seems to contain all necessary ingredients in terms of estimates and one has to proceeds as

in [31]. We leave this line of investigation open to other researchers.

Regarding solitary waves for the fractional NLS, the real breakthrough came in the

article [35], which deals with the case b = 0,n = 1, s < 1 about the existence of positive

solution of (2.1.2) has been studied by the authors in [35]. Moreover, the non-degeneracy

of the ground state is shown, which plays a very important role in orbital stability of such

solutions. In a later work, [36] generalizes the above results in any dimension. More

precisely, the uniqueness and non-degeneracy of the ground state solution for (−∆)sQ+

Q−|Q|p−1Q= 0, with Q ∈Hs(Rn) was established in Rn,n≥ 1, s ∈ (0,1) where 1< p<

1 + 4s
n−2s for 0< 2s < n and 1< p <∞, 2s≥ n.

Our goal is to investigate the existence of the waves Φ, given by (2.1.2), as well as their

stability properties. Let us introduce the formally conserved quantities of 2.1.1:

• the L2 norm

P [u] =

∫
Rn
|u(x)|2dx

• the Hamiltonian

H[u] =
1

2

∫
Rn
|(−∆)

s
2u(x)|2dx− 1

p+ 1

∫
Rn
|x|−b|u(x)|p+1dx.
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We will also make use of the total energy functional, defined as follows

E[u] :=H[u] +
ω

2
P [u].

In fact, a variant of the local well-posedness theory, presented in Theorem 4.6.6 in [16] for

the case s= 1, guarantees that for a data u0 ∈Hs(Rn), 1< p< 1+ 4s−2b
n−2s , there exists time

T0 = T0(‖u0‖Hs), so that a strong solution u(t, ·) ∈Hs(Rn) to (2.1.1) exists in 0< t < T0

and moreover P(u(t)) = P(u0),H(u(t)) =H(u0).

Next, we discuss the linearization of (2.1.1) around the standing waves e−iωtΦω. We

perform a standard linearization procedure, namely we take u = e−iωt[Φω + v], plug it in

(2.1.1) and ignoring the higher order termsO(v2), we arrive at the linearized system, which

after v = (<v,=v) =: (v1,v2) can be written as

 <v
=v


t

=

 0 −1

1 0


 L+ 0

0 L−


 <v
=v

 , (2.1.4)

where the following fractional Schrödinger operators are introduced

L+ = (−∆)s+ω−p|x|−bΦp−1,

L− = (−∆)s+ω−|x|−bΦp−1.

Note that at this point, the properties of the potential |x|−bΦp−1 are not yet understood, but

one has to definitely address the issue of its singularity at zero. This shall be a major con-

cern going forward. We just mention that for the purposes of the stability considerations,

it is convenient on using the standard domain D(L±) =H2s(Rn), which will lead to some

mild additional, perhaps unnecessary, restrictions on the parameters.
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Upon the introduction of the operators

J :=

 0 −1

1 0

 ,L :=

 L+ 0

0 L−

 ,

and the assignment

 <v
=v

→ eλt

 v1

v2

=: eλt~v, we obtain the following time-independent

linearized eigenvalue problem

JL~v = λ~v. (2.1.5)

2.1.4 Main results

Before we formally state our results, we need a few rigorous definitions about the objects

that we study. We employ the following standard definition of stability.

Definition 4. We say that the wave e−iωtΦ is spectrally stable, if the eigenvalue problem

(2.1.5) has no non-trivial solutions (λ,~v), with<λ> 0. Otherwise, in the cases where there

is λ :<λ> 0 and ~v 6= 0, so that (2.1.5) is satisfied, we say that the wave e−iωtΦ is spectrally

unstable and λ is referred to as an unstable mode for (2.1.5) .

We say that e−iωtΦ is orbitally stable, if for every ε > 0, there exists δ = δ(ε), so that

whenever ‖u0−Φ‖Hs(Rn) < δ, then the following statements hold.

• The solution u of (2.1.1), in appropriate sense, with initial data u0 ∈Hs is globally

in Hs(Rn), i.e. u(t, ·) ∈Hs(Rn).

•

sup
t>0

inf
θ∈R
‖u(t, ·)− ei(ωt+θ)Φ(·)‖Hs(Rn) < ε.

Key Assumptions

Let Φ be a solution of (2.1.2). We assume that:
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1. The solution map g → ug has continuous dependence on initial data property in a

neighborhood of Φ. That is, there exists T0 > 0, so that for all ε > 0, there exists δ > 0,

so that whenever g : ‖g−Φ‖Hs < δ, then sup0<t<T0 ‖ug(t, ·)− e
−iωtΦω‖Hs < ε.

2. All initial data, sufficiently close to Φω in Hs norm, generates a global in time solu-

tion ug of (2.1.1). In addition, the L2 norm and the Hamiltonian for these solutions

are conserved. That is

P [ug(t)] = P [g],H[ug(t)] =H[g].

Remarks:

• The continuity dependence on initial data property stated above is a simple conse-

quence of a standard local well-posedness result, in the spirit of Theorem 4.6.4, [16].

Since such result seems unavailable at the moment, we explicitly assume its veracity.

• There is also the notion of asymptotic stability for our waves. We do not formally

introduce herein, as we do not have definite results in this direction. We conjecture it

to be true, in all cases of spectral/orbital stability listed in our main theorems below.

Next, we introduce a subset in the parameters space (n,p,s,b), which will be helpful in the

sequel

Definition 5. We say that (n,p,s,b) ∈ A, if the parameters are in the range below

A :=


n= 1, 1

2 ≤ s < 1, 0< b < 1, 1< p <∞

n= 1, s ∈ (0, 1
2), 0< b < 2s, 1< p < 1 + 4s−2b

1−2s

n≥ 2, s ∈ (0,1), 0< b < 2s, 1< p < 1 + 4s−2b
n−2s

.
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This set will turn out to describe the necessary and sufficient conditions under which

Φω exists.

Our first theorem is a sufficiency result for the existence of the solitary waves Φω.

Theorem 1. (Existence results) Let (n,p,s,b) ∈ A, ω > 0. Then, there exits a bell-shaped

function4 Φω ∈ Hs(Rn)∩L1(Rn)∩L∞(Rn), so that the equation (2.1.2) is satisfied in a

distributional sense. If (2.1.2) is also satisfied in the strong sense then

Φω = ((−∆)s+ω)−1[|x|−bΦp
ω]. (2.1.6)

Finally, under the assumption s ∈ (1
2 ,1], we have that φ ∈ C1(Rn \{0}).

Remark: We have in fact much more precise description about the behavior of φ,∇φ

in Proposition 4 below.

Interestingly, we have the appropriate converse statement, which makesA the necessary

and sufficient set of requirements for the solvability of (2.1.2).

Theorem 2. Assume that a positive function ψ ∈Hs(Rn)∩L1(Rn)∩L∞(Rn) satisfies

(−∆)sψ+ωψ = |x|−bψp

in a distributional sense. Then (n,p,s,b) ∈ A and ω > 0.

Next, we are concerned with the stability of the waves constructed in Theorem 1.

Theorem 3. Let (n,p,s,b) ∈ A and ω > 0. In addition, assume that 2b < n and s ∈ (1
2 ,1].

Let Φω be the solution constructed in Theorem 1. Then,

1. the linearized operators L±,D(L±) =H2s(Rn) are self-adjoint and Φω ∈D(L+).

4That is, a radial function, which is non-increasing in the radial variable
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2. Φω non-degenerate, in the sense that Ker[L+] = {0}.

For 1< p< 1+ 4s−2b
n the soliton e−iωtΦω is spectrally and orbitally stable. In the comple-

mentary range,

1 +
4s−2b

n
< p <

 ∞ n= 1

1 + 4s−2b
n−2s n≥ 2,

the soliton is spectrally unstable.

Remarks:

1. According to the necessity statements in Theorem 2, the results in Theorem 3 provide

a full classification of the bell-shaped solutions that exists, in the cases s ∈ (1
2 ,1)

and 2b < n. Note that the constraint 2b < n is already contained in the necessity

assumption for n≥ 4.

2. In the case n = 3, the constraint b < 3
2 is slightly worse than the necessity assump-

tions, b < 2. This was the claim in [10], but one certainly faces some difficulties

(specifically with D(L+)) in the range b ∈ (3
2 ,2).

3. Our results seem to be new even in the case s = 1, in low dimensions, n = 1,2. The

restrictions b < 1
2 for n= 1 and b < 1 for n= 2 are more restrictive than the necessary

assumptions (n,p,s,b) ∈A. It is interesting whether one can establish rigorously the

stability situation for these parameters. As we discuss at length, the main issue is

to make sense of the functional analytic framework, in particular the domains of the

linearized operators L±.

4. The case p = 4s−2b
n is a bifurcation case, where one gets a crossing through zero of

a pair of purely imaginary eigenvalues to a pair of stable/unstable real eigenvalues.

This is also where the equation (2.1.1) enjoys an extra, so called pseudo-conformal
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symmetry, hence the extra pair of eigenvalues at zero. Even though one has spectral

stability for this case, one generally expects the corresponding waves to be spectrally

unstable, as in the classical NLS, see the seminal paper [24] for details.

This chapter is planned as follows. In Section 2.2, we introduce the Pohozaev’s identi-

ties, which in turn imply the necessary conditions for the existence of the waves, which

is the content of Theorem 2. In Section 2.3, we present the variational construction of

the waves along with some further properties of the profiles, such as boundedness, sharp

asymptotics at zero and smoothness. In Section 2.4, we provide a self-adjoint realization of

the linearized operators L±, followed by some preliminary coercivity properties. We also

introduce the Frank-Lenzman-Silvestre Sturm oscillation theory for fractional Schrödinger

operators as well as an adaptation of their method to our situation, which has to address

singular potentials in the next section. In Section 2.5, we establish the non-degeneracy of

the waves. This requires decomposition in spherical harmonics and careful analysis on the

radial subspace by using the Frank-Lenzman-Silvestre theory developed in the previous

section as well as an argument to rule out non-trivial elements in the first harmonic sub-

space. In Section 2.6, we provide a short introduction to the index counting theory, which

provide an useful criteria for spectral stability. In Propositions 10 and 11, we show the

coercivity of L± on {Φ}⊥, which is an important ingredient of the orbital stability scheme.

Finally, we show the orbital stability (whenever spectral stability holds) in Proposition 12.

2.2 Necessary conditions for the waves: proof of Theorem

1

The approach for the proof of Theorem 1 is to exploit the scaling and the associated Po-

hozaev’s identities, which in due course will lead us to the set of constraints A.
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2.2.1 Pohozaev identities and consequences

Before we make assumptions on the smoothness and decay properties of the profiles φ, and

in addition the sense in which (2.1.2) is satisfied, (2.1.2) remains a formal object. In order

to further demystify the ranges in which one might expect reasonable solutions of (2.1.2),

we provide the following Pohozaev type identities.

Lemma 4. (Pohozaev identities) Assume that 0 < b < n and ψ ∈ Hs(Rn)∩L∞(Rn)∩

L1(Rn), with ψ > 0 satisfies

(−∆)sψ+ωψ−|x|−bψp = 0 (2.2.1)

in a distributional sense. Then,

∫
Rn
|x|−bψp+1dx =

2ws(p+ 1)

2(n− b)− (n−2s)(p+ 1)

∫
Rn
ψ2dx. (2.2.2)∫

Rn
|(−∆)s/2ψ|2dx =

w(n(p+ 1)−2(n− b))
2(n− b)− (n−2s)(p+ 1)

∫
Rn
ψ2dx. (2.2.3)

ω

∫
Rn
ψ(x)dx =

∫
Rn
|x|−bψpdx. (2.2.4)

Proof. A formal proof (i.e. one where we assume that ψ has enough smoothness and decay

properties) is as follows. Take a dot product with ψ in (2.2.1) and integrating by part we

get ∫
|(−∆)s/2ψ|2dx+ω

∫
ψ2(x)dx=

∫
|x|−bψp+1(x)dx.

If we take a dot product with x ·∇xψ =
∑n

j=1xj∂jψ, taking into account the commutation

formula (1.1.1) and various integration by parts calculations, we obtain another relation

between
∫
|(−∆)s/2ψ|2dx and

∫
|x|−bψp+1(x)dx, namely

(s− n
2

)

∫
|(−∆)s/2ψ|2dx+

n− b
p+ 1

∫
|x|−bψp+1(x)dx=

nω

2

∫
ψ2(x)dx.
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Solving the last two relations for
∫
|(−∆)s/2ψ|2dx,

∫
|x|−bψp+1(x)dx, we obtain (2.2.2),

(2.2.3). Integrating (2.2.1) yields (2.2.4).

For ψ, which is not necessarily smooth and decaying, one follows similar scheme. To

establish (2.2.2), test the equation (2.2.1) by a sequence of Schwartz function ψN with

limN ‖ψN−ψ‖Hs(Rn)∩L1(Rn) = 0 and then take limits. In order to show (2.2.3), test (2.2.1)

by x ·∇ψN . Again taking into account the commutation relation [(−∆)s,x ·∇] = 2s(−∆)s

and taking limits as ψN → ψ establishes (2.2.3). The formula (2.2.4) is proved after testing

(2.2.1) by a function χ(x/N),N >> 1 (where χ is compactly supported and χ(x) = 1, |x|<

1) and taking limits N →∞.

Implicit in the formulas (2.2.2), (2.2.3) displayed above is that the parameters need

to satisfy certain conditions, so that ψ exists. We collect the necessary conditions in the

following corollary.

Corollary 2. Let p > 1, n≥ 1, s∈ (0,1), b > 0. If ψ with properties listed in Lemma 4 exist,

then ω > 0 and the parameters must satisfy one of the following relations:

• n= 1, s ∈ [1
2 ,1), 0< b < 1, 1< p <∞.

• n= 1, 0< s < 1
2 , b < 2s,

1< p < 1 +
4s−2b

1−2s
.

• n≥ 2, b < 2s,

1< p < 1 +
4s−2b

n−2s
. (2.2.5)

Remark: Corollary 2 simply states that if ψ solves (2.2.1), then (n,p,s,b) ∈ A.

Proof. The fact that ω > 0 follows from (2.2.4). If ψ(0) > 0 and the integral on the left-

hand side of (2.2.2) exists, it is non-singular at zero and hence b < n.
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From the positivity of the left-hand sides of (2.2.2), (2.2.3) and n(p+ 1)− 2(n− b) =

n(p−1)+2b > 0, it follows that 2(n−b)−(n−2s)(p+1)> 0. In particular, for n= 1, the

conditions are satisfied if s≥ 1
2 ,1<p<∞ or 0<s< 1

2 , but then 2s> b, 1<p< 1+2 2s−b
1−2s .

For n ≥ 2, note that we always have n− 2s > 0, whence we come up with b < 2s and

(2.2.5).

Clearly, Corollary 2 establishes Theorem 2.

2.3 The Variational Construction and properties of the

minimizers

We start with some elementary observations, which will identify conditions under which

an important variational problem is well-posed.

2.3.1 Well-posedness of the variational problem

Consider the following functional

Iω[u] =

∫
Rn |(−∆)s/2u|2dx+ω

∫
Rn u

2dx(∫
Rn |x|−b|u|p+1

) 2
p+1 dx

.

We shall henceforth assume5 that b < n, ω > 0 and 0 < s < 1. So, for any function u ∈

Hs(Rn)∩L∞(Rn) : u 6= 0, we have that 0 <
∫
Rn |x|

−b|u|p+1dx <∞, so that the ratio

Iω[u] is well-defined. Since for u ∈ S For every u 6= 0, Iω[u] > 0, we will consider the

non-negative scalar function

m(ω) := inf
u∈S

Iω[u].

5and in fact, we shall pose some more restrictions later on
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In the case when the parameters ensure that m(ω) > 0, will be referred to well-posedness,

versus the trivial case m(ω) = 0 (which is certainly possible for certain parameter ranges)

will be referred to as lack of well-posedness or ill-posedness. We have the following ele-

mentary lemma.

Lemma 5. Assume that m(1)> 0. Then,

m(ω) =m(1)ω
(n−2s)
2s(p+1)

[p−(1+ 4s−2b
n−2s )]

. (2.3.1)

In addition, if φ is a minimizer for I1[u]→min, i.e. m(1) = I1(φ), then φω(x) := φ(ω
1
2sx)

is a minimizer for Iω[u]→min.

Proof. Take φ(x) = ψ(λx) then

Iω[φ] =
λ−n+2s‖(−∆)s/2ψ‖2 +ωλ−n‖ψ‖2

λ2(n−bp+1 ) (∫
Rn |x|−bψp+1

) 2
p+1 dx

.

Taking ω = λ2s implies the formula

Iω[φ] = ω
−n+2s− 2(n−b)

p+1
2s I1(ψ),

whence the formula (2.3.1) follows by straightforward algebraic manipulations.

Remarks:

• As was have discussed above, the well-posedness is equivalent to m(1) > 0. So far,

we have not addressed this issue in a satisfactory manner. Lemma 5 just establishes

that m is a specific power function, if the functional Iω is bounded from a positive

constant.
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• Note however that under the standing assumptions s > 0, p > 1, the power of ω

appearing in (2.3.1) is negative exactly when (n,p,s,b) ∈ A.

2.3.2 Existence of minimizers

Our next goal is to obtain an existence result, which holds precisely when (n,p,s,b) ∈ A.

As is clear from Proposition 1, it suffices to consider the case ω = 1.

Proposition 2. Let (n,p,s,b) ∈ A. Then the unconstrained minimization problem

Iω[u]→min (2.3.2)

has a bell-shaped solution φ ∈Hs(Rn)∩Lp+1,−b, in particular m(ω)> 0.

If φ is a minimizer of (2.3.2), with ‖φ‖Lp+1,−b = 1, then φ satisfies the Euler-Lagrange

equation

(−∆)sφ+ωφ−m(ω)|x|−bφp = 0 (2.3.3)

in the following weak sense: for each h∈C∞0 (Rn\{0}), there is 〈(−∆)sφ+ωφ−m(ω)|x|−bφp,h〉=

0. Finally, for the linearized operator,

L+ = (−∆)s+ω−pm(ω)|x|−bφp−1,

we have that for each real-valued h∈C∞0 (Rn\{0}) :
∫
|x|−bφp(x)h(x)dx= 0, 〈L+h,h〉 ≥

0.

Remark:

• Proposition 2 does not claim the boundedness of the minimizer φ, i.e. the possibility

that limx→0φ(x) =∞ is left open.
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• Related to the previous point, the Euler-Lagrange equation may have a significant

singularity at zero, due to the presence of |x|−b and the possible singularity of φ at

zero. We sidestep the issue for the moment, by testing (2.3.3) away from zero as

h ∈ C∞0 (Rn \{0}).

• The non-negativity property of L+ over the set h ∈C∞0 (Rn \{0}),h⊥ |x|−bφp, nor-

mally would indicate that L+ has at most one negative eigenvalue. This would even-

tually turn out to be the case, see Proposition 5. Here, we are forced to restrict to a

restricted set of test functions, namely h∈C∞0 (Rn\{0}), as we have not yet resolved

the issue with the singularity of the potential x→ |x|−bφp(x) at zero.

Proof. By the arguments in Lemma 5, it suffices to consider the case ω = 1. By the as-

sumption (n,p,s,b) ∈ A, it follows from Proposition 1

(∫
|x|−bφp+1

) 2
p+1

≤ C‖φ‖2Hs .

Whence

inf
u 6=0

I1[u]≥ C−1.

Thus, the variational problem (2.3.2) is well-posed or equivalently m(1)> 0.

We now need to show that (2.3.2) actually has a solution. To that end, observe that by

the Polya-Szegö inequality (1.1.4), ‖(−∆)s/2u‖ ≥ ‖(−∆)s/2u∗‖. Also, ‖φ∗‖L2 = ‖φ‖L2

and finally, by (1.1.3) and the fact that | · |−b is bell-shaped and strictly decreasing,

∫
Rn
|x|−b|φ(x)|p+1dx≤

∫
Rn
|x|−b(|φ(x)|p+1)∗dx=

∫
Rn
|x|−b(φ∗(x))p+1dx.

We conclude that I1[u] ≥ I1[u∗], which implies that we can reduce the set of possible

minimizers to the set of bell-shaped functions, i.e. {u ∈ Hs(Rn)∩Lp+1,b(Rn) : u = u∗}.
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Next, by the dilation property of the functional I1(u) = I1(au), we can without loss of

generality further reduce to the set
∫

Rn |x|
−bup+1(x)dx= 1.

So, assume that φk is a minimizing sequence of bell-shaped functions, subject to the

constraint
∫

Rn |x|
−bφp+1

k (x)dx= 1. It follows that

lim
k
‖(−∆)s/2φk‖2L2 +‖φk‖2L2 =m(1). (2.3.4)

We will show that a subsequence of φk converges in the strong Hs/2(Rn) sense to

a minimizer u, which we will show is the desired solution to the minimization problem

(2.3.2). By weak compactness, we have that a subsequence of φk (which we will assume

without loss of generality is φk itself) tends weakly in Hs/2(Rn) to a function φ, which is

also trivially bell-shaped.

Since, for bell-shaped functions u we have the point-wise bound for each x : |x|=R,

|u(x)|2 ≤ |Bn|−1R−n
∫
|y|≤R

|u(y)|2dy ≤ |Bn|−1|x|−n‖u‖2L2 . (2.3.5)

Based on this, we claim that (a subsequence of) φk converges to φ strongly in the topology

of Lp+1,−b. This will follow from the Kolmogorov-Relich-Riesz criteria for compactness

in Lp spaces from supk ‖φk‖Hs/2(Rn) <∞ (which is a corollary of (2.3.4)) and once we

establish

lim
N

sup
k

∫
|x|>N

|x|−b|φk(x)|p+1dx= 0. (2.3.6)

Indeed, (2.3.6) follows from the pointwise bounds for bell-shaped functions (2.3.5), since

sup
k

∫
|x|>N

|x|−b|φk(x)|p+1dx≤ Cn sup
k
‖φk‖p+1

L2

∫
|x|>N

|x|−b−(p+1)n2 dx
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≤ CnN−b−
p−1
2 n sup

k
‖φk‖p+1

L2 ,

which clearly converges to zero as N →∞. Thus, up to a subsequence ‖φk−φ‖Lp+1,−b→

0, whence
∫

Rn |x|
−bφp+1(x)dx= 1. In particular, I1(φ) = ‖(−∆)s/2φ‖2

L2 +‖φ‖2
L2 ≥m(1).

Now, we have by the lower semicontinuity of the weak convergence inHs/2 and (2.3.4)

that

m(1)≤ ‖(−∆)s/2φ‖2L2 +‖φ‖2L2 ≤ liminf
k
‖(−∆)s/2φk‖2L2 +‖φk‖2L2 =m(1).

It follows that limk ‖(−∆)s/2φk‖2L2 + ‖φk‖2L2 = ‖(−∆)s/2φ‖2
L2 + ‖φ‖2

L2 , whence by the

uniform convexity of ‖ · ‖L2

lim
k
‖φk−φ‖Hs/2(Rn) = 0.

We conclude that I1[φ] =m(1) and φ is a solution to (2.3.2).

Next, we discuss the Euler-Lagrange equation (2.3.3). Take a test function h∈V∞0 (Rn\

{0}, that is h is supported in {x : |x|> δ} for some δ > 0. Let also 0< ε<< 1 and consider

u= φ+ εh. Recall
∫
|x|−bφp+1dx= 1. Since φ is a minimizer we should have

Iω[φ+ εh]≥m(1) =N(φ).

Where N(φ) :=
∫
|(−∆)s/2φ|2 +

∫
φ2 and D(φ) :=

∫
|x|−b(φ)p+1dx. Thus,

N(φ+ εh) =

∫
|(−∆)s/2(φ+ εh)|2 +

∫
(φ+ εh)2

=

∫
|(−∆)s/2φ+ ε(−∆)s/2h|2 +

∫
(φ2 + 2εhφ+ ε2h2)

=

∫
|(−∆)s/2φ|2 +

∫
φ2 + 2ε(〈(−∆)s/2φ,(−∆)s/2h〉+ 〈h,φ〉) +O(ε2)
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=N(φ) + 2ε〈((−∆)s+ 1)φ,h〉+O(ε2).

Similarly,

D(φ+ εh) =

∫
|x|−b(φ+ εh)p+1dx= 1 + (p+ 1)ε〈|x|−bφp,h〉+O(ε2).

It follows that

I1(φ+ εh) =
N(φ+ εh)

D[φ+ εh]
2
p+1

=
N(φ) + 2ε〈((−∆)s+ 1)φ,h〉+O(ε2)

1 + 2ε〈|x|−bφp,h〉+O(ε2)

= N [φ] + 2ε〈((−∆)s+ 1)φ−|x|−bN(φ)φp,h〉+O(ε2).

As this holds for arbitrary function h and for all small ε, we have established that φ solves

(2.3.3) in a distributional sense.

Finally, fix h to be a real-valued function, h ∈ C∞0 (Rn \ {0}). Starting again with the

inequality
N(φ+ εh)

D(φ+ εh)
2
p+1

≥N(φ),

but expanding to the second order6 ε2 , we obtain

N [φ] + ε2[〈L+h,h〉+N [φ](p+ 3)(〈| · |−bφp,h〉)2] +O(ε3)≥N [φ],

after taking into account 〈((−∆)s + 1)φ−N(φ)|x|−bφp,h〉 = 0. After taking limits as

ε→ 0, we derive

〈L+h,h〉 ≥ −N [φ](p+ 3)(〈| · |−bφp,h〉)2. (2.3.7)

In particular, 〈L+h,h〉 ≥ 0, if
∫
|x|−bφp(x)h(x)dx= 0.

6Note that in the calculation above, the expansion in powers of ε is valid, since the fixed h that has its
support away from zero
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We shall now need to prove some further properties of the minimizers φ as well as some

spectral results necessary for the sequel.

2.3.3 Boundedness of φ

In our next result, we use the already established (partial) coercivity of L+ on {|· |−bφp}⊥∩

C∞0 (Rn \{0}) in order to derive L∞ bounds on φ. We believe that this is a new technique,

which might be useful in the spectral analysis of other situations with singular potentials.

Once we show the boundedness of φ, we will go back to the claim about the coercivity

of L+ on the full co-dimension one subspace {| · |−bφp}⊥.

Proposition 3. Let (n,s,p,b) ∈A. Then, the minimizer φ constructed in Proposition 2 is a

bounded function.

Proof. Again, we assume ω = 1, the other cases follow by rescaling.

We first show the boundedness of φ. Recall that since φ is a bell-shaped function,

φ ∈ L2(Rn), we have that for every x 6= 0, |φ(x)| ≤ Cn|x|−
n
2 ‖φ‖L2 . This of course leaves

the possibility that limx→0φ(x) =∞, which we shall rule out for the remainder of the

proof.

Our approach is by contradiction, that is assume that lim|x|→0φ(x) =∞. We now create

a specifically designed test function h ∈ C∞0 (Rn \{0})∩{|x|−bφp}⊥. To this end, let χ be

a radial positive C∞0 test function, supported in 1
2 < |x|< 2 and equal to 1 on 3

4 < |x|<
4
3 .

Let 0< ε << 1 and let

h(x) := χ(x/ε)− cεχ(x), cε =

∫
|x|−bφp(x)χ(x/ε)dx∫
|x|−bφp(x)χ(x)dx

.
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Clearly, h∈C∞0 (Rn \{0}), where cε is designed so that h⊥ |· |−bφp. Note that the denom-

inator of cε is bounded above and below by a constant independent on ε, so that

cε ∼
∫
|x|−bφp(x)χ(x/ε)dx. (2.3.8)

According to Proposition 2, we have that 〈L+h,h〉 ≥ 0. As a consequence of this, after

dropping some terms with favorable signs, we arrive at

c2ε〈(−∆)sχ,χ〉−2cε〈(−∆)sχ,χ(·/ε)〉+‖(−∆)s/2χ(·/ε)‖2

≥ pm(1)

∫
|x|−bφp(x)χ2(x/ε)dx. (2.3.9)

Let us estimate the terms on the left hand side of (2.3.9). Elementary estimates imply

〈(−∆)sχ,χ〉 ≤ C,‖(−∆)s/2χ(·/ε)‖2 ≤ Cεn−2s, cε|〈(−∆)sχ,χ(·/ε)〉| ≤ Cεncε.

The integral expression on the right hand side of (2.3.9) is essentially equivalent to cε, but

not quite. In order to get the desired estimate, introduce the quantity dε :=
∫
|x|−bφp(x)χ2(x/ε)dx,

so that we now have proved the estimate

dε ≤ C(c2ε + εn−2s+ εncε). (2.3.10)

Furthermore, we have by Cauchy-Schwarz’s inequality

cε≤C
∫
|x|−bφp(x)χ(x/ε)dx≤C

(∫
|x|−bφp(x)χ2(x/ε)dx

)1/2
(∫
|x|∼ε
|x|−bφp(x)dx

)1/2

.

(2.3.11)
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By our assumption, limx→0 |φ(x)|=∞, we have that for all small enough ε

∫
|x|∼ε
|x|−bφp(x)dx≤ 1

maxx:|x|∼εφ(x)

∫
|x|−bφp+1(x)dx=

1

maxx:|x|∼εφ(x)
= o(ε).

Hence, we obtain that c2ε = o(ε)dε and εncε ≤ o(ε)dε+ ε2n. Substituting these estimates in

(2.3.10) yields dε ≤ Co(ε)dε + εn−2s, or after hiding Co(ε)dε on the left-hand side, dε ≤

2εn−2s, for all small enough ε. This actually yields a very good point-wise estimate on φ.

Indeed, recalling that φ is bell-shaped we estimate

cεn−b min
x:|x|∼ε

φp(x)≤
∫
|x|−bφp(x)χ2(x/ε)dx≤ Cen−2s,

whence for all x 6= 0,

φp(x)≤ C|x|b−2s. (2.3.12)

This gives a contradiction and hence the required L∞ bound, if b≥ 2s. Unfortunately, this

covers only a small portion of the parameters space A.

So, assume for the rest of the argument that b < 2s. In order to derive the L∞ bounds

for φ, in the case b < 2s, we shall need an additional bootstrap argument, based on the fact

that φ is a (weak) solution of the Euler-Lagrange equation (2.3.3). To this end, we need to

find a way to introduce φ̃ := (1+(−∆)s)−1[| · |−bφp]. As of now, this is a formal definition,

but it is clear that if we manage to define such an object in an appropriate way, this will be

weak solution of (2.3.3). Since φ solves (2.3.3) in the weak sense described in Proposition

2, we will be eventually able to show that φ̃= φ as Lq functions, for appropriate q ∈ (2,∞).

To this end, we have the following claim.
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Claim 1. Assume (n,s,p,b)∈A and that a function f : R→R is bell-shaped and it satisfies

f ∈ Lp+1,−b(Rn) and |f(x)| ≤ C|x|
b−2s
p . Then,

z̃ = (1 + (−∆)s)−1[| · |−bfp] :=Gs ∗ [| · |−bfp] ∈ ∩p+1
p <q

Lq(Rn).

In particular z̃ ∈ L2(Rn).

Proof. (Claim 1) We consider the case n > 2s only, as the case n ≤ 2s can arise only for

n= 1, s> 1
2 , in which case the functionGs is bounded and the arguments are much simpler.

We split7 z̃ = z̃1 + z̃2

z̃1 =Gs ∗ [| · |−bfpχ|·|<1], z̃2 =Gs ∗ [| · |−bfpχ|·|≥1].

Let us analyze z̃1 first. We claim that due to the properties established in Lemma 1, we

have that z̃1 ∈ ∩q<∞Lq(Rn). Indeed, for |x|< 2, we can bound

|z̃1(x)| ≤ C| · |2s−nχ|·|<3 ∗ | · |−2sχ|·|<1.

Pick arbitrary q1, q2 : 1< q1 <
n

n−2s , 1< q2 <
n
2s and then q ∈ (1,∞) : 1

q1
+ 1
q2

= 1+ 1
q . By

Hardy-Littlewood-Sobolev inequality, we have

‖z̃1‖Lq(|x|<2) ≤ C‖| · |2s−nχ|·|<3‖Lq1(Rn)‖|y|−2sχ|·|<1‖Lq2(Rn) ≤ Cq.

Clearly, in this way, we can generate any q ∈ (1,∞), by varying the choices q1, q2 in the

specified intervals, so z̃1 ∈ ∩1<q<∞L
q(Rn).

7here χI denotes the characteristic function of I
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Regarding z̃2, we split as follows

|z̃2| ≤ C[| · |2s−nχ|·|<1 ∗ | · |−bfpχ|·|≥1 + | · |−nχ|·|≥1 ∗ | · |−bfpχ|·|≥1].

Clearly,

‖| · |2s−nχ|·|<1 ∗ | · |−bfpχ|·|≥1‖Lq ≤ C‖| · |2s−nχ|·|<1‖L1‖| · |−bfpχ|·|≥1‖Lq ≤ C

as long as p+1
p ≤ q <∞, because

‖| · |−bfpχ|·|≥1‖
q
Lq ≤max

|x|>1
|f qp−(p+1)(x)|

∫
Rn
|y|−bfp+1(y)dy ≤ C.

Similarly, as long as p+1
p < q <∞, we can find δ > 0, so that 1

1+δ + 1
qδ

= 1 + 1
q and

qδ >
p+1
p . Then,

‖| · |−nχ|·|≥1 ∗ | · |−bfpχ|·|≥1‖Lq ≤ C‖‖| · |−nχ|·|≥1‖L1+δ‖| · |−bfpχ|·|≥1‖Lqδ ≤ C.

All in all, we have established z̃ ∈ ∩p+1
p <q<∞L

q(Rn), as required.

Now that we have established the claim and taking into account the properties of φ,

which are already established, we can take f = φ in the Claim 1, whence we conclude that

φ̃= (1 + (−∆)s)−1[| · |−bφp]

is well-defined and element of L2(Rn). Furthermore, for each integer k and each test

function f ∈ Sk = {f ∈ S : suppf̂ ⊂ {2k−1 ≤ |ξ| ≤ 2k+1}}, we have that

〈φ̃,(1 + (−∆)s)−1f〉= 〈| · |−bφp,f〉= 〈φ,(1 + (−∆)s)−1f〉,
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where in the first equality we have used the definition of φ̃, while in the second, we have

used that φ is a weak solution of (2.3.3).

Since (1 + (−∆)s)−1 is an isomorphism on each Sk, it follows that 〈φ̃− φ,f〉 = 0

for each f ∈ S : suppf̂ ⊂ Rn \ {0}. Since this is a dense set in S and hence in each

Lq, q ∈ [1,∞), it follows that φ̃= φ in the sense of L2(Rn), that is

φ= (1 + (−∆)s)−1[| · |−bφp] =Gs ∗ [| · |−bφp] ∈ L2(Rn). (2.3.13)

According to the claim, the L2(Rn) function on the right-hand side of (2.3.13) also belongs

to ∩p+1
p <q

Lq(Rn). But then, since φ is bell-shaped and φ ∈ ∩p+1
p <q

Lq(Rn), we have the

point-wise bound

|x|n|φ(x)|q ≤ C
∫
|y|∼|x|

|φ(y)|qdy ≤ Cq,n‖φ‖qLq(Rn)
.

Whence φ(x) ≤ Cq|x|−
n
q . Recall that this is true for all q <∞. That is, for each δ > 0,

there is Cδ, so that

φ(x)≤ Cδ|x|−δ. (2.3.14)

This is almost, but not quite, that φ ∈ L∞(Rn), which will yield the contradiction. On the

other hand, we will show that (2.3.14) can be bootstrapped to φ∈L∞(Rn), which will then

be the desired contradiction.

By close inspection of the proof of Claim 1 (and under the assumptions in Claim 1) ,

we see that we can in fact place all but one piece in L∞(Rn). It thus remains to see why

| · |2s−nχ|·|<3∗| · |−bφpχ|·|<1 ∈L∞(Rn). In view of the bound (2.3.14), we have for δ << 1,

| · |2s−nχ|·|<3 ∗ | · |−bφpχ|·|<1(x)| ≤ C
∫

χ|x−y|<3

|x−y|n−2s

χ|y|<1

|y|b+δ
dy

≤ C‖| · |2s−nχ|·|<3‖Lq‖χ|y|<1|y|−b−δ‖Lr ,
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where in the last step, we have applied the Hölder’s inequality with 1 = 1
q + 1

r , q < n
n−2s ,

r(b+ δ)< n. This last two conditions are possible to satisfy (i.e. such q,r exist) , for small

δ, as long as b < 2s. This is another instance that this requirement is crucially used. In this

way, we have reached contradiction with our assumption that φ is unbounded. Therefore,

φ is L∞(Rn) function.

2.3.4 Further properties of φ

We have the following proposition.

Proposition 4. Let (n,s,p,b) ∈ A. Then, φ ∈ L1(Rn), so by the bell-shapedness, in par-

ticular it satisfies the point-wise bound

|φ(x)| ≤ C|x|−n, |x|> 1. (2.3.15)

If in addition, s ∈ (1
2 ,1), then

|∇φ(x)| ≤ C

 |x|−n−1 |x|> 1

|x|2s−b−1 |x|< 1
. (2.3.16)

In particular, φ ∈ C1(Rn \{0}).

Remarks: As a corollary, we have

• φ ∈ ∩1<q≤∞L
q(Rn).

• |x||∇φ(x)| is a bounded function, since 2s > b. In fact, |x||∇φ| ∈ ∩1<q≤∞L
q(Rn).

Proof. Even though φ ∈ L1 implies (2.3.15), it will be actually bootstrapped from it. So,

we focus on the proof of (2.3.15). We already know that |φ(x)| ≤ C|x|−n/2, |x| > 1. To
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obtain the higher decay rate, introduce the optimal decay rate,

α := sup{s : |φ(x)| ≤ As|x|−s, |x|> 1}.

Clearly α ≥ n
2 . Assuming that α < n leads to a contradiction. Indeed, note the representa-

tion (2.3.13),

|φ(x)| ≤ |Gs| ∗ [|x|−bφp(x)|,

and the fact that Gs is integrable near zero. Moreover, there is the bound |Gs(x)| ≤

C|x|−n, |x| > 1 and |x|−n ∗ |x|−(b+p(α−ε)) ≤ C|x|−min(n,b+p(α−ε)), for small enough ε, so

that b+ p(α− ε) > α. But this implies a better decay rate than α. This contradicts our

assumption α < n, so it follows that α ≥ n. One can in fact see that α = n, as this is the

optimal decay rate for Gs.

The bound for ‖φ‖L1 follows easily now. We simply estimate

‖φ‖L1 ≤ ‖Gs‖L1‖|x|−bφp‖L1 = ‖|x|−bφp‖L1 .

But the function |x|−bφp ∼ |x|−b, |x|< 1, while |x|−bφp ∼ |x|−(b+np), |x|> 1, so |x|−bφp ∈

L1(Rn).

The bounds for |∇φ| for |x| > 1 follow as in the proof of (2.3.15), once we make sure

that ∇Gs is integrable near zero, which since |∇Gs(x)| ≤ C|x|2s−n−1, |x| < 1, requires

that s > 1
2 . For the case |∇φ|, |x| < 1, we again use the formula ∇φ = ∇Gs ∗ [| · |−bφp].

One can see that for values |x|< 1,

|∇φ(x)| ≤ C
∫
|y|<2

1

|x−y|n+1−2s

1

|y|b
dy+ bounded function.
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Integrating separately in the regions |y| < |x|
2 and |y| ≥ |x|2 yields the bound |∇φ(x)| ≤

C|x|2s−b−1.

2.4 Preliminary spectral properties of L±

We start with the realization of L± as a self-adjoint operator.

2.4.1 Self-adjointness of L±

The conclusion φ ∈ L∞(Rn) is helpful in our study of L+ and L−. However, we still face

difficulties, for example with regards to the self-adjointness, as the potential |x|−bφp−1(x)

is still singular at zero. The following non-trivial lemma resolves these issues.

Lemma 6. Let (n,s,p,b) ∈ A and in addition 2b < n. Then the Friedrich’s extensions of

L± are self-adjoint operators with the natural domain H2s(Rn).

Proof. Before we proceed with the construction of the Friedriech’s extension, let us show

that the condition n > 2b ensures that L±(H2s)⊂ L2(Rn). This reduces to the estimate

(∫
Rn
|x|−2b|h(x)|2dx

)1/2

≤ C‖h‖H2s(Rn),

which follows by (1.1.7), where a= 2b and since b < 2s.

Next, introduce the quadratic formsQ±[h,h] := 〈L±h,h〉, with form domainHs(Rn)×

Hs(Rn). Via the usual Friedrich’s procedure, it will suffice to show boundedness from

below for Q±.
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We proceed to bound |〈|x|−bφp,h〉|. Clearly, the portion of the integral over |x| > 1 is

easy to control,

∫
|x|>1

|x|−bφp(x)|h(x)|dx≤ C‖h‖L2‖φ‖p
L2p ≤ C‖h‖L2 .

For the piece over |x| ≤ 1, we have by Cauchy-Schwarz and Sobolev embedding, for any8

σ : 0< σ < s,2b < n+ 2σ

|
∫
|x|≤1

|x|−bφp(x)h(x)dx| ≤ ‖(−∆)
σ
2 h‖L2‖(−∆)−

σ
2 [|x|−bφpχ|x|≤1]‖L2 ≤

≤ C‖(−∆)
σ
2 h‖L2‖|x|−bχ|x|≤1‖

L
2n

n+2σ
≤ C‖(−∆)

σ
2 h‖L2 ≤ κ‖(−∆)

s
2h‖L2 +Cκ,σ‖h‖L2 .

Next, for the integral
∫
|x|−bφph2(x)dx, we control it by applying Proposition 1, with q= 2

and any σ > b
2 , ∫

|x|−bφph2(x)dx≤ C‖h‖2Hσ .

Choosing σ < s as well, that is σ ∈ ( b2 , s), we conclude that for each κ, there is Cκ, so that

∫
|x|−bφph2(x)dx≤ κ‖h‖2Hs +Cκ‖h‖2L2 . (2.4.1)

Combining the estimates for
∫
|x|−bφphdx and

∫
|x|−bφph2(x)dx, with (2.3.7), yields that

there exists a sufficiently large C, so that for each h ∈Hs(Rn), we have

‖(−∆)
s
2h‖2L2−pm(ω)

∫
|x|−bφph2(x)dx≥−κ‖(−∆)

s
2h‖2L2−C‖h‖2L2 .

Or

(1 +κ)‖(−∆)
s
2h‖2L2−pm(ω)

∫
|x|−bφph2(x)dx≥−C‖h‖2L2 . (2.4.2)

8Clearly, one can select such σ ∈ (0,s), as b < n,b < 2s

53



So, again by (2.4.1) and (2.4.2),

(1 +κ)‖(−∆)
s
2h‖2L2−2pm(ω)

∫
|x|−bφph2(x)dx≥−κ‖(−∆)

s
2h‖2L2−C‖h‖2L2 ,

whence for small enough κ,

2(‖(−∆)
s
2h‖2L2−pm(ω)

∫
|x|−bφph2(x)dx)≥−C‖h‖2L2 ,

which is the desired boundedness from below for L+, once we divide by two and add

ω‖h‖2
L2 . Since L− ≥ L+, the boundedness from below (and hence the self-adjointness of

the Friedrich’s extension) for L− follows.

Corollary 3. Under the assumption 2b < n, φ ∈H2s(Rn) =D(L±).

Proof. Since φ ∈ L1(Rn)∩L∞(Rn) is already clear, we just need to observe that

φ= (1 + (−∆)s)−1[|x|−bφp] ∈ Ḣ2s. Indeed,

‖φ‖Ḣ2s(Rn) = ‖(−∆)s(1 + (−∆)s)−1[|x|−bφp]‖L2 ≤ C‖|x|−bφp‖L2 ,

which is finite, if 2b < n since |x|−bφp ∼ |x|−b, |x| < 1 and for |x| > 1, |x|−bφp ≤ φp ∈

L2(Rn).

Remark: The assumption 2b < n is automatic for (n,p,s,b) ∈ A, if n≥ 4. In the case

n = 3 however, this is not so and it amounts to the extra restriction b < 3
2 . In [10], the

authors use the fact that φ ∈ D(L±), which is not justified in the full range n = 3, b < 2,

but rather only in the range b < 3
2 . Their statement has to be modified accordingly in order

to hold, at least based on the proof presented therein. Clearly, the restriction is even more

severe in the lower dimensional cases n= 1,2.
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Now that we have properly realized L± as self-adjoint operators, one can talk about

their eigenvalues, coercivity properties etc. Our next result are in this direction.

2.4.2 Some basic coercivity properties of L±

Proposition 5. Let (n,s,p,b) ∈ A and in addition 2b < n. Then, the self-adjoint operators

L± enjoy the following properties:

• The continuous spectrum of L± is [ω,∞).

• L+ has exactly one negative eigenvalue.

• L− ≥ 0, with L−[φ] = 0 and moreover L−|{φ}⊥} ≥ 0.

Proof. Continuous spectrum for both operators consists of [ω,∞) by Weyl’s theorem.

Clearly, since 〈L+φ,φ〉=−(p−1)m(ω)
∫
|x|−bφp+1dx < 0, it follows that L+ has a neg-

ative eigenvalue. Then, the property 〈L+h,h〉 ≥ 0,h ⊥ | · |−bφp, which was previously

established only for h ∈ C∞(Rn \ {0}), can now be extended to all h ∈ S : h ⊥ | · |−bφp,

since | · |−bφp ∈ L2(Rn), due to the assumption 2b < n and the properties of φ. Thus,

n(L+) = 1.

Regarding the claims for L−, assume that the lowest eigenvalue, say −σ2 is a negative

one. Then,

−σ2 = inf
‖u‖=1

〈L−u,u〉= inf
‖u‖=1

[‖(−∆)
s
2u‖2L2 +ω−m(ω)

∫
Rn
|x|−bφp|u|2dx]

Similar to our considerations in the proof of Proposition 2, this variational problem has a

bell-shaped solution, say ψ : ‖ψ‖ = 1, which satisfies L−[ψ] = −σ2ψ. But on the other

hand, by a direct inspection, L−φ= 0, φ is bell-shaped as well. But then,

0 = 〈L−φ,ψ〉= 〈φ,L−ψ〉=−σ2〈φ,ψ〉< 0,
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a contradiction. Thus, L−|{φ}⊥} ≥ 0.

Our next discussion will concern the Sturm-Liouville theory for fractional Schrödinger

operators such as L±. We base our approach to a result due to Frank-Lenzmann-Silvester,

[36].

2.4.3 Sturm oscillation theorem for the second eigenfunction of L+

Theorem 4. (Frank-Lenzmann-Silvestre, Theorem 2.3, [36])

Let n≥ 1, s ∈ (0,1] and W satisfies

• W =W (|x|) and W is non-decreasing in |x|,

• W ∈ L∞(Rn), W ∈ Cγ ,γ >max(0,1−2s). That is

|W (x)−W (y)| ≤ C|x−y|γ .

Then, assume that H = (−∆)s +W has two lowest radial eigenvalues E0,E1, so that

E0 <E1 < inf σess(H).

Then, the eigenvalue E0 is simple and the corresponding eigenfunction is bell-shaped.

Regarding E1, the corresponding eigenfunction Ψ1 :HΨ1 =E1Ψ1 has exactly one change

of sign. That is, there exists r0 ∈ (0,∞), so that Ψ1(r) < 0, r ∈ (0, r0) and Ψ1(r) > 0, r ∈

(r0,∞).

Remark: Note that the potentials involved in L±, while satisfying most of the require-

ments in Theorem 4, fail in a dramatic way the key boundedness requirement, as they are

unbounded at zero. So, we shall need to employ an approximation argument to achieve the

same result for L+.
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Recall that according to Proposition 5, L+ has exactly one negative eigenvalue, E0 < 0.

The next radial eigenvalue E1 (if there is one!) satisfies E1 ≥ 0.

Proposition 6. (Sturm oscillation theorem for the second eigenfunction ofL+) Let (n,s,p,b)∈

A and in addition 2b < n. Then, the smallest eigenvalue E0 < 0 has a bell-shaped radial

eigenfunction. Suppose that the operator L+ has a radial eigenvalue E1 < ω. Then, E1

has a radial eigenfunction with exactly one change of sign.

Remark: The condition E1 < ω simply means that E1 is not an embedded eigenvalue,

as σac(L+) = [ω,∞).

Proof. Before we start with the proof, let us mention that as we discuss radial eigenfunc-

tions, we restrict our considerations to the Hilbert space L2
rad(Rn) for the purposes of this

proof.

Recall L+ = (−∆)s +ω− pm(ω)|x|−bφp−1(x) =: (−∆)s +ω−W . The statements

regarding E0 can be established directly, even for the unbounded potential W . Indeed, by

the self-adjointness of L+ and the characterization of the lowest eigenvalue

E0 = min
‖u‖L2=1

〈L+u,u〉= ω+ min
‖u‖L2=1

[‖(−∆)
s
2u‖2L2−

∫
Rn
W (x)|u|2dx].

By the Polya-Szegö inequality and since W = W ∗,
∫

RnW (x)|u|2dx ≤
∫

RnW (x)|u∗|2dx,

we conclude that the minimization problem min‖u‖L2=1〈L+u,u〉 has a bell-shaped solution

Ψ0 : ‖Ψ0‖L2 = 1 and L+Ψ0 = E0Ψ0. In particular, Ψ0 ∈ H2s(Rn). Moreover, E0 is a

simple eigenvalue, as the minimizers for min‖u‖L2=1〈L+u,u〉 need to be bell-shaped and

as such, cannot be orthogonal to Ψ0.
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Next, we define an approximation of W , namely for every integer N , the bounded

potentials,

WN (r) =

 W (r) r > 1
N

W (N−1) r ≤ 1
N

and the operators L+,N := (−∆)s+ω−WN . Note that L+,N ≥ L+, since WN ≤W .

AsWN =W ∗N , they have, by the same arguments as above ground states Ψ0,N : ‖Ψ0,N‖L2 =

1, corresponding to the smallest eigenvalues E0,N ≥ E0, so L+,NΨ0,N = E0,NΨ0,N . We

will show that limN E0,N = E0. Indeed, we have that

E0 ≤ E0,N = min
‖u‖L2=1

〈L+,Nu,u〉 ≤ 〈L+,NΨ0,Ψ0〉 ≤ E0 +

∫
|x|<N−1

W (|x|)Ψ2
0(x)dx.

(2.4.3)

Since by (1.1.7), we have that

(∫
|x|<1

|W (|x|)|Ψ2
0(x)dx

)1/2

≤ C

(∫
|x|<1

|x|−bΨ2
0(x)dx

)1/2

≤ C‖Ψ0‖Hs(Rn),

(2.4.4)

we conclude limN→∞
∫
|x|<N−1W (|x|)Ψ2

0(x)dx = 0, whence in combination with (2.4.3),

we finally arrive at limN E0,N = E0.

We now show that a subsequence of {Ψ0,N} converges strongly to Ψ0. To that end, we

need to show that {Ψ0,N} is pre-compact in the strong topology of L2(Rn). Indeed, by

(1.1.7), we have that, since b
2 < s, there is Cs, so that

∫
Rn
WN (|x|)Ψ2

0dx≤ C
∫

Rn
|x|−bΨ2

0dx≤ Cs‖Ψ0‖2Hs(Rn)

Thus, by Gagliardo-Nirenberg’s inequality

E0,N = 〈L+,NΨ0,N ,Ψ0,N 〉 ≥ ‖(−∆)
s
2 Ψ0,N‖2L2 +ω−Cs‖Ψ0‖2Hs(Rn)
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≥ 1

2
‖(−∆)

s
2 Ψ0,N‖2L2−Cs,ω,

whence supN ‖Ψ0,N‖Hs <∞. Next, by the representation

Ψ0,N = ((−∆)s+ω−E0,N )−1[WNΨ0,N ],

‖Ψ0,N‖L2 = 1, and limN E0,N = E0 < 0, we derive similar to the proof of (2.3.15), that

there exists a constant C = Cn, but independent of N , so that |Ψ0,N (x)| ≤ Cn|x|−n for

|x|> 1. This guarantees that limM supN
∫
|x|>M |Ψ0,N (x)|2dx= 0, which by Riesz-Relich-

Kolmogorov criteria guarantees that {Ψ0,N} is pre-compact in L2(Rn). That means that

there is a subsequence Ψ0,Nk → Ψ0. For simplicity of notations, we can assume without

loss of generality that the sequence itself converges, i.e. limN ‖Ψ0,N −Ψ0‖L2 = 0.

One can in fact show that (up to a further subsequence), limN ‖Ψ0,N −Ψ0‖Hs = 0.

Indeed, {Ψ0,N} being a bounded sequence in Hs has a weakly convergent subsequence

(again assume that it is the sequence itself), which by uniqueness must be Ψ0. Then, by

lower semi-continuity of the L2 norm with respect to weak convergence,

liminf
N
‖(−∆)

s
2 Ψ0,N‖L2 ≥ ‖(−∆)

s
2 Ψ0‖L2 .

In addition, we claim that

lim
N

∫
Rn
WN (|x|)Ψ2

0,N (x)dx=

∫
Rn
W (|x|)Ψ2

0(x)dx. (2.4.5)

Indeed, by (2.4.4), it suffices to show limN

[∫
RnWN (|x|)(Ψ2

0,N (x)−Ψ2
0(x))dx

]
= 0. We

have by Cauchy-Schwarz’s that for every ε > 0, there is Cε

∣∣∣∣∫
Rn
WN (|x|)(Ψ2

0,N (x)−Ψ2
0(x))dx

∣∣∣∣≤ C ∫
Rn
|x|−b|ΨN (x)−Ψ0(x)||ΨN (x) + Ψ0(x)|dx
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≤
(∫

Rn
|x|−b|ΨN (x) + Ψ0(x)|2

) 1
2
(∫

Rn
|x|−b|ΨN (x)−Ψ0(x)|2

) 1
2

≤

≤ Cε(‖ΨN‖Hs +‖Ψ0‖Hs)‖ΨN −Ψ0‖
H
b
2+ε

.

where we have used (1.1.7). Note that by Gagliardo-Nirenberg’s, we have

‖ΨN −Ψ0‖
H
b
2+ε
≤ C‖ΨN −Ψ0‖

b/2+ε
s

Hs ‖ΨN −Ψ0‖
s−b/2−ε

s

L2 ,

which clearly converges to zero, as N →∞, as long as we select 0< ε < s− b/2.

Thus, having established (2.4.5) and liminfN ‖(−∆)
s
2 Ψ0,N‖L2 ≥ ‖(−∆)

s
2 Ψ0‖L2 , we

conclude

E0 = ‖(−∆)
s
2 Ψ0‖2L2 +ω−

∫
Rn
W (|x|)Ψ2

0(x)dx≤

≤ liminf
N

[‖(−∆)
s
2 Ψ0,N‖2L2 +ω−

∫
Rn
W (|x|)Ψ2

0,N (x)dx] = liminf
N

E0,N = E0.

It follows that liminfN ‖(−∆)
s
2 Ψ0,N‖L2 = ‖(−∆)

s
2 Ψ0‖L2 , which implies that (up to a

subsequence) limN ‖Ψ0,N −Ψ0‖Hs = 0.

We now turn to the second radial eigenfunction of L+. Let

h1 ∈D(L+) =H2s(Rn),‖h1‖L2 = 1

is an eigenfunction corresponding9 to E1, so L+h1 = E1h1. Clearly h1 ⊥Ψ0, whence

limN 〈h1,Ψ0,N 〉 = 0. By the Rayleigh characterization of the second smallest eigenvalue

and since L+,N ≥ L+, we have that E1,N ≥ E1. Denote the corresponding radial eigen-

functions by Ψ1,N : ‖Ψ1,N‖L2 = 1. Note that −WN satisfy the requirements of Theorem

4, with γ = 1, as a bounded, piecewise defined function, whose components are Lipschitz.

9Even though the ultimate claim is that there is an eigenfunction Ψ1, which has exactly one change of
sign, we do not know that yet
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Hence, due to Theorem 4, we may take those eigenfunctions Ψ0,N to have exactly one

change of sign, say rN ∈ (0,∞), say Ψ0,N |(0,rN ) > 0,Ψ0,N |(rN ,∞) < 0.

Note

E1,N = inf
‖u‖L2=1,u⊥Ψ0,N

〈L+,Nu,u〉≤
〈L+,N (h1−〈h1,Ψ0,N 〉Ψ0,N ),h1−〈h1,Ψ0,N 〉Ψ0,N 〉

‖h1−〈h1,Ψ0,N 〉Ψ0,N‖2
=

= 〈L+h1,h1〉+o(N−1) = E1 +o(N−1).

It follows that limN E1,N = E1. In particular, the assumption E1 < ω guarantees

that10 E1,N < ω for large enough N . Similar to the proofs for Ψ0,N , (in particular note

the representation Ψ1,N = ((−∆)s + ω −E1,N )−1[WNΨ1,N ], which implies the bound

|Ψ1,N (x)| ≤ C|x|−n for |x|> 1), the system {Ψ1,N} is pre-compact in L2(Rn), so it has a

convergent subsequence. Again, assume that it is the sequence itself. Denote its limit by

Ψ1 : limN ‖Ψ1,N −Ψ1‖L2 = 0.

Similar to the proof above for Ψ0, we conclude that (after eventually taking a subse-

quence), limN ‖Ψ1,N −Ψ1‖Hs = 0 and Ψ1 ⊥Ψ0 is an eigenfunction for L+ corresponding

to the eigenvalue E1. It remains to show that Ψ1 has exactly one sign change. To this end,

consider the sequence rN ∈ (0,∞) of sign changes for Ψ1,N . There are three alternatives:

• {rN} converges to zero

• {rN} converges to +∞

• {rN} has a subsequence, which converges to r0 ∈ (0,∞).

We will show that the first two alternatives cannot really occur. Indeed, assume rN → 0.

Then, pick a radial function ζ ∈ C∞0 (Rn) : ζ ≥ 0. We have

〈Ψ1, ζ〉= lim
N
〈Ψ1,N , ζ〉=

∫
|x|<rN

Ψ1,Nζ(x)dx+

∫
|x|≥rN

Ψ1,Nζ(x)dx≤ 0.

10And in fact, we may claim that ω−E1,N ≥ ω−E1
2 .
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Thus, we conclude that Ψ1 ≤ 0 a.e., which is then a contradiction with 〈Ψ1,Ψ0〉= 0, as Ψ0

is bell-shaped function. Similarly, the case rN →∞ leads to the conclusion Ψ1 ≥ 0, which

contradicts again Ψ1 ⊥Ψ0.

Thus, the case rNk → r0 > 0 remains. For this subsequence, we clearly have that for

each ζ : ζ ∈ C∞0 (0, r0), ζ ≥ 0, we have 〈Ψ1, ζ〉 ≥ 0, while for ζ : ζ ∈ C∞0 (r0,∞), ζ ≥ 0, we

have 〈Ψ1, ζ〉 ≤ 0. Equivalently, Ψ0 changes sign exactly once, at r0 > 0.

2.5 The Non-degeneracy of Φ

In this section, we establish the non-degeneracy of the solutions of (2.1.2), obtained by

means of rescaling of the constrained minimizers of (2.3.2). Let us outline the details of

this construction. Start with a constrained minimizer φω provided by Proposition 2. In

particular, it satisfies (2.3.3), where recall m(ω) is in the form (2.3.1). Then, it suffices to

take

Φω(x) :=m(ω)
1
p−1φω(x).

Clearly, with such a choice Φω satisfies (2.1.2), which is bell-shaped and moreover enjoys

all properties, as established for φω in the Propositions 2, 3, 4. Note that L± take the form

L+ = (−∆)s+ω−p|x|−bΦp−1
ω ,L− = (−∆)s+ω−|x|−bΦp−1

ω .

The following result is the main conclusion of this section.

Proposition 7. Assume (n,p,s,b) ∈ A, and in addition 2b < n and s ∈ (1
2 ,1). Then,

Ker[L+] = {0}.

We need to prepare the proof of Proposition 7 in several auxiliary results.
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2.5.1 Differentiation with respect to parameters

We start this section with two formal calculations, which motivate our subsequent results.

Taking formal derivatives

Starting with the profile equation (2.1.2), we can formally take a derivative in any of the

spatial variables, ∂xj , j = 1, . . . ,n. We obtain

L+[∂xjΦ] =−b
xj
|x|b+2

Φp(x). (2.5.1)

Let us emphasize again that (2.5.1) is only a formal statement. Indeed, such a formula is

problematic at least in several ways - we need to have∇Φ ∈D(L+) =H2s, the right-hand

side of (2.5.1) is not in L2(Rn), unless we assume 2(b+ 1)< n etc.

Similarly, by a simple scaling argument, the solution Φω of (2.1.2) can be expressed

through Φ1, the solution for ω = 1 as follows

Φω(x) = w
2s−b

2s(p−1) Φ1(ω
1
2sx) =: ωσpΦ1(ω

1
2sx). (2.5.2)

This highlights the dependence on the parameter ω in (2.1.2), which will be very useful in

the sequel. More specifically, the formal differentiation in ω yields

L+[∂ωΦω] =−Φω. (2.5.3)

Again, the formula (2.5.3) is only a formal statement. In particular, note that since ∂ωΦω

can be expressed as a linear combination of Φω and x ·∇Φω, we have the same issues with

respect to the domain of L+. In both instances, that is (2.5.1) and (2.5.3), we heuristi-
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cally expect them to hold in some sense. The required technical tools, which establish the

corresponding rigorous statementys, are developed next.

A technical lemma

The following lemma shows that one can take weak derivatives with respect to the spatial

variables x as well as the parameter ω.

Lemma 7. Let q,∇q ∈ L2(Rn). Then, for any ψ ∈ S ,

lim
δ→0
〈
q(x+ δej)− q(x)

δ
,ψ〉= 〈∂xjq,ψ〉, j = 1, . . . ,n, (2.5.4)

Let now qω = f(ω)q(g(ω)x), where f,g ∈ C1(R+),g > 0 and q,x ·∇xq ∈ L2(Rn). Then,

for any ψ ∈ S , we have

lim
δ→0

〈
qω+δ− qω

δ
,ψ

〉
= 〈f ′(ω)q(g(ω)·) +f(ω)g′(ω)x ·∇xq(g(ω)·),ψ〉. (2.5.5)

Remark: Note that formally at least ∂ωq = f ′(ω)q(g(ω)·) +f(ω)g′(ω)x ·∇xq(g(ω)·),

so the formula (2.5.5) is expected to be true.

Proof. We have by a simple change of variables

lim
δ→0
〈
q(x+ δej)− q(x)

δ
,ψ〉= lim

δ→0
〈q,

ψ(·− δej)−ψ(·)
δ

〉=−〈q,∂jψ〉= 〈∂jq,ψ〉,

where in the last step, we have used the Lebesgue’s dominated convergence theorem inte-

gration by parts. This is justified since ψ(·−δej)−ψ(·)
δ =−∂jψ+O‖·‖L2 (δ) and∇q ∈L2(Rn).

This establishes (2.5.4).
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Regarding the proof of (2.5.5), by a change of variables and the Lebesgue’s dominated

convergence theorem

lim
δ→0

〈
qω+δ− qω

δ
,ψ

〉
= lim
δ→0

∫
Rn
φ(y)

(
f(ω+ δ)ψ( y

g(ω+δ)) 1
g(ω+δ)n −f(ω)ψ( y

g(ω ) 1
g(w)n

δ

)
dy =

=

∫
Rn
q(y)∂ω

[
f(ω)

g(ω)n
ψ

(
y

g(ω)

)]
dy =

(
f ′(ω)

gn(ω)
−nf(ω)g′(ω)

gn+1(ω)

)∫
Rn
q(y)ψ

(
y

g(ω)

)
dy−

− f(ω)g′(ω)

gn+2(ω)

∫
Rn
q(y)y ·∇yψ

(
y

g(ω)

)
dy.

Clearly, the first term in (2.5.5) is accounted for as follows

f ′(ω)

gn(ω)

∫
Rn
q(y)ψ

(
y

g(ω)

)
dy = f ′(ω)〈q(g(ω)·),ψ〉.

Next,

−nf(ω)g′(ω)

gn+1(ω)

∫
Rn
q(y)ψ

(
y

g(ω)

)
dy =−nf(ω)g′(ω)

g(ω)
〈q(g(ω)·),ψ〉.

Finally, another change of variables and integration by parts (recall q,x ·∇xq ∈ L2(Rn) is

assumed), yields

∫
Rn
q(y)y ·∇yψ

(
y

g(ω)

)
dy = gn+1(ω)

∫
Rn
q(g(ω)x)x ·∇xψ(x)dx=

= −gn+1(ω)

∫
Rn
div(xq(g(ω)x))ψ(x)dx=−gn+1(n〈q(g(ω)·),ψ〉+g(ω)〈x ·∇xq(g(ω)·),ψ〉).

Putting it all together yields the formula,

lim
δ→0

〈
qω+δ− qω

δ
,ψ

〉
= f ′(ω)〈q(g(ω)·),ψ〉+f(ω)g′(ω)〈x ·∇xq(g(ω)·),ψ〉

as required.
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Next, we have the following rigorous results which can be viewed as weaker versions

of the formulas (2.5.1) and (2.5.3).

Rigorous versions of the formal differentiation formulas

Proposition 8. Let (n,s,p,b) ∈ A, s ∈ (1
2 ,1),2b < n and ψ ∈ S. Then, any solution Φω of

(2.1.2), with the properties Φ ∈ L2∩L∞ and x ·∇Φ ∈ L2(Rn) satisfies

〈∂jΦω,L+ψ〉=−b〈
xj
|x|b+2

Φp,ψ〉, j = 1, . . . ,n (2.5.6)

〈∂ωΦω,L+ψ〉=−〈Φω,ψ〉. (2.5.7)

Remarks:

• Note that the expression 〈 xj
|x|b+2 Φp,ψ〉 is well-defined, for smooth functions ψ, when-

ever 2(b+ 1) < n. This is however not always satisfied under the assumptions in

Proposition 8. The expression still makes sense, under the weaker assumptions

herein, provided we interpret it in the form

〈
xj
|x|b+2

Φp,ψ〉=

∫
Rn

xj
|x|b+2

Φp(x)(ψ(x)−ψ(0))dx.

• The notation ∂ωΦω is used in (2.5.7) in the following sense

∂ωΦω = σpω
σp−1Φ1(ω

1
2sx) +

ωσp+ 1
2s−1

2s
x ·∇xΦ1(ω

1
2sx). (2.5.8)

This is of course nothing but the formal derivative with respect to ω in (2.5.2). Note

however that the expression on the right of (2.5.8) belongs to L2(Rn), according to

Proposition 4.
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Proof. Our starting point is the formula (2.3.3). Applying it for x and x+ δej , taking the

divided difference and then dot product with ψ yields

〈((−∆)s+ω)[
Φ(·+ δej)−Φ(·)

δ
],ψ〉= 〈

| ·+δ|−bΦp(·+ δej)−| · |−bΦp(·)
δ

,ψ〉. (2.5.9)

Assume for the moment that ψ is so that ψ̂ is supported in {ξ : |ξ| ≥ σ > 0}. In this way,

ψ̃= ((−∆)s+ω)ψ ∈S, since its Fourier transform, (ω+(2π| · |)2s)ψ̂ is in Schwartz class11.

So we have, by (2.5.4),

〈((−∆)s+ω)[
Φ(·+ δej)−Φ(·)

δ
],ψ〉= 〈

Φ(·+ δej)−Φ(·)
δ

, ψ̃〉 → 〈∂jΦ, ψ̃〉.

It follows that

lim
δ→0
〈((−∆)s+ω)[

Φ(·+ δej)−Φ(·)
δ

],ψ〉= 〈∂jΦ,((−∆)s+ω)ψ〉.

This clearly can be extended from the set of Schwartz functions, which are Fourier sup-

ported away from zero to the whole set S. Indeed, it suffices to observe that the set of

Schwartz functions, which are Fourier supported away from zero is H2s dense in S.

For the right-hand side of (2.5.9), we could perform an identical argument, except that

we do not have in general that ∂j | · |−bΦp(·) ∈ L2(Rn) (as we would need to require 2(b+

1)< n). Instead, we proceed with the direct proof. We have

〈
| ·+δ|−bΦp(·+ δej)−| · |−bΦp(·)

δ
,ψ〉= 〈| · |−bΦp(·),

ψ(·− δej)−ψ(·)
δ

〉

→ −〈| · |−bΦp(·),∂jψ〉.
11Note that |ξ|2sψ̂(ξ) is not smooth at zero, unless ψ̂ vanishes in a neighborhood of zero
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If ψ ∈ S(Rn \{0}), we can take integration by parts (as we avoid the singularity at zero),

whence we arrive at

lim
δ→0
〈
| ·+δ|−bΦp(·+ δej)−| · |−bΦp(·)

δ
,ψ〉= 〈−b

xj
|x|b+2

Φp+p|x|−bΦp−1Φ′,ψ〉.

Again, one may extend such a formula from ψ ∈ S(Rn \ {0}) to ψ ∈ S. It follows that

taking limits as δ→ 0 in (2.5.9) results in (2.5.6).

For the proof of (2.5.7), we proceed in a similar fashion. More specifically, taking

(2.1.2) at ω and then at ω+ δ and subtracting yields the relation

((−∆)s+ω)[
Φω+δ−Φω

δ
]−|x|−b[

Φp
ω+δ−Φp

ω

δ
] =−Φω+δ.

Taking dot product with ψ ∈ S(Rn \{0}) yields

〈Φω+δ−Φω

δ
,((−∆)s+ω))ψ〉−〈|x|−b[

Φp
ω+δ−Φp

ω

δ
],ψ〉=−〈Φω+δ,ψ〉. (2.5.10)

Clearly,

〈Φω+δ,ψ〉= 〈Φω,ψ〉+ δ〈Φω+δ−Φω

δ
,ψ〉 → 〈Φω,ψ〉,

as the expression 〈Φω+δ−Φω
δ ,ψ〉 has a limit by (2.5.5), namely 〈Φω+δ−Φω

δ ,ψ〉 → 〈∂ωΦω,ψ〉.

Under the assumption ψ ∈ S : suppψ̂ ⊂ {ξ : |ξ| ≥ σ > 0}, we introduce again ψ̃ =

((−∆)s+ω))ψ ∈ S . According to (2.5.2) and a simple change of variables

lim
δ→0
〈Φω+δ−Φω

δ
,((−∆)s+ω))ψ〉 = 〈∂ωΦω, ψ̃〉= 〈∂ωΦω,((−∆)s+ω))ψ〉.
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This is again extendable, as above to any ψ ∈ S. Finally, by (2.5.5) and the formula12

∂ωΦp
ω = pΦp−1

ω ∂ωΦω, we have13

lim
δ→0
〈| · |−b[

Φp
ω+δ−Φp

ω

δ
],ψ〉= lim

δ→0
〈
Φp
ω+δ−Φp

ω

δ
, | · |−bψ〉= p〈∂ωΦω, | · |−bΦp−1

ω ψ〉.

All in all, we obtain (2.5.7).

2.5.2 Conclusion of the non-degeneracy proof

In this section, we follow the arguments in [79]. We also assume that n ≥ 2, as the one

dimensional case n= 1 reduces to an easy argument, contained in the proof below.

We have from Proposition 5 that L+ has one simple negative eigenvalue and from the

appendixA there is the decomposition of L+ in spherical harmonics as

L+ = L+,0⊕L+,≥1.

The non-degeneracy of L+ follows from the following.

Proposition 9. σ1(L+,0)> 0 and there exists δ > 0 so that L+,≥1 ≥ δ > 0.

Remark: We know that σess.(L+) = [ω,∞), whence the only remaining issue is the point

spectrum.

Proof. We know that the smallest eigenvalue ofL+,E0< 0 has a bell-shaped eigenfunction

and hence, it is an eigenvalue of L+,0. The next radial eigenvalue E1 cannot be negative

since n(L+) = 1, thus E1 ≥ 0. If E1 > 0, we will have shown σ1(L+,0)> 0.

12This formula is of course correct formally, but in order to provide a rigorous justification, we need to
took into account (2.5.2), and (2.5.8)

13noting that | · |−bψ ∈ L2(Rn) under the standing assumption 2b < n
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Assume, for a contradiction that E1 = 0. Then by Proposition 6, there is an eigenfunc-

tion ψ1 such that L+,0ψ1 = 0, so that ψ1 has exactly one change of sign. Without loss of

generality, let ψ1(r)< 0, r ∈ (0, r0) and ψ1(r)> 0 for r ∈ (r0,∞).

Next, we show now that Φω ⊥Ker[L+]. Indeed, for every ψ ∈ ker[L+], we have that

ψ ∈ H2s(Rn). Thus, we can approximate by Schwartz functions ψN → ψ in H2s(Rn)

norm, whence limN→∞ ‖L+ψN −L+ψ‖L2 = 0. We have by (2.5.7) applied to ψN , that

0 = 〈∂ωΦω,L+ψ〉= lim
N→∞

〈∂ωΦω,L+ψN 〉=− lim
N→∞

〈Φω,ψN 〉=−〈Φω,ψ〉.

It follows that Φω ⊥Ker[L+]. By a direct calculation we see that

L+,0Φ =−|x|−b(p−1)Φp,

whence |x|−bΦp ⊥ ker[L+,0]. Note that since 2b < n, |x|−bΦp ∈ L2(Rn). Now consider

ϕ= c0Φ− r−bΦp = Φ(c0− r−bΦp−1), c0 :=
Φp−1(r0)

rb0
.

Since Φ is bell-shaped, ϕ(r) < 0, r ∈ (0, r0) and ϕ(r) > 0, r ∈ (r0,∞), but since ϕ ⊥

ker[L+,0] we have 〈ϕ,ψ1〉 = 0. On the other hand, ϕψ1 ≥ 0, and this is a contradiction.

Hence σ1(L+,0)> 0.

Finally we show that L+,≥1 > 0. Note however that since n(L+) = 1 and n(L+,0) = 1,

we have L+,≥1 ≥ 0. Hence, we just need to show that zero is not eigenvalue for L+,≥1.

Suppose, for a contradiction, that zero is an eigenvalue for L+,≥1. This implies that

zero is an eigenvalue for L+,1. Indeed, otherwise zero is then eigenvalue for L+,≥2, say

L+,≥2ϑ= 0. Since L+,≥2 > L+,1, it will follow that

〈L+,1ϑ,ϑ〉< 〈L+,≥2ϑ,ϑ〉= 0.
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Consequently,L+,1 has a negative eigenvalue, which is a contradiction, as we knowL+,≥1≥

0. Thus, we have reduced our contradiction argument to the case that L+,1 has an eigen-

value at zero, which we will need to refute now.

Since zero is now assumed to be an eigenvalue for L+,1 and L+,1 ≥ 0, it must be at

the bottom of the spectrum. Its eigenfunctions are in the form ψj = ψ(x)
xj
|x| , j = 1, . . . ,n,

where ψ ∈ L2
rad. So, ψ is an eigenfunction at the bottom of the spectrum for the operator

L̃+,1 = (−∂rr−
n−1

r
∂r +

n−1

r2
)s+ω−p|r|−bΦp−1(r),

acting on functions in L2
rad. According to Lemma C.4, [36], (−∆l)

s
2 , s∈ (0,1) is positivity

improving for each l ≥ 0, i.e. for every Xl ∈ Xl and every u ∈ Ḣs
rad,

‖(−∆l)
s
2 [uXl]‖L2

rad
≥ ‖(−∆l)

s
2 |u|‖L2

rad
,

whence it is easy to see that 〈L̃+,1u,u〉L2
rad
≥ 〈L̃+,1|u|, |u|〉L2

rad
. Thus, we conclude that

ψ ≥ 0, since ψ is a solution of the constrained minimization problem

 〈L̃+,1u,u〉L2
rad
→min

‖u‖L2
rad

= 1
.

We now apply formula (2.5.6) for a sequence of Schwartz functions ΨN approximating

ψ1(x) = ψ(x)x1|x| ∈Ker[L+] in the H2s(Rn) norm. We have

0 = 〈∂x1Φ,L+ψ1〉= lim
N→∞

〈∂x1Φ,L+ΨN 〉=−b lim
N→∞

〈 x1

|x|b+2
Φp,ΨN 〉=

= −b〈 x1

|x|b+2
Φp,ψ1〉=−b

∫
Rn

x2
1

|x|b+3
Φp(x)ψ(x)dx < 0.
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which is a contradiction. Note that the last integral, the singularity at zero is integrable,

since b+ 1< n, as b < n
2 ,n≥ 2. This concludes the proof of the proposition as well as the

non-degeneracy of Φ.

2.6 Spectral and orbital stability of the waves

2.6.1 Index counting theory for (2.1.5)

For the eigenvalue problem in the form (2.1.5), we have that J is invertible and anti-

symmetric, J −1 = J ∗ = −J and X = Hs(Rn),X∗ = H−s(Rn),n ≥ 1. Note that ac-

cording to Proposition 5, we have that n(L+) = 1, while n(L−) = 0, whence n(L) =

n(L+) +n(L−) = 1. In addition,

Ker[L] = span[

 ker[L+]

0

 ,
 0

ker[L−]

] = span[

 0

Φω

].

Thus, we have that J : Ker[L]→ (Ker[L])⊥. For the matrix D, we need to solve Ψ :

JLΨ =

 0

Φω

. So, Ψ =

 L−1
+ Φω

0

 and the matrix D is a scalar, with

D = 〈LΨ,Ψ〉= 〈L−1
+ Φω,Φω〉. (2.6.1)

According to the formula (1.1.11), we conclude

kr + 2kc+ 2k≤0
0 = 1−n(D).
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Clearly, in our situation, it is always the case that kc = k≤0
0 = 0, and kr = 1 exactly when

〈L−1
+ Φω,Φω〉 > 0 and kr = 0, when 〈L−1

+ Φω,Φω〉 < 0. We formulate our result in the

following corollary.

Corollary 4. For the eigenvalue problem (2.1.5), spectral stability occurs exactly when

〈L−1
+ Φω,Φω〉 < 0 and instability is when 〈L−1

+ Φω,Φω〉 > 0. Moreover, the instability

presents itself as a single, real unstable mode.

Remarks:

• This is reminiscent of the standard Vakhitov-Kolokolov criteria for stability of waves

in situations with a simple Morse index, i.e. Morse index equal to one.

• The case 〈L−1
+ Φω,Φω〉= 0 presents a transition from stability to instability, so a pair

of eigenvalues crosses from being purely imaginary ±ıσ symmetric with respect to

the origin to being a pair of real ones ±λ. In this case, the algebraic multiplicity of

the zero eigenvalue for JL is four, up from the algebraic multiplicity two in all other

cases, corresponding to the modulational invariance still present in the system.

2.6.2 Coercivity of L+

In this section show the coercivity property of L+ on the space {Φω}⊥.

Proposition 10. Let (n,s,p,b) ∈ A and 〈L−1
+ Φω,Φω〉< 0. Then, the operator L+ is coer-

cive on {Φω}⊥∩Hs. That is, there exists δ > 0, so that for all

〈L+Ψ,Ψ〉 ≥ δ‖Ψ‖2Hs , ∀Ψ⊥ Φω. (2.6.2)

Proof. This is a version of a well-known lemma in the theory, see for example Lemma

6.7 and Lemma 6.9 in [67]. Recall that we have already showed Ker[L+] = {0} and
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n(L+) = 1. According to a result in [49] (see also Lemma 6.4, [67]), which state that

under these conditions for L+

α := inf{〈L+f,f〉 : f ⊥ Φω,‖f‖L2 = 1} ≥ 0.

Consider the associated constrained minimization problem

inf
‖f‖=1,f⊥Φω

〈L+f,f〉. (2.6.3)

Take a minimizing sequence fk : ‖fk‖= 1,fk ⊥ Φω, so that

α = lim
k
〈L+fk,fk〉= lim

k
[‖(−∆)

s
2fk‖2 +ω−p

∫
|x|−bΦp−1(x)f2

k (x)dx].

By the properties

‖(−∆)
s
2f‖ ≥ ‖(−∆)

s
2f∗‖,

∫
|x|−bΦp−1(x)f2(x)dx≤

∫
|x|−bΦp−1(x)(f∗)2(x)dx,

we can assume, without loss of generality that fk are bell-shaped. Note that by (1.1.7) and

the Gagliardo-Nirenberg’s inequality

0<

∫
|x|−bΦp−1(x)f2

k (x)dx≤ C‖fk‖2
H
b
2+ε
≤ C‖fk‖

b/2+ε
s

Hs ‖fk‖
s−b/2−ε

s

L2 .

Note that for ε=
s− b2

2 , by Young’s inequality, we can derive the estimate (recall ‖fk‖L2 = 1)

〈L+fk,fk〉 ≥
1

2
‖(−∆)

s
2fk‖2−Cn,s,b.

It follows that supk ‖(−∆)
s
2fk‖2 <∞. By bell-shapedness of fk : ‖fk‖L2 = 1, we have the

pointwise bound |fk(x)| ≤ C|x|−n/2. This, along with supk ‖fk‖Hs <∞, easily implies
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compactness in any Lq(|x| > 1),2 < q <∞. On the other hand, in the bounded domain

|x|< 1, there is compactness in L2(|x|< 1). So, assume without loss of generality that fk

itself converges to f strongly in all Lq(|x|> 1),2< q <∞ and in L2(|x|< 1). In particular,

f is bell-shaped, as fk are bell-shaped. So, f 6= 0.

In addition to that, we can assume, without loss of generality a weak convergence in

Hs(Rn), fk ⇀ f . Note that by the weak convergence,

f ⊥ Φω, liminf
k
‖(−∆)

s
2fk‖2 ≥ ‖(−∆)

s
2f‖2, ‖f‖L2 ≤ liminf ‖fk‖L2 = 1.

Finally, by splitting in |x| < 1 and |x| > 1 and applying the different appropriate strong

convergences in each (and uniform bounds in Hs), we obtain

lim
k

∫
|x|−bΦp−1(x)f2

k (x)dx= lim
k

∫
|x|−bΦp−1(x)f2(x)dx.

All in all, we obtain

〈L+f,f〉 ≤ liminf〈L+fk,fk〉= α. (2.6.4)

We will now show that α > 0. Assume for a contradiction that α = 0. Since f 6= 0 (recall

f ⊥ Φω), we see from (2.6.4) that the function g = f
‖f‖ is a minimizer for (2.6.3). Writing

the Euler-Lagrange equation for it implies

L+g = γg+ cΦω. (2.6.5)

Taking dot product with g and taking into account 〈L+g,g〉= 0,g ⊥Φω implies that γ = 0.

This means that g = cL−1
+ Φω. But then,

0 = 〈L+g,g〉= c2〈L−1
+ Φω,Φω〉.
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Since 〈L−1
+ Φω,Φω〉 6= 0 by assumption, it follows c = 0. But then, since Ker[L+] = {0},

(2.6.5) implies that g = 0, which is a contradiction.

So, we have shown that α > 0. In other words,

〈L+Ψ,Ψ〉 ≥ α‖Ψ‖2, ∀Ψ⊥ Φω. (2.6.6)

Note that (2.6.2) is however stronger than (2.6.6), as it involves ‖ · ‖Hs norms on the right-

hand side. Nevertheless, we show that it is relatively straightforward to deduce it from

(2.6.6). Indeed, assume for a contradiction in (2.6.2), that gk : ‖gk‖Hs = 1,gk ⊥Φω, so that

limk〈L+gk,gk〉= 0.

Taking into account (2.6.6), this is only possible if limk ‖gk‖L2 = 0. So,

1 = lim
k

[‖(−∆)
s
2 gk‖2L2 +‖gk‖2L2 ] = lim

k
‖(−∆)

s
2 gk‖2L2 .

But then, we achieve a contradiction

0 = lim
k
〈L+gk,gk〉= lim

k
[‖(−∆)

s
2 gk‖2L2 +ω‖gk‖2−p

∫
|x|−bΦp−1(x)g2

k(x)dx] = 1,

since limk

∫
|x|−bΦp−1(x)g2

k(x)dx= 0, similar to some previous steps, as supk ‖(−∆)
s
2 gk‖L2 <

∞, ‖gk‖→ 0. A contradiction is reached, which completes the proof of Proposition 10.

Knowing that L+|{Φ}⊥ ≥ 0 (and we have established something stronger in (2.6.2)), we

can establishing the coercivity of L−.
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2.6.3 Coercivity of L−

In Proposition 5, we have already established that L− is non-negative on the subspace

{φ}⊥. We need a stronger coercivity statement.

Proposition 11. Let (n,p,s,b) ∈ A. Then, there exists δ > 0, so that

〈L−Ψ,Ψ〉 ≥ δ‖Ψ‖2Hs ,∀Ψ⊥ Φ. (2.6.7)

Proof. Recall that in Proposition 6, we have already seen that L−|{Φ}⊥ ≥ 0. We will show

first that

inf
‖u‖=1,u⊥φ

〈L−u,u〉> 0.

Assuming not, it follows that L− has a second eigenfunction in its kernel, Φ̃ ⊥ Φ. But

then, since L+ < L−, we have 〈L+Φ̃, Φ̃〉 < 〈L−Φ̃, Φ̃〉 = 0. Hence, L+|Φ̃,Φ}⊥ < 0 and in

particular, L+ has at least two negative eigenvalues, a contradiction. Thus, there exists

δ > 0, so that

〈L−u,u〉 ≥ δ‖u‖2,u⊥ Φ. (2.6.8)

We would like to upgrade, as before, the right-hand side to ‖u‖2Hs . To that end, we assume

for a contradiction, that there is a sequence uk :uk⊥Φ,‖uk‖Hs = 1, while limk〈L−uk,uk〉=

0. From (2.6.8), it follows that limk ‖uk‖= 0, so limk ‖(−∆)
s
2uk‖= 1. Similar to the proof

of Proposition 10 above this yields a contradiction as well, since

0 = lim
k
〈L−uk,uk〉= lim

k
[‖(−∆)

s
2uk‖2L2 +ω‖uk‖2−

∫
|x|−bΦp−1(x)u2

k(x)dx] = 1.

With this, (2.6.7) is established.

With Propositions 10 and 11 at hand, we are ready for the orbital stability result.

77



2.6.4 Orbital stability of Φω

With the coercivity results in Proposition 10, one might argue that we have all the neces-

sary ingredients for orbital stability, according to [45]. We are however missing one key

piece of information, namely the map ω→ Φω does not have the required C1 smoothness.

Therefore, we need a direct proof, which does not use the smoothness of this map.

Proposition 12. Let the key assumptions (1), (2), (3) be satisfied and L±|{Φω}⊥ ≥ 0, ϕ is

non-degenerate, i.e ker[L+] = {0}, then e−iωtΦω is orbitally stable solution of (2.1.1).

Proof. Our proof proceeds by contradictions. More specifically, there is ε0 > 0 and a se-

quence of initial data uk : limk ‖uk−Φ‖Hs(Rn) = 0, so that

sup
0≤t<∞

inf
θ∈R
‖uk(t, ·)− eiθΦ‖Hs ≥ ε0.

Recall that E[u] =H[u] + w
2P [u]. Introduce

εk := |E[uk(t)]−E[Φω]]|+ |P [uk(t)]−P [Φω]]|.

Since we have assumed the conservation laws, we have that εk is conserved and limk εk = 0

For all ε > 0, define

tk = sup{τ : sup
0<t<τ

‖uk(t)−Φ‖Hs(Rn) < ε}.

Note that tk > 0, by the local well-posedness assumption (1). If we let uk = vn+ iwk, then

for t ∈ (0, tk), we have ‖wk(t)‖Hs(Rn) ≤ ‖uk(t)−Φ‖Hs(Rn) < ε. Define the modulations

parameter θk(t) so that [wk(t)− sin(θk(t))Φ]⊥ Φ, which is

sin(θk(t))‖Φ‖= 〈wk(t),Φ〉. (2.6.9)
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Since |〈wk(t),Φ〉| ≤ ε‖Φ‖L2 , there is an unique small solution θk(t) of 2.6.9, with |θk(t)| ≤

ε. In addition, we have

‖uk(t, ·)− eiθk(t)ϕ‖Hs ≤ ‖uk(t, ·)−Φ‖Hs + |eiθk(t)−1|‖Φ‖Hs ≤ C0ε,

where C0 = C0(‖Φ‖Hs) only. Let

Tk = sup{τ : sup
0<t<τ

‖uk(t)− eiθk(t)ϕ(.)‖Hs(Rn) < 2C0ε}.

Clearly Tk > tk > 0 and to complete the proof it is enough to show that for all ε > 0 and

large k Tk =∞, since we can choose εk : εk << ε0.

For t ∈ (0,Tk), write

ψk(t, .) = uk(t, ·)− eiθk(t)Φ

and decompose into real and imaginary parts of ψk and then project on the vector

 Φ

0

.

This yields

 vn(t, ·)− cos(θk(t))Φ

wk(t, ·)− sin(θk(t))Φ

= µk(t)

 Φ

0

+

 ηk(t, ·)

ζk(t, ·)

 ,
 ηk(t, ·)

ζk(t, ·)

⊥
 Φ

0

 .
(2.6.10)

Note that this decomposition implies ηk(t) ⊥ Φ, while ζk(t) = wk(t, ·)− sin(θk(t))Φ ⊥ Φ

by the choice of θk, see (2.6.9). Taking L2 norms in (2.6.10) yields

|µk(t)|2‖Φ‖2L2 +‖ηk(t)‖2L2 +‖ζk(t)‖2L2 = ‖ψk(t)‖2L2 ≤ 4C2
0ε

2. (2.6.11)
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We now exploit the properties of the conserved quantities. We have

P [uk(t)] =

∫
Rn
|eiθk(t)Φ +ψk(t)|2dx= P [Φ] +‖ψk(t, ·)‖2L2+

2

∫
Rn

Φ(x)<[eiθk(t)ψk(t,x)]dx.

But

∫
Φ(x)<[eiθk(t)ψk(t,x)]dx=

∫
Φ(x)[cos(θk)(vn−cos(θk)Φ)−sin(θk)(wk−sin(θk)Φ)]dx

= µk(t)cos(θk(t))‖φ‖2,

due to ηk ⊥ Φ and wk− sin(θk)Φ⊥ Φ.

It follows that,

P [uk(t)] = P [Φ] +‖ψk(t, ·)‖2L2 + 2µk(t)cos(θk(t))‖Φ‖2,

whence by recalling that ‖ψk(t, ·)‖L2 ≤ 2C0ε, in t : 0< t < Tk

|µk(t)| ≤
|P [uk(t)]−P [φ]|+‖ψk(t, ·)‖2L2

2cos(θk(t)‖Φ‖2
≤C(εk+‖ψk(t, ·)‖2L2)≤C(εk+ε2). (2.6.12)

In the last estimate, recall that |θk(t)| ≤ C0ε << 1, whence cos(θk(t))≥ 1
2 and the denom-

inator is harmless.

Next, we take advantage of an expansion for E[uk(t)]−E[Φ]. Indeed, for all suffi-

ciently small ε, we have

E[uk(t)]−E[Φ] = E[eiθk(t)Φ +ψk]−E[Φ] = E[Φ + e−iθk(t)ψk]−E[Φ].
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Generally, for small perturbations of the wave %1 + i%2 ∈ Hs(Rn) and by taking into ac-

count the specific form of the energy functional E, we have

E[Φ + (%1 + i%2)]−E[Φ] =
1

2
[〈L+%1,%1〉+ 〈L−%2,%2〉] +Err[%1,%2], (2.6.13)

where

|Err[%1,%2]| ≤C
∫

Rn
|x|−b

∣∣∣∣|Φ +%1 + i%2|p+1−Φp+1− (p+ 1)Φp%1−
p(p+ 1)

2
%2

1−
p+ 1

2
%2

2

∣∣∣∣dx.
Observe that by elementary second order Taylor expansions of the function z → |z|p+1,

there is the pointwise estimate

∣∣∣∣|Φ +%1 + i%2|p+1−Φp+1− (p+ 1)Φp%1−
p(p+ 1)

2
%2

1−
p+ 1

2
%2

2

∣∣∣∣
≤ C(‖Φ‖L∞)(|%1|+ |%2|)min(p+1,3),

whence, according to (1.1.6), we obtain the estimate

|Err[%1,%2]| ≤ C
∫

Rn
|x|−b(|%1|min(p+1,3) + |%2|min(p+1,3))dx

≤ C(‖%1‖min(p+1,3)
Hs +‖%2‖min(p+1,3)

Hs ).

Apply this expansion (2.6.13) to

%1 +i%2 = e−iθk(t)ψk = [cos(θk)(µkΦ +ηk) + sin(θk)ζk]+i [cos(θk)ζk− sin(θk)(µkΦ +ηk)] .
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From (2.6.11), we see that ‖%1‖Hs + ‖%2‖Hs ≤ Cε, so we can bound the contribution of

|Err[%1,%2]| as follows

|Err[%1,%2]| ≤ Cεmin(p−1),1(‖%1‖2Hs +‖%2‖2Hs). (2.6.14)

Furthermore,

〈L+%1,%1〉= 〈L−ηk,ηk〉−C(ε3 + εk + ε2(‖ηk‖Hs +‖ζk‖Hs) + ε(‖ηk‖Hs +‖ζk‖Hs)2)

〈L−%2,%2〉 ≥ 〈L−ζk, ζk〉−C(ε3 + εk + ε2(‖ηk‖Hs +‖ζk‖Hs) + ε(‖ηk‖Hs +‖ζk‖Hs)2).

Due to the coercivity of L− (see Proposition 11 and more specifically 2.6.7) and L+, which

was established in Proposition 10, we have that for some κ > 0 and since ηk, ζk ⊥ Φ, we

have

εk ≥ |E[uk(t)]−E[Φ]| ≥

≥ κ(‖ηk‖2Hs +‖ζk‖2Hs)−C(ε3 + εk + ε2(‖ηk‖Hs +‖ζk‖Hs)

+εmin(p−1),1(‖ηk‖Hs +‖ζk‖Hs)2),

or in other words, after some algebraic manipulations and for sufficiently small ε (depend-

ing only on absolute constant),

‖ηk(t)‖2Hs +‖ζk(t)‖2Hs ≤ C(ε3 + εk), (2.6.15)

where C is a constant that depends on the parameters, but not on ε and n. We claim that

this implies that T ∗k =∞ for sufficiently small ε (depending on the parameters only) and
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then sufficiently large k, so that εk << ε. Indeed, assume that T ∗k <∞. Then

2C0ε= limsup
t→T ∗k−

‖ψk(t)‖Hs ≤ C(|µk(t)|+‖ηk(t)‖Hs +‖ζk(t)‖Hs)≤ C(ε
3
2 +
√
εk).

This last inequality is a contradiction, if ε : C0ε≥ Cε
3
2 and then C

√
εk < C0ε. Both of this

can be arranged, so we obtain the required contradiction, which establishes Proposition

12.
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Chapter 3

On the standing waves of the Schrödinger equation with

concentrated nonlinearity

3.1 Introduction

The (focusing) nonlinear Schrödinger equation, with generalized power non-linearity

iut+ ∆u+ |u|2σu= 0,(t,x) ∈ R×Rn (3.1.1)

is a basic model in theoretical physics and applied mathematics. Example of such physical

application is fractional quantum mechanics and Lévy path integrals [60]. Other appli-

cation cal also be found in water waves theory and practical engineering applications .

Equation (3.1.1) has been studied extensively in the last fifty years, in particular with re-

gards to the well-posedness of the Cauchy problem and the stability of its solitary waves.

The well-posedness theory is classical by now, [17] states that local well-posedness holds

for any σ > 0, whenever the data u0 ∈ Hs(Rn), s ≥ 0. The global well-posedness results

rely upon the conservation law, which state that the following quantities, namely the mass
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M(u) and the energy E(u)

M(u) =

∫
Rn
|u(t,x)|2dx= const.

E(u) =
1

2

∫
Rn
|∇u(t,x)|2dx− 1

2σ+ 2

∫
Rn
|u(t,x)|2σ+2dx= const

are conserved. As such, solutions with initial data u0 ∈ H1(Rn) yield global solutions,

whenever the problem is L2 sub-critical, i.e. σ < 2
n , while for σ≥ 2

n , some initial data gives

rise to finite time blow-ups. Interestingly, the ground states for (3.1.1) are stable exactly in

the L2 sub-critical range σ < 2
n , while they are unstable in the supercritical regime σ > 2

n .

In the L2 critical case, σ = 2
n , the equation (3.1.1) exhibits an additional symmetry, the

so-called quasi-conformal invariance, which allows one to exhibit special self-similar type

solutions, which show that blows up also occurs in the critical case.

In this work, published in [70] we analyze a related model, the focusing non-linear

Schrödinger equation with concentrated non-linearity.

Now, the focusing NLS with concentrated non-linearity is the following

 iut = ((−∆)s−|u|2σδ0)u, (t,x) ∈ R×Rn

u(0,x) = u0(x)
. (3.1.2)

Our definition of a solution is as follows: a continuous in x function u is a weak solution

of (3.1.2), if it satisfies

i

(
〈u(t, ·),ψ(t, ·)〉−〈u0,ψ(0, ·)〉−

∫ t

0
〈u(τ, ·),ψτ (τ, ·)〉dτ

)
=

=

∫ t

0
〈(−∆)

s
2u(τ, ·),(−∆)

s
2ψ(τ, ·)〉dτ −

∫ t

0
|u(τ,0)|2σu(τ,0)ψ(τ,0)dτ
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for all test functions ψ. For the case of the standard Laplacian, i.e. s = 1, the model

(3.1.2) has been used to model resonant tunneling, [52], the dynamics of mixed states, [66],

quantum turbulence, [8], the generation of weakly bounded states close to the instability,

[85] among others.

The fractional Laplacian perturbed by a delta potential, together with their self-adjoint

extensions and various applications, have been recently considered in [13]. In the case of

one spatial dimension, n= 1 and s> 1
2 , the local well-posedness as well as the conservation

of mass and energy

M(u) =

∫
Rn
|u(t,x)|2dx= const. (3.1.3)

E(u) =
1

2
‖(−∆)

s
2u‖2L2−

1

2σ+ 2
|u(t,0)|2σ+2 = const. (3.1.4)

was recently established in [13]. Even though the results in [13] are stated for the one

dimensional case only, it seems plausible that they can be extended in any dimension n and

s> n
2 using similar techniques. It is important to note that since our interest is in continuous

in x functions, the natural spaces for well-posedness, in the scale of the Sobolev spaces,

should be Hs(Rn), s > n
2 . Another reason why this is, a more natural class of problems to

consider, is that we would like waves which belong to the energy spaceHs(Rn), as dictated

by the conservation of E(u). As we shall see below, the solitary waves belong to this space

only for s > n
2 .

It has to be noted however, that it is certainly possible (and it is in fact considerably

more challenging, the furthest one is from the threshold s= n
2 ) to consider (3.1.2) in cases

where s < n
2 , and this has been addressed, at least in low dimensional situations, in the

recent papers, [3, 4, 5, 6, 7]. Regarding analysis of blow up solutions for the concentrated

NLS (although not necessarily in the case of interest s > n
2 ), this was carried out recently

in [4].
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Our main interest in the model (3.1.2) are its solitary waves and their stability. More

specifically, we consider solutions in the form u = eiωtφ, φ real-valued, which naturally

satisfy the profile equation. This is again understood in the weak sense described above

(−∆)sφ+ωφ−|φ(0)|2σφ(0)δ0 = 0. (3.1.5)

We take the opportunity to note that in many cases considered herein, one cannot expect the

positivity of φ, as in the classical case. This is why, we keep the absolute value in (3.1.5).

The concentration phenomena for fractional differential equation has some physical

motivation. We encourage motivated reader to further explore the appendix of [50] and

also [29]. Note that both papers deal with the fact that s ∈ (0,1). We believe that our

results can motivates further investigation of such structure for s > 1.

The question for the stability of these waves, when s= 1, has been considered in several

contexts recently, see [2], [5], [6] for the three dimensional case n = 3 and [1], for n = 2.

Again, some of these works consider cases mostly outside of the range of consideration

herein s > n
2 .

Before we address the construction of the solitons (that is, solutions of (3.1.5)), and

since our situation is a bit non-standard, we would like to outline the framework for the

stability of the waves.

3.1.1 Linearized problem for the concentrated NLS

As is customary, the spectral/linearized stability of the standing waves, i.e. the solutions

of (3.1.5), guides us in the study of the actual non-linear dynamics, when one starts close

to these solutions1. More specifically, if we linearize around the solitary waves and ignore

1And indeed in the understanding of the ranges of σ that give global existence viz. a viz blow up, as
discussed above
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quadratic and higher order contributions, we obtain a linear system, whose spectral infor-

mation plays a part in the dynamics. To that end, we take u = eiωt(φ+ v) and plug it in

(3.1.2), ignoring any O(v2) term, utilizing (3.1.5) and setting (v1,v2) := (<v,=v) = v, we

obtain  <v
=v


t

=

 0 −1

1 0


 L− 0

0 L+


 <v
=v

 , (3.1.6)

where the following fractional Schrödinger operators are introduced

L+ = (−∆)s+ω− (2σ+ 1)|φ(0)|2σδ0,

L− = (−∆)s+ω−|φ(0)|2σδ0.

This formulas are heuristic in the sense that the operatorsL± are not yet properly defined, in

terms of domains, etc. This is generally not an easy task,2 nevertheless, will appropriately

be define in later section, see Section 3.2.2. Introducing the operators

J :=

 0 −1

1 0

 ,L :=

 L− 0

0 L+

 ,

and the assignment

 <v
=v

→ eλt

 v1

v2

=: eλt~v, we obtain the following time-independent

linearized eigenvalue problem

JL~v = λ~v. (3.1.7)

Since we are interested in stability of waves, it will be appropriate to give a standard defi-

nition of stability as follow.

2Although, as it turns out, we shall need to restrict to the case s > n
2 , which will make such definitions in

a sense canonical
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Definition 6. The wave eiωtφ is said to be spectrally unstable if the eigenvalue problem

(3.1.7) has a solution (λ,~v) with <λ > 0 and ~v 6= 0,~v ∈D(L). Otherwise, i.e. , if (3.1.7)

has no non-trivial solutions with <λ > 0, we say that the wave is spectrally stable.

We say that eiωtφ is orbitally stable solution of (3.1.2), if for every ε > 0, there exists

δ = δ(ε), so that whenever ‖u0−φ‖Hs(Rn) < δ, then the following statements hold.

• The solution u of (3.1.2), in appropriate sense, with initial data u0 ∈Hs is global in

Hs(Rn), i.e. u(t, ·) ∈Hs(Rn).

•

sup
t>0

inf
θ∈R
‖u(t, ·)− e−i(ωt+θ)φ(·)‖Hs(Rn) < ε.

The connection between the two main notions of stability, namely spectral and orbital

stability, has been explored extensively in the literature - see for example the excellent

book [55]. Generally speaking, spectral stability is a prerequisite for orbital stability, and

in many cases of interest and under some natural, but not necessarily easy to check condi-

tions, see Section 5.2.2 in [55], spectral stability implies orbital stability. In the case under

consideration, the Assumption 5.2.5 a) on p. 136, [55] does not apply. So, we provide a

direct proof of orbital stability via contradiction argument, in the cases of spectral stability,

by following the original idea by T.E. Benjamin.

We should also point out that the reverse connection, namely spectral instability implies

orbital instability. Basic heuristics (or even some more formal arguments) may suggest

that this must be indeed the case. However, in terms of rigorous results, see for example

[57] which simply states that if there is a positive instability mode present, via a direct

ODE Lyapunov method spectral instability implies orbital instability. As in the stability

case, there is no satisfactory general result that would cover our examples, so we leave our
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rigorous conclusions at the level of spectral instability of the waves and we do not comment

further on (the likely) orbital instability thereof.

3.1.2 Main results

Before we present our existence result for the singular elliptic problem (3.1.5), let us intro-

duce a function Gλs , which will be a basic building block in our analysis. Namely, for all

λ > 0 and s > 0,

Ĝλs (ξ) =
1

(2π|ξ|)2s+λ
.

We first state a few results related to the existence of the waves φω3, under some conditions

on the parameters s,ω,n, which turn out to be necessary as well. Then, we discuss the fact

that these waves are also minimizers of a Sobolev embedding inequality and we present its

exact constant.

Existence of the waves φω

Theorem 5. (Existence standing waves of the concentrated NLS) Let ω > 0, s > n
2 and

σ > 0. Then, the function φ, with

φ̂ω(ξ) =

(∫
Rn

1

(2π|ξ|)2s+ω
dξ

)−(1+ 1
2σ )

1

(2π|ξ|)2s+ω
.

is a solution of (3.1.5). Alternatively,

φω(x) =
Gωs (x)

(Gωs (0))1+ 1
2σ

.

3Here the subscript ω is to emphasis the ω dependency of φ. Whenever such dependency is deemed
necessary φ will be written as φω
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Interestingly, the conditions for ω and s in Theorem 5 are necessary for the existence

of solutions φ ∈Hs(Rn)∩C(Rn) of (3.1.5).

Proposition 13. Let φ ∈Hs(Rn)∩C(Rn) be a weak solution of (3.1.5). Then, ω(s− n
2 )>

0.

The proof of Proposition 13 proceeds via the Pohozaev’s identities, see Section 3.2.1 below.

In the process of the variational construction of the waves φω, we establish a non-

surprising connection to the problem for the optimal constant in the Sobolev embedding

Hs(Rn) ↪→ L∞(Rn). More specifically, we establish that Gs = G1
s (and consequently φ1)

are Hs functions that saturate the Sobolev embedding, with the optimal Sobolev constant

s2nπ
n
2−1Γ

(n
2

)
sin
(nπ

2s

)
‖u‖2L∞ ≤ ‖(−∆)

s
2u‖2L2 +‖u‖2L2 . (3.1.8)

We formulate the result in the following proposition.

Proposition 14. The function Gs is a solution to the Sobolev embedding minimization prob-

lem

inf
u∈S:u 6=0

‖(−∆)
s
2u‖2

L2 +‖u‖2
L2

‖u‖2L∞
= s2nπ

n
2−1Γ

(n
2

)
sin
(nπ

2s

)
.

Next, we turn our attention towards the stability results. We first state spectral stabil-

ity/instability result, followed by orbital stability statements.

Stability characterization of the waves φω

Theorem 6. Let n ≥ 1, s > n
2 and ω > 0. Then, the waves eiωtφω are spectrally stable if

and only if

0< σ <
2s

n
−1.
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That is, the waves are stable for all 0 < σ < 2s
n −1 and unstable, when σ > 2s

n −1. More-

over, the instability is due to a presence of a single and simple real mode in the eigenvalue

problem (3.1.7).

Finally, before we state our orbital stability results, we need to make some natural

assumptions regarding the well-posedness of the Cauchy problem (3.1.2).

Clearly, the orbital stability is only expected to hold for the case σ < 2s
n − 1, so we

assume that henceforth. We make the following key assumptions:

1. The solution map g→ ug has continuous dependence on initial data property in

a neighborhood of φ. That is, there exists T0 > 0, so that for all ε > 0, there exists

δ > 0, so that whenever g : ‖g−φ‖Hs <δ, then sup0<t<T0 ‖ug(t, ·)−e
−iωtφω‖Hs <ε.

2. All initial data, sufficiently close to φω inHs norm, generates a global in time so-

lution ug of (3.1.2). In addition, the L2 norm and the Hamiltonian for these solutions

are conserved. That is

M [ug(t)] =M [g],E[ug(t)] = E[g].

First, let us mention that this exact result is already available in the one dimensional case

n= 1, [13]. For dimensions higher than one, n≥ 2, we conjecture that this is also the case.

That is, in parallel with the results for the standard semi-linear Schrödinger equation, we

make the following conjecture - please refer to the definitions of the operator Lc andD(Lc)

in (3.2.7) and (3.2.8) below.

Conjecture 1. For s > n
2 , u0 ∈D(Lc), there exists T > 0 such that (3.1.2) is locally well-

posed and (3.1.3) are conserved4 up to a possible blow-up time. In addition, if 0 < σ <

4For the case n= 1,s > 1
2 is exactly the results in [13]. Thus the conjucture is for n≥ 2
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2s
n −1, the solutions are global, whereas for σ ≥ 2s

n −1, finite time blow-up is possible, for

some initial data.

We are now ready to state our orbital stability results.

Theorem 7. Let n ≥ 1, ω > 0, s > n
2 , 0 < σ < 2s

n − 1. In addition, assume continuous

dependence on initial data and globality of the solutions close to φω, as outlined above.

Then, the solitons eiωtφω is orbitally stable.

We plan our this chapter as follows. In Section 1.1, we prove the Pohozaev’s identities,

which in turn imply the necessary conditions for existence of the waves. Then, we discuss

a self-adjoint realization of the operators (−∆)s+λ− cδ0 for λ > 0, c > 0.

In Section 3.3, we first provide a variational construction of the waves φω. The special

relation to the Sobolev embedding Hs(Rn) ↪→ L∞(Rn), s > n
2 is highlighted. The precise

results are stated in the explicit formulas in Proposition 14. Finally, in Section 3.3.4, we

discuss the lower part of the spectrum for operators in the form (−∆)s + λ− µδ0. In

the particular case of the linearized operator L+, this yields the non-degeneracy of the

waves, which in this case takes the form Ker(L+) = {0}, due to the broken translational

symmetry.

In Section 3.4, we start with a short introduction to the instability index count theory in

general, and then we apply it to the spectral stability of the waves φω. We explicitly cal-

culate the relevant Vakhitov-Kolokolov quantity 〈L−1
+ φω,φω〉, which provides the stability

characterization of the waves described in Theorem 6. Finally, under the necessary and

sufficient condition for spectral stability, 〈L−1
+ φω,φω〉 < 0, we derive the coercivity of L+

on {φω}⊥, which is of course crucial in the proof of the orbital stability.
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3.2 Preliminaries

3.2.1 Pohozaev’s identities and consequences

We would like to address the question for existence of solutions for the profile equation

(3.1.5). Eventually, we will write them down explicitly, but first, we need to identify some

necessary conditions on the parameters, which turn out to be essentially sufficient as well.

The approach here is classical (even though our problem is certainly not) - we build some

Pohozaev’s identities, which proceeds by establishing relations between various norms of

the eventual solution φ, which are a priori assumed finite. As a consequence, we find that

the parameters must meet certain constraints.

Proposition 15. Let φ ∈Hs(Rn)∩C(Rn) be a weak solution of (3.1.5). Then,

‖φ‖2L2 =
2s−n
2sω

|φ(0)|2σ+2 (3.2.1)

‖(−∆)
s
2φ‖2L2 =

n

2s
|φ(0)|2σ+2. (3.2.2)

Proof. Testing (3.1.5) with φ itself results in

‖(−∆)
s
2φ‖2L2 +ω‖φ‖2L2−|φ(0)|2σ+2 = 0. (3.2.3)

Next, we test (3.1.5) against x ·∇Ψ, for a test function Ψ. We obtain, by taking into account

the commutation relation [(−∆)s,x ·∇] = 2s(−∆)s,

〈(−∆)
s
2φ,(−∆)

s
2 [x ·∇Ψ]〉 = 〈φ,x ·∇(−∆)sΨ〉+ 2s〈(−∆)

s
2φ,(−∆)

s
2 Ψ〉=

= −〈x ·∇φ,(−∆)sΨ〉+ (2s−n)〈(−∆)
s
2φ,(−∆)

s
2 Ψ〉=

= −〈(−∆)
s
2 [x ·∇φ],(−∆)

s
2 Ψ〉+ (2s−n)〈(−∆)

s
2φ,(−∆)

s
2 Ψ〉.
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This implies

〈(−∆)
s
2φ,(−∆)

s
2 [x ·∇Ψ]〉+ 〈(−∆)

s
2 [x ·∇φ],(−∆)

s
2 Ψ〉= (2s−n)〈(−∆)

s
2φ,(−∆)

s
2 Ψ〉.

Note that the right-hand side of this expression makes sense for5, Ψ = φ whence

〈(−∆)
s
2φ,(−∆)

s
2 [x ·∇Ψ]〉= (s− n

2
)‖(−∆)

s
2φ‖2. (3.2.4)

Also6

〈φ,x ·∇Ψ〉=−n〈φ,Ψ〉−〈x ·∇φ,Ψ〉,

which also makes sense for Ψ = φ, whence

〈φ,x ·∇Ψ〉=−n
2
‖φ‖2L2 . (3.2.5)

Finally, we claim that 〈δ0,x ·∇Ψ〉 = 0 for each test function Ψ. Indeed, Introduce a radial

function V : Rn→R, which is smooth and non-negative function, supported on B := {x ∈

Rn : ‖x‖< 1} and normalized so that
∫

Rn V (x)dx= 1. It is well-known, that in a distribu-

tion sense, one can approximateNnV (Nx)→ δ0. That is , limN→∞〈NnV (N ·),f〉= f(0).

So,

〈δ0,x ·∇Ψ〉 = lim
N→∞

Nn
n∑
j=1

∫
Rn
V (Nx)xj∂jΨ(x)dx=

= lim
N→∞

[
−nNn

∫
Rn
V (Nx)Ψ(x)dx−Nn+1

∫
Rn
|x|V ′(Nx)Ψ(x)dx

]
= 0,

5One can formally take limits of Ψn : ‖Ψn−φ‖Hs → 0
6Note that φ ∈H1(Rn) makes this well-defined
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since

Nn+1

∫
Rn
|x|V ′(Nx)dx=

∫
Rn
|y|V ′(y)dy = |Sn−1|

∫ ∞
0

V ′(ρ)ρndρ

=−n
∫ ∞

0
V (ρ)ρn−1dρ=−n.

Putting 〈δ0,x ·∇Ψ〉= 0 together with (3.2.4), (3.2.5), implies

(s− n
2

)‖(−∆)
s
2φ‖2L2−

ωn

2
‖φ‖2L2 = 0. (3.2.6)

Solving the system of equations (3.2.3) and (3.2.6) results in the relations (3.2.1) and

(3.2.2).

An immediate corollary of these results follows from the positivity of the norms in

both (3.2.1) and (3.2.2). This consequence is given by Proposition 13. Namely, either

ω > 0, s > n
2 or ω < 0, s < n

2 . Clearly, the case ω > 0, s > n
2 is a more physical situation to

consider - after all, one has the embedding Hs(Rn) ↪→ C(Rn) and hence functions in the

class Hs(Rn) are automatically continuous.

3.2.2 The self-adjoint operators (−∆)s+λ− cδ0

In this section, we introduce the necessary self-adjoint extensions of the operators formally

introduced as (−∆)s +λ− cδ0. There has been quite a bit of recent work on the subject,

see [1, 3, 2, 6, 13] among others. In these papers, the authors have introduced various (and

sometimes all) self-adjoint extensions of such objects, under different assumptions on the

parameters. As dictated by the results of Proposition 13, we work under the assumption

s > n
2 , which simplifies matters quite a bit, in the sense that the self-adjoint extension,

which generates the standard quadratic form, is canonical.
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More specifically, for given constants λ > 0, c > 0, we introduce the skew-symmetric

quadratic form

Qc(f,g) = 〈
√

((−∆)s+λ)f,
√

((−∆)s+λ)g〉− cf(0)ḡ(0),f,g ∈D(Q)

with domain D(Q) = Hs(Rn). Note that as D(Q) ⊂ C(Rn), the values f(0),g(0) make

sense. In addition, the form Q is bounded from below. This is a consequence of the

Sobolev embedding Hα ↪→ L∞(Rn),α > n
2 . Indeed, choose α : n2 < α < s and estimate

via the Sobolev and the Gagliardo-Nirenberg’s inequalities

Qc(f,f)≥ cλ‖f‖2Hs−kα‖f‖2Hα ≥ cλ‖f‖2Hs−kα(
cλ

2kα
‖f‖2Hs +dα,λ‖f‖2L2)

≥Dα,λ‖f‖2Ḣs−Mα,λ‖f‖2L2 .

In addition, Q is closed form, as ‖f‖2Hs ∼ Q(f,f) +M‖f‖2, for large enough M . Ac-

cording to the standard theory for quadratic forms, see Theorem VIII.15 in [72], there is an

unique self-adjoint operator Lc, so that

D(Lc)⊂D(Q), Dc(f,g) = 〈Lcf,g〉, ∀f ∈D(Lc),g ∈D(Q).

Identifying the exact form of Lc may not be an easy task, in general. In our case, this is not

so hard, as the operator has been essentially constructed in previous works, see [13] for the

one dimensional case. We follow their notations and approach. To this end, introduce the

Green’s function of the operator (−∆)s+λ, namely the function Gλs , so that

((−∆)s+λ)Gλs = δ0.
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By taking the Fourier transform, we can write the following formula for Gλs

Ĝλs (ξ) =
1

(2π|ξ|)2s+λ
.

Clearly, since s > n
2 , Gλs ∈Hs(Rn)⊂ C(Rn). Introduce the domain of the operator Lc as

D(Lc) = {ψ ∈Hs(Rn) : ψ = g+ cψ(0)Gλs ,g ∈H2s(Rn)} ⊂Hs(Rn). (3.2.7)

With this domain, its action is defined as

Lcψ := ((−∆)s+λ)g. (3.2.8)

Note that for ψ ∈D(Lc) and h ∈Hs(Rn) =D(Q), we have

〈Lcψ,h〉= 〈((−∆)s+λ)g,h〉

= 〈
√

(−∆)s+λψ,
√

(−∆)s+λh〉− cψ(0)〈((−∆)s+λ)Gλs ,h〉

= 〈
√

(−∆)s+λψ,
√

(−∆)s+λh〉− cψ(0)h̄(0) =Qc(ψ,h).

Thus, Lc is a closed symmetric operator, with a quadratic form precisely Q. Note that the

role of the constant λ in the definition is to ensure that the function Ĝλs has no singularity at

ξ = 0. We now need to show that Lc is precisely the unique self-adjoint operator with this

property.

Lemma 8. The closed symmetric operator Lc, with domain given in (3.2.7) and whose

action is defined in (3.2.8), is self-adjoint.

Proof. For technical reasons, let us first assume the condition

cGλs (0) 6= 1. (3.2.9)
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With that, we work on a different representation on D(Lc). More precisely, we would like

to write ψ purely in terms of g. To this end, we evaluate the identity relating ψ and g at

x= 0. We obtain the equation for ψ(0)

ψ(0) = g(0) + cψ(0)Gλs (0).

This equation has a solution, under the condition (3.2.9),

ψ(0) =
g(0)

1− cGλs (0)
. (3.2.10)

One can now write, for c 6= 1
Gλs (0)

,

D(Lc) = {ψ ∈ L2(Rn) : ψ = g+ cGλs
g(0)

1− cGλs (0)
,g ∈H2s(Rn)},

which describes D(Lc) purely in terms of an arbitrary function g ∈H2s(Rn).

In order to show thatLc =L∗c , it suffices to show that it has a real number in its resolvent

set, see Corollary on p. 137, [71]. To this end, letM >> 1, and we will show that−M−λ∈

ρ(Lc). Let f ∈ L2(Rn) is arbitrary and consider

(Lc+M −λ)ψ = f. (3.2.11)

This is of course equivalent to the equation ((−∆)s+M)g = f , where

ψ = g+ cGλs
g(0)

1− cGλs (0)
.
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which has the unique solution g = ((−∆)s +M)−1f ∈ H2s(Rn). Thus, we can uniquely

solve (3.2.11) as follows

ψ = g+ cGλs
g(0)

1− cGλs (0)
, g = ((−∆)s+M)−1f ∈H2s(Rn).

In terms of estimates ‖g‖H2s ≤ CM‖f‖L2 and consequently

‖ψ‖L2 ≤ ‖g‖L2 +C|g(0)| ≤ ‖g‖Hs ≤ CM‖f‖L2 .

This shows that all Lc′s, with c satisfying (3.2.9) are self-adjoint. What about c, which fails

(3.2.9)? In this case

1 = cGλs (0) = c

∫
Rn

1

(2π|ξ|)2s+λ
dξ

It follows that for every λ̃ 6= λ, say λ̃ > λ, we have that cGλ̃s (0) 6= 1. Thus, following the

scheme described in the previous arguments, the operator Lλ̃c , formally defined through

(−∆)s+ λ̃− cδ0 is self-adjoint. This means that

Lc = Lλc = Lλ̃c + (λ− λ̃)Id,

is self-adjoint as well.

Remark 1. In particular, we have the following important formula7 for the action of Qc

on functions ψ ∈Hs, with ψ(0) = 0,

Qc(ψ,ψ) = ‖(−∆)
s
2ψ‖2L2 +λ‖ψ‖2L2 . (3.2.12)

7This is important because all our calculations for the linearized operators will be at the level of the
quadratic forms
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3.3 Variational construction of the waves φω and spectral

consequences

We first construct, in a variational manner, some approximate solutions to the elliptic profile

problem (3.1.5). This will turn out to be important in our subsequent considerations.

3.3.1 Variational constructions

Let ω,σ > 0. For a radial function V : Rn → R as before8 and N >> 1, consider the

functional

Iω,N [u] =

∫
Rn |(−∆)s/2u|2dx+ω

∫
Rn u

2dx(∫
RnN

nV (Nx)|u|2σ+2dx
) 1
σ+1

,

and the corresponding unconstrained variational problem Iω,N [u]→min .Clearly, Iω,N [u]>

0, so its optimal value is well-defined

mN (ω) := inf
u∈S,u 6=0

Iω,N [u].

Proposition 16. Let s > n
2 . Then the unconstrained minimization problem

Iω,N [u]→min (3.3.1)

has a real-valued solution φN ∈ Hs(Rn)∩L∞, in particular mN (ω) > 0. Moreover, φN

may be chosen to satisfy

Nn

∫
Rn
V (Nx)|φN (x)|2σ+2dx= 1.

8That is, V is non-negative, radial, smooth and supported on the unit ball B⊂ Rn, with
∫

BV (x)dx= 1
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Finally, φN satisfies the Euler-Lagrange equation

(−∆)sφN +ωφN −mN (ω)NnV (Nx)|φN |2σφN = 0 (3.3.2)

in distributional sense.

Proof. Since ‖V ‖L1 = 1, we have for u ∈Hs(Rn)⊂ L∞,

(
Nn

∫
Rn
V (Nx)|u(x)|2σ+2dx

) 1
σ+1

≤ ‖u‖2L∞(Rn) ≤ C‖u‖
2
Hs(Rn), (3.3.3)

whence (3.3.1) is a well-posed variational problem and mN (ω) > 0. Next, due to dila-

tion properties of the functional Iω,N , we can assume that the infimum is taken only over

functions with the normalization property

Nn

∫
Rn
V (Nx)|u(x)|2σ+2dx= 1.

Let uk be a minimizing sequence such that
∫
RnN

nV (Nx)|uk|2σ+2dx= 1 and hence

lim
k

(‖(−∆)
s
2uk‖2L2 +ω‖uk‖2L2) =mN (ω).

By weak compactness, we can select a weakly convergent subsequence (which we assume

is just {uk}), uk ⇀ u. By the lower semi-continuity of the norms, with respect to weak

convergence

‖(−∆)
s
2u‖2L2 +ω‖u‖2L2 ≤ liminf

k
(‖(−∆)

s
2uk‖2L2 +ω‖uk‖2L2) =mN (ω). (3.3.4)
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We now show that {uk} is pre-compact in C(B). Indeed, since s > n
2 , we have by the

Sobolev embedding that

‖uk‖Cγ(Rn) ≤ C‖uk‖Hs , (3.3.5)

for 0 < γ < {s− n
2}. Consequently, uk are uniformly Hölder-continuous, hence equicon-

tinuous as elements of C(B). Also, {uk} is a totally bounded by (3.3.5). By Arzelà-Ascoli,

we have that {uk}∞k=1 is pre-compact in C(B) , i.e , for a subsequence, which we again

assume it is just uk, we have that uk⇒B u. It is now clear that

1 = lim
k
Nn

∫
Rn
V (Nx)|uk(x)|2σ+2dx=Nn

∫
Rn
V (Nx)|u(x)|2σ+2dx. (3.3.6)

Thus, by (3.3.4)and (3.3.6), we conclude that Iω,N [u]≤mN (ω). This, by the definition of

mN (ω) means that Iω,N [u] =mN (ω). In particular,

‖(−∆)
s
2u‖2L2 +ω‖u‖2L2 =mN (ω),

so u actually solves the minimization problem (3.3.1). This is the solution φN that we were

interested in.

Next we show that the minimizer satisfies the Euler Lagrange equation. To that end

take an arbitrary test function h and let ε > 0 consider u= φN + εh, and recall that

∫
NnV (Nx)|φN |2σ+2dx= 1.

Since φN is a minimizer we have that Iω,N [u] ≥ mN (ω). Expanding in powers of ε, we

obtain

∫
|(−∆)s/2(φN +εh)|2dx+ω

∫
(φN +εh)dx=mN (ω)+2ε〈((−∆)s+ω)φN ,h〉+O(ε2).
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Similarly,

∫
V (Nx)|φN + εh|2σ+2dx

=

∫
V (Nx)|φN |2σ+2dx+ (2σ+ 2)ε

∫
V (Nx)|φN |2σφNh+O(ε2)

= 1 + (2σ+ 2)ε

∫
V (Nx)|φN |2σφNh+O(ε2).

Thus, after rationalizing the denominator we arrived at

Iω,N =
mN (ω) + 2ε〈((−∆)s+ω)φN ,h〉+O(ε2)

1 + 2ε
∫
NnV (Nx)|φN |2σφNhdx+O(ε2)

=mN (ω) + 2ε〈((−∆)s+ω)φN −mN (ω)NnV (Nx)|φN |2σφN ,h〉+O(ε2).

Since this hold for any arbitrary test function h and any ε > 0 we have that φN solves

(3.3.2).

Next, we have the following technical result.

Lemma 9. There exists constants C1(ω),C2(ω), but independent on N , so that

C1(ω)≤mN (ω)≤ C2(ω).

Furthermore, the sequence {φN}∞N=1, is a pre-compact in every set of the form C(K),

where K is a compact subset of Rn.

Proof. The lower bound, with a constant independent on N follows from (3.3.3). The

upper bound follows by testing against a concrete function like u0(x) = e−|x|
2
. Since

1
3 < u0(x)≤ 1, on the support of V (Nx),N ≥ 1, we have that

mN (ω)≤ Iω,N [u0]≤ 9
(
‖(−∆)

s
2u0‖2L2 +ω‖u0‖2L2

)
=: C2(ω).
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Next, since φN satisfy Nn
∫

Rn V (Nx)|φN (x)|2σ+2dx= 1, we have that

Iω,N [φN ] = ‖(−∆)
s
2φN‖2L2 +‖φN‖2L2 =mN (ω).

Thus, by Sobolev embedding

‖φN‖Cγ(Rn) ≤ C‖φN‖Hs ≤ C(ω)mN (ω)≤ C3(ω).

for 0< γ <min{1, s− n
2}. It follows that for each compact K ⊂Rn, {φN} is pre-compact

in C(K) by Arzela-Ascolli’s theorem.

Clearly, Lemma 9 allows us to take a convergent (sub) sequence as N →∞. We wish

to learn what the limit is expected to be. It turns out that it is nothing but the minimizer for

the Sobolev inequality Hs(Rn) ↪→ L∞(Rn). We justify that in the next section.

3.3.2 Relation to the minimizers for the Sobolev embeddingHs(Rn) ↪→

L∞(Rn)

For s > n
2 ,ω > 0, we study up the functional

Jω[u] =
‖(−∆)

s
2u‖2

L2 +ω‖u‖2
L2

‖u‖2L∞

and the corresponding minimization problem Jω[u]→min. Finally, denote

c2(ω) := inf
u∈S:u 6=0

Jω[u].
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The described optimization problem has a clear analytical interpretation, namely that c is

the exact constant in the Sobolev embedding estimate

c(ω)‖u‖L∞ ≤ |||u|||Hs :=
√
‖(−∆)

s
2u‖2

L2 +ω‖u‖2
L2 .

We know from the Sobolev embedding Hs(Rn) ↪→ L∞(Rn) that c is well-defined and we

can alternatively introduce it as follows c(ω) = sup{C > 0 : C‖u‖L∞ ≤ |||u|||Hs ,∀u ∈ S}.

Another useful observation is that one can assume, without loss of generality, that in

the infimum procedure described above, ‖u‖L∞ is replaced by |u(0)|. That is ,

c2(ω) = inf
u∈Hs:u(0)6=0

‖(−∆)
s
2u‖2

L2 +ω‖u‖2
L2

|u(0)|2
.

Lemma 10. Let s > n
2 ,ω > 0 and γ <min(1, s− n

2 ). Then, there exists C = C(s,ω,γ), so

that

c2(ω)≤mN (ω)≤ c2(ω) +CN−γ (3.3.7)

Proof. By (3.3.3), we see that for every N ≥ 1, Iω,N ≥ Jω, whence mN (ω)≥ c2(ω).

For the opposite inequality, observe first that since mN (ω)≤ C2(ω), we can take

mN (ω) = inf
u∈S:u 6=0

Iω,N [u] = inf
Nn

∫
Rn V (Nx)|φN (x)|2σ+2dx=1; |||u|||Hs≤10C2

Iω,N [u].

So, let u ∈ Hs : Nn
∫

Rn V (Nx)|u(x)|2σ+2dx = 1; |||u|||Hs ≤ 10C2. Recall that for ev-

ery q > 1, there is Cq, so that for a > 0, b > 0 |aq − bq| ≤ Cq|a− b|(aq−1 + bq−1). As

a consequence, and by Sobolev embedding and together with the definition ‖u‖Cγ :=

supx6=0
|u(x)−u(0)|
|x|γ we have,

∣∣|u(x)|2σ+2−|u(0)|2σ+2
∣∣≤ Cσ|u(x)−u(0)|‖u‖2σ+1

L∞ ≤ Cγ,σ|x|γ‖u‖2σ+1
Cγ(Rn)
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≤ Cγ,σ|x|γ‖u‖2σ+1
Hs ,

and since |||u|||Hs ≤ 10C2, we conclude

∣∣|u(x)|2σ+2−|u(0)|2σ+2
∣∣≤ Cγ,σ,ω|x|γ . (3.3.8)

It follows that

∣∣|u(0)|2σ+2−1
∣∣=

∣∣∣∣|u(0)2σ+2−Nn

∫
Rn
V (Nx)|u(x)|2σ+2dx

∣∣∣∣=

=Nn

∣∣∣∣∫
Rn
V (Nx)[|u(x)|2σ+2−|u(0)|2σ+2dx

∣∣∣∣
≤ Cγ,σ,ωNn

∫
Rn
V (Nx)|x|γdx

≤ Cγ,σ,ωN−γ
∫

Rn
V (y)|y|γdy ≤ Cγ,σ,ωN−γ ,

so |u(0)| ≤ 1 +Cγ,σ,ωN
−γ . It follows that

mN (ω) = inf
Nn

∫
Rn V (Nx)|φN (x)|2σ+2dx=1; |||u|||Hs≤10C2

‖(−∆)
s
2u‖2L2 +ω‖u‖2L2 ≤

≤ (1 +Cγ,σ,ωN
−γ) inf

|||u|||Hs≤10C2,u(0)6=0

‖(−∆)
s
2u‖2

L2 +ω‖u‖2
L2

|u(0)|2

≤ c2 +Cγ,σ,ωN
−γ .

We now take limit as N →∞. In view of our discussion so far, it is not surprising that

this yields the minimizers for the Sobolev embedding Hs(Rn) ↪→ L∞(Rn). In turn, this

allows us to present an explicit formula for the solutions of (3.1.5) and to interpret them as

minimizers of the Sobolev embedding problem.
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3.3.3 Description of the solutions for the profile equation (3.1.5)

Lemma 11. Let s > n
2 ,ω > 0. Then, for every constant C 6= 0, the function

φ̂(ξ) =
C

(2π|ξ|)2s+ω
, (3.3.9)

is a minimizer of the problem minu∈Hs Jω[u]. In particular, the optimal Sobolev constant

is given by the formula

c2(ω) =

(∫
Rn

1

(2π|ξ|)2s+ω
dξ

)−1

.

Proof. From Lemma 10, it follows that limNmN (ω) = c2(ω). In addition, as we have

pointed out, maximizers can be taken, with the property ‖φN‖Hs ≤ C(ω). As Hs(Rn)

embeds in Cγ(Rn),0< γ < s− n
2 and this is compact embedding on bounded domains, we

can select

φN :Nn

∫
Rn
V (Nx)|φN (x)|2σ+2dx= 1,

so that φN is uniformly convergent, on the compact subsets of Rn to φ ∈Hs(Rn).

We will show that φ(0) = 1 and φ is in the form (3.3.9). We have, for each N ≥ 1,

∣∣1−|φ(0)|2σ+2
∣∣ ≤ Nn

∫
Rn
V (Nx)

∣∣|φN (x)|2σ+2−|φ(0)|2σ+2
∣∣dx

≤ Cσ(‖φN‖2σ+1
L∞ + |φ(0)|2σ+1)Nn

∫
Rn
V (Nx)|φN (x)−φ(0)|dx.

But ‖φN‖L∞ ≤ ‖φN‖Hs < C(ω), while

|φN (x)−φ(0)| ≤ |φN (x)−φN (0)|+ |φN (0)−φ(0)| ≤ Cγ |x|γ + |φN (0)−φ(0)|.
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Plugging this back in our estimate for |1−|φ(0)|2σ+2|, we obtain, for each 0< γ < s− n
2 ,

|1−|φ(0)|2σ+2| ≤C|φN (0)−φ(0)|+CNn

∫
Rn
V (Nx)|x|γdx≤C|φN (0)−φ(0)|+CN−γ .

Clearly, the expression on the right goes to zero as N →∞, as φN ⇒B φ. By adjusting the

sign of φN , if necessary, this implies that we can take φ(0) = limN φN (0) = 1.

Next, φN satisfies the Euler-Lagrange equation (3.3.2). Test this equation with ψ. We

obtain

〈φN ,((−∆)s+ω)ψ〉=mN (ω)Nn

∫
Rn
V (Nx)|φN |2σφN (x)ψ(x)dx. (3.3.10)

Taking limits in N then yields, after taking into account φ(0) = 1,

〈φ,((−∆)s+ω)ψ〉= c2(ω)ψ(0). (3.3.11)

In other words, φ satisfies the equation

((−∆)s+ω)φ− c2δ0 = 0. (3.3.12)

in a distributional sense.

By taking ψ in (3.3.10) to be an appropriate approximation of the function Gωs (·+x),

we conclude that

φ(x) = const.Gωs (x)

which is of course the same as (3.3.9). Additionally, by testing (3.3.12) by φ itself, we

obtain

‖(−∆)
s
2φ‖2L2 +ω‖φ‖2L2 = c2φ(0)2 = c2.
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This shows that φ is a minimizer for minu∈Hs Jω[u] and so any function in the form (3.3.9)

is one as well. Also,

c2(ω) =
‖(−∆)

s
2Gωs ‖2L2 +ω‖Gωs ‖2L2

(Gωs (0))2
=

(∫
Rn

1

(2π|ξ|)2s+ω
dξ

)−1

. (3.3.13)

We now state a result that describes the solutions of (3.1.5).

Lemma 12. The non-trivial solutions to (3.1.5), with φ(0)> 0 are given by

φ̂(ξ) =

(∫
Rn

1

(2π|ξ|)2s+ω
dξ

)−(1+ 1
2σ )

1

(2π|ξ|)2s+ω
. (3.3.14)

Proof. We can proceed as in the proof of Lemma 11 to see that

φ̂(ξ) = |φ(0)|2σφ(0)
1

(2π|ξ|)2s+ω
.

In order to determine φ(0), we apply the inverse Fourier transform to obtain an equation

for it as follows

φ(0) =

∫
Rn
φ̂(ξ)dξ = |φ(0)|2σφ(0)

∫
Rn

1

(2π|ξ|)2s+ω
dξ.

It follows that

|φ(0)|2σ =

(∫
Rn

1

(2π|ξ|)2s+ω
dξ

)−1

,

which proves the claim.
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3.3.4 The spectrum of (−∆)s+ω−µδ0

In this section, we develop some tools to study the bottom of the spectrum of the operators

(−∆)s +ω−µδ0, depending on the value of µ. More specifically, we have the following

result.

Proposition 17. Let s > n
2 ,ω > 0 and Lµ = (−∆)s+ω−µδ0 be the self-adjoint operator

introduced in Lemma 8. Then,

• If µ > c2(ω), the operator Lµ has one simple negative eigenvalue, −λω,µ < 0, with

eigenfunction Ψ0 : Ψ̂0(ξ) = 1
(2π|ξ|)2s+ω+λω,µ

. For the rest of the spectrum

σ(Lµ)\{−λω,µ} ⊂ [ω,∞).

In particular, Lµ|{Ψ0}⊥ ≥ ω.

• If µ = c2(ω), Lµ ≥ 0, 0 is a simple eigenvalue, with an eigenfunction Ψ0 defined as

above. For the rest of the spectrum, there is σ(Lµ) \ {0} ⊂ [ω,∞). In particular,

Lµ|{Ψ0}⊥ ≥ ω.

• If µ < c2(ω), there is a simple eigenvalue λω,µ ∈ (0,ω), with eigenfunction

Ψ0 : Ψ̂0(ξ) = 1
(2π|ξ|)2s+ω−λω,µ and σ(Lµ)\{λω,µ}⊂ [ω,∞). In particular, Lµ|{Ψ0}⊥ ≥

λω,µ > 0.

Proof. Assume first µ > c2. We would like to formally analyze the eigenvalue problem

associated with the lowest eigenvalue of Lµ. So, we are looking for f 6= 0,f ∈D(Lµ), so

that Lµf =−λf for some λ > 0. This is the equation

((−∆)s+ω+λ)f = µf(0)δ0. (3.3.15)
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Arguing as in the proof of Lemma 11, by taking Fourier transform etc., we find that all

possible solutions are in the form

f̂(ξ) =
µf(0)

(2π|ξ|)2s+ω+λ
.

Clearly, f ∈D(Lµ) and we need to see that there exists λ > 0, so that it solves (3.3.15). To

this end, we have

f(0) =

∫
Rn
f̂(ξ)dξ = µf(0)

∫
Rn

1

(2π|ξ|)2s+ω+λ
dξ.

As we seek non-trivial solutions f (and hence f(0) 6= 0), this amounts to finding λ, so that

for the given ω, we have

µ

∫
Rn

1

(2π|ξ|)2s+ω+λ
dξ = 1. (3.3.16)

We claim that under the condition µ > c2, there is exactly one solution λ = λω,µ ∈ (0,∞).

Indeed, consider the continuous and decreasing function

h(λ) := µ

∫
Rn

1

(2π|ξ|)2s+ω+λ
dξ−1.

Computing its limits at the ends of the interval

lim
λ→0+

h(λ) = µ

∫
Rn

1

(2π|ξ|)2s+ω
dξ−1 =

µ

c2
−1> 0, lim

λ→+∞
h(λ) =−1,

implies that there is an unique eigenvalue λω,µ > 0. Moreover, the corresponding eigen-

function is, up to a multiplicative constant

Ψ̂0(ξ) =
1

(2π|ξ|)2s+ω+λω,µ
.
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We now prove the statement about the rest of the spectrum. Consider the spectral de-

composition of the self-adjoint operator Lµ. Assume for a contradiction that for any

δ > 0, we have that σ(Lµ)∩ (−λω,µ+ δ,ω− δ) 6= ∅. Let Ψ ∈ Image(P(−λω,µ+δ,ω−δ)) (i.e.

Ψ = P(−λω,µ+δ,ω−δ)Ψ) and then normalize it, that is ‖Ψ‖L2 = 1. As

Ψ0(0) =

∫
Rn

1

(2π|ξ|)2s+ω+λω,µ
dξ > 0,

consider the well-defined element of D(Lµ),

Ψ̃ := Ψ− Ψ(0)

Ψ0(0)
Ψ0.

Note that Ψ̃(0) = 0, so according to (3.2.12), we have,

〈LµΨ̃,Ψ̃〉= ‖(−∆)
s
2 Ψ̃‖2L2 +ω‖Ψ̃‖2L2 ≥ ω‖Ψ̃‖2L2 ≥ ω‖Ψ‖2L2 = ω.

where we have used that Ψ⊥Ψ0, and hence ‖Ψ̃‖2
L2 = ‖Ψ‖2

L2 + Ψ2(0)

Ψ2
0(0)
‖Ψ0‖2L2 ≥‖Ψ‖2L2 = 1.

On the other hand, again by Ψ ⊥ Ψ0,LµΨ ⊥ Ψ0, and the properties of the spectral

projections,

〈LµΨ̃,Ψ̃〉= 〈LµΨ,Ψ〉+ Ψ2(0)

Ψ2
0(0)
〈LµΨ0,Ψ0〉 ≤ (ω− δ)−λω,µ

Ψ2(0)

Ψ2
0(0)

≤ ω− δ.

Clearly, the two estimates that we have obtained for 〈LµΨ̃,Ψ̃〉 are contradictory, which

is due to the assumption σ(Lµ)∩ (−λω,µ,ω− δ) 6= ∅. Thus, σ(Lµ)∩ (−λω,µ,ω) = ∅ or

σ(Lµ)\{−λω,µ} ⊂ [ω,∞), which was the claim.

The proof for µ= c2 goes along similar lines. Indeed, for any test function Ψ ∈Hs, we

have

〈LµΨ,Ψ〉= ‖(−∆)
s
2 Ψ‖2L2 +ω‖Ψ‖2L2− c2s|Ψ(0)|2 ≥ 0,
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by the definition of c2 = inf Jω[Ψ]. Hence, Lµ ≥ 0. Furthermore, by direct inspection

Lµ[Gsω] = 0, whence 0 is an eigenvalue (and it would have to be at the bottom of the spec-

trum). Finally, σ(Lµ)\{0} ⊂ [ω,∞) is shown in the exact same way as in the case µ > c2.

For the case µ < c2, we can similarly identify an unique λω,µ ∈ (0,ω), so that

µ

∫
Rn

1

(2π|ξ|)2s+ω−λ
dξ = 1.

This λω,µ > 0 is an eigenvalue for Lµ, with eigenfunction, Ψ0 : Ψ̂0(ξ) = 1
(2π|ξ|)2s+ω−λ .

Moreover, σ(Lµ)\{λω,µ} ⊂ [ω,∞) is proved in the same fashion as above.

Remark 2. Note that the operator L± have the form

L− = (−∆)s+ω−|φ(0)|2σδ0 = (−∆)s+ω− c2(ω)δ0

L+ = (−∆)s+ω− (2σ+ 1)c2(ω)δ0.

As a direct consequence of the results of Proposition 17 and Remark 2, we have the

following corollary.

Corollary 5. Let s > n
2 , ω > 0, σ > 0. Then,

• L− ≥ 0, 0 is a simple eigenvalue, with eigenfunction Gωs and

σ(L−)\{0} ⊂ [ω,∞).

Also, L−|{Gωs }⊥ ≥ ω.

• L+ has a simple negative eigenvalue, with an eigenfunction Ψ0. Also,

L+|{Ψ0}⊥ ≥ ω > 0.
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3.4 Stability of the waves

In this section, we identify the regions of stability for the waves.

3.4.1 Instability index count for (3.1.6)

In our specific case, we need to apply the instability index counting theory to the eigenvalue

problem (3.1.6). Recall that J ∗ =−J = J −1, while L=

 L− 0

0 L+

, whence

n(L) = n(L+) +n(L−) = 1 + 0 = 1,

due to the results of Corollary 5. Also, again by the description in Corollary 5,

Ker(L) =

 Ker(L−)

0

+

 0

Ker(L+)

= span

 φω

0

 .
It follows that Corollary 1 is applicable to the eigenvalue problem (3.1.6), and in fact the

spectral stability of it is equivalent to the condition

〈L−1
+ φω,φω〉< 0. (3.4.1)

Since, φω = cGωs , it suffice s to compute 〈L−1
+ Gωs ,Gωs 〉. We accomplish this in the following

proposition.

Proposition 18. Let n≥ 1, ω > 0, σ > 0 and s > n
2 . Then,

sgn〈L−1
+ φω,φω〉= sgn〈L−1

+ Gωs ,Gωs 〉= sgn

(
σ− 2s−n

n

)
.
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In particular, the waves φω are spectrally stable if and only if

0< σ <
2s

n
−1.

Proof. We first need to find L−1
+ Gωs . That is, we need to solve L+ψ = Gωs . Based on the

formula (3.2.8) however, we need to solve

Gωs = L+ψ = ((−∆)s+ω)g

whence, we can actually find g pretty easily by taking Fourier transform. Namely,

((2π|ξ|)2s+ω)ĝ(ξ) = Ĝωs (ξ) =
1

(2π|ξ|)2s+ω
.

It follows that

ĝ(ξ) =
1

((2π|ξ|)2s+ω)2
,

or equivalently g = Gωs ∗Gωs . We can now proceed to find ψ from (3.2.10). Namely, taking

into account that L+ = (−∆)s+ω− (2σ+ 1)c2, we compute

ψ = g+ (2σ+ 1)c2
g(0)

1− (2σ+ 1)c2Gωs (0)
Gωs .

Note however that g(0) = Gωs ∗Gωs (0) = ‖Gωs ‖2L2 . Also, according to (3.3.13), c2sGωs (0) = 1,

so

ψ = Gωs ∗Gωs −
2σ+ 1

2σ

∫
Rn

1
((2π|ξ|)2s+ω)2

dξ∫
Rn

1
(2π|ξ|)2s+ωdξ

Gsω.

So ,

〈L−1
+ Gωs ,Gωs 〉 = 〈ψ,Gωs 〉= 〈Gωs ∗Gωs ,Gωs 〉−

2σ+ 1

2σ

∫
Rn

1
((2π|ξ|)2s+ω)2

dξ∫
Rn

1
(2π|ξ|)2s+ωdξ

〈Gωs ,Gωs 〉=
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=

∫
Rn

1

((2π|ξ|)2s+ω)3
dξ− 2σ+ 1

2σ

(∫
Rn

1
((2π|ξ|)2s+ω)2

dξ
)2

∫
Rn

1
(2π|ξ|)2s+ωdξ

.

So, it remains to compute

∫
Rn

1

((2π|ξ|)2s+ω)j
dξ,j = 1,2,3.

which we have done in the Appendix, see Proposition 29. More specifically, substituting

the formulas (B.0.1), (B.0.2), (B.0.3) in the expression for 〈L−1
+ Gωs ,Gωs 〉, we obtain

〈L−1
+ Gωs ,Gωs 〉 =

π|Sn−1|ω n
2s−3

4s(2π)n sin(nπ2s )

((
1− n

2s

)(
2− n

2s

)
− 2σ+ 1

σ

(
1− n

2s

)2
)

=

=
nπ|Sn−1|ω n

2s−3

8s2σ(2π)n sin(nπ2s )

(
1− n

2s

)(
σ− 2s−n

n

)
.

Note that, as s > n
2 , only the last term in the expression changes sign over the parameter

space. We have this established Proposition 18 in full.

Having the above spectral properties of the operator L±, we have one last step before

arriving at the orbital stability of the wave. More specifically, we need to argue the co-

erciveness of L± on the space Hs(Rn). To that end we have the following proposition

.

Proposition 19. Let s > n
2 ,ω > 0, 〈L−1

+ φω,φω〉< 0. Then, the operator L+ is coercive on

{φω}⊥. That is, there exists δ > 0, so that for all

〈L+Ψ,Ψ〉 ≥ δ‖Ψ‖2Hs , ∀Ψ⊥ φω. (3.4.2)

Proof. This is a version of a well-known lemma in the theory, see for example Lemma

6.7 and Lemma 6.9 in [67]. Recall that we have already showed Ker[L+] = {0} and
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n(L+) = 1. According9 to Lemma 6.4, [67] under these conditions for L+ we have that for

any g ⊥ φω,

〈L+g,g〉 ≥ 0. (3.4.3)

Consider the associated constrained minimization problem

inf
‖f‖=1,f⊥φω

〈L+f,f〉 (3.4.4)

and set

α := inf{〈L+f,f〉 : f ⊥ φω,‖f‖L2 = 1} ≥ 0.

We will show that α > 0. Assume for a contradiction that α = 0.

Take a minimizing sequence fk : ‖fk‖= 1,fk ⊥ φω, so that

α = lim
k
〈L+fk,fk〉= lim

k
[‖(−∆)

s
2fk‖2 +ω− (2σ+ 1)c2|fk(0)|2].

However, by Sobolev embedding and the Gagliardo-Nirenberg’s inequalities (recall ‖fk‖L2 =

1), we have that for all β : n2 < β < s and for all ε > 0,

|f(0)| ≤ ‖f‖L∞ ≤Cβ(‖f‖Ḣβ +C‖f‖L2 ≤Cβ‖f‖
β
s

Ḣs
‖f‖1−

β
s

L2 +C‖f‖L2 ≤ ε‖f‖Ḣs+Cε‖f‖L2 .

Applying this estimate, we obtain a lower bound for 〈L+fk,fk〉 (recall ‖fk‖L2 = 1), as

follows

〈L+fk,fk〉 ≥
1

2
‖(−∆)

s
2fk‖2−C.

Since, α = limk〈L+fk,fk〉, this implies that supk ‖(−∆)
s
2fk‖2 <∞. This means that we

can select a subsequence of {fk} (denoted by the same), so that fk converges weakly to

9And this is already explicit in a much earlier work by Weinstein
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f ∈ Hs(Rn). In addition, by the Sobolev embedding Hs(Rn) ↪→ Cγ(Rn),γ < s− n
2 , we

can, as we have done previously, without loss of generality assume that fn⇒ f on the com-

pact subsets of Rn. In particular, limk fk(0) = f(0). Note that by the weak convergence,

〈f,φω〉= limk〈fk,φω〉= 0, so f ⊥ φω and

liminf
k
‖(−∆)

s
2fk‖2 ≥ ‖(−∆)

s
2f‖2, ‖f‖L2 ≤ liminf ‖fk‖L2 = 1. (3.4.5)

It follows that

〈L+f,f〉 ≤ liminf
k
〈L+fk,fk〉= 0. (3.4.6)

But by (3.4.3), and since f ⊥ φω, we have that 〈L+f,f〉 ≥ 0. It follows that 0 = 〈L+f,f〉=

limk〈L+fk,fk〉. But this means that all inequalities in (3.4.5) and (3.4.6) are equalities and

in particular

lim
k
‖(−∆)

s
2fk‖L2 = ‖(−∆)

s
2f‖L2 ,

lim
k
‖fk‖L2 = ‖f‖L2 .

These last identities, in addition to the Hs weak convergence fk to f , implies strong con-

vergence, that is limk ‖fk− f‖Hs = 0. In particular, ‖f‖L2 = limk ‖fk‖L2 = 1. In other

words, f is a minimizer for the constrained minimization problem (3.4.4). Write the Euler-

Lagrange equation for f

L+f = df + cφω. (3.4.7)

Taking dot product with f and taking into account 〈L+f,f〉= 0, f 6= 0 and f ⊥ φω implies

that d= 0. This means that f = cL−1
+ φω. But then,

0 = 〈L+f,f〉= c2〈L−1
+ φω,φω〉.
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Since 〈L−1
+ φω,φω〉 6= 0, it follows c = 0. But then, since Ker[L+] = {0}, (3.4.7) implies

that f = 0, which is a contradiction. Thus, we have shown that α > 0. As a consequence,

〈L+Ψ,Ψ〉 ≥ α‖Ψ‖2L2 , ∀Ψ⊥ φω. (3.4.8)

Note that (3.4.2) is however stronger than (3.4.8), as it involves ‖ · ‖Hs norms on the right-

hand side. Nevertheless, we show that it is relatively straightforward to deduce it from

(3.4.8). Indeed, assume for a contradiction in (3.4.2), that gk : ‖gk‖Hs = 1,gk ⊥ φω, so that

limk〈L+gk,gk〉= 0.

Taking into account (3.4.8), this is only possible if limk ‖gk‖L2 = 0. So,

1 = lim
k

[‖(−∆)
s
2 gk‖2L2 +‖gk‖2L2 ] = lim

k
‖(−∆)

s
2 gk‖2L2 .

Note that by (1.1.8), we have that for all 0< δ < s− n
2 , we have that

|gk(0)| ≤ ‖gk‖L∞ ≤ C(‖gk‖Ḣ n
2 +δ +‖gk‖Ḣ n

2−δ
)

≤ C(‖gk‖
n
2 +δ

s

Ḣs
‖gk‖

1−
n
2 +δ

s

L2 +‖gk‖
n
2−δ
s

Ḣs
‖gk‖

1−
n
2−δ
s

L2 ,

whence limk ‖gk(0)|= 0. But then, we achieve a contradiction, since

0 = lim
k
〈L+gk,gk〉= lim

k
[‖(−∆)

s
2 gk‖2L2 +ω‖gk‖2L2− (2σ+ 1)c2s|gk(0)|2] = 1.

3.4.2 Orbital stability

In this section, we prove that the spectrally stable solutions are in fact orbitally stable. There

is, in general, a straightforward way to obtain orbital stability, based on spectral stability,
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see for example Theorem 5.2.11, [55]. While this is the case in general, we are dealing

with non-standard linearized operators and their domains. In particular, the Assumption

5.2.5 a) on p. 136, [55] does not apply. Thus, we need to consider a direct proof, based on

the Benjamin’s approach.

As was established already, the case 0 < σ < 2s
n − 1 represents the spectrally stable

waves, which we now analyze for orbital stability.

Proposition 20. Let ω > 0, n ≥ 1, s > n
2 , 0 < σ < 2s

n − 1 and the key assumptions (1), (2)

are satisfied. Then eiωtφω is orbitally stable solution of (3.1.2).

Proof. Let us outline first what the consequences of our assumptions are. By Proposition

18, we have that 〈L−1
+ φω,φω〉< 0, which by Proposition 19 means that the coercivity esti-

mate (3.4.2) holds. By Corollary 5, Ker(L+) = {0}, that is the wave φω is non-degenerate.

We now concentrate on the orbital sdtability. Our proof is by a contradiction argument.

That is, there is ε0 > 0 and a sequence of initial data uk : limk ‖uk−φ‖Hs(Rn) = 0, so that

sup
0≤t<∞

inf
θ∈R
‖uk(t, ·)− e−iθφ‖Hs ≥ ε0. (3.4.9)

Using the conserved quantities (3.1.3) and (3.1.4) we define new conserved quantity

E [u] := E[u] +
ω

2
M [u],

εk := |E [uk(t)]−E [φω]]|+ |M [uk(t)]−M [φω]]|,

and for all ε > 0,

tk := sup{τ : sup
0<t<τ

‖uk(t)−φ‖Hs(Rn) < ε}.

Note that εk is conserved and limk εk = 0 and by the assumption that we have local

well-posedness tk > 0.
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Consider t ∈ (0, tk) and let uk = vk + iwk and ‖wk(t)‖Hs(Rn) ≤ 2‖uk−φ‖Hs(Rn) < ε.

This leads to the definition of the modulation parameter θk(t) such thatwk+sinθk(t)φ⊥ φ,

that is ,

− sin(θk(t))‖φ‖L2 = 〈wk(t),φ〉. (3.4.10)

By Cauchy-Schwarz we have |〈wk(t),φ〉| ≤ ε‖φ‖L2 and this means there is an unique small

solution θk(t) of (3.4.10), with |θk(t)| ≤ ε. Also

‖uk(t, ·)− e−iθk(t)φ‖Hs ≤ ‖uk(t, ·)−φ‖Hs + |e−iθk(t)−1|‖φ‖Hs ≤ C(‖φ‖Hs)ε.

Now define

Tk := sup{τ : sup
0<t<τ

‖uk(t, ·)− e−iθk(t)ϕ(·)‖Hs(Rn) < 2Cε}.

Clearly 0 < tk < Tk. From this we see that to get contradiction of (3.4.9) it is enough

to show that for all ε > 0 and large k,Tk =∞. To that end let t ∈ (0,Tk) write

ψk = uk− e−iθk(t)φ= vk + iwk− e−iθk(t)φ,

and decompose into real and imaginary part of ψk and projecting on

 φ

0

 with

 ηk(t, ·)

ζk(t, ·)

⊥
 φ

0


yield

122



 vk(t, ·)− cos(θk(t))φ

wk(t, ·) + sin(θk(t))φ

= µk(t)

 φ

0

+

 ηk(t, ·)

ζk(t, ·)

 . (3.4.11)

By the choice of θk we have ζk ⊥ φ, and from the above decomposition we also have

ηk ⊥ φ. So taking the L2 norm of (3.4.11) we have

|µk(t)|2‖φ‖2L2 +‖ηk(t)‖2L2 +‖ζk(t)‖2L2 = ‖ψk(t)‖2L2 ≤ 4C2ε2. (3.4.12)

Next we take advantage of the two conserved quantities, to that end we consider the mass

M [uk(t)] =

∫
Rn
|e−iθk(t)φ+ψk(t)|2dx

=M [φ] +‖ψk(t, ·)‖2L2 + 2

∫
Rn
φ(x)<[e−iθk(t)ψk(t,x)]dx

=M [φ] +‖ψk(t, ·)‖2L2 + 2µk(t)cos(θk(t))‖φ‖2L2 .

Here we use the fact that wk + sinθk(t)φ ⊥ φ and ηk ⊥ φ. Solving for µk(t) and since

|θk| is very small and ‖ψk(t, ·)‖L2 ≤ 2Cε, in t : 0< t < Tk we have

|µk(t)| ≤
|M [uk(t)]−M [φ]|+‖ψk(t, ·)‖2L2

2cos(θk(t)‖φ‖2L2

≤ C(εk +‖ψk(t, ·)‖2L2)≤ C(εk + ε2).

(3.4.13)

Now we will expand E [uk(t)]−E [φ] but first for any small perturbations of the wave

α1 + iα2 ∈Hs(Rn) and using (3.1.5) we have

E[φ+ (α1 + iα2)]−E[φ] =
1

2
[〈L+α1,α1〉+ 〈L−α2,α2〉] +Err[α1,α2], (3.4.14)
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where

|Err[α1,α2]| ≤ C|((φ(0) +α1(0))2 +α2
2(0))σ+1−φ(0)2σ+2

− (2σ+ 2)φ(0)2σ+1α1(0)− (2σ+ 2)(2σ+ 1)

2
φ2σ(0)α2

1(0)− (2σ+ 2)φ2σ(0)α2
2(0)|

≤ C(‖φ‖L∞)(|α1(0)|+ |α2(0)|)min(2σ+2,3).

Note that

eiθk(t)ψk = [cos(θk)(µkφ+ηk)− sin(θk)ζk] + i [cos(θk)ζk + sin(θk)(µkφ+ηk)] .

Now apply the expansion (3.4.14) with

α1 = cos(θk)(µkφ+ηk)− sin(θk)ζk,α2 = cos(θk)ζk + sin(θk)(µkφ+ηk)

together with (3.4.12), we see that ‖α1‖Hs +‖α2‖Hs ≤ Cε . So , we can bound the contri-

bution of |Err[α1,α2]| as follows

|Err[α1,α2]| ≤ Cεmin(2σ,1)(‖α1‖2Hs +‖α2‖2Hs). (3.4.15)

By the Sobolev embeddings, L−φ = 0 and L+ = L− − 2σ|φ(0)|2σδ together with

(3.4.12) and (3.4.13) we have

〈L+α1,α1〉 ≥ 〈L+ηk,ηk〉−C(ε3 + εk + ε2(‖ηk‖Hs +‖ζk‖Hs) + ε(‖ηk‖Hs +‖ζk‖Hs)2)

〈L−α2,α2〉 ≥ 〈L−ζk, ζk〉−C(ε3 + εk + ε2(‖ηk‖Hs +‖ζk‖Hs) + ε(‖ηk‖Hs +‖ζk‖Hs)2).
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Taking advantage of the coercivity of L− and L+, which was established in Proposi-

tion 17, we have that for some κ > 0 and since ηk, ζk ⊥ φ together with some algebraic

manipulations yield

‖ηk(t)‖2Hs +‖ζk(t)‖2Hs ≤ C(ε3 + εk). (3.4.16)

Here C is independent of ε and k. This implies that T ∗k =∞, since if we assume that

T ∗k <∞, then

2C0ε= limsup
t→T ∗k−

‖ψk(t)‖Hs ≤ C(|µk(t)|+‖ηk(t)‖Hs +‖ζk(t)‖Hs)≤ C(ε
3
2 +
√
εk).

(3.4.17)

which is a contradiction, if ε is so that C0ε > Cε
3
2 and then k is so large, and hence εk is so

small, that C0ε > C
√
εk, which certainly contradicts (3.4.17). Hence the wave is orbitally

stable.
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Chapter 4

On the stability of the compacton waves for the degenerate

KdV and NLS models

4.1 Introduction

In this chapter, we shall be interested in some aspects of the dynamics of dispersive equa-

tions, driven by degenerate dispersion. In order to fix ideas, we settle on the one dimen-

sional case on the line, and recall the standard dispersive models. More specifically, for

p > 2, consider the (generalized) Korteweg de Vries equation

ut+uxxx+∂x(|u|p−2u) = 0, u : R×R→ R (4.1.1)

and the non-linear Schrödinger equation

iut+uxx+ |u|p−2u= 0, u : R×R→ C. (4.1.2)
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The Cauchy problem for these models is well-understood, even in low regularity setting.

In particular, and for classical solutions, the solutions conserve energy

E[u(t)] =
1

2

∫
R
|u′|2dx− 1

p

∫
R
|u|pdx= E[u0]

and mass

M [u(t)] =

∫
R
|u|2dx=M [u0].

The solitary waves of these models, namely the standing waves eiωtφ of (4.1.2) and the

traveling waves φ(x− ωt) of (4.1.1), have received ample attention in the literature. It

turns out that they are unique (i.e. for each ω > 0,p > 2, there is an unique function φ with

this property). Their stability is also a classical fact by now (see for example [18], but also

[14, 16, 51]) - namely these waves are spectrally stable for all ω > 0, when 2< p< 6, while

they become spectrally unstable for p > 6, again for all values of ω > 0.

In this chapter published in [47], we investigate the degenerate KdV and NLS. More

specifically, for p > 2, the degenerate KdV is given by

ut+∂x(u∂x(u∂xu) + |u|p−2u) = 0, u : R×R→ R. (4.1.3)

The degenerate KdV model was introduced in [73, 74], with the main interest in the com-

pacton traveling waves. A more general Hamiltonian version of this problem, was proposed

in [25, 86] and subsequently in [65]. For more details on Compactons, their structure, emer-

gence, and other properties see [75, 76, 77]

The degenerate NLS takes the form

iut+ ū∂x(u∂xu) + |u|p−2u= 0, u : R×R→ C. (4.1.4)
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The well-posedness of the Cauchy problem for the degenerate KdV equation (4.1.3) has

been studied in [41] and quite recently the well-posedness for degenerate NLS (4.1.4) was

studied in [48]. In particular, these models conserve the mass M [u] =
∫

R |u|
2 and the

Hamiltonian, which in this case takes the form

H[u(t)] =
1

2

∫
R
|u∂xu|2−

1

p

∫
R
|u|pdx=H[u0].

The non-linear dynamics of an equilibrium solution of (4.1.3) and (4.1.4) heavily depends

on the spectral/linear stability of the equilibrium. To that end, note that the degenerate KdV,

(4.1.3) can be written in the Hamiltonian form

∂tu= J ∂H
∂u

with L2(R) skew-symmetric operator J = ∂x : H1(R) ⊆ L2(R)→ L2(R), while the de-

generate NLS, in the form

∂tz = J ∂H
∂z

where z =

 u

ū

, J =

 0 1

−1 0

.

Of particular interest will be the solitary wave solutions of (4.1.3) and (4.1.4) respec-

tively. That is, consider solutions of the type u(t,x) = φ(x−ωt) in (4.1.3) and u(t,x) =

eiωtφ(x) in (4.1.4), for a real-valued1 function φ, we are lead to the same profile equation

for φ, namely

−φ∂x(φ∂xφ) +ωφ−|φ|p−2φ= 0. (4.1.5)

1In fact, we will construct non-negative solutions φ > 0.
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The existence of such waves, with appropriate properties, such as smoothness, decay at

infinity etc. has been considered in the literature, [42]. These results are relatively straight-

forward, we present a version, which suffice for our purposes, see Proposition 21 below.

If we restrict our considerations to bell-shaped and decaying at∞ solutions, one can say

much more. This is the subject of our next first existence and uniqueness result, Proposition

21.

Proposition 21. (Existence and uniqueness of bell-shaped compactons)

Let ω > 0,p > 2. Then, there exists a compactly supported bell-shaped solution φ,

which satisfies the profile equation (4.1.5) and consequently,

φ′ =−
√
ω− 2

p
φp−2,0< x < L. (4.1.6)

Letting L : suppϕ= [−L,L] and φ0 := φ(0), we have the formulas

L= L(ω,p) =
p

1
p−2

2
p−1
p−2

ω
4−p

2(p−2)

∫ 1

0

1√
z− z

p
2

dz; φ0 = φ0(ω,p) =
(pω

2

) 1
p−2

. (4.1.7)

Conversely, suppose that φ is a bell-shaped solution φ, which vanishes at ∞. Then, φ is

necessarily of the form described in (4.1.6). In particular, it is compactly supported and

unique. More precisely, for each ω > 0,p > 2, there exists an unique bell-shaped element

φ= φω,p, with the properties described above.

As alluded to above, our main interest is in the stability of the waves φ. In order to

introduce the relevant notions, we need to derive the corresponding linearized dynamics.

We develop the necessary background material in the next section.
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4.1.1 Linearizations about the solitary waves and spectral stability

Take the ansatz u = φ(x−ωt) + eλtv(x−ωt) and plug it in the degenerate KdV model

(4.1.3). Ignoring high order terms O(v2), we arrive at the following linearized system

JL+v = λv. (4.1.8)

where J = ∂x, while

L+f =−φ∂2
x(φf) + (ω− (φφ′)′− (p−1)φp−2)f =−φ∂2

x(φf)− (p−2)φp−2f, (4.1.9)

where we have used the relation ω− (φφ′)′ = φp−1, which follows readily from (4.1.5).

Note that the relation that we just used only holds on the support of φ (i.e. on the in-

terval [−L,L]). This is the relevant form of the eigenvalue problem in the context of the

degenerate KdV model (4.1.1).

For the NLS equation (4.1.4), we linearize around the standing wave eiωtφω, that is

we take u = eiωt(Φω + eλtv) and plug it into (4.1.4). Taking (4.1.5) into account and

ignoring the higher order terms O(|v|2), setting the real and imaginary part of v = v1 + iv2

as (<v,=v) := (v1,v2) we have

 0 −1

1 0


 L+ 0

0 L−


 <v
=v

= λ

 <v
=v

 (4.1.10)

where L+ is as above and

L−f =−φ∂2
x(φf) + (ω+ (φφ′)′−φp−2)f =−φ∂2

x(φf) + 2(ω−φp−2)f, (4.1.11)
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again by (4.1.5). A concise form of (4.1.10) is given by

JL~v = λ~v (4.1.12)

where we have introduced

J :=

 0 −1

1 0

 ,L :=

 L+ 0

0 L−

 .
The standard notion of spectral stability is as follows.

Definition 7. We say that the solution φ(x−ωt) of the generalized KdV problem (4.1.3)

is called spectrally stable, if the eigenvalue problem (4.1.8) does not have non-trivial solu-

tions (λ,v) : <λ > 0,v 6= 0,~v ∈D(JL+).

Similarly, the solution eiωtφ of the degenerate NLS equation (4.1.4) is called spectrally

stable, if the eigenvalue problem (4.1.12) does not have non-trivial solutions (λ,~v) : <λ >

0,~v 6= 0,v ∈D(JL).

Note that in this definition, we completely sidestep the important issue for local/global

well-posedness of the corresponding Cauchy problems. The local aspect of the theory is

discussed in the recent paper [41], but the global well-posedness theory (which is more

relevant as far as stability is concerned), seems lacking at the moment.

We now state our main results.

4.1.2 Main results

We start with an existence result for the waves φ, which must satisfy the ordinary differen-

tial equation (4.1.5). In our construction of the waves, we take advantage of a variational

construction, so we introduce a few of our main players. More specifically, consider the
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following constrained minimization problem

 N [u] =
∫

R |u∂xu|
2 +ω

∫
|u|2→min

subject to
∫
|u|pdx= 1.

(4.1.13)

Equivalently, the same solutions are achieved via the minimization of the so-called Wein-

stein functional,

Jω[u] :=

∫
R |u∂xu|

2 +ω
∫
|u|2

‖u‖2Lp
.

Note that formally, Jω[u] is unconstrained, but one can see that without loss of generality,

one may consider only u : ‖u‖Lp = 1, which is of course (4.1.13).

The following is the main result of this paper.

Theorem 8. Let p > 2 and ω > 0. Then, there exists an unique bell-shaped solution φ of

the profile equation (4.1.5), which is a compacton (i.e. it has a compact support). Their

half-period L and their amplitude are given by (4.1.7). Moreover, such solutions are the

unique constrained minimizers of the variational problem (4.1.13).

By construction, φ(x−ωt) is a traveling wave solution of the degenerate KDV (4.1.3),

while eiωtφ is a standing wave solution of the degenerate NLS, (4.1.4).

Regarding spectral stability, φ(x−ωt) and eiωtφ(x) are spectrally stable solutions (of

(4.1.3) and (4.1.4) respectively) if and only if 2< p≤ 8.

Remark: For the values 2< p < 8, the solution φ may be generated as a normalized wave.

That is, as the minimizer of the following constrained variational problems

 N [u] = 1
4

∫
R |u∂xu|

2− 1
p

∫
|u|p→min

subject to
∫
|u|2dx= λ.

132



Note that this constrained variational problem also has unique solution, for each λ > 0,p >

2. Then, one has a special one-to-one correspondence ω = ω(λ) : R+→ R+, which is an

increasing function.

4.2 Existence of the compacton waves

We start with the proof of Proposition 21.

4.2.1 Proof of Proposition 21

We solve the ODE (4.1.5). As long as φ 6= 0, say on an interval [−L,L], we may divide by

φ, which then leads us to the ODE

− 1

2
∂2
x(φ2) +ω−|φ|p−2 = 0. (4.2.1)

Denoting Q := φ2 ≥ 0, this is equivalent to

− 1

2
Q′′+ω−Q

p
2−1 = 0. (4.2.2)

Multiplying the equation by Q′ and integrating on the interval [−L,L], and imposing that

Q′(−L) =Q′(L) =Q(L) =Q(−L) = 0, we reduce the order of the ODE, namely to

(Q′)2 = 4ωQ− 8

p
Q
p
2 . (4.2.3)

If we further require that Q is decreasing on (0,L), i.e. Q′(r) < 0, r > 0, we can finally

setup the ODE

Q′(r) =−2

√
ωQ(r)− 2

p
Q
p
2 (r),0< r < L. (4.2.4)
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Note that this immediately implies (4.1.6). Clearly, (4.2.4) has an unique solution of the

required form, namely with Q(0) =Q0 =
(pω

2

) 2
p−2 ,Q′(0) = 0, if we select

L=

∫ Q0

0

1

2
√
ωQ− 2

pQ
p
2

dQ=
p

1
p−2

2
p−1
p−2

ω
4−p

2(p−2)

∫ 1

0

1√
z− z

p
2

dz. (4.2.5)

Clearly, such solution is bell-shaped as it satisfies (4.2.4).

Conversely, assume that φ is a bell-shaped solution of (4.1.5), which vanishes at ±∞.

Then, Q := φ2 will satisfy (4.2.2) as argued above, and it will also vanish at ±∞. We

observe now that the support of Q may not be infinite, since then, it must be that

+∞=

∫ Q(0)

0

dQ√
ωQ− 2

pQ
p
2

,

which is clearly false as the integral is convergent, due to the mild singularity at both 0

and Q(0). Thus, Q (and subsequently φ) is supported on a finite interval [−L,L]. Then,

it becomes clear that since Q′(L) = 0, it is the case that Q(0) = Q0 =
(pω

2

) 2
p−2 and the

solution is unique from (4.2.4). In particular, L is given by the formula displayed in (4.2.5).

4.2.2 An alternative variational problem

Looking at the form of the functional N [u], it is pretty standard to replace u =
√
v, espe-

cially since we are looking for positive solutions of (4.1.5). Specifically, we shall consider

 N0[v] =N [
√
v] = 1

4

∫
R |v
′|2 +ω

∫
|v| →min

subject to
∫
|v|p/2dx= 1.

(4.2.6)
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Clearly, N0[v]≥ 0, so we introduce

m(ω) := inf
v∈S

Jω(u) = inf∫
|u|pdx=1

N [u] = inf∫
|v|p/2dx=1

N0[v].

We now show that (4.2.6) has a solution.

Proposition 22. Let p > 2,ω > 0. Then, the constrained minimization problem (4.2.6) has

a bell-shaped solution ϕ= ϕ#.

Proof. By the Szegö inequality,
∫

R |v
′|2 ≥

∫
R |∂xv

#|2, while
∫
|v| =

∫
|v#|,

∫
|v|p/2 =∫

|v#|p/2, whence it is clear that it suffices to restrict the problem (4.2.6)to bell-shaped

entries v. Take a minimizing sequence, vn : ‖vn‖Lp/2 = 1, vn ∈H1∩L1,

lim
n

(
1

4

∫
R
|v′n|2 +ω

∫
vn

)
=m(ω).

It follows that supn ‖v′n‖L2 < 4m(ω), supn
∫
vn ≤m(ω). By the bell-shapedness, we con-

clude the point-wise decay |vn(x)| ≤ C
1+|x| . Thus, by Kolmogorov-Rellich criteria, the set

{vn : supn ‖v′n‖L2 <∞, |vn(x)| ≤ C
1+|x|} is pre-compact in Lp/2(R). Without loss of gen-

erality, we can assume that limn ‖vn−ϕ‖Lp/2 = 0 and v′n→ ϕ′ weakly. Similarly, fixing

a compact subset K ⊂ R, the set {vn : supn ‖v′n‖L2 <∞,‖vn‖Lp/2 = 1} is a pre-compact

subset in any Cα(K),α < 1
2 . In particular, we can without loss of generality assume in

addition that vn converges uniformly to ϕ on the compact subsets of R. By Fatou’s lemma,

liminfn
∫
vn ≥

∫
ϕ. Finally, by the lower semi-continuity of the L2 norm, with respect

to the weak topology, liminfn
∫

(∂xvn)2 ≥
∫

(ϕ′)2. Putting it all together, we have that∫
ϕp/2 = 1, while

N0[ϕ]≤ liminf
n

N0[vn] =m(ω).

It follows that N0[ϕ] = m(ω), whence ϕ is indeed a constrained minimizer of (4.2.6). In

addition, ϕ is clearly bell-shaped (as limit of bell-shaped functions).
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We will eventually establish that the minimizers ϕ of (4.2.6) are unique (up to trans-

lations) and they also have compact support, whence the reference to “compactons”. We

would like the reader to keep this in mind, as this is somewhat non-standard situation,

which develops herein. For this, we need to derive the Euler-Lagrange relation for (4.2.6).

Proposition 23. The solution ϕ of (4.2.6) is compactly supported function, which satisfies

the Euler-Lagrange equation

− 1

2
ϕ′′+ω− c(ω,p)ϕ

p
2−1 = 0,−L < x < L (4.2.7)

where c= c(ω,p) are explicit. In fact, there is the formula

c(ω,p) = p
3
p+1ω

p+4
2(p+1)

(
2

∫ 1

0

√
z− z

p
2dz+

∫ 1

0

z√
z− z

p
2

dz

)p−2
p+1

. (4.2.8)

Finally, there are the following formulas for the behavior of ϕ at ±L

ϕ(x) = ω(L−x)2 +O((L−x)3), ϕ(x) = ω(x+L)2 +O((x+L)3). (4.2.9)

Before we proceed with the proof of Proposition 23, we would like to make some

important remarks.

1. Similar to (4.2.8), one may compute various quantities involving norms of ϕ, as well

as the half-period L etc. This is despite the lack of explicit formulas for the function

ϕ.
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2. It is pretty clear that once c is given by a formula like (4.2.8), the uniqueness results

from Proposition 21 apply here as well. In particular, the variational problem (4.2.6)

has an unique bell-shaped solution ϕ.

Proof. (Proposition 23)

Let ε : |ε|<< 1 and consider a test function h, so that it vanishes outside the support of

ϕ. Let us look at a perturbation ϕ+ εh. Note that due to the constraint in (4.2.6) and the

support property of h, namely supp h⊂ supp ϕ, we have the formula

‖ϕ+ εh‖
L
p
2

= 1 + ε〈ϕ
p
2−1,h〉+O(ε2).

From the minimization property of ϕ > 0, we must have that the scalar function

g(ε) : =N0

[
ϕ+ εh

‖ϕ+ εh‖
L
p
2

]
=

1

4

∫
R

(
ϕ′+ εh′

‖ϕ+ εh‖
L
p
2

)2

dx+ω

∫
R

(ϕ+ εh)

‖ϕ+ εh‖
L
p
2

dx=

=
1

4

∫
R

(ϕ′+ εh′)2dx(1−2ε〈ϕ
p
2−1,h〉) +ω

∫
R

(ϕ+ εh)dx(1− ε〈ϕ
p
2−1,h〉) +O(ε2)

= g(0) + ε

(
1

2
〈−ϕ′′,h〉−〈ϕ

p
2−1,h〉(1

2

∫
R

(ϕ′)2dx+ω

∫
ϕ) +ω〈h,1〉

)
+O(ε2).

achieves its minimum at zero. It follows that g′(0) = 0, whence for all test functions h

〈−1

2
ϕ′′+ω− cϕ

p
2−1,h〉= 0,

where we have denoted c = c(ω,p) := 1
2

∫
(ϕ′)2 +ω

∫
ϕ. It follows that on the support of

ϕ, the Euler-Lagrange equation (4.2.7) holds true. As ϕ is bell-shaped, this must be an

interval of the form [−L,L] for some L > 0 or R.
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We show now that such minimizer ϕ must be compactly supported. Indeed, suppose

that supp ϕ is R. Multiplying (4.2.7) by ϕ′ and integrating once (and taking into account

that ϕ,ϕ′ vanish at±∞ and ϕ′(x)< 0,x> 0, due to bell-shapedness), we obtain the relation

ϕ′(x) =−2

√
ωϕ(x)− 2c

p
ϕ
p
2 (x),x > 0. (4.2.10)

Now, clearly as the function ϕ achieves its maximum at zero, we have that ϕ0 is a zero of

the function z→ ω− 2c
p z

p
2−1, so ϕ0 = ϕ(0) satisfies

ϕ
p
2−1
0 =

pω

2c(ω,p)
. (4.2.11)

If the relation (4.2.10) holds for a function ϕ supported on R, it must be that

∞=

∫ ϕ0

0

dϕ

2
√
ωϕ− 2c

p ϕ
p
2

.

This is however clearly false, as the integral in question is convergent, due to the mild

singularities at 0,ϕ0. So, supp ϕ= [−L,L], and in fact, using the relation (4.2.11) yields

L=

∫ ϕ0

0

dϕ

2
√
ωϕ− 2c(ω)

p ϕ
p
2

=

√
ϕ0

2
√
ω

∫ 1

0

dz√
z− zp/2

.

We now compute explicitly c(ω,p). We have

c(ω,p) =
1

2

∫
(ϕ′)2 +ω

∫
ϕ=

∫ L

0
(ϕ′)2 + 2ω

∫ L

0
ϕ=

= 2

∫ ϕ0

0

√
ωϕ− 2c

p
ϕ
p
2dϕ+ω

∫ ϕ0

0

ϕ√
ωϕ− 2c

p ϕ
p
2

dϕ=

= ϕ
3
2
0

√
ω

(
2

∫ 1

0

√
z− zp/2dz+

∫ 1

0

z√
z− zp/2

dz

)
.
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Together with (4.2.11), this yields a system of two relations for the unknownsϕ0(ω,p), c(ω,p),

which results in the formula (4.2.8).

Finally, we discuss the behavior of ϕ in a proximity of the endpoints ±L. From bell-

shapedness and (4.2.7), we obtain that ϕ(±L) = ϕ′(±L) = 0, whereas ϕ′′(±L) = 2ω > 0.

Thus, (4.2.9) holds true.

4.2.3 Spectral theory for the linearized operator L+

Clearly, by the equivalence between the constrained minimization problems (4.1.13) and

(4.2.6), we have that (4.1.13) has a solution Φ :=
√
ϕ, which is also bell-shaped. We

establish further properties of Φ.

Proposition 24. The solution Φ of (4.1.13), satisfies the Euler-Lagrange equation

−Φ∂x(ΦΦ′) +ωΦ− c(ω)Φp−1 = 0, −L < x < L. (4.2.12)

In addition, consider the symmetric operator

L+f =−Φ∂2
x(Φf) +ωf − (ΦΦ′)′f − (p−1)c(ω)Φp−2f, (4.2.13)

with a base Hilbert space L2[−L,L]. Any self-adjoint extension of L+ (also denoted by

L+), has the property L+|{Φp−1}⊥ ≥ 0. In particular, (any self-adjoint extension of) L+

has at most one negative eigenvalue.

Remark: Note that by the relation (4.2.12), we have that −(ΦΦ′)′+ω = c(ω)Φp−2,

whence we can rewrite the linearized operator and the corresponding quadratic form as

follows

L+f =−Φ∂2
x(Φf)− (p−2)c(ω)Φp−2f (4.2.14)
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q(u,v) = 〈∂x(Φu),∂x(Φv)〉− (p−2)c(ω,p)〈Φp−2u,v〉. (4.2.15)

Proof. For ε : |ε| << 1 and a test function h : supp h ⊂ (−L,L), consider a perturbation

Φ+εh. According to the minimization property of Φ, we must have that the scalar function

f(ε) :=N

[
Φ + εh

‖Φ + εh‖Lp

]
=

1

4‖Φ + εh‖4Lp

∫
(2ΦΦ′+ 2ε(Φh)′+ ε2∂x(h2))2 +

ω

‖Φ + εh‖2Lp

∫
(Φ + εh)2.

has a minimum at ε = 0. As a consequences of the minimization property, f ′(0) = 0,

while f ′′(0) ≥ 0. It is however easier to work with expansions in powers of ε, instead of

differentiating directly in ε. We have

‖Φ + εh‖pLp = 1 +pε〈Φp−1,h〉+ p(p−1)

2
ε2〈Φp−2,h2〉+O(ε3).

To this end, let us do the first order expansion.

f(ε) =

∫
(ΦΦ′+ ε(Φh)′)2(1−4ε〈Φp−1,h〉) +ω

∫
(Φ2 + 2εΦh)(1−2ε〈Φp−1,h〉) +O(ε2) =

= f(0) + 2ε

(
−
∫

Φ(ΦΦ′)h+ω〈Φ,h〉−〈Φp−1,h〉
(

2

∫
(ΦΦ′)2 +ω

∫
Φ2

))
+O(ε2).

Hence we have the Euler-Lagrange equation (4.2.12) in weak sense, with

c(ω) = 2

∫
(ΦΦ′)2 +ω

∫
Φ2,

which is the same coefficient that we have encountered in Proposition 23.
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Next, we deal with the second order condition, namely f ′′(0)≥ 0. To simplify matters,

take h⊥Φp−1, that is 〈Φp−1,h〉= 0. Looking at the next order, that is the terms containing

ε2. We obtain

f ′′(0)

2
=−(p−1)〈Φp−2,h2〉

(
2

∫
(ΦΦ′)2 +ω

∫
Φ2

)
+〈(Φh)′,(Φh)′〉+

∫
ΦΦ′∂x(h2) +ω

∫
h2.

It is now clear, after integration by parts, that one can write the previous identity in the

form
f ′′(0)

2
= 〈L+h,h〉.

As this is valid for all h : 〈Φp−1,h〉 = 0 and f ′′(0) ≥ 0, we conclude that L+|{Φp−1}⊥ ≥

0.

From Proposition 24 and the minimax formula for the eigenvalues of a self-adjoint

operator, we conclude that n(L+) ≤ 1. Our next task is to characterize the rest of the

spectrum of L+. We will need the relation between Φ2
x and ΦΦxx with Φp−2. Multiplying

(4.2.12) by Φ′ and integrating, taking into account that Φ(±L) = 0, we obtain

(Φ′)2 = ω− 2c(ω)

p
Φp−2. (4.2.16)

Another very important relation, which is obtained from (4.2.12) and (4.2.16) is

ΦΦ′′ =
2−p
p

c(ω)Φp−2. (4.2.17)
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We now state a technical result, which connects the degenerate operator L+, posed on

domain contained in L2[−L,L] to a standard Schrödinger operator, defined herein

L+ :=−∂2
t +

ω

4
− c(ω)

2p2−5p+ 3

2p
Φp−2(x(t)). (4.2.18)

To this end, we borrow an important idea from [42]. Namely, a change of variables is

introduced, which transform the degenerate operator L+, acting on D(L+) ⊂ L2[−L,L]

into a standard Schrödinger operator L+, with exponentially decaying potential, acting on

a subspace of L2(R).

Lemma 13. The transformation

t(x) =

∫ x

0

dy

Φ(y)
: (−L,L)→ R (4.2.19)

is a one-to-one mapping from (−L,L) to R. The inverse function x : R→ (−L,L) satisfies

lim
t→±∞

x(t) =±L

and moreover, it approaches the limits with exponential rates. More specifically, for every

ε > 0, there exists Cε, so that

L−Cεe(−
√
ω+ε)t < x(t)< L, t > 0 (4.2.20)

−L < x(t)<−L+Cεe
(
√
ω−ε)t, t < 0. (4.2.21)

For the Schrödinger operator L+, defined in (4.2.18), there is the relation

L+f =
L+(
√

Φf)√
Φ

. (4.2.22)
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Remark: Note that due to the asymptotics (4.2.20) and (4.2.21), and (4.2.9), the poten-

tial W (t) = c(ω)2p2−5p+3
2p Φp−2(x(t)) obeys the exponential decay estimate

0<W (t)≤ Cεe−((p−2)
√
ω−ε)|t|, t ∈ R

for every ε > 0 and some Cε.

Proof. By (4.2.9), we have that |Φ(y)| ∼ |L− y|,y ∼ L and |Φ(y)| ∼ |L+ y|,y ∼ −L,

we have that the integral in (4.2.19) converges to −∞ as x→ −L, while it approaches

∞, as x→ L. That is, the transformation (4.2.19) provides a one-to-one homeomorphic

map t : (−L,L)→ (−∞,∞). Its inverse, which will be frequently used, is denoted x(t).

We need the asymptotic behavior of x(t), which we analyze next. A simple L’Hospital

calculation shows that

lim
x→L−

ln(L−x)

t(x)
=− lim

x→L−

Φ(x)

L−x
=−
√
ω,

where we have used the asymptotic (4.2.9) and similar at x=−L. In short, we obtain that

for every ε > 0, we have for every ε > 0, (4.2.20) and (4.2.21) hold true.

For the formula (4.2.22), note first that have the relation ∂t = Φ∂x. We compute

Φ
1
2L+[fΦ−

1
2 ]. By direct calculations,

−Φ
3
2∂2
x[
√

Φf ] = −Φ2∂2
xf −ΦΦx∂xf −

2Φ′′Φ− (Φ′)2

4
f =

= −Φ2∂2
xf −ΦΦx∂xf +

ω

4
f − c(ω)(3−p)

2p
Φp−2f,

where we have used the relations (4.2.16) and (4.2.17). It follows that

Φ
1
2L+[fΦ−

1
2 ] =−Φ2∂2

xf −ΦΦx∂xf +
ω

4
f − c(ω)Φp−2 2p2−5p+ 3

2p
f.
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On the other hand, note that

−∂2
t f =−∂t(Φ∂xf) =−Φ(∂x(Φ∂xf)) =−Φ2∂2

xf −ΦΦx∂xf.

It follows that L+f = Φ
1
2L+[fΦ−

1
2 ], or alternatively, (4.2.22).

Proposition 25. Let L+ be any self-adjoint extension of the symmetric operator introduced

in (4.2.13). Then, L+ has exactly one negative eigenvalue, say −ζ2, a simple eigenvalue at

zero, with Ker(L+) = span[Φ′], while the rest of the spectrum is away from zero. That is,

there exists δ > 0, so that

spec(L+)\{−ζ2,0} ⊂ [δ,+∞). (4.2.23)

Proof. Direct inspection shows that

L+Φ′ = −Φ∂2
x(ΦΦ′) +ωΦ′− (ΦΦ′)′Φ′− (p−1)c(ω)Φp−2Φ′ =

= −Φ∂2
x(ΦΦ′)− (ΦΦ′)′Φ′+ (ωΦ− c(ω)Φp−1)′ =

= −Φ∂2
x(ΦΦ′)− (ΦΦ′)′Φ′+ (Φ∂x(ΦΦ′))′ = 0,

whence Φ′ ∈Ker(L+). This is of course a consequence of the translational invariance of

the profile equation (4.2.12). Also by a direct inspection, and using the equation (4.2.12),

we conclude

L+Φ =−2ωΦ− (p−4)c(ω)Φp−1.

Taking dot product with Φ, we obtain,

〈L+Φ,Φ〉=−2ω

∫
Φ2− (p−4)c(ω). (4.2.24)
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We will now show that such quantity is negative, for all p > 2, which would establish

that L+ has exactly one negative eigenvalue. One could use the arguments of Proposition

23 to evaluate the quantity 〈L+Φ,Φ〉 explicitly in terms of p,ω. Instead, we provide an

easier roundabout argument, which shows 〈L+Φ,Φ〉 < 0. To this end, recall that we have

already established the relation

c(ω) =
1

2

∫
(ϕ′)2 +ω

∫
ϕ= 2

∫
(ΦΦ′)2 +ω

∫
Φ2.

We now obtain another identity based on taking dot product of (4.2.12) with xΦ′. Due to∫
Φpdx= 1, we have

c(ω) =
pω

2

∫
Φ2− p

2

∫
(ΦΦ′)2.

Combining this with (4.2.12), we establish the relationship

∫
(ΦΦ′)2 =

p−2

p+ 4
ω

∫
Φ2dx,

which in turn implies

c(ω) =
3pω

p+ 4

∫
Φ2.

Substituting this in (4.2.24) results in the formula

〈L+Φ,Φ〉=−ω (3p2−10p+ 8)

p+ 4

∫
Φ2dx < 0,

for p > 2,ω > 0. Thus, n(L+) = 1.

Next, we establish that the eigenvalue at zero is simple and there is a gap between the

zero and the non-negative portion of the spectrum. Recall that we work with arbitrary

self-adjoint extension of L+ : D(L+) ⊂ L2[−L,L], given by the quadratic form q. Since
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q(u,u) ≥ 0 for all u ⊥ Φp−1, it follows that L+ has only one simple negative eigenvalue,

say−ζ2, and σ(L+)\{−ζ2}⊂ [0,∞). For any Ω, a relatively open subset in [0,∞), denote

the spectral projection PΩ := χΩ(L+). Supposing for a contradiction that (4.2.23) fails, we

select a sequence fn, with P[0, 1n )fn = fn,‖fn‖L2 = 1,fn ⊥ Φ′. It follows that

〈L+fn,fn〉= q(fn,fn) = ‖(Φfn)′‖2L2[−L,L]− (p−2)c(ω)

∫ L

−L
Φp−2f2

ndx→ 0. (4.2.25)

Denote gn := Φfn. Clearly, ‖gn‖L2 ≤ ‖Φ‖L∞ , while

limsup
n
‖g′n‖L2 = limsup

n
[q(fn,fn) + (p−2)c(ω)

∫ L

−L
Φp−2f2

n]≤ Cp‖Φ‖p−2
L∞ ,

whence supn ‖gn‖H1 <∞.

From the various convergences and the weak compactness of bounded sets inL2[−L,L],

and the compactness of the embedding H1[−L,L] into L2[−L,L], it follows that there ex-

ist a subsequence (denoted the same), so that the weak convergences fn⇀L2 U , gn⇀H1 g

hold, as well as the strong convergence limn ‖gn− g‖L2[−L,L] = 0. In particular, one can

see that for every δ > 0, limn ‖gn−g‖L2[−L+δ,L−δ] = 0. Moreover, since Φ does not vanish

on [−L+ δ,L− δ], we have that g = ΦU and limn ‖fn−U‖L2[−L+δ,L−δ] = 0, for every

δ > 0. This is now enough to conclude that

lim
n

∫ L

−L
Φp−2f2

ndx=

∫ L

−L
Φp−2U2dx (4.2.26)

Indeed, since Φ(x)≤ C(L+x),−L < x and Φ(x)≤ C(L−x),x <, we obtain

|
∫

[−L,−L+δ)∪(L−δ,L)
Φp−2f2

ndx| ≤ Cδp−2‖fn‖2L2 = Cδp−2,
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and similarly for the integrals |
∫

[−L,−L+δ)∪(L−δ,L) Φp−2U2dx|. On the other hand, on the

interval [−L+δ,L−δ], we use the convergence limn ‖fn−U‖L2[−L+δ,L−δ] = 0, to estimate

|
∫ L−δ

−L+δ
Φp−2f2

ndx−
∫ L−δ

−L+δ
Φp−2U2dx| ≤ ‖Φ‖p−2

L∞ ‖fn−U‖L2[−L+δ,L−δ](‖fn‖L2 +‖U‖L2).

Putting all this together ensures (4.2.26).

We now claim that U is not identically zero. Assume for a contradiction that U = 0. In

view of (4.2.25) and (4.2.26), this implies that limn ‖g′n‖L2 = 0. Since gn ∈ H1[−L,L],

it follows that it is uniformly continuous function, whence the limit limx→L− gn(x) =

limx→L−Φ(x)fn(x) =: cn exists. Then, cn = 0, since otherwise |fn(x)| ≥ |cn|
2Φ(x) ≥

Cn
(L−x)

for all x ∈ (L− δ,L) and some Cn > 0. But then,

1 =

∫ L

−L
f2
n(x)dx≥

∫ L

L−δ
f2
n(x)dx≥ C2

n

∫ L

L−δ

1

(L−x)2
dx=∞,

a contradiction. It follows that gn(L) = 0. Similarly, gn(−L) = 0. Now, we can estimate

∫ 0

−L
|fn(x)|2dx=

∫ 0

−L

|gn(x)|2

Φ2(x)
dx≤ C

∫ 0

−L

|gn(x)|2

(L+x)2
dx≤ C

∫ 0

−L
|g′n(x)|2dx,

where we have first observed that Φ(x)>C(L+x) on x ∈ (−L,0), and in the last step, we

have applied the Hardy’s inequality (see (1.1.5)), as gn(−L) = 0. Similarly,

∫ L

0
|fn(x)|2dx≤ C

∫ L

0
|g′n(x)|2dx.

Combining the last two inequalities, we obtain

1 =

∫ 0

−L
|fn(x)|2dx+

∫ L

0
|fn(x)|2dx≤ C

∫ L

−L
|g′n(x)|2dx,
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which is contradictory as limn ‖g′n‖L2 = 0. This proves that U is not identically zero.

As fn = P[0,1/n)fn and fn⇀U , it is clear that U is an eigenfunction for L+. This can

also be seen as a consequence of (4.2.26), the inequality liminfn ‖g′n‖L2 ≥ ‖g‖L2 (which

is the lower semi-continuity of L2 norm, with respect to weak convergence) and (4.2.25).

In any case, we conclude that L+U = 0. Recall that fn ⊥ Φ′, whence their weak limit

fn⇀U also satisfies U ⊥ Φ′. According to (4.2.22) however, this implies that

L+(
√

ΦU) = 0,

at least in a distributional sense2, against the compactly supported test functions. Standard

elliptic theory, together with the decay properties of
√

ΦU proves that
√

ΦU is indeed an

L2 eigenfunction for L+. In addition, due to L+[Φ′] = 0 and again (4.2.22), we also have

L+[
√

ΦΦ′] = 0 as well. According to the standard Sturm-Liouville theory for Schrödinger

operators acting on R, with exponentially decaying potentials, each eigenvalue of L+ is

simple. In our case however, we have two candidates for eigenfunctions corresponding

to the zero eigenvalue, namely
√

ΦU,
√

ΦΦ′. So, it must be that
√

ΦU = const.
√

ΦΦ′, or

U = const.Φ′. This is in turn contradictory as U ⊥ Φ′ and U is not identically zero. This

concludes the proof of Proposition 25.

4.2.4 Spectral theory for the operator L−

In order to analyze the Schrödinger eigenvalue problem (4.1.10), we shall need also basic

properties of the spectrum of L−. In the classical theory, such operator is non-negative,

with a simple eigenvalue at zero. The same results holds here as well.

2This is due to the presence of the exponentially growing in the spatial variable factor Φ−1/2 in the formula
(4.2.22).
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We start however with a formula for L− in the spirit of (4.2.22). Namely, for the

Schrödinger operator

L− =−∂2
t +

9ω

4
− 3(p+ 1)

2p
c(ω)Φp−2

defined on L2(R), there is the relation

√
ΦL−f = L−(

√
Φf). (4.2.27)

Proposition 26. Let L− be any self-adjoint extension of the symmetric operator

L−f =−Φ∂2
x[Φf ] + 2(ω− c(ω)Φp−2)f,

defined through the quadratic form q(u,v) = 〈Φu,Φv〉+ 2〈(ω− c(ω)Φp−2)u,v〉 for u,v ∈

C∞0 (−L,L). Then, L− ≥ 0, where zero is a simple eigenvalue, with Ker[L−] = span[Φ].

Proof. A direct inspection shows that

L−[Φ] =−Φ∂2
x[Φ2] + 2(ω− c(ω)Φp−2)Φ = 0,

due to the profile equation (4.2.12).

Next, we show that there is the point-wise domination L− ≥ L+, as in the classical

case. Indeed, we have

L−−L+ =
9ω

4
− 3(p+ 1)

2p
c(ω)Φp−2−

(
ω

4
− 2p2−5p+ 3

2p
c(ω)Φp−2

)
=

= 2ω− (4−p)c(ω)Φp−2
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If p ≥ 4, this is clearly a positive quantity. In the case 2 < p < 4, taking into account that

Φ≤ Φ(0) =
(

pω
2c(ω)

) 1
p−2

, we conclude again

L−−L+ ≥ 2ω− (4−p)pω
2

=
ω

2
(p−2)2 > 0

As it was already shown in Proposition 24, thatL+|{Φp−1}⊥ ≥ 0, it follows thatL−|{Φp−1}⊥ ≥

0. In addition, such an inequality guarantees that L− may have at most a single negative

eigenvalue at the bottom of its spectrum. We proceed to rule this out. Recalling the rela-

tionship (4.2.27), it follows that if L− has a negative eigenvalue, then the operator L− has

negative eigenvalue as well. Thus, it remains to rule out negative eigenvalues for L−.

Recall that sinceL−[Φ] = 0, by (4.2.27), it follows thatL−[Φ
3
2 ] = 0. Thus, the Schrödinger

operator L− has an eigenvalue at zero, with corresponding positive eigenfunction Φ
3
2 . By

Sturm-Liouville’s theorem, this means that zero is at the bottom of the spectrum for L−.

We have thus ruled out negative eigenvalues for L−, whence L− ≥ 0.

Finally, suppose that Ψ is an eigenfunction for L−, corresponding to the zero eigen-

value. That is, L−[Ψ] = 0. By (4.2.27), L−[Ψ
√

Φ] = 0. As we have just seen, zero is

at the bottom of the spectrum for L− and it is hence a simple eigenvalue, with a cor-

responding eigenfunction Φ
3
2 . It follows that Ψ

√
Φ = const.Φ

3
2 or Ψ = const.Φ. Thus

Ker[L−] = span[Φ] and the proof of Proposition 26 is complete.

4.3 Spectral stability of the compacton waves

Our next task is to study the stability of the waves φ, which satisfy (4.1.5). Before we ad-

dress these issues, for both the degenerate NLS and KdV cases, we would like to comment
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on the precise relation between the solutions ϕ to the variational problem (4.2.6) and the

waves φ.

Proposition 27. The profile equation (4.1.5) has unique bell-shaped solution φ : [−L,L]→

R Moreover, this solution is related to the unique solution Φ of the variational problem

(4.1.13) via a formula

Φω(x) = cp,ωω
−αφ(ωαx),α =

p+ 4

2(p+ 1)(p−2)
. (4.3.1)

Finally,

Φω(x) = ω
1

2(p+1) Φ1(ω
p

2p+2x), (4.3.2)

where Φ1 is the unique minimizer of (4.1.13) with ω = 1.

Proof. We have already discussed the uniqueness of ϕ, and consequently of Φ =
√
ϕ, see

the remarks after Proposition 23. It remains to note that due to the relation (4.2.8), we

have that c(ω,p) = const(p)ω
p+4

2(p+1) , and so plugging in the relation (4.3.1) in the Euler-

Lagrange equation (4.1.13) yields (4.1.5), for appropriately chosen constant cω,p. Note that

this constant cω,p can be derived explicitly based on (4.2.8), but we will not do so herein.

The formula for Φω in terms of Φ1 is due to an elementary scaling transformation, which

transforms the variational problem (4.1.13) for general ω > 0, into the one for ω = 1.

Based on the results of Proposition 27, we can claim the following properties of the

operators L±, based on the corresponding L±.

Proposition 28. Any self-adjoint extensions of the symmetric operators L± satisfy the fol-

lowing properties

• L− ≥ 0, with a simple eigenvalue at zero, given by Φ, i.e.

Ker(L−) = span[φ],L−|{φ}⊥ > 0.
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• The operator L+ has exactly one negative eigenvalue, the second smallest eigenvalue

is zero, which is also simple. In fact, n(L+) = 1, while Ker(L+) = span[φ′].

We are now ready to proceed with the analysis of the spectral stability of the compacton

waves φ. We start with the degenerate NLS case.

4.3.1 Spectral stability of the degenerate NLS compactons

According to the instability index theory developed in Section 1.1.4, we start withKer(L).

Clearly,

Ker(JL) =Ker(L) = span[

 Ker(L+)

0

 ,
 0

Ker(L−)

] = span[

 φ′

0

 ,
 0

φ

].

Looking for adjoints, we solveJL~f =

 φ′

0

, which yields ~f =−

 0

L−1
− φ′

 . Same as

in the classical cases, further adjoints are impossible, behind ~f . Indeed, assuming JL~g =

~f , we need to solveL+g1 =−L−1
− [φ′]. This is however a contradiction by Fredholm theory,

since

0 = 〈L+g1,φ
′〉=−〈L−1

− [φ′],φ′〉< 0,

due to the fact that L−1
− |{φ}⊥ > 0.

On the other hand, solving JL~f =

 0

φ

, produces an adjoint ~f =

 L−1
+ φ

0

 .
Looking for further adjoints involves the quation JL~g =

 L−1
+ φ

0

, which results in

L−g2 =−L−1
+ φ. By Fredholm theory, this requires a solvability condition 〈L−1

+ φ,φ〉 = 0.
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Thus, we may conclude that as long as 〈L−1
+ φ,φ〉 6= 0,

gKer(JL)	Ker(L) = span[

 L−1
+ φ

0

].

According to the instability index theory, the matrix D is one dimensional and the stability

is determined by the sign of 〈L−1
+ φ,φ〉.

It turns out that this is a quantity easy to compute. In fact, from the results of Proposition

27, we can see that the mapping ω→ φω is a C1 mapping from the positive line into the

set of functions. This allows us to take a Frechet derivative with respect to ω in the profile

equation (4.1.5), just as in the classical case. In short, we obtain

L+[∂ωφω] =−φ,

whence

〈L−1
+ φ,φ〉=−〈∂ω,φω,φω〉=−1

2
∂ω

∫
φ2dx.

4.3.2 Spectral stability for the degenerate KdV waves

We use, again, the procedure, outlined in Section 1.1.4. As established in Proposition 28,

the eigenvalue problem (4.1.8) clearly has a one dimensional kernel, namely Ker(L+) =

span[φ′]. We now proceed to find the generalized kernel of ∂xL+. So, we need a ψ ∈

D(∂xL+)⊂ L2(R), so that ∂xL+ψ = φ′. It follows that

L+ψ = φ+ c,x ∈ R. (4.3.3)
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Taking into account the specific form of the operator L+, in particular (4.1.9), we conclude

that for |x|> L, one must have

L+ψ(x) = ωψ(x) = c, |x|> L,

since suppφ ⊂ (−L,L). This is of course impossible, as ψ ∈ L2(R), unless c = 0. Thus,

(4.3.3) becomes L+ψ = φ.

Noting that φ⊥Ker(L+), so that L−1
+ φ exists (uniquely in the subspace Ker(L+)⊥),

it follows that ψ ∈ L−1
+ φ+Ker(L+), so we may select

ψ = L−1
+ φ,

and this is the unique element generating the subspace gKer(∂xL+)	Ker(L+). It follows

that the stability of the traveling wave φ(x−ωt), once again is equivalent to the condition

〈L−1
+ φ,φ〉< 0.

4.3.3 Computation of 〈L−1
+ φ,φ〉

Since φ : (0,∞)→ (0,φ0) is a bijection and based on the representation (4.1.6), we have

∫ ∞
−∞

φ2dx = 2

∫ ∞
0

φ2dx=−2

∫ ∞
0

φ2

φ′
dx= 2

∫ φ0

0

φ2√
ω− 2

pφ
p−2

dφ=

= 2φ3
0

∫ 1

0

z2√
ω− 2

pφ
p−2
0 zp−2

dz = 2
(p

2

) 3
p−2

ω
3
p−2−

1
2

∫ 1

0

z2

√
1− zp−2

dz,

so that

D =−1

2
∂ω

∫ ∞
−∞

φ2dx=−
(p

2

) 3
p−2 (8−p)

2(p−2)
ω

3
p−2−

3
2

∫ 1

0

z2

√
1− zp−2

dz,
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This calculation yields the necessary and sufficient condition3 for stability 2< p≤ 8.

3The point p = 8 is the threshold for stability, similar to the case p = 5 for the standard NLS. At this
value, if we use p as a bifurcation parameter, going from p < 8 to p > 8, there is a crossing of a pair of purely
imaginary eigenvalues through zero to a real pair of eigenvalues, one positive and one negative
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Appendix A

Spherical harmonics and fractional Schrödinger operators

In this section, we give the final preparatory material before we establish the non-degeneracy

in section 2.5, in the case n≥ 2. The approach is to decompose the fractional Schrödinger

operator L+ = (−∆)s +ω− p|x|−bΦp−1, with a base space L2(Rn) onto simpler, essen-

tially one dimensional subspaces of the spherical harmonics (SH for short). This is con-

venient due to the radiality of the potential W := p|x|−bΦp−1, which allows for such de-

compositions to be invariant. In addition, the objects of interest are confined to the radial

subspace and at most to the next SH subspace, which allows us to use Proposition 6. Similar

approach was taken in the recent paper [79]. We continue now with the specifics.

The Laplacian on Rn is given in the spherical coordinates by

∆ = ∂rr +
n−1

r
∂r +

∆Sn−1

r2
,

where ∆Sn−1 is the self-adjoint Laplace-Beltrami operator on the sphere. Its action may be

uniquely described as

∆Sn−1P [~x/r] = r2∆[P [~x/r]],

for each polynomial of n variables P . There are many useful properties of ∆Sn−1 , we

will just concentrate the discussion on those that are directly relevant to our argument. In
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particular, its spectrum is explicitly given by

σ(−∆Sn−1) = {l(l+n−2), l = 0,1, ...}.

In fact, there are the finite dimensional eigenspaces Xl ⊂ L2(Sn−1), corresponding to

the eigenvalue l(l+n− 2), which give rise to the orthogonal decomposition L2(Sn−1) =

⊕∞l=0Xl. It is worth noting that X0 = span[1], whereas X1 = span{xjr , j = 1,2, ...,n}. De-

note X≥1 := ⊕∞l=1Xl, so that L2(Rn) = L2
rad(r

n−1dr)⊕L2(rn−1dr,X≥1). We henceforth

use the notation L2
rad as a shorthand for L2

rad(r
n−1dr). Note that if we restrict −∆ to L2

rad

, we have

−∆|L2
rad

=−∂rr−
n−1

r
∂r,

while

−∆|L2(rn−1dr,X≥1) ≥−∂rr−
n−1

r
∂r +

n−1

r2
.

For every Banach space X ↪→ L2(Rn), we denote its radial subspace Xrad :=X ∩L2
rad .

Now consider a fractional Schrödinger operator H = (−∆)s +W , where W is radial.

H acts invariantly on L2(rn−1dr,Xl) for each l. Upon introducing Hl =H|L2(rn−1dr,Xl),

we have the decomposition

H =⊕∞l=0Hl :⊕∞l=0L
2(rn−1dr,Xl)→⊕∞l=0L

2(rn−1dr,Xl).

We also make use of the notationH≥1 :=⊕∞l=1Hl forH restricted to ⊕∞l=1L
2(rn−1dr,Xl).

Clearly D(Hl) =D(H)∩L2(rn−1dr,Xl) and σ(H) =
⋃∞
l=0σ(Hl) and

H0 <H1 <H2 < .. .
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We shall also use the notation σ0(Hl) for the bottom eigenvalue, σ1(Hl) for the second

smallest eigenvalue and so on.
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Appendix B

The integrals
∫

Rn
1

((2π|ξ|)2s+ω)j
dξ

Herein, we compute the integrals that arise in the calculation of the Vakhitov-Kolokolov

index in Proposition 18.

Proposition 29. For ω > 0, we have

∫
Rn

1

(2π|ξ|)2s+ω
dξ =

π|Sn−1|
2s(2π)n

ω
n
2s−1

sin(nπ2s )
(B.0.1)∫

Rn

1

((2π|ξ|)2s+ω)2
dξ =

π|Sn−1|
2s(2π)n

(
1− n

2s

) ω
n
2s−2

sin(nπ2s )
(B.0.2)∫

Rn

1

((2π|ξ|)2s+ω)3
dξ =

π|Sn−1|
4s(2π)n

(
1− n

2s

)(
2− n

2s

) ω
n
2s−3

sin(nπ2s )
. (B.0.3)

Proof. We easily pass to integrals in the radial variable as follows

∫
Rn

1

((2π|ξ|)2s+ω)j
dξ = |Sn−1|

∫ ∞
0

ρn−1

((2πρ)2s+ω)j
dρ= |Sn−1| ω

n
2s−j

2s(2π)n

∫ ∞
0

ρ
n
2s−1

(ρ+ 1)j
dρ=

= |Sn−1| ω
n
2s−j

2s(2π)n

∫ ∞
−∞

et
n
2s

(et+ 1)j
dt.

So, with a := n
2s ∈ (0,1), matters are clearly reduced to computing the integrals

∫ ∞
−∞

eta

(et+ 1)j
dt,
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Figure B.1: Contour of integration

for a ∈ (0,1), j = 1,2,3. In order to compute this integral, we use the residue theorem

formula ∫
γR

eaz

(ez + 1)j
dz = 2πiRes

(
eaz

(ez + 1)j
,πi

)
.

where R >> 1, and γR = γ1
R ∪ γ2

R ∪ γ3
R ∪ γ4

R, and the curves γmr ,m = 1,2,3,4 are given,

together with their orientation as follows,

γ1
R = {x ∈ (−R,R)},γ2

R = {R+ ih,h ∈ [0,2π]},

γ3
R = {x+ 2πi,x ∈ (R,−R)},γ4

R = {−R+ ih,h ∈ [2π,0]}.

Clearly,

∫
γ1R

eaz

(ez + 1)j
dz+

∫
γ3R

eaz

(ez + 1)j
dz = (1− e2πai)

∫ R

−R

eta

(et+ 1)j
dt,

while for R >> 1,

∣∣∣∣∣
∫
γ2R

eaz

(ez + 1)j
dz

∣∣∣∣∣≤ C eRa

(eR−1)j
,

∣∣∣∣∣
∫
γ4R

eaz

(ez + 1)j
dz

∣∣∣∣∣≤ Ce−aR.
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It follows that

lim
R→∞

∫
γR

eaz

(ez + 1)j
dz = (1− e2πai)

∫ ∞
−∞

eta

(et+ 1)j
dt.

It remains to compute the residues associated with this complex integration. This is a

straightforward calculation, the results of which are below

Res

(
eaz

ez + 1
,πi

)
= −eiaπ (B.0.4)

Res

(
eaz

(ez + 1)2
,πi

)
= −(1−a)eiaπ (B.0.5)

Res

(
eaz

(ez + 1)3
,πi

)
= −1

2
(2−a)(1−a)eiaπ. (B.0.6)

The formulas (B.0.1), (B.0.2), (B.0.3) follow by substituting these expressions in the residue

formulas and taking R→∞.
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