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Abstract

We first introduce a Hopf monoid on set families called SF. Following that we will use the topolog-

ical methods of Aguiar and Ardila [1] to find a cancellation-free formula for the Hopf submonoid

of SF spanned by lattices of order ideals. We will then turn our attention to the Hopf submonoid

spanned by simplicial complexes in which we derive an antipode formula for simplex skeletons.

We then turn our attention to the Hopf submonoid of SF spanned by chain gangs. The character

group of this submonoid is related to formal power series. We proceed to show that the Hopf alge-

bra of symmetric functions is a quotient of the Hopf algebra of chain gangs. Finally we conclude

with suggestions for future research directions in the study of SF.
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Introduction

Hopf algebras have their origins in algebraic topology and the theory of algebraic groups [2]. The

term Hopf algebra was first coined in a paper by Borel [4] in 1953. By 1978 it was recognized

that Hopf algebras could be used to answer problems in combinatorics [18]. Colloquially Hopf

algebras give us a way to break apart and combine unlabeled objects. For our purposes we consider

combinatorial objects such as simplicial complexes, posets, antimatroids, etc. For example there

is a Hopf algebra on isomorphism classes of graphs. With this Hopf algebra Humpert and Martin

were able to derive results about the Tutte polynomial [10].

There are times where working with labelled objects is of benefit. We can sacrifice some

algebric structure in exchange for the ability to work with labelled objects. In such a case we can

work with a Hopf monoid. In this transition from Hopf algebras to Hopf monoids we lose the

ring structure that is provided by a Hopf algebra. The use of Hopf monoids in combinatorics is a

relatively recent development compared to that of Hopf algebras. In particular the methods used

by Aguiar and Ardila in their study of a Hopf monoid GP of generalized permutahedra [1] give a

topological approach to computing a cancellation-free antipode for a Hopf monoid. As we will see

this topological approach can be used in more Hopf monoids than the GP.

The first half of Chapter 1 gives an introduction into posets, the braid arrangement, and Hopf

monoids. The braid arrangement is the pivotal tool used by Aguiar and Ardila in their study of

GP. We can view the grouped terms of Takeuchi’s formula as the Euler characteristics of objects

on the braid arrangement. Thus the problem of finding a cancellation-free antipode formula turns

into a topological problem. We give an outline of how this method is used by Aguiar and Ardila.

The latter half of Chapter 1 gives a brief review of Hopf algebras, Fock functors, and symmetric

functions which make an appearance in Chapter 6.
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Chapter 2 covers the Hopf monoid on set families SF that is the object of study in subsequent

chapters. One of the major pests we will encounter with SF is phantoms. We will see that they

can be dealt with in a simple manner when evaluating the antipode. This alleviates most of the

phantom problems we may face. In later chapters we make explicit where phantoms play a role so

that the reader may avoid some of the pitfalls we encountered upon our journey.

Chapter 3 provides a survey of some Hopf submonoids of SF. Many of the Hopf submonoids

considered are based on common combinatorial objects such as simplicial complexes and antima-

troids. A brief review of each object is given. We will see that the Hopf submonoid spanned by

simplicial complexes is the universal cocommutative Hopf submonoid of SF.

Chapter 4 walks through the process of finding a cancellation-free antipode formula for the

Hopf submonoid of lattices of order ideals, LOI. We will make use of Birkhoff’s theorem which

gives a correspondence between a poset and its lattice of order ideals. This allows us to use the

underlying poset structure. Understanding how the Hopf operations affect the underlying poset will

give us the means to use the topological approach of Aguiar and Ardila for finding a cancellation-

free antipode of LOI.

Chapter 5 moves away from LOI and focuses on the Hopf submonoid of simplicial complexes,

Simp. We will start with some structural results about the inflators of a simplicial complex. In

general it is not clear how to find a cancellation-free antipode formula for Simp. We will see that

enumerative methods can be used to derive a cancellation-free antipode formula for independence

complexes of uniform matroids.

Chapter 6 uses the results of Chapter 4 to analyze the character group of LOI. To motivate this

we compute the character group of the Hopf submonoid Bool which is spanned by Boolean alge-

bras, i.e., lattices of order ideals of antichains. We then turn our attention to the Hopf submonoid

of chain gangs CG. The character group of CG contains a subgroup of the character group that is

isomorphic to a multiplicative group of power series. This motivates us to turn our attention to the

Hopf algebra of symmetric functions CG. We will see that symmetric functions are isomoprhic to

2



a quotient Hopf algebra of CG.

Chapter 7 we consider future directions for study of the Hopf monoid on set families. The

first direction involves a family of characters on LOI which relates to the Mob̈ius function. This

is followed by a short discussion about characters on Simp. The last half of the chapter concerns

itself with some questions and observations about the Hopf submonoid AMat.
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Chapter 1

Background

1.1 Posets

Definition 1.1. A partially ordered set (also called a poset) (P,≤P) is a set P with a binary relation

≤P satisfying the following properties:

1. (Reflexivity) For all x ∈ P, x ≤P x.

2. (Antisymmetry) If x ≤P y and y ≤P x, then x = y.

3. (Transitivity) If x ≤P y and y ≤P z, then x ≤ z.

Often it is convenient to abuse notation and refer to the poset (P,≤P) as the poset P. It is also

convenient to write ≤ in place of ≤P when the context is clear. If x < y and there is no z such that

x < z < y, then we say that y covers x and write x⋖ y. We can visualize the relations of a poset

P by drawing its Hasse diagram. To do so we represent every element of P by a point with the

following conditions:

1. If x < y, then the point x appears below the point y;

2. if x⋖ y, then there is an edge between x and y.

For example, let Z be the “zigzag” poset with relations 1 < 3, 2 < 3, and 2 < 4. Its Hasse

diagram is shown in Figure 1.1.
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1 2

3 4

Figure 1.1: The Hasse diagram of the zigzag poset Z.

Definition 1.2. Q is a subposet of P if Q ⊆ P as a set and if x ≤Q y, then x ≤P y. If x ≤Q y if

and only x ≤P y for all x,y ∈ Q, then we say that Q is an induced subposet of P. We will use the

notation P|Q to indicate the induced subposet Q of P. If Q does not inherit all relations from P we

call Q a weak subposet of P.

As an example consider the zigzag poset Z from Figure 1.1 and take Q = {1,2,3}. Then Z|Q is

the poset on [3] with the relations 1 < 3 and 2 < 3. The poset on [3] with the relation 2 < 3 would

be an example of a weak subposet of Z since the relation 1 < 3 is not inherited.

1 2

3

1 2

3

Figure 1.2: Induced and weak subposets of the zigzag poset.

An order ideal of a poset P is an induced subposet Q ⊆ P with the property that if x <P y and

y ∈ Q, then x ∈ Q. Similarly an order filter is a subposet Q ⊆ P with the property that if x <P y and

x ∈ Q, then y ∈ Q. We can think of an ideal (filter) as being “closed under going down (up)” in the

poset. We use the notation ⌊X⌋ to denote the order ideal generated by X , i.e,

⌊X⌋= {y ∈ P : y ≤P x for some x ∈ X}

and similarly use ⌈X⌉ to denote the order filter generated by X .

We denote the set of order ideals of P by J(P). There is a lattice structure on J(P) where meet

and join are respectively intersection and union. We refer to J(P) as the lattice of order ideals of

P. Since the union and intersection of ideals are ideals it follows that J(P) is a distributive lattice.

5



Moreover, Birkhoff’s theorem states that the finite distributive lattices are precisely the lattices

J(P) where P ranges over all finite posets[20, §3.4].

Birkhoff’s theorem further states that P ∼= Irr(J(P)) where Irr(J(P)) is the collection of join-

irreducible elements of the lattice J(P). For example the lattice of order ideals for the zigzag poset

is shown in Figure 1.3. The shaded elements are the join-irreducible elements of the lattice.

⌊ /0⌋

⌊1⌋ ⌊2⌋

⌊1,2⌋ ⌊4⌋

⌊1,4⌋

⌊3,4⌋

⌊3⌋

Figure 1.3: Lattice of order ideals of the zigzag poset.

Given two disjoint posets P and Q, the disjoint union P+Q is the poset whose relations are

exactly those inherited from P and Q. Thus the Hasse diagram of P+Q is obtained by drawing the

Hasse diagrams of P and Q side by side.

A preposet (P,≤P) is a set P together with a binary relation ≤ that is reflexive and transitive,

but not necessarily antisymmetric. For x,y ∈ P, write x ≡P y if x ≤P y and y ≤P x; then ≡P is an

equivalence relation, and P/≡P is a poset on the set of equivalence classes.

A preposet P is linear, or a semiorder, if every two elements are comparable. A linear extension

of a preposet P is a linear preposet Q with the same underlying set and equivalence relation, such

that every relation of P is a relation of Q. Equivalently, Q is a linear extension of P/ ≡P in the

usual sense. We write L (P) for the set of linear extensions of P. For example, if P is the preposet

on [4] with relations 1 ≡ 2 ≤ 3 and 2 ≤ 4, then L (P) = {12|3|4,12|4|3}; see Figure 1.4.

6



P

3

1 ∼ 2

4

1 ∼ 2

3

4

1 ∼ 2

4

3

Figure 1.4: The preposet P and its linear extensions.

A set composition of [n] is a partition of [n] endowed with a linear order on the blocks of the

partition. The notation Comp(n) denotes the set of all set compositions of n; we also write Φ |= [n]

to mean Φ ∈ Comp(n). Notice that a set composition is the same as a linear preposet. As such we

use the convention that Φ = Φ1| . . . |Φk represents a set composition of [n] with k blocks. Thus we

can read off the linear order by going from left to right, i.e., Φ1 < · · · < Φk. We use the notation

x <Φ y when x ∈ Φi and y ∈ Φ j with i < j.

1.2 The Braid Arrangement

The braid arrangement Brn is constructed with the
(n

2

)
hyperplanes xi = x j in Rn. A face F of Brn

is a list of
(n

2

)
relations each indicating how xi and x j compare. These relations give rise to a set

composition of [n] where i ∼Φ j if xi = x j and i <Φ j if xi < x j. This gives a bijection between

set compositions of [n] and the faces of Brn. If Φ |= [n] has k blocks, then the resulting face has

dimension k.

12|3

1|2313|2

3|12

23|1 2|31

1|2|3

1|3|2

3|1|2

3|2|1

2|3|1

2|1|3

123

Figure 1.5: The braid arrangement Br3.
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Every preposet P on [n] corresponds to a convex union ∥P∥ of faces of the braid arrangement

in Rn, and this correspondence is a bijection. Moreover, the preposet linear extensions of P corre-

spond to the maximal faces of ∥P∥. For complete details on this “cone-preposet dictionary”, see

[16, §3].

By intersecting the braid fan with the unit sphere we obtain a triangulation of that sphere. The

facets of the triangulation correspond to those regions of the braid fan for which xω(1) < · · ·< xω(n)

where ω ∈ Sn. The lower dimensional faces are given by setting some of the inequalities to

equality. For instance the faces in the triangulation of Br3 corresponding to x1 < x2 < x3 and

x1 < x3 < x2 share an edge corresponding to x1 < x2 = x3. A preposet P corresponds to an open

convex subfan of the braid fan given by taking ∥P∥ ∩ Sn−2 and intersecting the result with the

hyperplane ∑
n
i=1 xi = 0.

A polyhedron is the intersection of a finite number of half-spaces. A bounded polyhedron is a

polytope. A face of a polytope P is collection of points where a linear functional f is maximized

in P. We refer to the dimension 0 faces as vertices, the dimension 1 faces as edges, and the

codimension 1 faces as facets. In general we also include the polytope and the empty face as faces

of the polytope. If we order the faces of a polytope by inclusion we obtain the face lattice of the

polytope. In Figure 1.6 we see the square pyramid and its face lattice. In this example it happens

that face lattice is dual to itself. This is not always the case.

8



1 2
34

5

/0

1 2 3 4 5

12 14 15 23 25 34 35 45

1234 125 145 235 345

12345

Figure 1.6: The square pyramid and its face lattice.

A subset S of R is a cone if for every λ > 0 and x ∈ S, then λx ∈ S. It is not necessary for a

cone to be convex. For example consider the cone consisting of the origin along with the first and

third quadrants of the xy-plane.

A polyhedral cone is a polyhedron that is a cone. For example we can consider the cone C in

R2 given by the set of points (x,y) such that x ≥ 0 and y ≥ 0. The faces of C are the origin, the

positive x and y axis, as well as the first quadrant. Each of these faces is a cone.

A fan is a polyhedral complex of cones, i.e., the intersection of the closure of faces is a cone.

If a fan F covers all of Rn, then F is a complete fan in Rn. We could extend C to a complete fan,

call it N , by adding in the negative x and y axes as well as the other three quadrants of R2.

Given a polyhedron P, the normal cone of a face F is the collection of linear functionals f such

that f |P is maximized on F . The collection of normal cones for the faces of P is the normal fan of

P. For example if P is the square whose vertices are (±1,±1) and (±1,∓1), then the normal fan

for P is N from above.

9



AB

DC

EW

S

N

AB

C D

EW

S

N

Figure 1.7: The square P and its associated normal fan.

1.3 Hopf Monoids

The presentation of Hopf monoids here follows [1, §2.2] closely. Before talking about Hopf

monoids it is necessary to talk about set species.

Definition 1.3. A set species P consists of

1. a set P[I] for each finite set I, and

2. a function P[σ ] : P[I]→ P[J] for each bijection σ : I → J, satisfying the conditions P[σ ◦τ] =

P[σ ]◦P[τ] and P[id] = id.

A set species for which P[ /0] is a singleton is called connected.

We tend to consider I as a ground set for some combinatorial objects (such as graphs, posets,

matroids, etc.). In this case P[I] corresponds to the set of all objects with ground set I. Additionally

the map P[σ ] associated with the bijection σ : I → J can be regarded as a renaming of elements in

the ground set.

10



A set species is a functor from the category FSet× of finite sets with bijection to the category

Set of sets with functions. The first condition of Definition 1.3 states how a finite set is mapped

to a set, and the second condition states how a bijection are mapped to a function. By adding an

algebraic structure to a set species, we strive to obtain a better understand of the species. This is

where a Hopf monoid in a set species comes into play.

Definition 1.4. A Hopf monoid in a set species consists of a set species H such that for each finite

set I and each decomposition I = S⊔T , there are product and coproduct maps

µS,T : H[S]×H[T ]→ H[I] (Product)

∆S,T : H[I]→ H[S]×H[T ] (Coproduct)

that satisfy the axioms of naturality, unitality, associativity, coassociativity, and compatibility, listed

below.

Unless stated otherwise all Hopf monoids we consider are assumed to be connected. We can

think of product as the merging of two objects whereas coproduct is the breaking up of a single

object into two separate objects. Before describing the axioms it is necessary to introduce some

notation that will be used throughout this document.

Suppose we have a decomposition I = S⊔ T , and x ∈ H[S], y ∈ H[T ], and z ∈ H[I]. For the

product of x and y we use x · y, i.e., µS,T (x,y) = x · y. For the coproduct of z we write ∆S,T (z) =

(z|S,z/S) where z|S is the restriction of z to S and z/S is the contraction of S from z. The unique

element of H[ /0] we call the unit of H and denote as 1.

Naturality. For each decomposition I = S⊔T and bijection σ : I → J and any x∈H[S], y∈H[T ],

and z ∈ H[I], we require that the following conditions all hold.

11



H[σ ](x · y) = H[σ |S](x) ·H[σ |T ](y), (1.1a)

H[σ ](z)|S = H[σ |S](z|S), (1.1b)

H[σ ](z)/S = H[σ |T ](z/S). (1.1c)

If we think of I as labels for some combinatorial structure, naturality can be seen as ensuring

that product and coproduct are preserved under relabeling. In most cases naturality should follow

immediately from the definition of the monoid.

Unitality. For each I and x ∈ H[I], we require that the following conditions all hold.

x ·1 = 1 · x = x, (1.2a)

x|I = x/ /0 = x. (1.2b)

Associativity. For each decomposition I = R⊔S⊔T , x ∈ H[R], y ∈ H[S], z ∈ H[T ], we require

x · (y · z) = (x · y) · z (1.3)

Coassociativity. For each decomposition I = R⊔S⊔T and w ∈ H[I], we require that

∆(R⊔S),T (w) = ∆R,(S⊔T )(w) = ∆R,S,T (w). (1.4)

Equivalently, the following conditions all hold.

12



(w|R⊔S)|R = w|R, (1.5a)

(w|R⊔S)/R = (w/R)|S, (1.5b)

w/R⊔S = (w/R)/S. (1.5c)

By iterating this process we can take the product and coproduct with decompositions that have

any number of parts. Thus if we have a set composition S = S1|S2| . . . |Sk |= I then

µS(x1, . . . ,xk) = x1 · · ·xk, (1.6a)

∆S(y) = (y1, . . . ,yk) (1.6b)

where xi ∈ H[Si] and y ∈ H[I]. Additionally,

yi = (y|S1⊔···⊔Si)/S1⊔···⊔Si−1 ∈ H[Si]. (1.7)

Compatibility. Suppose we have decompositions S⊔T = I = S′⊔T ′. If we consider the inter-

sections A = S∩S′, B = S∩T ′, C = T ∩S′, and D = T ∩T ′ and x ∈ H[S], y ∈ H[T ], then we require

that the following conditions all hold:

(x · y)|S′ = x|A · y|C, (1.8a)

(x · y)/S′ = x/A · y/C. (1.8b)

The requirement of compatibility is for the breaking and merging of an object to give us the

same result regardless of the order we compose our operations. We can visualize this in Figure 1.8.
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∆

µ

µ

∆

S

T
S′ T ′

A

C

B

D

I

Figure 1.8: The decompositions of I

As with other algebraic structures we say that a Hopf monoid H is commutative if xy = yx for

all x ∈ H[S] and y ∈ H[T ] where I = S⊔T . Similarly, H is cocommutative if for all decompositions

I = S⊔T and z ∈ H[I], then (z|S,z/S) = (z/T ,z|T ).

Example 1.5 (The Hopf monoid of matroids). Let M be the species of matroid independence

complexes on ground set E. For E = S⊔T , A ∈ M[S], and B ∈ M[T ] we define

A⊕B = {I ∪ J : I ∈ A,J ∈ B} (Direct Sum)

A|S = {I ∩S : I ∈ A}, (Matroid Restriction)

A/S = {I ∩T : I ∪BS ∈ A} (Matroid Contraction)

where BS is a facet of A|S, i.e., a basis of the matroid whose independence complex is A|S.

Throughout this example we use BX to denote a facet of A|X . We claim that these operation

give us a Hopf monoid where product is given by A⊕B and coproduct is given by A|S ⊗A/S.

The axioms of naturality, unitality, and associativity are straightforward to check so we proceed

to check that coassociativity and compatibility both hold.

To check coassociativity we start with a matroid independence complex A ∈ M[E] with E =

S⊔T ⊔R and verify that (1.5a)-(1.5c) hold.
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The first equation (1.5a) is easily verified

(A|R⊔S)|R = {I ⊂ R : I ∈ A|R⊔S}= {I ⊂ R : I ∈ A}= A|R.

To verify the second equation (1.5b) we start by noting that

(A|R⊔S)/R = {I ⊆ S : I ∪BR ∈ A|R⊔S}.

Likewise since

A/R = {I ⊆ S⊔T : I ∪BR ∈ A}

it follows that

(A/R)|S = {I ⊆ S : I ∪BR ∈ AR⊔S}

as desired. Finally to verify (1.5c) note that A/R = {I ⊆ S⊔T : I ∪Br ∈ M}. Thus

(A/R)/S = {I ⊆ T : I ∪BS ∈ A/R}

= {I ⊆ T : I ∪BS ∪BR ∈ A}= A/R⊔S.

Therefore coassociativity holds. To check compatibility we must show that equations (1.8a)

and (1.8b) hold. Suppose that S⊔T = I = S′⊔T ′ and consider the intersections A = S∩ S′, B =

S∩T ′, C = T ∩S′, and D = T ∩T ′. Further let X ∈ M[S] and Y ∈ M[T ].

First we check (1.8a).

(X ·Y )|S′ = {(IX ∪ IY )∩S′ : IX ∈ X , IY ∈ Y}

= {(IX ∩S′)∪ (IY ∩S′) : IX ∈ X , IY ∈ Y}

= X |S′ ·YS′ = X |A ·Y |C.
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Next we check (1.8b).

(X ·Y )/S′ = {IX ∪ IY ⊂ T ′ : (IX ∪ IY )∪BS′ ∈ X ·Y}

= {IX ⊆ B, IY ⊆ D : IX ∪BS′ ∈ X , IY ∪BS′ ∈ Y}

= {IX ⊆ B : IX ∪BS′ ∈ X} · {IY ⊆ D : IY ∪BS′ ∈ Y}

= X/A ·Y/C.

Thus compatibility holds. Later we will describe a different Hopf monoid structure on the species

M.

A subspecies of a species H is a species G such that G[I] ⊂ H[I] for all I. A Hopf submonoid

is a subspecies which inherits and is closed under the Hopf operations of the parent species. It is

easily checked that intersection is well-defined on the level of Hopf monoids:

Proposition 1.6. Suppose H is a Hopf monoid with Hopf submonoids G1 and G2. Then G1 ∩G2 is

a Hopf submonoid of H, where (G1 ∩G2)[I] = G1[I]∩G2[I].

If we replace the word “set” with the word “vector space” in Definition 1.3, we obtain the

definition of a vector species. Fix a field k.

Definition 1.7. A vector species P consists of

1. a vector space P[I], for each finite set I, and

2. a linear map P[σ ] : P[I]→ P[J] for each bijection σ : I → J, satisfying the conditions P[σ ◦

τ] = P[σ ]◦P[τ] and P[id] = id.

A vector species for which P[ /0] = k is called connected.

Analogous to Definition 1.3, a vector species is a functor from the category FSet× of sets with

bijections to the category Vec of vector spaces and linear maps. Specifically the second requirement
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in Definition 1.7 tells us that a vector species is a covariant functor. For our purposes we assume

that all vector species are connected, unless stated otherwise.

Definition 1.8. Let P be a set species. The linearization of P is the vector species P = kP given by

P[I] = kP[I]. That is, P[I] is the vector space of formal k-linear combinations of elements of P[I].

In a similar manner we can describe a Hopf monoid structure in vector species.

Definition 1.9. A Hopf monoid in a vector species consists of a vector species H such that for each

finite set I and each decomposition I = S⊔T , there are operations called product and coproduct

which are linear maps

µS,T : H[S]⊗H[T ]→ H[I], (Product)

∆S,T : H[I]→ H[S]⊗H[T ] (Coproduct)

that satisfy the axioms of naturality, unitality, associativity, coassociativity, and compatibility.

Definition 1.10. Let H be a Hopf monoid in set species. The linearization of H is the vector

species H = kH, equipped with a product and coproduct by extending those of H k-linearly. A

vector Hopf monoid of this form is called linearized.

Remark 1.11. There exist vector Hopf monoids which are not linearized. There are instances of

non-linearized Hopf monoids on species which also admit a linearized Hopf monoid structures.

When talking about connected Hopf monoids in a vector species, the unit is the map u : k→

H[ /0] which sends the multiplicative identity of k to the basis vector of H[ /0]. Note that when H

is the linearization of a set species there will be a canonical choice for the basis vector though in

general this is not the case.

In addition to the unit which sends k to H[ /0] we also have the counit which is a linear map ε

which sends the basis vector of H[ /0] to the multiplicative identity of k and each other element to

zero.
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Given a connected Hopf monoid H the antipode S is the solution to the commutative diagram

shown in Figure 1.9.

H⊗H H⊗H

H k H

H⊗H H⊗H

id⊗S

µ∆

∆

ε u

S⊗id

µ

Figure 1.9: The Antipode of H

We can write out the antipode operation in the form of Takeuchi’s formula

SI(X) = ∑
Φ|=I

(−1)|Φ|
µΦ(∆Φ(X)) (1.9)

where X ∈ H[I]. Although Takeuchi’s formula gives an explicit way to compute the antipode, the

number of terms in the sum grows rapidly as the set I increases in cardinality. Fortunately in many

cases a lot of cancellation occurs between terms. The process of finding such a cancellation-free

antipode formula tends to lead to fruitful combinatorial results. These results include things such

as inversion of formal power series and determining the group of characters in a Hopf monoid.

1.4 The Hopf Monoid of Generalized Permutahedra

The standard permutahedron in Rn is the convex hull of the points {(w(1), . . . ,w(n)) : w ∈Sn}.

The normal fan of the standard permutahedron is in fact the braid fan. As an example consider

the case where n = 3 in which the standard permutahedron is a hexagon. If we look down at the

plane x+ y+ z = 6 which contains the hexagon we see that the normal fan is given by Figure 1.5.

Given a vertex v = (w(1), . . . ,w(n)), the vertices adjacent to v are precisely those obtained from

w by swapping w(i) and w( j) when |w(i)−w( j)| = 1. Further the edge is a parallel translate of
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ei − e j where e1,e2, . . . ,en are the standard basis vectors of Rn.

A generalized permutahedron is a polyhedron P whose normal fan is a coarsening of the braid

fan; that is, every normal cone of P is the union of faces of the braid fan [16]. Generalized per-

mutahedra retain the property that every edge is parallel to ei − e j for some i and j. This property

fully characterizes generalized permutahedra. For example matroid polytopes are generalized per-

mutahedra in which the edges correspond to basis exchange [7]. Readers interested in the theory

of generalized permutahedra are refered to [16] and [17].

Many of the methods we use to study the Hopf monoid SF were first used by Aguiar and Ardila

[1] to study the Hopf monoid GP of generalized permutahedra, defined as follows.

• As a vector species, GP[I] is spanned by generalized permutahedra in RI .

• Given p ∈ GP[S] and q ∈ GP[T ], their product µS,T (p,q) is their Cartesian product p× q ∈

GP[S⊔T ].

• Given p ∈ GP[E] and S⊔T = E. We compute the coproduct ∆S,T (p) in the following way.

We consider the face of p that is maximized by the functional 1S. It turns out that this face

can be factored as p|S ×p/S where p|S ⊂ RS and p/S ⊂ RT . We define ∆S,T (p) = p|S ⊗p/S.

These operations satisfy the axioms of a Hopf monoid [1, §5]. For p ∈ GP[I], the antipode is given

by

SI(p) = (−1)|I| ∑
q≤p

(−1)dimqq

where q ranges over the nonempty faces of p. The proof given in [1] starts by grouping the terms

in Takeuchi’s formula which gives us a sum over subfaces q of p. The next step is to determine the

values of the coefficients aq. To do this we consider which cones of the braid fan are maximized

by q. We end up with something that looks like Euler characteristic on a set of polyhedra Cq. Since

Cq is not a polyhedral complex we cannot interpret aq as an Euler characteristic. To remedy this

inconvenience we use the fact that C q and C q−Cq are polyhedral complexes where C q is the
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closure of Cq. By intersecting these complexes with the unit sphere and the hyperplane ∑
n
i=1 xi = 0

we end up with two relative simplicial complexes. From there we can use the Euler characteristic

to compute aq and arrive at a cancellation-free antipode formula for GP. We will see that this same

method can be used for other Hopf monoids, not just GP.

1.5 Hopf Algebras & Fock Functors

A bialgebra B is a vector space over a field k with:

• associative k-linear maps µ : B⊗B → B,

• coassociative k-linear maps ∆ : B → B⊗B,

• a unit η : B → k,

• and a counit ε : k→ B

such that ∆ and ε are algebra homomorphisms (equivalently µ and η are coalgebra homomor-

phisms). Given x,y ∈ H we use the same convention as with Hopf monoids and use x ·y in place of

µ(x⊗y). Similar to the operations of Hopf monoids, we can think of product as a way to combine

objects in B and coproduct as a way to break apart objects in B. The result of taking the coproduct

results in a summation over tensors. In the general case we often use Sweedler notation in which

we do not concern ourselves with the specifics of the indices of summation. At first this may ap-

pear to be an odd convention to adopt, but it makes stating general facts about the coproduct very

convenient. For example suppose b ∈ B, then we can represent the coproduct in Sweedler notation

by

∆(b) = ∑b1 ⊗b2.

Further the property of coassociativity is simply written as

∆(b) = ∑b1 ⊗∆(b2) = ∑∆(b1)⊗b2.
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We can also use Sweedler notation to state what it means for ε to be a counit of B

b = ∑ε(b1)⊗b2 = ∑b1 ⊗ ε(b2). (1.10)

Given a bialgebra B, a k-vector subspace I of H is a biideal if I is an ideal and a coideal.

Specifically

• for all b ∈ B, bI ⊆ I and Ib ⊆ I,

• ∆(I)⊆ I ⊗B+B⊗ I,

• and ε(I) = 0.

A Hopf algebra H is a bialgebra (over a field k) which admits an antipode S : H → H. The

antipode is the solution to the commutative diagram in Figure 1.10 where η is the unit and ε is the

counit.

H ⊗H H ⊗H

H k H

H ⊗H H ⊗H

id⊗S

µ∆

∆

ε η

S⊗id

µ

Figure 1.10: The commutative diagram satisfied by S.

In Sweedler notation S is the map such that

η(ε(h)) = ∑h1 ·S(h2) = ∑S(h1) ·h2. (1.11)

Suppose H is a Hopf algebra. A k-vector subspace I of H is a Hopf ideal if I is a biideal and

S(I)⊆ I. The quotient H/I yields a Hopf algebra with structure inherited from H [13, §1.5].

A graded bialgebra B =⊕Bi over k is connected if B0 = k.
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Lemma 1.12. Suppose B is a graded and connected bialgebra. Fix n > 0 and suppose b ∈ Bn.

Then

∆(b) = b⊗1+∑b1 ⊗b2 +1⊗b

where the Sweedler sum contains only elements of degree strictly between 0 and n.

Proof. Recall from (1.10) that b = ∑b1⊗ε(b2). Thus there is a summand b′⊗b′′ of ∆(b) such that

b′ ∈ Bn. Since B is graded and connected this implies b′′ ∈ k. Since tensor product is a multilinear

map we can group the terms of Bn⊗B0 into a single tensor of the form b⊗k for some k ∈ k. Using

properties of the counit we can show that k = 1. Similarly since b = ∑ε(b1)⊗ b2 it follows that

∆(b) has a summand of the form 1⊗b.

Proposition 1.13. Suppose H is a graded and connected bialgebra. Then H admits a unique

antipode S and H can be made into a Hopf algebra.

Proof. We will use use (1.11) and Lemma 1.12 to recursively compute S. First note that η(ε(1)) =

1 = 1⊗S(1) = S(1). Thus if h ∈ H0, then S(h) = h. Assume we know how to compute S for the

graded pieces up to but not including degree n and that h ∈ Hn. Then

η(ε(h)) = S(h)+∑S(h1)⊗S(h2)+S(1).

Using our induction assumption we can solve for S(h) in terms of the lower degree pieces in the

Sweedler sum. Lemma 1.12 guarantees that h1 and h2 will be in a lower graded piece of H than

h.

Given a Hopf monoid we can construct an associated Hopf algebra. This can be done via the

Fock functor1 denoted ¯K . Before we can describe how ¯K turns a Hopf monoid H into a Hopf

algebra H we need one additional definition. Two objects X ∈ H[I] and Y ∈ H[J] are isomorphic if

1There are actually four functors given the name Fock functor.
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there is a bijection σ : I → J such that σX =Y . In other words if we can relabel X to get Y we say

that X and Y are isomorphic.

Suppose |I| = n and consider X ∈ H[I]. Then ¯K (X) sends X to the class of items that are

isomorphic to X . We can think about this as removing the labels from X . We describe the graded

Hopf algebra H = ¯K (H) as

H =
⊕
n≥0

span{isomorphism classes of elements of H[I] for |I|= n}.

We denote the isomorphism class of h ∈H[I] by [h]. To compute the product and coproduct in

the Hopf algebra we can perform the product and coproduct by picking representatives from the

monoid and performing the corresponding operations. Specifically if h1 ∈ H[k1], h2 ∈ H[k2], and

h ∈ H[S⊔T ], then

[h1] · [h2] = [h1 ·hk1+
2 ] ∆([h]) = ∑

[n]=S⊔T
[h|S]⊗ [h/S] (1.12)

where hk1+
2 = σ+k1(h2) ∈ H[{k1 + 1, . . . ,k1 + k2}] is the result of applying the order-preserving

bijection σ+k1 : [k2]→{k1 +1, . . . ,k1 + k2} [1, §2.9].

1.6 Symmetric Functions

Suppose R is a commutative ring. The ring of formal power series on variables x1,x2, . . . with

coefficients in R is denoted by R[[x1,x2, . . . ]]. A function f ∈ R[[x1,x2 . . . ]] is a symmetric function

if

f (x1,x2, . . .) = f (xω(1),xω(2), . . .)

for every ω ∈∪∞
n=1Sn =S∞. For our purposes we are interested in the ring of symmetric functions

over C which we denote by Λ. Note that Λ = ⊕Λd where Λd is the collection of symmetric
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functions of degree d. There are several bases that are used when working with Λ. We will now

review the bases that will be used in Chapter 6. For further information regarding the ring of

symmetric functions we refer the reader to [12] and [19].

Suppose that α = (α1,α2, . . .) is a sequence such that all but finitely many entries are zero.

We define xα = ∏i xα
i to be the monomial with exponent vector α . Let λ (α) = (λ1, . . . ,λk) be the

integer partition of n = ∑αi. We define the monomial symmetric function mλ by

mλ = ∑
α:λ (α)=λ

xα .

For example

m(2,2,1) = x2
1x2

2x3 + x2
1x2x2

3 + x1x2
2x2

3 + . . . .

If λ = 1k, i.e., the partition with k 1’s, then we obtain the kth elementary symmetric function

denoted ek. That is to say

ek = m1k = ∑
1≤i1<···<ik

xi1 . . .xik .

For example

e3 = x1x2x3 + x1x2x4 + x1x3x4 + x1x2x5 + . . . .

We set e0 = 1. Given a partition λ = (λ1, . . . ,λk) we use the convention that eλ = eλ1 . . .eλk
.

If we only require the sequence ik to be monotonically increasing as opposed to strictly increas-

ing, then we arrive at the kth complete homogeneous symmetric function denoted hk. That is the

function of the form

hk = ∑
1≤i1≤···≤ik

xi1 . . .xik .

For example

h2 = x2
1 + x2

2 + x2
3 + x2

4 + · · ·+ x1x2 + x1x3 + x1x4 + . . . .
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Note that

hk = ∑
λ⊢k

mλ .

It is known [19, Section 7.6] that the generating functions for the elementary and complete

homogeneous symmetric functions are given respectively by

E(t) = ∑ektk = ∏
i≥1

(1+ txi), and

H(t) = ∑hktk = ∏
i≥1

1
1− txi

.

Noting that E(t)H(−t) = 1 we get a collection of relations between the eks and the hks given

by
n

∑
k=0

(−1)kekhn−k = 0. (1.13)

1.7 The Hopf Algebra of Symmetric Functions

As stated in Section 1.6 Λ is a graded ring. We can go further and endow Λ with a Hopf algebra

structure. The coproduct of a symmetric function F ∈ Λ is computed in the following way. For

x = (x1,x2, . . .) and y = (y1,y2, . . .) we define F(x,y) = F(x1,y1,x2,y2, . . .)∈C[[x,y]]. The power

series F(x,y) is symmetric in both x and y and thus can be written in the form ∑F1(x)F2(y). We

thus define

∆F = ∑F1 ⊗F2.
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As an example let us compute ∆h2.

h2(x,y) = ∑x2
i +∑

i< j
xix j +∑xiy j +∑y2

i +∑
i< j

yiy j

= h2(x)+h1(x)h1(y)+h2(y).

Thus

∆h2 = h2 ⊗h0 +h1 ⊗h1 +h0 ⊗h2.

More generally

∆hn = ∑
i+ j=n

hi ⊗h j and

∆en = ∑
i+ j=n

ei ⊗ e j.

To understand the antipode S of Λ we define the map ω : Λ → Λ by ω(en) = hn and extend ω

algebraically since the ens form an algebra basis. In fact ω is an involutive automorphism. Since Λ

is a connected and graded bialgebra we can use Proposition 1.13 to find the value of the antipode

as applied to hk. Using the relations from (1.13) we obtain

S(hk) = (−1)kek = (−1)k
ω(hk).
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Chapter 2

A Hopf Monoid SF on Set Families

A set family is a pair (F ,E), where E is a finite set and F ⊆ 2E . We say that (F ,E) is grounded if

/0 ∈F . Often we will simply refer to the set family F when the ground set E is clear from context.

Let SF denote the set species of grounded set families. Note that SF[ /0] contains a single object,

namely ({ /0}, /0). Therefore SF is a connected set species (hence why we require set families to

be grounded). Note that the notation SF is used in [1, Chapter 12] to denote the Hopf monoid of

submodular functions. This Hopf monoid is unrelated to grounded set families. In our context SF

will always refer to the set species of grounded set families.

The join F1 ∗F2 of two set families F1 and F2 is the set family

F1 ∗F2 = {X ∪Y : X ∈ F1,Y ∈ F2}.

Let (F ,E) be a set family and A ⊆ E. We define the restriction F |A and the contraction F/A

to be the set families

F |A = {F ∩A|F ∈ F},

F/A = {F ∈ F |F ∩A = /0}.

Proposition 2.1. The set species SF admits the structure of a commutative Hopf monoid, with

product

(F1,E1) · (F2,E2) = (F1 ∗F2,E1 ∪E2),
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coproduct

(∆A,Ā(F ,E) = ((F |A,A),(F/A,E \A)),

and unit ({ /0}, /0). As a consequence of linearization it follows that the vector species SF also

admits a commutative Hopf monoid structure.

Proof. Unitality and Naturality: Unitality follows immediately from the definitions of unit, join,

restriction, and contraction. Commutativity and associativity: Associativity of product comes

directly from associativity of union. Commutativity also follows from commutativity of union.

Coassociativity: Suppose that (F ,E) is a set family and that E = S⊔T ⊔R. Recall we need to

show that (1.5a)-(1.5c) hold. Indeed,

(F |RS)|R = {(F ∩ (R∪S))∩R : F ∈ F}

= {((F ∩R)∪ (F ∩S))∩R : F ∈ F}

= {((F ∩R)∩R)∪ ((F ∩S)∩R) : F ∈ F}

= {F ∩R : F ∈ F}

= F |R,

(F |RS)/R = {X ∈ F |RS : X ∩R = /0}

= {F ∩ (R∪S) : F ∈ F ,F ∩ (R∪S)∩R = /0}

= {(F ∩R)∪ (F ∩S) : F ∈ F ,F ∩R = /0}

= {F ∩S : F ∈ F ,F ∩R = /0}

= (F/R)|S,
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and

F/RS = {F ∈ F : F ∩ (R∪S) = /0}

= {F ∈ F : (F ∩R)∪ (F ∩S) = /0}

= {F ∈ F : (F ∩R) = /0,(F ∩S) = /0}

= F/R/S.

Therefore coassociativity holds.

Compatibility: Recall that for compatibility we need to show that (1.8a) and (1.8b) hold when

S⊔T = E = S′⊔T ′ with pairwise intersections A = S∩S′, B = S∩T ′, C = T ∩S′, and D = T ∩T ′.

We check that (1.8a) and (1.8b) hold.

(F ·F ′)|S′ = {(X ∪Y )∩S′ : X ∈ F ,Y ∈ F ′}

= {(X ∩S′)∪ (Y ∩S′) : X ∈ F ,Y ∈ F ′}

= {X ′∪Y ′ : X ′ ∈ F |S′,Y ′ ∈ F ′|S′}= F |A ·F ′|C.

(F ·F ′)/S′ = {X ∪Y : X ∈ F ,Y ∈ F ′,(X ∪Y )∩S′ = /0}

= {X ∪Y : X ∈ F ,Y ∈ F ′,(X ∩S′)∪ (Y ∩S′) = /0}

= {X ∪Y : X ∈ F ,Y ∈ F ′,(X ∩S′) = /0,(Y ∩S′) = /0}= F/A ·F ′/C.

We will use the symbol ∗ for the linear extension of the join operation to SF.

Throughout this document we will make use of the higher product and coproduct operations
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µΦ and ∆Φ. In particular suppose F is a grounded set family on E and a set composition Φ =

Φ1| . . . |Φm |= E. Then

∆Φ(F ) = (F1, . . . ,Fm) (2.1)

where

Fi = {A∩Φi : A ∈ F and A∩Φ j = /0 ∀ j < i} (2.2)

Remark 2.2. Given a grounded set family (F ,E) we do not require that every element of E appear

in a member of F . An element of E that does not appear in any member of F will be referred to

as a phantom.

Example 2.3. Consider the topology τ = { /0,1,12} on ground set I = {1,2}=R⊔S where R= {1}

and S = {2}. Then µR,S(∆R,S(τ)) = µR,S(({ /0,1},R),({ /0},S)) = ({ /0,1}, I). We see that 2 is a

phantom of the set family µR,S(∆R,S(τ)).

Phantoms pose a menace when working with the monoid SF. Specifically, they have an effect

when computing the antipode for a set family. As an example consider F = { /0,1}. Then

S(F , [1]) =−(F , [1]), but

S(F , [2]) = (F , [2]).

Thus phantoms cannot be completely ignored. Fortunately we can get a handle on the phantom

menace when working with the antipode. Given a finite set E and an element x /∈ E we define the

conjuration map γ : E → E ∪{x} to be the linear map such that

γ(F ,E) = (F ,E ∪{x})

where F ∈ SF[E]. Since set families with ground set E form a basis for the space SF[E] this

is sufficient information to determine how γ acts on an arbitrary element of SF[E]. With the
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conjuration map in place we can now handle phantoms in the anitpode.

Proposition 2.4. Suppose F ∈ SF[E] and that x /∈ E. Then

S(γ(F ,E)) =−γ(S(F ,E)).

Proof. Recall Takeuchi’s formula:

S(γ(F ,E)) = ∑
Φ|=E∪{x}

(−1)|Φ|
µΦ(∆Φ(F ))

= ∑
Φ|=E∪{x}
{x}∈Φ

(−1)|Φ|
µΦ(∆Φ(F ))+ ∑

Φ|=E∪{x}
{x}̸∈Φ

(−1)|Φ|
µΦ(∆Φ(F )) (2.3)

Suppose Φ |= E ∪{x} and consider the set composition Ψ |= E that arises by erasing x from Φ.

If x is a singleton block, then |Ψ|= |Φ|−1. In addition there are |Ψ|+1 positions where x could

be inserted to get a set composition of E ∪{x}.

In a similar manner, if x were not a singleton block, then |Ψ| = |Φ|. Given Ψ, there are |Ψ|

blocks where x could be inserted to get a set composition of E ∪{x}. Therefore Equation (2.3) can

be rewritten as

γ

(
∑

Ψ|=E
(|Ψ|+1)(−1)|Ψ|+1

µΨ(∆Ψ(F ))+ ∑
Ψ|=E

|Ψ|(−1)|Ψ|
µΨ(∆Ψ(F ))

)

=−γ

(
∑

Ψ|=E
(−1)|Ψ|

µΨ(∆Ψ(F ))

)

=−γ(S(F ,E))

as desired.

31



Chapter 3

Hopf Submonoids of SF

There are many collections of grounded set families such as simplicial complexes that are com-

monplace in the study of combinatorics. We will see that many of these collections give rise to

Hopf submonoids of SF.

Remark 3.1. Suppose X is a subspecies of SF and that (F ,E) ∈ X[E]. We need to keep in mind

that (F ,E) may have phantoms in which case
⋃

F∈F F is a proper subset of E. For example

we shall see that simplicial complexes form a Hopf submonoid called Simp in which Simp[E] is

spanned by simplical complexes whose vertex set is a subset of E.

3.1 Accessible Set Systems (Acc)

Definition 3.2. A set family (F ,E) is called accessible if for each non-empty X ∈ F there is an

element x ∈ X such that X −{x} ∈ F .

It is immediate from this definition that non-empty accessible set systems are grounded.

Proposition 3.3. If F and G are accessible set families, then F ∗G is a an accessible set family.

Proof. Suppose there is a non-empty set X = F ∪G ∈ F ∗G where F ∈ F and G ∈ G . Then

without loss of generality F ̸= /0 and therefore using the accessibility of F it follows that there is

an x ∈ S such that F −{x} ∈ F . Hence X −{x} ∈ F ∗G and F ∗G is accessible.

Proposition 3.4. If (F ,E) is an accessible set family and A⊆E, then F |A and F/A are accessible

set families.
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Proof. Suppose that X ∈ F |A with X ̸= /0. Then X = X ′ ∩A for some non-empty X ′ ∈ F . It

follows that there is an x ∈ E such that Y ′ = X ′−{x} ∈ F . Either x ∈ A or x /∈ A. If x ∈ A, then

Y ′∩A = (X ′−{x})∩A = X −{x} ∈ F |A.

If on the other hand x /∈ A, then

Y ′∩A = (X ′−{x})∩A = X ′∩A ̸= /0.

In this case we can apply accessibility to Y ′ since Y ′ ̸= /0 and repeat the above argument until we

obtain an element z ∈ A in which case

(Y ′−{z})∩A = (X ′−{z})∩A = X −{z} ∈ F |A.

We have therefore verified that F |A is an accessible set system.

If X ∈ F/A, then X ∩ A = /0. Further if X is non-empty, then there is an x ∈ E such that

X −{x} ∈ F . Since X −{x} ⊆ X and X ∩A = /0, then it follows that (X −{x})∩A = /0 implying

X −{x} ∈ F/A. Therefore F/A is an also an accessible set system.

Corollary 3.5. The subspecies Acc spanned by accessible set families is a Hopf submonoid of SF.

3.2 Set Systems Closed Under Intersection (Int)

Definition 3.6. A set family (F ,E) is closed under intersection if for every X ,Y ∈ F it follows

that X ∩Y ∈ F .

Proposition 3.7. If F and G are set families (with disjoint ground sets) closed under intersection,

then F ∗G is a set family closed under intersection.
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Proof. If X ,y ∈ F ∗G , then there exist F1,F2 ∈ F and G1,G2 ∈ G such that X = F1 ∪G1 and

Y = F2 ∪G2. It follows that

X ∩Y = (F1 ∪G1)∩ (F2 ∪G2)

= (F1 ∩F2)∪ (G1 ∩F2)∪ (F1 ∩G2)∪ (G1 ∩G2)

= (F1 ∩F2)∪ (G1 ∩G2) ∈ F ∗G .

Proposition 3.8. If (F ,E) is a set family closed under intersection and A ⊆ E, then F |A and F/A

are also set families closed under intersection.

Proof. Suppose X ,Y ∈ F |A. Then X = X ′∩A and Y = Y ′∩A for some X ′,Y ′ ∈ F . Therefore

X ∩Y = (X ′∩A)∩ (Y ′∩A) = (X ′∩Y ′)∩A ∈ F |A.

Next suppose X ,Y ∈ F/A ⊆ F . Then X ∩A = /0 and likewise Y ∩A = /0. Therefore

(X ∩Y )∩A = (X ∩A)∩ (Y ∩A) = /0.

Therefore X ∩Y ∈ F/A.

Corollary 3.9. The subspecies Int spanned by grounded set families closed under intersection is

a Hopf submonoid of SF.

3.3 Set Systems Closed Under Union (Union)

Definition 3.10. A set system (F ,E) is closed under union if for every X ,Y ∈ F it follows that

X ∪Y ∈ F .
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Proposition 3.11. If F and G are set families closed under union, then F ∗G is a set family

closed under union.

Proof. If X ,Y ∈ F ∗G , then there exist F1,F2 ∈ F and G1,G2 ∈ G such that X = F1 ∪G1 and

Y = F2 ∪G2. Considering the union

X ∪Y = (F1 ∪G1)∪ (F2 ∪G2) = (F1 ∪F2)∪ (G1 ∪G2).

Therefore F ∗G is closed under union.

Proposition 3.12. If (F ,E) is a set family closed under union and A ⊆ E, then F |A and F/A are

also set families closed under union.

Proof. Suppose that X ,Y ∈F |A. Then X = X ′∩A and Y =Y ′∩A for some X ′,Y ′ ∈F . Therefore

X ∪Y = (X ′∩A)∪ (Y ′∩A) = (X ′∪Y ′)∩A ∈ F |A.

Next suppose X ,Y ∈ F/A ⊆ F . Then X ∪Y ∈ F and

(X ∪Y )∩A = (X ∩A)∪ (Y ∩A) = /0

which implies X ∪Y ∈ F/A.

Corollary 3.13. The subspecies Union spanned by grounded set families closed under union is a

Hopf submonoid of SF.

Recall that a set family (E,F ) is a topological space if

1. /0,E ∈ F ,

2. given a collection {Fα} ⊆ F , then ∪Fα ∈ F ,
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3. and given a finite collection {Fα} ⊆ F , then ∩Fα ∈ F .

The elements of F are called the open sets of the space. If E is a finite set and (F ,E) is a

topological space, then we call (F ,E) a finite topological space. Further finite topological spaces

on a set E are equivalent to the sublattices of the boolean lattice of E. As such a finite topological

space is a set family that is closed under intersection and union. Using the fact that the intersection

of two Hopf submonoids is a Hopf submonoid it follows that topological spaces span a Hopf

submonoid of SF.

Corollary 3.14. The subspecies Top of finite topological spaces is a Hopf submonoid of SF. Fur-

ther Top is a Hopf submonoid of Int and Union.

Due to phantoms we need to be aware that Top[E] contains more than just finite topological

spaces on E, but instead contains finite topological spaces on subsets of E. For example consider

E = {x,y} and F = {E, /0}. Then (F ,E) ∈ Top[E]. Taking S = {x} and T = {y} we obtain

(F ,E)|S = (S,{S, /0}) and

(F ,E)/S = (T,{ /0}).

Notice that the restriction gives a topological space on S and yet the contraction fails to give a

topological space on T .

3.4 Simplicial Complexes (Simp)

Definition 3.15. A simplicial complex is a set family (F ,E) such that if X ∈ F and Y ⊆ X , then

Y ∈ F .

This definition of simplicial complexes allows for the possibility of phantom vertices. By

adding the requirement that {x} ∈F for each x ∈ E as some sources require we would still be able
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to form a perfectly valid Hopf submonoid of simplicial complexes. We will consider the former

definition to maintain consistency with the other Hopf submonoids that are discussed.

Proposition 3.16. The subspecies Simp spanned by simplicial complexes is a Hopf submonoid of

SF.

Proof. We first show that if F and G are simplicial complexes, then so is F ∗G . We know that

/0 ∈F ∗G , thus it remains to show that X ∈F ∗G implies Y ∈F ∗G for all Y ⊆ X . We know that

X = F ∪G for some F ∈ F and G ∈ G . Since Y ⊆ X , it follows that Y = F ′∪G′ for some F ′ ⊆ F

and G′ ⊆ G. Hence Y ∈ F ∗G . Thus simplicial complexes are closed under taking join.

Next suppose we have a simplicial complex F with ground set E and A ⊆ E. To show that

simplicial complexes are closed under restriction and contraction we make use of the following

fact.

F/A = {F ∈ F : F ∩A = /0}

= {F ∈ F : F ⊆ Ā}

= {F ∩ Ā : F ∈ F}= F |Ā.

Thus it suffices to show that F/A is a simplicial complex. Suppose X ∈F/A and Y ⊆ X . Then

Y ⊆ X ⊆ A and Y ∈ F in which case Y ∈ F/A as desired. Therefore simplicial complexes form a

Hopf submonoid of SF.

A consequence of the above proof is that Simp is cocommutative.

Proposition 3.17. Simp is the universal cocommutative Hopf submonoid of SF.

Proof. We have already seen that cocommutativity holds in Simp. Suppose that Z is a cocom-

mutative Hopf submonoid of SF and that F ∈ Z[E]. Further suppose that X ∈ F and Y ⊆ X .
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Then Y ∈ F |Y = F/Ȳ . Hence Y ∈ F and as a result F is a simplicial complex. Therefore

Z ⊆ Simp.

3.5 Matroids (Mat)

There is also a Hopf submonoid of SF whose underlying species is spanned by independence

complexes of matroids. The Hopf structure of this Hopf submonoid is different from the more

familiar Hopf monoid of matroids defined in §1.5.

Proposition 3.18. The subspecies Mat spanned by matroid independence complexes is a cocom-

mutative Hopf submonoid of SF.

Proof. Suppose (I ,E) is a matroid independence system and A ⊆ E. Since Mat is a subspecies

of Simp it suffices to show that the restriction and join operations produce matroids. The operation

of restriction corresponds to matroid restriction and join corresponds to taking the direct sum of

matroids [15, Prop. 4.2.12].

Remark 3.19. It is worth noting that Mat is a cocommutative Hopf monoid unlike the non-

cocommutative Hopf monoid of matroids given by Aguiar and Ardila in [1]. Also note that the

loops of a matroid are the phantoms of the matroid independence complex.

3.6 Boolean Lattices (Bool)

If (I ,E) is a matroid, then x ∈ E is a loop if x appears in every basis. Similarly x ∈ E is a coloop

if x appears in no basis. A Boolean lattice is a set family of the form B = (2F ,E) where F ⊆ E.

The set family B is the independence complex for the matroid that has |F | coloops and |E|− |F |

loops.

Proposition 3.20. The submonoid Bool spanned by Boolean lattices (considered as set families)

is a Hopf submonoid of SF.
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Proof. Since Boolean lattices are the matroid independence complexes of simplices, Bool ⊆ Simp

and hence it is only require to show that Boolean lattices are closed under taking joins and restric-

tions. To that end consider the Boolean lattices (2I,E1) and (2J,E2) such that I ⊆ E1 and J ⊆ E2

where E1 ∩E2 = /0. Then

2I ∗2J = {A∪B : A ⊆ I,B ⊆ J}

= {C : C ⊆ I ∪ J}

= 2I∪J.

Similarly if A ⊆ E1

2I|A = {B∩A : B ⊂ I}

= {C : C ⊂ A∩ I}

= 2I∩A.

Therefore Bool is a Hopf submonoid of SF.

3.7 Antimatroids (AMat)

Definition 3.21. An antimatroid is an accessible set family (F ,E) that is closed under taking

unions.

Definition 3.21 is the most convenient characterization of antimatroids for showing that they

form a Hopf submonoid of SF, but that definition does not satisfy the desire to know what relation

antimatroids have to matroids. This requires a bit of a cryptomorphismological journey.
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Figure 3.1: A visualization of the anti-exchange axiom.

Given an antimatroid (F ,E) consider the set system

(G ,E) = {E \F : F ∈ F}.

The set family G is is called a convex geometry and the sets in G are referred to as convex sets.

Since the convex sets are complements of sets of the antimatroid it follows that convex sets are

closed under intersection. Further given a convex set C ̸= E there is an x ∈ E such that C∪{x} is

a convex set. We can equivalently define a convex geometry in terms of a closure operator.

Definition 3.22. A closure operator is a map cl : 2E → 2E such that for S ∈ 2E and T ⊆ S the

following are satisfied:

• S ⊆ cl(S),

• cl(T )⊆ cl(S),

• cl(cl(S)) = cl(S).

The resulting collection of closed sets from a closure operator is closed under intersection, but

a set family of closed sets in general lacks the second property required for a convex geometry.

For that we require the anti-exchange axiom. The anti-exchange axiom states that if y,z ∈ E \cl(S)

with y ̸= z and z ∈ cl(S∪{y}), then y /∈ cl(S∪{z}).
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Given a closure operator that satisfies the anti-exchange axiom and a closed set S, then we can

place a partial order on the elements of E not in cl(S) for which x ≤ y if x ∈ cl(S∪{y}). If x is

a minimal element in this poset, then S∪{x} is closed. In other words, when S ̸= E there is an

x such that S∪{x} is closed. Thus closed sets of a closure operator satisfying the anti-exchange

axiom are convex sets and form a convex geometry. Hence the complements of these closed sets

form an antimatroid.

The name antimatroid comes from the anti-exchange axiom acting in an analogous way to a

similar axiom for the rank function definition of matroids. Another reason for the name antimatroid

is that antimatroids are greedoids that satisfy the interval property without lower bounds whereas

matroids are greedoids that satisfy the interval property without upper bounds.

Definition 3.23. The set family (F ,E) is a greedoid if it satisfies the following conditions:

1. If X ∈ F is non-empty, then there exists x ∈ X such that X \{x} ∈ F .

2. If X ,Y ∈ F with |X |> |Y |, then there exists x ∈ X \Y such that Y ∪{x} ∈ F .

Definition 3.24. Suppose that (F ,E) is a greedoid and that F,G,H ∈F with F ⊆ G ⊆ H. (F ,E)

is said to be a greedoid satisfying the interval property if for any x ∈ E \H such that F ∪{x},H ∪

{x} ∈ F , then it is the case that G∪{x} ∈ F .

Definition 3.25. Suppose that (F ,E) is a greedoid and that G,H ∈F with G ⊆ H. (F ,E) is said

to be a greedoid satisfying the interval property without lower bounds if for any x ∈ E \H such

that H ∪{x} ∈ F , then it is the case that G∪{x} ∈ F .

Definition 3.26. Suppose that (F ,E) is a greedoid and that F,G,H ∈ F with F ⊆ G. (F ,E) is

said to be a greedoid satisfying the interval property without upper bounds if for any x ∈ E \G

such that F ∪{x} ∈ F , then it is the case that G∪{x} ∈ F .

From this we see that matroids and antimatroids share some kind of not quite duality. A sur-

vey paper by Dietrich covers some of the parallel results between both objects[6]. For further

information on antimatroids and greedoids [3] and [11] are recommended.
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Proposition 3.27. The subpecies AMat spanned by antimatroids is a Hopf submonoid of SF.

Proof. Since AMat = Acc∩Union it follows that AMat is a Hopf submonoid of SF.

We might ask whether or not the subspecies spanned by convex geometries is a Hopf sub-

monoid of SF. Consider F = { /0,1,2,3,12,23,123} ∈ SF[[3]]. Then the contraction F/2 is not

a convex geometry. Hence it follows that the subspecies spanned by convex geometries does not

form a Hopf submonoid of SF.

Remark 3.28. It should be noted that White has a Hopf monoid on antimatroids [21, §6.5]. The

Hopf monoid AMat shares the same product operation, but differs in the coproduct. Notably the

tensor factors of the coproduct in White’s monoid will yield antimatroid minors whereas this is not

always the case in AMat.

3.8 Lattices of Order Ideals (LOI)

Finally we consider the subspecies LOI of SF spanned by the lattices of order ideals of posets, i.e.,

set families of the form (J(P),E) where P is a poset with P ⊆ E. We will show that LOI is a Hopf

submonoid of SF. In following chapters LOI will be a primary focus for our work.

Lemma 3.29. If A ⊆ P, then J(P|A) = J(P)|A, i.e.,

{I : I is an order ideal of P|A}= {I ∩A : I ∈ J(P)}

Proof. Suppose that I = ⟨x1, . . . ,xk⟩ ∈ J(P|A). Then consider Ĩ = ⟨x1, . . . ,xk⟩ ∈ J(P). It follows

that Ĩ ∩A = I ∈ J(P)|A.

Conversely if I ∈ J(P)|A, then I = Ĩ∩A for some Ĩ ∈ J(P). If p ∈ I and q ∈ A with q <P p, then

it follows that q ∈ Ĩ and thus that q ∈ I. thus I is an order ideal of P|A.

Lemma 3.30. Suppose P and Q are disjoint posets. Then J(P+Q) = J(P) ∗ J(Q), where + is

disjoint union of posets.
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Proof. Suppose that P and Q are disjoint posets and consider I ∈ J(P+Q). If I /∈ J(P)∗J(Q), then

without loss of generality there exist x ∈ P and y ∈ Q such that x,y ∈ I and x <P+Q y. This cannot

happen due to the definition of P+Q. Thus I = M⊔N where M ∈ J(P) and N ∈ J(Q) and hence

I ∈ J(P)∗ J(Q).

Conversely suppose I ∈ J(P)∗ J(Q). Then I = M⊔N where M ∈ J(P) and N ∈ J(Q). If x ∈ I,

then without loss of generality x ∈ M. Therefore if y ≤ x, then y ∈ M and hence y ∈ I. Thus

I ∈ J(P+Q).

Proposition 3.31. The subspecies LOI is a Hopf submonoid of SF.

Proof. Let P,Q be posets, so that (J(P),E) and (J(Q),F) are set families on ground sets E and F

respectively. Thus P ⊆ E and Q ⊆ F as sets. First, µP,Q((J(P),E)⊗(J(Q),F)) = (J(P)∗J(Q),E∪

F) = (J(P+Q),E ∪F). Second, let E = A⊔B (as sets). Then

∆A,B(J(P),E) = (J(P)|A,A)⊗ (J(P)/A,B)

= ({I ∩A : I ∈ J(P)},A)⊗ ({I ∈ J(P) : I ⊆ B},B)

= ({I ∩A : I ∈ J(P)},A)⊗ ({I ∈ J(P) : I ∩A = /0},B)

By Lemma 3.29, the left tensor factor is (J(P|A),A). For the right term, consider P restricted to the

set

B̃ = {x ∈ B : x ̸> y ∀y ∈ A}.

Note that B̃ is the complement of the order filter generated by A. Suppose that Ĩ ∈ J(P|B̃) and

consider the ideal I = ⟨Ĩ⟩P. Suppose that there is some x ∈ I ∩ (B\ B̃); then (since x ̸∈ B̃) there is

some y ∈ A such that y < x, but (since x ∈ I) we have y ∈ I. But then I ∩A ̸= /0, which contradicts
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the definition of B̃. Thus it must be that I ∩ (B\ B̃) = /0, i.e., Ĩ = I. It follows that

J(P|B̃)⊆ {I ∈ J(P) : I ∩A = /0}. (3.1)

Conversely if I is an order ideal of P that doesn’t intersect A, then any element x ∈ I must be in B̃.

If not, then ⟨x⟩∩A ̸= /0, but ⟨x⟩ ⊂ I a contradiction since I ∩A = /0. Thus equality holds in (3.1),

and therefore the right term of the coproduct is also a lattice of order ideals. Hence

∆A,B(J(P)) = (J(P|A),A)⊗ (J(P|B̃),B)

and LOI is a Hopf submonoid of SF.

Corollary 3.32. LOI is a Hopf submonoid of AMat.

Proof. Suppose P is a poset. If I, I′ ∈ J(P), then I ∪ I′ ∈ J(P). Further if I ∈ J(P) where I ̸= /0,

then a generator x ∈ I can be removed and I \ {x} ∈ J(P). Thus by Definition 3.21, J(P) is an

antimatroid.

Suppose A ⊆ E. Then A is called free if F |A = 2A. A circuit is a minimal non-free set. That

is to say that A ⊆ E is a circuit if F |A ̸= 2A, but F |B = 2B for every proper subset B ⊊ A. Given

a circuit C ⊆ E we say that a ∈ C is a root of C if F |C = 2C \ {{a}}. Every circuit has a unique

root[3, §8.7.C]. Given a circuit C with root a we denote the rooted circuit by the pair (C,a). An

antimatroid is determined by its collection of rooted circuits. In the language of antimatroids the

set family (J(P),P) is known as the poset antimatroid of P. Using circuits we can determine

exactly when an antimatroid is a poset antimatroid.

Proposition 3.33 (Refer to [11, Corollary 3.10]). An antimatroid is a poset antimatroid if and only

if all of its circuits have cardinality 2.
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3.9 The Hierarchy of Hopf Submonoids

We end this chapter by ordering the Hopf submonoids of SF by inclusion. Figure 3.2 illustrates the

relationships shared by the various Hopf submonoids mentioned in this chapter. Set families gain

additional structure as we descend down the hierarchy of Hopf submonoids. It should be noted

that there are many more Hopf submonoids than those listed in this chapter. For example we know

that Int∩Acc is a Hopf submonoid of SF that properly contains Simp and LOI.

SF

Top

UnionAccInt

Simp Amat

LOIMat

Bool

Figure 3.2: Hopf submonoids of SF
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Chapter 4

A Cancellation-Free Antipode Formula for LOI

In this section, we derive a cancellation-free formula for the antipode of LOI, using the topolog-

ical approach of [1]. Before starting down this road it is vital that we keep in mind phantoms.

Specifically, an element (J(P),E) ∈ SF[E] consists of a poset P whose underlying set is a subset

of E. The elements of E that don’t appear in P are phantoms. Proposition 2.4 tells us that we

can first derive a cancellation-free formula for phantomless elements of LOI and then account for

phantoms afterwards.

Definition 4.1. Let P be a poset and (J(P),E) ∈ SF[E], and Φ |= E. An element x ∈ E is betrayed

(with respect to P and Φ) if there exists y ∈ E such that y <P x and y <Φ x. The set of betrayed

elements in Φi will be denoted B(Φi), and we put B(Φ) =
⋃

i B(Φi). Evidently B(Φ)∩Min(P) = /0,

where Min(P) denotes the set of minimal elements of P.

The reason for saying that y “betrays” x is that y is below x in the order given by P, yet jumps

in front of x in Φ.

Proposition 4.2. Suppose P is a poset and suppose that Φ = Φ1| . . . |Φm |= P. Then

∆Φ(J(P),P) =
m⊗

i=1

(J(Ki),Φi)

where Ki is the restriction of P to Φi \B(Φi).

Here and subsequently, the notation (J(P),P) specifies that the underlying set for the set family

J(P) is just the underlying set of the poset P (rather than a superset of it). That is, there are no
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phantoms.

Proof. By iterating coproduct, we see that the ith tensor factor is the set family

(Fi,Φi) = {I ∩Φi : I ∈ J(P) and I ∩ (Φ1 ∪·· ·∪Φi−1) = /0}.

Suppose that I ∈Fi; then I = Ĩ∩Φi for some Ĩ ∈ J(P) and Ĩ∩(Φ1∪·· ·∪Φi−1) = /0. Therefore

x ∈ I implies y ̸<P x for y ∈ Φ1 ∪ ·· · ∪Φi−1, for otherwise Ĩ ∩ (Φ1 ∪ ·· · ∪Φi−1) ̸= /0 since y ∈

Ĩ ∩ (Φ1 ∪·· ·∪Φi−1). Thus x ∈ Ki and consequently, I ∈ J(Ki).

Conversely suppose that I = ⟨x1, . . . ,xm⟩ ∈ J(Ki). Let Ĩ = ⟨x1, . . . ,xm⟩ ∈ J(P); then I = Ĩ ∩Φi

by Lemma 3.29. Since the generators x j all belong to Ki, it follows that Ĩ ∩ (Φ1 ∪ ·· ·∪Φi−1) = /0.

Thus I ∈ Fi.

Applying µΦ to the formula of Proposition 4.2, we obtain the following equation in SF[P]:

µΦ(∆Φ(J(P),P)) = (J(K1),Φ1)∗ · · · ∗ (J(Km),Φm) = (J(K1 + · · ·+Km),P). (4.1)

(Here the operator ∗ indicates the join of the (J(Ki),Φi) as set families, which is equivalent to

the product of the J(Ki) as lattices.) Equation (4.1) asserts that every term in the antipode has the

form (J(Q),P), where Q = K1 + · · ·+Km and Ki = P|Φi\B(Φi) for some Φ |= P. In particular, each

(Hasse) component of Q is contained in some block of Φ. Note that the betrayed elements have

become phantoms.

Definition 4.3. Let P be a poset. A fracturing Q of P is a disjoint sum of induced subposets of P.

We require only that Q ⊆ P as sets, not that Q = P. The support system of (J(Q),E) with respect

to (J(P),E) is

Supp(Q) = SuppE
P(Q) = {Φ |= E : µΦ(∆Φ(J(P),E)) = (J(Q),E)}.
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The previous discussion implies that Comp(E) is the disjoint union of the sets SuppE
P(Q), as

Q ranges over all fracturings of P. The fracturing Q is called good if SuppE
P(Q) ̸= /0; we write

Good(P) for the set of all good fracturings of P. Observe that Good(P) depends only on P, not on

E.

Proposition 4.2 implies that

Φ ∈ SuppE
P(Q) =⇒ B(Φ) = P\Q (as sets). (4.2)

In particular, every good fracturing must contain Min(P) as a subset.

Example 4.4. Let P be the poset on E = {1,2,3} with relations 1 < 3,2 < 3. The antichain Q on

{1,2} is a good fracturing of P, with SuppE
P(Q) = {1|3|2, 1|23, 1|2|3, 12|3, 2|1|3, 2|31, 2|3|1}.

The corresponding subfan of the braid arrangement is shaded in Figure 4.1. This example illus-

trates that ∥SuppE
P(Q)∥ need not be a convex fan.

12|3

1|2313|2

3|12

23|1 2|31

1|2|3

1|3|2

3|1|2

3|2|1

2|3|1

2|1|3

123

Figure 4.1: A (non-convex) example of ∥SuppP
E(Q)∥.

Observe that
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S(J(P),E) = ∑
Φ|=E

(−1)|Φ|
µΦ∆Φ(J(P),E)

= (−1)|E\P|
∑

Φ|=P
(−1)|Φ|

µΦ∆Φ(J(P),P) (by Prop. 2.4)

= (−1)|E\P|
∑

Q∈Good(P)
(J(Q),P)

 ∑
Φ∈SuppP

P(Q)

(−1)|Φ|


︸ ︷︷ ︸

cQ

. (4.3)

In particular, the coefficient cQ can always be computed in terms of set compositions of (the un-

derlying set of) P, rather than some superset including phantoms. As in [1, §7], we will compute

the coefficients cQ by regarding them as the “relative Euler characteristics” of subfans of the braid

fan. The geometry is more complicated than the situation of [1], since these fans are not always

convex.

Proposition 4.5. Let Q be a good fracturing of P. Then Φ ∈ SuppP
P(Q) if and only if the following

conditions all hold:

∀x,y ∈ Q : y <Q x =⇒ x ∼Φ y; (4.4)

∀x ∈ Q : ∀y ∈ Q : y <P x and y ̸<Q x =⇒ x <Φ y; (4.5)

∀x ∈ Q : ∀y ∈ P\Q : y <P x =⇒ x <Φ y; (4.6)

∀y ∈ P\Q : ∃x ∈ P : x <P y and x <Φ y. (4.7)

Proof. Suppose Φ ∈ SuppP
P(Q). By Proposition 4.2, each component of Q is contained in some

block of Φ, implying (4.4). By (4.2), B(Φ)⊇ P\Q, which is equivalent to (4.7); and B(Φ)⊆ P\Q,

which implies (4.5) and (4.6).

Conversely, suppose that Φ |= P satisfies (4.4)–(4.7). Let Q′ be the good fracturing of P such

that Φ ∈ Supp(Q′). First, we claim that B(Φ) = P \Q. The inclusion B(Φ) ⊇ P \Q is just (4.7).
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For the reverse inclusion, if x ∈ B(Φ)∩Q, then there exists y ∈ P such that y <P x and y <Φ x.

If y ∈ P \Q then (4.6) fails, while if y ∈ Q then (4.5) implies y <Q x, but then x ∼Φ y by (4.4), a

contradiction, so the claim is proved. In particular, Q′ = Q as sets. By (4.4), every relation in Q is

a relation in Q′; conversely, if y <Q′ x, then y <P x and y ∼Φ x, so (4.5) implies y <Q x. Therefore,

Q = Q′.

As mentioned earlier, our goal is to calculate the “Euler characteristic” of the fan ∥SuppP
P(Q)∥.

By condition (4.4), ∥SuppP
P(Q)∥ is contained in the subspace VQ ⊂ R|P| defined by equalities

xi = x j whenever i, j belong to the same component of Q; the dimension of this subspace is u+ k,

where u is the number of components of Q and k = |P\Q|. Observe that condition (4.7) gives rise

to a disjunction of linear inequalities rather than a conjunction, which is why ∥SuppP
P(Q)∥ need

not be convex (q.v. Example 4.4). Accordingly, our next step is to express ∥SuppP
P(Q)∥ as a union

of convex fans.

Definition 4.6. Let Q be a fracturing of P. A betrayal function is a map β : P \Q → P such that

β (b)<P b for every b ∈ P\Q. Observe that Q has a betrayal function if and only if Q ⊇ Min(P).

Let

SuppP
β
(Q) = {Φ ∈ SuppP

P(Q) : β (b)<Φ b ∀b ∈ P\Q}.

Applying Proposition 4.5, we see that SuppP
β
(Q) consists of set compositions Φ ∈ SuppP

P(Q) sat-

isfying (4.4), (4.5), (4.6), and

∀b ∈ P\Q : β (b)<Φ b. (4.8)

Observe that ∥SuppP
β
(Q)∥ is a convex subfan of the braid arrangement for every β : for each

b ∈ P \Q, the disjunction (4.7) has been replaced by a single inequality. Moreover, SuppP
P(Q) =⋃

β SuppP
β
(Q), though in general this is not a disjoint union.

Proposition 4.7. Let Q be a good fracturing of P and β a betrayal function for Q. Then ∥SuppP
β
(Q)∥

is homeomorphic to Ru+k, where u is the number of components of Q and k = |P\Q|.
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Proof. The affine hull of ∥SuppP
β
(Q)∥ is defined by the linear equalities (4.4), hence has one

degree of freedom for each component of Q and each element of P\Q. The inequalities given by

(4.5), (4.6), and (4.8) define ∥SuppP
β
(Q)∥ as a convex open subset of its affine hull. The conclusion

follows by [8].

Example 4.8. Recall the poset P and good fracturing Q of Example 4.4. In Figure 4.2, each face

of SuppP
P(Q) is colored green, blue, or red, depending on whether 3 ∈ P is betrayed by only by 1,

only by 2, or by both 1 and 2. There are two betrayal functions β1,β2 : {3} → {1,2}, given by

βi(3) = i. Thus ∥SuppP
β1
(Q)∥ is the subfan consisting of the green and red faces, and ∥SuppP

β2
(Q)∥

consists of the blue and red faces. Observe that both subfans are convex.

12|3

1|2313|2

3|12

23|1 2|31

1|2|3

1|3|2

3|1|2

3|2|1

2|3|1

2|1|3

123

Figure 4.2: An example of ∥SuppP
β
(Q)∥.

In order to understand the support of S(J(P),P), we need to know which fracturings are good.

The following definition and proposition give a usable criterion for goodness, together with a way

of constructing explicit elements of SuppP
P(Q) for a fracturing Q.

Definition 4.9. Let Q be a fracturing of P with (Hasse) components Q1, . . . ,Qu. The conflict

digraph ConP(Q) of Q is the digraph (directed graph) with vertices {Q1, . . . ,Qu} and edges

{Qi → Q j : i ̸= j and there exist x ∈ Qi and y ∈ Q j such that y <P x}.

Example 4.10. Consider the poset P= {1< 2< 3,4< 5< 6,1< 4,2< 5,3< 6} and the fracturing
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whose components are the induced subposets Q1 = {4}, Q2 = {1 < 2 < 5}, Q3 = {3 < 6}. Then

ConP(Q) is the digraph with vertices Qi and edges Q2 → Q2, Q2 → Q1, Q3 → Q2, and Q3 → Q1.

1

2

3

4

5

6

Q1 Q2

Q3

Figure 4.3: P and ConP(Q).

Observe that Q cannot be a good fracturing. For any set composition Φ |= [6] satisfying (4.4),

either 4 betrays 5, or 1 betrays 4, or {1,2,4,5} is contained in some block of Φ, in which case

µΦ(∆Φ(P)) includes the relations 1 < 4 < 5. This obstruction to goodness is captured by the

antiparallel edges between Q1 and Q2 in ConP(Q). In fact, cycles in Con(Q) form obstructions to

goodness, as we now explain.

Definition 4.11. Let P be a poset. An acyclic fracturing Q of P is a fracturing of P such that the

conflict digraph ConP(Q) (see Definition 4.9) is acyclic; we write Acyc(P) for the set of all acyclic

fracturings of P.

Proposition 4.12. Let Q be a fracturing of P with components Q1, . . . ,Qu. Then Q is a good

fracturing if and only if Q ⊇ Min(P) and Q is an acyclic fracturing.

Proof. ( =⇒ ) Suppose that Q is a good fracturing, and let Φ ∈ SuppE
P(Q). We have observed in

Definition 4.3 that Q ⊃ Min(P). Now, suppose that ConP(Q) contains a cycle, which we may take

to be Q1 → ··· → Qs → Q1. Then there are elements x1, . . . ,xs,y1, . . . ,ys of P\Q, with x j,y j ∈ Q j

and x j <P y j+1 for all j (taking indices mod s). For each j, since x j does not betray y j+1, it follows

that Q j ⊆ Φr j and Q j+1 ⊆ Φr j+1 , where r j+1 ≤ r j ≤ m. But then r1 ≥ r2 ≥ ·· · ≥ rm ≥ r1, so all the

ri are equal (say to r) and Q1 ∪ ·· · ∪Qs ⊂ Φr. By Proposition 4.2, x j <Q y j+1 for all j, but then

the Qi are in fact identical. So the cycle is a self-loop, which is prohibited in the construction of

ConP(Q). We conclude that ConP(Q) is acyclic and thus Q is an acyclic fracturing.

52



( ⇐= ) Suppose that Q ⊃ Min(P) and that Q is an acyclic fracturing, i.e., ConP(Q) is acyclic.

As observed in Definition 4.6, the first assumption implies that Q admits a betrayal function β .

Acyclicity of ConP(Q) implies that there is a well-defined preposet Oβ (Q) on [n] with equivalence

classes {Q1, . . . ,Qu}∪ (P\Q) and relations

Q j < b whenever β (b) ∈ Q j; (4.9a)

Qi < Q j whenever Qi → Q j is an edge in ConP(Q). (4.9b)

Let Φ ∈L (Oβ (Q)). That is, Φ is a linear preposet with the same equivalence classes that contains

the relations (4.9a) and (4.9b). The conditions (4.9a) imply that P \Q ⊆ B(Φ), while the condi-

tions (4.9b) imply the reverse inclusion. Moreover, the posets Ki of Proposition 4.2 are precisely

the components of Q. Therefore µΦ(∆Φ(P)) = Q, i.e., Φ ∈ SuppP
P(Q), and now (4.9a) implies that

in fact Φ ∈ SuppP
β
(Q).

Remark 4.13. The components Q′ of a good fracturing Q have a notable property: if x,y ∈ Q′,

z ∈ Q, and x ≤P z ≤P y, then z ∈ Q′. (In poset terminology, each Q′ is interval-closed as a subposet

of (Q,≤P).) Indeed, let β be a betrayal function and let Φ ∈ L (Oβ (Q)). If z ̸∈ B(Φ). Let Φi be

the block of Φ containing z and Φ j be the block of Φ containing x and y. It is not the case that

i < j (when z betrays y) or that i > j (when x betrays z), so i = j, and it follows that z ∈ Q j.

Proposition 4.14. Let P be a poset, let Q ∈ Good(P), and let B be the collection of all betrayal

functions β such that SuppP
β
(Q) ̸= /0. Then

⋂
β∈B

SuppP
β
(Q) ̸= /0.

Proof. Let D be the digraph (V1 ∪V2,E1 ∪E2 ∪E3), where V1 = {Q1, . . . ,Qu} and V2 = P\Q, and

E1 = {Qi → Q j : i ̸= j and there exist x ∈ Qi and y ∈ Q j such that y <P x},

E2 = {b → b′ : b,b′ ∈ P\Q and b <P b′},

E3 = {Q j → b : b ∈ P\Q and there exists x ∈ Q j such that x <P b}.
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It suffices to show that D is acyclic, for then every linear extension of D belongs to
⋂

β∈B
SuppP

β
(Q).

Indeed, the subdigraph (V1,E1) is just the conflict digraph ConP(Q), which is acyclic by Proposi-

tion 4.12, and the subdigraph (V2,E2), is the transitive closure of the poset P\Q. Moreover, every

edge in E3 points from V1 to V2. Thus D is acyclic as desired.

Theorem 4.15. Let P be a finite poset, so that J(P) ∈ LOI[P]. Then the antipode of J(P) in LOI

is given by the following cancellation-free and grouping-free formula:

S(J(P),P) = ∑
Q∈Good(P)

(−1)c(Q)+|P\Q|(J(Q),P)

where c(Q) is the number of components of Q.

Proof. Recall from (4.3) that

S(J(P),P) = ∑
Q∈Good(P)

cQ(J(Q),P)

where

cQ = ∑
Φ∈SuppP

P(Q)

(−1)|Φ|.

Fix a good fracturing Q, and abbreviate u = c(Q) and k = |P \ Q|. Recall that SuppP
P(Q) =⋃

β∈B
SuppP

β
(Q), where B is the set of all betrayal functions for Q. For A ⊆ B, define

YA = YA ,Q =
⋂

β∈A

SuppP
β
(Q).

By inclusion-exclusion, we have

cQ = ∑
/0 ̸=A ⊆B

(−1)|A |+1
∑

Φ∈YA

(−1)|Φ|. (4.10)

As in the proof of [1, Thm. 7.1], the inner sum can be interpreted as the reduced Euler characteristic
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of ∥YA ∥ as a relative polyhedral complex (or equivalently of ∥YA ∥∩S|P|−2 as a relative simplicial

complex; see §1.2). Since each ∥SuppP
β
(Q)∥ is open, convex, and homeomorphic to Ru+k (by

Proposition 4.7), so is their intersection ∥YA ∥. Thus ∥YA ∥∩S|P|−2 is homeomorphic to an open

ball of dimension u+ k−2, and thus

∑
Φ∈YA

(−1)|Φ| = χ̃(YA )− χ̃(∂YA ) = χ̃(Bu+k)− χ̃(Su+k−1) = 0− (−1)u+k−1 = (−1)u+k.

Substituting into (4.10), we obtain

cQ = ∑
/0 ̸=A ⊆B

(−1)|A |+1+u+k = (−1)u+k+1
∑

/0 ̸=A ⊆B

(−1)|A | = (−1)u+k

which establishes the desired formula for S(J(P),P).

Should the ground set contain phantoms we can use Proposition 2.4 to adjust the antipode

accordingly.

Corollary 4.16. Suppose (J(P),E) has k phantoms. Then

S((J(P),E)) = (−1)k
∑

Q∈Good(P)
(−1)c(Q)+|P\Q|(J(Q),E) (4.11)

We will see that in general the antipode formula can be difficult to work with although for some

poset operations like dual and direct sum we will be able to develop formulae. The first tool we

obtain from the cancellation-free antipode formula is a formula for the dual poset P∗ in terms of P.

Proposition 4.17. Suppose P is a poset and that P∗ is the dual of P. Then

S(J(P∗),P) = ∑
Q∈Acyc(P)
Max(P)⊆Q

(−1)c(Q)+|P\Q|(J(Q),P).

Proof. By Proposition 4.12 we see that Q∗ is a good fracturing of P∗ if and only if Q∗ ∈ Acyc(P∗)
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and Min(P∗) ⊆ Q∗. By taking the dual of each component of Q∗ we obtain a fracturing Q of

P. Q is an acyclic fracturing (of P) since dualizing each component will reverse the edges of the

conflict graph of Q∗. It also follows that Min(P∗)⊆ Q and since Min(P∗) = Max(P) we can write

Max(P) ⊆ Q. Since c(Q) = c(Q∗) and |P \Q| = |P∗ \Q∗| we can rewrite the antipode formula

from Theorem 4.15 for (J(P∗),P) as

S(J(P∗),P) = ∑
Q∈Acyc(P)
Max(P)⊆Q

(−1)c(Q)+|P\Q|(J(Q),P).

Remark 4.18. The duality map ϕ : LOI → LOI given by ϕ((J(P),P)) = (J(P∗),P) is not a Hopf

automorphism or antiautomorphism. It respects the Hopf product (join) and restriction:

ϕ((J(P1),P1)∗ (J(P2),P2)) = ϕ((J(P1 +P2),P1 ⊔P2))

= J((P1 +P2)
∗,P1 ⊔P2) = (J(P∗

1 +P∗
2 ),P1 ⊔P2)

= (J(P∗
1 ),P1)∗ (J(P∗

2 ),P2) = ϕ((J(P1),P))∗ϕ((J(P2),P2)).

and

ϕ((J(P)|A,A)) = ϕ((J(P|A),A))

= (J(P∗|A),A) = (J(P∗)|A,A) = ϕ(J(P),P)|A.

On the other hand, it does not respect contraction. Consider the zigzag poset Z = {1< 3,2< 3,2<

4}. If A = {2}, then ϕ(J(Z)/A) = J({1}) whereas ϕ(J(Z))/A = J({3 < 1,4}).

Suppose Cn is the naturally ordered chain on [n], so that J(Cn) is the chain /0 ⊂ [1] ⊂ [2] ⊂

·· · ⊂ [n]. Observe that Min(Cn) = {1}, so the good fracturings are disjoint sums of chains Q =

Q1 + · · ·+Qu such that 1 ∈ Q1 and the blocks of Q give a natural set composition Ψ of a subset
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V ⊆ [n]. In other words Ψ = Ψ1| . . . |Ψu |= V is such that if i < j with x ∈ Ψi and y ∈ Ψ j, then

x < y. As a result we can write out a cancellation-free antipode formula for Cn.

Proposition 4.19. Suppose (J(Cn), [m]) ∈ LOI[[m]]. Then,

S(J(Cn), [m]) = (−1)m−n
∑

V⊆[n]:
1∈V

(−1)n−|V |
∑

Ψ=Ψ1|···|Ψu|=V
natural

(−1)u(J(CΨ1),Ψ1)∗ · · · ∗ (J(CΨu,Ψu), [n])

Example 4.20. Suppose P = An is the antichain with elements [n]. Then Min(An) = [n], so the

only good fracturing of An is An itself; the components are its singleton subsets. We have u = n

and k = 0, so

S(J(An),E) = (−1)n+p(J(An),E)

where p is the number of phantom elements of (J(An),E),i.e., |E \ [n]|. Moreover, J(An) is just

the Boolean algebra with atoms [n], so this formula describes the antipode in the Hopf submonoid

Bool.

Example 4.21. For more complex posets, the family of good fracturings can have complex struc-

ture, making it hard to write down a more concrete formula than that of Theorem 4.15. For instance,

consider the complete ranked poset: a poset P with ground set E = E1 ∪ ·· · ∪Ev such that every

element in Ek is less than every element in Ek+1. (Equivalently, P is an ordinal sum of antichains.)

The posets Cn from Example 4.19 are complete ranked posets with Ek = {k}.

Let us describe a good fracturing Q = Q1+ · · ·+Qu of a complete ranked poset P. Observe that

Min(P) = E1, thus E1 ⊆ Q. Moreover, the requirement that ConP(Q) be acyclic naturally induces

a total ordering (with ties allowed) on the components of Q, as we now show. Define

ai = min{k : Qi ∩Ek ̸= /0}, bi = max{k : Qi ∩Ek ̸= /0}.

Evidently ai ≤ bi for all i. Moreover, it cannot be the case that both ai > b j and a j > bi, or else Qi
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and Q j would form a 2-cycle in the conflict digraph Con(Q). Therefore, either

ai ≤ bi ≤ a j ≤ b j or a j ≤ b j ≤ ai ≤ bi.

(Conversely, every fracturing Q that admits such a relation on its components is acyclic.) There-

fore, we have a complete transitive relation on the pairs (ai,bi), which we may as well assume is

the natural ordering.

Pictorially, consider a u× n rectangular grid in which the box in position (i, j) is shaded in if

and only if Qi ∩E j ̸= /0. The shading pattern is a ribbon: no square is strictly southwest of any

other. Columns other than the first are allowed to be empty, but rows must be nonempty. (See

Figure 4.4 for an example.) Each ribbon diagram gives rise to many good fracturings, determined

by filling each box in the kth column of the ribbon with one or more elements of Ek (using no

element more than once, and using all elements of E1). The antipode of P can thus be expressed

as a sum over such fillings.

E1

Q1

E2

Q2

E3

Q3

E4

Q4

E5

Q5

E6

Q6

Figure 4.4: Distributing elements of P into a good fracturing.

It appears to be very difficult to give a self-contained description of good fracturings of posets

that are not complete ranked.

Example 4.22. For a non-complete-ranked-poset the situation is harder to work out. The smallest

example is the zigzag poset P (see Figure 1.1).

58



If we look at the 15 good fracturings of P (Figure 4.5) we see that the situation is a bit messier

than Example 4.21. Since 3 has two potential betrayers and 4 has only a single potential betrayer

intuition would suggest that 3 should be betrayed more often. But looking at the fracturings that

appear, 3 is betrayed in only 3 cases whereas 4 is betrayed in 5 cases. If we look on the level of

ordered set partitions our intuition is rewarded. For 41 of the 75 ordered set compositions 3 is

betrayed whereas 4 is betrayed in only 31 of the 75 ordered set compositions.

1 2
21

1 2

3

5
1 2

3

1
1 2

3

3
1 2

3

1

1 2
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15
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7
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3 4
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1 2

3 4

3
1 2

3 4

1

1 2

3 4

1
1 2

3 4

3
1 2

3 4

1
1 2

3 4

1
1 2

3 4

1

Figure 4.5: The good fracturings of P. The cardinality of SuppP
P(Q) is given in the bottom right

corner of each box.

4.1 Ordinal sums

As we saw in Example 4.22, working out the good fracturings of a generic poset can be messy.

To that end it will be of service to have ways to deal with some of the common structures that

appear in posets. Recall that the ordinal sum Plo ⊕Phi of two posets Plo and Phi is constructed from

Plo +Phi by adding the relations x < y for all x ∈ Plo and y ∈ Phi. It turns out that we can classify a

good fracturing Q of the ordinal sum into one of two cases. Before doing so we have to introduce

a new type of fracturing. Further we will assume unless otherwise stated that we are working with

(J(P),P) since we can use Corollary 4.16 to adapt any results in the case where phantoms exist.
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Definition 4.23. Let Q be a good fracturing of P = Plo ⊕ Phi. First, we say that Q is pure if

Q = Qlo +Qhi, where Qlo is a good fracturing of Plo and Qhi is an acyclic fracturing of Phi. (That

is, every component of Q is a subposet either of Plo or of Phi.) Second, we say that Q is mixed if it

has a component H such that H ∩Plo ̸= /0 and H ∩Phi ̸= /0. In this case H is a hybrid component.

Note that Q can have at most one hybrid component, since any two such would form a 2-cycle in

the conflict digraph, so we may write Q = Qlo +Qhi +H, where Qlo (resp., Qhi) is the subposet

consisting of components contained in Plo (resp., Qhi).

Evidently every good fracturing is either pure or mixed, so

S(J(P),P) = ∑
Q∈Good(P)

(−1)c(Q)+|P\Q|(J(Q),P)

= ∑
pure Q

(−1)c(Q)+|P\Q|(J(Q),P)+ ∑
mixed Q

(−1)uc(Q)+|P\Q|(J(Q),P)

where as before c(Q) is the number of components of Q.

Proposition 4.24 (Classification of pure fracturings). Let P = Plo ⊕Phi where Plo ̸= /0. Then

∑
pure Q

(−1)c(Q)+|P\Q|(J(Q),P) = S(J(Plo),Plo)∗ ∑
Qhi∈Acyc(Phi)

(−1)c(Qhi)+|Phi\Qhi|(J(Qhi),Phi).

(4.12)

Proof. If Q is pure, then Q = Qlo +Qhi where Qlo is a good fracturing of Plo and Qhi is an acyclic

fracturing of Phi. The conflict digraph ConP(Q) is formed from the acyclic digraph ConPlo(Qlo)+

ConPhi(Qhi) by adding edges from every component of Qhi to every component of Qlo, but not vice

versa (see Figure 4.6); in particular it too is acyclic. Moreover, Min(P) = Min(Plo), so Q is in fact
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a good fracturing of P. Therefore

∑
pure Q

(−1)c(Q)+|P\Q|(J(Q),P)

= ∑
Qlo∈Good(Plo)

∑
Qhi∈Acyc(Phi)

(−1)c(Qlo+Qhi)+|(Plo⊔Phi)\(Qlo⊔Qhi)|(J(Qlo +Qhi),Plo ⊔Phi)

= ∑
Qhi∈Acyc(Phi)

∑
Qlo∈Good(Plo)

(−1)c(Qlo)+c(Qhi)+|Plo\Qlo|+|Phi\Qhi|(J(Qlo),Plo)∗ (J(Qhi),Phi)

= ∑
Qhi∈Acyc(Phi)

(−1)c(Qhi)+Phi\Qhi ∑
Qlo∈Good(Plo)

(−1)c(Qlo)+|Plo\Qlo|(J(Qlo),Plo)∗ (J(Qhi),Phi)

= S(J(Plo),Plo)∗ ∑
Qhi∈Acyc(Phi)

(−1)c(Qhi)+|Phi\Qhi|(J(Qhi),Phi).

ConPhi(Qhi)

ConPlo(Qlo)

Figure 4.6: The conflict graph of a pure fracturing.

Proposition 4.25 (Classification of mixed fracturings). Suppose P = Plo ⊕Phi is a poset. Further

suppose Q = Qlo +Qhi +H is a mixed fracturing of P, as in Definition 4.23. Then Q is a good

fracturing of P if and only if

1. the induced subposet Q|Q∩Plo is a good fracturing of Plo;

2. the induced subposet Q|Q∩Phi is an acyclic fracturing of Phi;

3. H ∩Plo is a order filter in Q∩Plo;

4. H ∩Phi is a order ideal in Q∩Phi.
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Proof. First note that Min(Q) = Min(Plo)⊆ Plo ∩Q. To show that Q∩Plo and Q∩Phi are acyclic,

observe that we obtain ConPlo(Q|Q∩Plo) from ConP(Q) by removing all components whose re-

striction to Plo is empty. Thus ConPlo(Q|Q∩Plo) is isomorphic to a subgraph of Con(Q) and thus

ConPlo(Q|Q∩Plo) is acyclic. Likewise, ConPlo(Q|Q∩Phi) is isomorphic to a subgraph of ConP(Q)

and thus ConPlo(Q|Q∩Phi) is acyclic. Hence Q|Q∩Plo is a good fracturing and Q|Q∩Phi is an acyclic

fracturing of Phi.

To show that H ∩Plo is an order filter of Q∩Plo, suppose that a,b ∈ Plo such that a < b, a ∈ H

and b belongs to some component Y of Q. Then ConP(Q) has an edge Y → H. Since H ∩Phi ̸= /0

we also know there is an edge H → Y . Since ConP(Q) is acyclic, it must be the case that H = Y

and thus b ∈ H ∩Plo. Hence X ∩Plo is an order filter of Q∩Plo. A similar argument shows that

H ∩Phi is an order ideal of Q∩Phi. Thus we have verified that conditions (1)–(4) are necessary for

Q to be a good fracturing of P.

Conversely, suppose Q is a fracturing of P with a unique hybrid component H and that condi-

tions (1)–(4) hold. Since Min(P) = Min(Plo) ⊆ Q|Q∩Plo ⊂ Q, we need only show that ConP(Q) is

acyclic.

Consider the induced subdigraphs Glo = ConPlo(Qlo) and Ghi = ConPhi(Qhi). As subdigraphs

of an acyclic digraph, Glo and Ghi are acyclic. Furthermore, we claim that ConP(Q) consists of the

disjoint union Glo +Ghi together with the vertex H and the edges

{Bhi → Blo, H → Blo, Bhi → H | Blo ∈ Glo, Bhi ∈ Ghi} .

Indeed, the graph thus constructed is a subgraph of Con(Q) since every edge comes from a relation

between two components of Q. Since every element of Phi is greater than every element of Plo, there

are no edges of the form Blo → Bhi. There are no edges of the form Blo →H by assumption (3), and

no edges of the form H → Bhi by assumption (4). Hence the constructed graph must be ConP(Q).

Thus Q is a good fracturing of P.
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ConPhi(Qhi)

H

ConPlo(Qlo)

Figure 4.7: The conflict graph of a mixed fracturing.

As a consequence of Proposition 4.25,

∑
mixed Q

(−1)c(Q)+|P\Q|(J(Q),P)

= ∑
H∈Hyb(Plo,Phi)

∑
Qlo∈Good(Plo\⌈H⌉)
Qhi∈Acyc(Phi\⌊H⌋)

(−1)c(Qlo)+c(Qhi)+1+|P|−|Qlo|−|Qhi|−|H|(J(Qlo ⊕H ⊕Qhi),P).

(4.13)

where Hyb(Plo,Phi) denotes the set of induced subposets H of P that intersect both Plo and Phi

(thus, potential hybrid components of a mixed fracturing).

Combining (4.12) and (4.13) yields the following cancellation-free formula for the antipode of

the ordinal sum of two posets:

Theorem 4.26. Suppose P = Plo ⊕Phi. Then

S(J(P),P) = S(J(Plo),Plo)∗ ∑
Qhi∈Acyc(Phi)

(−1)c(Qhi)+|Phi\Qhi|(J(Qhi),Phi)

+ ∑
H∈Hyb(Plo,Phi)

∑
Qlo∈Good(Plo\⌈H⌉)
Qhi∈Acyc(Phi\⌊H⌋)

(−1)c(Qlo)+c(Qhi)+1+|P|−|Qlo|−|Qhi|−|H|(J(Qlo ⊕H ⊕Qhi),P).

When P is an antichain, setting Phi = P and Plo = /0 recovers Example 4.20. Moreover, if Plo is
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a complete ranked poset and Phi is an antichain, then P = Plo ⊕Phi is a complete ranked poset, and

Acyc(Phi) is just the power set of Phi. Giving a formula for complete ranked posets:

Corollary 4.27. Suppose P is a complete ranked poset. Then P = Plo⊕Phi where Plo is a complete

ranked poset and Phi is an antichain. Furthermore,

S(J(P),P) = S(J(Plo),Plo)∗ ∑
Qhi⊆Phi

(−1)|Qhi|(2Qhi ,Phi)

+ ∑
H∈Hyb(Plo,Phi)

∑
Qlo∈Good(Plo\⌈H⌉)

∑
Qhi⊆Phi\⌊H⌋

(−1)c(Qlo)+1+|(Plo\H)\Qlo|+|Phi\H|(J(Qlo ⊕H ⊕Qhi),P).

Note that this formula is tautological when Plo = P.

Corollary 4.27 can be applied recursively until P is an antichain, when the antipode is easily

evaluated as in Example 4.20. By comparison to the discussion of complete ranked posets in

Example 4.21, the recursive step here corresponds to removing the rightmost column from the

diagram in Figure 4.4. Hybrid components can arise from rows with more than one shaded square;

more specifically, an element of Hyb(Plo,Phi) arises from a row with shaded squares in columns

corresponding to both of Plo and Phi. For example, if we put Phi = Ev as in Corollary 4.27, then the

hybrid component in the ribbon in Figure 4.4 is Q5.

Example 4.28. The chain Cn is an ordered sum of n 1-element posets, so we can use the foregoing

discussion to analyze its antipode. We can regard Cn either as [1,n− 1]⊕{n} or as {1}⊕ [2,n],

where intervals are equipped with the natural ordering.

First, let Plo = [1,n− 1] and Phi = {n}. Then the elements of Hyb(Plo,Phi) are of the form

A⊕{n} where A ⊆ [1,n−1]. Using the equation in Corollary 4.27 we obtain
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S(J(Cn), [n]) = S(J(Cn−1), [n−1])∗ ∑
Qhi⊆{n}

(−1)|Qhi|(2Qhi ,Phi)

+ ∑
A⊆Cn−1

∑
Qlo∈Good(Cn−1\⌈H⌉)

(−1)c(Qlo)+1+|(Cn−1\A)\Qlo|(J(Qlo ⊕A⊕{n}),Qlo ⊔A⊔{n})

= S(J(Cn−1), [n−1])∗ (({ /0},{n})− ({ /0,{n}},{n}))

+ ∑
A⊆Cn−1

(−1)n−|A|
∑

Qlo∈Good(Cn−1\⌈A⌉)
(−1)c(Qlo)−|Qlo|(J(Qlo ⊕A⊕{n}),Qlo ⊔A⊔{n}).

The first sum includes those good fracturings for which n is either a single component or

is omitted. The second (double) sum includes those good fracturings for which n belongs to a

component of size at least 2.

Next, let Plo = {1} and Phi = [2,n]. Then the elements of Hyb(Plo,Phi) are of the form {1}⊕A

where A ⊆ [2,n]. Once again, using the equation in Theorem 4.26, we obtain

S(J(Cn)) = (−1)1(2{1},{1})∗ ∑
Qhi∈Acyc([2,n])

(−1)c(Qhi)+|Phi\Qhi|(J(Qhi),Phi)

+ ∑
A⊆[2,n]

∑
Qhi∈Acyc([2,n]\⌊A⌋)

(−1)1+c(Qhi)+|([2,n]\A)\Qhi|(J({1}⊕A⊕Qhi),{1}⊔A⊔Qhi)

=−({ /0,{1}},{1})∗ ∑
Qhi∈Acyc([2,n])

(−1)c(Qhi)+|Phi\QhiJ(Qhi)

+ ∑
A⊆[2,n]

(−1)n−|A|
∑

Qhi∈Acyc([2,n]\⌊A⌋)
(−1)c(Qhi)+|Qhi|(J({1}⊕A⊕Qhi),{1}⊔A⊔Qhi).

The first includes those good fracturings for which 1 is a single component. The second (dou-

ble) sum includes those good fracturings for which 1 belongs to a component of size at least 2.
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Chapter 5

The Hopf submonoid Simp

In Section 3.4 we showed that the species of simplicial complexes forms a Hopf submonoid of

SF called Simp. Since Simp is cocommutative contraction by a set A becomes restriction to the

complement of A. As a result we do not have to worry about additional phantoms being formed

when we take products and coproducts of members of Simp. Thus we shall assume that we are

working with phantomless complexes since we can account for phantoms using Proposition 2.4.

Even with this bane lifted from our minds we shall see that finding a cancellation-free antipode

formula for Simp remains a non-trivial task.

5.1 The Structure of Inflations and Inflators

In order to analyze the antipode we first make some initial observations about product and coprod-

uct in Simp.

Proposition 5.1. Let A be a simplicial complex with vertices [n] and Φ = Φ1| . . . |Φk |= [n]. Then:

1. A is a subcomplex of µΦ(∆Φ(A)).

2. Suppose δ ⊂ Φi for some i. Then δ ∈ A if and only if δ ∈ µΦ(∆Φ(A)).

3. σ is a minimal nonface of µΦ(∆Φ(A)) if and only if (i) σ is a minimal nonface of A and (ii)

σ ⊆ Φi for some i.
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Proof. Composing the product and coproduct

µΦ(∆Φ(A)) = µ(A|Φ1 ⊗·· ·⊗A|Φk)

= A|Φ1 ∗ · · · ∗A|Φk

= ⟨B = B1 ∪·· ·∪Bk : Bi is a facet of A|Φi⟩

= {F = F1 ∪·· ·∪Fk : Fi is a face of A|Φi}.

The first two assertions are an immediate result of this observation. The final assertion follows

because the minimal nonfaces of a join are precisely the minimal nonfaces of the join factors.

Since coproduct is a restriction to the respective blocks of Φ and join is commutative, we can

focus on set partitions as opposed to set compositions when dealing with the antipode of Simp.

Specifically we can rewrite Takeuchi’s formula as

S[n](X) = ∑
Φ|=n

(−1)|Φ|
µΦ(∆Φ(X)) = ∑

Φ∈Πn

(−1)|Φ|(|Φ|)! µΦ(∆Φ(X)). (5.1)

The factorial on the right hand side of (5.1) accounts for the fact that the order of blocks in a

set partition is irrelevant. For example 1|23 and 23|1 are different set compositions, but represent

the same set partition. As a reminder the collection Πn of set partitions has a lattice structure. In

particular we will make use of the meet operation of the partition lattice. Given two set partitions

Φ,Ψ ∈ Πn their meet Φ∧Ψ is the coarsest common refinement of Φ and Ψ,

Φ∧Ψ = {Φi ∩Ψ j : Φi ∈ Φ,Ψ j ∈ Ψ,Φi ∩Ψ j ̸= /0}.

Definition 5.2. Suppose A and B are simplicial complexes on vertex set [n]. The support system of

B with respect to A is

SuppA(B) = {Φ ∈ Πn : B = µΦ(∆Φ(A))}.
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If SuppA(B) ̸= /0 then we say that B is an inflation of A. We denote the set of inflations of A by

Inf(A) Further if Φ ∈ SuppA(B), then we say that Φ inflates A into B.

The notation SuppA(B) bears resemblance to the notation SuppP(Q) used in Chapter 4. Group-

ing (5.1) further we have

S[n](X) = ∑
Φ∈Πn

(−1)|Φ|(|Φ|)! µΦ(∆Φ(X))

= ∑
B∈Inf(A)

B

(
∑

Φ∈SuppA(B)
(−1)|Φ|(|Φ|)!

)
︸ ︷︷ ︸

cB

. (5.2)

Thus if we can understand which complexes B are inflations of A as well as the elements of

SuppB(A), then we can compute cB in (5.2). The remainder of this section is devoted to under-

standing the combinatorics of Inf(A) and SuppB(A). We shall start our journey by understanding

the structure of SuppB(A) as it pertains to Π|A|.

Proposition 5.3. Suppose that A and B are simplicial complex on vertex set [n]. Then SuppA(B) is

interval closed in Πn.

Proof. Suppose Φ, Ψ, and Ω are integer partitions such that Φ ∈ SuppA(B), Ψ ∈ SuppA(B), and

Φ ≤ Ω ≤ Ψ when ordered by reverse refinement. Observe that

B = µΦ(∆Φ(A))⊇ µΩ(∆Ω(A))⊇ µΨ(∆Ψ(A)) = B.

Thus µΩ(∆Ω(A)) = B.

Proposition 5.4. Suppose that A and B are simplicial complexes on vertex set [n]. Further suppose

that Φ and Ψ are set partitions of [n] such that Φ ∈ SuppA(B) and Ψ ∈ SuppA(B). Then Φ∧Ψ ∈

SuppA(B).
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Proof. The hypothesis µΦ(∆Φ(A)) = µΨ(∆Ψ(A)) is equivalent to

AΦ1 ∗ · · · ∗AΦk = AΨ1 ∗ · · · ∗AΨℓ

i.e.,

{σ1 ∪·· ·∪σk : σi ∈ A, σi ⊆ Φi}= {τ1 ∪·· ·∪ τℓ : τi ∈ A, τi ⊆ Ψi}.

If Ω = Φ∧Ψ, then both µΦ(∆Φ(A)) and µΨ(∆Ψ(A)) are subcomplexes of µΩ(∆Ω(A)). Suppose

we have a collection of faces {ωi j ∈ AΦi∩Ψ j} where i ranges over [k] and j ranges over [ℓ]. We

need to show that ω11∪·· ·∪ω1ℓ ∈ AΦ1 (and equivalently for the other k+ℓ−1 possibilities). Note

that ω1s ∈ AΦ1 and ω1s ∈ AΨs for s ∈ [ℓ]. Therefore

ω11 ∪·· ·∪ω1ℓ ∈ AΨ1 ∗ · · · ∗AΨℓ
= AΦ1 ∗ · · · ∗AΦk .

Further ω11 ∪·· ·∪ω1ℓ ⊂ Φ1, so in fact ω11 ∪·· ·∪ω1ℓ ∈ AΦ1 .

Corollary 5.5. Suppose A and B are simplicial complexes such that B ∈ Inf(A). Then B has a

unique finest decomposition as a (non-trivial) join of subcomplexes of A.

We call the unique finest decomposition of B the canonical join representation of B.

Definition 5.6. If Φ is the maximally refined inflator of B, then we call Φ the fundamental inflator

of B, written Φ = FIA(B). Further we denote the collection of fundamental inflators by

Fund(A) = {Φ ∈ Πn : Φ = FIA(B) for some B}.

Example 5.7. Consider the simplicial complex A = ⟨123,34⟩. If we look at the lattice of set

partitions we can see canonical join representations for each of the complexes that appear in the

antipode. In the diagram we use boldface to denote A, red to denote the full simplex, blue to
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denote ⟨123,234⟩, and green to denote ⟨123,134⟩. The respective fundamental inflators are 124|3,

1|2|3|4, 14|2|3, and 24|1|3.

1234

123|4 124|3 134|2 234|1 12|34 13|24 14|23

12|3|4 13|2|4 23|1|4 14|2|3 24|1|3 34|1|2

1|2|3|4 Π4

We can go through and compute the antipode of A as well.

S(A) = (2!−1!)A+(2 ·2!−4 ·3!+4!)⟨1234⟩+(2 ·2!−3!)⟨123,234⟩+(2 ·2!−3!)⟨123,134⟩

= A+4⟨1234⟩−2⟨123,234⟩−2⟨123,134⟩

Example 5.8. Let A be the complete 0-dimensional complex on [n], i.e., A = ⟨{i} : i ∈ [n]⟩. Note

that this is the independence complex of the uniform rank-1 matroid. Suppose Φ ∈ Πn. Then

BΦ = µΦ(∆Φ(A)) is the join of the 0-dimensional complexes on the blocks of Φ and

S(A) = ∑
Φ∈Πn

(−1)|Φ||Φ|!BΦ.

Remark 5.9. Observe that every support system is isomorphic to an order ideal in a partition lat-

tice. Specifically, SuppA(B) is an order ideal in the interval [FIA(B), 1̂]⊆ Πn, which is isomorphic

to the partition lattice Π|FIA(B)|.

Proposition 5.10. Suppose A and B are simplicial complexes such that B ∈ Inf(A). Then Ψ =

Ψ1| . . . |Ψk ∈ SuppA(B) is the fundamental inflator of B if and only if B = AΨ1 ∗ · · · ∗AΨk is the

canonical join decomposition of B.
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Proof. Suppose Ψ = Ψ1| . . . |Ψk = FIA(B) and that the canonical join decomposition of B is AΦ1 ∗

· · · ∗AΦℓ
for Φ = Φ1| . . . |Φℓ ∈ Πn. Our goal is to show that Φ = Ψ.

Since B = AΨ1 ∗ · · · ∗AΨk is a join decomposition of B it follows that Ψ coarsens Φ (since Φ is

the canonical join decomposition).

To show that Φ coarsens Ψ we will begin with the fact that the join decomposition of Ψ is

coarsened by the join decomposition of Φ.

AΦ1 ∗ · · · ∗AΦℓ
⊇ AΨ1 ∗ · · · ∗AΨk

= B (since Ψ inflates A into B)

= BΦ1 ∗ · · · ∗BΦℓ
(since Φ ∈ SuppA(B))

⊇ AΦ1 ∗ · · · ∗AΦℓ
(since B ⊇ A)

so equality holds throughout. In particular Φ inflates A into B, so Φ coarsens Ψ. Hence Φ=Ψ.

Corollary 5.11. Suppose A and B are simplicial complexes with vertex set [n]. Then the following

are equivalent:

1. B ∈ Inf(A);

2. µΦ(∆Φ(A)) = B for some join-decomposition Φ of B;

3. µΦ(∆Φ(A)) = B for Φ = FIA(B).

Proof. (1) =⇒ (3) follows from Proposition 5.10. (3) =⇒ (2) and (2) =⇒ (1) are immediate.

Proposition 5.12. Suppose A and B are simplicial complexes such that B ∈ Inf(A). Then the non-

singleton blocks of FIA(B) must be non-faces of A.
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Proof. Suppose Φ = FIA(B) and that Φi is a non-singleton block of Φ. Then Proposition 5.10

says that AΦi cannot be factored further as a non-trivial join of two smaller complexes (otherwise

Φ would not be fundamental). Since any simplex can be decomposed into its vertices it’s not

possible for AΦi to be a simplex and hence it cannot be a face of A.

At this point we have a lot of structural information about SuppA(B). On the other hand it is

not clear how to find information about which complexes B are inflations of A. Our best bet is to

narrow our focus to structures that have a lot of symmetry such as simplex skeletons. We shall

shortly see that in such a case it is possible to exploit symmetry to find the fundamental inflators

(equivalently the inflations) of the complex A.

5.2 A Cancellation-Free Antipode Formula for the Join Closure of Simplex

Skeletons

Given a set a vertices V , the simplex skeleton sk(m,V ) is the complex whose faces are the subsets

of V whose cardinality is at most m, i.e.,

sk(m,V ) = {A ⊆V : |A| ≤ m}.

For simplicity when V = [n] we write sk(m,n). Note that sk(m,n) is a pure complex of dimen-

sion m−1. Suppose X ⊆ [n]. Then

sk(m,n)|X = sk(min(|X |,m),X). (5.3)

Lemma 5.13. sk(m,n) is join indecomposible if and only if m < n.

Proof. If m ≥ n, then sk(m,n) is a simplex and hence the join of vertices. On the other hand

suppose m < n. Suppose that sk(m,n) = F1 ∗ · · · ∗Fs where Fi has non-empty vertex set Vi.
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Setting di = min(|Vi|,m) it follows from (5.3) that

Fi = sk(m,n)|Vi = sk(di,Vi).

Pick a facet σi from F )i. Then σ = σ1 ∪·· ·∪σs ∈ sk(m,n). However note that

|σ |= ∑di > m.

Thus σ /∈ sk(m,n) even though σ ∈F1∗· · ·∗Fs. Therefore sk(m,n) must be join indecomposible.

Proposition 5.14. Φ ∈ Πn is a fundamental inflator of sk(m,n) if and only if for each block Φi

either

|Φi|= 1, (5.4a)

or |Φi|> m. (5.4b)

Proof. Suppose each block of Φ ∈ Πn satisfies (5.4a) or (5.4b). Further suppose that Φ inflates

sk(m,n) into B. Since any non-singleton block restricts to a simplex skeleton (that is not a simplex),

Lemma 5.13 implies that no block of Φ can be further refined to get another partition that inflates

sk(m,n) into B. Thus it follows that Φ = FIsk(m,n)(B).

For the converse suppose that Φ ∈ Πn and that Φ inflates sk(m,n) into B. Suppose that 1 <

|Φi| ≤ m+ 1 for some block Φi. Then (5.3) tells us that sk(m,n)|Φi is a simplex. Hence Φ can

be further refined by breaking Φi into singletons to obtain a more refined partition that inflates

sk(m,n) into B and thus Φ ̸= FIsk(m,n)(B).

We use pa,b(M) to denote the number of ways to partition the set M into b subsets each of

whose cardinalities is at most a.
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Theorem 5.15. Suppose Γ= sk(m,n). Further suppose that Φ=Φ1| . . . |Φk ∈ Fund(Γ) has exactly

v non-singleton blocks, say Φk−v+1,Φk−v+2, . . . ,Φk. Then

S(Γ, [n]) = ∑
Φ∈Fund(Γ)

(
k−v

∑
w=0

(v+w)!(−1)v+w pm+1,w(Φk−v+1 ∪·· ·∪Φk)

)
(Γ|Φ1 ∗ · · · ∗Γ|Φk , [n])

(5.5)

Proof. Previously in (5.2) we showed that we can group Takeuchi’s formula to get a sum over

inflations of Γ. Since each inflation is in one-to-one correspondence with fundamental inflators we

can equivalently sum over the fundamental inflators of Γ

S(Γ, [n]) = ∑
Φ∈Fund(Γ)

(
∑

Φ∈SuppΓ(µΦ∆Φ(Γ))

(−1)|Φ|(|Φ|)!

)
︸ ︷︷ ︸

cΦ

µΦ∆Φ(Γ, [n]) (5.6)

Fixing Φ ∈ Fund(Γ) we now show that

cΦ =
k−v

∑
w=0

(v+w)!(−1)v+w pm+1,w(Φk−v+1 ∪·· ·∪Φk). (5.7)

Suppose that Φ = FIΓ(H). As a consequence of Proposition 5.14, the only way to obtain

another inflator Θ that inflates Γ into H is to merge the singleton blocks of Γ. We must take care

not to merge more than m+1 singleton blocks together otherwise Θ will be a fundamental inflator

(different from Φ) as a result of Proposition 5.14. In summary, we need to know how many ways

we can partition the set Φk−v+1 ∪Φk−v+2 ∪·· ·∪Φk into subsets of cardinality at most m+1 with

w blocks. This can be done pm+1,w(Φk−v+1 ∪·· ·∪Φk) ways.

The final step is to iterate over w. If we merge the k−v singletons into w blocks, then the result

is a partition of [n] into v+w blocks. Therefore we multiply by (v+w)! to account for the number

of ways we can rearrange the blocks. Finally we need to include a factor of (−1)v+w as required

by Takeuchi’s formula.
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Equation (5.5) is not quite cancellation-free as the inner sum to compute the coefficient cΦ

is prone to have positive and negative terms which may cancel with one another. This further

exemplifies the challenges faced when working with Simp.
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Chapter 6

Characters

Definition 6.1. Suppose H is a connected Hopf monoid in vector species. A character ζ on H is

a collection of linear maps

ζI : H[I]→ k

for each finite set I subject to the conditions:

1. Naturality: For each bijection σ : I → J and x ∈ H[I], we have ζJ(H[σ ](x)) = ζI(x).

2. Multiplicativity: For each I = S⊔T , x ∈ H[S], and y ∈ H[T ], we have ζI(x ·y) = ζS(x)ζT (y).

3. Unitality: ζ /0(1) = 1.

Note that H must be connected in order for unitality to make sense. Recall from Section 1.3

that we assume k to be a field of characteristic 0. The convolution product between two characters

χ and φ is the operation defined by

(χ ∗φ)I(x) = ∑
I=S⊔T

χS(x|S)φT (x/S). (6.1)

It turns out that the convolution product gives us a character of H. In order to show that (χ ∗φ)I

is a character we need to check that it is multiplicative. We will use compatibility of the Hopf

monoid to do this. Take I = S⊔T = I = S′⊔T ′, as well as the intersections A = S∩S′, B = S∩T ′,

C = T ∩S′, and D = T ∩T ′ (see Figure 1.8). Suppose x ∈ H[S], y ∈ H[T ].

76



Then

(χ ∗φ)I(x · y) = ∑
I=S′⊔T ′

χS′((x · y)|S′)φT ′((x · y)/S′)

= ∑
I=S′⊔T ′

χS′(x|A · y|C)φT ′(x/A · y/C)

= ∑
I=S′⊔T ′

χS′(x|A)χS′(y|C)φT ′(x/A)φS′(y/C)

= ∑
S=A⊔B
T=C⊔D

χA(x|A)χC(y|C)φB(x/A)φB(y/C) = (χ ∗φ)S(x)(χ ∗φ)T (y).

It is easy to check that the character ε defined by εI = 0 if I ̸= /0 and ε /0(1) = 1 acts as an identity

for characters. Further if S is the antipode of H, then φ ◦S = φ−1.

Proposition 6.2. Suppose H is a Hopf monoid and let X(H) be the set of characters of H. Then

X(H) forms a group under convolution product.

6.1 Characters on Bool

Recall from Section 3.6 that the Hopf submonoid Bool is spanned as a vector species by set families

of the form (2J, I) where J ⊆ I. Due to naturality and multiplicativity, every character of X(Bool)

is determined by its value on the set families ({ /0,{1}}, [1]) and ({ /0}, [1]), i.e., the singleton set

family with no phantoms and the set family consisting of a single phantom. Further each set

family of Bool up to relabeling is determined by the number of non-phantoms in the family and

the size of the ground set of the family. Thus every character of X(Bool) can be written in the form

χx,y(2J, I) = xpyq−p where p = |J| and q = |I|. For brevity we define χx,y(p,q) := χx,y(2[p], [q]).

Note that in particular

χx,y(1,1) = x, and

χx,y(0,1) = y.
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We can compute the convolution product of χx,y(p,q) = xpyq−p and χr,s(p,q) = rpsq−p:

(χx,y ∗χr,s)(p,q) = ∑
[q]=S⊔T

χx,y(|[p]∩S|, |S|)χr,s(|[p]∩T |, |T |)

=
q−p

∑
m=0

p

∑
n=0

(
q− p

m

)(
p
n

)
χx,y(n,m+n)χr,s(p−n,q−m−n) (6.2)

=
q−p

∑
m=0

p

∑
n=0

(
q− p

m

)(
p
n

)
xnymrp−nsq−p−m

=

(
p

∑
n=0

(
p
n

)
xnrp−n

)(
q−p

∑
m=0

(
q− p

m

)
ymsq−p−m

)

= (x+ r)p(y+ s)q−p.

As a result we have an isomorphism φ : X(Bool)→ C2 given by φ(χx,y) = (x,y).

As an application we can obtain a combinatorial identity that is elementary though not obvious.

Now consider taking convolution powers of χx,y(p,q). The above calculation shows us that

(χx,y ∗χx,y)(p,q) = (2x)p(2y)q−p = 2qxpyq−p. (6.3)

On the other hand setting r = x and s = y and interchanging the sums of (6.2) we get

(χx,y ∗χx,y)(p,q) =
p

∑
n=0

q

∑
m=n

(
q− p
m−n

)(
p
n

)
χx,y(n,m)χx,y(p−n,q−m)

=
p

∑
n=0

q−p+n

∑
m=n

(
q− p
m−n

)(
p
n

)
xpyq−p

=
p

∑
n=0

q−p

∑
k=0

(
q− p

k

)(
p
n

)
xpyq−p

= xpyq−p
p

∑
n=0

q−p

∑
k=0

(
q− p

k

)(
p
n

)
.
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Combining the result with (6.3) we obtain the combinatorial identity

2q =
p

∑
n=0

q−p

∑
k=0

(
q− p

k

)(
p
n

)
(6.4)

for p ≤ q.

Now let us consider how to interpret (6.4) combinatorially. Since the left hand side of this

equation is 2q we would expect that the double sum on the right somehow counts the number of

subsets of [q]. Since each factor inside the double sum is independent of either n or k and thus we

can reorganize the sums

2q =
p

∑
n=0

q−p

∑
k=0

(
q− p

k

)(
p
n

)
=

p

∑
n=0

(
p
n

)q−p

∑
k=0

(
q− p

k

)
.

We can interpret this product of sums as follows. In order to create a subset of [q] we can first split

[q] into two disjoint subsets. One subset will have size p and the other will have size q− p. Next

we pick a subset from each disjoint set. By taking the union of the chosen subsets we have now

formed a subset of [q]. Further every subset of [q] can be formed in this way.

Let us turn our attention to a slightly broader Hopf submonoid of LOI.

6.2 The Hopf submonoid of chain gangs

Recall that the Boolean lattices are the lattices of order ideals of antichains. We can think of an

antichain as a disjoint union of chains where each chain has a single element. A poset A is a chain

gang if A is the disjoint union of chains. The species CG is the subspecies of LOI generated by

lattice of order ideals of chain gangs (with the possibility of phantoms).

Proposition 6.3. CG is a Hopf submonoid of LOI.
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Proof. Let E and F be disjoint finite sets. Given two chain gangs A ⊂ E and B ⊂ F we know

from Proposition 3.30 that (J(A),E) ∗ (J(B),F) = (J(A+B),E ⊔F). Since the disjoint union of

two chain gangs is a chain gang it follows that CG is closed under join. Recall from Section 3.8

that taking the restriction or contraction of (J(A),E) will result in the lattice of order ideals of an

induced subposet of A. Since an induced subposet of a chain gang is a chain gang it follows that

CG is closed under the operations of restriction and contraction. Thus CG is a Hopf submonoid

of LOI.

Since every chain gang is the disjoint union of chains it follows that lattices of order ideals of

chains form a basis for the Hopf monoid CG. Therefore it will be beneficial to introduce notation

for working with chains. We will use the following notation throughout the rest of this chapter

CX is the chain on X ⊂ [n] whose order is inherited from N,

CY
X = (J(CX),Y ) where X ⊆ Y ,

Cn is the chain on [n] with 1 < 2 < · · ·< n,

Cn
m = (J(Cm), [n]), and

C(A;F) is the lattice of order ideals of a chain gang A with phantom set F .

In particular Cn
0 is the set family ({ /0}, [n]), i.e., the set family consisting of n phantoms.

6.3 Characters of chain gangs

Since lattices of order ideals of chains form a basis for CG, naturality and multiplicativity imply

that a character on CG is determined by its values on C1
0 and Cn

n for all n ≥ 1. This is akin to

our analysis of X(Bool) in Section 6.1. Specifically, suppose that C(A;F) ∈ CG, where A has an
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chains of length n and f = |F |. Then every character in X(CG) can be written as

ζu,⃗t(C(A;F)) = u f ta1
1 ta2

2 ta3
3 . . .

where u, t1, t2, · · · ∈ C and t⃗ = (t1, t2, t3, . . .). Note that

ζu,⃗t(C
n
n) = tn, and

ζu,⃗t(C
1
0) = u.

Proposition 6.4. Suppose ζu,⃗t ,ζv,⃗s ∈ X(CG). Then

(ζu,⃗t ∗ζv,⃗s)(C
n
m) = (u+ v)n−m

(
sm +

m

∑
q=1

sq−1

m−q

∑
b=0

(
m−q

b

)
tb+1vm−q−b

)
(6.5)

Proof. Suppose that ζu,⃗t ,ζv,⃗s ∈ X(CG). Multiplicativity tells us that

(ζu,⃗t ∗ζv,⃗s)(C
n
m) =

(
(ζu,⃗t ∗ζv,⃗s)(C

1
0)
)n−m (

(ζu,⃗t ∗ζv,⃗s)(C
m
m)
)

Thus we can evaluate (ζu,⃗t ∗ ζv,⃗s)(C1
0) and (ζu,⃗t ∗ ζv,⃗s)(Cm

m) individually before multiplying them

together in order to get the desired result. For the first computation we have

(ζu,⃗t ∗ζv,⃗s)(C
1
0) = ∑

A∈{ /0,{1}}
ζu,⃗t(C

1
0 |A)ζv,⃗s(C

1
0/A) = u+ v. (6.6)
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The second computation gives

(ζu,⃗t ∗ζv,⃗s)(C
m
m) = ∑

A⊆[m]

ζu,⃗t(C
m
m |A)ζv,⃗s(C

m
m/A)

= ∑
A⊆[m]

ζu,⃗t(C
|A|
|A|)ζv,⃗s(C

m−|A|
min(A)−1)

= ∑
A⊆[m]

t|A|v
m−|A|−min(A)+1smin(A)−1

= sm +
m

∑
q=1

∑
B⊆[q+1,m]
A=B∪{q}

t|B|+1vm−q−|B|sq−1

= sm +
m

∑
q=1

sq−1

m−q

∑
b=0

(
m−q

b

)
tb+1vm−q−b. (6.7)

Multiplying (6.6) and (6.7) gives the desired result.

Observe that when u = v = 0 then the right hand side of (6.5) will vanish if m < n. In other

words if we input a set family with phantoms, then the resulting character will return 0. Further

ζ0,⃗t ∗ζ0,⃗s = ζ0,⃗r where rn = (ζ0,⃗t ∗ζ0,⃗s)(Cn
n). Therefore:

Corollary 6.5. The set EX(CG) of characters of the form ζ0,⃗t is a subgroup of X(CG). We call

EX(CG) the exorcism subgroup of X(CG).

Aguiar and Ardila showed that the character group of permutahedra in GP is isomorphic to the

multiplicative group of exponential formal power series [1, Thm. 9.2]. The exorcism subgroup of

X(CG) gives us an analogous result for CG.

Definition 6.6. A power series ∑ tnxn is unital if t0 = 1.

Theorem 6.7. The subgroup EX(CG) is isomorphic to the multiplicative group U of unital power

series.

Proof. Let ζ0,⃗t ,ζ0,⃗s ∈EX(CG). In the expression for (ζ0,⃗t ∗ζ0,⃗s)(Cm
m) given by (6.5), the inner sum
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yields zero except when m−q−b = 0. Thus

(ζ0,⃗t ∗ζ0,⃗s)(C
m
m) = sm +

m

∑
q=1

sq−1tm−q−1

=
m

∑
q=0

sqtm−q

where s0 = t0 = 1. In other words, ζ0,⃗t ∗ ζ0,⃗s = ζ0,⃗r where rm = ∑
m
q=0 sqtm−q. Observe that if

f (x) = ∑snxn and g(x) = ∑ tnxn, then

f (x)g(x) =
∞

∑
m=0

m

∑
q=0

sqtm−qxm =
∞

∑
m=0

rmxm.

Therefore the map φ : EX(CG)→U defined by

φ(ζ0,⃗t) = 1+
∞

∑
m=1

tmxm

is an isomorphism.

6.4 Inverting Formal Power Series

Given a character ζ0,⃗s ∈ EX(CG) we know that ζ
−1
0,⃗s = ζ0,⃗s ◦ S where S is the antipode. Further

Theorem 6.7 implies that inverting ζ0,⃗s should be akin to inverting power series. To that end we

shall first review how one might invert a power series without the aid of the antipode.

6.4.1 Inverting by Elementary Means

An elementary method to finding the multiplicative inverse of a formal power series uses systems

of equations. Suppose f (x) = ∑n tnxn. Computing 1/ f (x) is equivalent to finding sn for n ≥ 0 such
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that (
∞

∑
n=0

snxn

)(
∞

∑
n=0

tnxn

)
=

∞

∑
n=0

(
n

∑
k=0

sn−ktk

)
xn = 1.

Thus we can set up a system of n+1 equations in order to solve for sk where 0 ≤ k ≤ n

snt0 + sn−1t1 + · · ·+ s0tn = 0

sn−1t0 + sn−1t1 + · · ·+ s0tn−1 = 0

...

s1t0 + s0t1 = 0

s0t0 = 1.

Writing the system in terms of matrices



t0 t1 . . . tn−1 tn

0 t0 . . . tn−2 tn−1

...
...

...
...

0 0 t0 t1

0 0 . . . 0 t0





sn

sn−1

...

s1

s0


=



0

0
...

0

1


.

If we assume that t0 = 1 as in Theorem 6.7, then the determinant of the matrix on the left hand side

is 1. Applying Cramer’s Rule to solve for sn we obtain
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sn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 t1 . . . tn−1 tn

0 1 . . . tn−2 tn−1

...
...

...
...

0 0 1 t1

1 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n det



t1 . . . tn−1 tn

1 . . . tn−2 tn−1

...
...

...

0 . . . 1 t1


︸ ︷︷ ︸

A

. (6.8)

The second equality is obtained by expanding along the first column. Thus we can compute sn as

a determinant of a matrix.

Alternatively, we can approach the problem using geometric series and integer compositions.

Let

f (x) = 1+
∞

∑
k=1

tkxk = 1+g(x).

Then

1
f (x)

=
1

1+g(x)
=

1
1− (−g(x))

= 1+
∞

∑
r=1

(−g(x))r

= 1+
∞

∑
r=1

(
−

∞

∑
k=1

tkxk

)r

= 1+
∞

∑
n=1

(
∑

α=(α1,α2,...,αr)|=n
(−1)r

r

∏
i=1

tαi

)
xn. (6.9)

We explain why (6.9) and (6.8) are equivalent. Let ai, j = t j−i+1 denote the entries of the matrix

A defined in (6.8). Let α = (α1, . . .αk) be an integer composition of of n. We claim that there is

exactly one permutation σ such that

n

∏
ℓ=1

aℓ,σℓ
=

k

∏
i=1

tαi, (6.10)

85



namely σ = (σ1, . . . ,σn), where

σi =


α1 if i = 1;

α1 + · · ·+α j if i = α1 + · · ·+α j−1 +1;

i−1 otherwise.

(6.11)

One can check that (6.10) is satisfied by σ . In addition, sgn(σ) = ∏(−1)αi−1 = (−1)n−k. As

an example consider n= 6 and α = (2,1,1,2). We want find the σ associated with the term t2t1t1t2.

By (6.11) σ = (213465). The elements ai,σi have been highlighted in Figure 6.4.1.



t1 t2 t3 t4 t5 t6

1 t1 t2 t3 t4 t5

0 1 t1 t2 t3 t4

0 0 1 t1 t2 t3

0 0 0 1 t1 t2

0 0 0 0 1 t1


Thus far we have shown that every term from (6.12) appears a term in the determinant (6.8).

Now we want to show that these are the only non-zero terms in (6.8). If we we expand out the

determinant we end up with

det(ai, j) = ∑
σ∈Sn

sgn(σ)
n

∏
ℓ=1

aℓ,σℓ

= ∑
σ∈Sn

sgn(σ)
n

∏
ℓ=1

tσi−i+1.

Notice that when σi − i+1 < 0 that σ contributes nil to the determinant. Thus the only non-zero

contributions come from σ ∈Sn in which σi ≥ i−1 for all i ∈ [n].

Suppose we try to construct a σ ∈Sn that gives a nonzero summand in the determinant. For

86



σ1 we have our choice of t j where j ∈ [n]. If σ1 = 1, then we reduce down to an (n−1)× (n−1)

matrix of the same form as the original n× n matrix. We then have our choice of σ2 = m where

2 ≤ m ≤ n. On the other hand if σ1 > 1 then we are forced to pick σ2 = 1 as picking σm = 1 for

m > 2 would give am,σm = 0. By a similar logic we must pick σi = i−1 for 2 ≤ i < σ1. At this

point we’ve now reduced down to selecting the remaining terms of σ from an (n−σ1)× (n−σ1)

matrix.

The resulting σ thus takes the form of (6.11). We can obtain the integer composition α by first

letting i1 < · · · < ik be the sequence of indices such that σi j > i j − 1. If we set α j = σi j −σi j−1

(with α1 = σ1), then we have recovered the integer partition we seek. Succinctly what we have

shown is that if σ ∈Sn, then σi ≥ i− 1 for all i if and only if σ satisfies (6.11) for some integer

partition α of n.

Thus we have shown that the non-zero terms in the determinant expansion (6.8) are precisely

the terms from (6.9).

6.4.2 Inverting with Characters

Utilizing the antipode formula from Proposition 4.19 we can obtain the nth coefficient of the inverse

power series by computing ζ
−1
t⃗ (Cn

n). Doing this we obtain a result equivalent to (6.9).

Proposition 6.8. Suppose f (x) = ∑
∞
n=0 tnxn is a power series such that t0 = 1. Then

1
f (x)

=
∞

∑
n=0

snxn

where

sn = ∑
α=(α1,α2,...,αk)|=n

(−1)k
k

∏
i=1

tαi. (6.12)

Proof. Recall from Proposition 4.19 the antipode formula
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S(Cn
n) = ∑

V⊆[n]:
1∈V

(−1)n−|V |
∑

Ψ=Ψ1|···|Ψu|=V
natural

(−1)u(CΨ1
Ψ1

∗ · · · ∗CΨu
Ψu

, [n])

where as before CΨi
Ψi

= (J(CΨi),Ψi). We can compute the values of ζ
−1
0,⃗t as follows:

ζ
−1
0,⃗t (C

n
n) = ζ0,⃗t(S(C

n
n)) = ∑

V⊆[n]:
1∈V

(−1)n−|V |
∑

Ψ=Ψ1|···|Ψu|=V
natural

(−1)u
ζ0,⃗t

(
CΨ1

Ψ1
∗ · · · ∗CΨu

Ψu
, [n]
)

= ∑
Ψ=Ψ1|···|Ψu|=[n]

natural

(−1)u
u

∏
i=1

t|Ψi|

= ∑
(α1,α2,...,αk)

αi>0
∑α j=n

(−1)k
k

∏
i=1

tαi.

6.5 Applications to Symmetric Functions

Chain gangs are intimately intertwined with symmetric functions. First we can use (6.12) to un-

ravel the relations between the bases of hn’s and en’s discussed in Section 1.6. In addition we shall

see that the Hopf algebra of symmetric functions from Section 1.7 is a quotient of the Hopf algebra

of chain gangs.

6.5.1 Applications to hn and en

Recall from Section 1.6 that E(t)H(−t) = 1 where
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E(t) = ∑ektk = ∏
i≥1

(1+ txi), and

H(t) = ∑hktk = ∏
i≥1

1
1− txi

.

We can also use (6.8) and write

en = det(hi− j+1), (6.13)

hn = det(ei− j+1). (6.14)

If we note that hn is the Schur function sλ where λ ⊢ n has a single part and en is the Schur function

sλ ′ where λ ′ ⊢ n has n parts, then equations (6.13) and (6.14) can be obtained by traditional means

with [19, Theorem 7.16.1].

Using the inversion formula (6.12) we obtain formulae to compute the hn’s and en’s in terms of

one another

hn = (−1)n
∑

α=(α1,...,αk)|=n
(−1)k

k

∏
i=1

eαi (6.15)

en = (−1)n
∑

α=(α1,...,αk)|=n
(−1)k

k

∏
i=1

hαi. (6.16)

6.5.2 The Hopf Algebra of Chain Gangs

We shall now take some time and look at the Hopf algebra CG = ¯K (CG).

Let λ = (λ1, . . . ,λℓ) ⊢ [n] and p be a non-negative integer. Define C(λ , p) to be the unlabelled

chain gang with chains of lengths λi and p phantoms. The degree k piece of CG has vector space

basis {C(λ , p) : |λ |+ p= k}. The operations of product and coproduct are inherited from the Hopf

monoid as described in (1.12). In other words we pick a representative from each isomorphism
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class and perform the Hopf operations on the level of the monoid. Specifically, suppose C(λ , p)

and C(ν ,q) are chain gangs in CG. The product will be

C(λ , p) ·C(ν ,q) =C(λ ∪ν , p+q) (6.17)

where λ ∪ν is the multiset union of λ and ν , sorted in decreasing order.

Since coproduct is a morphism of algebras it suffices to compute ∆(C((),1)) and ∆(C((n),0)).

The former is simply

∆(C((),1)) = 1⊗C((),1)+C((),1)⊗1. (6.18)

The latter is given by

∆(C((n),0)) = ∑
S⊆[n]

[Cn
n |S]⊗ [Cn

n/S]

= ∑
S⊆[n]

[C|S|
|S| ]⊗ [Cn−|S|

min(S)−1]

= ∑
S⊆[n]

C((|S|),0)⊗C((min(S)−1),n−|S|−min(S)+1)

= 1⊗C((n),0)+
n

∑
q=1

n−q

∑
b=0

(
n−q

b

)
C((b+1),0)⊗C((q−1),n−q−b). (6.19)

Note that q = min(S) and b+1 = |S|. Given λ = (λ1, . . . ,λℓ) ⊢ n and a non-negative integer p we

can compute the coproduct of C(λ , p) as

∆(C(λ , p)) = ∆(C((λ1),0)∗ · · · ∗∆(C((λℓ),0))∗ (∆((),1))p (6.20)

where C((λi),0) and C((),1) can be computed using (6.18) and (6.19).

Recall that in the monoid CG the operation of contraction may introduce phantoms. Specifi-

cally if we expand (6.20) with (6.19) we see that phantoms will appear if λ has at least one part of

size at least 2.

90



Proposition 6.9. Let ĈG be the vector subspace of CG spanned by {C(λ ,0)} where λ runs over

all partitions. Then ĈG is a subalgebra of CG isomorphic to Λ, but not a subcoalgebra of CG.

Proof. Consider the map f : Λ → ĈG defined by f (eλ ) = C(λ ,0) and extended linearly to all of

Λ. Note this includes f (e0) =C(0,0) = 1. Then

f (eλ eν) = f (eλ∪ν)

=C(λ ∪ν ,0) =C(λ ,0) ·C(ν ,0) = f (eλ ) · f (eν)

as desired. On the other hand ĈG is not closed under coproduct. For example

∆(C((2),0)) =C((2),0)+C((1),0)⊗C((1),0)+C((1),0)⊗C((),1)+1⊗C((2),0). (6.21)

Note that the term in red has a phantom.

Theorem 6.10. Let F be the vector space spanned by {C(λ , p) : p > 0}. Then F is a Hopf ideal

and CG/F∼= Λ.

Proof. Suppose C(λ , p)∈F and C(ν ,q)∈CG. Then C(λ ∪ν , p+q)∈F. Thus F is an ideal of CG.

Considering the summands of (6.20) along with what we know about restriction and contraction it

follows that [C(A;F)|S] or [C(A;F)/S] will have at least one phantom. Therefore ∆F ⊆ F⊗CG+

CG⊗F and F is a coideal. Since CG/F is a commutative bialgebra it follows from Theorem 1

of [14] that F is a Hopf ideal. Given X ∈ CG we will use the convention X for the image of X in

CG/F.

Taking the quotient CG/F has the effect of killing off any terms of CG that contain phantoms.

Thus the chain gangs C(λ ,0) where λ ranges over all integer partitions, form a graded basis for

the quotient. Consider the map f : Λ →CG/F defined by f (eλ ) =C(λ ,0) and extended linearly.

Showing that product is preserved under f follows the same steps from Proposition 6.9.
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Suppose λ = (λ1, . . . ,λℓ). Then (6.17) and the fact that coproduct is an algebra morphism gives

∆(C(λ ,0)) = ∆(C((λ1),0)∗ · · · ∗∆(C((λℓ),0)).

Taking the quotient has the effect of removing any terms of (6.19) that contain phantoms. The only

terms that survive are those that occur when b = n−q. Specifically for C((λi),0),

∆(C((λi),0)) =
λi

∑
q=0

C((q),0)⊗C((λi −q),0). (6.22)

Thus

∆( f (eλi)) = ∆(C((λi),0)) =
λi

∑
q=0

C((q),0)⊗C((λi −q),0)

=
λi

∑
q=0

f (eq)⊗ f (eλi−q)

= f

(
λi

∑
q=0

eq ⊗ eλi−q

)

= f (∆(eλi))

and as such

∆( f (eλ )) = f (∆(eλ )).

6.6 Geometric Characters on Chain Gangs

At this point we have seen that the character group X(CG) contains a subgroup isomorphic to

formal power series whose degree zero term is unity under multiplication. We might ask if there

are any other characters of note in X(CG).
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Definition 6.11. A character ζu,⃗t is a geometric character if tn = rn for a scalar r. We denote such

a character by γu,r.

Proposition 6.12. Fix u,v,x,y ∈C and consider the geometric characters γu,x,γv,y ∈X(CG). Then

(γu,x ∗ γv,y)(Cn
m) = (u+ v)n−m

(
ym + x

(
(x+ v)m − ym

x+ v− y

))
. (6.23)

Proof. Substituting in the appropriate variables into (6.5) we obtain

(γu,x ∗ γv,y)(Cn
m) = (u+ v)n−m

(
ym +

m

∑
q=1

yq−1
m−q

∑
b=0

(
m−q

b

)
xb+1vm−q−b

)

= (u+ v)n−m

(
ym +

x
y

m

∑
q=1

yq
m−q

∑
b=0

(
m−q

b

)
xbvm−q−b

)

= (u+ v)n−m

(
ym +

x
y

m

∑
q=1

yq(x+ v)m−q

)

= (u+ v)n−m

(
ym + x(x+ v)m−1

(
1−
( y

x+v

)m

1− y
x+v

))

= (u+ v)n−m
(

ym + x
(
(x+ v)m − ym

x+ v− y

))

as desired.

Considering the right hand side of (6.23) we see that geometric characters fail to form a sub-

group of X(CG). By restricting our attention to specific families of geometric characters we see

that not all hope is lost.

Corollary 6.13. The geometric characters of the form γu,u give a subgroup of X(CG) isomorphic

to C.
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Proof. Given γu,u and γv,v it follows

(γu,u ∗ γv,v)(Cn
m) = (u+ v)n−m

(
vm +u

(
(u+ v)m − vm

u+ v− v

))
= (u+ v)n−m (vm +(u+ v)m − vm)

= (u+ v)n.

It follows that φ(γu,u) = u gives the desired isomorphism.

Consequently we see that γ−1
u,u = γ−u,−u. We can compare this to inverting γu,u using the an-

tipode.

Proposition 6.14. Given the chain Cn
m

1 = ∑
Q∈Good(Cn

m)

(−1)c(Q)+|Q| (6.24)

where c(Q) is the number of components of Q.

Proof. Using the fact that γ−u,−u = γ−1
u,u = ζ ◦S we end up with

γ
−1
u,u (C

n
m) = ζ (S(Cn

m))

(−u)n = ∑
Q∈Good(Cn

m)

(−1)c(Q)+n−|Q|
γu,u(J(Q), [n])

= ∑
Q∈Good(Cn

m)

(−1)c(Q)−|Q|(−1)nun

= (−u)n
∑

Q∈Good(Cn
m)

(−1)c(Q)−|Q|.

Dividing both sides by (−u)p yields the desired identity.

The above results could be viewed as looking at the characters γu,ux where x = 1. It is natural

then to ask what happens if we fix u = 1 and vary x.
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Proposition 6.15. Suppose γ1,x, γ1,y are geometric characters. Then

γ1,x ∗ γ1,y = γ1,y−1 ∗ γ1,x+1.

Proof. By setting Hn(x,y) =
n

∑
k=0

xkyn−k, then we can simplify (6.23) as

(γu,x ∗ γv,y)(Cn
m) = (u+ v)n−m

(
ym + x

(
(x+ v)m − ym

x+ v− y

))
= (u+ v)n−m(ym + xHm−1(x+ v,y))

= (u+ v)n−m
(

ym +(x+ v)Hm−1(x+ v,y)− vHm−1(x+ v,y)
)

= (u+ v)n−m
(

Hm(x+ v,y)− vHm−1(x+ v,y)
)

= (u+ v)n−m
(

Hm(x+ v,y)− vHm−1(x+ v,y)
)
.

If we set u = v = 1, then

(γ1,x ∗ γ1,y)(Cn
m) = (2u)n−m

(
Hm(x+1,y)−Hm−1(x+1,y)

)
= (2u)n−m

(
Hm(y,x+1)−Hm−1(y,x+1)

)
= (γ1,y−1 ∗ γ1,x+1)(Cn

m).
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Chapter 7

Open Questions and Future Directions

At this point we have barely scratched the surface of SF. Our focus has been on LOI and Simp

which lie at the base of Figure 3.2. Even at that altitude there are many unanswered questions. We

will finish by discussing some of the possible avenues for future research.

7.1 The Antichain Detection Character on LOI

Consider the following parametrized family of characters

αx,y(J(P),E) =


x|P|y f if P is an antichain,

0 otherwise.

We use f to denote the number of phantoms, i.e., |E \P|. We can compute the inverse of α . In

the following computation we will use p = |P| and m = |Min(P)|.
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α
−1
x,y (J(P),E) = ∑

Q∈Good(P)
Q antichain

(−1)c(Q)+|P\Q|+ f x|Q|y f+|P\Q|

= (−1)|P|+ f y|P|+ f
∑

Q∈Good(P)
Q antichain

(
x
y

)|Q|

= (−y)p+ f
p−m

∑
k=0

(
p−m

k

)(
x
y

)m+k

= (−y)p+ f
(

x
y

)m p−m

∑
k=0

(
p−m

k

)(
x
y

)k

= (−y)p+ f
(

x
y

)m(
1+

x
y

)p−m

= (−y)p+ f xmy−p(x+ y)p−m.

The character µ = α−1,1 is the Möbius function of J(P)[20, §3.9]. In this special case x+y = 0

which at first glance makes it seem like µ−1 = 0. An exception arises when p−m = 0, i.e., when

P is an antichain. In this case there is only one good fracturing (namely P) and we get a value of

(−1) f . Therefore

α
−1
−1,1(J(P)) =


(−1) f if P is an antichain,

0 otherwise.

Note that µ−1(J(P)) is just α1,−1(J(P)). If β = α2,−1 we end up with β−1(J(P)) = 2m We could

also consider β = α1,1 in which case

β
−1(J(P)) = (−1) f+p2p−m.
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Can we understand the kth convolution power of αx,y? For example

α
2
x,y(J(P)) = ∑

E=S⊔T
αx,y(J(P)|S)αx,y(J(P)/S).

This question seems to require a balancing act between S and T . We need enough elements in S to

make sure that J(P)/S is an antichain, on the other hand we still need J(P)|S to be an antichain.

7.2 Characters of Simp

In a conversation with Mark Denker it was suggested that working X(Simp) might yield tangible

results. This lies in the observation that Simp is cocommutative and thus 6.1 can be written as

(χ ∗φ)I(x) = ∑
I=S⊔T

χS(x|S)φT (x|T ).

Thus in the convolution product we only need to know how characters are affected by restriction.

This has its benefits. In Section 6.3 we had to keep track of phantoms formed by contraction. This

is not the case in X(Simp) since restriction does not introduce new phantoms.

For a quick example of the types of characters that appear in X(Simp) consider

α(Γ,E) =


1, if Γ is dimension 0

0, otherwise.

Then αk(Γ,E) is akin to properly coloring the 1-skeleton with exactly k colors.

At this time we only have a “nice” antipode formula for independence complexes of uniform

matroids. Thus our ability to invert characters in X(Simp) is currently limited.
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7.3 A Question About AMat

Castillo, Martin, and Samper defined a Hopf monoid OMat on ordered matroids[5]. Further Gille-

spie has a paper [9] in which Gillespie constructs an antimatroid from an ordered matroid. José

Samper asked if Gillespie’s construction might yield a Hopf morphism from OMat to AMat. We

have not had a chance to delve into this question. Even if the answer is negative, it could be

that Gillespie’s construction yields a Hopf morphism from OMat to White’s monoid mentioned in

Remark 3.28.

7.4 Generalizing from LOI to AMat

For now we will conclude with a short discussion about generalizing the cancellation-free formula

for the antipode in LOI to the larger Hopf submonoid AMat. This seems like a fitting conclusion

as it was antimatroids that first sparked the inspiration for SF.

Let us begin by first reviewing some terminology from Section 3.7. An antimatroid is a set

family (F ,E) such that:

• if X ,Y ∈ F , then X ∪Y ∈ F , and

• if X ∈ F and X ̸= /0, then there exists x ∈ X such that X \{x} ∈ F .

If X ∈ F then we say that X is a feasible set.

Suppose X ⊆ E. Then X is called free if F |X = 2X . A circuit is a minimal non-free set. That

is to say that X ⊆ E is a circuit if F |X ̸= 2X , but F |Y = 2Y for every proper subset Y ⊊ X . Given a

circuit C ⊆ E we say that r ∈C is a root of C if F |C = 2C \{{r}}. Every circuit has a unique root [3,

§8.7.C]. Given a circuit C with root r we denote the rooted circuit by the pair (C,r). An antimatroid

is determined by its collection of rooted circuits. Given the rooted circuits of an antimatroid we

can precisely determine when a set is feasible.
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Proposition 7.1 (Refer to [3, Proposition 8.7.11]). Let (F ,E) be an antimatroid and A ⊆ E. then

A ∈ F if and only if C∩A ̸= {r}, for every rooted circuit (C,r).

Our first step when determining a cancellation-free antipode formula for LOI or Simp was

to group like terms of Takeuchi’s formula. We will adapt our previous notation accordingly. Let

A = (F ,E) ∈ AMat. Given B ∈ AMat[E] define the support system of B with respect to A as

SuppA(B) = {Φ |= E : B = µΦ(∆Φ(A))}.

We want to know when SuppA(B) ̸= /0. In Chapter 4 this was done using betrayal. Recall that

if P is a poset, (J(P),E) ∈ LOI, and Φ |= E, then x ∈ P is betrayed by y ∈ P if y <P x and y <Φ x.

Further recall from Proposition 3.33 that every circuit of the antimatroid (J(P),E) takes the form

({a,b},b). Specifically ({a,b},b) is a circuit of (J(P),E) if and only if a <P b. Thus it seems

reasonable that betrayal could be adapted to antimatroids as a whole by looking at the circuits of

an antimatroid. Let us start with an example.

Example 7.2. Consider the set family A = (2[3] \{{3}}, [3]). Observe that A is a member of AMat

but not a member of LOI. Further the only circuit of A is ([3],3). Using Takeuchi’s formula

S(A) =−A+({ /0,1,2,12,23,123}, [3])+({ /0,1,2,12,13,123}, [3])− (2[2], [3])− (2[3], [3]) (7.1)

with

SuppA(A) = {123},

SuppA({ /0,1,2,12,23,123}) = {1|23},

SuppA({ /0,1,2,12,13,123}) = {2|13},

SuppA(2
[2]) = {12|3,1|2|3,2|1|3},

SuppA(2
[3]) = {13|2,23|1,3|12,1|3|2,2|3|1,3|1|2,3|2|1}.
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Note that SuppA(2
[2]) is the only term of (7.1) for which “betrayal” occurs. Furthermore the ele-

ments SuppA(2
[2]) are those for which the root of ([3],3) occurs in a block after all of the non-root

elements of the circuit. We posit that this is the correct generalization of betrayal to antimatroids.

Definition 7.3. Suppose (F ,E) ∈ AMat. We say that r ∈ E is betrayed with respect to Φ =

(Φ1, . . . ,Φk) |= E if there exists a rooted circuit (C,r) of (F ,E) such that

r ∈ Φi and (7.2)

C \{{r}} ⊆ Φ1 ∪·· ·∪Φi−1. (7.3)

Akin to the definition of betrayal for LOI we say that C betrays a.

Proposition 7.4. Suppose A = (F ,E)∈ AMat, that r ∈
⋃

F∈F F, and that Φ = (Φ1, . . . ,Φk) |= E.

If r is betrayed with respect to Φ, then r is a phantom of µΦ(∆Φ(A)).

Proof. Suppose that r is betrayed by C with respect to Φ. Coassociativity of AMat implies that

the ith factor of ∆Φ(A) is

(A|Φi)/Φ1∪···∪Φi−1 = ({F ∩Φi : F ∈ F and F ∩ (Φ1 ∪·· ·∪Φi−1) = /0},Φi). (7.4)

Suppose that r ∈ F such that F ∩ (Φ1 ∪ ·· · ∪Φi−1) = /0. Then F ∩C = /0 and by Proposition 7.1

it follows that F /∈ F . Thus r appears in no member of (A|Φi)/Φ1∪···∪Φi−1 . Hence r must be a

phantom of µΦ(∆Φ(A)).

Conjecture 7.5. Suppose A = (F ,E) ∈ AMat, that r ∈
⋃

F∈F F, and that Φ = (Φ1, . . . ,Φk) |= E.

If r is a phantom of µΦ(∆Φ(A)), then r is betrayed with respect to Φ.
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