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Abstract 

Probability discounting has a rich history of investigating choice behavior, especially as it 

pertains to risky decision making. Gambling involves risky decision making through choice 

behavior, which makes it an ideal behavior to investigate using discounting tasks. With multiple 

comorbid features, in addition to environmental factors, the American Indian population have 

been a neglected population of study.  Utilizing outcome measures from a pre-scan probability 

discounting task, the current study manipulated indifference points two equate task difficulty to 

evaluate behavioral and neurobiological differences in gamblers versus non-gamblers. Results 

showed differences in behavioral tasks (lower discounting rates) and neurobiological processes 

within those in the gambling group. Results of the current study identified both consistent and 

inconsistent findings with previous studies which may highlight new findings specific to the 

American Indian gamblers. Findings of the current study show a troubling combination of 

neurobiological and behavioral dysfunction that add to the hazard of ease of access to gambling 

and gambling environments.   
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Introduction 

Gambling, and by extension problem gambling, has been around for thousands of years 

(Masukawa, 2016), yet, until 1980 it was not classified as an addictive disorder. Pathological 

gambling was first introduced in the Diagnostic and Statistical Manual (DSM) III and was 

characterized by persistent and recurrent maladaptive patterns of gambling behavior. It was 

classified under the category of “disorders of impulse control not elsewhere classified” 

(American Psychiatric Association, 1980). More recent editions of the DSM have added 

behavioral addictions to the already established diagnosis of substance-related and addictive 

disorders (American Psychiatric Association, 2013). Gambling disorder (GD) is currently 

defined as persistent and recurrent problematic gambling behaviors that lead to significant 

personal and/or social impairments (American Psychiatric Association, 2013). Although 

previous editions of the DSM only established criteria for a clinical diagnosis, the DSM-V added 

classifications for severity. According to the DSM-V, a person needs to identify with 4 of the 9 

qualifying criteria to be diagnosed with a GD (Reilly & Smith, 2013). It further subdivides 

gambling behaviors into three severities based on the number of criteria met (mild (4-5 criteria), 

moderate (6-7 criteria), and severe (8-9 criteria; American Psychiatric Association, 2013)).  

One key risk factor for GD is proximity to a casino. Specifically, those who reside within 

10 miles of a casino are twice as likely to have issues with problem gambling than those living 

further away (Welte, Barnes, et al., 2004). Additionally, researchers have found that gambling 

convenience (ease of access to gambling activities) was also a significant predictor in addition to 

overall proximity (Patterson et al., 2015). These findings are important because they highlight an 

elevated risk for the American Indian (AI) population due to proximity to gambling 

establishments and ease of access to gambling. Of the more than 2.4 million self-identified AI’s 
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in the United States, over 20% live on a reservation with a casino (Taylor & Kalt, 2005). Further, 

approximately half of AIs residing in the continental United States belong to tribes that operate  

casino-style gaming operations on tribal lands (Evans & Topoleski, 2002). In a study of 7th-12th 

grade AI students, approximately 75% had gambled in the past year (Okuda et al., 2016), 

compared to the national average of 45%-55% (Stinchfield, 2011; Winters & Anderson, 2000). 

Additionally, in a survey of public school students in Minnesota, 17.4% of the AI children 

reported daily/weekly gambling behavior, compared to 12.3% of the white students. (Stinchfield 

et al., 1997).  

Widespread gambling availability has led to significant economic consequences. In 1982, 

only three states allowed legalized gambling (e.g., Nevada, New Jersey, and Montana) with the 

exception of state run lotteries (Fenich, 1996). That same year U.S. consumers lost an estimated 

$10.4 billion due to gambling. In 1988, the Indian Gaming Regulatory Act gave AI’s the right to 

operate casinos and gaming institutions on their own land. As of 2002, The National Indian 

Gaming Commission estimated more than 240 of the 562 AI tribes offered some sort of 

gambling activities at more than 500 casinos (Ashton, 2002). By 1995, overall gambling losses 

had increased to more than $40 billion (Ghezzi et al., 2000). Currently, there are roughly 1000 

casinos in the United States with over $100 billion dollars in annual reported losses by gamblers 

(Statista Research Department, 2018).  

Along with gambling availability, gambling activities are constantly evolving. Frequent 

gamblers (those who gamble at least twice a month), however, still show a preference for 

traditional casino style gambling activities. Specifically, frequent gamblers prefer engaging in 

traditional casino games (22.5%), electronic gambling machines (18%), and numbers/lotto (5%; 

Binde et al., 2017).  
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Although there are economic benefits of operating casinos, they also potentiate 

unintended problems that put this population at risk. For instance, growing up on an AI 

reservation is associated with higher levels of post-traumatic stress disorder and intergenerational 

trauma (Ehlers et al., 2013), which are correlated with high rates of GD (Okuda et al., 2016; 

Patterson et al., 2006). Growing up on a reservation has also been correlated with risk factors, 

such as trauma, stress, impulsive behaviors, early exposure to gambling, and addiction - all of 

which are also associated with GD (Potenza, 2013). 

 Approximately 80% of adults in the United States engage in some form of gambling each 

year (Barnes et al., 2017). More specifically, 76.9% of white Americans and 80.1% of AIs 

engaged in some form of gambling in the past year (Barnes et al., 2017). Although past year 

engagement rates are similar, marked differences are noted across populations when comparing 

frequent gambling (2+ times a week) and those with GD (4 or more DSM criteria in the past 

year). Specifically, 9.3% of white Americans engaged in frequent gambling, with 1.8% reaching 

GD criteria. By contrast, 12.6% of AI’s frequently gambled with 10.5% meeting GD criteria 

(Welte et al., 2001).  

Gambling disorder is associated with a host of comorbid features (e.g., anxiety, bipolar, 

and alcohol use disorders). Of those diagnosed with GD, 35% have one comorbid disorder, 

24.6% have two comorbid diagnosis, and almost 3% have three separate comorbid diagnosis 

(Ibanez et al., 2001). Comorbid diagnosis for psychological disorders include substance use 

disorder (57.5%; Lorains et al., 2011), anxiety (37.4%; Lorains et al., 2011), and mood disorders 

(37.9%; Lorains et al., 2011). Specific to alcohol, 23% of those with GDs have a concurrent 

alcohol use disorder (Ibanez et al., 2001; Kessler et al., 2008) with as many as 34.8% reaching 

alcohol use disorder/dependence classification within their lifetime (Ibanez et al., 2001). 
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Although AIs have a lower rate of past year alcohol use (47%) compared to white Americans 

(68%), they show higher rates of alcohol use disorder (5.5%) than their white counterparts 

(4.3%; Patterson et al., 2015). With increased proximity to casinos (Welte, Wieczorek, et al., 

2004), higher levels of comorbid diagnosis (Dannon et al., 2006; Lorains et al., 2011), and past 

exposure to trauma (Ehlers et al., 2013), the AI population is at a significantly increased risk of 

GD.  

Probability Discounting 

Behavioral economics, specifically the assessment of probability discounting (PD), may 

be an ideal approach for investigating gambling. With its capacity to evaluate responding across 

levels of risk, PD tasks are a logical parallel for gambling involvement. Probability discounting 

evaluates the choice of a smaller, yet certain outcome, against a larger, probabilistic outcome. 

Likewise, gambling involves risking money that one already has (smaller/certain) to chance 

receiving a larger reward that is probabilistic in its outcome (larger/probabilistic). By using PD 

tasks to analogue gambling, it allows researchers to manipulate constraints of availability. 

Manipulating constraint allows for analysis of the systematic change in subjective value of a 

consequence as a function of the probability of receiving that outcome – with nonlinear 

regression being used to quantify patterns of responding.  

Probability discounting tasks allow for within-subject manipulations to assess participant 

specific responding. For instance, during the initial round of PD tasks, participants are presented 

with a choice between a smaller, yet certain outcome (100% chance of $50), versus a larger, 

probabilistic outcome (probabilistic chance of $100). Using an amount titrating procedure, if the 

participant selects the certain outcome, then the amount of the probabilistic outcome is increased 

to make it subjectively more appealing. Conversely, if the participant selects the probabilistic 
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outcome, then the amount of the probabilistic outcome is decreased to make it subjectively less 

appealing. This is repeated across several choices within each probability to establish an 

indifference point at each probability. An indifference point is thought to be the point at which 

both the certain and probabilistic outcomes are subjectively equal to the participant (Mazur, 

1987). The resulting indifference points (y-axis) are plotted at a range of odds against (x-axis) to 

plot the parametric function, which shows the subjective devaluation across probabilities. 

Probability discounting curves are often fit using least-squares non-linear regression that 

employ variations on Mazur (1987)’s hyperbolic equation,  

(1) 

 𝑉𝑉 = 𝐴𝐴/(1 + ℎθ)  

in which V is the subjective value of some amount (A) of reward with some odds against 

receiving the consequence as (θ = (1-p)/p) (Rachlin et al., 1991), with the process modulated by 

the discounting rate (h). Myerson and Green (1995) updated this equation by adding a scaling 

parameter (s) to the entire denominator, reflected in Equation 2, 

(2) 

 V = A/(1+ hθ)s. 

 

The scaling parameter (s) incorporates Stevens (1957) power law that is based on 

psychophysical scaling parameters. Instead of raising the whole denominator to the power 

function (s), Rachlin (2006) added the scaling parameter to the independent variable (odds 

against parameter) only, making the new model, 

(3) 

 V = A/(1+ hθ𝑠𝑠).  
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To evaluate discounting rates, h values are interpreted as the rate an outcome decreases in 

value as a function of the probability of its receipt. In other words, h represents the rate of 

discounting. As the probability of an outcome decreases, or the odds against increase, the 

rational decision is to switch to the certain outcome. Shallower (i.e., smaller) h values in 

probabilistic outcomes are representative of risky behavior. In other words, smaller h values 

demonstrate a willingness to take risks, whereas larger values reflect aversiveness to risk (Peters 

& Buchel, 2009). 

In research, PD tasks are used to evaluate patterns of responding across many types of 

goods and/or outcomes. Certain outcomes of interest, however, present unique problems that 

may prohibit manipulations in the context of a research study. Specifically, some commodities 

may be unethical or illegal to provide to participants (e.g., sex and/or drugs) without 

authorization and others may be impractical to manipulate (e.g., long-term medication side-

effects). As such, PD studies have substituted hypothetical outcomes. Although real rewards may 

be preferred, studies have shown the consistency of choices made for both real and hypothetical 

outcomes (Hinvest & Anderson, 2010; Lawyer et al., 2011; Matusiewicz et al., 2013). 

Additionally, high test-retest reliability has been reported in studies evaluating PD rates over 

time using both real (Peters & Buchel, 2009) and hypothetical rewards (Ohmura et al., 2006).  

Gambling involves risky behaviors. More specifically, gambling involves risking small 

amounts of money for the chance of acquiring a larger reward. This makes PD well suited for 

investigating the constraints under which gamblers’ choices are influenced by their sensitivity to 

reward devaluation. More specifically, PD results have shown that those with GD are less 

sensitive to reward devaluation that risk entails. To investigate PD rates in gamblers compared to 

healthy controls, Madden et al. (2009) used a modified monetary choice questionnaire (Kirby & 
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Marakovic, 1996; Kirby et al., 1999) that utilizes monetary choices across a range of 

probabilistic outcomes. Potential outcomes were predetermined to allow for assessment across a 

wide range of discounting rates (Madden et al., 2009). Options were predetermined and the order 

in which the probabilities were presented were counterbalanced between subjects within both 

groups. Comparing treatment seeking men with a GD (n=19) to healthy controls (n=19), Madden 

et al. (2009) reported significantly less steep discounting by those with a GD than controls. 

Using questionnaires with predetermined probabilities and amounts for each question allows for 

comparison of responses across studies on exact outcomes. It does not, however, allow for 

within-subject individual titration. This means that individual indifference points may be 

constrained outside of their actual level and therefore may not fully represent responding in a 

naturalistic way. Although it may differentially impact task difficulty across participants, it does 

allow for evaluation of decision making at specific values and probabilities.  

Using a computerized task with an amount titration procedure, Holt et al. (2003) 

administered a PD task to college students with a GD (n=19) and non-gambler controls (n=19). 

Each participant was administered two computerized PD tasks, in a counterbalanced method, 

with either a smaller magnitude reward ($1,000) or a larger magnitude reward ($50,000) offered 

across seven probabilities (95%, 90%, 75%, 55%, 30%, 10%, and 5%). Both groups reliably 

discounted large probabilistic rewards ($50,000) more steeply than small reward magnitudes 

($1,000; Holt et al., 2003). Those with a GD diagnosis, however, discounted both outcomes less 

steeply than those without a GD. This shows a behavioral similarity across groups for overall 

discounting across magnitudes, but demonstrates those with a GD reliably discount probabilistic 

outcomes less steeply, independent of the reward magnitude (Holt et al., 2003).  
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Investigating PD, Shead et al. (2008) evaluated discounting rates of gains versus losses in 

a college sample of frequent gamblers. For discounting of losses, researchers used a smaller 

option that the participant was guaranteed to lose against a larger option with a probability of 

loss. By comparing responding for gains versus losses, researchers were able to evaluate 

decision-making involving positive and negative outcomes across six probabilities (95%, 90%, 

75%, 50%, 25%, and 5%). A negative correlation of PD of gains versus losses was observed, 

where those who discount probabilistic gains more steeply tend to discount probabilistic losses 

relatively more shallowly (Shead et al., 2008). When scaled as odds against winning and odds 

against losing the discounting curves showed similar functions which reflects a strong negative 

correlation between discounting of gains and losses (Shead et al., 2008). These results support 

the idea of “risk attitudes,” which states risk-averse individuals will discount probabilistic gains 

at higher rates while discounting probabilistic losses at a lower rate (Shead & Hodgins, 2009).  

To further investigate PD of gains and losses for contingencies that maintain gambling 

engagement, Weatherly and Derenne (2012) evaluated a group of college students (n=149) 

comprised of mostly non-gambling females (85%). Participants completed a PD task involving 

both gains and losses of a smaller magnitude ($1,000) outcome and a larger magnitude 

($100,000) outcome across five probabilities (99%, 90%, 50%, 10%, and 1%). To evaluate 

gambling contingencies, researchers used a Gambling Functional Assessment - Revised (GFA-

R). The GFA-R is a 16-item, self-report measure that is used to isolate contingencies related to 

maintaining gambling behavior in individuals (Weatherly et al., 2011). Results from Weatherly 

and Derenne (2012) demonstrated a higher AUC measure for PD of losses than gains. Further, 

there was little difference in AUC measures when comparing smaller magnitude ($1,000) versus 

larger magnitude ($100,000) outcomes. Additionally, researchers reported that gambling 
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severity, measured by South Oaks Gambling Screener (SOGS), was more associated with 

negative reinforcement (escape-maintained behavior) than positive reinforcement (Weatherly & 

Derenne, 2012). Specifically, gambling as an escape (negative reinforcement) was a much 

stronger predictor of PD than positive reinforcement (monetary outcomes; Weatherly & 

Derenne, 2012). Although these findings were statistically significant, relations between 

gambling severity and PD rates were not completely reliable (Weatherly & Derenne, 2012), 

which is consistent with findings from (Shead et al., 2008). This means that escaping negative 

behaviors (withdrawal) may be more reinforcing than the monetary rewards (positive 

reinforcement) derived from gambling outcomes. 

Participant recruitment for gambling studies have seen a shift away from using DSM 

criteria for recruitment and severity classification to using the SOGS (Lesieur & Blume, 1987). 

The SOGS questionnaire is a 20-item screener based on DSM gambling criteria that offers a 

convenient means by which to screen clinical populations for gambling disorder (Lesieur & 

Blume, 1987). To evaluate reliability and validity of the SOGS, Stinchfield (2002) used large 

samples from a gambling treatment population (n=1589) and healthy community sample 

(n=803). Using a telephone survey, investigators administered the SOGS and DSM-IV gambling 

criteria screener to evaluate classification abilities of the SOGS compared to the DSM-IV. 

Researchers reported overall satisfactory reliability and validity outcomes for the SOGS in both 

screening for and classification of gamblers (Stinchfield, 2002). The classification accuracy of 

the SOGS screener was much more sensitive for those in the gambling treatment population 

(α=.99) compared to community samples (α=.67; Stinchfield, 2002). Although the control group 

showed a high false positive rate (50%), this was due to 4 subjects being identified as problem 

gamblers while only 2 of those satisfied the DSM -IV criteria as a problem gambler. Overall 
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sensitivity of both screeners was good, however, the SOGS typically identifies a higher rate of 

gambling prevalence due to the inclusion of subjective questions rather than purely behavioral 

questions (Stinchfield, 2002).    

Using the SOGS as a screening tool has opened new avenues for understanding gambling 

disorder, specifically in PD studies. The first study to report a negative relation between PD and 

SOGS was Holt et al. (2003). In a small group of participants (n=38), researchers showed that 

college students with high SOGS scores (4+) had lower rates of PD than those with low SOGS 

scores (0-1; Holt et al., 2003). These findings are consistent with those of Madden et al. (2009) 

who used a PD task to investigate the relation between PD and SOGS scores. In a small group of 

participants (n=38), researchers found a negative correlation between SOGS scores and PD rates 

(r = -.46, p < .01). Additionally, Madden et al. (2009) reported significantly higher SOGS scores 

with pathological gamblers (7-20) compared to controls (0-4) with no overlap between groups. 

These results reflect an inverse relation between gambling severity and PD rates which reflects a 

propensity for more risky decision making as a function of SOGS scores.  

Probability Discounting tasks are reliable and robust means by which to study gambling 

disorder. Sometimes, however, research studies are limited in their ability to answer complex 

questions. To understand the processes that underlie gambling behavior, interdisciplinary 

approaches need to incorporate complimentary techniques, such as behavioral economics paired 

with neuroimaging. Alone, PD has told one side of the story about devaluation of risky 

outcomes. Pairing PD tasks with functional Magnetic Resonance Imaging (fMRI) techniques has 

increased the range of experimental questions researchers are able to investigate. For example, 

differences in gamblers and non-gamblers can be evaluated with studies that concurrently 

investigate neural correlates while engaging in a PD task (Miedl et al., 2012; Peters & Buchel, 
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2009). This has helped to uncover a more complex interaction between neurobiological 

processes that accompany risky decision making of those with a gambling disorder.    

fMRI research 

Behavioral economic research has helped to identify core behavioral processes involved 

in gambling. Understanding the neurobiological processes that undergird these behavioral 

processes, however, may help us understand the broader framework involved in GD. One 

valuable resource has been the addition of fMRI to behavioral studies. Combining 

interdisciplinary approaches has given researchers the ability to correlate neurobiological activity 

with decision-making, highlighting patterns of brain activity associated with those decisions.  

Functional MRI studies use blood oxygenation level dependence (BOLD) measures to 

evaluate changes in blood oxygenation levels during task involvement. Increased blood flow in a 

given area suggests greater activity in that region (Fox et al., 1986). Higher levels of 

neurobiological activity require more oxygen, and therefore, require increased blood flow to 

compensate for increased oxygen demand (Fox et al., 1986; Rees et al., 1997). Baseline 

measures are first taken during resting state scans (no task) and compared to scans in which the 

participant is responding to an experimental task. This allows for measures to be acquired across 

the whole brain during specific tasks. During analyses, differences in activity levels can highlight 

regions that show increased or decreased activity as a function of the task. Specifically, 

neurobiological activity is acquired while participants complete a behavioral and/or 

neuropsychological tasks, such as Stroop tasks (Potenza et al., 2003), simulated casino games 

(Miedl et al., 2010), or PD tasks (Miedl et al., 2012; Peters & Buchel, 2009). These measures are 

then compared to resting state scans to identify regions of interest (ROI’s) that show differential 

activity.   
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Studies comparing neuro-correlates during PD task scans have provided additional 

insight into the neural activity associated with risky choice. In an exploratory study of neural 

activity during risky decision making, Peters and Buchel (2009) examined BOLD activity as 

participants completed a monetary incentive delay (MID) style PD task. Subjects (n=22) 

attended two pre-scan appointments in which they completed PD tasks at two separate time 

points (median time between behavioral sessions was 9 days) and then a scan session in which 

they completed a modified PD task (median 4 days after second behavioral session). The pre-

scan appointments allowed subjects to become familiar with the task, allowed researchers to 

evaluate stability of discounting, and collected indifference points used during the scan task. 

Participants made decisions across seven probabilities (100%, 99%, 96%, 84%, 54%, 28%, and 

17%; Rachlin et al., 1991) at pre-scan appointments and during an fMRI scan. Instead of 

presenting both the certain and probabilistic option on the screen, only the probabilistic outcome 

was shown during the scan task. Participants were shown the probabilistic option, then had to 

inhibit response during a 3-7 s (jitter) and then had 2 seconds in which to make their choice. For 

the scan appointment, pre-scan indifference points were used to equate tasks so participants 

would make approximately 50% of choices for both the smaller/certain and larger/uncertain 

outcomes. By arranging the experimental design to constrain participant responses, it effectively 

equated task complexity and effort. This means that observed differences were not due to task 

difficulty, as well as ensuring enough choices of smaller-certain and larger-uncertain to make 

group comparisons.  

To assess stability of discounting rates, a subset of participants (n=13) were brought back 

for a long-term (79-120 days) follow-up to evaluate stability of PD rates. Stability of PD rates 

were assessed at both short-term follow-up (for all participants) and long-term follow-up (for 13 
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participants). Results showed overall faster reaction times in the high value trials, compared to 

lower and similar value trials. Additionally, researchers have reported good stability on PD rates 

from shortly before scan (median 4 days; r = .74, p = .00008) and at the longer time range (79-

210 days; r =.76, p = .0026). Additionally, researchers analyzed neural correlates from 

concurrent PD task and fMRI scan. Imaging analysis evaluated brain regions in which activity 

was positively correlated with subjective values from the PD task (Peters & Buchel, 2009). The 

most pronounced differences were in the right parietal lobe, occipital gyrus, and the ventral 

striatum. Additionally, researchers reported activity differences in the VS and OFC during PD 

tasks which means these regions may implicate this network when determining subjective value 

of outcomes that are either delayed or probabilistic  

In a similar study, Miedl et al. (2012) evaluated those with a GD (n=16) against healthy 

controls (n=16) using a MID style PD task. All participants completed a short adaptive PD task 

prior to their scan appointment to determine PD rates across 7 probabilities (100%, 99%, 96%, 

84%, 54%, 28%, and 17%) that were duplicated from Rachlin et al. (1991). Procedures were 

similar to those used in Peters and Buchel (2009) with the exception of the time between study 

visits. The current study had, on average, one day between visits. The pre-scan PD indifference 

points were used to equate tasks so that each participants chose approximately 50% of the 

smaller/certain outcomes and 50% of the larger/probabilistic outcomes. During the scan task, 

participants were only shown the probabilistic outcome, while the certain outcome (which 

remained the same) was not presented.  

Results reflected less steep PD rates (not statistically significant) for those with a GD 

compared to the healthy controls using a one-tailed t-test. A non-statistically significant trend 

toward a negative correlation between gambling severity and PD rates was identified, which 
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suggests some effect of diminished risk sensitivity with increasing gambling severity. 

Additionally, Miedl et al. (2012) reported a small negative correlation between gambling severity 

and neurobiological activity in the VS and OFC when subjects were making decisions about 

probabilistic rewards during risky (low probability) reward trials (Miedl et al., 2012). Further, 

the correlation between the BOLD signal and subjective interpretation of reward outcome in the 

VS was less pronounced in gamblers than in controls. This suggests a slight overall dysfunction 

in risk aversion (behavioral) instead of specific system dysfunction in the brain (neurobiological; 

Miedl et al., 2012). Additionally, all neural correlations in the PD tasks components were non-

significant even at an uncorrected level. This means that although gamblers showed trends 

toward differential activity, these differences were not significant and, therefore, show little 

distinction from the healthy controls.  

Although not specific to gambling disorder, Abidi et al. (2018) investigated the role of 

the reward system in healthy participants (n=14) using a modified PD task in conjunction with 

fMRI scan. The PD task was modified to account for two probabilistic outcomes – side effects 

(1%, 5%, 16%, 38%, 64%, 84%, 95%, 99.9%) and medication efficacy (1%, 5%, 16%, 38%, 

64%, 84%, 95%, 99.9%) – across three levels of side effects (mild, moderate, and severe). 

Healthy participants made decisions about taking a medication as a function of both side effect 

risks and medication efficacy during an Echo-Planar Imaging scan. When making choices related 

to mild side effects, participants showed increased OFC and VS activity. In the severe side effect 

trials, however, activation was noted more widely in the frontal lobes, insula, amygdala and 

thalamus (Abidi et al., 2018). Additionally, they found a strong positive correlation between 

discounting rates quantified using area under the curve (AUC) and percent signal change in both 

the OFC and VS during mild side effect that became less pronounced in severe conditions. 
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Whereas a negative correlation between AUC and percent activation change was found in the 

insula and amygdala during severe conditions and became less pronounced in mild conditions.   

Studies using PD tasks are time intensive, and therefore, are cost prohibitive during 

neuroimaging studies. As such, other approaches like simulated gambling tasks, have been used 

instead. Simulated slot machine tasks provide visual stimuli that are contextually similar to 

casino games and therefore more closely mimic real-world gambling engagement. While this 

approach allows for evaluation of gambling behavior with naturalistic cues, it may also obscure 

differences in behavioral processes due to respondent conditioning to gambling stimuli. 

Simulated slot machine tasks evaluate behavioral and neurobiological responses to gambling 

itself, whereas PD tasks evaluate behavioral processes specifically associated with decision-

making across different risk levels. By adding in the additional contextual stimuli from simulated 

slot machine tasks, analyses of neurobiological differences may be reflecting Pavlovian 

responses developed from long histories of gambling involvement. By removing the unnecessary 

noise from additional stimuli, PD can investigate the operant influences of decision-making 

instead of the respondent influences of the environmental cues.  

Neuroimaging study results have provided an additional level of understanding about 

underlying processes that may be inaccessible in behavioral studies alone. For instance, the near-

miss effect has had mixed outcomes in behavioral studies. The near-miss effect is a phenomenon 

that is seen in gambling behavior, but more specifically, in slot machine gambling. The near miss 

is an “almost win” scenario where the first two reels on a slot machine show matching symbols, 

but the final symbol is incongruent with the others (Reid, 1986). In this outcome, the result is a 

loss, however, neurobiologically it has similar features to a winning outcome. Investigating the 

effects of near misses in behavioral studies has produced mixed results. Using simulated slot 
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machine tasks, some researchers have reported no effect for increased gambling behavior 

(Whitton & Weatherly, 2009; Worhunsky et al., 2014), whereas other studies have reported 

differences in gambling behavior (Dixon & Schreiber, 2004; Kassinove & Schare, 2001). 

Although behavioral results have been inconsistent in providing evidence of a near miss effect, 

neuroimaging studies have added support for neurological activity associated with near-miss 

effect. These results have demonstrated that even though the outcome is a loss, neurologically, 

the brain processes the outcome as similar to a win (Habib & Dixon, 2010; Sescousse et al., 

2016).  

Additional studies have found inconsistencies between behavioral processes and 

neurobiological activity. For example, Worhunsky et al. (2014) used a simulated slot machine 

task with three groups; pathological gamblers, cocaine users, and healthy controls. Researchers 

examined reaction times and neural activity during anticipation of a reinforcing outcome. No 

between-group differences were seen in behavioral reaction time. Those with a gambling 

disorder, however, showed increased activity in the ventral striatum, insula and medial prefrontal 

cortex (mPFC; Worhunsky et al., 2014) during reward anticipation, relative to both healthy 

controls and cocaine dependent participants. Neuroimaging, therefore, can add a level of 

sensitivity to behavioral studies that other tasks alone do not offer. It gives researchers the ability 

to identify differences, specifically neurobiological activity, that undergirds behavioral processes 

and decision making.  

Monetary Incentive Delay tasks have also added to the understanding of altered neural 

functioning in those with a GD. Monetary Incentive Delay tasks were developed for concurrent 

use with imaging studies to evaluate striatal activity during anticipation of rewarding outcomes 

(Balodis & Potenza, 2015; Knutson et al., 2000). Once a trial begins, a cue is shown to 
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participants before a variable delay period begins - signaled by an anticipation target that alerts 

participants to a potential upcoming reward (Knutson et al., 2000). Once the target is displayed, 

participants respond as quickly as possible to the reward cue. This task was designed to evoke 

reaction of the dopaminergic system in the ventral tegmental area during reward anticipation, as 

well as behavioral response time across different reward magnitudes (Schultz et al., 1998). At the 

individual level, healthy controls completing this task showed activation in the caudate and 

mesial prefrontal cortex during rewarding trials and activation of the anterior cingulate cortex 

during punishing trials (Knutson et al., 2000). These same patterns of activation held significant 

differences at the overall group level, as well (Knutson et al., 2000). 

Additional evidence of dysregulation in GD comes from studies using the Stroop task to 

evaluate response inhibition. This task focuses on the prefrontal cortex, which has been 

implicated in poor impulse control (Potenza et al., 2003). The Stroop task was developed to 

study inhibitory control, with more robust results when combined with imaging studies. The 

Stroop task presents frequent combinations of congruent color-word pairs, but occasionally 

presents incongruent color-word pairs which requires response inhibition (Leung et al., 2000). 

Using the Stroop task to evaluate reaction time and neural correlates during behavior, Potenza et 

al. (2003) compared pathological gamblers (n=13) against healthy controls (n=11). Both groups 

performed similarly on the Stroop task in terms of correct/incorrect responses, as well as reaction 

time to incongruent stimuli. Neural activity was similar across groups, such as decreased activity 

in the ventral anterior cingulate; however, gamblers showed decreased activity in the 

ventromedial prefrontal cortex (vmPFC) compared to healthy controls. The vmPFC has been 

implicated in both decision making (Bechara, 2001) and reward processing of monetary 

outcomes (Breiter et al., 2001). This may indicate prefrontal dysfunction, which is consistent 
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across behavioral studies evaluating executive function and decision-making in those with GD 

(Goudriaan et al., 2005; Goudriaan et al., 2006; Marazziti et al., 2008). Taken together, 

neuroimaging studies have produced results that stress the involvement of the brain’s mesolimbic 

reward system and the prefrontal cortex in GD. 

Using PD tasks in combination with neuroimaging has added to the understanding of the 

neural networks that are activated during risky decision-making. Study outcomes have 

demonstrated that behavioral results are not always consistent with neural activity. This means 

that understanding the interaction of these separate systems will help build a more robust 

understanding of behavioral addictions. Additional research is needed to highlight the interaction 

of these systems and specifically their involvement with gambling. Research on GD has been 

ongoing for decades, but the AI community has largely been ignored in previous studies. 

American Indians have a higher risk for developing GD and gambling related comorbidities, 

along with closer average location to gambling environments. This study, therefore, should help 

add to the collective understanding of the differences this population faces when dealing with 

GD. 

Methods 

Participants 

 Participants between the ages of 18-65 were recruited from the AI population by the 

Center for American Indian Community Health (CAICH) to participate in the present study. 

Participants were 24 AIs of differing tribes (e.g., Kaw, Pawnee, Dakota) spanning the Midwest 

plains. Using DSM-V criteria 12 AIs with GD and 12 healthy controls were recruited with mean 

ages of 37 for gamblers (SD= 13.99) and 36 for controls (SD= 10.85). During recruitment, 

participant demographics were matched across groups. Participants were excluded from 
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participation if they reported any condition contraindicating magnetic resonance imaging (e.g., 

vascular clips, metallic objects in body, non-removeable medical equipment), current use of 

psychotropic medication (e.g., Alprazolam, Klonopin, Haloperidol), current or past abuse of 

illicit substances (e.g., methamphetamine, heroin, cocaine), diagnosis of severe neurological or 

psychiatric illness (e.g., Parkinson’s disease, Multiple Sclerosis, Major Depressive Disorder), 

inability to read and speak English fluently, left-handedness, or pregnancy. All participants were 

compensated $115 for their time in the study and received a $20 gas card to help with 

transportation expenses.  

 Upon arrival at Hoglund Biomedical Imaging Center at Kansas University Medical 

Center, participants were greeted by a research assistant and escorted to a consultation room. The 

consultation room was 8’ x 12’ with a bank of windows along one wall. The other wall had a 

door and bookshelf. There was a round table with chairs in the middle of the room with a couch 

to the side. Research assistants described the study and allowed the participants to ask questions 

prior to obtaining written consent. After consent was obtained, all other paperwork was 

completed, including demographics, payment form, and the MR screener which was used for the 

MR technicians to verify the participants’ ability to go into the scanner without issue.   

Probability Discounting (pre-scan) 

Next, participants completed a probability discounting practice task conducted on an 

encrypted laptop computer. Instructions were displayed on screen, as well as being read aloud to 

participants. For this task, participants were instructed  

“Now, you’ll be making decisions about some probability of receiving some 

amount of money. You’ll see different probabilities of receiving amounts of 

money. Although you will not receive these amounts, pretend you will have the 
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chance of receiving the amount and answer honestly. You can select between the 

two options by pressing the 1 and 2 buttons on this line of numbers. Press the 1 

button for the option on the left and the 2-button for the option on the right.”  

Participants were then asked to complete four rounds of trials - one round at each of the 

probabilities (90%, 70%, 50% and 10%). Probabilities were presented in descending order and 

all trials were completed for each probability before moving on to the next probability. Within 

each probability, participants started on an option for a certain chance of $50 or a probability of 

$100. Using an amount titrating procedure, the dollar amount was then titrated by 50% for the 

next trial. If the smaller certain option was chosen, then the certain outcome was decreased to 

make it subjectively less appealing. Conversely, if the probabilistic outcome was chosen, then 

that amount was increased. Once the amount was titrated, participants where then presented with 

a new choice of a certain versus probabilistic outcome. Participants completed six trials per 

condition across each of the four probabilities. After completion of the task, the research 

assistant opened the E-Data file and retrieved the indifference points. These values were later 

entered into the computer in the scanner to equate the tasks for all participants.  

fMRI Scan 

After all questionnaires and tasks were completed, participants were escorted to the 

locker room area to change into scrubs. Participants were instructed to remove any metal from 

their body, including, hair ties, underwire bras, and piercings. Once changed, participants were 

taken to the scanner where the tech repeated the safety screener to ensure no loose metal in/on 

the participants. Additionally, the techs verified participants’ surgical histories and further 

screened for any metal or electronic devices inside of the participant. Participants that wore 
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glasses were fitted with scanner compatible prescription goggles, and sight was checked by 

technician before the fMRI session.  

The MR tech escorted participants into the scanning area and ensured each participant 

was correctly situated in the scanner in a comfortable position that they would be able to 

maintain for the duration of the scans (blankets were offered for extra warmth). The head coil 

was placed over the participants head once in the scanner. A screen just above the participant had 

the task projected onto it and participants were given a control pad that had two buttons, side-by-

side, that correlated with the choices projected onto the screen. The MR tech made sure the 

screen was visible to the participant and any last-minute adjustments were made.  

After participants were situated in the scanner, the MR tech returned to the holding room 

with the researcher to begin scans. Indifference points from the practice rounds were entered for 

each participant at each of the four probabilities (90%, 70%, 50%, and 10%). Using individual 

indifference points, tasks were equated for individual participants across the study (i.e., the 

monetary values presented were individualized based on the participants’ pre-scan indifference 

points). The function of equating the tasks across participants was to prevent markedly different 

patterns of choice to investigate the processes that support choice, rather than the choices 

themselves. The same instructions from the practice round were orally delivered to participants 

in the scanner (instructions were not displayed on screen). Instructions were stated the same as 

during practice,  

“Now, you’ll be making decisions about some probability of receiving some 

amount of money. You’ll see different probabilities of receiving amounts of 

money. Although you will not receive these amounts, pretend you will have the 

chance of receiving the amount and answer honestly. You can select between the 
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two options by pressing the left button for the option on the left of the screen, and 

the right button for the option on the right side of the screen.”  

Once instructions were delivered, the program was loaded and automatically triggered by 

the start of the scanner. All stimuli (PD choices) were presented using E-Prime (Psychology 

Software Tools, Inc., Sharpsburg, PA) for the scan portion of the task. The same adjusting 

amount PD procedure was used from the pre-scan testing, however, for the scan task, 

percentages were displayed in a pseudorandomized order. The screen above the participant 

showed the two options (the certain and probabilistic outcomes) the participant was to choose 

between. Options were presented in black text on a white background, with the certain outcome 

being randomized between the right and left side of the screen for each trial. Participants were 

presented with an initial choice between a smaller, yet certain outcome (100% chance of $X), 

versus a larger, probabilistic outcome (X% chance of $100). Participants made 32 choices per 

round (approximately 8 choices per probability), for three total rounds (total of 96 choices), to 

determine an indifference point at each probability. Between trials the instructions were repeated 

by the MR tech and each trial ended with a fixation cross that turned from black to gray to 

signify the end of the round.  

Scanning was performed on a 3-Tesla full body Siemens Skyra scanner (Siemens, 

Erlangen, Germany) fitted with a 20-channel head and neck coil. Scans collected included an 

anatomical scan and 3 functional scans during the probability discounting task. T1-weighted 3D 

MPRAGE anatomic images were obtained (TR/TE 2300/2.95 ms, flip angle 9°, FOV = 256 mm, 

matrix = 240 x 256, slice thickness = 1.2 mm). These images provided slice localization for 

functional scans and co-registration with fMRI data. Gradient echo blood oxygen level 

dependent (BOLD) scans were acquired in 43 interleaved slices at a 40° angle to the AC/PC line 
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(TR/TE = 2500/25.0 ms, flip angle = 90, matrix = 80 x 80, slice thickness = 3 mm, in-plane 

resolution = 2.9 mm). The duration of each functional run varied based on individual participant 

reaction times. 

Each round ended with a fixation cross that turned from black to gray. After completion 

of the scans, participants were escorted to the changing rooms to return to their street clothes. 

After changing, participants were escorted to a small office (4’ x 7’) in which the SOGS 

questionnaire was administered in addition to completing the timeline follow back for gambling 

behavior over the previous 90 days. Once all testing was complete, participants received their 

compensation and were thanked for their time.  

Analysis 

fMRI Pre-processing 

All data was managed using RedCap electronic data capture tools hosted at University of 

Kansas Medical Center (Harris et al., 2019; Harris et al., 2009). Data preprocessing and 

statistical analyses were performed in AFNI (Cox, 1996). Preprocessing steps included motion 

correction, alignment, spatial smoothing, and normalization. The fMRI images were realigned to 

the minimum outlier in each run to correct for motion. The images were spatially smoothed to 4 

mm FWHM Gaussian kernel. Anatomic images were aligned to functional images and spatially 

normalized to Montreal Neurological Institute space using non-linear warping implemented with 

AFNI’s automated algorithm. Within each functional run were registered to the minimum outlier. 

Data points were censored if motion within a volume was greater than 0.3 mm. Statistical 

contrasts were conducted using multiple regression analysis with motion parameters included as 

nuisance regressors. Regressors representing the experimental conditions of interest (i.e., High, 

Mid, and Low Probability) were entered into the regression analysis using a duration modulated 
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basis function. Timing files were created in Microsoft Excel to identify the beginning and end of 

each individual trial. Trials were separated into three groups (High, Mid and Low Probability). 

High probability trials consisted of the 90% probabilities, Mid probability trials consisted of the 

70% and 50% probabilities, and the Low probability trials were set for the 10% probabilities. 

The quality of the fMRI data was checked for processing errors, alignment, and motion issues.  

Behavior Analysis 

Inclusionary criteria for analyses of behavioral components was determined by using the 

criteria outlined by Johnson and Bickel (2008) to evaluate and remove non-systematic data. 

Although developed for use on Delay Discounting data, these criteria are well suited to evaluate 

PD data (Johnson & Bickel, 2008; Rasmussen et al., 2010) when evaluated in a descending 

order. Participants’ data were removed if an increase of more than 20% of the undiscounted 

amount was noted from one condition to the next, starting with the second indifference point, or 

if the final condition indifference point was not less than the first by at least 10%. Applying these 

criteria to the participant pool, four gamblers and three controls were removed from analyses for 

the behavioral components.    

Analyses and curve fitting (Equation 3) were performed in GraphPad Prism (version 8). 

Differences in PD rates were calculated using h rates (discounting rates) and AUC analysis. 

Importantly, AUC provides a direct measure of discounting (Abidi et al., 2018) and is not linked 

to any theoretical framework (Myerson et al., 2001). AUC is calculated using the trapezoid 

method that calculates the aggregate data (area) under the data path (curve; Myerson et al., 

2001).   

(4) 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝛴𝛴(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)
(𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑖𝑖+1)

2
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fMRI Analysis 

After preprocessing of individual scans was complete, exclusionary criteria was applied 

to finalized groups for analysis. Of the 24 participants, four subjects (2 gambler and 2 control) 

were removed due to not completing scans. Two additional gamblers were removed due to 

excessive motion in the scanner (greater than 50% of data were censored). The data analysis 

focused on a whole-brain voxel-wise analysis of variance (ANOVA) implemented by AFNI’s 

3dMVM (Chen et al., 2014) to determine brain activation (i.e., percent signal change from 

baseline) main effects and interactions [Probability (Low, Mid, Hight) x Group (Gambler, 

Control). AFNI’s 3dClustSim was used to estimate the probability of false positives and correct 

for multiple comparisons at p < 0.05 and α < 0.05.  

Results 

Behavioral Results 

 Group median indifference points from pre-scan PD tasks are shown in Figure 1 for both 

groups across each of the indifference points (90%, 70%, 50%, and 10%). Probability 

discounting curves were analyzed using Rachlin (2006)’s hyperboloid equation (V = A/(1+hθ s). 

This equation allows for two free parameters during analysis. To control for this, the scaling 

parameter was shared across all participants (s=0.8165). Figure 2 shows probability discounting 

curves for both groups. Analysis showed a good fit for both groups (R2=0.9858), with gamblers 

fit (R2=0.9955) showing a slightly better account of variance than controls (R2=0.9703). When 

fitting Equation 3 to individual subjects’ data the fit was fair for gamblers (mean R2=.8642; 

SD=.16) and controls (mean R2=.8926; SD=.09), with the mean log-transformed discounting rate 

(LN[h]) significantly differing between groups (t(17) = -3.795, p=.002)). As a confirmatory step, 

this analysis was also conducted using Area Under the Curve. Area Under the Curve measures of 
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indifference points were lower for Controls (M=.427, SD=.212) compared to Gamblers (M=.672, 

SD=.057). An unpaired t-test comparing AUC showed a statistically significant group difference 

(t(15) = -2983, p= .009).  

SOGS scores (Figure 3a-3c) are presented for gamblers (range 4-16; M=9.375, SD=3.70) 

and controls (range 1-3; M=1.44, SD=0.73). Using an independent samples t-test with Welch’s 

correction revealed a statistically significant group difference (t(15) = 6.318, p< .001). Group 

differences are shown in a bar graph (Figure 3a) and scatterplot graph (Figure 3b) with the line 

representing median SOGS score. Spearman correlational analyses were performed comparing 

SOGS scores to discounting rates (h value) in Figure 3c. Using a Spearman correlation analysis, 

results indicated a statistically significant negative correlation (r(15) = -.617, p= .006) between 

SOGS scores and discounting rates (h value).  

Number of hours gambled in the last 90 days is shown in Figure 4. Because gamblers’ 

self-report data for hours and days gambled was hypothesized to be higher than that of the 

controls, a one-tailed independent samples t-test with Welch’s correction was used to evaluate 

differences. Results yielded a statistically significant difference in the number of hours gambled 

over the last 90 days (t(7) = 2.023, p = .041) between Gamblers (M=79.875, SD=108.24) and 

Controls (M=2.444, SD=2.79). Additionally, using the same analysis on number of days 

gambled (Figure 5) yielded a statistically significant difference (t(7) = 4.142, p =.002) between 

Gamblers (M=19.375, SD=12.14) and Controls (M=1.22, SD=1.30) in the last 90 days.  

fMRI Results 

Whole brain analysis found no significant Group x Condition interaction or main effect 

of Group. A main effect of probability condition was found in decision-making regions of the 

dorsal medial prefrontal cortex (dmPFC; x,y,z = -2, 44, 33, p<.05, corrected) and attention 
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regions of the precuneus (x,y,z = -5, -69, 58), p<.05, corrected) demonstrating greater activation 

in low compared to high probability conditions (Figure 6). Using a two-way ANOVA for 

analysis on the dmPFC (Figure 7) revealed a statistically significant effect by condition 

(Probability) = (F (2, 2) = 316.7, p = .0031). Using a two-way ANOVA on data from the 

precuneus (Figure 8) revealed a statistically significant effect by condition (Probability)  = (F (2, 

2) = 61.59, p = .0160). 

Secondary analysis of correlations between AUC and percent activation change were run 

on specific regions of interest (e.g., ACC, mPFC, and visual cortex) as a function of condition. 

Using a Pearson correlational analysis , results indicated a statistically significant negative 

correlation between AUC and percent activation change at both the Low probability (r(18) = -

.629, p= .005) and Mid probability (r(18) = -.32, p = .03) seen in figures 9 and 10, respectively. 

Results in the High probability condition showed a negative correlation; however, this 

correlation did not reach statistically significant levels. No other regions showed a statistically 

significant results with AUC and percent activation change.  

Discussion 

Results of the current study replicated and extended findings in both the behavioral and 

neurobiological literature on decision making in those with a GD. Specifically, gamblers showed 

higher indifference points across all probabilities which reflects a lower level of PD. This 

demonstrates a propensity to chance outcomes to a higher degree or to engage in more risky 

decision-making than controls. These results are consistent with previous research showing more 

shallow discounting by gamblers (Holt et al., 2003; Madden et al., 2009; Miedl et al., 2012) 

versus controls on PD tasks. In the current study, controls showed a sharp decline in preference 

for probabilistic outcomes once the probability dropped below 90%. This means that soon after 
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certainty is removed, controls forgo the risky outcome. Gamblers, however, show less 

willingness to forgo the probabilistic outcome for the certain one. Taken together, these findings 

suggest those dealing with GD are more likely to engage in sub-optimal decision-making, 

especially as risk increases. 

Chance itself is not inherently bad. For example, gambling involves chancing a small 

amount of a resource for the opportunity to acquire a larger amount of that resource with little to 

no extra effort. Taking calculated chances is different, however, than risks which involve an 

element of underlying danger. Specifically, Shead and Hodgins (2009) showed a pattern of 

behavior that reflects those willing to engage in riskier behaviors tend to overvalue gains and 

undervalue losses (risk attitudes). With a stronger preference for the probabilistic option, 

gamblers continue to risk outcomes, even when the outcome is less than advantageous. Healthy 

controls show a quick and steep switch to the certain option at high probabilities which 

demonstrates a preference for certainty, or loss avoidance (Shead & Hodgins, 2009). As the 

proverb says, “A bird in the hand is worth two in the bush.” Gamblers, however, overvalue the 

potential outcome (two in the bush) and undervalue the certain outcome (bird in the hand; Shead 

& Hodgins, 2009). Rather than attending to the risk, gamblers may focus more directly on the 

potential outcome rather than the probability of receiving it. For gamblers, the magnitude of the 

uncertain outcome may be more influential than the risk involved with that behavior. This is 

supported by the results of the current study that show those more likely to take a risk (gamblers) 

have higher rates of these same risky behaviors in their past (past gambling involvement). These 

behaviors are a pattern of risky decision making – or more likely a type of behavioral trait, as has 

been demonstrated in delay discounting (Odum, 2011). This is where newer techniques, such as 
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multilevel modeling could be helpful in parsing apart components (e.g., magnitude versus 

probability) of individual and group level preferences (Jarmolowicz et al., 2020; Young, 2017). 

The current study used a novel analytic approach developed by Abidi et al. (2018) to 

evaluate correlations between percent activation changes in ROIs with AUC measures. One 

region in particular (mPFC) showed a negative correlation across conditions (probabilities). 

Using a Spearman correlational analysis to compare AUC and percent activation change in the 

mPFC showed significant negative correlations of -.65 and -.55 in the mid and low probability 

conditions, respectively. The high probability condition was not statistically significant; 

however, it was consistent with the riskier conditions (e.g., negative correlation). These 

correlations highlight a specific involvement of the mPFC during decision making regarding 

riskier outcomes. The mPFC has been shown to be involved in conflict monitoring (Botvinick et 

al., 2004) and decision making regarding risky and rewarding outcomes (Bechara & Damasio, 

2005). The negative correlation highlights an interesting process by which those who discount 

more (healthy controls) showed more reliance on the mPFC, whereas those who discount less 

steeply (gamblers) rely less on this region when processing risky outcomes. The observed 

differences may have to do with the participants and study design. Specifically, the current study 

was investigating differences between gamblers and controls, whereas Abidi et al. (2018) was 

evaluating healthy controls alone. Additionally, it could be an artifact of the task used by Abidi 

et al. (2018), as it asked participants to make decisions about a medication that had differing 

levels of side effects (probability and severity) and efficacy for a disease they did not have. 

Specifically, all participants were healthy controls but made decisions about potential risks and 

benefits of a medication for Multiple Sclerosis.  
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Results of the current study are partially consistent with the GD literature. Specifically, 

Peters and Buchel (2009) reported activation differences in the VS and OFC from baseline 

levels. Those differences were not found in the current study. Instead, differences in the dmPFC 

and precuneus were found as a function of condition – but not group. Previous studies also 

highlighted differential activity in the OFC during PD tasks (Peters & Buchel, 2009), specifically 

during low risk conditions (Abidi et al., 2018). Of note, the OFC activation differences seen in 

previous studies (Abidi et al., 2018; Peters & Buchel, 2009) were found while evaluating healthy 

controls, whereas Miedl et al. (2012) and the current study did not report these same findings 

when comparing PD in gamblers versus healthy controls. Additionally, methods from Peters and 

Buchel (2009) restricted participant response time to 2 seconds, which possibly impacted 

decision-making and reward valuation. This restricted time in which to make decisions and 

report responses could have added complexity to the task which wasn’t reflected in the current 

study design. In the current study, participants were not restricted in the time they had to make 

their decision. The differences in the OFC, therefore, could have more to do with the timing 

constraint impacting cognitive control, rather than overall group differences in decision making. 

The current study did replicate and extend results of Miedl et al. (2012) which reported only 

trends toward significance between groups due to low power and high variability. Of note, 

results from Miedl et al. (2012) reported trends toward significance in uncorrected analysis, 

whereas results of the current study were only reported for corrected analyses.  

Findings of the current study highlight a difference in decision-making regions of the 

dmPFC across conditions (probability). Specifically, the current results reflect a systematic 

decrease of activity in the dmPFC as the odds against increase. The decreased activity in the 

dmPFC as a function of the increasing odds against reflects a decreased need for neural support 
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during riskier decision making. Although this finding is novel for studies evaluating PD in 

gamblers, it is consistent with studies of neural activity during other tasks involving risky 

decision making. The dmPFC has been implicated in risky decision making compared to 

ambiguous decisions (Eickhoff et al., 2016). Specifically, risk processing has been shown to 

activate the dmPFC (Wu et al., 2021), however, the degree of activation is negatively correlated 

with risk preference (Xue et al., 2009).  

The correlational findings of the current study in the dmPFC are novel to both gamblers 

completing PD tasks and the AI population during PD tasks. These results show that gamblers 

rely on the dmPFC similarly to controls when making risky decisions. This interpretation is 

likely given the differences in dmPFC activity across conditions, but not group. In other words, 

there are no significant differences between gamblers and controls in dmPFC activation while 

making similarly risky decisions. Of note, Tanabe et al. (2007) found evidence that dmPFC 

activity was reduced in both gamblers and non-gambles with a history of substance use during 

the Iowa Gambling Task. Speculatively, this could point to the fact that comorbid diagnosis and 

other related maladies could be driving differences in the dmPFC instead of GD, specifically.  

In addition to results of the dmPFC, a main effect of condition (probability) in the 

attention regions of the precuneus was also identified. Gamblers showed a slightly higher level 

of activation in the precuneus across probabilities; however, this difference was not statistically 

significant across groups. The role of the precuneus, specifically in behavior, is still being 

debated across research specialties. The precuneus has been shown to be involved in the role of 

self-processing (Kircher et al., 2002), integrating motor coordination associated with visuo-

spatial (Wenderoth et al., 2005), and response inhibition (Swick & Turken, 2002). Although the 

specific role(s) of the precuneus is still debated, it is situated in a unique region of the brain with 
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projections to much of the surrounding areas. The precuneus, therefore, is thought to be involved 

in multiple roles across several regions. Specific to response inhibition, the results highlight that 

those with GD do not show differential levels of function during decision making. Instead, 

differences may be in gamblers attending less to the risk and more to the potential outcome. This 

is supported by group level differences in discounting curves which reflect difference in 

subjective valuation of the outcome.  

Using fMRI techniques in combination with behavioral tasks has helped add to the 

literature by investigating the neural function underlying the behavioral processes involved in 

both decision making, broadly, and gambling, specifically. Additional study data has helped to 

grasp the complexity of neural correlates of behavioral processes; however, it may be difficult to 

interpret. Specifically, results may not be consistent across studies depending on number of 

participants, tasks used, and amount of data collected. Further, imaging results only report 

differences in levels of activity and correlations with behavior to begin identifying potential 

answers. Behavioral studies are designed to address individual differences, as well as larger 

group differences, that highlight dysfunction in behavioral processes of decision making. 

Although having more data helps to understand the problem broadly, the difficulty lies in 

applying these results across studies and populations. Specifically, neuroimaging studies are 

typically restricted to the healthiest and cleanest of participants to ensure better data. In other 

words, those with more severe problems or multiple comorbidities may be excluded from these 

studies. In comparison, behavioral studies can use those data to understand individual 

differences. In a larger context, neuroimaging studies rely on large groups with which to 

investigate problems, whereas behavioral studies are designed to be much more sensitive to 

individual differences.  
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With gambling studies shifting toward using SOGS as a screening tool instead of the 

DSM criteria, additional relations can be investigated between gambling severity and rates of 

discounting. Previous studies have highlighted a negative correlation between SOGS scores and 

discounting rate (Holt et al., 2003; Madden et al., 2009). Results of the current study are 

consistent with previous studies demonstrating a negative correlation between gambling severity 

(SOGS scores) and discounting rate (Holt et al., 2003; Madden et al., 2009). The current study 

results reflect a strong negative relation in the rate of PD as a function of the increasing severity 

of GD. Specifically, the more severe the GD, the more likely a person is to take risks at lower 

likelihoods of a positive outcome. This pattern of behavior means that those with severe GD are 

most at risk of engaging in risky decision making.  

Rates of gambling involvement showed significant group differences. Although this 

finding was not surprising, implications are important for those dealing with GD. Group level 

differences were found for both number of hours gambled, and number of days gambled, in the 

last 90 days, on a timeline follow-back questionnaire. The average number of hours gambled per 

session had a more than three-fold difference across groups which reflects gamblers not only 

gamble more days, but also longer periods of time on those days. Gamblers showed a higher 

level of involvement with gambling in the previous 90 days, lower discounting rates and higher 

SOGS scores. Taken together these results indicate that those with severe GD may be in a 

uniquely vulnerable position for negative consequences. Specifically, more severe GD (SOGS) is 

correlated with higher rates of risky decision making along with engaging in higher rates of 

gambling activities (both hours and days). This is consistent with results from Weatherly and 

Derenne (2012), that note the behavior of those with severe GD being maintained by negative 

reinforcement (escape maintained behavior) rather than positive reinforcement. This behavioral 
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pattern is consistent with those seen in other addictive disorders where those with long-term 

addiction seek their substance of choice to alleviate negative feelings rather than to deliver 

reinforcing psychoactive effects (Blume, 2001; Koob, 2020).  

Although these findings inform research on GD, broadly, they are exponentially more 

important to those in the AI population, collectively. In addition to risky behaviors correlated 

with GD, those in the AI community may also be contending with increased proximity to casinos 

(Welte, Barnes, et al., 2004), increased ease of access to gambling (Patterson et al., 2015), and 

increased levels of comorbid diagnosis (Lorains et al., 2011) and past exposure to trauma (Ehlers 

et al., 2013). Individually, these components increase the potential for negative outcomes; 

however, collectively these components reflect the drastic impact on an underserved community 

population.   

In summary, results showed behavioral differences in decision making across groups, yet 

neural function showed no statistically significant regions between groups. Although group 

differences did not meet statistical significance, two regions (dmPFC and precuneus) both 

showed significance as an effect of condition. Gamblers showed less-steep discounting than 

controls, higher SOGS, and more hours/days gambling in the past 90 days. Overall, these results 

show that behaviorally the groups were significantly different but do not differentially tap 

regions of the brain when making decisions across increased riskiness. In other words, either 

gamblers do not show neural differences from controls when making risky decisions or the lack 

of differences could be due to the specific population. Specifically, increased access to and 

availability of gambling establishments, past history of trauma, and increased risk of 

comorbidities may affect AIs as a whole, rather than differentially across those with GD and 

those without.  
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There were limitations to the study that need to be addressed in future research. The first 

limitation is the small group sizes and large amounts of variability within and between groups 

that reduced statistical power necessary to identify some group level differences. Non-systematic 

data across participants played a part in this limitation. By administering the pre-scan PD task as 

a screener, participants with non-systematic data could have been eliminated which could have 

increased results through increased statistical power. Using methods similar to Peters and Buchel 

(2009) where participants completed multiple pretests on separate visits could help reduce 

variability and non-systematic data. Although this could be beneficial, there is evidence that 

running discounting tasks multiple times, or to stability, likely taps difference brain regions when 

making decisions about outcomes. Likely, an approach similar to the current methods would be 

beneficial, with the first round of PD being used for participant screening. This could help to 

eliminate participants with non-systematic data – both increasing the significance and  

preventing over-exposure to the same task.    

The next limitation is that indifference points from the pre-scan task were used to equate 

the task. By equating the tasks, it could be preventing some differences from being identified, 

however, those differences are likely due to the contextual variables rather than the underlying 

behavioral processes. By functionally equating the tasks, it reduces differences from task 

difficulty and allows a more direct comparison between groups in both behavioral and 

neurobiological measures. Although this approach does have some limitations, it is also 

beneficial in that is allows for other variables to be held constant to restrict extraneous variables. 

Specifically, task difficulty and range of indifferences points may confound findings if not held 

constant. Although it may restrict individual indifference points outside of the natural behavior 

of the individual, the overall pattern of responding is more applicable to group level analyses.  
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Another limitation of the current study was the attempt to replicate methods of previous 

PD studies by Peters and Buchel (2009) and Miedl et al. (2012). Both studies used pre-scan 

indifference points to equate tasks, so participants responded with approximately 50% of choices 

above and below their original indifference points. Controlling for variance of indifference 

points and task difficulty associated with PD tasks, the current study used pre-scan task 

indifference points to equate PD tasks. The goal was to recreate this design, however, around 

70% of presented choices were above pre-scan indifference points. This was consistent within 

and across groups. Although the task did not reach the intended 50/50 split, keeping the 

percentages consistent across groups still functionally equated the tasks. With the PD task being 

subjectively equal for all participants, the differences observed in behavioral and neurobiological 

outcomes highlight differences in processes activated during decision-making. By holding all 

other variables constant, the outcomes can be attributed to processes, rather than task specific 

differences. 

An additional limitation of the current study is the evaluation of PD across a limited 

number of probabilities. The majority of studies (Holt et al., 2003; Miedl et al., 2012; Peters & 

Buchel, 2009) used seven probabilities that were pulled from Rachlin et al. (1991) of 100%, 

99%, 96%, 84%, 54%, 28%, and 17%. Utilizing this range of options allows for comparison 

across a wide range of probabilities while also evaluating subtle yet important differences at 

similar rates at both high (100%, 99%, and 96%) and low percentage (28% and 17%). 

Additionally, studies have used a range of potential probabilities, such as six (Shead et al., 2008) 

or five (Weatherly & Derenne, 2012) probabilities to evaluate discounting rates. Using only four 

probabilities may have impacted the ability to identify subtle differences. Previous research, 

however, by Matusiewicz et al. (2013) has demonstrated good reliability when evaluating four 
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probabilities - consistent with Yi et al. (2010). With statistically significant group differences in 

the PD task, this was likely not a limitation in the current study.  

Finally, contextual variables related to gambling behavior are a much more complicated 

component to address within the scope of limitations. By removing extraneous variables found in 

the gambling environment, specific behavioral and neurological processes can be identified and 

evaluated. This allows for evaluation of the fundamental processes underlying gambling 

behavior that are consistent across gamblers, apart from environmental influence. Gambling 

stimuli may complicate the findings by concurrently tapping multiple processes, whereas the 

current study was able to hold other components steady to evaluate processes underlying 

decision-making. By removing these variables, however, the impact of classically conditioned 

stimuli, and how they influence gambling behavior, are not able to be studied. Specifically, 

auditory and visual stimuli need to be investigated to understand the impact on neural activity 

underlying behavioral processes. For future studies, investigating the connections between 

contextual variables within a casino and the impact on both behavioral and neurobiological 

processes could highlight notable differences. Additionally, behaviors specific to the gambling 

environment, such as betting, collecting winnings, and paying losses could highlight some 

subtleties that are lost due to the setting of the study. Although this could be considered a 

limitation, the fact that statistically significant differences are consistently found in the absence 

of these variables demonstrates the strength of these differences.  

In summary, this study replicated some previous findings of GD using PD tasks in an 

fMRI study, but also highlighted new findings that need to be further investigated. These 

differences need to be evaluated in a larger cohort to increase statistical power to evaluate the 

subtleties noted in activation differences that did not pass statistical significance. Further 
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research is needed to replicate and extend these findings to treatments that may target the 

mediation of the risky outcome with the reward drive. Additional treatments for increasing PD 

rates in gamblers may be of significant interest until more information is gained on the neural 

processes tapped by gamblers during decision-making.  
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Figure 1: Group Median Indifference Points. Indifference points on pre-scan task of probability discounting across all  
probabilities (90%, 70%, 50%, and 10%). Squares denote controls and circles denote gamblers.  
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Figure 2: Probability Discounting Curves. Discounting curves using Rachlin’s Hyperboloid equation with gamblers denoted as 
circles and controls with squares. Overall fit showed an r2=0.9858 with Gamblers (r2=0.9955) and Controls (r2=0.9703) each 
showing good fits. Gamblers showed a much more-shallow discounting rate (h =0.6038) compared to controls (h =2.134).  
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Figure 3: Group Mean South Oaks Gambling Screener Scores. Group means on South Oaks Gambling Screener with 95% 
confidence interval for gamblers (M=9.375, SD = 3.70) and controls (M=1.44, SD = 0.73). Results of an independent samples t-
test with Welch’s correction revealed a statistically significant group difference (t(15) = 6.318, p< .001).  
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Figure 4: Scatterplot of Group South Oaks Gambling Screener scores. Group South Oaks Gambling Screener scores with line 
representing group median. 
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Figure 5: Correlation of Discounting Rate and South Oaks Gambling Screener Scores. Spearman correlation analysis of 
discounting rate (h rate) and SOGS scores. Results show a statistically significant correlation of -.617 with a p=.006.  
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Figure 6: Group Mean Hours Gambled. Hours gambled in past 90 days with 95% confidence interval. Using a one-tailed 
independent samples t-test with Welch’s correction shows a statistically significant group difference t(7) = 2.023, p=.041 
between Gamblers (M=79.875, SD=108.24) and Controls (M=2.444, SD=2.79). 
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Figure 7: Group Mean Days Gambled. Days gambled in the past 90 days with 95% confidence interval. One-tailed independent 
samples t-test with Welch’s correction t(7) = 4.142, p=.002 between gamblers (M=19.375, SD=12.14) and Controls (M=1.22, 
SD=1.30) in the last 90 days.  
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Figure 8: Activation in dmPFC and Precuneus. Brain slice representing activation differences in the precuneus and dmPFC with 
p<.05 and α< .05 
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Figure 9: Condition Differences in Activation of dmPFC. Two-way ANOVA with significant effect of condition (High, Mid, and 
Low probability) = (F (2, 2) = 316.7, p = .0031) in the dmPFC 
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Figure 10: Condition Differences in Activation of Precuneus.  Two-way ANOVA with significant effect of condition (High, Mid, 
and Low probability). = (F (2, 2) = 61.59, p = .0160) in the precuneus 
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Figure 11: Correlation of AUC and Percent Activation Change – Low Probability.  Pearson correlational analysis of the Low 
probability condition with results showing a statistically significant negative correlation (r(18) = -.629, p= .005) between AUC 
and percent activation change in the mPFC 
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Figure 12: Correlation of AUC and Percent Activation Change – Mid Probability.  Pearson correlational analysis in the Mid 
probability condition with results showing a statistically significant negative correlation (r(18) = -.32, p = .03) between AUC 
and percent activation change in the mPFC.  
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