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Abstract

The main focus of this dissertation is to investigate the existence and stability of solitary
waves to dispersive partial differential equations and, in particular to nonlinear Schrédinger
equations with defects nonlinearity.

First we identify necessary and sufficient conditions for the existence of appropriately
localized waves for the inhomogeneous semi-linear Schrodinger equation driven by the
subLaplacian dispersion operators (—A)®,0 < s < 1. We construct these waves and we
establish sharp asymptotics, both at the singularity O and for large values. We show the non-
degeneracy of these waves. Finally, we provide spectral and orbital stability classification,
under slightly more restrictive assumptions.

Then we study the concentrated NLS on R", with power non-linearities, driven by
the fractional Laplacian, (—A)*,s > §. We construct the solitary waves explicitly, in an
optimal range of the parameters, so that they belong to the natural energy space H®. Next,
we provide a complete classification of their spectral stability. Finally, we show that the
waves are non-degenerate and consequently orbitally stable, whenever they are spectrally
stable.

Incidentally, our construction shows that the soliton profiles for the concentrated NLS
are in fact exact minimizers of the Sobolev embedding H*(R") — L*°(R"), which pro-

vides an alternative calculation and justification of the sharp constants in these inequalities.

il



Lastly, we consider the degenerate semi-linear Schrodinger and Korteweg-de Vries
equations in one spatial dimension. We construct special solutions of the two models,
namely standing wave solutions of NLS and traveling waves, which turn out to have com-
pact support and are thus known as compactons. We show that the compactons are unique
bell-shaped solutions of the corresponding PDE’s and for appropriate variational problems
as well. We provide a complete spectral characterization of such waves, for all values of
p. Namely, we show that all waves are spectrally stable for 2 < p < 8, while a single mode
instability occurs for p > 8. This extends previous work of Germain, Harrop-Griffiths and
Marzuola, [42], who have previously established orbital stability for some specific waves,

in the range p < 8.

v



Acknowledgements

To say this is a dream come true is an absolute understatement. There have been so many
people who have been instrumental in making this a reality. I have received incredible
support from friends, family, and faculty throughout my journey as a graduate student at
University of Kansas.

This dream of mine is a reality thanks to my advisor Professor Atanas Stefanov. Pro-
fessor Stefanov’s guidance on how to succeed academically is the building block for the
success in my PhD. I will always use his advice, skills, and expertise later in mentor-
ing my own graduate students. Moreover, Professor Stefanov’s support goes even beyond
academics. He helped me with advice on how to balance life and academic(work), thus
creating a stability moving forward. I will forever be grateful.

I will like to thank my committee members for their useful suggestions, comments and
advice. In particular I will like to thank Professor Dionyssis Mantzavinos for chairing the
committee, useful advice on how to succeed and his enormous support throughout the entire
journey. I will want to thank Professor Mat Johnson for his useful comments, suggestions
of new potential research directions, as well as his wonderful and very useful classes on
stability of PDEs. I will like to thank Professor Albert Erkip and Professor Sevdzhan
Hakkaev for orchestrating my connection with Professor Stefanov.

I'will like to thank Adamu Abdullahi and family for the most needed support and friend-

ship right from undergrad. I am very grateful and I will work on my follow up”.



I will like to thank my dad Mahmud and my mom Nafisa and my 9 siblings for their
constant support and prayers.

Most importantly, I will like to thank my beautiful and amazing wife for her constant
patience, love and care. Moreover, for the best possible gift ever, the icing on my spring,

the birth of our handsome son!

Vi



Contents

Abstract

Acknowl

edgements

1 Introduction

1.1

Preliminaries . . . . . . . . . . ...
1.1.1  Function spaces, Fourier transform and basic operators . . . . . . .
1.1.2 Rearrangements. . . . . . . . .. ... ... e
1.1.3  Weighted Sobolev inequality . . . . ... ... ... ........
1.1.4  The basics of the Hamiltonian index theory . . . .. ... ... ..

1.1.5 Ground states of dispersive PDEs with standard NLS as case study .

2 Existence and stability of solitary waves for the inhomogeneous NLS

2.1

2.2

Introduction . . . . . . ..o e
2.1.1 The model - well-posedness results for the classical case s=1 . . .
2.1.2  Solitary waves and stability in the classical case s=1 . . . .. ..
2.1.3 Thefractionalcase 0 <s<1. ... ... ... ... ........
214 Mainresults. . . . . ... oL
Necessary conditions for the waves: proof of Theorem 1 . . . ... .. ..

2.2.1 Pohozaev identities and consequences . . . . . . . . . ... ...

vii

iv

vi



2.3

24

2.5

2.6

The Variational Construction and properties of the minimizers . . . . . . . 37
2.3.1 Well-posedness of the variational problem . . . . . . ... ... .. 37
2.3.2 Existence of minimizers . . . . . . .. ... ... 39
233 Boundednessof ¢. . . ... ... ... ... ... 44
2.3.4 Further propertiesof ¢ . . . . . . ... ... .. o .. 50
Preliminary spectral propertiesof £+ . . . . . . . ... ... ... ... 52
24.1 Self-adjointnessof £+ . . . . . .. ... o 52
2.4.2  Some basic coercivity propertiesof £+ . . . . . ... ... ... 55
2.4.3  Sturm oscillation theorem for the second eigenfunctionof £y . . . 56
The Non-degeneracy of @ . . . . . . ... ... ... ... ......... 62
2.5.1 Differentiation with respect to parameters . . . . . . . .. ... .. 63
2.5.2 Conclusion of the non-degeneracy proof . . . . . ... ... .. .. 69
Spectral and orbital stability of the waves . . . . ... ... ... ..... 72
2.6.1 Index counting theory for (2.1.5) . . . . . ... ... .. ... ... 72
262 Coercivityof L4 . . . . . . L e 73
2,63 Coercivityof L . . . . . . e 77
2.6.4 Orbital stabilityof @, . . ... ... ... ... ... ... ... 78

On the standing waves of the Schrodinger equation with concentrated nonlin-

earity 84
3.1 Introduction. . . . ... ... ... e 84
3.1.1 Linearized problem for the concentrated NLS . . . . . .. ... .. 87
3.1.2 Mainresults. . . .. ... oL o 90
3.2 Preliminaries . . . . . ... ... e 94
3.2.1 Pohozaev’s identities and consequences . . . . . . . .. ... ... 94
3.2.2 The self-adjoint operators (—A)*+A—cdg . . .. ..o 96

viii



3.3 Variational construction of the waves ¢,, and spectral consequences . . . . 101
3.3.1 Variational constructions . . . . . . .. ... ..o ... 101

3.3.2 Relation to the minimizers for the Sobolev embedding H*(R") —

L®R™) . o 105

3.3.3  Description of the solutions for the profile equation (3.1.5) . . . . . 108

3.3.4 Thespectrum of (—A) 4+ w—1dp - - v v o oo 111

34 Stabilityofthewaves . . . . . . .. .. ... .. .. . e 115
3.4.1 [Instability index count for (3.1.6) . . . .. .. ... ... ... .. 115

34.2 Orbital stability . . . .. ... ... 120

4 On the stability of the compacton waves for the degenerate KdV and NLS

models 126
4.1 Introduction . . . . . . . . . . . L e e 126
4.1.1 Linearizations about the solitary waves and spectral stability . . . . 130
412 Mainresults. . . . . . ... 131

4.2 Existence of the compacton waves . . . . .. ... ... ... .. ..... 133
4.2.1 Proof of Proposition21 . . . . . . ... ... ... ... ... 133

4.2.2  An alternative variational problem . . . . . ... ... ... .... 134

4.2.3  Spectral theory for the linearized operator £ . . . . . . ... ... 139

4.2.4 Spectral theory for the operator L_ . . . . . . .. ... ... ... 148

4.3 Spectral stability of the compacton waves . . . . ... ... ........ 150
4.3.1 Spectral stability of the degenerate NLS compactons . . . . . . .. 152

4.3.2  Spectral stability for the degenerate KAV waves . . .. ... ... 153

433  Computationof (£L1'0,@) . . .. .. 154

A Spherical harmonics and fractional Schrodinger operators 156

ix



B The integrals [p, mdf 159



Chapter 1

Introduction

1.1 Preliminaries

1.1.1 Function spaces, Fourier transform and basic operators

In order to fix the notations, we shall use the standard expressions for || - | Lpgny, 1 <p < 00,

or just ||.||, as well as the following expression for the Fourier transform and its inverse
fl6)= [ reremietdn, o) = [ frereieas
R R

The operators (—A)*,0 < s < 1 are defined in a classical way on the Schwartz class' S via

—_—

(=A)sf(€) = (27]€])2 £ (€). Accordingly, the Sobolev spaces are taken

1 g := =22 f g2 L fllzrs = 1F 1 g+ 11F N 2

'and then by extension in any Banach space for which S is a dense subspace




More generally, the Sobolev spaces WP o > 0,1 < p < oo are introduced as completions

of the Schwartz family in the norms

Ifllwes = I (=2)"2fllo+ | £l -

The use of weighted spaces is necessitated by the context, so we introduce

1/q
lias = ( [ e lsar)

The following commutator identity, see p. 1703, [36], will be of special interest
[(—A)%, x- V] =2s(—A)°. (1.1.1)

We will also need properties of the kernel of the operator (I + (—A)*)~!, s > 0. We state

a precise result next.
Lemma 1. Let 0 < s < 1. Then, the function G4(x) : é;(f’) = (1+ (47?|€|%)%) ! satisfies.

* Thereis C = Cy p, so that
Gula) < Cula] ™

when |z| > 1.

» For|z| <1, there is

|z|>7"+0(1) 2s<n
Gs(x) ~q In(2/|z|)+o(x) 2s=n -

1+o(x) 2s>n

* Gs>0,Gs€ LYR").



Regarding VG, we have the following bounds, in the regime 2s < n

2|7 e > 1
IVGs(z)| < C (1.1.2)
|$|257n71 |:E| < 1

Proof. First, take a partition of unity, so that there is a function ¢, supported in {£ : |£| < 1}

and (&) := @(&) —p(2€), whence (&) + 32, ((277¢) = 1. Let x| > 1, say |z ~ 2,1 >

0. We have the partition of unity

o0

= 0(2') + (1 - 0(2'€)) = () + D (277

k=1-1

whence

= ; —2miz-€ g 1 —2mix-€ l
Gs(x) = /1+(47T2|§|2)56 dg_/1+(4ﬂ2|€|2>36 @(2°€)dE +

1 —mia€ ~po—Fk
3 [ g

k=1-1

In the first integral, we estimate the integrand by absolute value, whence we obtain the
bound C27™ ~ |z|~™. For a given z, we identify j € [1,n], so that |z;| > %l Integrating
by parts /V times in the variable z; (and N > n + 1) and taking absolute values implies a
bound

oo

Z 2kn < 2fln ~ |C(,‘|7n
k ~

k:1—l (2 ‘x3|

For || < 1, let us consider the case 2s < n, as the others are similar and somewhat simpler.

Say |z| ~ 27!,1 > 0. We now use the partition of unity

(0. 9]

L=p@27')+ > ¢27%)

k=l+1



Again, for the integral with (27¢) we estimate by the absolute values

1 —27mix-§ -l l(n—2 25—
e 27le)de| < 0228 o g2
while for the other integrals, we again integrate by parts N times in |z;| > —2:. The esti-

mates are again
o0

Z . 1 Nzk(n—2s) < CQZ(’I’L—2S) -~ |x|28—n‘
v (2Fl)

For VG, the bounds (1.1.2) follow in an identical manner, once we recognize that taking
derivatives results in an extra power of |z|~!.
The statement G's > 0 (and in fact G is bell-shaped), can be proved via the representa-

tion

1 Tt an?le?)) / R )
—— e = e dt = e e dt
1+ (4m2[]2)* /0 0

—

and the well-known fact that e—l¢1** is a bell-shaped function, as long as 0 < s < 1. Thus,

G = /Gs(x)dx _ G (0)=1.

1.1.2 Rearrangements

In this subsection, we discuss the techniques of rearrangements. Let A be a measurable set
of finite volume in R”. Its symmetric rearrangement A* is the open centered ball whose
volume agrees with A, i.e. A* ={z € R": |w,||z|" < Vol(A)}. For characteristic functions

of measurable sets, define (x4)* := x 4

Definition 1. Let f : R” — R be a measurable function that vanishes at infinity, i.e. for all

t > 0we have d¢(t) := [{z: |f(x)] > t}] < oc.



We define the symmetric decreasing rearrangement f* of f by symmetrizing its level set,
namely f*(z) := [;° X{|f(x)|>t}+ At and dg«(t) = df(t). A function is called bell-shaped, if

f = f*. Inparticular, f = f* > 0.

Recall the rearrangement inequality
f(@)g(x)dz < [ f*(z)g"(x)dx, (1.1.3)
R” R"

valid for all functions vanishing at infinity. In addition, if one of the functions, say f, is
strictly decreasing, the equality is possible only if g is bell-shaped, i.e. g = g*.

Next, we state the Polya-Szegd inequalities, which will be instrumental in our approach.

Lemma 2. For 3 € (0,1) and f € H?(R™), its decreasing rearrangement f* € HP(R")

and

H(=A)2 fll e > [1(=A)2 £ o (1.1.4)

The full proof of this result is standard. It can be found, for example, in Appendix A, [33].

The next result is the Hardy’s inequality.

Lemma 3. Let a < band f € H'(R), so that f(a) = 0. Then,

"If(a

a ’33—

)| T
a|2dx§/ |f'(z)|“du. (1.1.5)

Remark: This is a slightly more general version of the classical statement

00 $2 00
[ = GRS

—00 —00




for function f : f(0) = 0. But it is clear that from the classical version, one obtains by an

approximation argument that

b 2 b
WO dr < [l @)
0 |zl 0

for every ¢g : g(0) =0, b > 0. It is then clear that the formulation (1.1.5) reduces to this
form, by taking ¢ : g(x) = f(z+a).
Our next proposition deals with a control of the weighted norms appearing in (2.2.2) in

terms of a Sobolev embedding.

1.1.3 Weighted Sobolev inequality

Proposition 1. For either one of the cases,

en=10€(31),0<a<l,2<g<o0,

40—2a

en=10<0<3 0<a<20,2<g<2+%2

do—2a
n—20"’

en>20<0<1,0<a<20,2<qg<2+

there exists C, depending on all parameters, so that

1
([ Jalelofar) < oo (1.L6)

Remark:Note that the assumptions in Proposition | ensure that a < n. Also, for ¢ = 2,

there is the estimate

1
q
([ el eloRds )" < ol gy (117

for every € > 0.



Proof. For the case n > 2,0 >0,0<a<20,and 2 <qg<2+ ‘171‘7:2?, we proceed as

follows. By Sobolev embedding, we have, since n (% — —> <o,

(/ |x\“|¢|qczx> s(/ \¢|Qd:c> < Cllélzs <l
|z[>1 |z|>1

Next, for |z] < 1

Q=

1
q [0.9]
(/ |x|_a|¢|qdl’> <C ZQj“/ _ |old
|z|<1 : |z|7279

Jj=0

And by Holder inequality we have for every r > ¢,

q T ’ 9—iny(1=1)
/|x~2_j|¢| s( / |¢>|) (279m)

1 =

= 00 q
—al A4 Jn +Ja q
</|w|<1|x| 2 da:) < (St ..,

J:

Select any r € (¢q,00), so that

q 1 1
a<n<1——>,n ——— ) <o
r 2 r

Thus

That is,
1 o 1 1-&

2 n q ’

which is possible, due to the restriction 2 < g < 2+ %. ‘We have

1 1
o0 q o0 q

— (1= 4q a—n(
D@l ey | = [ 2@ TSI, )
§=0 Jj=0



< Crsupll (o) < Crlldller <Gl -4y < Corlléle
J

D=

where in the last step we have used the Sobolev embedding and n (% — %) < 0. The case

n=1,0 € (0, %), a<20,2<qg<2+ 410_’2%7“ is done in an identical manner.

For the case n = 1,0 > %, 2 < ¢ < oo is as follows. By Sobolev embedding H?(R) —

(/ |ﬂbMMM> s(/' MMM> < C)\¢ll e
|z[>1 |z|>1

1
The term < f‘ v)<1 |x|_b|¢\qu) * is controlled in the same way as above, we omit the details.

LY(R), so

]

The Sobolev embedding will be of great importance, W*P(R") < LI(R"™), for 1 <
p<g<o0:Is>n (% — %) Also, recall that for s > %, there is the embedding2 WP <
0[87%]’7(R”) 10 <y <s—7. Asis well-known, the embedding H?(R") — L®(R")

fails, but sometimes an useful replacement estimate is the following for all 6 € (0, %),

1fllzee < Cs(If1l grg—s + 11f Il rg+5)- (1.1.8)

The Sobolev embedding will be useful in the sequel, so we state it here - for each

l<r<g<oo,

1710 < Crall 71

Sl

Sl

Next, we need the following endpoint Gagliardo-Nirenberg inequality

5+ 30D
I£1z0 < Call P12 AL 1< g <o (1.19)

’Here {z} = = — [z], where [2] = max{n:n <z}




1.1.4 The basics of the Hamiltonian index theory

We follow the setup described in [62], but the earlier versions of these results, [56, 83, 55,
] provided much impetus in the developments of these methods.

Consider the Hamiltonian eigenvalue problem of the form
JLg=MNg,ge H (1.1.10)
where H is a Hilbert space, J : D(J) C H* — H, and
L:H— H*

We will give a brief introduction of the analysis of the number of unstable eigenvalues of
(1.1.10). Assume that (Lu,v) is bounded symmetric bilinear form on H x H, which gives
rise to a self-adjoint operator (£, D(L)) Moreover, there exist a decomposition of H in £

invariant subspaces

H=H_&kerL& H,

where H_, H are the negative and positive subspaces respectively. More precisely, upon
introducing the self-adjoint projections P— = X (_o0 0)(£), P+ = X(0,4-00) (L), We take H_ =
P_[H|,H; = Py[H]. Assume in addition that the Morse index of L, that is n(L) =
dim(H_) < oo, while there exists § > 0, so that (Lu,u) > §||u||?, for all u € D(L)N Hy.
For any \ € o), (J L), introduce the generalized eigenspace

By =UR B} By ={f € H: (JL—AI) f =0}

gen



Assume also that the dual space H* satisfies
{{ge B {g,u) =0,Yue H @ H,)} C D(J).

Further since, Ker(L£) C EY

gen>

decompose EY, = ker(L)® Ey, where Ej is finite dimen-

gen

sional with basis say {1} | C D(L). Let D be the matrix with entries

Dyj = (Lapi, j).

Next, we need to introduce the notion of negative Krein signature of a purely imaginary
eigenvalue. More specifically, for iy € 0, (TL), 0 > 0, consider E;, := Ker(JL —
ipn), Py, H— E;, and kf“ =n(L|g,,) = n(PuLP,). Finally, we define the total Krein

signature

= > ki

pF0ip€Tp.p. (T L)
In the most common case, when ¢/ is a simple eigenvalue, with say an eigenvector v, i
is of negative Krein signature exactly when the real quantity (£v,,1,) < 0. In such a case

K =1,

7

By [62] see also [83][56] we have the following Hamiltonian-Krein index formula
kHam, = kr + 2ke +2k=0 = n(L) —n(D) (1.1.11)

where £, is the number of real positive eigenvalues of 7L (counted with their multiplici-
ties), k. is the number of eigenvalues of 7 £ with positive real and imaginary part, and lastly
kfo is the total Krein signature introduced above. Note that k74, = 0 implies spectral sta-

bility for the model (1.1.10), as kp 4y, counts all the instabilities, since kzrqm, > kr + ke.

10



In the particular case n(L) = 1, the formula (1.1.11) reduces the situation to two cases,
namely ko, = 1, if n(D) =0 and kpqm = 0, if (D) = 1. We have already discussed that
krram = 0 is a case of stability. If however k.. = 1, by parity considerations, it follows
that k, = 1, while k. = k; = 0. In any event, this implies that the system has a real unstable

growing mode. Thus, we have the following useful corollary of (1.1.11).

Corollary 1. Ifn(L) =1, the the eigenvalue problem (1.1.10) is spectrally stable if n(D) =

1, and it has exactly one real unstable mode, if n(D) = 0.

1.1.5 Ground states of dispersive PDEs with standard NLS as case

study

In this section, the breakdown of the necessary steps needed to show the existence and
stability of solitary waves for dispersive partial differential equations is given. In particular,

the general Hamiltonian nonlinear fractional Schrodinger equation

iug + (—A)u— F(Ju*)u=0,u:Ry xR" = C,5 > 0. (1.1.12)

In the last chapter we consider degenerate nonlinear Schrodinger and KdV equation. The

most familiar case is when s = 1, F' = |u|Pu. The Nonlinear Schrédinger equation

iug + Au+ |[ufP"ru =0, (1.1.13)

will be the prime example for this chapter. These models have many physical applications,

the prominent ones are in nonlinear optics.

11



Another very important application is the study and existence and properties of the
ground states, for the case of NLS is the standing wave solutions in the form e ¢,>,¢,, > 0.

If we plug this solitary wave into (1.1.12) we have the elliptical profile equation

(=A) ¢y 4wy, — F(pu) by, =0. (1.1.14)

Or as in our prime example

— A¢yy +wdy — ¢ =0. (1.1.15)

From now on we will focus on the NLS equations, we will return to KdV in (4).
Next is to consider the linearized problems. To that end taking the ansatz u = ¢! (¢, +

U(t,z)) and plugging it into the NLS equation (1.1.12) we obtain,

v 0 1 L 0 )
L . * - (1.1.16)

() -1 0 0 L_ (%]
t

where we ignore any O(v?) term. Here @ = v +iSv := vy + ive and the following frac-

tional Schrédinger operators are introduced

Lo = (=AP+w—F(d), (1.1.17)

Ly = (A +w—F(¢,)ou (1.1.18)

with their domain H being a Hilbert space (H2*(R"™) for continuous F).

For our specific example

3Here the subscript is to emphasize the dependency of w not to be confuse with partial derivative with
respect to w

12



L = —A+w—¢P L, (1.1.19)

Li = —A+w—ppP! (1.1.20)

with domain (H!(R™).

Clearly from the definition given in (1.1.16) we have

0 1 L 0
\7 = s L:= i ;
-1 0 0 L_

U1 U1
and the assignment —eM =: e M4, we obtain the following time-independent

() ()
linearized eigenvalue problem

J LT = \U. (1.1.21)

Taking (1.1.14) into account, one immediate observation is that £_¢,, = 0, also in the
presence of transitional symmetry, taking the derivatives formally of (1.1.14) with respect
toany z;,7 =1,...,n we have £L,0,,¢, = 0.

The spectral properties of the operator £+ play crucial role in the stability of the solitary
waves. It is in general easy to see that zero is the bottom of the spectrum for £_ see theorem
3 of [80]. As for the kernel of £, the conclusion is not as straight forward as £_. In the
absence of symmetry Ker[L,] = {0}, note that proving this result is highly non trivial
see (2.5). We give the definition of non-degenerate and weakly-non-degenerate as given in

[80].

Definition 2. We say that the wave ¢, is non-degenerate if Ker[L.| = span[0;p,],i =

1,...,n]. We say that ¢, is weakly non-degenerate if ¢, 1. Ker[L].

13



Next, we give the formal notions of stability.

Definition 3. We say that the wave ¢, as a solution to the NLS problem (1.1.12) is spec-
trally stable if for (1.1.21) the set of solutions to (1.1.21) is empty.
We say that the wave ¢, is an orbitally stable solution of (1.1.21), if for any e > 036 >0

such that for any initial data so that |[uo — ¢ || g1 (mny < 0, then u satisfies

su inf u(t,. — _eif e
t>896[0,277]7y6Rn” ( ?/) ¢w||H1(R )

Remark 1.1.1. The notion of stability may depends on the operator or models as:
 The notion of spectral stability depends entirely on the spectrum of the operator L.
* the notion of orbital stability depends on the number of symmetries in the model.

Next we construct the waves and discuss their stability. Prior to construction of the
waves, it is natural to ask for the range of parameters for which the solution of (1.1.14)
exists. To that end we compute the Pohozaev identity.

First we start by taking the inner product of (1.1.14) with ¢, and integrate by part

assuming of course ¢, has enough smoothness and decay properties we arrive at

/n |(—A)5¢w|dx+w/Rn Gde= | H(py)dx

R

Next is to take the inner product of (1.1.14) with .V ¢w = Z;‘ rj0;¢,, taking into

account the commutation formula (1.1.1) we get

n

(s— 1) / D)ol + fi(npe) [ H(ou)de -

nw

2

5 . o2 d.

From this equations solving for [g, |(—A)2¢,,|dz and Jgn H(¢w)dz we have the fol-

lowing relations

14



[ l=s)tote = fswpna) [ s

and

H(¢y)dz = g(s,w,p,n,a) [ ¢ldw

From here we can infer that if H(¢,) > 0 then the solutions of (1.1.14) exists if
f(s,w,p,n,a) >0,9(s,w,p,n,a) which gives us the necessary conditions for the existence

of such solutions.

Remark 1.1.2. One can claim that the range above for the existence of the special solutions

is the same as for the local well-posedness of (1.1.12).

Applying this to our example, in particular (1.1.15) we have the following relations

2, 2w(p+1) 2
L Vel = 5 s | s

and

41, wn(p+l)—2n 9

So for existence of (1.1.15) we need to have p < Z—J_Fg,n > 2

Variational Setup:

We construct the waves in (1.1.14) variationally. This can be accomplished in two ways.
The first is via the so called Weinstein functional, first introduced by Micheal Weinstein

[49]. Consider the following functional

15



_ e |(—A)%u|dq;+wfRn w2dr
(f]Rn H(U)dx) K(p)

Here x(p) is a number that makes the denominator a norm.

Ip[u]

With appropriate assumptions and careful analysis, one can show that the unconstraint
minimization problem I,[u] — min has solution(sometimes bell-shaped, or even unique)in
the appropriate space. Moreover, the miminizer satisfies (1.1.14) upto scaling.

Note that the waves constructed using this approach are not necessary normalized waves

thus some of them are unstable.

Another approach is to construct the waves by imposing a constraint on the Ly —norm.

To be more precise, one can consider the following constrained minimization problem.

Ifu] = fgn |(=A)2uldz — [n H(u)dx — min
fR" ulde =\, A>0
The question of the existence to the above minimization problem is hard to answer
despite many recent progress. The difficulty of the variational problem and how to address
it is not the focus of this work, but interested readers can check [80]. The point is that the
normalized waves are stable. Thus the range of existence for the normalized waves is the
same as the range of stability.
We will consider both approach for our example (1.1.15).

We start with the Weinstein functional

_ Jgn ]Vu|2dx+wfR,,, uldx

(Jon w2t da) 771

I, [ul]
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Assume that w > 0, and u € H'(R") N L>®(R"),u # 0, then 0 < [p, v dzx < oo,
thus I, [u] is well-defined. Next, take advantage of the scaling. To do that, for every

u # 0, 1,[u] > 0, consider the non-negative number
= inf [, [u].
m(w) = Inf I, [u]

Note that if ¢ is a minimizer for I1[u] — min, then ¢, = ¢(w2z) is a minimizer for

I,[u] — min, and

n—2
m(w) = 771(1)&12(10“)@7m .

For the minimization to well-posed we need the estimate for some constant C' > 0
[ullp+1 < Cllull -

The above estimate follows from Sobolev embedding inequality with p < Z—f% which
is the range we obtained from Pohozaev above, and also is the same for H 1 1ocal well-

posedness see [82, 17]. Thus we have

hmzé
Hence the variational problem is well-posed.
Now, to construct normalized wave of (1.1.15), consider the constrained variational
problem
ITu] = [gn |Vul*dz — ﬁfRn wPttdy  — min
fRn u?dr = )\, A>0

17



For the above problem to be well-pose, we need the following estimate for some con-

stant C' > (0

[ullp+1 < Cllull gra-
Again this is Sobolev embedding inequality but this time with

1< <4+1 (1 ! )
—+lLa=n(z———).
b n 2 p+1

Even though the above estimate is not enough to show well-posedness of the normalized

waves, this can be accomplished using Holder and Young’s € inequalities to show that
-”u]Z'_CkA‘

Remark 1.1.3. We will see that the range for existence of normalized range is the range

for which the waves are stable. One can easily claim that all normalized waves are stable.

Another question one might ask is whether the only stable waves are the normalized

ones.

The final step to construct these waves goes through minimizing sequences and notion
of convergence. Since we are operating in functions spaces the most important topological
property is compactness. Sometimes one can boil down the minimization problem to set
of minimizers that are bell-shaped. Using the bell-shape properties one can get a point
wise bound for the waves. This bound help to establish the so called the Kolmogorov-
Relich-Riesz criteria for compactness in L,,. This together with the lower semi-continuity
of the weak convergence in Hilbert space and the properties of the minimizing sequences

helps to show convergence. For more details on concrete examples please see proposi-
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tions(23)(3)(22). As for the analysis of the existence of waves of our prime example see
[81].
Next, we discuss the Euler-Lagrange equation (1.1.15). Take a test function h € V7°(R™\

{0}, and consider u = ¢ + €h. Due to scaling let fquHdI = 1. Since ¢ is a minimizer we

should have

Iy[¢+eh] > m(1) = N(9).
Where N(¢) :== [|V¢|>+ [ ¢? and D(¢) := [ ¢PTldz. Thus,
N(¢+6h):/]Vu(¢+6h)\2+/(¢+eh)2
:/|Vu¢+e\vuh\2+/(¢2+2eh¢+e2h2)

= [1VuoP+ [ 6+ 2e(((Tud, Tuh) + (h,6) + O(E)

= N(¢) +2e((=A+1)¢,h) +O(é?).

Similarly,

D(¢+eh) = /(¢+eh)p+1dx =1+ (p+1)e(d”,h) +O(?).

It follows that

N(p+eh) _ N(¢)+2¢((=A+1)¢,h) +O(e?)
D¢+ eh] i1 1+ 26(oP, h) + O(e2)
= Ng]+26((=A+1)¢— N(§)dP, h) +O(°).

Li(¢p+eh) =

As this holds for arbitrary function % and for all small €, we have established upto scaling

of N(¢) that ¢ solves (1.1.15) in a distributional sense.
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Finally, fix h to be a real-valued function, h € C°(R™). Starting again with the in-

equality
N(¢p+e€h)

- > N(¢),
D(¢+eh)pti

but expanding to the second order €2 , we obtain

N[§]+ € [(Lih,h) + N[g](p+3)({¢F, h))?] + O(€%) > N,

after taking into account ((—A+1)¢p — N(¢)¢P, h) = 0. After taking limits as € — 0, we
derive

(Lih,h) > =N[9](p+3)((¢7, h))*. (1.1.22)

In particular, (£ h,h) >0, if [ ¢P(z)h(x)dz = 0.

This implies that £, is positive on co-dimension one subspace {¢?}*.

After constructing the waves, the natural next step is to study the stability of such waves.
This heavily depends on the spectral properties of the operators L. To this end we look

closely into such properties.

Spectral Properties of £

Before diving into the spectral properties for the operators we first start to investigating the
self-adjointness and domain of the operators. The scope of this thesis is not the study of the
general operators (1.1.17). For interested reader see [72], and for very specific examples see
the next three chapters where we study specific cases of (1.1.17) for different nonlinearities.

Continuing with the NLS, the Friedrich’s extensions of (1.1.19) are self-adjoint oper-
ators with domain H!(R"). Note that domain H'(R") follows directly from Gagliardo

Nirenberg Sobolev inequality. Next we introduce the quadratic forms D+ [g, g] := (L+g,9)
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with form domain H'(R") x H!(R™). Following the usual Friedrich’s procedure, it suffices

to show that D is bounded from below, which again follows from the Sobolev embedding.

* Another key property is the that the continuous spectrum of £ is [w,o0). This fol-

lows from the Weyl’s theorem since ¢ — 0 as |z| — oco.

* Next is to show that £ has exactly one negative eigenvalue. To that end, since

(Lid,0) =—(p—1)m(w) [ ¢ <0, together with (1.1.22) we have n(L4) = 1.

« For £_, note that by inspection £_¢ = 0. And assume —a? is the smallest eigenvalue

of L_, then

—a? = | iIH1f1<£fu,u>.

On the other hand since £_¢ = 0, for any bell-shaped solution ¢ : ||¢|| = 1 of (1.1.15)

we have

0=(L_¢,¥) = (6, L) = (p,—a’¥) = —a*($,¥)) <0

a contradiction, thus this established the Coercivity of £_, thatis, £_| {oty = 0.

The positivity of the second eigenfunction of £ plays a key role in the degeneracy of
the waves. For (1.1.17) see [36] while for (1.1.15) the positivity of the waves see [59].

Above we have established the basic Hamiltonian index theory. After analysis the spec-
tral properties of £ we can state the following corollary. Before we do that note that for the
eigenvalue problem in the form (1.1.21) we have that 7 is invertible and anti-symmetric.
We already see that n(L£4) = 1,n(L_) =0, thus n(L) = 1.

Formally we can see that the eigenvalue zero of £ is of multiplicity n, with Ker[L£;] =

Span{al¢W7 ceey 8n¢w}
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So,

0 a1¢o.z 8n¢w
Ker[L] = , I ={p0,01,---,Pn}-

P 0 0
Clearly 7! = -7 : Ker[L] — Ker[£]*.
Introducing the matrix D as
Dy = (LT i, T ey,

Then by the index counting theorem developed in [56], if det(D) # 0, then

kr+2k.+2k; =n(L) —n(D).

Note that Since 9;¢,, is odd in the i*" variable, while 0;¢,, is odd in the j th variable we

have

Dij = (L7104, 0j0,,) = 0.

Also Since £~ is positive on Ker[£_]* and 9;¢,, L Ker[£_] we then have

Di; = (LZ10;b, 0i) > 0.

This reduces to n(D) = (LT Lpol, T Lv0) = (L1 b, duo)-

Continuing on our formal land, we can also compute formally £ [0,,¢,] = —¢.,, which
yields L’:ngbw = —0,¢.- So to compute the stability condition also known as Vakhitov—Kolokolov
stability criterion (E:qubw, ¢.), the standard scaling argument is deployed.

First note that taking the argument above about Ejrlgbw into account we have
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(L3 60,00) = (0t 60) =~ 26

Note that ¢, := wp%lgb(w%x) solve the profile equation (1.1.15). Thus

_ 1 1 2 n
(L7 6 0 = =5ull0ull3 = =500 |07 E] 1615,

Hence <£;1¢w,¢w> <Oifandonlyif 1 <p <1+ %. Thus this is the range of p for

which (1.1.21) is Spectrally stable. Note that this is the same range for orbital stability.
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Chapter 2

Existence and stability of solitary waves for the

inhomogeneous NLS

2.1 Introduction

The main object of consideration in this chapter will be the dynamics of the solutions to the
Cauchy problem for the fractional inhomogeneous nonlinear Schrodinger equation' More
precisely, we consider

iug + (—A)5u— || |uPlu=0,(t,z) ERx R n>1, @.L1)

u(0,2) = uo(x)
where we henceforth restrict ourselves to parameters (b, p, s), satisfying the following nat-
ural assumptions b > 0,p > 1,s € (0,1). This chapter has been published in [69]. Our
goal in this article is the construction and the stability of solitary waves for (2.1.1). More

specifically, the solitons are in the form of standing waves, that is special solutions in the

Isee Section 1.1.1 for precise definitions of the fractional derivative operator
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form u(x,t) = e, (z),® > 0. These satisfy the profile equation’
(=A)*® 4+ wd — |z| PP = 0,2 € R". (2.1.2)

The nonlinear Schrédinger equation arises in various physical contexts such as non-
linear optics and plasma physics[82]. The equation with the inhomogeneous nonlinearity
model the beam propagation in an inhomogeneous medium [10]. Fractional NLS also ap-
pears in many physical models like water models, quantum mechanics, Lévy stable process
and the fractional Brownian motion[27]. Finally, the model (2.1.1), with b > 0 appears as
an example, with a broken translational invariance, where special treatment is needed for
the analysis of the associated eigenvalue problems.

We now turn to a review of the literature regarding the well-posedness results for

(2.1.1).

2.1.1 The model - well-posedness results for the classical case s = 1

The classical model, s = 1,0 = 0,p > 1 has been extensively studied in the literature, in
terms of well-posedness of the Cauchy problem, long time behavior etc.. As these results
are by now classical and well-known, we will not review them here, but we will rather refer
the interested reader to the following sources [ 15, 44, 43, 61, 14, 18, 16, 30, 19, 20, 58, 9].

Recently the well-posedness of (2.1.1) appeared in the literature for the Laplacian
case, i.e. s = 1. 1in fact, Farah [31] proved a Gagliardo-Nirenberg type estimate and
use it to establish sufficient conditions for global existence and blow-up in H!(R") for
4_7% <p< % and 0 < b < min (2,n), which was later extended by Dinh [26]. More-

over, Guzman [46] showed that (2.1.1) is globally well-posed for the initial data in H*(R")

with 0 < s < 1 using the contraction mapping principle based on the Strichartz estimates.

The sense in which (2.1.2) holds is to be made precise later on, see Section 2.3 below.
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In [39], the author showed the global well-posedness in H 1(R”) of (2.1.1) with s =1,
using the assumption that if the initial data ug satisfies ||ug||;2 < ||¥|| 2, where 1) is the
unique positive radial soliton of (2.1.2). Moreover they also showed strong instability of
the standing waves.

In the paper [84], the author showed the global existence and blow up of solutions in
R?, under various assumptions on the initial data. In addition, the paper [32] showed that
if the initial datum ug € H!(R?) satisfies that the momentum as well as the Hamiltonian
of (2.1.1) with s = 1,n = 3 is dominated by same conserved quantities of (2.1.2) similarly,
HVuoH;TZb Hu0||27;b < ||VQ||]1LTJ: ||Q||§ where () satisfies (2.1.2), then the solution u to the
Cauchy problem is global in H'(R3) for 0 < b < 1, and asymptotically linear both forward
and backward in time for ug radial and 0 < b < 1/2. In [28], the author studied the decay

properties of global solutions for the equation(s = 1) when 1 < p < % for n > 3 and

4-2b

using this they showed the energy scattering for the equation in the case 1 + == <p <
1+ %. In [23], the authors have studied the global well-posedness for the defocusing
inhomogeneous NLS, whose scaling critical index s, < 0. In [12], the authors showed
the L?—norm concentration for the finite time blow-up solution for the focusing INLS.
The same authors later in [ 1] investigated the blow-up and scattering criteria above the
threshold for the same equation. Chen, [21] has considered the model (2.1.1), with non-
linearity |2|°|u[P~'u,b > 0. He has identified essentially sharp conditions under which the
solutions exist globally and others, under which the solutions blow up in finite time.

We now turn our attention to the issue of the existence of the solitary waves and their

stability.
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2.1.2 Solitary waves and stability in the classical case s = 1

The question for existence of solitary waves (2.1.2) and their stability was investigated in
some specific instances of nonlinearity g(x, |u|?)u in the late 90’s in [53]. Specifying to the
case V (z)|ulP~1u, and in particular to the case, V = V(e|z|),0 < € << 1 was considered
in [34], [63], see also the more recent work [51].

A general problem modeled by (2.1.1), was studied systematically for first time in the
work of De Bouard-Fukuizumi, [10]. More precisely, they consider classical NLS (i.e.
s = 1) with focussing nonlinearity V (z)|u[P~1u, where V > 0,

o
174 c L7L+2—(n—2)l) (l{ﬂ)7 lim V(x)|:L‘|b — 17 (213)

loc. 500

which of course contains the important case V() = |z|~?, under the constraints 0 < b <
2n>3,1<p<l+ %. In this work, they show the existence of non-negative solitary
wave solutions under the same assumptions. Furthermore, they showed that there exists

ws > 0, so that the stability of the said solitary waves holds in the range 0 < b < 2,n >

3, 1l<p<l+ %, when the spectral parameter w € (0,w,). The key step in the stability
proof is to show that the linear operator associated with the second variation of a Lyapunov
functional®, which is non-degenerate, for this they adapt a method of [54]. The work in a

way supplements the earlier work [37], where the instability of the waves was shown in the

range p > 1+ 4_7%, n > 3, for small enough w > 0. Further, more general instability results
have appeared in [64].

The authors in [40],[38] proved similar results (both for the stable and unstable waves,
with frequency w close to zero), but in the case of non-degeneracy of the linearized operator

they employ the spherical of harmonics of the Laplacian.

3 Although a key assumption, namely b < 2 has to be revised to b < % in the case n = 3, more on this
below
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2.1.3 The fractional case 0 < s < 1

The case of the fractional Schrodinger operator, that is s € (0,1), has also received con-
siderable attention in recent years. Regarding the well-posedness for the standard power
non-linearity, we mention the work of Dinh, [27] and the references therein. The paper
[78] studied the well-posedness of (2.1.1) with b < 0. Unfortunately, we are not aware of
any local and global well-posedness results for (2.1.1). It looks however that the work [22]
seems to contain all necessary ingredients in terms of estimates and one has to proceeds as
in [31]. We leave this line of investigation open to other researchers.

Regarding solitary waves for the fractional NLS, the real breakthrough came in the
article [35], which deals with the case b = 0,n = 1,s < 1 about the existence of positive
solution of (2.1.2) has been studied by the authors in [35]. Moreover, the non-degeneracy
of the ground state is shown, which plays a very important role in orbital stability of such
solutions. In a later work, [36] generalizes the above results in any dimension. More
precisely, the uniqueness and non-degeneracy of the ground state solution for (—A)*Q +

Q—|QP~'Q =0, with Q € H*(R"™) was established in R”,n > 1,s € (0,1) where 1 < p <

1+-2_for0<2s<nand 1< p< oo, 25> n.

n—2s

Our goal is to investigate the existence of the waves @, given by (2.1.2), as well as their

stability properties. Let us introduce the formally conserved quantities of 2.1.1:

e the L2 norm

Plul= [ fute)ds
¢ the Hamiltonian

_ - AVS 27, 1 —b p+1
Hiol =5 [ 18 u)Pde—— [ el fu(o) e,
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We will also make use of the total energy functional, defined as follows
w
Elu) :==Hu] + §P[u]

In fact, a variant of the local well-posedness theory, presented in Theorem 4.6.6 in [16] for

45—2b

Pt there exists time

the case s = 1, guarantees that for a data ug € H*(R"), 1 <p <1+

To = To(||uol| zs), so that a strong solution u(t,-) € H*(R™) to (2.1.1) exists in 0 < t < Tp
and moreover P (u(t)) = P(uo), H(u(t)) = H(uop).

Next, we discuss the linearization of (2.1.1) around the standing waves e ~“!®_,. We
perform a standard linearization procedure, namely we take u = e~ **[®,, 4 v], plug it in
(2.1.1) and ignoring the higher order terms O(v?), we arrive at the linearized system, which

after v = (Rv, Sv) =: (v1,v2) can be written as

Rv 0 —1 Ly 0 Rv
- : (2.1.4)

Sv 1 0 0 L_ Sv
t

where the following fractional Schrodinger operators are introduced

Li = (—A) +w—pla| tor,

L. = (AP +w—|z[ 0Pt

Note that at this point, the properties of the potential \x|_b<I>p_1 are not yet understood, but
one has to definitely address the issue of its singularity at zero. This shall be a major con-
cern going forward. We just mention that for the purposes of the stability considerations,
it is convenient on using the standard domain D(£+) = H?*(R"), which will lead to some

mild additional, perhaps unnecessary, restrictions on the parameters.
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Upon the introduction of the operators

0 —1 L 0
j = y L:= * 5
1 0 0 L_
: R v1 . o
and the assignment — e —: M, we obtain the following time-independent
Swv 9
linearized eigenvalue problem
J LT = \U. (2.1.5)

2.1.4 Main results

Before we formally state our results, we need a few rigorous definitions about the objects

that we study. We employ the following standard definition of stability.

Definition 4. We say that the wave e~ ® is spectrally stable, if the eigenvalue problem
(2.1.5) has no non-trivial solutions (\,v), with R\ > 0. Otherwise, in the cases where there
is \:RX>0and U+ 0, so that (2.1.5) is satisfied, we say that the wave e~ “'® is spectrally
unstable and \ is referred to as an unstable mode for (2.1.5) .

We say that e~ ® is orbitally stable, if for every ¢ > 0, there exists 6 = 6(¢), so that

whenever |[ug — ®|| gs(gny < 0, then the following statements hold.

* The solution u of (2.1.1), in appropriate sense, with initial data ug € H?® is globally

in H*(R"), i.e. u(t,-) € H*(R™).

inf [|u(t, ) — e DS s gy < €.
i‘;lgéQR”“(’) e (M zrsmny <€

Key Assumptions

Let ® be a solution of (2.1.2). We assume that:
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1. The solution map g — u4 has continuous dependence on initial data property in a
neighborhood of ®. That is, there exists 7 > 0, so that for all € > 0, there exists § > 0,

so that whenever g : [|g — ®|| s < 8, then supg;7, [Jug(t,) — e~ Py || gs <e.

2. All initial data, sufficiently close to @, in H® norm, generates a global in time solu-
tion ug of (2.1.1). In addition, the L? norm and the Hamiltonian for these solutions

are conserved. That is

Remarks:

* The continuity dependence on initial data property stated above is a simple conse-
quence of a standard local well-posedness result, in the spirit of Theorem 4.6.4, [16].

Since such result seems unavailable at the moment, we explicitly assume its veracity.

* There is also the notion of asymptotic stability for our waves. We do not formally
introduce herein, as we do not have definite results in this direction. We conjecture it

to be true, in all cases of spectral/orbital stability listed in our main theorems below.

Next, we introduce a subset in the parameters space (n, p, s,b), which will be helpful in the

sequel

Definition 5. We say that (n,p, s,b) € A, if the parameters are in the range below

<s<1,0<b<1, 1<p<o0

N[ —

n

AZ: n

1,

,SE(O,%),O<I)<25, 1<p<1+418_—225b _

I
—

n2273€(0,1),0<b<25,1<p<1_|_48;2b

n—2s
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This set will turn out to describe the necessary and sufficient conditions under which
d,, exists.

Our first theorem is a sufficiency result for the existence of the solitary waves ®,,.

Theorem 1. (Existence results) Let (n,p,s,b) € A, w > 0. Then, there exits a bell-shaped
function* ®,, € H*(R™) N L (R™) N L>(R™), so that the equation (2.1.2) is satisfied in a

distributional sense. If (2.1.2) is also satisfied in the strong sense then
Py = ((—A)° +w) [z T"2L). (2.1.6)

Finally, under the assumption s € (3,1], we have that ¢ € C*(R™\ {0}).

Remark: We have in fact much more precise description about the behavior of ¢, V¢
in Proposition 4 below.
Interestingly, we have the appropriate converse statement, which makes A the necessary

and sufficient set of requirements for the solvability of (2.1.2).

Theorem 2. Assume that a positive function 1» € H*(R") N L'(R™) N L>°(R") satisfies

(= A5 +wyp = || oyP

in a distributional sense. Then (n,p,s,b) € A and w > 0.
Next, we are concerned with the stability of the waves constructed in Theorem 1.

Theorem 3. Let (n,p,s,b) € Aand w > 0. In addition, assume that 2b < n and s € (%, 1].

Let @, be the solution constructed in Theorem 1. Then,

1. the linearized operators Ly, D(L+) = H*(R"™) are self-adjoint and ®,, € D(L).

4That is, a radial function, which is non-increasing in the radial variable
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2. ®,, non-degenerate, in the sense that Ker[L] = {0}.

Forl<p<l1+ 45=2b the soliton e WP, is spectrally and orbitally stable. In the comple-

n

mentary range,

4s—2b 00 n=1
+ <p<

I+35 n>2

the soliton is spectrally unstable.
Remarks:

1. According to the necessity statements in Theorem 2, the results in Theorem 3 provide
a full classification of the bell-shaped solutions that exists, in the cases s € (%, 1)
and 20 < n. Note that the constraint 2b < n is already contained in the necessity

assumption for n > 4.

2. In the case n = 3, the constraint b < % is slightly worse than the necessity assump-
tions, b < 2. This was the claim in [10], but one certainly faces some difficulties

(specifically with D(£)) in the range b € (3,2).

3. QOur results seem to be new even in the case s = 1, in low dimensions, n = 1,2. The
restrictions b < % forn =1 and b < 1 for n = 2 are more restrictive than the necessary
assumptions (n,p, s,b) € A. Itis interesting whether one can establish rigorously the
stability situation for these parameters. As we discuss at length, the main issue is
to make sense of the functional analytic framework, in particular the domains of the

linearized operators L.

4. The case p = 457_21’ is a bifurcation case, where one gets a crossing through zero of
a pair of purely imaginary eigenvalues to a pair of stable/unstable real eigenvalues.

This is also where the equation (2.1.1) enjoys an extra, so called pseudo-conformal
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symmetry, hence the extra pair of eigenvalues at zero. Even though one has spectral
stability for this case, one generally expects the corresponding waves to be spectrally

unstable, as in the classical NLS, see the seminal paper [24] for details.

This chapter is planned as follows. In Section 2.2, we introduce the Pohozaev’s identi-
ties, which in turn imply the necessary conditions for the existence of the waves, which
is the content of Theorem 2. In Section 2.3, we present the variational construction of
the waves along with some further properties of the profiles, such as boundedness, sharp
asymptotics at zero and smoothness. In Section 2.4, we provide a self-adjoint realization of
the linearized operators L., followed by some preliminary coercivity properties. We also
introduce the Frank-Lenzman-Silvestre Sturm oscillation theory for fractional Schrédinger
operators as well as an adaptation of their method to our situation, which has to address
singular potentials in the next section. In Section 2.5, we establish the non-degeneracy of
the waves. This requires decomposition in spherical harmonics and careful analysis on the
radial subspace by using the Frank-Lenzman-Silvestre theory developed in the previous
section as well as an argument to rule out non-trivial elements in the first harmonic sub-
space. In Section 2.6, we provide a short introduction to the index counting theory, which
provide an useful criteria for spectral stability. In Propositions 10 and 11, we show the
coercivity of £ on {®}, which is an important ingredient of the orbital stability scheme.

Finally, we show the orbital stability (whenever spectral stability holds) in Proposition 12.

2.2 Necessary conditions for the waves: proof of Theorem

1

The approach for the proof of Theorem 1 is to exploit the scaling and the associated Po-

hozaev’s identities, which in due course will lead us to the set of constraints A.
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2.2.1 Pohozaev identities and consequences

Before we make assumptions on the smoothness and decay properties of the profiles ¢, and
in addition the sense in which (2.1.2) is satisfied, (2.1.2) remains a formal object. In order
to further demystify the ranges in which one might expect reasonable solutions of (2.1.2),

we provide the following Pohozaev type identities.

Lemma 4. (Pohozaev identities) Assume that 0 < b < n and ¢ € H*(R") N L>®(R™) N

LY(R™), with ¢ > 0 satisfies

(—A)* ¢ +wip— || Py =0 2.2.1)
in a distributional sense. Then,

b ptl g 2ws(p+1) 2
/Rn\x! Pde = 08— (n 2 1) S (2.2.2)

a2z, o wnlp+1l)—2(n-"b)) 2
/nl( A)Eptde = b (25 ot 1) Jen ¥ (2.2.3)
w | Yr)de = / 2| ~byPda. (2.2.4)

R" R"

Proof. A formal proof (i.e. one where we assume that ¢ has enough smoothness and decay

properties) is as follows. Take a dot product with ¢ in (2.2.1) and integrating by part we

J1ay20dn v [ a)da = [ lafort @)

If we take a dot product with x - V¢ = 2?21 x;0j, taking into account the commutation

get

formula (1.1.1) and various integration by parts calculations, we obtain another relation

between [ |(—A)*/%¢|2dx and [ |z|~byP+!(z)dx, namely

5= [1-ar2upae+ 220 [l b i@ =2 [ o)
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Solving the last two relations for [ |(—A)%/%¢|2dz, [ |x| 2P+ (x)dx, we obtain (2.2.2),
(2.2.3). Integrating (2.2.1) yields (2.2.4).

For 1), which is not necessarily smooth and decaying, one follows similar scheme. To
establish (2.2.2), test the equation (2.2.1) by a sequence of Schwartz function ¥ with
lmp |8 =9 s (Rnyn 1 vy = 0 and then take limits. In order to show (2.2.3), test (2.2.1)
by z- V1. Again taking into account the commutation relation [(—A)%, z- V] =2s(—A)*
and taking limits as ¢y — 1 establishes (2.2.3). The formula (2.2.4) is proved after testing
(2.2.1) by a function x(x/N), N >> 1 (where y is compactly supported and x(z) =1, |z| <
1) and taking limits N — oo.

]

Implicit in the formulas (2.2.2), (2.2.3) displayed above is that the parameters need
to satisfy certain conditions, so that v exists. We collect the necessary conditions in the

following corollary.

Corollary 2. Letp>1,n>1,5s€ (0,1),b> 0. If ) with properties listed in Lemma 4 exist,

then w > 0 and the parameters must satisfy one of the following relations:
en=1s€[31),0<b<1 1<p<oo.

. n:1,0<5<%,b<25,
4s—2b

l<p<l1 )
p<lta5;

e n>2 b<2s,
4s —2b

l<p<1+ i
n—2s

(2.2.5)

Remark: Corollary 2 simply states that if ) solves (2.2.1), then (n,p, s,b) € A.

Proof. The fact that w > 0 follows from (2.2.4). If ¢)(0) > 0 and the integral on the left-

hand side of (2.2.2) exists, it is non-singular at zero and hence b < n.
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From the positivity of the left-hand sides of (2.2.2), (2.2.3) and n(p+1) —2(n—b) =

n(p—1)+2b> 0, it follows that 2(n —b) — (n — 2s)(p+1) > 0. In particular, for n = 1, the

25—b

conditions are satisfied if s > %,1 <p<oxorl<s< %,butthean >b,1<p< 1+2553.

For n > 2, note that we always have n —2s > 0, whence we come up with b < 2s and

(2.2.5). ]

Clearly, Corollary 2 establishes Theorem 2.

2.3 The Variational Construction and properties of the
minimizers

We start with some elementary observations, which will identify conditions under which

an important variational problem is well-posed.

2.3.1 Well-posedness of the variational problem

Consider the following functional

_ Jre |(_A)S/2U|2d$+wfmn u’dx

I,[u] 2
(f]R” ’x‘fb|u|p+1) P (o

We shall henceforth assume’ that b < n, w >0 and 0 < s < 1. So, for any function u €
H¥(R")NL*®(R") : u # 0, we have that 0 < [, |z|™°|u[P™'dz < oo, so that the ratio
I,[u] is well-defined. Since for u € S For every u # 0, I,[u] > 0, we will consider the
non-negative scalar function

m(w) = 516121},[11]

Sand in fact, we shall pose some more restrictions later on
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In the case when the parameters ensure that m(w) > 0, will be referred to well-posedness,
versus the trivial case m(w) = 0 (which is certainly possible for certain parameter ranges)
will be referred to as lack of well-posedness or ill-posedness. We have the following ele-

mentary lemma.

Lemma 5. Assume that m(1) > 0. Then,

m(w) = m(l)wz(:(;isl)) [P—(1+‘ff__22_f)].

(2.3.1)
In addition, if ¢ is a minimizer for I1[u] — min, i.e. m(1) = I1(¢), then ¢, (x) := ¢(w21?x)
is a minimizer for I,[u] — min.
Proof. Take ¢(x) = ¢ (Ax) then

L) = I A b an
/\2(%) (fRn ‘x|—b¢p+1) T dr

Taking w = \?® implies the formula

2(n—>b)
—n+2s— 1

L¢]=w s I (),

whence the formula (2.3.1) follows by straightforward algebraic manipulations. [
Remarks:

* As was have discussed above, the well-posedness is equivalent to m(1) > 0. So far,
we have not addressed this issue in a satisfactory manner. Lemma 5 just establishes
that m is a specific power function, if the functional I, is bounded from a positive

constant.
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* Note however that under the standing assumptions s > 0, p > 1, the power of w

appearing in (2.3.1) is negative exactly when (n,p, s,b) € A.

2.3.2 Existence of minimizers

Our next goal is to obtain an existence result, which holds precisely when (n,p, s,b) € A.

As is clear from Proposition 1, it suffices to consider the case w = 1.

Proposition 2. Let (n,p,s,b) € A. Then the unconstrained minimization problem

I,[u] — min (2.3.2)

has a bell-shaped solution ¢ € H*(R™) N LP1=b in particular m(w) > 0.
If ¢ is a minimizer of (2.3.2), with ||¢|| ;p+1,-» = 1, then ¢ satisfies the Euler-Lagrange
equation

(=A)*¢+wo—m(w)|z| PP =0 (2.3.3)
in the following weak sense: for each h € C$°(R™\{0}), there is ((—A)*¢+wp—m(w)|z|°¢P, h) =
0. Finally, for the linearized operator,
Li=(=A) +w—pm(w)z| ",
we have that for each real-valued h € C3°(R"\{0}) : [ |z|~°¢P(v)h(x)dz =0, (L h,h) >
0.
Remark:

* Proposition 2 does not claim the boundedness of the minimizer ¢, i.e. the possibility

that lim,_,¢ ¢(x) = oo is left open.
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* Related to the previous point, the Euler-Lagrange equation may have a significant
singularity at zero, due to the presence of || =" and the possible singularity of ¢ at
zero. We sidestep the issue for the moment, by testing (2.3.3) away from zero as

h € Cge(R"\{0}).

« The non-negativity property of £ over the set h € C§°(R"\ {0}),h L |z|~°¢?, nor-
mally would indicate that £ has at most one negative eigenvalue. This would even-
tually turn out to be the case, see Proposition 5. Here, we are forced to restrict to a
restricted set of test functions, namely h € C§°(R™\ {0}), as we have not yet resolved

the issue with the singularity of the potential z — |z|~%¢P(x) at zero.

Proof. By the arguments in Lemma 5, it suffices to consider the case w = 1. By the as-

sumption (n,p, s,b) € A, it follows from Proposition 1

( / \xrbqf“)”l < Cllole.

Whence

inf I [u] > C~ 1.
u#0

Thus, the variational problem (2.3.2) is well-posed or equivalently m(1) > 0.
We now need to show that (2.3.2) actually has a solution. To that end, observe that by
the Polya-Szego inequality (1.1.4), [|(—A)*/2u > [[(=A)%/2u*||. Also, ||¢*||12 = ||¢]| 2

and finally, by (1.1.3) and the fact that | - |~* is bell-shaped and strictly decreasing,

-b +1 —b 41\ % o fL‘_b *(1 +1 ~
| e o@ptdr < [ e o yde = [ el

We conclude that I;[u] > I;[u*], which implies that we can reduce the set of possible

minimizers to the set of bell-shaped functions, i.e. {u € H*(R")NLPHLO(R?) :u = u*}.
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Next, by the dilation property of the functional /;(u) = I;(au), we can without loss of
generality further reduce to the set [, |z|2uP ™ (z)dz = 1.
So, assume that ¢y, is a minimizing sequence of bell-shaped functions, subject to the

constraint [, || "°¢? " (2)dx = 1. It follows that
lim|| (=) 26|72 + 6672 = m(1). (2.3.4)

We will show that a subsequence of ¢ converges in the strong H s/ 2(R") sense to
a minimizer u, which we will show is the desired solution to the minimization problem
(2.3.2). By weak compactness, we have that a subsequence of ¢ (which we will assume
without loss of generality is ¢y, itself) tends weakly in H s/ 2(R") to a function ¢, which is
also trivially bell-shaped.

Since, for bell-shaped functions u we have the point-wise bound for each x : |z| = R,

[u@)|? < IBnl_lR_”/ <RIU(y)Izdy < |Bu| M| 7 Jull72- (2.3.5)
Yyl=

Based on this, we claim that (a subsequence of) ¢ converges to ¢ strongly in the topology
of LPTL=b_ This will follow from the Kolmogorov-Relich-Riesz criteria for compactness
in L? spaces from supy, || ¢ || He/2(Rn) < OO (which is a corollary of (2.3.4)) and once we

establish

limsup/ 2| 2| pp () [P dz = 0. (2.3.6)
Nk Jjz|>N

Indeed, (2.3.6) follows from the pointwise bounds for bell-shaped functions (2.3.5), since

S“p/ 26w (@) dr < Cosup 175 / 2] -5y
k Jz|>N k lz|>N
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_p_p-1 1
<O, N7t ”sgpl\aﬁkllit ,

which clearly converges to zero as N — co. Thus, up to a subsequence ||¢x — @|| fp+1,-5 —
0, whence [, [2| 2@ (z)dx = 1. In particular, Iy (¢) = || (—A)*/2¢|2, +|¢]|2, > m(1).

Now, we have by the lower semicontinuity of the weak convergence in $/2 and (2.3.4)
that

m(1) <|

(=2)*28]1 72 +llo]72 < liﬂ}ﬂinf\l(—ﬁ)s/%klﬁz +l¢nl72 =m(1).

It follows that T [|(~A)¥2; |, +[|6¢l/2. = [|(~2)¥26]2, + [|9]22. whence by the

uniform convexity of || - || 72

lim [k — |l grs/2(rmy = 0.

We conclude that 7;[¢] = m(1) and ¢ is a solution to (2.3.2).
Next, we discuss the Euler-Lagrange equation (2.3.3). Take a test function h € V{°(R™\
{0}, that is h is supported in {x : |z| > §} for some § > 0. Let also 0 < ¢ << 1 and consider

u=¢+eh. Recall [|z|~P¢P+1dzr = 1. Since ¢ is a minimizer we should have
Llo+eh] > m(1) = N(6).
Where N(¢) := [|(=A)*/2¢]> 4 [ ¢? and D(¢) := [ |2|70(¢)P* dz. Thus,

N(¢+eh):/y(—A)S/2(¢+eh)|2+/(¢+eh)2
:/|(_A)S/2¢+€(—A)S/2h|2+/(¢2+26h¢+62h2)
=/|(—A)S/2¢>|2+/¢2+26(<(—A)‘”/2¢,(—A)5/2h>+<h,¢>)+0(62)
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= N(¢)+2¢(((=A)* +1)p,h) +O(€?).
Similarly,
D(¢+¢€h) = /|m|_b(¢>—|—6h)p+1dm =14+ (p+ 1)e<|x|_b¢p,h> +O(€2).

It follows that

_ N(¢+eh)  N(@)+2e(((—A)*+1)p,h) +O(e?)
htoste) = Di¢+eh]7T 1+ 2¢(|2[ 0P, h) + O(€?)

= N[g]+2e(((—A)°+1)¢ — |2] °N(¢)¢",h) + O(e?).

As this holds for arbitrary function / and for all small €, we have established that ¢ solves
(2.3.3) in a distributional sense.
Finally, fix & to be a real-valued function, h € Cg°(R™\ {0}). Starting again with the

inequality
N(¢+e€h)
2
D(¢+eh)pt1

Y

> N(¢)

but expanding to the second order® € , we obtain

N[+ [(L+h, )+ N[@)(p+3)({| -|*¢",1)*] +O(%) = N[¢),

after taking into account (((—A)* 4 1)¢ — N(¢)|z|°¢P,h) = 0. After taking limits as
€ — 0, we derive

(Lih,h)y > —N[|(p+3)({|-| "7, k)% (2.3.7)

In particular, (£ h,h) > 0,if [ |z|~°¢P(z)h(x)dx = 0. O

®Note that in the calculation above, the expansion in powers of e is valid, since the fixed A that has its
support away from zero
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We shall now need to prove some further properties of the minimizers ¢ as well as some

spectral results necessary for the sequel.

2.3.3 Boundedness of ¢

In our next result, we use the already established (partial) coercivity of £ on {|-|~?¢?}+n

C3°(R™\ {0}) in order to derive L> bounds on ¢. We believe that this is a new technique,

which might be useful in the spectral analysis of other situations with singular potentials.
Once we show the boundedness of ¢, we will go back to the claim about the coercivity

of £ on the full co-dimension one subspace {|-|?¢P}+.

Proposition 3. Let (n,s,p,b) € A. Then, the minimizer ¢ constructed in Proposition 2 is a

bounded function.

Proof. Again, we assume w = 1, the other cases follow by rescaling.

We first show the boundedness of ¢. Recall that since ¢ is a bell-shaped function,
¢ € L*(R™), we have that for every = # 0, |¢(z)| < Cp|z|~2||¢|| ;2. This of course leaves
the possibility that lim,_,g¢(x) = oo, which we shall rule out for the remainder of the
proof.

Our approach is by contradiction, that is assume that lim; o ¢(z) = oco. We now create
a specifically designed test function h € C5°(R™\ {0}) N {|z| ~?¢P}*. To this end, let x be
a radial positive Cg° test function, supported in % < |x| < 2 and equal to 1 on % < |x| < %.

Let 0 < e << 1 and let

2| 7P () v (x/€)dx
hx) = x(z/€) = cex(x), ce= ff||g|g|f;§>(3:>)<>(((x/)21x ‘
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Clearly, h € C§°(R™\ {0}), where c, is designed so that & L |-|~°¢P. Note that the denom-

inator of ¢ is bounded above and below by a constant independent on ¢, so that

o~ / 2|t (2)x (2 ) da. (23.8)

According to Proposition 2, we have that (£ h,h) > 0. As a consequence of this, after

dropping some terms with favorable signs, we arrive at

E((=A)°x,x) = 2e((=A) x, x(-/€)) + [(=2)Px (- /)|

>pm(1) / 2| 7P () X% (x/€)da. (2.3.9)
Let us estimate the terms on the left hand side of (2.3.9). Elementary estimates imply
(=4 x.X) < CI(=APX(C/P < O e (=) *x, x (/)] < Ceee.

The integral expression on the right hand side of (2.3.9) is essentially equivalent to ¢, but
not quite. In order to get the desired estimate, introduce the quantity d. := [ |z| ¢ (x)x%(x/€)dz,

so that we now have proved the estimate
de < O(E 42 4. (2.3.10)

Furthermore, we have by Cauchy-Schwarz’s inequality

1/ 1/2
CESC/\:U] bqﬂ’(x)x(x/e)dxﬁC(/]x\ b¢p(x))<2(:v/e)dx) </|$|N€\x] b¢p(x)dx>
(2.3.11)
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By our assumption, lim,_,q |¢(z)| = oo, we have that for all small enough e

2| PP (2)dx L 2| PPt (2)da = L =0(€
/|:E|~e| | (bp( )d SInaX:v:|:v|~eCb(x)/| | gbp ( )d maxx:|x|~e¢($) ()

Hence, we obtain that ¢ = o(¢)d, and €"c. < o(¢)d, + 2. Substituting these estimates in

(2.3.10) yields de < Co(e)d, + €25, or after hiding Co(e)d, on the left-hand side, d. <
2¢"~25for all small enough e. This actually yields a very good point-wise estimate on ¢.

Indeed, recalling that ¢ is bell-shaped we estimate

e min 7(a) < [ o]0 (@) *(a o < Ce R,

x:|z|~e

whence for all x # 0,

PP (z) < ClalP~28. (2.3.12)

This gives a contradiction and hence the required L°° bound, if b > 2s. Unfortunately, this
covers only a small portion of the parameters space A.

So, assume for the rest of the argument that b < 2s. In order to derive the L°° bounds
for ¢, in the case b < 2s, we shall need an additional bootstrap argument, based on the fact
that ¢ is a (weak) solution of the Euler-Lagrange equation (2.3.3). To this end, we need to
find a way to introduce ¢ := (14 (—A)*) |- | ~*¢P]. As of now, this is a formal definition,
but it is clear that if we manage to define such an object in an appropriate way, this will be
weak solution of (2.3.3). Since ¢ solves (2.3.3) in the weak sense described in Proposition
2, we will be eventually able to show that b= ¢ as L? functions, for appropriate ¢ € (2,00).

To this end, we have the following claim.
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Claim 1. Assume (n,s,p,b) € A and that a function f : R — R is bell-shaped and it satisfies

f e LPLbRY) and | f(2)| < Cla| 7. Then,
Z=(1+ (=) -7 = Gex [P € Mo+ LY(RY).

In particular Z € L*(R").

Proof. (Claim 1) We consider the case n > 2s only, as the case n < 2s can arise only for
n=1,s> %, in which case the function G is bounded and the arguments are much simpler.

We split’ Z = 3 + 2,
2 =Gsx |7 fPxp<1)s Z2=Gox[|- |7 fPx 1)

Let us analyze z; first. We claim that due to the properties established in Lemma 1, we

have that Z; € Ny« L9(R™). Indeed, for |z| < 2, we can bound
[Z1(@)] < CL- P g<s* 72X <0

n—2s°

Pick arbitrary q1,q2 : 1 < q1 < -%5;, 1 < g2 < 5% and then g € (1,00) : qil#—q% = 1—1—%. By
Hardy-Littlewood-Sobolev inequality, we have

‘25—11

1211l La(je|<2) < CIII- Xp<sll Lo @) 1y~ x| <1l Loz vy < Cy.

Clearly, in this way, we can generate any g € (1,00), by varying the choices ¢1,¢2 in the

specified intervals, so Z1 € N1<g<ooLY(R™).

"here x; denotes the characteristic function of I
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Regarding z5, we split as follows
2] S Ol 1P " Xper * | 0P s1 + 1T # T2 2x) ).
Clearly,
-2 < 121 lee < CN- P <all - 170 P xg gl < ©
as long as ’%1 < g < 00, because
177X < maxl 70 @) [l iy <

Similarly, as long as ’%1 < g < oo, we can find § > 0, so that 1—J1r§ + % =1 +é and

qs > ’%1. Then,

- —b — —b
-] nX|-\21*|'| pr|~\21||L<Z§GHH|'| nX|~|21||L1+5|||'| pr|-|21||Lq6§C-

All in all, we have established Z € Np+1

p

<q<ooLq(R"), as required. ]

Now that we have established the claim and taking into account the properties of ¢,

which are already established, we can take f = ¢ in the Claim 1, whence we conclude that

o= (1+(=A)") |- 7"

is well-defined and element of L?(R™). Furthermore, for each integer k and each test

function f € S, = {f € S : suppf C {281 < |¢| < 25F1}}, we have that

(0, (L4 (=2)) 7 ) = (|- [P, f) = (o, (14 (=A)*) 1),
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where in the first equality we have used the definition of ¢, while in the second, we have
used that ¢ is a weak solution of (2.3.3).

Since (1+ (—A)*)~! is an isomorphism on each Sy, it follows that (¢ — ¢, f) = 0
for each f € S : suppf C R™\ {0}. Since this is a dense set in S and hence in each

L9, q € [1,00), it follows that ¢ = ¢ in the sense of L?(R™), that is
d=(1+(=A)*)7Y - |72¢P) = Gy *[|-|°¢F] € LAR™). (2.3.13)

According to the claim, the L?(R™) function on the right-hand side of (2.3.13) also belongs
to MNp+1 <qu(R”). But then, since ¢ is bell-shaped and ¢ € Np11 <qu(R"), we have the
p p

point-wise bound

o |p()|7 < C / 16(y)|dy < Cym

ly|~|z|

01120 e

Whence ¢(z) < Cq\x|_%. Recall that this is true for all ¢ < co. That is, for each 6 > 0,
there is Cj, so that

o(x) < Cslz|~°. (2.3.14)

This is almost, but not quite, that ¢ € L°°(R"), which will yield the contradiction. On the
other hand, we will show that (2.3.14) can be bootstrapped to ¢ € L°°(R"), which will then
be the desired contradiction.

By close inspection of the proof of Claim 1 (and under the assumptions in Claim 1) ,
we see that we can in fact place all but one piece in L°°(R™). It thus remains to see why
|- 157X <3 -] PP x| <1 € L°(R™). In view of the bound (2.3.14), we have for § << 1,

25— —b Xlz—y|<3 Xly|[<1
17 X< * [P X (@) < O iz — |2 |y‘b+5dy

25— —b—0
<O xpp<sllnallxpg <alyl ™l o
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n
n—2s°

where in the last step, we have applied the Holder’s inequality with 1 = % + %, q<
r(b+d) < n. This last two conditions are possible to satisfy (i.e. such ¢, exist) , for small
0, as long as b < 2s. This is another instance that this requirement is crucially used. In this
way, we have reached contradiction with our assumption that ¢ is unbounded. Therefore,

¢ is L*°(R™) function. O

2.3.4 Further properties of ¢

We have the following proposition.
Proposition 4. Let (n,s,p,b) € A. Then, ¢ € L*(R"), so by the bell-shapedness, in par-
ticular it satisfies the point-wise bound

[¢(x)] < Cla] ™, |2| > 1. (2.3.15)

If in addition, s € (%, 1), then

|7 2 > 1
Vo(z)| < C . (2.3.16)
|x|2s—b71 |:17| <1

In particular, » € C1(R™\ {0}).
Remarks: As a corollary, we have
* ¢ € Nicg<acLI(R").
* |z||V¢(z)| is a bounded function, since 25 > b. In fact, |||V¢| € Ni<g<ac LI(R™).

Proof. Even though ¢ € L' implies (2.3.15), it will be actually bootstrapped from it. So,

we focus on the proof of (2.3.15). We already know that |¢(x)| < C|z|~™/2,|z| > 1. To
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obtain the higher decay rate, introduce the optimal decay rate,
o = sup{s : |¢(o)] < Agla| ™ Ja] > 1}.

Clearly o > 5. Assuming that o < n leads to a contradiction. Indeed, note the representa-

tion (2.3.13),
[p(2)] < |G| [ 9P ()],

and the fact that G is integrable near zero. Moreover, there is the bound |G(z)| <
Clz|™, |z| > 1 and |z|~" % |z|~(C+r(@=6) < O|g|~min(b+p(a—€)) for small enough e, so
that b+ p(a — €) > a. But this implies a better decay rate than «. This contradicts our
assumption a < n, so it follows that &« > n. One can in fact see that o = n, as this is the
optimal decay rate for G.

The bound for |41 follows easily now. We simply estimate

—b —b
[l e < NGsllplllz] ¢l = |2 "¢ || o1

But the function || ~?¢P ~ |z|?, |z| < 1, while || P ~ ||~ O+7P) |z| > 1, s0 |2| PP €
LY(R™).

The bounds for |V¢| for || > 1 follow as in the proof of (2.3.15), once we make sure
that VG is integrable near zero, which since |VGy(7)| < Olx|>*7"~! |z| < 1, requires
that s > 1. For the case |V¢|,|z| < 1, we again use the formula Vo = VG, * [ - |0¢P).

One can see that for values |z| < 1,

1 1
IVo(z)| < C / —dy + bounded function.

ly|<2 [T =y 1728 [yl
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Integrating separately in the regions |y| < |—§‘ and |y| > % yields the bound |V¢(z)| <
C"x|25_b—1. N

2.4 Preliminary spectral properties of £,

We start with the realization of £ as a self-adjoint operator.

2.4.1 Self-adjointness of £

The conclusion ¢ € L (R"™) is helpful in our study of £ and £_. However, we still face
difficulties, for example with regards to the self-adjointness, as the potential |z| ¢~ (z)

is still singular at zero. The following non-trivial lemma resolves these issues.

Lemma 6. Let (n,s,p,b) € A and in addition 2b < n. Then the Friedrich’s extensions of

L are self-adjoint operators with the natural domain H?S(R™).

Proof. Before we proceed with the construction of the Friedriech’s extension, let us show

that the condition n > 2b ensures that £4 (H?*) C L?(R"). This reduces to the estimate

1/2
([ el naPar) < Cllln e,

which follows by (1.1.7), where a = 2b and since b < 2s.
Next, introduce the quadratic forms Q. [h, h| := (L1 h, h), with form domain H*(R") x
H?(R™). Via the usual Friedrich’s procedure, it will suffice to show boundedness from

below for Q4.
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We proceed to bound |{|z|~°¢P, h)|. Clearly, the portion of the integral over |z| > 1 is

easy to control,

/| o 2| =0 ¢P () | h(x) | dz < C||h]| p2[|8][} 2, < ClIB]| 2.
x|>

For the piece over |z| < 1, we have by Cauchy-Schwarz and Sobolev embedding, for any®

0:0<0<s,2b<n+20

| [~ ¢P (@)h(w)da] < [[(=A)Fh] 2| (=) 2 [l "¢ xpp<alll 2 <

|z|<1

< CH(—A)%hIILz|||x|*bX|m|gll\L27n < Cl(=2)Fhl| 2 < Kl (=2)2hl| 2 + CrolIh] 2.

n+2o

Next, for the integral [ |z|~°¢Ph%(x)dx, we control it by applying Proposition 1, with g = 2
and any o > %,

/wr%WR@stcmﬁp.

Choosing o < s as well, that is 0 € (%, s), we conclude that for each k, there is Cj, so that
[l w e < I+ Cullbl ea

Combining the estimates for [ |z|~°¢Phdz and [ |v|~°¢Ph?(z)dz, with (2.3.7), yields that

there exists a sufficiently large C, so that for each h € H*(R"), we have
I(=A)2h|2, —pm(w)/lxl_bﬂhg(ﬁf)dﬁf > —k[|(=A)2h|}, — C||h]f7..

Or

(L+m)lI(=2)2h7, —pm(W)/|x|b¢ph2(I)dfv > —C|hl72. (2.4.2)

8Clearly, one can select such o € (0, s),asb<n,b<2s
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So, again by (2.4.1) and (2.4.2),
(1+r)[[(=A)2R)72 2pm(td)/lwl_b¢ph2(x)dﬂf > —[|(=2)2h[72 = C|[h]72,
whence for small enough &,

2(/|(~2)3h]7 —pm(w)/lxl_bsz“”hQ(x)dx) > —Chl72,

which is the desired boundedness from below for £, once we divide by two and add
w||h||7,. Since £L_ > L, the boundedness from below (and hence the self-adjointness of

the Friedrich’s extension) for £_ follows.

Corollary 3. Under the assumption 2b < n, ¢ € H**(R") = D(L4.).

Proof. Since ¢ € L*(R™) N L>°(R™) is already clear, we just need to observe that

6= (1+(~A)") 7 |a| 6] € F2. Indeed.

161l gras oy = (=2 L+ (=2)*) " |2 0]l 2 < Clll2| ¢ || 2,

which is finite, if 2b < n since |z|¢P ~ ||~ |z| < 1 and for |z| > 1, |z|P¢P < ¢P €

L%(R™). O

Remark: The assumption 2b < n is automatic for (n,p,s,b) € A, if n > 4. In the case
n = 3 however, this is not so and it amounts to the extra restriction b < % In [10], the
authors use the fact that ¢ € D(L4), which is not justified in the full range n = 3,b < 2,
but rather only in the range b < % Their statement has to be modified accordingly in order
to hold, at least based on the proof presented therein. Clearly, the restriction is even more

severe in the lower dimensional cases n =1, 2.
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Now that we have properly realized L4 as self-adjoint operators, one can talk about

their eigenvalues, coercivity properties etc. Our next result are in this direction.

2.4.2 Some basic coercivity properties of £

Proposition 5. Let (n,s,p,b) € A and in addition 2b < n. Then, the self-adjoint operators

Ly enjoy the following properties:
* The continuous spectrum of L is [w,0).
* L has exactly one negative eigenvalue.

* L >0, with L_[¢] =0 and moreover L_|(41y > 0.

Proof. Continuous spectrum for both operators consists of [w,00) by Weyl’s theorem.
Clearly, since (£4¢,0) = —(p— )m(w) [ |z|~°¢P*dx < 0, it follows that £ has a neg-
ative eigenvalue. Then, the property (L h,h) > 0,h L |-|~%¢P, which was previously
established only for h € C°(R™\ {0}), can now be extended to all h € S: h L |-|~b¢P,
since |- |7°¢? € L?(R™), due to the assumption 2b < n and the properties of ¢. Thus,
n(Ly)=1.

2

Regarding the claims for £_, assume that the lowest eigenvalue, say —o~ is a negative

one. Then,

—0? = Hil||1f1<£_u,u> = Hiﬂlfl[H(—A)%uH%g +w —m(w)/ || 0P |u|?dx]
ul|l= u||= R”

Similar to our considerations in the proof of Proposition 2, this variational problem has a
bell-shaped solution, say ¢ : ||1|| = 1, which satisfies £_[1)] = —c%¢. But on the other

hand, by a direct inspection, £L_¢ = 0, ¢ is bell-shaped as well. But then,

0=(L_¢,0) = (¢, L_t)) = —0* (¢, 1) <0,
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a contradiction. Thus, £_| {31y = 0.

]

Our next discussion will concern the Sturm-Liouville theory for fractional Schrodinger

operators such as L. We base our approach to a result due to Frank-Lenzmann-Silvester,

[36].

2.4.3 Sturm oscillation theorem for the second eigenfunction of £

Theorem 4. (Frank-Lenzmann-Silvestre, Theorem 2.3, [36])

Letn >1,s € (0,1] and W satisfies

» W =W(|z|) and W is non-decreasing in |z

’

e We L*®R"), WeCv>max(0,1—2s). That is

(W(z) =W(y)| < Clz—y[”.

Then, assume that H = (—A)® + W has two lowest radial eigenvalues Ey, E1, so that
Ep < By <infoess(H).

Then, the eigenvalue E)y is simple and the corresponding eigenfunction is bell-shaped.
Regarding F, the corresponding eigenfunction V1 : HW| = E1V has exactly one change
of sign. That is, there exists o € (0,00), so that V1(r) < 0,r € (0,79) and V1(r) > 0,r €

(rp,00).

Remark: Note that the potentials involved in £, while satisfying most of the require-
ments in Theorem 4, fail in a dramatic way the key boundedness requirement, as they are
unbounded at zero. So, we shall need to employ an approximation argument to achieve the

same result for £ .
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Recall that according to Proposition 5, £ has exactly one negative eigenvalue, £y < 0.

The next radial eigenvalue E (if there is one!) satisfies £; > 0.

Proposition 6. (Sturm oscillation theorem for the second eigenfunction of L) Let (n, s,p,b) €
A and in addition 2b < n. Then, the smallest eigenvalue FEy < 0 has a bell-shaped radial
eigenfunction. Suppose that the operator L has a radial eigenvalue F < w. Then, F;

has a radial eigenfunction with exactly one change of sign.

Remark: The condition £; < w simply means that 7 is not an embedded eigenvalue,

as 04c(L4) = [w, 00).

Proof. Before we start with the proof, let us mention that as we discuss radial eigenfunc-
tions, we restrict our considerations to the Hilbert space L% 1qR™) for the purposes of this
proof.

Recall £, = (—A)* +w — pm(w)|z| P~ (x) =: (~A)* +w — W. The statements
regarding Ej can be established directly, even for the unbounded potential 1W. Indeed, by

the self-adjointness of £ and the characterization of the lowest eigenvalue

Ep= min (Liu,u)=w+ min [H(—A);UH%Q—/ W (z)|u|?dz].
RTL

l[ull 2=1 l[ull 2=1

By the Polya-Szegd inequality and since W = W*, [0, W (z)|u*dz < [gu W (z)|u*[*dz,
we conclude that the minimization problem min”uHL2 _1(L4u,u) has a bell-shaped solution
o : || Wollz2 =1 and £, ¥y = Eq¥y. In particular, ¥y € H>*(R™). Moreover, Ey is a
simple eigenvalue, as the minimizers for minj, | ,— (L4+u,u) need to be bell-shaped and

as such, cannot be orthogonal to V.
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Next, we define an approximation of I/, namely for every integer N, the bounded
potentials,

r>+
W(N"Y r<i

=2l

and the operators £, n := (—A)*+w — Wy. Note that L, y > L, since Wy < W.
As Wy =Wy, they have, by the same arguments as above ground states Vo n : || ¥ v 2 =
1, corresponding to the smallest eigenvalues Fy ny > Ep, so L1 nVo ny = EonVYo n. We

will show that limy Ey ny = Ejp. Indeed, we have that

lJull 2=1

Bo< Eon = min (Lo nuu) < (Lo nTo,Uo) < Fy+ / W (|2 U2 (x)dz.
|z|]<N-1
(2.4.3)

Since by (1.1.7), we have that

1/2 1/2
</| <1|W<|xr>w%<x>dx) sc(/l |<1|xrbw%<x>dx> < Ol e o).
(2.4.4)

we conclude lim o f|x|<N—1 W (|z|)¥3(x)dx = 0, whence in combination with (2.4.3),
we finally arrive at limy Eo v = Ejp.

We now show that a subsequence of {Uy y} converges strongly to Wq. To that end, we
need to show that {W, y} is pre-compact in the strong topology of L?(R"). Indeed, by

(1.1.7), we have that, since % < s, there is Cj, so that

W (|z])¥3dx < C/ 2| ~*WGdr < C|Wo| 77 (rny
R" R"

Thus, by Gagliardo-Nirenberg’s inequality

Eon = (L4 xVon, o) > [[(—=A)2Wo |72 +w — Csl Wol 3 (g
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> 2 ||(=A) 2 x |20 — Cs s

N —

whence supy ||Wo v | ms < co. Next, by the representation
Wo,v = ((—A)° +w— Eon) ' [WyPon],

|Wo N2 =1, and limy Ep v = Ep < 0, we derive similar to the proof of (2.3.15), that
there exists a constant C' = Cy,, but independent of N, so that ¥ y(z)| < Cplz|™" for
|z| > 1. This guarantees that lim 7 sup y f|x|> v 1Wo,n (2)|2dz = 0, which by Riesz-Relich-
Kolmogorov criteria guarantees that {W(  } is pre-compact in L?(R™). That means that
there is a subsequence ¥ y, — Wo. For simplicity of notations, we can assume without
loss of generality that the sequence itself converges, i.e. limy ||V xy — Wo| ;2 = 0.

One can in fact show that (up to a further subsequence), limy ||\I/0’ N — Yollgs =0.
Indeed, {¥ n} being a bounded sequence in H* has a weakly convergent subsequence
(again assume that it is the sequence itself), which by uniqueness must be Wy. Then, by

lower semi-continuity of the L? norm with respect to weak convergence,
lim inf I(=2)2 o n 2 > [[(=A) W[ 2.
In addition, we claim that

lim WN(’ID\I/%N(Z‘)dl‘:/ W (|z])¥3(z)dz. (2.4.5)
N Jrn ’ R»

Indeed, by (2.4.4), it suffices to show lim [f n WN(\ID(\I/%N(x) — \If(z)(x))dx] =0. We

have by Cauchy-Schwarz’s that for every ¢ > 0, there is C

o Wi (Ja]) (W5 n (x) = W5 (x))da

< C/Rn\x!_b\‘PN(w)—‘Ifo(iﬂ)H‘I’N(x)Jrqfo(w)!dw
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(/Rn S \I]0<x)|2) | (/R |~y () — \Ifo(x)P) % <

Ce(lNl[ms + 1Yol =) [N = Pol| 3,

IA

IN

where we have used (1.1.7). Note that by Gagliardo-Nirenberg’s, we have

b/2+e€ s—b/2—e¢

N —=Woll, 5, <CI¥N—Wolz [[Wn—Toll. "

which clearly converges to zero, as N — oo, as long as we select 0 < € < s —b/2.
Thus, having established (2.4.5) and liminfy |[(=A)2 g x[z2 > [|(—A)2Wgl| 2, we

conclude

Eo = [[(—A)Uo|2+w— /R W (|2 )03 () dr <

< liIr]lVinf[||(—A)%\Ifo,N||2L2 +w —/ W(|:E|)\P(2)7N(a:)da:] = lin}vinfEQN = F).
Rn

It follows that liminfy ||(—=A)2Wg x|l 2 = |[(=A)2Wg|| 12, which implies that (up to a
subsequence) limy [|[Wo v — o gs = 0.

We now turn to the second radial eigenfunction of £ . Let
hi € D(Ly)=H*(R"), |[h1ll 2 =1

is an eigenfunction corresponding® to E1, so £.hy = E1h;. Clearly hy L ¥, whence

limp(h1,¥o n) = 0. By the Rayleigh characterization of the second smallest eigenvalue
and since £, y > L4, we have that /1 y > E7. Denote the corresponding radial eigen-
functions by Wy n : ||¥q n]|72 = 1. Note that —W satisfy the requirements of Theorem

4, with v = 1, as a bounded, piecewise defined function, whose components are Lipschitz.

“Even though the ultimate claim is that there is an eigenfunction W1, which has exactly one change of
sign, we do not know that yet
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Hence, due to Theorem 4, we may take those eigenfunctions Wy  to have exactly one
change of sign, say r € (0,00), say ‘I’O,N|(0,TN) > 07‘I’O,N|(rN,oo) <0.

Note

By = inf (L ) < (Lyn(h1—=(h1, Yo N)Won) h1— (h1,Yon) Yo N)
M e =Ll gy T |h1 — (h1, To.n) o n||?

= <£+h1,h1> —|—O(N_1) =F —|—O(N_1).

It follows that limy F1 y = Ei. In particular, the assumption Fq < w guarantees
that'” FE1 n < w for large enough N. Similar to the proofs for ¥ , (in particular note
the representation W1 y = ((—A)® +w — Ey y) ' [Wn¥; x], which implies the bound
Uy v (z)| < Clz|~™ for |z| > 1), the system {¥; y} is pre-compact in L?(R™), so it has a
convergent subsequence. Again, assume that it is the sequence itself. Denote its limit by
Uy limpy [ Wy v — W2 =0.

Similar to the proof above for ¥, we conclude that (after eventually taking a subse-
quence), limy || ¥y y — V1| gs = 0 and ¥; L Wq is an eigenfunction for £ corresponding
to the eigenvalue £;. It remains to show that ¥ has exactly one sign change. To this end,

consider the sequence ry € (0,00) of sign changes for ¥; . There are three alternatives:
» {rn} converges to zero
o {rn} converges to +oo

 {rn} has a subsequence, which converges to o € (0,00).

We will show that the first two alternatives cannot really occur. Indeed, assume ry — 0.

Then, pick a radial function ¢ € C§°(R") : ( > 0. We have

<\I/1,C> = 111{}1(‘111,N,C> = /|;c<rN \III,NC(IL‘)CZZE-F/ \I/LNC(x)dx < 0.

|z|>7 N

10And in fact, we may claim that w — Fq y > “’_TEl
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Thus, we conclude that Uy < 0 a.e., which is then a contradiction with (U, ¥() =0, as ¥g
is bell-shaped function. Similarly, the case ry — oo leads to the conclusion W1 > 0, which
contradicts again W L Wy,

Thus, the case ry, — ro > 0 remains. For this subsequence, we clearly have that for
each ¢ : ¢ € C3°(0,79),¢ > 0, we have (Uq,() > 0, while for ¢ : ( € C§°(rg,00),{ >0, we

have (¥,() < 0. Equivalently, U( changes sign exactly once, at o > 0. U

2.5 The Non-degeneracy of ¢

In this section, we establish the non-degeneracy of the solutions of (2.1.2), obtained by
means of rescaling of the constrained minimizers of (2.3.2). Let us outline the details of
this construction. Start with a constrained minimizer ¢, provided by Proposition 2. In
particular, it satisfies (2.3.3), where recall m(w) is in the form (2.3.1). Then, it suffices to

take

O, () := m(w)ﬁ%lgzﬁw(x).

Clearly, with such a choice @, satisfies (2.1.2), which is bell-shaped and moreover enjoys

all properties, as established for ¢,, in the Propositions 2, 3, 4. Note that £ take the form
Ly=(—A)P+w—plz| @ L= (—A) +w—|z| 0L,

The following result is the main conclusion of this section.

Proposition 7. Assume (n,p,s,b) € A, and in addition 2b < n and s € (%, 1). Then,
Ker[Ly] ={0}.

We need to prepare the proof of Proposition 7 in several auxiliary results.
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2.5.1 Differentiation with respect to parameters

We start this section with two formal calculations, which motivate our subsequent results.

Taking formal derivatives

Starting with the profile equation (2.1.2), we can formally take a derivative in any of the

spatial variables, 0;,,7 = 1,...,n. We obtain

Lj
|z|b+2

L [0,,®] = —b P (z). 2.5.1)

Let us emphasize again that (2.5.1) is only a formal statement. Indeed, such a formula is
problematic at least in several ways - we need to have V® € D(L, ) = H?%, the right-hand
side of (2.5.1) is not in L?(R™), unless we assume 2(b-+1) < n etc.

Similarly, by a simple scaling argument, the solution ®,, of (2.1.2) can be expressed

through @1, the solution for w = 1 as follows

2s—b

B (z) = WP D Oy (W) = WP (W ). (2.5.2)

This highlights the dependence on the parameter w in (2.1.2), which will be very useful in

the sequel. More specifically, the formal differentiation in w yields
L]0,P,] =—D,. (2.5.3)

Again, the formula (2.5.3) is only a formal statement. In particular, note that since 0,9,
can be expressed as a linear combination of ¢, and = - V®,,, we have the same issues with

respect to the domain of £,. In both instances, that is (2.5.1) and (2.5.3), we heuristi-
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cally expect them to hold in some sense. The required technical tools, which establish the
corresponding rigorous statementys, are developed next.
A technical lemma

The following lemma shows that one can take weak derivatives with respect to the spatial

variables = as well as the parameter w.

Lemma 7. Let q,Vq € L*(R™). Then, for any ¢ € S,

00+ 3) — ()
5—0 1)

7¢>:<aqu7¢>7j:1a"'7n7 (254)

Let now q, = f(w)q(g(w)x), where f,g € CY(Ry),g >0 and q,x-V.q € L*(R"). Then,

forany ¢ € S, we have

lim <%w> = (f'(W)a(g(w)) + f(W)g @)z Veq(g(w)), ). (25.5)

6—0

Remark: Note that formally at least 9, = f'(w)q(g(w)-) + f(w)g' (w)z - Vzq(g(w)-),

so the formula (2.5.5) is expected to be true.

Proof. We have by a simple change of variables

y_r)r%)(q(x +5e§) —q() 0= %i_r)%@, Y(-— 5e§) — ()

) = —(q,0;9) = (9;q,%),

where in the last step, we have used the Lebesgue’s dominated convergence theorem inte-
gration by parts. This is justified since w = =09 +0|, (6) and Vg € L?(R").

This establishes (2.5.4).
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Regarding the proof of (2.5.5), by a change of variables and the Lebesgue’s dominated

convergence theorem

fimy (%5 ) =t [ o
- Lol

- L L y‘”( @ >)

Clearly, the first term in (2.5.5) is accounted for as follows

P [ o (S5 ) =7 )atal)) o).

9" (w) g(w)

flw+0)y

1 1
) W_f(“)d’(ﬁ)W) ;
)

et
(5 Z f;ﬁlg(/f:;))/nq(y)w (ﬁ) dy —
Y.

Next,

I [y (25 ) tr=-nl D g0,

9(w) 9(w)
Finally, another change of variables and integration by parts (recall ¢,z - V,q € L>(R") is

assumed), yields

Putting it all together yields the formula,

nm<qu,¢> F @) a(g@)),0) + F()g (@)@ Vaalg(w)), )

6—0

as required. [
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Next, we have the following rigorous results which can be viewed as weaker versions

of the formulas (2.5.1) and (2.5.3).

Rigorous versions of the formal differentiation formulas

Proposition 8. Let (n,s,p,b) € A, s € (%, 1),2b <nand € S. Then, any solution D, of
(2.1.2), with the properties ® € L* N L> and x-V® € L?(R") satisfies

X5 .
(0§, L11)) = —b<|$|,f+2 ), j=1,...,n (2.5.6)
(0, L1 0) = — (Do, ). (2.5.7)
Remarks:
* Note that the expression ﬁ;ﬁ@p ,1) is well-defined, for smooth functions ), when-

ever 2(b+ 1) < n. This is however not always satisfied under the assumptions in
Proposition 8. The expression still makes sense, under the weaker assumptions

herein, provided we interpret it in the form

<|:1cg|vbj+2 OF, ) = /n |x|xbj+2 P () (v (x) —1p(0))dx.

* The notation J,,®,, is used in (2.5.7) in the following sense

Up+%—1

2s

w

0,0, = 0w 1Dy (w2 ) + T Vp®y (W ). (2.5.8)

This is of course nothing but the formal derivative with respect to w in (2.5.2). Note
however that the expression on the right of (2.5.8) belongs to L?(R"), according to

Proposition 4.
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Proof. Our starting point is the formula (2.3.3). Applying it for z and x + de;, taking the

divided difference and then dot product with ¢/ yields

4 Ses) — P(- PP (- 4 Se) — |- | TPP(.
(-2 o) 22RO,y [ 06) 2] L0 4y a5

Assume for the moment that ¢/ is so that 1) is supported in {£ : |¢| > ¢ > 0}. In this way,
Y = ((—A)*+w)tp € S, since its Fourier transform, (w+ (27| -|)2*)¢) is in Schwartz class'!.
So we have, by (2.5.4),

-+de;) — ()
5

(- +5e§) —20) 3y (9;9,9).

(—A) w2 1) = (

It follows that

: s (- +de;) — d(+)
%{%(((—A) +w)| (]5

L) = (9;®,((=A)° +w)¥).

This clearly can be extended from the set of Schwartz functions, which are Fourier sup-
ported away from zero to the whole set S. Indeed, it suffices to observe that the set of
Schwartz functions, which are Fourier supported away from zero is H>* dense in S.

For the right-hand side of (2.5.9), we could perform an identical argument, except that
we do not have in general that 9;| - | ~°®?(-) € L2(R") (as we would need to require 2(b+
1) < n). Instead, we proceed with the direct proof. We have

|- +0] 007+ de;) —| - |~07()

( »(- —oej) — ()
)

W) = (|- [TPeP(), 5 )
= —(|-7°2(), 05%).

"Note that |£|25¢)(€) is not smooth at zero, unless 1 vanishes in a neighborhood of zero
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If » € S(R™\ {0}), we can take integration by parts (as we avoid the singularity at zero),
whence we arrive at
| +0]7P@P (- +dej) — |- |"DP() zj

1i =(-b PP —ber—1g’ ).

Again, one may extend such a formula from ¢ € S(R"\ {0}) to ) € S. It follows that
taking limits as 0 — 0 in (2.5.9) results in (2.5.6).
For the proof of (2.5.7), we proceed in a similar fashion. More specifically, taking

(2.1.2) at w and then at w + ¢ and subtracting yields the relation

) Dyps— P PP —
(FA) + ) [ = o [ = — By

Taking dot product with ¢ € S(R™\ {0}) yields

(@ett 2P0 (CAY o)) — (ol M ) = (@) @510)

Clearly,

(I)w+5 —®,

<(I)w+6a¢> = <q)w:1/}> +5< 5

) = {Puw, 1),

as the expression (w, 1)) has a limit by (2.5.5), namely <m,¢) — (0 Dy, ).
Under the assumption ¢ € S : suppi) C {£:|¢| > 0 > 0}, we introduce again b=
((—A)*+w))y € S. According to (2.5.2) and a simple change of variables

Qoo 2% (CAP 40 = (0uBur ) = (0uur (—A) +w))0).

I
61_1{(1)( )
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This is again extendable, as above to any 1 € S. Finally, by (2.5.5) and the formula'?

0,®F, = pq)f,_law@w, we have!3

p —@5 p p

i) O —P
1 . —b —w+6 =l —w+6 w . —b = . —b pil
lim (] |75, ) = i (==, [ [79) = p{0uQu, |- [T 25T 9).

All in all, we obtain (2.5.7).

2.5.2 Conclusion of the non-degeneracy proof

In this section, we follow the arguments in [79]. We also assume that n > 2, as the one
dimensional case n = 1 reduces to an easy argument, contained in the proof below.
We have from Proposition 5 that £ has one simple negative eigenvalue and from the

appendixA there is the decomposition of £ in spherical harmonics as
Ly=LioBLy>1

The non-degeneracy of £ follows from the following.
Proposition 9. o1 (L o) > 0 and there exists § > 0 so that L1 >1 > 6 > 0.

Remark: We know that o5 (L) = [w,00), whence the only remaining issue is the point

spectrum.

Proof. We know that the smallest eigenvalue of £, Ey < 0 has a bell-shaped eigenfunction
and hence, it is an eigenvalue of £ . The next radial eigenvalue F; cannot be negative

since n(L4) =1, thus £y > 0. If E4 > 0, we will have shown o1(L4 o) > 0.

2This formula is of course correct formally, but in order to provide a rigorous justification, we need to
took into account (2.5.2), and (2.5.8)
Bnoting that | -| =4 € L?(R™) under the standing assumption 2b < n
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Assume, for a contradiction that £7 = 0. Then by Proposition 6, there is an eigenfunc-
tion 1 such that £ 911 = 0, so that ¢; has exactly one change of sign. Without loss of
generality, let ¢ () < 0,7 € (0,7r9) and ¥ () > 0 for r € (19, 00).

Next, we show now that &, 1. Ker[L,]. Indeed, for every i) € ker[L.], we have that
¢ € H**(R™). Thus, we can approximate by Schwartz functions 1 — ¢ in H?$(R")

norm, whence limy_, ||£4+¥n — L4972 = 0. We have by (2.5.7) applied to ¢, that

0= <awq)w7£+¢> = <8wq)w>£+¢N> = _]\}ijnoo«bwﬂ/’N) = _<(I)OJ’¢>‘

i,
It follows that &, | Ker[L.]. By adirect calculation we see that
Ly o®=—|z["(p—1)27,
whence || ~*®P | ker[L o). Note that since 2b < n, |z|~®? € L?(R"). Now consider
©=cod— PP = D (o — r_bfbp_l),co =

Since @ is bell-shaped, ¢(r) < 0,r € (0,rg) and ¢(r) > 0,7 € (r9,00), but since ¢ L
ker[L4 0] we have (p,11) = 0. On the other hand, @11 > 0, and this is a contradiction.
Hence 01(L4) > 0.
Finally we show that £, >1 > 0. Note however that since n(£4) =1 and n(L4 o) =1,
we have £ >1 > 0. Hence, we just need to show that zero is not eigenvalue for £ >1.
Suppose, for a contradiction, that zero is an eigenvalue for £ >1. This implies that
zero is an eigenvalue for £ ;1. Indeed, otherwise zero is then eigenvalue for £ >o, say

L4 >20 =0. Since L >o > L 1, it will follow that
(L4 19,0) < (L4 >20,9) =0.
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Consequently, £ 1 has a negative eigenvalue, which is a contradiction, as we know £ >1 >
0. Thus, we have reduced our contradiction argument to the case that £, 1 has an eigen-
value at zero, which we will need to refute now.

Since zero is now assumed to be an eigenvalue for £, 1 and £, ; > 0, it must be at
the bottom of the spectrum. Its eigenfunctions are in the form ¢; = z/;(x)%, j=1,...,n,

where 1) € L2 . So, v is an eigenfunction at the bottom of the spectrum for the operator
rad g p P

n—1 n—1

E—hl:(_&“r— , Or + 2 )S+W_p|7°|_b®p_1(7")a

2

acting on functions in L7 ..

According to Lemma C.4, [36], (—A;)2,s € (0,1) is positivity

improving for each [ > 0, i.e. for every X; € X} and every u € H?

rad’
120 uXilllz > 1A a2

whence it is easy to see that (£, ju,u) ;2 L2 (L 1lul, |u]) 2 - Thus, we conclude that

1 > 0, since v is a solution of the constrained minimization problem

<L~+,1u,u>L2 — min
rad

Jullyz, =1

We now apply formula (2.5.6) for a sequence of Schwartz functions ¥ approximating

Yi(w) = ¥(2){k € Ker[L.] in the H?5(R™) norm. We have

xT

. . . . ‘rl D o
- ]\;gnoo<8x1¢),£+\IJN> - _b]\}gnoo <’x|b+2q) 7\IIN> -
7t

_ _b<gﬁ¢p,¢1> - —b/Rn SpE® @) <0,

0 = <ar1 (ba £+¢1>
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which is a contradiction. Note that the last integral, the singularity at zero is integrable,
since b+1 < n, as b < 5,n > 2. This concludes the proof of the proposition as well as the

non-degeneracy of ®. [

2.6 Spectral and orbital stability of the waves

2.6.1 Index counting theory for (2.1.5)

For the eigenvalue problem in the form (2.1.5), we have that 7 is invertible and anti-
symmetric, Jl=J"=—-J and X = H*R"), X* = H*(R"),n > 1. Note that ac-
cording to Proposition 5, we have that n(£y) = 1, while n(£_) = 0, whence n(L) =

n(L4)+n(L_) = 1. In addition,

ker|L 0 0
Ker[L] = span| £+ : | = span]| .
0 ker[L_] b,

Thus, we have that J : K er[ﬁ (Ker[L L. For the matrix D, we need to solve W :

0
JLY = .So, ¥ = and the matrix D is a scalar, with
D,

= (LT, T) = (L1 Dy, D). (2.6.1)
According to the formula (1.1.11), we conclude

K + 2ke + 2k5°0 =1 —n(D).
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Clearly, in our situation, it is always the case that k. = kogo =0, and k, = 1 exactly when
(Ejrl(I)w,CI)@ > (0 and k, = 0, when <£;1<I>w,<I>W> < 0. We formulate our result in the

following corollary.

Corollary 4. For the eigenvalue problem (2.1.5), spectral stability occurs exactly when
(LD, ®,) < 0 and instability is when (L' ®,,,®,) > 0. Moreover, the instability

presents itself as a single, real unstable mode.
Remarks:

* This is reminiscent of the standard Vakhitov-Kolokolov criteria for stability of waves

in situations with a simple Morse index, i.e. Morse index equal to one.

* The case <£jrlq)w, ®,,) = 0 presents a transition from stability to instability, so a pair
of eigenvalues crosses from being purely imaginary 410 symmetric with respect to
the origin to being a pair of real ones +\. In this case, the algebraic multiplicity of
the zero eigenvalue for 7 L is four, up from the algebraic multiplicity two in all other

cases, corresponding to the modulational invariance still present in the system.

2.6.2 Coercivity of L,

In this section show the coercivity property of £ on the space {CDw}L.

Proposition 10. Let (n,s,p,b) € A and (,erld)w, ) < 0. Then, the operator L is coer-

cive on {®,}+ N H®. That is, there exists § > 0, so that for all
(LoT, W) > 6T %s, VI LD, (2.6.2)

Proof. This is a version of a well-known lemma in the theory, see for example Lemma

6.7 and Lemma 6.9 in [67]. Recall that we have already showed Ker|[L;] = {0} and
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n(L4) = 1. According to a result in [49] (see also Lemma 6.4, [67]), which state that

under these conditions for £

a:=inf{(Lif,f): f L P, fllz2 =1} =0.

Consider the associated constrained minimization problem

IIfH:ifqu%wJ’f’ﬁ' (2.6.3)

Take a minimizing sequence fy : || fx|| = 1, fx L P, so that

@ =1 (L fu ) = nl (-8l +w—p [ Jol 007 o) (o))

By the properties

I—A)EF] > [(—A)E ). / 2] 0P () f2 () < / 2|00 () ()2 () d,

we can assume, without loss of generality that fj, are bell-shaped. Note that by (1.1.7) and

the Gagliardo-Nirenberg’s inequality

—€

b/2+e s—b/2
0< [ la 0 @) R a)de < OISR g < el Nfelza

=

Note that for ¢ = 5_25 , by Young’s inequality, we can derive the estimate (recall || fx||;2 = 1)

(L fio i) 2 S I(-A) il = Cos.

It follows that supy, ||(—A)2 fi,||* < co. By bell-shapedness of fj, : || fi|| ;2 = 1, we have the

pointwise bound | fy,(z)| < C|z|~"/2. This, along with supy, || fx||zrs < oo, easily implies
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compactness in any L4(|z| > 1),2 < ¢ < oo. On the other hand, in the bounded domain
|z| < 1, there is compactness in L?(|z| < 1). So, assume without loss of generality that f},
itself converges to f strongly in all L4(|x| > 1),2 < ¢ < co and in L?(|z| < 1). In particular,
f is bell-shaped, as f;. are bell-shaped. So, f # 0.

In addition to that, we can assume, without loss of generality a weak convergence in

H3(R"), fr. — f. Note that by the weak convergence,
fLoy, hn}iinfn(—A)%kaQ > [[(=2)3f1% [1£llz2 < limint|| fyl 2 = 1.

Finally, by splitting in |z| < 1 and |z| > 1 and applying the different appropriate strong

convergences in each (and uniform bounds in H?), we obtain

lillcrn/|:z:|_b<1>p_1($)f,3(x)da::lillgn/|x|_b<1>p_l(x)f2(ac)d:z:.

All in all, we obtain

(Lo f,f) <Hminf(L fi, fi) = a. (2.6.4)

We will now show that av > 0. Assume for a contradiction that o« = 0. Since f # 0 (recall
f L ®,), we see from (2.6.4) that the function g = ﬁ is a minimizer for (2.6.3). Writing

the Euler-Lagrange equation for it implies
Lig=7v9+cD,. (2.6.5)

Taking dot product with g and taking into account (£ g,g) = 0,9 L ®,, implies that v = 0.

This means that g = cﬁjrl@w. But then,

0=(Lig,9) =L 'Dy, D).
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Since <£jrl<bw, ®,,) # 0 by assumption, it follows ¢ = 0. But then, since Ker[L ]| = {0},
(2.6.5) implies that g = 0, which is a contradiction.

So, we have shown that v > 0. In other words,
(L4 T,0) > a|T)?, VU Lo, (2.6.6)

Note that (2.6.2) is however stronger than (2.6.6), as it involves || - || 7= norms on the right-
hand side. Nevertheless, we show that it is relatively straightforward to deduce it from

(2.6.6). Indeed, assume for a contradiction in (2.6.2), that gi. : || gk || s = 1, gx L Py, so that

limy (L4 g, gx) = 0.

Taking into account (2.6.6), this is only possible if limy, ||gx|| ;2 = 0. So,
1= () 3532 + lgel) = im (- 2)E g 3
But then, we achieve a contradiction
0=tn(Lgr.90) = (-2 gu s + ol —p [ ol @7 @) (o)) = 1.

since limy, [ |2|~°®P~1(2)g2(x)dz = 0, similar to some previous steps, as supy, | (=A)2gp|| 2 <
o0, ||gk|| — 0. A contradiction is reached, which completes the proof of Proposition 10.

]

Knowing that £ | (1L > 0 (and we have established something stronger in (2.6.2)), we

can establishing the coercivity of £_.
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2.6.3 Coercivity of L_

In Proposition 5, we have already established that £_ is non-negative on the subspace

{¢}+. We need a stronger coercivity statement.

Proposition 11. Let (n,p, s,b) € A. Then, there exists § > 0, so that
(LW, W) > 6| T||%s, VT L D (2.6.7)

Proof. Recall that in Proposition 6, we have already seen that £_| (a3t = 0. We will show
first that

inf (L_u,u) > 0.
lull=1,ulé

Assuming not, it follows that £_ has a second eigenfunction in its kernel, d | . But
then, since £, < £_, we have (£, ®,®) < (£L_®, &) = 0. Hence, L’Hé@p < 0 and in
particular, £ has at least two negative eigenvalues, a contradiction. Thus, there exists
0 > 0, so that

(L_u,u) > 6|ull*uL ®. (2.6.8)

We would like to upgrade, as before, the right-hand side to ||u||%;. To that end, we assume
for a contradiction, that there is a sequence uy, : up L ®,||ug|| s = 1, while limg (£ _ug, up) =
0. From (2.6.8), it follows that limy, ||u || = 0, so limy, || (—A)Zuy|| = 1. Similar to the proof

of Proposition 10 above this yields a contradiction as well, since
0= li}gn(ﬁ,uk,uw = h]gn[H(—A)%ukHig + wl|ug)|? = / || PP (2)u2 (2)dx] = 1.

With this, (2.6.7) is established.

With Propositions 10 and 11 at hand, we are ready for the orbital stability result.
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2.6.4 Orbital stability of @,

With the coercivity results in Proposition 10, one might argue that we have all the neces-
sary ingredients for orbital stability, according to [45]. We are however missing one key
piece of information, namely the map w — ®,, does not have the required C'' smoothness.

Therefore, we need a direct proof, which does not use the smoothness of this map.

Proposition 12. Let the key assumptions (1), (2), (3) be satisfied and L | (Do)t >0, pis

non-degenerate, i.e ker[L] = {0}, then e=™“'®,, is orbitally stable solution of (2.1.1).
Proof. Our proof proceeds by contradictions. More specifically, there is ¢y > 0 and a se-

quence of initial data uy, : limy, ||ug — ®|| s (mny = 0, so that

sup inf ||ug(t,-) — P s > €.
0<t<ooER

Recall that Efu] = H[u] + §P[u]. Introduce

e = |Elur(t)] — B[Py ]]| + [Plug ()] = P[Pu]]

Since we have assumed the conservation laws, we have that ¢, is conserved and limy e, =0

For all € > 0, define

ty =sup{7: sup |lug(t) — @ gsmn) < €}
o<t<r

Note that ¢;, > 0, by the local well-posedness assumption (1). If we let uy = v, + iwy, then
for t € (0,t), we have [[wg(t)|| grsrn) < |lug(t) — || gsrny < €. Define the modulations

parameter 0y (t) so that [wy(t) —sin(0y(¢))®] L @, which is

sin(0x (1)) [| @[] = (wi(t), ®). (2.6.9)
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Since |(wy(t), ®)| < €||P|| 12, there is an unique small solution 0y (t) of 2.6.9, with |0y (t)| <

¢. In addition, we have
gt ) = Ol s < ugt,) = Bl gz 1% — 1] @] = < Coe,
where Cy = Co(||®|| 7+ ) only. Let

T =sup{7: sup |ug(t) — e Do()]| garny < 2Coe}.
o<t<r

Clearly T} > t; > 0 and to complete the proof it is enough to show that for all ¢ > 0 and
large k T}, = oo, since we can choose €, : € << €p.
For t € (0,T},), write

wk‘(t ) = Uk(t, ) - ewk(t)q)

d
and decompose into real and imaginary parts of 1), and then project on the vector
0
This yields
Un(t,-) — cos(b(t))® ® M (t,+) M (t,°) o
_ = iy, (t) + , L
(2.6.10)

Note that this decomposition implies 7 (t) L ®, while (i (t) = wy(t,-) —sin(0x(t))d L &

by the choice of 0y, see (2.6.9). Taking L? norms in (2.6.10) yields

k@RI + IO + Gk @172 = [Ur(t)l[72 < 4C5€. (2.6.11)
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We now exploit the properties of the conserved quantities. We have

Plug(t)] = - €O oy (8)Pdz = P[D] + |we(t, ) |52+

2 / (RO ()

But

/ ()R Dy (1, 2)]dr / B(2)[cos(0 ) (v — cos(04)) —sin(B) (wy, — sin(0;) D) dz

= k() cos(Gx (1)) [ 0%,

due to ng, L @ and wy, —sin(0;)P L .

It follows that,
Plur(t)] = P[] + [[9on(t, )| 72 + 2ui(t) cos (0x (1)) | @[],

whence by recalling that ||¢(,-)| 2 < 2Cpe, int: 0 <t < T}

[Pluk(t)] = Pl + ¥ (t, )72

()] < R CAGIEE < Cleg+[ep(t,)|22) < Cleg+€2). (2.6.12)

In the last estimate, recall that |0 (¢)| < Cpe << 1, whence cos(0(t)) > 5 and the denom-

1
2
inator is harmless.

Next, we take advantage of an expansion for Elug(t)] — E[®]. Indeed, for all suffi-

ciently small €, we have

80



Generally, for small perturbations of the wave g +i02 € H*(R") and by taking into ac-

count the specific form of the energy functional F, we have

1
E[® + (01 +i02)] — E[®] = §[<E+Q1, 01) +(L-02,00)] + Err|o1, 02], (2.6.13)

where

plp+1) 5 p+1,

5 01— B 03| dx.

|E7’r[gl,gg]|§0/ |x|_b |<I>+Q1+i92]p+1—<I>p+1—(p+1)CI>pQ1—
Rn

Observe that by elementary second order Taylor expansions of the function z — |z[P*1,

there is the pointwise estimate

(p+1) p+1
SO0
< O] o) (|o1] + | oa] i@ H13),

whence, according to (1.1.6), we obtain the estimate

|Errlon, 00]| < C’/ 2| 70| o1 |PRPHL3) 4| gp [RIR(PHL)) gy
R”

i +1,3 i +1,3
< O(||or [P )| go | in P13y

Apply this expansion (2.6.13) to

01+i02 = e~y = [cos(0y) (k@ + i) + sin(B)) G +i [cos (1) G, — sin(Or) (1x P + )]
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From (2.6.11), we see that ||o1]|gs + ||02||zs < Ce, so we can bound the contribution of

|Err(o1, 0] as follows
|Errlor, 02]] < Cgmin(Pfl)yl(Hglu%is n ||Q2||%[5)- 2.6.14)
Furthermore,

(Lyor,01) = (Long,m) — C(* + e+ € (mgll s + |Gl mrs) + e(llmg |l ers + 11Gll =) )

(L_02,02) > (L_Cp, Gy — C(* + e+ € (mill s + |Gkl rrs) + €(llme |l s + 1k 112)?).

Due to the coercivity of £_ (see Proposition 11 and more specifically 2.6.7) and £, which
was established in Proposition 10, we have that for some x > 0 and since 7,(; L P, we

have

€k > |Elug(t)] — E[®]| >
> k([|ml s + 11 CellFrs) — C (€3 + e+ ([l 1= + || el )

+€min(p—1)71(”77kHHs + “CkHHS)Q)’

or in other words, after some algebraic manipulations and for sufficiently small € (depend-

ing only on absolute constant),
(Ol s + 1€k 17 < C(E+e), (2.6.15)

where C' is a constant that depends on the parameters, but not on € and n. We claim that

this implies that T} = oo for sufficiently small ¢ (depending on the parameters only) and
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then sufficiently large k, so that €;, << e. Indeed, assume that 7}’ < co. Then

2C0e = limsup [¢4.(6) |11+ < Cpp(O)]+ I (O)llz= + 1Gu(0) 1 112) < C(€F +/ex):

=Ty —

This last inequality is a contradiction, if € : Che > C'e2 and then C'\ /€. < Cpe. Both of this
can be arranged, so we obtain the required contradiction, which establishes Proposition

12. [l
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Chapter 3

On the standing waves of the Schrodinger equation with

concentrated nonlinearity

3.1 Introduction

The (focusing) nonlinear Schrédinger equation, with generalized power non-linearity
iug + Au+ [u|*u =0, (t,z) € Rx R" (3.1.1)

is a basic model in theoretical physics and applied mathematics. Example of such physical
application is fractional quantum mechanics and Lévy path integrals [60]. Other appli-
cation cal also be found in water waves theory and practical engineering applications .
Equation (3.1.1) has been studied extensively in the last fifty years, in particular with re-
gards to the well-posedness of the Cauchy problem and the stability of its solitary waves.
The well-posedness theory is classical by now, [ 7] states that local well-posedness holds
for any o > 0, whenever the data ug € H*(R™),s > 0. The global well-posedness results

rely upon the conservation law, which state that the following quantities, namely the mass
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M (u) and the energy E(u)

M(u) = / lu(t, z)|*dx = const.

1 1
E(u) = 9 /Rn \Vu(t,x)]zd:c - m - IU(t,x)]2a+2dx = const

are conserved. As such, solutions with initial data ug € H'(R") yield global solutions,
whenever the problem is L? sub-critical, i.e. 0 < %, while for o > %, some initial data gives
rise to finite time blow-ups. Interestingly, the ground states for (3.1.1) are stable exactly in
the L? sub-critical range o < %, while they are unstable in the supercritical regime o > %
In the L? critical case, 0 = %, the equation (3.1.1) exhibits an additional symmetry, the
so-called quasi-conformal invariance, which allows one to exhibit special self-similar type
solutions, which show that blows up also occurs in the critical case.
In this work, published in [70] we analyze a related model, the focusing non-linear
Schrodinger equation with concentrated non-linearity.
Now, the focusing NLS with concentrated non-linearity is the following
S s 20 n
iug = ((—A)* — |u|*?dp)u, (t,z) e RxR | (3.12)
u(0,2) = up(z)
Our definition of a solution is as follows: a continuous in x function u is a weak solution

of (3.1.2), if it satisfies

(., 5009) = w000, - [ i ir) =

(7, -))dr — /O lu(7,0)[*u(r,0)(r,0)dr

I
O\é
|
>
~—
[IIVY
=
R
|
b
Nl

85



for all test functions ). For the case of the standard Laplacian, i.e. s = 1, the model
(3.1.2) has been used to model resonant tunneling, [52], the dynamics of mixed states, [66],
quantum turbulence, [¢], the generation of weakly bounded states close to the instability,
[85] among others.

The fractional Laplacian perturbed by a delta potential, together with their self-adjoint
extensions and various applications, have been recently considered in [13]. In the case of
one spatial dimension, n =1 and s > % , the local well-posedness as well as the conservation

of mass and energy

M(u) = / lu(t,z)|?dx = const. (3.1.3)

|u(t,0)|*7 2 = const. (3.1.4)

1 s 1

Bw) = SI=a)kul - 5
was recently established in [13]. Even though the results in [13] are stated for the one
dimensional case only, it seems plausible that they can be extended in any dimension n and
s > 5 using similar techniques. Itis important to note that since our interest is in continuous
in z functions, the natural spaces for well-posedness, in the scale of the Sobolev spaces,
should be H*(R™),s > 5. Another reason why this is, a more natural class of problems to
consider, is that we would like waves which belong to the energy space H*(R"), as dictated
by the conservation of F(u). As we shall see below, the solitary waves belong to this space
only for s > 3.

It has to be noted however, that it is certainly possible (and it is in fact considerably
more challenging, the furthest one is from the threshold s = %) to consider (3.1.2) in cases
where s < % and this has been addressed, at least in low dimensional situations, in the
recent papers, [3, 4, 5, 6, 7]. Regarding analysis of blow up solutions for the concentrated

NLS (although not necessarily in the case of interest s > 3), this was carried out recently

in [4].
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Our main interest in the model (3.1.2) are its solitary waves and their stability. More
specifically, we consider solutions in the form u = e*“!¢, ¢ real-valued, which naturally

satisfy the profile equation. This is again understood in the weak sense described above

(—A)*p+wd—[$(0)]* ¢(0)dg = 0. (3.1.5)

We take the opportunity to note that in many cases considered herein, one cannot expect the
positivity of ¢, as in the classical case. This is why, we keep the absolute value in (3.1.5).

The concentration phenomena for fractional differential equation has some physical
motivation. We encourage motivated reader to further explore the appendix of [50] and
also [29]. Note that both papers deal with the fact that s € (0,1). We believe that our
results can motivates further investigation of such structure for s > 1.

The question for the stability of these waves, when s = 1, has been considered in several
contexts recently, see [2], [5], [0] for the three dimensional case n = 3 and [ 1], for n = 2.
Again, some of these works consider cases mostly outside of the range of consideration
herein s > 3.

Before we address the construction of the solitons (that is, solutions of (3.1.5)), and
since our situation is a bit non-standard, we would like to outline the framework for the

stability of the waves.

3.1.1 Linearized problem for the concentrated NLS

As is customary, the spectral/linearized stability of the standing waves, i.e. the solutions
of (3.1.5), guides us in the study of the actual non-linear dynamics, when one starts close

to these solutions'. More specifically, if we linearize around the solitary waves and ignore

'And indeed in the understanding of the ranges of o that give global existence viz. a viz blow up, as
discussed above
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quadratic and higher order contributions, we obtain a linear system, whose spectral infor-
mation plays a part in the dynamics. To that end, we take u = €™*(¢ +v) and plug it in
(3.1.2), ignoring any O(v?) term, utilizing (3.1.5) and setting (v1,v2) := (Rv, Sv) = v, we

obtain

= , (3.1.6)

t

where the following fractional Schrodinger operators are introduced

Ly = (~A) +w—(20+1)[6(0)]*d,

Lo = (=A) +w—[(0)* .

This formulas are heuristic in the sense that the operators £ are not yet properly defined, in
terms of domains, etc. This is generally not an easy task,” nevertheless, will appropriately

be define in later section, see Section 3.2.2. Introducing the operators

0 —1 L_ 0
J = L= ,
1 0 0 Ly
. R v1 . o
and the assignment — e —: M, we obtain the following time-independent
Sv 9
linearized eigenvalue problem
J LY = \U. (3.1.7)

Since we are interested in stability of waves, it will be appropriate to give a standard defi-

nition of stability as follow.

2A1th0ugh, as it turns out, we shall need to restrict to the case s > % which will make such definitions in
a sense canonica