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Abstract

This dissertation proposes theories and applications for three new types of functional-

coefficient VAR models. The first part of dissertation develops a vector autoregressive model

for conditional quantiles with functional coefficients to construct a novel class of nonpara-

metric dynamic network systems, of which the interdependences among tail risks such as

Value-at-Risk are allowed to vary smoothly with a variable of general economy. The con-

tributions to literature are four-fold in this part. First, the model setting is general enough

to nest many well-known dynamic quantile models in the literature. Second, by allowing

coefficients to vary with a smoothing variable, the proposed model provides a new tool to

estimate the relationship between the interdependence of risk and the state variable of econ-

omy or time. Third, a new and simple-to-implement estimation procedure is developed for

estimating the proposed quantile model with highly nonlinear structure and latent covari-

ates. Finally, a large sample theory for the proposed estimator is established to construct

confidence intervals for functional coefficients in the empirical study.

The second part proposes a new class of functional-coefficient factor-augmented predic-

tive VAR (FC-FAVAR) models. Different from the existing literature, this model setting

allows both factor loadings of corresponding factor model and coefficients of this predictive

VAR model vary with a smoothing economic variable, which adds additional information

of variation in the factor structure and economic interpretability to the predictive model.

Moreover, both observed variables and unobserved factor regressors in this new model are

jointly imposed in a vector autoregressive form. In this way, some important information

of model dynamic may be included in these lagged factors, which is helpful to enhance the

ability of prediction. Finally, the proposed model is applied in both simulation and empirical
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study of one-step ahead prediction, which demonstrate its reliability in forecasting.

In the third part, effects of monetary policy shocks on large amounts of macroeconomic

variables are identified by a class of FC-FAVAR models. In the empirical study, I analyze the

generalized impulse response functions (GIRF) estimated by the newly proposed model and

compare my results with those from classical FAVAR models. The major contributions are

two parts. In the empirical study, I provide an alternative way from econometric perspec-

tive to reduce price puzzle by using the proposed FC-FAVAR model, without introducing

new variables or structure in the conventional macroeconomic model and replacing policy

instruments.

Keywords: Conditional quantile models; Dynamic financial network; Functional coefficient

models; Nonparametric estimation; VAR modeling; Factor-augmented vector autoregressive;

Factor model; Forecasting; Impulse response functions; Price puzzle

JEL Classification: C14, C58, C45, G32, E30, E31
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Chapter 1

Literature Review

1.1 Dynamic Quantile Model

Since the seminal work by Koenker and Bassett (1978), quantile regression, also called

conditional quantile or regression quantile or dynamic quantile, has become an increasingly

popular tool for risk analysis in many fields in economics such as labor economics, macroeco-

nomics and financial risk management; see, for instance, White, Kim and Manganelli (2015),

Abrian and Brunnermeier (2016), Härdle, Wang and Yu (2016), Zhu, Wang, Wang and

Härdle (2019) and the references therein.

Assume that {Vt, yt}∞t=−∞ be a strictly stationary sequence and F (y|v) denote the con-

ditional distribution of yt given Vt = v. The conditional quantile function of yt given Vt = v,

qτ (v), is defined as, for any 0 < τ < 1,

qτ (v) = inf{y ∈ R : F (y|v) ≥ τ}.

Equivalently, qτ (v) can be expressed as

qτ (v) = argmin
a∈R

E{ρ(yt − a)|Vt = v},

where ρτ (y) = y[τ − I (y < 0)] is called the "check" (loss) function and I (A) is the indicator

function of any set A. It is well known that when the distribution of the dependent variable

has heavy-tails, heteroscedasticity, and/or outliers, the quantile regression is more reliable
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than mean regression models. The reader is referred to the review papers by Koenker (2005)

and Koenker, Chernozhukov, He and Peng (2017) for more applications of quantile regression.

Among developments of quantile methods in the statistics literature, dynamic quantile

models have attracted intensively attentions in the recent two decades. Previous researches

in this area were mainly motivated by estimating conditional Value-at-Risk (CVaR), which

can be described as:

CVaRτ,t = − inf{Y ∈ R : F (Y |Ft−1) > τ},

where τ ∈ (0, 1) is the quantile level, Ft−1 is the information set to present all information

of the return available at time t − 1, and F (·|Ft−1) represents the conditional distribution

function of Yt given Ft−1. Clearly, calculating CVaRτ,t is a special procedure for estimating

conditional quantiles of financial return distribution. In addition, since CVaRτ,t is also a

particular quantile of future portfolio value, conditional on current information as discussed

in Engle and Manganelli (2004), it is natural to consider the dynamic feature included in

conditional quantiles when estimating CVaRτ,t and dynamic quantile models can provide a

nice tool to achieve this goal. Some early works on dynamic quantile models include, but

not limited to, the autoregressive model for conditional quantiles (CaViaR) as in Engle and

Manganelli (2004), the dynamic additive quantile model proposed in Gourieroux and Jasiak

(2008), and the conditional quantile estimation for generalized autoregressive conditional

heteroscedasticity (GARCH)-type model studied by Xiao and Koenker (2009), and among

others.
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1.1.1 Univariate Conditional Autoregressive Value at Risk by Re-

gression Quantiles (CAViaR) models

Let us first look at a simple example of univariate Conditional Autoregressive Value at

Risk by Regression Quantiles (CAViaR) models proposed by Engle and Manganelli (2004)

qτ,t = γ0,τ +

q∑
s=1

γs,τqτ,t−s +

p∑
l=1

βl,τ |Yt−l|, (1.1)

where qτ,t is the conditional quantile for the return Yt, and | · | denotes the absolute value. As

pointed out by Xiao and Koenker (2009), the CAViaR model has attracted a great deal of

research attention in recent two decades. Engle and Manganelli (2004) focused on introducing

the CAViaR model instead of on estimating such models. In the CAViaR model, because

the regressors qτ,t−s are latent and are dependent on the unknown parameters, estimation of

the CAViaR model is complicated, and conventional nonlinear quantile regression techniques

are not directly applicable. Meanwhile, Xiao and Koenker (2009) studied a special case of

CAViaR model as follow

qτ,t = γ0,τ +

q∑
s=1

γsqτ,t−s +

p∑
l=1

βl,τ |Yt−l|

with Yt = σt εt being generated from a linear GARCH (p, q)-type process, which extends

from settings in Taylor (1986):

σt = γ0 +

q∑
s=1

γsσt−s +

p∑
l=1

βl|Yt−l|.

where qτ,t = σt F
−1
ε (τ), σ2

t is the conditional variance of Yt, Fε(·) is a distribution function

of εt, γ0,τ = γ0F
−1
ε (τ), and βl,τ = βlF

−1
ε (τ).

3



1.1.2 Vector Autoregressive (VAR) for CVaR Models and Tail De-

pendence

Note that the aforementioned models are only for the univariate case. For the multi-

variate case, White, Kim and Manganelli (2015) proposed a vector autoregressive (VAR) for

CVaR models as follow

qτ,t,i = γi0 +

q∑
s=1

γTi,sqτ,t−s +

p∑
l=1

βTi,lYt−l, i = 1, 2, . . . , κ, (1.2)

where qτ,t,i is the conditional quantile for the return Yit of individual i, qτ,t = (qτ,t,1, . . . , qτ,t,κ)
T ,

Yt = (|Y1t|, . . . , |Yκt|)T , and γi,s = (γsi1, . . . , γsiκ)
T , and βi,l = (βli1, . . . , βliκ)

T . It is worth-

while to mention that the multivariate dynamic quantile models (1.2) are naturally suitable

for capturing the dependence between the lower-tail conditional quantile of the distribution

of financial returns and its lag or other covariates (also called tail dependence). With the

help of model (1.2), White et al. (2015) is enable to estimate directly the sensitivity of VaR

of a given financial institution to shocks to the whole financial system by constructing a

vector autoregressive (VAR) model for dynamic quantiles.

The tail dependence is in particular important in reflecting the risk interdependence and

contains network information in a financial system. To the best of our knowledge, much

of the existing literature assumed constant tail dependence in their models or focused on

the response of conditional quantile to endogenous variables or shocks. However, numerous

studies have documented temporal changes of risk interdependence in financial time series

and discussed their possible origins and relation to spillover effects; see, for example, Billio,

Getmansky, Lo and Pelizzon (2012), Diebold and Yílmaz (2014), Härdle et al. (2016), Yang

and Zhou (2017), Liu, Ji and Fan (2017), Ando and Bai (2020) and the references therein.

The driving force for the variations of risk interdependence may be the institutional changes

or the policy interventions, such as the changes of exchange rate systems and the U.S.
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quantitative easing policy. With these backgrounds, it is desirable to consider modeling the

interaction between varying patterns of tail dependence and macroeconomic circumstances.

These theoretical and empirical studies inspire us to build a more general framework to

capture the time-varying interdependences among dynamic quantiles.

1.1.3 Financial Network

As a direct extension of the concept of tail dependence, financial network has attracted

more and more attentions in recent decade. Indeed, it is well documented in the literature

that financial systems contain enormous numbers of institutions that interplay with each

other. These interactions form a financial network in which a node represents each insti-

tution and a linkage between two nodes acts as an observable or unobservable interaction

of some forms between two institutions. Also, it is well-established that the possibility of

major financial distress is closely related to the degree of correlation among the assets of

institutions and how sensitive they are to the changes in economic conditions. Based on

these intuitions, provided that the node of a network is represented by the VaR of returns

of institutions’ assets or of market indexes, one may construct a financial network that can

capture interdependences among VaRs within the financial system.

To be specific, let us consider following framework with constant interdependences among

CVaRs studied by White et al. (2015):

CVaRit = γTi CVaRt−1, i = 1, 2, . . . , κ, (1.3)

which is a special case of (1.2), where γi = (γi1, . . . , γiκ)
T is a vector of constant parameters

that represent static interdependences among VaRs, and

CVaRt−1 = (CVaR1(t−1), . . . ,CVaRκ(t−1))
T
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is a vector of all returns’ CVaRs at time t − 1. Then, the matrix Γ = (γ1, . . . ,γκ)κ×κ can

be regarded as a financial network for measuring transmissions of financial risks. Following

this framework, Härdle et al. (2016) developed a model to describe the network relationship

among VaRs of financial institutions by a flexible nonparametric quantile model with L1-

penalty. Recently, Zhu et al. (2019) constructed a quantile autoregressive model that embeds

the observed dependency structure in a dynamic network. Since VaRs and interdependences

among them appear to be unobservable in practice, as addressed in Sewell and Chen (2015),

Zhu et al. (2019), Bräuning and Koopman (2020) and Lee, Li and Wilson (2020), it is

unnecessarily feasible to apply commonly known technologies that have access to the binary

data with observed network structures for estimating the risk network formed by VaRs. An

influential precedent of analyzing the network topology of unobservable connectedness of

risk attributes to the paper by Diebold and Yílmaz (2014) by constructing a risk network

based on forecast error variance decompositions of classical VAR models and studying the

volatility connectedness by methods of network analysis. Extensive reviews about financial

network can be found in Diebold and Yílmaz (2014) and Härdle et al. (2016).

1.2 Factor-Augmented VAR (FAVAR) Model

It is interesting to see that the multivariate dynamic quantile model (1.2) can be further

extended when replacing vector of latent variables qτ,t by other types of latent vector. For

example, if qτ,t is replaced by a vector of unobserved latent factors f t, then model (1.2)

becomes a factor-augmented VAR (FAVAR) model constructed in Bernanke, Boivin and

Eliasz (2005). In the next subsection, I will give detailed literature review about FAVAR

models and their extensions.
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1.2.1 Factor-Augmented VAR (FAVAR) Model with Fixed Coeffi-

cients

Linear vector autoregression (VAR) models and their extensions such as vector autore-

gressive moving average (VARMA) models and VARs with exogenous variables (VARX) were

well developed in last century for studying the effects of monetary policy shocks on macroe-

conomic variables and modeling the dynamic interdependences among them. These models

mainly arise as powerful tool-kits for macroeconomists but only impose minimal restrictions

on the identification of large-scale macroeconomic models (Sims, 1980).

Despite the popularity, linear VAR models assume that the variables entered in econo-

metric models are observable. Nevertheless, Bernanke et al. (2005) claimed that the as-

sumption that both the central bank and the econometrician observe all the elements for

estimating VAR model is too strong. In addition, since the standard VAR in literature usu-

ally did not contain more than six to eight variables, as argued in Bernanke et al. (2005),

such low-dimensional linear vector VAR models may not include adequate information used

by both central bank and private sectors. As an alternative, Stock and Watson (2002) sem-

inally introduced the method of factor-augmented forecasts (also known as “diffusion index

forecasts") in the VAR literature to exploit the information in a large set of macroeco-

nomic variables. After this work, factor-augmented methods are being used by an increasing

number of researchers and begin to fuse with linear VAR models and their variants. Pioneer-

ing contributions include the factor-augmented vector autoregressions (FAVAR) proposed in

Bernanke et al. (2005) and the asymptotic theory for the estimated parameters of the factor-

augmented regressions in Bai and Ng (2006). The linear FAVAR model in Bernanke et al.

(2005) assumes the following form

Pt = γ0 + Γ1Pt−1 + Γ2 Pt−2 + · · ·+ ΓqPt−q + εt, (1.4)
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where Pt = (fTt ,y
T
t )T , with f t = (f1t, . . . , frt)

T being a r × 1 vector of unobservable factors

and yt = (y1,t, . . . , ym,t)
T being a m×1 vector of observable economic variables. In addition,

let Q = m+ r, then, γ0 = (γ10, . . . , γQ0)T is denoted as a vector of scalar intercepts, Γk is a

Q × Q coefficient matrix for 1 ≤ k ≤ q, and εt = (ε1,t, . . . , εQ,t)
T is a vector of error terms.

Furthermore, let xt = (x1t, . . . , xNt)
T be a N × 1 vector of available predictive variables at

time t for 1 ≤ t ≤ n, Bernanke et al. (2005) assumed that xt is affected by Pt in model (1.4)

through following equation with factors

xt = Bff t +Byyt + ut, (1.5)

where Bf is a N × r matrix of factor loadings, By is a N ×m matrix of coefficients, and

ut = (u1t, . . . , uNt)
T is a N × 1 vector of idiosyncratic errors. Note that the number N

is large and it is commonly assumed to be much greater than the number of factors and

observed variables (r + m � N). Notice that model (1.5) can be transformed into a factor

model with only unobserved f t by imposing an orthogonality restriction between f t and

observed yt, see, for example, Bai et al. (2016) and Yamamoto (2019). In recent years, there

has been increasing interest on studying factor models, see, for example, Chamberlain and

Rothschild (1983), Fama and French (1992), Bai and Ng (2002), Fan, Liao and Mincheva

(2013), Fan and Liao (2020) and the references therein. It is well known in the literature

of dynamic factor models that the information from a large number of time series can be

summarized by a relatively small set of estimated factors, see, e.g., Stock and Watson (2002)

and Bernanke and Boivin (2003). In the further extensions, Dufour and Stevanović (2013)

considered the combination of vector autoregressive moving-average (VARMA) models and

factor-augmented techniques. Moreover, Bai, Li and Lu (2016) derived the inferential theory

that corresponds to a maximum likelihood estimation for FAVAR models.

So far, the aforementioned papers are based on the assumption that the coefficients

of the factor-augmented regression models are constant over time. However, the structural
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instability of factor-augmented models was also witnessed by numerous studies. For instance,

Corradi and Swanson (2014) constructed a test for the joint hypothesis of structural stability

of both factor loadings and coefficients in factor-augmented forecasting model.

1.2.2 Functional Coefficients Factor-Augmented Forecasting Model

To address inherent issues in static factor-augmented models, recently, Li, Tosasukul

and Zhang (2020) proposed a univariate factor-augmented predictive regression model with

functional coefficients, which allows the coefficients to vary with a variable. Specifically, for

1 ≤ j ≤M , define

yj,t = γj0(Zjt) +

qf∑
d=1

γTj,d,f (Zjt)f t−d +

qy∑
c=1

γTj,c,y(Zjt)yt−c + vj,t, (1.6)

where γj0(·) is a scalar function, γj,d,f (·) = (γdj1,f (·), . . . , γdjr,f (·))T is a r × 1 vector of

functional coefficients, γj,c,y(·) = (γcj1,y(·), . . . , γcjm,y(·))T is a m × 1 vector of functional

coefficients, Zjt is an observable scalar smoothing variable, and vj,t is an error term. Notice

that the model (1.6) covers the model in Yan and Cheng (2022), who studied a parametric

factor-augmented forecasting model in the presence of threshold effects. Of course, model

(1.6) also includes the threshold models without factors studied in Tsay (1998), where pre-

dictive residuals are used to construct a test statistic to detect threshold nonlinearity in a

vector time series. In their paper, Tsay (1998) applied their modeling procedure to study

U.S. monthly interest rates and two daily river flow series of Iceland.

1.3 Overview

The rest of this dissertation is organized as follows. In Chapter 2, I propose a vector au-

toregressive model for conditional quantiles with functional coefficients to construct a novel

class of nonparametric dynamic network systems, of which the interdependences among tail
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risks such as Value-at-Risk are allowed to vary smoothly with a variable of general economy.

Methodologically, I develop an easy-to-implement two-stage procedure to estimate function-

als in the dynamic network system by the local linear smoothing technique. I establish the

consistency and the asymptotic normality of the proposed estimator under strongly mixing

time series settings. The simulation studies are conducted to show that our new methods

work fairly well. The potential of the proposed estimation procedures is demonstrated by

an empirical study of constructing and estimating a new type of nonparametric dynamic

financial network.

Chapter 3 proposes a new class of functional-coefficient factor-augmented predictive VAR

models, where both factor loadings of corresponding factor model and coefficients of this

predictive VAR model vary with a smoothing variable. To estimate this new model, I develop

a simple-to-implement procedure which consists of two steps. In step one, the unobserved

factor regressors in this predictive model are estimated via a local principal component

analysis (local PCA) method. After obtaining the estimated factor regressors, a local linear

smoothing method is applied to estimate the coefficient functions in the predictive model for

one-step ahead forecasting, and the corresponding prediction interval is constructed by a wild

bootstrap procedure. Finally, a simulation study and an empirical application of forecasting

the consumer price index (CPI) in the U.S. demonstrate that my estimation procedure is

reliable and works reasonably well.

In Chapter 4, effects of monetary policy shocks on large amounts of macroeconomic

variables are identified by a class of functional-coefficient factor-augmented vector autore-

gressive (FC-FAVAR) models proposed in chapter 3, which allows coefficients of classical

FAVAR models to vary with some variable. In the empirical study, I analyze the generalized

impulse response functions estimated by the newly proposed model and compare my results

with those from classical FAVAR models. My empirical finding is that the proposed new

model has an ability to reduce the well-known price puzzle without adding new variables

into the dataset.
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Chapter 2

A Nonparametric Dynamic Network via Multivariate

Quantile Autoregressions

2.1 Introduction

In this article, I propose a nonparametric approach involving multivariate dynamic quan-

tile models with nonlinear structures. Different from previous studies, I capture nonlinearities

in data by using a functional coefficient setting, which allows coefficients of the multivariate

dynamic quantile models to vary with a smoothing variable. Since coefficients of dynamic

quantile models play an important role in reflecting interdependences among dynamic quan-

tiles, under our model setup, one can easily illustrate the variation of tail dependence and its

relation with the variable which is of interest. To interpret features of varying interdepen-

dences within various conditional quantiles, I form a VAR model with functional coefficients

where the quantiles of several random variables depend on lagged quantiles and other lagged

covariates. For this reason, this model is termed as a functional-coefficient VAR model

for dynamic quantiles (FCVAR-DQ) and is presented in (2.1) later. In an effort to study

nonlinear relationship between the quantile of response variable and its covariates, various

smoothing techniques (e.g., kernel methods, splines, and their variants) have been used to

estimate the nonparametric quantile regression for both independent and time series data,

to name just a few, He and Ng (1999), Honda (2000, 2004), Wei and He (2006), Kim (2007),

Cai and Xu (2008), Qu and Yoon (2015), and Li, Li and Li (2021). Among many kinds of

methods, I adapt one of modeling methods to analyze dynamic quantiles, called the func-
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tional coefficient modeling approach. Compared with the existing literature, my approach

is different mainly in three parts. First, I provide a kernel-based estimation framework for

a new type of dynamic quantile model, which imposes relatively less restriction on model’s

structure. Second, my model admits nonlinearities of tail dependence, which can be ignored

commonly by dynamic quantile models with fixed coefficients. Third, the proposed model

allows for studying interaction between tail dependence and the variable of interest.

One of my motivations for this study comes from analyzing the dynamic mechanism

of financial network in international equity markets. Compared to the literature thus far,

I consider capturing unobserved interconnectedness of tail risk among institutions in the

dynamic network, which can not be achieved by models with observed network data and by

measuring conditional correlation as in Diebold and Yílmaz (2014). Moreover, in order to

illustrate overall patterns of time-varying network of risk across institutions, the main interest

in this chapter lies in modeling the relationship between the general states of economy and

a financial network formed by VaRs of global major market index’s return series. More

specifically, I allow interdependences among VaRs of market index’s return series to vary

with a smoothing variable of economic status to capture the dynamic changes. Some recent

studies found increasing evidences to show that the variation of risk interdependence not

only reveals the behavior of spillover effects of risk but also contains the information about

the stability of financial systems; see, e.g., Acemoglu, Ozdaglar and Tahbaz-Salehi (2015).

Both practitioners and policymakers may be interested in knowing how a financial network

changes with the macroeconomic climate or financial market circumstances, and the way to

evaluate the influences of economic policies to the whole network within the financial market.

The empirical study in this chapter shows that the proposed FCVAR-DQ model should be

suitable for estimating a novel class of dynamic financial network and providing some new

insights. A detailed analysis of this class of nonparametric financial network is reported in

Section 2.4.

Lastly, my contributions to the literature can be summarized as follows. First, the model
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setting in this chapter (see (2.1) later) is general enough to nest many well-known dynamic

quantile models in the literature; see, for example, the CaViaR model proposed by Engle and

Manganelli (2004) and further studied Xiao and Koenker (2009), the threshold CaViaR model

in Gerlach, Chen and Chan (2011), and the static VAR for VaR model constructed by White

et al. (2015). Second, by allowing coefficients to vary with a smoothing variable, a FCVAR-

DQ model provides a new tool to estimate the relationship between the interdependence

of risk and the state variable of economy or time. Third, a new and simple-to-implement

estimation procedure is developed for estimating the proposed quantile model with highly

nonlinear structure and latent covariates. Finally, a large sample theory for the proposed

estimator is established to construct confidence intervals for functional coefficients in the

empirical study.

The rest of this chapter is organized as follows. In Section 2.2, the model setup and the

two-stage estimation procedure are presented for the FCVAR-DQ model. In addition, a large

sample theory for the proposed estimator is investigated in this section too, together with

constructing a consistent estimator of the asymptotic covariance matrix. A Monte Carlo

simulation study is conducted in Section 2.3 to illustrate the finite sample performance of

the proposed estimation procedure. In Section 2.4, the proposed model and its modeling

procedure are applied to constructing a novel class of nonparametric financial networks based

on the real example. Finally, a conclusion remark is given in Section 2.5 and all the technical

proofs are gathered in the Appendix A. Throughout this chapter, 0a×b stands for the (a× b)

matrix of zeros and Ia is the (a× a) identity matrix.

2.2 FCVAR Model for Dynamic Quantiles

2.2.1 Model Setup

Let Yit (1 ≤ i ≤ κ, 1 ≤ t ≤ n), a scalar dependent variable, be the ith observation at

time t, Fi,t−1 represent information set up to time t − 1 for 1 ≤ i ≤ κ, and qτ,t,i be the
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τth conditional quantile of Yit given Fi,t−1. Then, I study the following functional-coefficient

VAR model for dynamic quantiles, termed as FCVAR-DQ model, given by, for 1 ≤ i ≤ κ

and 1 ≤ t ≤ n,

qτ,t,i = γi0,τ (Zit) +

q∑
s=1

γTi,s,τ (Zit)qτ,t−s +

p∑
l=1

βTi,l,τ (Zit)Yt−l (2.1)

for some p and q, where qτ,t = (qτ,t,1, . . . , qτ,t,κ)
T and Yt is a κ1 × 1 vector of covari-

ates, including possibly some or all of {Yit}κi=1 and/or some exogenous information {xit}.

In addition, γi0,τ (·) is a scalar function and is allowed to depend on τ , both γi,s,τ (·) =

(γsi1,τ (·), . . . , γsiκ,τ (·))T and βi,l,τ (·) = (βli1,τ (·), . . . , βliκ1,τ (·))T are κ × 1 and κ1 × 1 vectors

of functional coefficients, respectively, and they are allowed to depend on τ too. Here, Zit

is an observable scalar smoothing variable, which might be one part of Yt−l and/or time or

other exogenous variables {xit} or their lagged variables. Of course, Zit can be an economic

index to characterize economic activities. Also, note that Zit can be set as a multivariate

variable. In such a case, the estimation procedures and the related theory for the univari-

ate case still hold for multivariate case, but more complicated notations are involved and

models with Zit in very high dimension are often not practically useful due to the “curse of

dimensionality". In addition, note that similar to the setting of the multi-quantile CaViaR

model as in White, Kim and Manganelli (2008), one may further generalize model (2.1) by

allowing τ in qτ,t,i to vary across different equations, only with mild changes on asymptotic

theory in this paper. Thus, in order to meet our empirical motivation, all of τ ′s in model

(2.1) are the same throughout this article.

Importantly, in the case of estimating dynamic financial network in empirical studies,

by following White et al. (2015), I consider only the tail dependence between current state

and the state of one-period lagged, and take Yt to be Yt = (|Y1t|, . . . , |Yκt|)T with | · |

representing absolute value. Furthermore, the smoothing variable Zit varies only across

different time periods but keeps constant over individual units. Therefore, in this chapter, for
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easy exposition, my focus is on the simple case that q = p = 1, κ = κ1, Yt = (|Y1t|, . . . , |Yκt|)T ,

and Zit = Zt for all 1 ≤ i ≤ κ. Then, model (2.1) can be rewritten as

qτ,t,i = gTi,τ (Zt)X t, (2.2)

where gi,τ (·) = (γi0,τ (·), γi1,τ (·), . . . , γiκ,τ (·), βi1,τ (·), . . . , βiκ,τ (·))T is a (2κ + 1) × 1 vector of

functional coefficients and X t = (1, qτ,t−1,1, . . . , qτ,t−1,κ, |Y1(t−1)|, . . . , |Yκ(t−1)|)T .

It is worthwhile to note that if qτ,t,i in model (2.2) is defined as VaR of return Yit, then,

{γij,τ (Zt)}κi=1,j=1 in model (2.2) becomes to the sensitivity of VaR of returns for one portfolio

at time t to that of another at time t−1. With these functional coefficients {γij,τ (Zt)}κi=1,j=1,

define the following κ× κ matrix

Γ1,τ (Zt) = (γij,τ (Zt))κ×κ . (2.3)

Then, (2.2) can be expressed as a matrix form, which, indeed, is a FCVAR model for qτ,t

with exogenous variables,

qτ,t = γ0,τ (Zt) + Γ1,τ (Zt) qτ,t−1 + Γβ,1,τ (Zt)Yt−1,

where γ0,τ (Zt) and Γβ,1,τ (Zt) are defined obviously. Therefore, Γ1,τ (Zt) in (2.3) can serve as

a dynamic network system changing with both τ and some information variable Zt, and it

is in a nonparametric nature, so that it is a nonparametric dynamic network. Notice that

the general setting in the dynamic network system (2.3) covers some famous network models

for characterizing financial risk system, including the one formed by VAR for VaR model in

White et al. (2015), which assumes the tail dependence {γij,τ (Zt)}κi=1,j=1 to be constant and

the static financial network in Abrian and Brunnermeier (2016) and Härdle et al. (2016) as

special cases.

To investigate the large sample behavior of the proposed estimator (see Theorem 2.2.1
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later), it is assumed throughout this article that the process {(Yit, xit, Zt)} in model (2.1) is

strictly stationary and α-mixing (strongly mixing). Indeed, in the Appendix (see Appendix

B), I provide some regularity conditions to show that under these conditions, the joint

process {(Yit, xit, Zt, qτ,t,i)} generated by model (2.1) is strictly stationary and α-mixing.

Actually, sufficient conditions for the mixing property of nonlinear time series have been

studied extensively in literature. By Pham (1986), a geometrically ergodic time series is an

α-mixing sequence. Meanwhile, it is well-known that an ergodic Markov process initiated

from its invariant distribution is (strictly) stationary. Thus, geometrical ergodicity plays an

important role in establishing strictly stationarity and α-mixing properties. Some results in

this direction include the papers by Chen and Tsay (1993) and Cai, Fan and Yao (2000),

providing some sufficient conditions to ensure geometrical ergodicity for functional-coefficient

autoregressive time series models without rigorously theoretical justifications. In addition,

An and Chen (1997) and An and Huang (1996) surveyed various sufficient conditions for the

ergodicity of nonlinear autoregressive models. Also, Cai and Masry (2000) presented some

sufficient conditions for additive nonlinear autoregressive models with exogenous regressors

to be stationary and strongly mixing. The derivation of these two properties in this paper is

of independent interest, since my main interests in this article are to derive the asymptotic

theory for model (2.2) and estimate a new class of dynamic financial network. Therefore,

I provide some sufficient conditions that imply these important probabilistic properties and

corresponding rigorously theoretical justifications in the Appendix (see Appendix B).

Remark 2.2.1. (Special Cases) The proposed FCVAR-DQ model (2.1) is related to the pa-

pers by Engle and Manganelli (2004) and Xiao and Koenker (2009), which discussed the re-

lation between modeling dynamic structures of conditional quantiles and conditional volatility

of returns. Indeed, if κ = κ1 in (2.1), Yit in (2.1) takes a simple form as Yit = σit eit, where σ2
it

is the conditional variance of Yit and eit is an independent and identically distributed (i.i.d.)

sequence of random variables with mean zero and unit variance, then, qτ,t,i = σitF
−1
e (τ),

where Fe(·) is the distribution function of eit. Furthermore, if Yit = σit eit is generated

16



from a functional coefficient multivariate GARCH (p, q)-type process for κ (κ ≥ 1) returns

extended from the setting in Taylor (1986) as follows

σit = γi0(Zt) +

q∑
s=1

γTi,s(Zt)Σt−s +

p∑
l=1

βTi,l(Zt)Yt−l, (2.4)

where Σt = (σit, . . . , σκt)
T and Yt = (|Y1t|, . . . , |Yκt|)T , then, model (2.1) reduces to following

dynamic quantile model:

qτ,t,i = γi0,τ (Zt) +

q∑
s=1

γTi,s(Zt)qτ,t−s +

p∑
l=1

βTi,l,τ (Zt)Yt−l, (2.5)

where γi0,τ (·) = γi0(·)F−1
e (τ), γi,s(·) = (γsi1(·), . . . , γsiκ(·))T and βi,l,τ (·) = (βli1,τ (·), . . . ,

βliκ,τ (·))T with βlij,τ (·) = βlij(·)F−1
e (τ). Notice that if γ′s and β′s in (2.5) are constant,

model (2.5) reduces to those in Engle and Manganelli (2004) and Xiao and Koenker (2009),

respectively. For details, the reader is referred to the aforementioned papers. Finally, note

that if qτ,t would be observable and all coefficients are threshold functions, model (2.1) covers

the model in Tsay (1998).

Remark 2.2.2. (Monotonicity). The issue of monotonicity is frequently discussed for the

quantile autoregression model. A specific case for the monotonicity of (2.1) to hold is that

{γi,s,τ (Zt)}
κ,q
i=1,s=1 and {βi,l,τ (Zt)}

κ,p
i=1,l=1 are all monotone increasing functions with respect

to τ , and Yt is a positive random vector. In other cases, the assumption of monotonicity

can be satisfied by conducting certain data transformation techniques; see Koenker and Xiao

(2006) and Fan and Fan (2006) for detailed discussions.

Remark 2.2.3. (Selection of Zt). Of importance is to choose an appropriate smoothing

variable Zt in applying functional-coefficient VAR model for dynamic quantiles in (2.2).

Knowledge on physical background or economic theory of the data may be very helpful, as we

have witnessed in modeling the real data in Section 2.4 by choosing Zt to be the first difference

of daily log series of the U.S. dollar index. Without any prior information, it is pertinent to
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choose Zt in terms of some data-driven methods such as the Akaike information criterion,

cross-validation, and other criteria. Ideally, Zt can be selected as a linear function of given

explanatory variables according to some optimal statistical selection criterion such as LASSO

type methods, or an economic index based on some economic theory; see, for instance, Cai,

Juhl and Yang (2015). Nevertheless, here we would recommend using a simple and practical

approach proposed by Cai et al. (2000) or Cai et al. (2015) in practice.

2.2.2 Two-stage Estimation Procedure

Since the estimation procedures for (2.1) and (2.2) are the same, I aim at estimating

functional coefficients gi,τ (·) in the model defined in (2.2) for simplicity. Because qτ,t−1,i

in X t depends on unknown functional coefficients gi,τ (·), model (2.2) is more complicated

than functional coefficient models with observed data. My procedures consist of two steps.

The first is to estimate latent qτ,t−1,i, and then I perform locally weighted estimation for

functional coefficients using the estimated qτ,t−1,i from the first step. In this paper, I only

focus on estimating functional coefficients in (2.2), rather than jointly forecasting qτ,t,i or

doing impulse response analysis. So, it is sufficient to estimate gi,τ (·) in an equation-by-

equation way for different i. Thus, by abuse of notation, i will be dropped in what follows.

Given (2.1) and (2.2), let γ0,τ (Zt) define as earlier as (γ10,τ (Zt), . . . , γκ0,τ (Zt))
T and

denote Γs,τ (Zt) as a matrix with entries γsij,τ (Zt) and Γβ,l,τ (Zt) as a matrix with entries

βlij,τ (Zt), for s = 1, . . . , q and l = 1, . . . , p. Furthermore, define Aτ (L) =
∑p

l=1 Γβ,l,τ (Zt)Ll

and Bτ (L) = Iκ−
∑q

s=1 Γs,τ (Zt)Ls, where each entry is a lag polynomial and L denotes the lag

operator. Then, under Assumption A1 presented in Section 2.2.3, ensuring the invertibility

of Bτ (L), model (2.1) becomes to the following formulation

qτ,t = Bτ (L)−1γ0,τ (Zt) + Bτ (L)−1Aτ (L)Yt.

Here, Bτ (L)−1γ0,τ (Zt) and Bτ (L)−1Aτ (L) can be represented by C0,t,τγ0,τ (Zt) and a ma-
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trix series
∑∞

l=1Cl,t,τLl for all Zt, respectively. Now, let α0,τ (·) be the ith row of matrix

C0,t,τγ0,τ (Zt) and αl,τ (·) = (αl1,τ (·), . . . , αlκ,τ (·))T be the ith row of matrix Cl,t,τ . Therefore,

with the definitions of α0,τ (·) and αl,τ (·), I can first approximate the latent qτ,t by using a

functional-coefficient quantile function:

qτ,t = α0,τ (Zt) +
∞∑
l=1

αTl,τ (Zt)Yt−l, (2.6)

where the coefficients αl,τ (·) satisfies summability conditions implied by Assumption A1.

Then, each entry of αl,τ (·) decreases at a geometric rate; that is, there exist positive constants

ρ < 1 and c, such that max1≤t≤n |αlj,τ (Zt)| ≤ cρl for j = 1, . . . , κ. Since αlj,τ (·) decreases

geometrically, by choosing an appropriate mn = m(n) = m, I study following truncated

equation (2.7) with increasing dimension of covariates:

qτ,t = α0,τ (Zt) +
mn∑
l=1

αTl,τ (Zt)Yt−l ≡W T
t ατ (Zt) = qτ (Zt,W t), (2.7)

where W t = (1,YT
t−1, . . . ,YT

t−m)T is a (κm + 1) × 1 vector of covariates and ατ (·) =

(α0,τ (·),αT1,τ (·), . . . ,αTm,τ (·))T is a (κm+1)×1 vector of functional coefficients. Note that (2.7)

can be regarded as an approximation of (2.6) and is similar to the model in Cai and Xu (2008).

Under smoothness condition of coefficient functions ατ (·) presented later in Assumption A2

in Section 2.2.3, for any given grid point z0 ∈ R, when Zt is in a neighborhood of z0, ατ (Zt)

can be approximated by a polynomial function as ατ (Zt) ≈
∑w

r=0α
(r)
τ (z0)(Zt − z0)r/r!,

where ≈ denotes the approximation by ignoring the higher orders and α(r)
τ (·) is the rth

derivative of ατ (·). Thus, qτ,t ≈
∑w

r=0W
T
t δr,τ (Zt − z0)r, where δr,τ = α

(r)
τ (z0)/r!. Hence,

δ̂ = argminδQ(δ), where Q(δ) is the locally weighted loss function for fixed κ, given by

Q(δ) =
n∑

t=m+1

ρτ

{
Yt −

w∑
r=0

W T
t δr(Zt − z0)r

}
Kh1(Zt − z0), (2.8)

ρτ (y) = y[τ − I (y < 0)] is called the “check" (loss) function, I (A) is the indicator function of
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any set A, K(·) is a kernel function, Kh1(u) = K(u/h1)/h1, and h1 = h1(n) is a sequence of

positive numbers tending to zero and controls the amount of smoothing used in estimation.

In practice, if I smooth locally around Zt and consider a local linear estimation, the locally

weighted loss function (2.8) becomes to the following

Q1(δ) =
n∑

s=m+16=t

ρτ

{
Ys −

1∑
r=0

W T
s δr(Zs − Zt)r

}
Kh1(Zs − Zt). (2.9)

After yielding δ̂0,τ at τ by minimizing (2.9), qτ,t can be estimated by q̂τ,t = W T
t δ̂0,τ .

Remark 2.2.4. (Truncation parameter m(n)). Welsh (1989) and He and Shao (2000) stud-

ied nonlinear M-estimation with increasing parametric dimension and discussed the possible

expansion rate for the number of parameters m(n). As for the quantile estimation for func-

tional coefficient models with increasing dimension of covariates, Tang, Song, Wang and

Zhu (2013) considered estimation and variable selection for high-dimensional quantile vary-

ing coefficient models based on B-spline approach. They showed that the oracle property for

varying coefficients can be preserved when m2
n log(pnmn)/n → 0, where pn is the dimension

of covariates and mn is a parameter associated with degree of polynomial and internal knots.

In this step, I am interested in studying varying interdependences among conditional quan-

tiles, rather than determining the optimal number for m. In addition, I focus on estimating

(2.7) using kernel-based approaches, which is necessary in order to obtain asymptotic prop-

erties for functional coefficients. Under Assumption A10 in Section 2.2.3, it will suffice to

consider a truncation m as a sufficiently large constant multiple of n1/7, which is used in our

simulation study in Section 2.3 and the empirical analysis in Section 2.4.

Remark 2.2.5. It is necessary to emphasize that α0,τ (·) and each component of αl,τ (·) in

(2.6) depend on {Zt−l}l≥0. Indeed, under the assumption of stationarity and Assumption

A1, α0,τ (·) and αl,τ (·) are well-defined and can be estimated on each Zt by local smoothing

approaches, regardless of the existence of other lagged Zt−l in α0,τ (·) and αl,τ (·). There-

fore, I use notations α0,τ (Zt) and
∑∞

l=1α
T
l,τ (Zt)Yt−l instead of α0,τ (Zt, Zt−1, . . . , Zt−l) and
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∑∞
l=1α

T
l,τ (Zt, Zt−1, . . . , Zt−l)Yt−l in (2.6) for notational simplicity.

To summarize, the following two-step procedures is proposed for estimating gτ (·):

Step One: Choose the truncation parameter m = cn1/7 for some c > 0 and estimate δ̂0,τ

at each Zt by minimizing (2.9). Then, latent qτ,t is approximated by q̂τ,t = W T
t δ̂0,τ .

Step Two: Having obtained q̂τ,t and given

X̂ t = (1, q̂τ,t−1,1, . . . , q̂τ,t−1,κ, |Y1(t−1)|, . . . , |Yκ(t−1)|)T ,

gτ (·) is estimated by a local linear estimation method; see Cai and Xu (2008) for details. In

particular, minimize the following locally (linear) weighted loss function Q2(Θ) at any given

grid point z0 ∈ R to obtain the local linear estimate Θ̂, where

Q2(Θ) =
n∑
t=1

ρτ

{
Yt −

1∑
r=0

X̂
T

t Θr,τ (Zt − z0)r

}
Kh2(Zt − z0) (2.10)

with Θr,τ = g
(r)
τ (·)/r!. Similar to (2.9), Kh2(u) = K(u/h2)/h2 and h2 is the bandwidth used

for this step, which is different from the bandwidth h1 used in (2.9); see Remark 2.2.6 later

in Section 2.2.3 for more discussions. A further improvement can be achieved by applying

iteration to the foregoing two-stage procedures.

2.2.3 Large Sample Theory

To study the asymptotic distribution of the nonparametric quantile estimator, we impose

some technical conditions in this section. It is worthwhile to emphasize that the main focus

in this paper is on estimating a new type of dynamic quantile model and constructing varying

interdependences among conditional quantiles, rather than exploring the weakest possible

conditions for asymptotic theory.

Assumption A.

A1: Suppose that Aτ (L) and Bτ (L) defined in Section 2.2.2 have no common factors so that
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Aτ (x) 6= 0, for |x| ≤ 1 and Bτ (x) 6= 0, for |x| ≤ 1.

A2: Each entry in the vector ατ (·) is (w+1)th order continuously differentiable in a neighbor-

hood of z0 for any z0; Similarly, each entry in the vector gτ (·) is (ς+ 1)th order continuously

differentiable in a neighborhood of z0 for any z0.

A3: fz(z) is a continuously marginal density of Z and fz(z0) > 0.

A4: The distribution of Y given Z and W has an everywhere positive conditional density

fY |Z,W (·), which is bounded and satisfies the Lipschitz continuity condition. Here, W t is

defined in (2.7). The kernel function K(·) is a bounded, symmetric density with a bounded

support region. Let µ2 =
´
ν2K(ν)dν and ν0 =

´
K2(ν)dν.

A5: {(Yit, xit, Zt)} is a strictly stationary sequence with α-mixing coefficient α(t) which sat-

isfies
∑∞

t=1 t
ια(δ−2)/δ(t) <∞ for some positive real number δ > 2 and ι > (δ − 2)/δ.

A6: There exist (small) positive constants $1 > 0 and $2 > 0 such that P{max1≤t≤n Y
2
t >

n$1} ≤ exp(−n$2).

A7: Let Bn = 1
n

∑n
t=m+1W tW

T
t and denote the maximum and minimum eigenvalues of Bn

as λmax(Bn) and λmin(Bn). Then, lim infn→∞ λmin(Bn) > 0, lim supn→∞ λmax(Bn) <∞.

It is assumed that E‖W t‖δ
∗ ≤ Cmδ∗/2 with δ∗ > δ.

A8: D(z0) ≡ E[W tW
T
t |Zt = z0] is positive-definite and continuous in a neighborhood of z0

and D∗(z0) ≡ E[W tW
T
t fY |Z,W (qτ (z0,W t))|Zt = z0] is positive-definite and continuous in a

neighborhood of z0.

A9: E‖Yt‖2δ∗ <∞ with δ∗ > δ.

A10: The bandwidth h1 satisfies h1 → 0, nh1 → ∞; The bandwidth h2 satisfies h2 =

O(n−1/5), h2 → 0, nh2 →∞. In addition, h1 = o(h2), mh1 → 0.

A11: f(w,ω|Y 0,Y `; `) ≤ H < ∞ for ` ≥ 1, where f(w,ω|Y 0,Y `; `) is the conditional

density of (Z0, Z`) given (Y0 = Y 0,Y` = Y `).

A12: n1/2−δ/4h
δ/δ∗−1/2−δ/4
2 = O(1).

Remark 2.2.6. Assumptions A1 is an invertibility condition for the functional coefficients

to be well-defined, which is similar to that in Chen and Hong (2016). Assumptions A2-
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A4 are common in nonparametric literature. Assumption A5 is a standard assumption for

α-mixing. Assumption A6 can be implied when the maximum of Y 2
t follows a generalized

extreme value distribution, which is generally satisfied for weakly dependent data; see also

Xiao and Koenker (2009). Assumption A7 guarantees the asymptotic behavior of regression

estimators with increasing dimension of covariates, which is similar to but slightly weaker

than that in Welsh (1989). Assumptions A8 and A9 are commonly required for the model

identification and ensure the convergence of Bn to E[W tW
T
t ], when W t is α-mixing. The

assumption h1 = o(h2) in Assumption A10 is about the under-smoothing at the step one,

which is common for the two-stage nonparametric estimation approaches; see also Cai (2002)

and Cai and Xiao (2012) for more discussions. The assumption mh1 → 0 in A10 is necessary

for the proof of stochastic equi-continuity. Assumption A11 is very standard and used for

the proof under mixing conditions. Assumption A12 allows one to verify standard Lindeberg-

Feller conditions for asymptotic normality of the proposed estimators in the proof of Theorem

2.2.1; see Cai and Xu (2008) for details on nonparametric quantile regressions models for

α-mixing time series.

Before stating the asymptotic behavior of ĝτ (z0) in the following theorem, for notational

simplicity, it needs to define some notations. Define

Ω∗(z0) ≡ E
[
X tX

T
t fY |Z,X(qτ (z0,X t))|Zt = z0

]
with qτ (z0,X t) = gTτ (z0)X t and fY |Z,X(·). In addition, let Ξ(z0) ≡ τ(1 − τ)ν0[Ω(z0) −

H1(z0) +H2(z0)], where Ω(z0) ≡ E[X tX
T
t |Zt = z0],

H1(z0) = E[X tW
T
t |Zt = z0](D∗(z0))−1ΓT (z0) + Γ(z0)(D∗(z0))−1E[W tX

T
t |Zt = z0],

H2(z0) = Γ(z0)(D∗(z0))−1D(z0)(D∗(z0))−1ΓT (z0), and

Γ(z0) ≡ E

{
fY |Z,X(qτ (z0,X t))X tg

T
τ (z0) Πt

∣∣∣∣Zt = z0

}
is a (2κ+ 1)× (κm+ 1) matrix, with

ΠT
t = (0T1×(κm+1),W t, . . . ,W t, 0

T
κ×(κm+1)). Now, the asymptotic normality of ĝτ (z0) is pre-
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sented in the following theorem with its detailed proof relegated to the Appendix (see Ap-

pendix A).

Theorem 2.2.1. (Asymptotic Normality) Under Assumptions A1–A12, we have

√
nh2

[
ĝτ (z0)− gτ (z0)− h2

2µ2

2
g(2)
τ (z0) + op(h

2
2)

]
d→ N (0,Στ (z0)),

where Στ (z0) = (Ω∗(z0))−1Ξ(z0)(Ω∗(z0))−1/fz(z0).

Remark 2.2.7. It is not surprising to see from Theorem 2.2.1 that the asymptotic bias

h2
2µ2g

(2)
τ (z0)/2 does not depend on h1. Indeed, since the estimation in the step one is under-

smoothed by Assumption A10, so that the part that relies on h1 in the asymptotic bias term

disappears, see Lemma A.10 in the Appendix for more details. However, different from

the conventional nonparametric estimation, Ξ(z0) in the asymptotic variance term contains

additional two terms H1(z0) and H2(z0), which involve W t in the first step. This formation

of asymptotic variance appears because of the fact that X̂ t contains q̂τ,t−1, which is estimated

in the step one of my two-stage approaches and therefore includes information ofW t. Similar

results of asymptotic variance were also obtained by Xiao and Koenker (2009), which can

be seen as a nature of any two-stage approach; see, for example, Cai, Das, Xiong and Wu

(2006) for more discussions.

Remark 2.2.8. (Bandwidth Selection) Finally, I would like to address how to select the

bandwidth h2 at the second step. It is well known that the bandwidth plays an essential role

in the trade-off between reducing bias and variance. In view of (2.10), it is about selecting

the bandwidth in the context of estimating the coefficient functions in the quantile regression.

Therefore, I recommend the method proposed in Cai and Xu (2008) for selecting h2 in (2.10),

which is used in our simulation study in Section 2.3.
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2.2.4 Covariance Estimate

For constructing confidence intervals for the estimated functional coefficients in the em-

pirical study, it turns to discussing how to obtain consistent estimator of the asymptotic

covariance matrix Στ (z0). To this end, one needs to estimate D(z0), D∗(z0), Γ(z0), H1(z0),

H2(z0), Ω(z0) and Ω∗(z0) consistently. For this purpose, define D̂(z0) =
∑n

t=1W tW
T
t Kh1(Zt−

z0)/n and D̂
∗
(z0) =

∑n
t=1w1tW tW

T
t Kh1(Zt−z0)/n, where w1t = I(W T

t α̂τ (z0)−δ1n < Yt ≤

W T
t α̂τ (z0) + δ1n)/(2δ1n) for any δ1n → 0 as n → ∞. Similar to the proof in Cai and

Xu (2008), one can show that D̂(z0) = fz(z0)D(z0) + op(1) and D̂
∗
(z0) = fz(z0)D∗(z0) +

op(1), respectively. Also, let Exw(z0) =
∑n

t=1 X̂ tW
T
t Kh2(Zt − z0)/n. Clearly, the con-

sistent estimators of Γ(z0), H1(z0), H2(z0), Ω(z0) and Ω∗(z0) can be constructed as fol-

lows: Γ̂(z0) =
∑n

t=1 w2tX̂ tĝ
T
τ (z0)ΠtKh2(Zt − z0)/n, Ĥ1(z0) = Exw(z0)(D̂

∗
(z0))−1Γ̂T (z0) +

Γ̂(z0)(D̂
∗
(z0))−1(Exw(z0))T , Ω̂(z0) =

∑n
t=1 X̂ tX̂

T

t Kh2(Zt− z0)/n, Ĥ2(z0) = Γ̂(z0)(D̂
∗
(z0))−1

× D̂(z0)(D̂
∗
(z0))−1Γ̂T (z0), and Ω̂∗(z0) =

∑n
t=1w2tX̂ tX̂

T

t Kh2(Zt − z0)/n, where

w2t = I(ĝTτ (z0)X̂ t−δ2n < Yt ≤ ĝTτ (z0)X̂ t+δ2n)/(2δ2n) for any δ2n → 0. In the Appendix (see

Section A.3 in Appendix A), it shows that indeed, the above estimators are consistent; that

is, Γ̂(z0) = fz(z0)Γ(z0)+op(1), Ĥ1(z0) = fz(z0)H1(z0)+op(1), Ĥ2(z0) = fz(z0)H2(z0)+op(1),

Ω̂(z0) = fz(z0)Ω(z0) + op(1), and Ω̂∗(z0) = fz(z0)Ω∗(z0) + op(1). The proof of these re-

sults relies on the uniform consistency (in probability) of the estimator α̂τ (·) obtained

from the first step of our estimation procedures, which is guaranteed by Lemma A.2 in

the Appendix. Therefore, it will show in the Appendix (see Section A.3 in Appendix A)

that indeed, Σ̂τ (z0) = (Ω̂∗(z0))−1Ξ̂(z0)(Ω̂∗(z0))−1 is a consistent estimate of Στ (z0), where

Ξ̂(z0) = τ(1− τ)ν0[Ω̂(z0)− Ĥ1(z0) + Ĥ2(z0)] is the consistent estimate of Ξ(z0) with Ω̂(z0),

Ĥ1(z0) and Ĥ2(z0) given above.
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2.3 A Monte Carlo Simulation Study

In this section, I provide a simulation example to exam the performance of our two-stage

estimations for functional coefficients. In this example, the bandwidth is selected based

on a rule-of-thumb idea similar to the procedure in Cai and Xiao (2012) as follows. First,

I use a data-driven bandwidth selector as suggested in Cai and Xu (2008) to obtain an

initial bandwidth denoted by ĥ0 which should be O(n−1/5). At step one, the bandwidth

should be under-smoothed. Therefore, by following the idea in Cai (2002) and Cai and Xiao

(2012) for two-step approaches, I take the bandwidth as ĥ1 = A0 × ĥ0 with A0 = n−1/10

so that ĥ1 satisfies Assumption A10. At step two, I choose optimal bandwidth ĥ2 by the

nonparametric AIC criterion as in Cai and Xu (2008). Finally, the Epanechnikov kernel

K(x) = 0.75(1− x2)I(|x| ≤ 1) is used and m = O(n1/7).

In this example, for 1 ≤ i ≤ 4, the data are generated from the following process:

Yit = σitεit

with σit = γi0(Zt) + γi1,εit(Zt)σ1(t−1) + γi2,χit
(Zt)σ2(t−1) + γi3,εit(Zt)σ3(t−1) + γi4,χit

(Zt)σ4(t−1) +

βi1(Zt)|Y1(t−1)| + βi2(Zt)|Y2(t−1)| + βi3(Zt)|Y3(t−1)| + βi4(Zt)|Y4(t−1)|, where γ10(z) = γ30(z) =

1.5 exp(−3(z+1)2)+exp(−8(z−1)2), γ20(z) = γ40(z) = 1.5 exp(−3(z−1)2)+exp(−8(z+1)2),

εit = 0.2U2
it + 0.8 and χit = 0.2 exp(Uit) + 0.8 with Uit ∼ i.i.d. Uniform [0, 1] for 1 ≤

i ≤ 4. In addition, γij,εit(z) and βj(z) for 1 ≤ j ≤ 4 and 1 ≤ i ≤ 4 are defined as

follows. For i = 1, γi1,εit(z) = 0.1 {1 + exp(−4z)}−1 εit, γi2,χit
(z) = (0.1 sin(−0.5πz) +

0.1)χit, γi3,εit(z) = (0.04z2)εit, γi4,χit
(z) = (−0.04z2 + 0.15)χit, βi1(z) = 0.1 sin(0.5πz) + 0.1,

βi2(z) = 0.1 sin2(z), βi3(z) = 0.02 exp(−z), and βi4(z) = 0.1 cos2(z). For i = 2, γi1,εit(z) =

(0.1 sin(−0.5πz)+0.1)εit, γi2,χit
(z) = 0.1 {1 + exp(−4z)}−1 χit, γi3,εit(z) = (−0.04z2+0.15)εit,

γi4,χit
(z) = (0.04z2)χit, βi1(z) = 0.1 sin2(z), βi2(z) = 0.1 sin(0.5πz)+0.1, βi3(z) = 0.1 cos2(z),

and βi4(z) = 0.02 exp(−z). For i = 3, γi1,εit(z) = 0.1 {1 + 2 exp(−2z)}−1 εit, γi2,χit
(z) =
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(0.1 sin(−0.6πz) + 0.1)χit, γi3,εit(z) = (0.04z2)εit, γi4,χit
(z) = (−0.04z2 + 0.15)χit, βi1(z) =

0.1 sin(0.6πz) + 0.1, βi2(z) = 0.1 sin2(z), βi3(z) = 0.02 exp(−z), and βi4(z) = 0.1 cos2(z). For

i = 4, γi1,εit(z) = (0.1 sin(−0.6πz)+0.1)εit, γi2,χit
(z) = 0.1 {1 + 2 exp(−2z)}−1 χit, γi3,εit(z) =

(−0.04z2 + 0.15)εit, γi4,χit
(z) = (0.04z2)χit, βi1(z) = 0.1 sin2(z), βi2(z) = 0.1 sin(0.6πz) + 0.1,

βi3(z) = 0.1 cos2(z), and βi4(z) = 0.02 exp(−z). Finally, εit are mutually i.i.d. from N (0, 1).

Thus, for 1 ≤ i ≤ 4, my data generating process is given by

qτ,t,i = γi0,τ (Zt) +
4∑
j=1

γij,τ (Zt)qτ,t−1,i +
4∑
j=1

βij,τ (Zt)|Yi(t−1)|,

where Zt is generated from Uniform [−2, 2] independently. Notice that our data generating

process corresponds to the model in (2.1) or (2.2) with κ = 4, Yt = (|Y1t|, |Y2t|, |Y3t|, |Y4t|)T ,

q = p = 1 and Zit = Zt. Also, note that γi0,τ (·) = γi0(·)Φ−1(τ), γi1,τ (·) = γi1(·)(0.2τ 2 + 0.8),

γi3,τ (·) = γi3(·)(0.2τ 2+0.8), while γi2,τ (·) = γi2(·)(0.2 exp(τ)+0.8), γi4,τ (·) = γi4(·)(0.2 exp(τ)+

0.8) and βij,τ (·) = βij(·)Φ−1(τ) for 1 ≤ i, j ≤ 4, with Φ(·) being the distribution function

of the standard normal. Therefore, γi0,τ (·), γij,τ (·) and βij,τ (·) are functions of τ , suggesting

different covariate effects at different levels of τ .

To assess the finite sample performance of the proposed nonparametric estimators, I

utilize the mean absolute deviation error (MADE) for γ̂i0,τ (·), γ̂ij,τ (·) and β̂ij,τ (·), defined as

MADE(γ) =
1

n0

n0∑
k

|γ̂τ (zk)− γτ (zk)|, and MADE(βij,τ ) =
1

n0

n0∑
k

|β̂ij,τ (zk)− βij,τ (zk)|,

where γτ (·) can be either γij,τ (·) or γi0,τ (·), both γ̂τ (·) and β̂ij,τ (·) are local linear quantile

estimates of γτ (·) and βij,τ (·), respectively, and {zk = 0.1(k − 1) − 1.75 : 1 ≤ k ≤ n0 = 36}

are the grid points. Also note that in this example, qτ,t,i = σitF
−1
ε (τ) = 0 when τ = 0.5,

which leads the quantile regression problem to be ill-posed so that the results for τ = 0.5 are

omitted. Therefore, I only consider τ ’s level to be 0.05, 0.15, 0.85 and 0.95 and the sample

sizes are n = 500, 1500 and 4000. For each setting, I replicate simulation 500 times and
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compute the median and standard deviation (in parentheses) of 500 MADE values and the

results are reported in Tables 2.1-2.4

One can see clearly from Tables 2.1-2.4 that both median and standard deviation of 500

MADE values steadily decrease as the sample size increases for all four values of τ . Moreover,

the performances for γi0,τ (·) and βij,τ (·) at τ = 0.15 and τ = 0.85 are slightly better than

those for τ = 0.05 and 0.95. This observation is because of the sparsity of data in the tailed

regions, which is similar to that in Cai and Xu (2008). Nevertheless, since the data that are

used to estimate γij,τ (·) at τ = 0.05 and 0.95 are conditional quantiles, the distributional

information at tailed regions is preserved, which may reduce the problem of data sparsity.

For this reason, the performances for γij,τ (·) at τ = 0.15 and τ = 0.85 are not necessarily

superior to that for τ = 0.05 and 0.95.

Finally, I illustrate the finite sample performance for the consistent covariance estima-

tion given in Section 2.2.4 via evaluating the pointwise confidence intervals (CI) with the

asymptotic bias ignored. To do this, define V̂ ar(·) as the asymptotic variance calculated by

the estimators presented in Section 2.2.4. Then, I compute the average of empirical cover-

age rates (AECR) of 95% pointwise CI of γij,τ (·) and βij,τ (·) without the asymptotic bias

correction for 1 ≤ i, j ≤ 4, defined as,

AECR(γij,τ ) =
1

n0B

n0∑
k

B∑
b=1

Ib{γij,τ (zk) ∈ γ̂ij,τ (zk)± 1.96× se(γ̂ij,τ (zk))},

where se(γ̂ij,τ (·)) =
[
V̂ ar(γ̂ij,τ (·))/nh2

]1/2

, Ib{γij,τ (·) ∈ γ̂ij,τ (·)±1.96×se(γ̂ij,τ (·))} is an indi-

cator function which equals to 1 if γij,τ (·) is covered by the interval γ̂ij,τ (·)±1.96×se(γ̂ij,τ (·))

in the bth time of replication (equals to 0, otherwise), and the number of replication times

B is 500. Similarly, AECR(βij,τ ), se(β̂ij,τ (·)), and Ib{βij,τ (·) ∈ β̂ij,τ (·) ± 1.96 × se(β̂ij,τ (·))}

can be defined in the same fashion. The simulation results are presented in Table 2.5, for

n = 4000 and τ = 0.05, 0.15, 0.85 and 0.95. From Table 2.5, one can see basically that

AECRs of 95% pointwise CIs are close to the nominal level 0.95 for all settings. In general,
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the results of this simulated experiment demonstrate that the proposed procedure is reliable

and works fairly well.

2.4 A Real Example

2.4.1 Empirical Models

In this section, the proposed model and estimation methods are applied to constructing

and estimating a new class of dynamic financial network in international equity markets.

Different from the existing literatures, the interdependences of this class of network vary

with a smoothing variable of general economy. To capture the inter-temporal transition of

risk and avoid endogeneity, I consider the interaction between current and one-day lagged

VaR. In particular, I define each linkage between a pair of VaRs in our network as the

sensitivity of VaR of returns of one market index at time t to that of another at time t− 1.

Therefore, my network can be written as following equation system:

VaRit = γTi,τ (Zt−1)VaRt−1, i = 1, 2, . . . , κ, (2.11)

where VaRt−1 = (VaR1(t−1), . . . ,VaRκ(t−1))
T is a vector of VaRs for all market index returns

at time t−1 and VaRit is the VaR of the ith market index return at time t, which is described

as follows

VaRit = − inf{Y ∈ R : P (Yit > Y |Fi,t−1) ≤ 1− τ} = − inf{Y ∈ R : F (Y |Fi,t−1) > τ}

for i = 1, 2, · · · , κ at a given τ ∈ (0, 1). Here, Fi,t−1 is the information set to present all

information of the ith return available at time t−1 and F (·|Fi,t−1) represents the conditional

distribution function of Yit given Fi,t−1. In addition, Zt−1 is a smoothing variable of general

economy and γi,τ (·) = (γi1,τ (·), . . . , γiκ,τ (·))T is a κ×1 vector of functional coefficients. Then,

I extract the quantile estimation of functional coefficients from equation system (2.11) and
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construct the matrix |Γ̂1,τ (Zt−1)| as our financial network as follows:

|Γ̂1,τ (Zt−1)| = (|γ̂ij,τ (Zt−1)|)κ×κ

in which, |γ̂ij,τ (Zt−1)| represents the absolute value of the sensitivity of VaR of return for

the market index j at time t to that of return for the index i at time t − 1, under τ -th

quantile level, and is driven by the smoothing variable Zt−1. Here, taking absolute value on

each γ̂ij,τ (Zt−1) enables us to calculate and analyze indicators of connectedness, and details

will be reported in Section 2.4.3 later. Thus, matrix |Γ̂1,τ (Zt−1)| is useful to capture risk

interdependence and how it changes with a smoothing variable Zt−1. Notice that entries

|Γ̂1,τ (Zt−1)| correspond to the absolute value of the estimated values of {γij,τ (·)} in the

network model in (2.3). Therefore, my two-stage procedures can be applied here for direct

estimation of the interdependence among VaRs of returns for the market indexes. In general,

the proposed framework is particularly suitable to investigate the dynamic characteristics of

risk spillover across global market indexes under the changes of economic circumstance.

2.4.2 Data

My dataset includes the daily series between January 5, 2006 and February 10, 2021 for

four major world equity market indexes: the U.K. FTSE 100 Index, the Japanese Nikkei

225 Index, the U.S. S&P 500 Composite Index and the Chinese Shanghai Composite Index.

I model the ith index’s return series Yit = 10 log(πit/πi(t−1)), where i = 1, 2, 3, 4 correspond

to the four aforementioned market indexes in turn and πit is ith index level on the tth day.

The studies of global market indexes help to explore the dynamic of risk dependences in the

global financial market, and the time range of data includes the financial crisis in the U.S. in

2008, the European sovereign debt crisis of 2011-2012 and the COVID-19 pandemic starting

from 2019. The daily series of four market indexes are downloaded in Yahoo Finance and

the estimation sample sizes n = 3254. Thus, I take m = n1/7 ≈ 3 in this empirical study.
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Although it is feasible to introduce more kinds of market index into the equation system

(2.11), due to the computational burdens, we only consider risk co-dependences among four

major markets’ indexes.

As for the smoothing variable Zt, I choose Zt = 10 log(Dt/Dt−1), where Dt is the U.S.

dollar index on the tth day and can be downloaded from the Federal Reserve Bank of St.

Louis. The U.S. dollar index measures value of U.S. dollar against the currencies of a

broad group of major U.S. trading partners, higher values of the index indicate a stronger

U.S. dollar. This choice of smoothing variable is reasonable, because the exchange rate has

been regarded as an important factor associated with international transmission of risk in

many empirical studies. For instance, Menkhoff, Sarno, Schmelling and Schrimpf (2012)

discussed the relation between innovations in global foreign exchange volatility and excess

returns arising from strategies of carry trade, through which the risk spillover transmits from

one country to others. In addition, Yang and Zhou (2017) showed that volatility spillover

intensity increases with U.S. dollar depreciation. I do not claim that the U.S. dollar index

is the only choice for smoothing variable, but we choose the U.S. dollar index because it

contains more information about risk transmission among international equity markets. It

is desirable to consider other variables of economic status as the smoothing variable and this

may be left in a future study.

2.4.3 Empirical Results

The empirical analysis in this section includes two steps: First, I estimate γij,τ (Zt−1)

for each market index in the equation system (2.11) under τ = 0.05. Second, I use the

estimated value of γij,τ (Zt−1) to construct the matrix |Γ̂1,τ (Zt−1)|, and do network analysis

on this matrix. Before exploring the matrix |Γ̂1,τ (Zt−1)|, it is important to exam whether

each γij,τ (Zt−1) in (2.11) varies significantly with Zt−1 or not. To this end, I estimate each

γij,τ (Zt−1) and corresponding 95% pointwise confidence intervals with the asymptotic bias

ignored. Figure 2.1 depicts the corresponding estimation results, in which ij-th panel rep-
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resents the result for γij,τ (·), respectively. The black solid line in each panel of Figure 2.1

represents the estimates of the γij,τ (·) for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4 in (2.11) along various

values of Zt−1 under τ = 0.05, and the red dashed lines are 95% pointwise confidence inter-

vals for each estimate without the asymptotic bias correction. From Figure 2.1, we clearly

see that these coefficient functions vary significantly over the interval [−0.075, 0.075], which

means that I can not use fixed-coefficient dynamic quantiles models to fit the data.

Next, I consider analyzing the matrix |Γ̂1,τ (Zt−1)|, in which each entry is |γij,τ (Zt−1)|. To

simplify notation, Zt−1 and τ are dropped from |γ̂ij,τ (Zt−1)| and |γ̂ji,τ (Zt−1)| in the matrix

|Γ̂1,τ (Zt−1)|, in what follows. Then, |γ̂ji| in the matrix |Γ̂1,τ (Zt−1)| represents the intensity

of influence from the risk of market index i at time t− 1 to that of market index j at time

t. For the purpose of visualization, by following Härdle et al. (2016), I first define the

levels of connectedness. The connectedness with respect to incoming links (CIL) is defined

as
∑4

i=1 |γ̂ji|, which is the strength of the influence of all indexes’ VaR at time t− 1 to the

VaR of market index j at time t. Analogously, the connectedness with respect to outgoing

links (COL) is defined as
∑4

i=1 |γ̂ij|, which is the strength of the influence of index j’s VaR

at time t − 1 to the VaRs of all indexes at time t. Here, i, j = 1, 2, 3, 4 correspond to the

four aforementioned market indexes in turn. The CIL measures the risk spillover that was

emitted from all four market indexes one day ago and is received currently by a certain

market index; the COL measures the risk spillover emitted from a certain market index

one day ago and is received currently by all market indexes. Intuitively, the CIL measures

exposures of individual indexes to systemic shocks from the financial network, while the COL

measures contributions of individual indexes for risk events in the network. Other than the

CIL and COL, we also analyze the total connectedness in the global market, which is equal

to
∑4

j=1

∑4
i=1 |γ̂ij| and indicates the total risk spillover in the global market, see Härdle et al.

(2016) for more applications about these types of connectedness. Figures 2.2 and 2.3 display

the corresponding results along the same values of Zt−1, under τ = 0.05, respectively. In

Figure 2.2, each panel displays the CIL and COL subject to the U.S. dollar change. The solid
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line in each panel represents values of COL and the dashed line indicates values of the CIL.

For Figure 2.3, the vertical axis measures the total connectedness appeared in international

equity markets and the horizontal axises in both figures are the same as those in each panel

of Figure 2.1.

Figure 2.2 shows that the curves of all four major market indexes vary greatly over the

interval (−0.075, 0.075) and exhibit almost asymmetrically U-shaped. In particular, when

the U.S. dollar experiences appreciation and during the “bad times" of the market (when

Zt−1 is large and τ = 0.05), domestic prices of commodity in Europe, Japan and China

may increase, which pose risks on domestic companies. Then, all investors who invested

corporations in the European, Japanese and Chinese markets suffer from loss of returns,

causing both CIL and COL to go up in all three markets. For the U.S. market, U.S. assets

may become favorable among global investors during the U.S. dollar appreciation, while

investors in the U.S. market who invested corporations in the rest of the world face loss of

returns. These two forces lead the U.S. market to be both more influential to the global

market and to be influenced by global market more easily, respectively. Thus, both curves

in the panel of S&P 500 index increase. As for the case when U.S. dollar depreciated, profits

of investment on domestic corporations in European, Japanese and Chinese markets may

increase, which lead the total amount of investment in these three markets to grow. As

a result, both types of curves in all three markets, as well as the CIL in the U.S. market

increase. Nevertheless, global investors who invested assets in the U.S. market subject to

adverse situation, which results in an upward movement of COL of S&P 500 index.

It is interesting that in the European and Japanese markets, during the U.S. dollar ap-

preciation (Zt−1 is large), the COL dominates CIL. These dynamic patterns in the European

and Japanese markets may be explained by the so called “carry trade". The carry trade

refers to borrowing a low-yielding asset and buying a higher-yielding foreign asset to earn

the interest rate differential plus the expected foreign currency appreciation. Due to the

relatively lower interest rate in the European and Japanese markets within our time span
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of study, as Zt−1 is large, carry traders who borrowed low-yielding assets from the Japanese

or European markets and bought assets from the U.S. market enjoy the increase of excess

returns to carry trade. This increase of excess returns may attract more carry traders to

borrow the Japanese or European assets and thus, make these two markets more influential

to the global market. For this reason, the COL becomes larger than CIL in these two mar-

kets. While in the U.S. market, since the price of risky assets relies heavily on the demand

of carry trade during U.S. dollar appreciation, it becomes much easier for the U.S. market

to be affected by the global market. Therefore, the CIL dominates the COL in the U.S.

market.

On the other hand, during the U.S. dollar depreciation, carry traders who borrowed the

Japanese or European asset may be unable to repay due to the significant loss of returns,

which cause the Japanese or European market to become more vulnerable. Consequently, the

CIL in both Japan and Europe markets increases drastically relative to the COL. Yet, in the

U.S. market, the price of risky assets affect the solvency of carry traders in the world, which

let the U.S. market become more influential to the world. Thus, the COL rises compared

to the CIL for S&P 500 index. As for the Chinese market, when U.S. dollar depreciated,

corporations associated with export subject to harmful impact. Under this unfavorable

environment, investors in China may be more willing to invest assets from outside of the

Chinese market. This trend magnifies the influence of global risk events on the Chinese

market, causing the CIL to dominate the COL.

Figure 2.3 sheds light on the variation of risk spillover in the global financial market.

Observed that in Figure 2.3, the total connectedness of all four market indexes demonstrates

an U-shaped and asymmetric pattern. It means that total risk spillover in the four major

markets decrease when Zt−1 becomes larger within the interval [−0.075,−0.025]. As Zt−1

exceeds −0.025, the risk spillover intensity is magnified. In general, Figure 2.3 shows that

the response of total risk spillover to the U.S. dollar change switches its pattern at a certain

threshold of the U.S. dollar change, which is a relatively new result in literature.
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2.5 Conclusion

In this chapter, I investigate a functional coefficient VAR model for conditional quantiles,

which is new to the literature. A two-stage kernel method is proposed to estimate coeffi-

cients functionals and the properties of asymptotic normality for the proposed estimators

are established. The simulation results show that my new methods of estimation work fairly

well. In addition, there is little literatures regarding the relationship between the variation

of financial network and the general state of economy. Based on my two-stage estimation

approaches, the proposed framework allows to study how specific state of economy has an

influence on the network characteristics of risk spillover in a financial system.

There are several issues still worth of further studies. First, it is interesting to visualize

the topological change of proposed financial network and to measure the transition of risk

spillover among different market indexes when the general economy is shifting. Technically,

these studies can be realized by my econometric model. Second, the asymptotic properties

of functional coefficients in my model provide solid theory to test the abnormal variation

of financial network. Third, it is meaningful to allow for cross-sectional dependence in the

current model. Although some methods have been developed to deal with cross-sectional

dependence in the literature of conditional mean models, due to the nature of conditional

quantile model, it is not obvious to extend these under the quantile setting. Finally, if

Zt in (2.2) is time, then the model in (2.2) provides a good start for studying conditional

quantile estimation of ARCH- and GARCH-type models with time-varying parameters; see,

for example, the papers by Dahlhaus and Subba Rao (2006) and Chen and Hong (2016) for

the time-varying GARCH type models. I leave these important issues, together with some

possible extensions as mentioned earlier in this chapter, as future research topics.
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Table 2.1: Simulation results for γ10,τ (·), γ20,τ (·), γ30,τ (·), γ40,τ (·), and γij,τ (·) for i = 1, 2 and for 1 ≤ j ≤ 4.

τ n = 500 n = 1500 n = 4000

MADE(γ10) MADE(γ20) MADE(γ10) MADE(γ20) MADE(γ10) MADE(γ20)

0.05 0.649 (0.110) 0.679 (0.108) 0.548 (0.050) 0.548 (0.050) 0.424 (0.036) 0.384 (0.035)

0.15 0.376 (0.055) 0.376 (0.055) 0.338 (0.031) 0.290 (0.035) 0.291 (0.022) 0.225 (0.024)

0.85 0.411 (0.052) 0.414 (0.053) 0.350 (0.030) 0.352 (0.032) 0.310 (0.022) 0.313 (0.024)

0.95 0.732 (0.188) 0.638 (0.126) 0.518 (0.061) 0.580 (0.068) 0.432 (0.038) 0.412 (0.036)

MADE(γ30) MADE(γ40) MADE(γ30) MADE(γ40) MADE(γ30) MADE(γ40)

0.05 0.627 (0.102) 0.700 (0.126) 0.563 (0.050) 0.569 (0.048) 0.488 (0.033) 0.458 (0.031)

0.15 0.403 (0.053) 0.409 (0.049) 0.307 (0.033) 0.305 (0.032) 0.245 (0.024) 0.243 (0.023)

0.85 0.393 (0.057) 0.414 (0.048) 0.352 (0.032) 0.351 (0.030) 0.306 (0.020) 0.309 (0.021)

0.95 0.754 (0.186) 0.691 (0.157) 0.522 (0.064) 0.579 (0.071) 0.464 (0.037) 0.369 (0.037)

MADE(γ11) MADE(γ12) MADE(γ11) MADE(γ12) MADE(γ11) MADE(γ12)

0.05 0.148 (0.063) 0.139 (0.063) 0.111 (0.045) 0.126 (0.056) 0.093 (0.036) 0.100 (0.042)

0.15 0.116 (0.051) 0.141 (0.063) 0.081 (0.036) 0.104 (0.048) 0.069 (0.032) 0.085 (0.034)

0.85 0.123 (0.057) 0.148 (0.070) 0.093 (0.046) 0.110 (0.047) 0.088 (0.035) 0.103 (0.037)

0.95 0.182 (0.085) 0.201 (0.103) 0.141 (0.055) 0.153 (0.061) 0.108 (0.040) 0.122 (0.047)

MADE(γ13) MADE(γ14) MADE(γ13) MADE(γ14) MADE(γ13) MADE(γ14)

0.05 0.147 (0.063) 0.147 (0.068) 0.115 (0.050) 0.124 (0.054) 0.095 (0.035) 0.094 (0.040)

0.15 0.105 (0.051) 0.153 (0.065) 0.082 (0.036) 0.113 (0.047) 0.069 (0.026) 0.078 (0.039)

0.85 0.119 (0.059) 0.159 (0.075) 0.099 (0.044) 0.118 (0.051) 0.082 (0.035) 0.090 (0.037)

0.95 0.176 (0.081) 0.212 (0.092) 0.132 (0.054) 0.153 (0.060) 0.108 (0.036) 0.120 (0.045)

MADE(γ21) MADE(γ22) MADE(γ21) MADE(γ22) MADE(γ21) MADE(γ22)

0.05 0.164 (0.077) 0.120 (0.060) 0.119 (0.047) 0.111 (0.049) 0.097 (0.039) 0.087 (0.038)

0.15 0.134 (0.054) 0.125 (0.057) 0.098 (0.037) 0.101 (0.043) 0.086 (0.034) 0.092 (0.034)

0.85 0.140 (0.064) 0.114 (0.055) 0.114 (0.048) 0.084 (0.040) 0.097 (0.037) 0.067 (0.032)

0.95 0.194 (0.073) 0.183 (0.076) 0.154 (0.058) 0.140 (0.056) 0.115 (0.040) 0.108 (0.038)

MADE(γ23) MADE(γ24) MADE(γ23) MADE(γ24) MADE(γ23) MADE(γ24)

0.05 0.156 (0.071) 0.133 (0.066) 0.124 (0.052) 0.111 (0.047) 0.099 (0.038) 0.087 (0.035)

0.15 0.120 (0.054) 0.127 (0.053) 0.094 (0.040) 0.098 (0.041) 0.079 (0.031) 0.095 (0.035)

0.85 0.125 (0.064) 0.125 (0.058) 0.105 (0.049) 0.096 (0.044) 0.083 (0.035) 0.082 (0.036)

0.95 0.186 (0.073) 0.184 (0.075) 0.143 (0.065) 0.135 (0.054) 0.113 (0.036) 0.104 (0.038)
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Table 2.2: Simulation results for γij,τ (·) for i = 3, 4 and for 1 ≤ j ≤ 4.

τ n = 500 n = 1500 n = 4000

MADE(γ31) MADE(γ32) MADE(γ31) MADE(γ32) MADE(γ31) MADE(γ32)

0.05 0.146 (0.064) 0.143 (0.063) 0.107 (0.043) 0.124 (0.052) 0.099 (0.041) 0.087 (0.036)

0.15 0.115 (0.059) 0.140 (0.065) 0.082 (0.035) 0.105 (0.048) 0.069 (0.028) 0.093 (0.034)

0.85 0.121 (0.055) 0.149 (0.067) 0.095 (0.046) 0.114 (0.047) 0.078 (0.033) 0.106 (0.039)

0.95 0.178 (0.085) 0.200 (0.093) 0.135 (0.053) 0.149 (0.061) 0.108 (0.040) 0.113 (0.049)

MADE(γ33) MADE(γ34) MADE(γ33) MADE(γ34) MADE(γ33) MADE(γ34)

0.05 0.153 (0.062) 0.147 (0.062) 0.116 (0.051) 0.121 (0.054) 0.099 (0.037) 0.093 (0.037)

0.15 0.100 (0.047) 0.136 (0.062) 0.085 (0.036) 0.113 (0.045) 0.073 (0.028) 0.087 (0.036)

0.85 0.122 (0.057) 0.160 (0.074) 0.099 (0.042) 0.118 (0.053) 0.079 (0.037) 0.090 (0.033)

0.95 0.180 (0.084) 0.212 (0.097) 0.136 (0.049) 0.153 (0.057) 0.104 (0.041) 0.131 (0.043)

MADE(γ41) MADE(γ42) MADE(γ41) MADE(γ42) MADE(γ41) MADE(γ42)

0.05 0.156 (0.079) 0.123 (0.065) 0.118 (0.050) 0.116 (0.050) 0.099 (0.039) 0.091 (0.036)

0.15 0.129 (0.063) 0.115 (0.061) 0.099 (0.040) 0.098 (0.041) 0.079 (0.030) 0.081 (0.031)

0.85 0.143 (0.062) 0.110 (0.060) 0.113 (0.046) 0.079 (0.035) 0.097 (0.037) 0.063 (0.029)

0.95 0.195 (0.085) 0.180 (0.086) 0.148 (0.059) 0.141 (0.056) 0.113 (0.043) 0.105 (0.036)

MADE(γ43) MADE(γ44) MADE(γ43) MADE(γ44) MADE(γ43) MADE(γ44)

0.05 0.147 (0.080) 0.139 (0.066) 0.118 (0.056) 0.111 (0.047) 0.093 (0.039) 0.085 (0.034)

0.15 0.109 (0.055) 0.118 (0.054) 0.092 (0.037) 0.099 (0.039) 0.072 (0.027) 0.086 (0.030)

0.85 0.136 (0.066) 0.124 (0.061) 0.107 (0.049) 0.099 (0.040) 0.086 (0.033) 0.080 (0.032)

0.95 0.188 (0.088) 0.184 (0.076) 0.146 (0.060) 0.137 (0.052) 0.105 (0.041) 0.108 (0.037)
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Table 2.3: Simulation results for βij,τ (·) for i = 1, 2 and for 1 ≤ j ≤ 4.

τ n = 500 n = 1500 n = 4000

MADE(β11) MADE(β12) MADE(β11) MADE(β12) MADE(β11) MADE(β12)

0.05 0.215 (0.098) 0.214 (0.098) 0.131 (0.052) 0.137 (0.054) 0.087 (0.033) 0.088 (0.035)

0.15 0.137 (0.058) 0.145 (0.060) 0.084 (0.036) 0.089 (0.043) 0.056 (0.024) 0.060 (0.025)

0.85 0.134 (0.059) 0.143 (0.074) 0.080 (0.034) 0.088 (0.039) 0.053 (0.023) 0.057 (0.025)

0.95 0.253 (0.115) 0.286 (0.125) 0.151 (0.053) 0.159 (0.060) 0.095 (0.036) 0.103 (0.036)

MADE(β13) MADE(β14) MADE(β13) MADE(β14) MADE(β13) MADE(β14)

0.05 0.210 (0.092) 0.210 (0.097) 0.124 (0.052) 0.130 (0.054) 0.082 (0.031) 0.083 (0.033)

0.15 0.136 (0.062) 0.143 (0.062) 0.079 (0.034) 0.083 (0.039) 0.051 (0.020) 0.058 (0.023)

0.85 0.130 (0.066) 0.133 (0.072) 0.075 (0.038) 0.082 (0.040) 0.049 (0.022) 0.055 (0.023)

0.95 0.246 (0.114) 0.255 (0.119) 0.149 (0.055) 0.151 (0.057) 0.084 (0.034) 0.094 (0.029)

MADE(β21) MADE(β22) MADE(β21) MADE(β22) MADE(β21) MADE(β22)

0.05 0.213 (0.104) 0.218 (0.104) 0.135 (0.058) 0.133 (0.052) 0.084 (0.030) 0.084 (0.034)

0.15 0.132 (0.059) 0.150 (0.062) 0.088 (0.036) 0.090 (0.036) 0.061 (0.026) 0.064 (0.023)

0.85 0.135 (0.069) 0.136 (0.072) 0.081 (0.034) 0.084 (0.038) 0.052 (0.019) 0.058 (0.022)

0.95 0.249 (0.099) 0.260 (0.105) 0.150 (0.060) 0.160 (0.063) 0.091 (0.031) 0.100 (0.036)

MADE(β23) MADE(β24) MADE(β23) MADE(β24) MADE(β23) MADE(β24)

0.05 0.219 (0.102) 0.204 (0.104) 0.122 (0.050) 0.123 (0.052) 0.086 (0.031) 0.080 (0.031)

0.15 0.132 (0.058) 0.140 (0.061) 0.084 (0.034) 0.087 (0.034) 0.058 (0.021) 0.059 (0.022)

0.85 0.132 (0.064) 0.130 (0.067) 0.078 (0.035) 0.085 (0.039) 0.052 (0.022) 0.055 (0.022)

0.95 0.237 (0.096) 0.251 (0.107) 0.150 (0.061) 0.153 (0.065) 0.095 (0.032) 0.090 (0.029)
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Table 2.4: Simulation results for βij,τ (·) for i = 3, 4 and for 1 ≤ j ≤ 4.

τ n = 500 n = 1500 n = 4000

MADE(β31) MADE(β32) MADE(β31) MADE(β32) MADE(β31) MADE(β32)

0.05 0.218 (0.086) 0.219 (0.099) 0.131 (0.054) 0.132 (0.054) 0.089 (0.035) 0.091 (0.035)

0.15 0.138 (0.065) 0.144 (0.067) 0.087 (0.037) 0.091 (0.037) 0.058 (0.022) 0.061 (0.024)

0.85 0.133 (0.063) 0.133 (0.064) 0.088 (0.038) 0.083 (0.039) 0.058 (0.024) 0.054 (0.023)

0.95 0.262 (0.119) 0.260 (0.137) 0.151 (0.058) 0.161 (0.058) 0.095 (0.037) 0.106 (0.041)

MADE(β33) MADE(β34) MADE(β33) MADE(β34) MADE(β33) MADE(β34)

0.05 0.207 (0.092) 0.218 (0.094) 0.121 (0.052) 0.130 (0.052) 0.076 (0.032) 0.087 (0.033)

0.15 0.130 (0.068) 0.129 (0.068) 0.082 (0.034) 0.083 (0.039) 0.057 (0.021) 0.056 (0.028)

0.85 0.131 (0.058) 0.134 (0.065) 0.080 (0.035) 0.082 (0.039) 0.050 (0.021) 0.055 (0.023)

0.95 0.247 (0.119) 0.255 (0.137) 0.147 (0.059) 0.151 (0.060) 0.089 (0.033) 0.110 (0.037)

MADE(β41) MADE(β42) MADE(β41) MADE(β42) MADE(β41) MADE(β42)

0.05 0.219 (0.101) 0.234 (0.108) 0.132 (0.057) 0.139 (0.052) 0.091 (0.032) 0.088 (0.034)

0.15 0.132 (0.066) 0.141 (0.069) 0.087 (0.034) 0.084 (0.034) 0.057 (0.021) 0.057 (0.023)

0.85 0.130 (0.066) 0.141 (0.068) 0.081 (0.037) 0.091 (0.037) 0.050 (0.020) 0.057 (0.022)

0.95 0.253 (0.110) 0.265 (0.119) 0.157 (0.061) 0.167 (0.066) 0.089 (0.032) 0.097 (0.035)

MADE(β43) MADE(β44) MADE(β43) MADE(β44) MADE(β43) MADE(β44)

0.05 0.211 (0.109) 0.207 (0.100) 0.124 (0.048) 0.123 (0.056) 0.082 (0.031) 0.082 (0.032)

0.15 0.131 (0.061) 0.125 (0.066) 0.080 (0.034) 0.083 (0.032) 0.058 (0.021) 0.056 (0.022)

0.85 0.130 (0.064) 0.125 (0.063) 0.079 (0.034) 0.079 (0.039) 0.047 (0.023) 0.050 (0.022)

0.95 0.234 (0.109) 0.238 (0.115) 0.144 (0.057) 0.152 (0.071) 0.090 (0.028) 0.088 (0.029)
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Table 2.5: Average of empirical coverage rates (AECR) of 95% pointwise confidence intervals of γij,τ (·)
and βij,τ (·) without the asymptotic bias correction, for 1 ≤ i, j ≤ 4 and n = 4000.

τ Coverage Rates of γ̂ij,τ (·) Coverage Rates of β̂ij,τ (·)

γ̂11,τ γ̂12,τ γ̂13,τ γ̂14,τ β̂11,τ β̂12,τ β̂13,τ β̂14,τ

0.05 0.959 0.934 0.948 0.941 0.925 0.936 0.933 0.938
0.15 0.945 0.943 0.953 0.921 0.955 0.954 0.957 0.954
0.85 0.954 0.943 0.953 0.937 0.943 0.956 0.951 0.949
0.95 0.925 0.913 0.929 0.912 0.909 0.938 0.935 0.943

γ̂21,τ γ̂22,τ γ̂23,τ γ̂24,τ β̂21,τ β̂22,τ β̂23,τ β̂24,τ

0.05 0.916 0.935 0.930 0.937 0.931 0.932 0.929 0.934
0.15 0.923 0.953 0.934 0.952 0.958 0.952 0.956 0.953
0.85 0.941 0.943 0.943 0.952 0.954 0.953 0.959 0.956
0.95 0.930 0.938 0.934 0.936 0.947 0.938 0.942 0.935

γ̂31,τ γ̂32,τ γ̂33,τ γ̂34,τ β̂31,τ β̂32,τ β̂33,τ β̂34,τ

0.05 0.949 0.939 0.942 0.939 0.944 0.958 0.949 0.940
0.15 0.952 0.936 0.955 0.921 0.957 0.961 0.956 0.956
0.85 0.950 0.941 0.952 0.942 0.952 0.956 0.949 0.951
0.95 0.927 0.905 0.927 0.913 0.913 0.934 0.940 0.932

γ̂41,τ γ̂42,τ γ̂43,τ γ̂44,τ β̂41,τ β̂42,τ β̂43,τ β̂44,τ

0.05 0.930 0.934 0.936 0.926 0.923 0.921 0.939 0.929
0.15 0.923 0.954 0.932 0.943 0.951 0.955 0.956 0.957
0.85 0.946 0.947 0.941 0.948 0.957 0.952 0.958 0.955
0.95 0.936 0.947 0.929 0.945 0.944 0.941 0.949 0.942
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Figure 2.1: Plots of the estimated coefficient functions γij,τ (·) for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4 in (2.11) in
the main article under τ = 0.05 (black solid lines), in which ij-th panel represents the result for γij,τ (·),
respectively. The red dashed lines in each panel indicate the 95% pointwise confidence interval for the
estimate with the asymptotic bias ignored.
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Figure 2.2: Connectedness with respect to outgoing links and connectedness with respect to incoming links
for four market indexes with τ = 0.05. The solid line in each panel represents values of connectedness with
respect to outgoing links and the dashed line in each panel indicates values of connectedness is for incoming
link.
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Figure 2.3: Total connectedness in international equity markets with τ = 0.05.
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Chapter 3

A Functional Coefficient Factor-Augmented Predictive

VAR Model with Dynamic Factor Loadings

3.1 Introduction

In the existing literature, functional-coefficient factor-augmented forecasting models and

its variants assumed that latent factors are extracted from a factor model with fixed factor

loadings. However, this assumption can be restrictive given that financial and macroeco-

nomic datasets often span a long time period. Indeed, during a long period of time, the

interdependences among economic and/or financial variables may be subject to structure

changes caused by institutional changes, business cycles, technological advances and prefer-

ence switching; see, for example, Stock and Watson (2002, 2009), Su and Wang (2017) and

Pelger and Xiong (2021) and the references therein. In order to fully capture the nonlinear

relationships between these variables and the latent factors, it is natural to allow the factor

loadings to vary with a smoothing variable which contains information of economic changes.

Failure to consider the structure changes in factor loadings can lead to a misleading estimate

for latent factors and consequently, result in unreliable results of forecasting and inference

when using factor-augmented forecasting models.

In this chapter, I propose a functional coefficient FAVAR, termed as FC-FAVAR, predic-

tive model (will be presented in (3.3) later) to fill the gaps in literature. Unlike conventional

FAVAR and functional coefficient factor-augmented forecasting model, I capture nonlinear-

ities in data by using a functional coefficient setting, where both the factor loadings and
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coefficients in the predictive model are allowed to vary with a variable of general economy.

Actually, as elaborated by Cai, Das, Xiong and Wu (2006) and Cai (2010), a functional-

coefficient model can be a good approximation to a fully nonparametric model and has a

great ability to capture heteroscedasticity; see Cai (2010) for more details. In the last two

decades, the functional-coefficient modeling approach has received much attention on time

series studies, to name just a few, Chen and Tsay (1993), Cai, Fan and Yao (2000), Cai

(2007), Dahlhaus and Subba Rao (2006), Chen and Hong (2016).

The estimation of this new model relies on a two-step procedure. In step one, a local

version of principal component analysis (PCA) as in Su and Wang (2017) and Pelger and

Xiong (2021) is applied to estimate unobservable factor regressors and the number of factor

is determined by a BIC-type information criterion which is similar to that in Su and Wang

(2017). Different from the classical PCA, the high-dimensional dataset is first transformed

by a kernel projection on a given point of smoothing variable in the time direction. Then,

conventional PCA is used on this projected data to obtain latent factors. The estimated

latent factors are next introduced in the second step as parts of auto-regressors and the

coefficient functions of FC-FAVAR model are estimated by a local linear approach, which

has been throughout discussed in Cai et al. (2000). With the estimated model at hand, I

develop an one-step ahead forecasting for the observed auto-regressors and the corresponding

prediction interval is constructed by a wild bootstrap procedure proposed in Li et al. (2020).

Contributions of this chapter are two folds. First of all, compared to existing literature,

the unobserved factors in this model comes from a factor model with dynamic factor load-

ings, which adds additional information of variation in the factor structure and economic

interpretability to the predictive model. Secondly, this VAR predictive model allows both

observed variables and unobserved factor regressors to be jointly imposed in a vector au-

toregressive form. More specifically, I allow latent factors in this VAR model to also include

the same number of lags as that of observed auto-regressors. I think that some important

information of model dynamic may be included in these lagged factors, which is helpful to
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enhance the ability of prediction. These merits will be demonstrated by a simulation study

and an empirical application.

The rest of this chapter is organized as follows. In Section 3.2, the model setup is

presented for the FC-FAVAR model, and a two-stage procedure for estimating functional

coefficients as well as a wild bootstrap procedure for constructing prediction interval are also

discussed in this section. A simulation study of one-step ahead forecasting is presented in

Section 3.3 to examine the performance of prediction. In Section 3.4, my model is applied

to forecasting the consumer price index (CPI) in the U.S.. Section 3.5 concludes the paper.

Finally, some assumptions for inducing probabilistic properties of FC-FAVAR model are

gathered in Appendix C.

3.2 Econometric Modeling

3.2.1 Functional Coefficient FAVAR Model

Let xt = (x1t, . . . , xNt)
T be a N × 1 vector of available predictive variables at time t for

1 ≤ t ≤ n. For 1 ≤ j ≤ m with m ≥ 1, consider following factor-augmented forecasting

model with functional coefficients

yj,t = γj0(Zjt) +

qf∑
d=1

γTj,d,f (Zjt)f t−d +

qy∑
c=1

γTj,c,y(Zjt)yt−c +

p∑
l=1

βTj,l(Zjt)Wt−l + vj,t (3.1)

for some qg, qf and p, where γj0(·) is a scalar function, yt = (y1,t, . . . , ym,t)
T is a m × 1

vector of observable economic variables that are contained in xt, f t = (f1t, . . . , frt)
T is

a r × 1 vector of unobservable factors, and Wt is a κ × 1 vector of observable covariates,

including possibly some or all of {yj,t}mj=1 and/or some exogenous variables. In addition, both

γj,c,y(·) = (γcj1,y(·), . . . , γcjm,y(·))T and γj,d,f (·) = (γdj1,f (·), . . . , γdjr,f (·))T arem×1 and r×1

vectors of functional coefficients, respectively. Finally, βj,l(·) = (βlj1(·), . . . , βljκ(·))T is a κ×1

vector of functional coefficients and vj,t is an error term. Here, Zjt is an observable scalar
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smoothing variable, which might be one part ofWt−l and/or time or other exogenous variables

or their lagged variables. Of course, Zjt can also be an economic index to characterize

economic activities. It is worthwhile to note that Zjt can be set as a multivariate variable.

In such a case, the estimation procedures and the related theory for the univariate case still

hold for multivariate case, but more complicated notations are involved and models with Zjt

in very high dimension are often not practically useful due to the curse of dimensionality;

see Cai et al. (2000) for details.

Importantly, in the case of estimating high dimensional VAR models with functional

coefficients in my empirical studies, I assume that yt and f t jointly follow a VAR process.

In addition, for easy exposition, I let p = 0 and qy = qf ≡ q, and the smoothing variable

Zjt is allowed to vary only across different time periods but keeps constant over individual

units. Therefore, model (3.1) can be written as a VAR model with functional coefficients. In

particular, by letting Zjt = Zt for all 1 ≤ j ≤ m, 1 ≤ ι ≤ Q and 1 ≤ ` ≤ Q with Q = m+ r,

the proposed FC-FAVAR model is

Pt = γ0(Zt) + Φ(Zt)Pt−1 + Υt, (3.2)

where Pt = (P T
t , . . . , P

T
t−q+1)T with Pt = (fTt ,y

T
t )T , γ0(·) = (γ10(·), . . . , γQ0(·), 01×(Qq−Q))

T

is a vector of scalar function γι0(·), and Υt = (ε1,t, . . . , εQ,t, 01×(Qq−Q))
T is a vector of error

terms. In addition, Φ(Zt) is a functional coefficient matrix and is expressed as follows

Φ(Zt) =



Γ1(Zt) Γ2(Zt) . . . Γq−1(Zt) Γq(Zt)

IQ 0 . . . 0 0

0 IQ . . . 0 0

...
... . . . ...

...

0 0 . . . IQ 0


,

where IQ is a Q × Q identity matrix and Γk(Zt) = (γkι`,P (Zt))Q×Q is a Q × Q matrix with
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γkι`,P (·) being the functional coefficient for 1 ≤ k ≤ q. Notice that process Pt in (3.2) is

presented as

Pt = γ0(Zt) + Γ1(Zt)Pt−1 + Γ2(Zt)Pt−2 + · · ·+ Γq(Zt)Pt−q + εt, (3.3)

where γ0(·) = (γ10(·), . . . , γQ0(·))T and εt = (ε1,t, . . . , εQ,t)
T .

With models (3.3) at hand, in order to fully capture nonlinear features in a high-

dimensional dataset, I further assume that f t comes from a factor model with dynamic

loadings as follow

xt = Bf (Zt)f t +By(Zt)yt + ut, (3.4)

where f t is a r × 1 vector of latent factors, Bf (Zt) = (bf ,1(Zt), . . . , bf ,N(Zt))
T is a N ×

r matrix of dynamic loadings, By(Zt) = (by,1(Zt), . . . , by,N(Zt))
T is a N × m matrix of

functional coefficients and ut = (u1t, . . . , uNt)
T is a N × 1 vector of idiosyncratic errors.

Here, Zt in factor model (3.4) is the same as that in model (3.3). To demonstrate high-

dimensional setting, the number N is large and it is commonly assumed to be much greater

than the number of factors and observed variables (m + r � N). In this case, following

from Su and Wang (2017) and Pelger and Xiong (2021), I apply a local PCA method for

estimating f t in model (3.4) and the estimation procedures will be presented later. Note

that f t can also be estimated directly through a locally common correlated effect (LCCE)

approach proposed in Cai, Fang and Xu (2022) whenN is large, which can make computation

much easier. As an alternative, the methods of diversified projections (DP) established in

Fan and Liao (2020) can also be applied to estimating f t. The estimation procedures using

LCCE or DP are also very interesting and I leave them as topics for future research.

Clearly, the model in (3.3) covers many well known models in literature as a special case.

In particular, when yt−k in Pt−k is assume to have no effect on f t in Pt for 1 ≤ k ≤ q,

then the model in (3.3) includes the model in Li et al. (2020). In addition, when m = 1

(univariate case) and factor part is excluded, this model nests that in Chen and Tsay (1993),
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Cai et al. (2000) and Cai (2010), and the model in Cai (2007) for Zjt being time. In addition,

if Zjt is time, then model (3.3) is called time-varying FAVAR model, which includes static

FAVAR model in Bernanke et al. (2005), Bai et al. (2016) and Yamamoto (2019), as well as

the threshold FAVAR model in Yan and Cheng (2022).

Remark 3.2.1. (Strictly stationary and α-mixing). To apply estimation procedures in this

chapter, one has to show that the model given in (3.2) can generate strictly stationary and

α-mixing process. It is well-established that a geometrically ergodic Markov process initiated

from its invariant distribution is (strictly) stationary and α-mixing (Pham, 1986). Notice

that model (3.2) can also be expressed as a vector valued Markov model. Thus, it is com-

mon practice to prove ergodicity to establish the stationarity for FC-FAVAR models and I

present an assumption that induces strictly stationary and α-mixing for process {(Pt, Zt)} in

Appendix C. Notice that the detailed proof of this stationarity is similar to that in Cai and

Liu (2022) and omitted.

Remark 3.2.2. (Selection of Zt). Of importance is to choose an appropriate smoothing

variable Zt in applying the functional-coefficient FAVAR model in (3.3). Knowledge on

physical background or economic theory of the data may be very helpful, as we have witnessed

in modeling the real data in Section 3.4 by choosing Zt to be the monthly series of the first

difference of logarithms of consumer price index (CPI) in the U.S.. Without any prior

information, it is pertinent to choose Zt in terms of some data-driven methods such as the

Akaike information criterion (AIC), cross-validation (CV), and other criteria. Ideally, one

would choose Zt as a linear function of given explanatory variables according to some optimal

criterion or an economic index based on economic theory or background. Nevertheless, here

I would recommend using a simple and practical approach proposed by Cai et al. (2000) in

practice.
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3.2.2 Two-stage Estimation Procedures

My estimation procedures consist of two steps. The first step is to estimate vector of

latent factors f t in (3.4), and then I perform locally weighted estimation for functional

coefficients in (3.3) using the estimated f̂ t from the first step. Compared to the estimation

procedures in the existing literature, which relies on classical PCA, the latent factors f̂ t in

this chapter are estimated via a local PCA method. In particular, for 1 ≤ i ≤ N , (3.4) can

be written as

xit = bTf ,i(Zt)f t + bTy,i(Zt)yt + uit. (3.5)

Now, for 1 ≤ s 6= r ≤ n, I construct the residual ccir = xir − b̂
T

y,i(Zr)yr, where b̂y,i(Zr) is the

minimizer of a locally weighted loss function G(by), given by

G(by) =
N∑
i=1

n∑
s6=r

[xis − bTy,i(Zr)ys]
2Kh1(Zs − Zr). (3.6)

Here, K(·) is a kernel function and Kh1(u) = K(u/h1)/h1 with h1 = h1(n) being a sequence

of positive numbers tending to zero and controls the amount of smoothing used in estimation.

Next, given ccir, for 1 ≤ r 6= t ≤ n, bf ,i(Zr) can be approximated at each Zt as bf ,i(Zr) ≈

bf ,i(Zt), when Zr ≈ Zt. Then, it follows that

ccir ≈ bTf ,i(Zt)f r + uir, (3.7)

when Zr ≈ Zt. To estimate {bf ,i(Zt)}Ni=1 and {f r}nr=1, I apply local PCA by solving following

locally weighted loss function

min
{bf ,i(Zt)}Ni=1,{f r}nr=1

(Nn)−1

N∑
i=1

n∑
r 6=t

[ccir − bTf ,i(Zt)f r]
2Kh1(Zr − Zt), (3.8)

subject to certain identification restrictions to be specified later.
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As argued by Su and Wang (2017), the solution of (3.8) can be obtained via a con-

ventional PCA method. Indeed, multiplying both sides of (3.7) by k1/2
h1,rt
≡ K

1/2
h1

(Zr − Zt)

yields

k
1/2
h1,rt

ccir ≈ bTf ,i(Zt)k
1/2
h1,rt
f r + k

1/2
h1,rt

uir. (3.9)

Define the n × N matrices cc(t) = (cc
(t)
1 , . . . , cc

(t)
N ) and u(t) = (u

(t)
1 , . . . , u

(t)
N ), where cc(t)

i =

(k
1/2
h1,r1

cci1, . . . , k
1/2
h1,rn

ccin)T and u(t)
i = (k

1/2
h1,r1

ui1, . . . , k
1/2
h1,rn

uin)T . Let

f (t) = (k
1/2
h1,r1

f 1, . . . , k
1/2
h1,rn

fn)T .

Therefore, (3.9) can be written in following matrix notation:

cc(t) ≈ f (t)BT
f (Zt) + u(t),

where Bf (Zt) = (bf ,1(Zt), . . . , bf ,N(Zt))
T is a N × r matrix of functional loadings. Then,

the minimization problem (3.8) becomes

min
Bf (Zt),f

(t)
tr

[
(cc(t) − f (t)BT

f (Zt))(cc
(t) − f (t)BT

f (Zt))
T

]
. (3.10)

Under the identification restrictions that f (t)Tf (t)/n = Ir and BT
f (Zt)Bf (Zt) is a diagonal

matrix, the estimated factor matrix, denoted by f̂
(t)

= (f̂
(t)

1 , . . . , f̂
(t)

n )T , is
√
n times eigen-

vectors corresponding to the r largest eigenvalues of the n×n matrix cc(t)cc(t)T , arranged in

descending order, and B̂
T

f (Zt) = (b̂f ,1(Zt), . . . , b̂f ,N(Zt))
T = f̂

(t)T
cc(t)/n are the estimators

of the corresponding functional factor loadings. Notice that the estimated factor f̂
(t)

r is only

consistent for a rotational version of the weighted factor k1/2
h,rtf r for 1 ≤ r ≤ n. To obtain

a consistent estimator of f t, following the idea in Su and Wang (2017), I consider the least
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squares problem based on b̂f ,i(Zt) as follow

min
f t∈Rr

N∑
i=1

[ccit − b̂
T

f ,i(Zt)f t]
2,

for 1 ≤ t ≤ n. The solution to the above problem is the consistent estimator of updated

factors f t, which is

f̂ t =

( N∑
i=1

b̂f ,i(Zt)b̂
T

f ,i(Zt)

)−1( N∑
i=1

b̂f ,i(Zt)ccit

)
. (3.11)

If necessary, the above procedure should be repeated.

After obtaining the estimated f̂ t in (3.3) and given P̂t = (f̂
T

t ,y
T
t )T , the second step

follows from estimating (3.3) by a local linear approach, although a general local polynomial

method is also applicable. The local (polynomial) linear method has been widely used in

nonparametric regression during the past two decades due to its attractive mathematical

efficiency, bias reduction, and adaptation of edge effects; see, for example, Cai et al. (2000).

More specifically, let Γ(·) = (γ0(·),Γ1(·), . . . ,Γq(·)) and by assuming that each entry γkι`,P (·)

of matrix Γk(·) has a continuous second derivative, Γ(Zt) can be approximated by a linear

function at grid point z0 ∈ R as follows

vec[Γ(Zt)] ≈ vec[Γ(z0)] + vec[Γ(1)(z0)](Zt − z0),

where vec(·) stacks the elements of a m× n matrix as a mn× 1 vector, ≈ denotes the first-

order Taylor approximation and Γ(1)(·) is the first-order derivative of each element of Γ(·).

Thus, (3.3) is approximated by

P̂t ≈ P̂
∗T
t θ(z0) + εt,

where θ(z0) =

 vec[Γ(z0)]

vec[Γ(1)(z0)]

 and P̂
∗
t =

 P̂ t

(Zt − z0)P̂ t

 with P̂ t = P̂t ⊗ IQ

≡ (1, P̂ T
t−1, . . . , P̂

T
t−q)

T ⊗ IQ, which becomes a local linear model. Therefore, the locally
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weighted sum of squares is

n∑
t=1

[P̂t − P̂
∗T
t θ(z0)]T [P̂t − P̂

∗T
t θ(z0)]Kh2(Zt − z0), (3.12)

where Kh(u) = K(u/h)/h and h2 is the bandwidth used for this step, which is different

from the bandwidth h1 used in (3.6) and (3.8) for under-smoothing purpose. By minimizing

(3.12) with respect to θ(z0), I obtain the local linear estimate of Γ(z0), denoted by Γ̂(z0),

consisting of the first (qQQ + Q) elements of θ̂(z0), and the local linear estimator of the

derivative of Γ(z0), denoted by Γ̂
(1)

(z0), consisting of the last (qQQ+Q) elements of θ̂(z0).

The estimator of θ(z0) is then sequentially given by

θ̂(z0) =

( n∑
t=1

P̂
∗
t P̂
∗T
t Kh2(Zt − z0)

)−1 n∑
t=1

P̂
∗
t P̂tKh2(Zt − z0). (3.13)

By moving z0 over the whole range of the data {Zt}, the estimated curve of θ(z0) can be

obtained.

In practical implementations of (3.12), there are some practical issues that need to be

addressed. First, to obtain θ̂(z0), one indeed needs to run a weighted least squares regression.

Second, the number of factors r and lags q are selected by minimizing some well known

criteria such as the nonparametric Bayesian information criterion proposed in Li et al. (2020)

or the nonparametric AIC in Cai and Tiwari (2000). Finally, given the selected r̂ and q̂, I

choose the optimal bandwidth h based on some bandwidth selectors such as the modified

multifold cross-validation criterion developed in Cai et al. (2000) or the nonparametric AIC

type criterion in Cai and Tiwari (2000), which are attentive to the structure of stationary

time series data.

Remark 3.2.3. (Asymptotics) Notice that the asymptotic theory for Γ̂(z0) can be obtained

by following the ideas in Cai et al. (2006) and Li et al. (2020) and it may not be the exactly

same as that in Cai et al. (2000) because Pt contains vector of latent factors f t. It would
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be very interesting to investigate the asymptotic theory for Γ̂(z0) and sequentially for the

impulse response functions, which is not a trivial task. It is conjectured that the asymptotic

variance of Γ̂(z0) might have an additional term to account for variability of the estimated

latent factors at the first step. I leave this theoretical justification as a future research topic.

Remark 3.2.4. (Determination of the number of factors) The number of factor r̂ is deter-

mined by a BIC-type information criterion proposed in Su and Wang (2017). In particular,

following normalization rule that B̂
T

f (Zt)B̂f (Zt)/N = Ir and f (t)Tf (t)/n is a diagonal matrix

with descending diagonal elements, denote f̂ t(r) and bf ,i(Zt, r) as the local PCA estimators

of the factors and factor loadings when using r factors in the factor model. Define

V (r, {B̆
(r)

f (Zt)}) = min
f̆={f̆ t}nt=1

(Nn)−1

N∑
i=1

n∑
t=1

[ccit − b̆
T

f ,i(Zt, r)f̆ t]
2,

where B̆
(r)

f (Zt) = (b̆f ,1(Zt, r), . . . , b̆f ,N(Zt, r))
T = (Nn)−1cc(t)T cc(t)B̂

(r)

f (Zt), with B̂
(r)

f (Zt) =

(b̂f ,1(Zt, r), . . . , b̂f ,N(Zt, r))
T . Then, the number of factor r is determined by minimizing

following BIC-type information criterion

BIC(r) = log V (r, {B̆
(r)

f (Zt)}) + ρNnr,

where ρNn satisfies ρNn → 0 and ρNn(min{
√
nh1,
√
N})2 →∞. In practice, I choose ρNn =

N+nh1
Nnh1

log

(
Nnh1
N+nh1

)
as suggested in Su and Wang (2017).

3.2.3 One-Step Ahead Prediction and a Bootstrap Prediction In-

terval (BPI)

The focus in this subsection is on presenting one-step ahead prediction and bootstrap pre-

diction interval (BPI) below. Denote P̂t = (f̂
T

t ,y
T
t )T , using the observations (yt+1, Zt,xt+1)
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with 1 ≤ t ≤ n− 1 and Zn, I obtain the one-step ahead prediction of P̂n+1 = (f̂
T

n+1,y
T
n+1)T :

P̂n+1|n = P̂
T

n+1θ̂0,n−1(Zn), (3.14)

where P̂ n+1 = (1, P̂ T
n , . . . , P̂

T
n+1−q)

T ⊗ IQ and θ̂0,n−1(Zn) = vec[Γ̂(Zn)] is the local linear

estimate using the sample (yt+1, Zt,xt+1) with 1 ≤ t ≤ n − 1. Denote ŷn+1|n as the last m

elements in P̂n+1|n. Similar to the procedure in Li et al. (2020), I present a wild bootstrap

procedure to construct the prediction interval as follow:

1. Using the observations (yt+1, Zt,xt+1) with 1 ≤ t ≤ n − 1, estimate the coefficient

functions θ0,n−1(Zt) = vec[Γ(Zt)] by the proposed two-step estimation procedure, and denote

the resulting estimates by θ̂0,n−1(Zt) = vec[Γ̂(Zt)].

2. Generate bootstrap sample: P̂ ∗t+1 = P̂
T

B,t+1θ̂0,n−1(Zt)+ε∗t+1, where P̂B,t+1 = (1, P̂ ∗Tt , . . . ,

P̂ ∗Tt+1−q)
T ⊗ IQ and ε∗t+1 = ε̃t+1 · ηt+1. Here, {ηt+1} is a sequence of i.i.d. random variables

drawn from a standard normal distribution and ε̃t+1 = ε̂t+1 − ¯̂εt+1, where ¯̂εt+1 = (n −

1)−1
∑n−1

t=1 ε̂t+1 and ε̂t+1 = P̂t+1 − P̂
T

t+1θ̂0,n−1(Zt).

3. For 1 ≤ t ≤ n − 1, using the bootstrap sample P̂ ∗t+1 and P̂B,t+1 generated in Step 2 to

re-estimate the coefficient functions at Zt, and denote the resulting estimators as θ∗0,n−1(Zt).

Construct the one-step ahead forecast: P̂n+1|n(1) = P̂
T

B,n+1θ
∗
0,n−1(Zt).

4. Repeat Steps 2 and 3 for B times and obtain B bootstrap one-step ahead predicted

values P̂n+1|n(b) for b = 1, . . . , B. Denote ŷn+1|n(b) as the last m elements in P̂n+1|n(b) and

V̂ ar
∗
(ŷn+1|n) as the sample variance of {ŷn+1|n(b) : b = 1, . . . , B}.

5. For each b = 1, . . . , B, use the sequence ŷn+1|n(b) and V̂ ar
∗
(ŷn+1|n) to compute s∗n(b) =

[ŷn+1|n(b)− ŷn+1|n]/
√
V̂ ar

∗
(ŷn+1|n).

6. Compute a sequence of absolute value of s∗n(b) as {|s∗n(b)| : b = 1, . . . , B} and construct

a 100(1− α)% symmetric percentile-t bootstrap interval for ŷn+1|n:

[
ŷn+1|n − q∗1−α

√
V̂ ar

∗
(ŷn+1|n), ŷn+1|n + q∗1−α

√
V̂ ar

∗
(ŷn+1|n)

]
,
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where q∗1−α is the empirical 1− α quantile of {|s∗n(b)| : b = 1, . . . , B}.

3.3 A Monte Carlo Simulation Study for Forecasting

In this section, I provide a simulation example to exam the performance of one-step

ahead forecasting of proposed predictive VAR model. In this example, the bandwidth is

selected based on a rule-of-thumb idea similar to the procedure in Cai and Xiao (2012) as

follows. First, I use a plug-in method as in Sheather and Jones (1991) to obtain an initial

bandwidth denoted by ĥ0 which should be O(n−1/5). At step one, the bandwidth should be

under-smoothed. Therefore, by following the idea in Cai (2002) and Cai and Xiao (2012)

for two-step approaches, I take the bandwidth as ĥ1 = A0 × ĥ0 with A0 = n−1/10 so that

ĥ1 satisfies under-smoothing assumption. At step two, I choose optimal bandwidth ĥ2 by

a modified multifold cross-validation criterion developed in Cai et al. (2000). Finally, the

Epanechnikov kernel K(x) = 0.75(1− x2)I(|x| ≤ 1) is used.

In this example, the data are generated from:

Pt+1 = γ0(Zt) + Γ1(Zt)Pt + εt+1,

and

xit = bTf ,i(Zt)f t + bTy,i(Zt)yt + uit.

for 1 ≤ i ≤ N . Here, Pt = (fTt ,y
T
t )T , with f t = (f1t, f2t)

T and yt = (y1,t, y2,t)
T . In addi-

tion, εt = (ε11,t, ε12,t, ε21,t, ε22,t)
T , with each component being mutually i.i.d. from N (0, 1).

Furthermore, uit are mutually i.i.d. from N (0, 1) and Zt = Φ(Z∗t ), with Φ(·) being the

cumulative standard normal distribution function. The initial value Z∗t is generated from

an autoregressive process Z∗t = 0.15Z∗t−1 + ξt, where ξt is generated from an i.i.d. standard

normal distribution. For functional coefficient matrices, γ0(Zt) = (γ10(Zt), . . . , γ40(Zt))
T ,

Γ1(Zt) = (γι`,P (Zt))4×4, where γ10(z) = 0.1 sin(−z), γ20(z) = 0.1 cos(−z), γ30(z) = sin(−6z),
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γ40(z) = cos(−6z). In addition, for ι = 1, γι1,P (z) = 0.1z, γι2,P (z) = −0.1z + 0.1,

γι3,P (z) = 0.1 sin(z), γι4,P (z) = 0.1 cos(z). For ι = 2, γι1,P (z) = −0.1z + 0.1, γι2,P (z) = 0.1z,

γι3,P (z) = 0.1 cos(z), γι4,P (z) = 0.1 sin(z). For ι = 3, γι1,P (z) = sin(6z), γι2,P (z) = cos(6z),

γι3,P (z) = 0.2I(z ≤ 0.5)− 0.2I(z > 0.5), γι4,P (z) = − sin(6z). For ι = 4, γι1,P (z) = cos(6z),

γι2,P (z) = sin(6z), γι3,P (z) = 0.3I(z ≤ 0.5)+0.2I(z > 0.5), γι4,P (z) = − cos(6z). As for func-

tional factor loadings, bTf ,i(Zt) = (bf ,1i(Zt), bf ,2i(Zt))
T and bTy,i(Zt) = (by,1i(Zt), by,2i(Zt))

T ,

where:

bf ,1i(z) = 2(1 + exp(−6(z − µ1i))
−1,

bf ,2i(z) = 2(1 + exp(−5(z + 5(i/N) + 2)))−1,

by,1i(z) = (1 + exp(−2(z − µ2i))
−1,

by,2i(z) = (1 + exp(−(z − 5(i/N) + 2)))−1,

with µ1i and µ2i being mutually i.i.d. from N (0, 1). Finally, let n0 = n − 1 − b0.05nc,

where b·c denotes the floor function. Given the generated samples (Pt+1, Zt,xt+1) with

t = 1, . . . , n0 − 1 and Zn0 , the one-step ahead forecast P̂n0+1|n0 in this simulation study is

constructed using (3.14). Denote ŷn0+1|n0
= (ŷ1,n0+1|n0 , ŷ2,n0+1|n0)

T as the last two elements

in P̂n0+1|n0 .

To assess the forecast performance, I utilize the mean squared prediction error (MSPE)

for y1,t and y2,t, defined as

MSPE(ŷ1) =
1

b0.05nc

b0.05nc∑
t=1

(y1,n0+1+t − ŷ1,n0+1+t|n0+t)
2,

and

MSPE(ŷ2) =
1

b0.05nc

b0.05nc∑
t=1

(y2,n0+1+t − ŷ2,n0+1+t|n0+t)
2.

In this example, the sample sizes are n = 200, 400 and 800 and the dimensions of sample

are N = 50, 100 and 500. For each setting, I replicate simulation 500 times and compute
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the median and standard deviation (in parentheses) of 500 MSPE values and the results

are reported in Tables 3.1. One can see clearly from Tables 3.1 that both median and

standard deviation of 500 MSPE values steadily decrease as the sample size n and dimension

N increase for all setting.

Finally, I illustrate the finite sample performance for forecasting via evaluating the boot-

strap prediction interval with the asymptotic bias ignored. To do this, I compute the average

of empirical coverage rates (AECR) of 95% prediction interval of y1,n0+1+t and y2,n0+1+t with-

out the asymptotic bias correction, defined as,

AECR(ŷ1) =
1

b0.05ncB

b0.05nc∑
t=1

B∑
b=1

Ib{y1,n0+1+t ∈ ŷ1,n0+1+t|n0+t ± q∗1−α × se(ŷ1)},

where se(ŷ1) =
[
V̂ ar

∗
(ŷ1,n0+1+t|n0+t)

]1/2

and q∗1−α are calculated by the wild bootstrap pro-

cedure proposed in Section 3.2.3, Ib{y1,n0+1+t ∈ ŷ1,n0+1+t|n0+t± q∗1−α× se(ŷ1)} is an indicator

function which equals to 1 if y1,n0+1+t is covered by the interval ŷ1,n0+1+t|n0+t± q∗1−α× se(ŷ1)

in the bth time of replication (equals to 0, otherwise), and the number of replication times B

is 500. Similarly, AECR(ŷ2), se(ŷ2), and Ib{y2,n0+1+t ∈ ŷ2,n0+1+t|n0+t± q∗1−α× se(ŷ2)} can be

defined in the same fashion. The simulation results are presented in Table 3.2 for all setting.

From Table 3.2, one can see basically that as sample size n and dimension N become larger,

AECRs of 95% prediction intervals are close to the nominal level 0.95. In general, the results

of this simulated experiment demonstrate that the proposed procedure is reliable and works

fairly well.

3.4 An Empirical Example of Forecasting

In this section, I examine the forecast performance of the proposed FC-FAVAR predictive

model by forecasting the U.S. consumer price index (CPI) data. For the purpose of compar-

ison, I also forecast the CPI data by using (1) the classical FAVAR with fixed factor loadings
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in Bernanke et al. (2005) and (2) a factor-augmented functional-coefficient (FA-FCM) fore-

casting model with fixed factor loadings proposed in Li et al. (2020). The data set xt in

(3.4) consists of a balanced panel of 122 monthly macroeconomic time series, which is called

the FED-MD database as in McCracken and Ng (2016) and is available for download from

https://research.stlouisfed.org/econ/mccracken/fred-databases/. The response variable yt is

defined as the first difference of logarithms of CPI data of U.S.. All data in this example

are initially transformed to induce stationarity following the instruction in McCracken and

Ng (2016) and normalized to have zero mean and unit variance. In this example, Zt is taken

to be yt−1 and the time span of all data is from August 1976 through September 2021, with

sample size n = 542. Therefore, I consider FC-FAVAR predictive model as follow:

Pt+1 = γ0(Zt) +

q∑
k=1

Γk(Zt)Pt−k+1 + εt+1,

and

xit = bTf ,i(Zt)f t + by,i(Zt)yt + uit.

where Zt = yt−1, Pt = (fTt , yt)
T , with f t = (f1t, . . . , frt)

T . I set the number of factor r̂ = 5,

which is selected through a BIC-type information criterion as in Su and Wang (2017). On

the other hand, the number of lag q̂ are determined by minimizing the same BIC criterion

as in Li et al. (2020), which is 8.

Next, to measure the prediction accuracy, I computed the MSPE with the same definition

as that in Section 3.3. The MPSE value for the out-sample prediction using the proposed

FC-FAVAR model 0.6776. Meanwhile, the MSPE values for FA-FCM forecasting model

with fixed factor loadings (5 factors and 8 lags) and the classical FAVAR with fixed factor

loadings (5 factors and 8 lags) are 0.9015 and 1.0402, respectively. Finally, I obtain the 95%

bootstrap prediction interval of out-sample forecasting for the last 25 observations (5% of

total sample) based on the proposed FC-FAVAR model. The results are presented in Table

3.3, which shows that 24 of 25 predictive intervals contain the corresponding true values.
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3.5 Conclusion

In this chapter, I investigate a new class of FC-FAVAR model, where both factor load-

ings of corresponding factor model and coefficients of this predictive VAR model vary with

a smoothing variable. Different from the existing literature, the latent factors in the pro-

posed model are estimated through a local PCA approach and coefficients functionals are

obtained by using a local linear smoothing method. The simulation results of one-step ahead

forecasting show that the performance of proposed estimation procedures is fairly well. The

potential of proposed model is also demonstrated by an empirical application of forecasting

CPI data of the U.S..

There are several issues still worth of further studies. First, the estimation approach of

latent factors can be altered by using DP method proposed in Fan and Liao (2020) or LCCE

method as in Cai et al. (2022), which may be helpful to improve the computational efficiency.

Second, as is often witnessed in the empirical study, macroeconomic variables are usually

need to be transformed to induce stationarity, which may be restrictive in some applications.

Thus, it is of interest to further extend the FC-FAVAR model in this chapter by allowing

some of regressors to be non-stationary. Third, to improve the performance of out-of-sample

forecasting, it is also desirable to introduce mixed-frequency data in the proposed model,

which involves new model set-up and different asymptotic theory. Aforementioned extensions

are all interesting and challenging issues and I leave them as future research topics.

Table 3.1: MSPE of the one-step ahead forecast for y1,t+1 and y2,t+1

N n = 200 n = 400 n = 800

MSPE(ŷ1) MSPE(ŷ2) MSPE(ŷ1) MSPE(ŷ2) MSPE(ŷ1) MSPE(ŷ2)

50 2.108 (1.377) 2.088 (1.406) 1.874 (0.790) 1.721 (0.679) 1.448 (0.458) 1.432 (0.374)

100 2.090 (1.066) 1.940 (1.451) 1.708 (0.718) 1.824 (0.750) 1.497 (0.387) 1.441 (0.391)

500 1.999 (2.123) 2.116 (1.505) 1.675 (0.685) 1.627 (0.705) 1.470 (0.317) 1.434 (0.418)
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Table 3.2: AECRs of 95% bootstrap prediction intervals for the one-step ahead forecast for y1,t+1 and
y2,t+1.

N n = 200 n = 400 n = 800

AECR(ŷ1) AECR(ŷ2) AECR(ŷ1) AECR(ŷ2) AECR(ŷ1) AECR(ŷ2)

50 0.875 0.863 0.911 0.911 0.951 0.948
100 0.869 0.880 0.924 0.920 0.943 0.948
500 0.871 0.864 0.921 0.930 0.948 0.943

Table 3.3: The post-sample bootstrap prediction intervals for the first difference of logarithms of CPI.

Observation number Prediction interval True value

518 (-1.507, 0.609) -0.047

519 (-0.816, 0.689) -0.325

520 (-1.127, 0.424) -0.336

521 (-0.841, 0.312) -0.405

522 (-0.893, 0.352) -0.520

523 (-0.799, 0.375) -1.938

524 (-3.614, 1.393) -3.446

525 (-5.460, 2.442) -1.099

526 (-3.336, 2.544) 0.645

527 (-1.611, 2.313) 0.702

528 (-1.515, 1.849) 0.344

529 (-2.709, 1.149) -0.177

530 (-2.940, 1.955) -0.719

531 (-3.475, 1.254) -0.469

532 (-2.543, 1.081) 0.100

533 (-1.766, 0.943) -0.151

534 (-1.292, 1.098) 0.457

535 (-1.275, 2.649) 1.087

536 (-1.515, 1.629) 1.094

537 (-2.007, 2.542) 1.284

538 (-1.857, 2.917) 1.831

539 (-2.167, 3.539) 0.508

540 (-2.637, 3.048) 0.133

541 (-1.732, 2.652) 0.374

542 (-1.699, 3.413) 1.798
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Chapter 4

Solving the Price Puzzle Via A Functional Coefficient

Factor-Augmented VAR Model

4.1 Introduction

In this chapter, I apply a class of FC-FAVAR models to an empirical study of macroe-

conomics. The detailed analysis results are reported in Section 4.3.3.

The motivation of this study arises from a debate over the issue that was found by various

studies that a contractionary monetary policy is often followed by an increase of the price

level, which is contrary to the standard economic theory, the so-called “price puzzle", see,

e.g., Sims (1992), and Christiano, Eichenbaum and Evans (1999). Sims (1992) suggested that

this puzzle results from the VAR analysis not fully capturing the information. In order to

reduce the price puzzle, Sims (1992) considered adding commodity prices as an “information

variable" in monetary VAR models because it contains information that helps the Federal

Reserve forecast inflation, while Hanson (2004) questioned this explanation about the role

for commodity prices in VAR models, finding that the ability that commodity prices have to

resolve the price puzzle varies over the sample periods. Meanwhile, Bernanke et al. (2005)

followed the idea in Sims (1992) and reduced the huge dimension of information set by

using a FAVAR model. Other researches of solving the price puzzle include, to name a few,

attributing the omission of output gap (or potential output) to the occurrence of price puzzle

in Giordani (2004), referring cost channel as an alternative explanation for the price puzzle

in Henzel, Hülsewig, Mayer and Wollmershäuser (2009), considering a Divisia M4 quantity of
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money aggregate as monetary police indicator rather than the Fed funds rate in a structural

VAR model in Keating, Kelly and Valcarcel (2014), and among others. To the best of my

knowledge, there is little literature to consider the relations between structural changes of

economic variables and the existence of price puzzle. However, Hanson (2004) found that

the price puzzle is more pronounced in specific sample periods. This observation indicates

that the significance of the price puzzle may be related to the dynamic features of general

economy. In addition, since the driving force for structural changes may be the institutional

changes or the policy interventions, such as the changes of exchange rate systems and the

U.S. quantitative easing policy, features about structural changes can apparently enrich the

information set that the researchers and policy-makers care about and help correct abnormal

results caused by the price puzzle. Thus, due to its ability of capturing features of structural

changes, the proposed FC-FAVAR model may have the potential to reduce the price puzzle.

4.2 Generalized Impulse Response Function (GIRF)

The focus in this section is on presenting a generalized impulse responses with functional

coefficients that will be used in the empirical study. As discussed in Potter (1994) and Koop,

Pesaran and Potter (1996), nonlinear VAR models may produce impulse responses that are

history and shock dependent (e.g., the impulse response functions are sensitive to initial

conditions). To address these issues, Koop et al. (1996) constructed a generalized impulse

response function (GIRF), which is defined as follows

GIRFP (k, δt,vt−1) = E(Pt+k|δt,vt−1)− E(Pt+k|vt−1),

where k = 0, 1, . . . , q are time lags after the impulse occurred, δt is the Q×1 vector of shocks

generating responses, and vt−1 is the Q× 1 vector of “history" or initial values of Pt in (3.2).

Next, I present a GIRF generating procedure for FC-FAVAR model, which is similar to

that used for parametric VAR model as in Koop et al. (1996). In particular, denote Ω̂ =

63



1
n

∑n
t=1 ε̂tε̂

T
t , where ε̂t is the estimated residuals. Let P̂ be the lower triangular matrix from

the Cholesky decomposition such that Ω̂ = P̂P̂T . In addition, let ω̂t be the corresponding

structural shocks such that ε̂t = P̂ω̂t. Then, the GIRF at given grid point z0 is computed

by following procedures:

1. Estimate FC-FAVAR model (3.3) at given grid point z0 and denote the estimator as

θ̂0(z0) = vec[Γ̂(z0)]. Pick a history vr,t−1 in a subsample of data; for example, a time

interval in which an event of monetary policy occurred. The history is the actual value of

the vector of lagged endogenous variables Pt at a particular date.

2. Pick a sequence of Q×1 vector of shocks {ωb,t+k}qk=0 from {ω̂t}nt=1. All elements of ωb,t+k

are drawn with replacement from the residuals {ω̂t}nt=1 as Q×1 vectors in an i.i.d. fashion.

3. Use θ̂0(z0), vr,t−1 and {ωb,t+k}qk=0, simulate the evolution of Pt+k over q + 1 periods.

Denote the resulting baseline path Pb,t+k(vr,t−1,ωb,t+k), for k = 0, . . . , q.

4. Denote the shock to the ιth element of Pt occurs in period 0 (k = 0) as ωb,ι0. Substitute

ωb,ι0 for the ι0th element of ωb,t+k and simulate the evolution Pt+k over q+1 periods. Denote

the resulting path Pb,t+k(ωb,ι0,vr,t−1,ωb,t+k), for k = 0, . . . , q

5. Repeat steps 2 to 4 B = 500 times to obtain {Pb,t+k(vr,t−1,ωb,t+k)}Bb=1 and

{Pb,t+k(ωb,ι0,vr,t−1,ωb,t+k)}Bb=1. Compute X̄r,t+k(ωb,ι0) = 1
B

∑B
b=1[Pb,t+k(ωb,ι0,vr,t−1,ωb,t+k)−

Pb,t+k(vr,t−1,ωb,t+k)]

6. Repeat steps 1 to 5 R times to obtain {X̄r,t+k(ωb,ι0)}Rr=1. Compute X̄t+k(ωb,ι0) =

1
R

∑R
r=1 X̄r,t+k(ωb,ι0) for the average impulse response function at grid point z0. Here, R

is just the size of data of the selected subsample in step 1.

7. Denote X̄t+k(ωb,ι0) = (f̄
T
t+k(ωb,ι0), ȳTt+k(ωb,ι0))T , where f̄ t+k(ωb,ι0) and ȳt+k(ωb,ι0) are

components of unobserved factors and observed variable, respectively, in X̄t+k(ωb,ι0). Then,
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the generalized impulse response functions of xt at grid point z0 is defined as

GIRFxt+k(ωb,ι0) = B̂f f̄ t+k(ωb,ι0) + B̂yȳt+k(ωb,ι0) (4.1)

4.3 Empirical Analysis

4.3.1 Literature Review on Price Puzzle

To clearly describe the common view of the cause of price puzzle, we first formalize the

well-known reaction function of monetary policy that illustrates the relationship between the

policy instrument variable and the data of economic activities. In particular, suppose that

one element of yt defined in Section 3.2.1 is the policy instrument of the monetary authority,

denoted as rf,t, then, the monetary policy reaction function is written as follows

rf,t = β(πe,t − π̃) +D(yt,f t) + µt, (4.2)

where πe,t is the expected future rate of inflation based on the information at time t and π̃

is the Fed’s target inflation rate. In addition, µt is a exogenous policy shock which is an

element of εt in (3.3) and D(yt,f t) represents other observable or unobservable arguments

of the reaction function (e.g., the output gap or lags of the policy instrument). Note that

rf,t is selected to be the FFR in this chapter. In the impulse response analysis, an impulse

is imposed on µt and then all variables in xt can be affected by this impulse through (4.1).

As pointed out in Sims (1992) and Hanson (2004), if there is a measurement error on πe,t

such that

πe,t = πm,t + πξ,t,

where πm,t represents the “measured” inflation expectations based only upon the information

contained in the estimated model by the researcher, while πξ,t captures information excluded
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from the estimation of πe,t, then, (4.2) becomes the following misspecified model

rf,t = β(πm,t − π̃) +D(yt,f t) + νt, (4.3)

where νt = βπξ,t + µt.

Notice that the estimated policy shock νt is contaminated by a bias βπξ,t, where β is

the degree to which the Fed reacts to inflationary pressures. Given the misspecified reaction

function in (4.3), even the impact of a “true" policy shock µt upon price level is negative or

zero followed by macroeconomic theory, the impulse response of price level to the estimated

policy shock νt can be positive if βπξ,t has positive impact on the price level. As a result,

an empirical researcher would incorrectly infer that a contractionary policy shock had raised

price level, which cause the price puzzle. For more discussion in detail, the reader is referred

to the paper by Hanson (2004).

Therefore, the attempt of reducing price puzzle faces two challenges. First, the feature of

πξ,t, which is associated with some omitted variables for forecasting inflation rate πe,t, needs

to be captured. One possible way to resolve the first challenge is to introduce more variables

that could improve the forecast power of inflation rate into the VAR model. However,

Bernanke et al. (2005) argued that the forecast equation of inflation rate πe,t involves the

measurement of potential output and cost-push shock, which can not be directly observed by

both the central bank and the econometrician. Under this circumstance, a factor-augmented

VAR may demonstrate a strength of investigating models with unobserved variables. Second,

the β needs to be estimated with correct specification. As documented in Hanson (2004),

the magnitude of β is different substantially across regimes, which is obviously referred to

as a nonlinear feature. For this reason, it is unnecessarily feasible to apply linear FAVAR

model to studying the effect of monetary policy shock to macroeconomic variables. Thus,

the proposed FC-FAVAR model is well-suitable to reduce price puzzle because it can not

only capture nonlinearities in data, but also extract unobservable information from a huge
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dataset. It is worth mentioning that the aim of this empirical study is to demonstrate the

usefulness of the proposed FC-FAVAR model in reducing the price puzzle compared to the

classical FAVAR, rather than eradicating the existence of price puzzle. Further extensions

may be realized through advocating alternative monetary instrument variables (e.g., Divisia

index proposed in the seminal work of Barnett, 1980), which is out of the scope of this paper.

4.3.2 Data and Implementation

In this section, a class of FC-FAVAR model is applied to exploring the effects of inno-

vations to monetary policy on large amounts of economic variables. To fully demonstrate

the usefulness of the proposed FC-FAVAR models, I revisit one of issues that was discussed

in Bernanke et al. (2005) and compare classical FAVAR models with FC-FAVAR models in

the performance of reducing the price puzzle. For the purpose of making comparison, the

factor model in this example is set as model (1.5), which is the same as that in Bernanke et

al. (2005) and is nested by the factor model with dynamic loadings discussed in chapter 3.

Thus, the FC-FAVAR model in this example is written as

P̂t = γ0(Zt) +
8∑

k=1

Γk(Zt)P̂t−k + εt, (4.4)

where P̂t = (f̂
T

t , yt)
T and f̂ t is estimated in the same way as in Bernanke et al. (2005). In

particular, denote yt as a series of Federal funds rate (FFR), while Ĉ(xt) is the vector of

principal components estimated from the entire dataset xt. Since both yt and Ĉ(xt) involve

the series of FFR, it would be invalid to identify the effect of policy shocks when simply

estimating a VAR in yt and Ĉ(xt). Thus, the direct dependence of Ĉ(xt) on yt should be

removed. By following the procedures in Bernanke et al. (2005), I first regress Ĉ(xt) on yt

in the form of Ĉ(xt) = bCĈ(f̂ t) + bFFRyt + et, where Ĉ(f̂ t) is an estimate of all the common

components other than yt. One way to obtain Ĉ(f̂ t) is to extract principal components

from the subset of “slow-moving variables", which are not affected contemporaneously by
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yt. The reader is referred to Bernanke et al. (2005) for more discussion about “slow-moving

variables". Next, I construct f̂ t as Ĉ(xt)− b̂FFRyt and finally estimate the FC-FAVAR model

(3.3) in yt and f̂ t, with yt ordered last. The number of factors r and lags q are selected by

using a nonparametric BIC-type criterion proposed in Li et al. (2020) and the selection

results are r̂ = 6 and q̂ = 8. In addition, Γk(Zt) = (γkι`,P (Zt))7×7 has the same definition as

in (3.2) and (3.3) and yt is ordered last in each case.

In this example, my dataset xt consists of a balanced panel of 100 monthly macroeco-

nomic time series, which are updates of series used in Bernanke et al. (2005) and McCracken

and Ng (2016). The data span the period from July 1962 through September 2021 and

sample sizes are 711. These series are initially transformed to induce stationarity and were

normalized to have zero mean and unit variance. The description of the series in the dataset

and their transformation are described in Appendix C. In addition, the monetary policy

indicator is chosen as FFR, which is denoted as yt. Furthermore, Zt = Πt/10, where Πt is

the fifth-lagged spread between Moody BAA-rated corporate bond and FFR, denoted by

SFYBAAC in what follows and in Appendix. Finally, by using the procedure presented

in Section 4.2, I obtain the generalized impulse responses of all variables of xt, which is

GIRFxt+k(ωb,ι0) in (4.1).

This choice of smoothing variable is reasonable, because the SFYBAAC contains infor-

mation of both the spread between Moody AAA-rated corporate bond and FFR, denoted by

SFYAAAC in what follows and in Appendix C, and the spread between Moody BAA-rated

corporate bond and Moody AAA-rated corporate, denoted by DEFAULT in what follows.

Indeed, Bernanke (1990) suggested that DEFAULT should be used as a measure of the

behavior of perceived default risk in the economy, which has an influence on the Federal

Reserve Bank for making monetary policy decision. Furthermore, SFYAAAC can serve as a

nice indicator of monetary policy changes. Thus, the temporal changes of SFYBAAC may

indicate the shift of environment of decision making for monetary policy. For this regard,

the reader is referred to the paper by Bernanke (1990) for more discussions. It is worth
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emphasizing that SFYBAAC is not the only choice for smoothing variable, of course, other

variables of economic status may also be suitable to serve as the smoothing variable and this

may be left in a future study.

Remark 4.3.1. (Identification restrictions on factors and policy shocks). It is well known

that the model in (1.5) and (3.2)-(3.3) can only be estimated after imposing identification re-

strictions on factors and policy shocks. To this end, let x = (x1, . . . ,xn)T , f = (f 1, . . . ,fn)T

and f̂ = (f̂ 1, . . . , f̂n)T , I use the standard normalization implicit in the principal components

in the same way as in Bernanke et al. (2005). That is, I restrict f̂
T
f̂/n = Ir. Moreover,

define the rotation matrix for factors as

H = V −1(f̂
T
f/n)(BT

fBf/N),

where V is an r×r diagonal matrix with main diagonal elements as the r largest eigenvalues

of xxT/(nN), in descending order. As discussed in Bernanke et al. (2005) and Yamamoto

(2019), by assuming a recursive structure where all the factors in (3.3) respond with a lag

to change in the monetary policy instrument, ordered last in yt, then, no further restrictions

are required on factors in (3.3), and the identification of the policy shock can be achieved in

(3.3) as if it were be a standard VAR.

4.3.3 Empirical Results

The analysis in this section aims at comparing the results generated from a standard

FAVAR model in Bernanke et al. (2005) to that from our proposed FC-FAVAR model in (3.3)

based on the dataset xt from a new time span. It is crucial to first show that the coefficients in

(3.3) change over SFYBAAC in the empirical example. To this end, I only present estimation

results of functional coefficients related to yt for space saving, which are all components of

the 7th column of Γ1(zl) defined in (4.4) and {zl = 0.05(l − 1) − 0.3 : 1 ≤ l ≤ 13} are grid

points chosen from the interval [−0.3, 0.3], which is the range of Zt. The results are reported
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in Figure 4.1, in which the vertical axis of each panel measures the functional coefficient

and the horizontal axis of each panel measures SFYBAAC. It is obvious that all functional

coefficients in Figure 4.1 are not constant, but vary greatly over the interval [−0.3, 0.3]. This

observation indicates that the dataset possesses features of nonlinearity. Therefore, adopting

classical FAVAR model in this dataset may result in severe problem of misspecification and

subsequently, the price puzzle.

Figure 4.1: Entries of 7th column of functional coefficients matrix Γ1(·) with respect to the changes of
SFYBAAC estimated by the FC-FAVAR model with 6 factors and 8 lags.

Based on the analysis in Section 4.3.1, the reduction of price puzzle follows from the

decrease of the time that the response of price level to policy shocks spends to become

negative. Thus, the faster the curve of impulse response of CPI to monetary policy shocks

becomes negative, the better the model performs in reducing price puzzle. In the next

group of figures, I compare the results of generalized impulse response functions estimated

by our FC-FAVAR model and by classical FAVAR in Bernanke et al. (2005). I choose

five grid points as the data of SFYBAAC on five time points: 1971:01, 1980:03, 2006:08,

2011:08 and 2020:07, and then obtain generalized impulse responses at these grid points.
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In October 1979, Fed Chairman Paul Volcker announced a shift of the instrument of policy

from the federal funds rate to non-borrowed reserves. A number of researchers observed that

this change of policy instrument significantly enlarged the β in monetary policy reaction

function in (4.2), causing a regime-specific phenomenon on structural parameters; see, for

instance, Taylor (1999), Clarida, Galì and Gertler (2000) and Hanson (2004). Therefore, the

first and second time points 1971:01 and 1980:03 can act as nice proxies of the“pre-Volcker"

and “post-Volcker" periods, respectively, to demonstrate my model’s ability of capturing

structural changes in data. In addition, the third, fourth and fifth time points 2006:08,

2011:08 and 2020:07 represent periods of “pre-financial crisis", “post-financial crisis" and

COVID-19 pandemic, respectively. It is well-known that the FFR has been stuck at or near

the zero lower bound (ZLB) since 2008 and during some periods of COVID-19 pandemic,

which poses a criticism about the effectiveness of FFR as monetary policy indicator. Thus,

the studies based on the fourth and fifth time points are suitable for checking the reliability

of FC-FAVAR model under extreme conditions of economy.

In Figure 4.2, the vertical axis measures GIRF generated by procedures as in Koop et al.

(1996) for classical FAVAR model, while in Figures 4.3 and 4.4, the vertical axis represents

GIRF generated by procedures in Section 3.2.3 at given grid point z0, and the horizontal axis

in Figures 4.2-4.4 represent the time lag k. In addition, I standardize the monetary shock

to correspond to a 25-basis-point innovation in the FFR. Figure 4.2 presents the resulting

impulse response functions of FFR, industrial production and consumer price index of all

items for the classical FAVAR proposed in Bernanke et al. (2005) for two sample periods:

1962:07-2001:08 (the top panel) and 1962:07-2021:09 (the bottom panel), respectively. The

first period ends in August 2001 following Bernanke et al. (2005), and the second period

extends the sample to September 2021. In both two sample periods, I employ 8 lags and the

number of factors is 6. Observed that in the first time span, the response of all variables move

in the same way as in Bernanke et al. (2005), while in the second time span, the response of

CPI goes up to positive and fail to return to negative within 50 lags, which indicates that
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there is still a strong price puzzle in the classical FAVAR specification. These results are not

surprising, because as the sample periods enlarged, the information about changes of general

economy become significant and may eventually undermine the estimation results given by

the linear FAVAR model.

In contrast, Figure 4.3 displays GIRFs on five time points obtained by the proposed

FC-FAVAR model for the sample period ends in September 2021 and I use 8 lags for q̂, and

6 factors for r̂. It is interesting that after considering the changes of economic environment,

the responses of CPI go down to negative within 40 lags at all five grid points, suggesting

that the price puzzle is considerably reduced compared to the results of classical FAVAR.

More specifically, the responses of CPI at time points 1971:01, 1980:03 and 2006:08 drop to

negative within 30 lags, which show that FC-FAVAR model can nicely reduce price puzzle

by correcting the measurement error discussed in Section 4.3.1. For the results on time

points 2011:08 and 2020:07, even when FFR reaches to ZLB, the estimated responses of CPI

still returns to negative within 40 lags. In this case, although there exists macroeconomic

models with alternative policy instruments that work fairly well in correcting the abnormal

of price level, the proposed FC-FAVAR model can reasonably reduce price puzzle without

introducing new structures in the conventional macroeconomic model and replacing policy

instruments. Of course, it is of great interest to use other variables as policy instruments

instead of the FFR in FC-FAVAR model and we leave this as a future topic.

Finally, Figure 4.4 shows the GIRF of selected macroeconomic variables to monetary

policy shocks generated by the procedure presented in Section 4.2 on time point 1971:01.

The responses are generally of the expected sign and magnitude: following a contractionary

monetary policy shock, prices go down to negative rapidly, money aggregates decline, and the

dollar appreciates. The dividend yields initially jump above the steady state and finally go

down. To sum up, these results seem to demonstrate that measures of the effects of monetary

policy are consistent and sensible. Notice that I only display 12 responses of all 100 that

could also be investigated technically. The results for the rest responses are available upon
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request.

4.4 Conclusion

In this paper, I investigate a functional coefficient FAVAR model with an application

to resolving the price puzzle and coefficients functionals are estimated by using a two-stage

kernel smoothing method. In addition, there is little literatures regarding the relationship

between the existence of price puzzle and the structural changes in the economic environment.

After considering the changes of specific state of economy, the proposed framework mitigates

the issue of price puzzle and still allows to estimate responses of large amounts of economic

variables to monetary policy shocks.

There are several issues still worth of further studies. First, it is interesting to introduce

heteroscedasticity into model (3.3), although a functional coefficient model has an ability to

capture partial heteroscedasticity as argued by Cai (2010), so that the dynamics of mon-

etary policy shocks can also be captured. Second, the asymptotic properties of functional

coefficients and impulse response functions need to be derived and this should not be hard

given the similar precedents of theoretical work in Cai et al. (2000), Cai et al. (2006) and

Li et al. (2020). Third, it is also desirable to extend model (3.3) by allowing some of re-

gressors to be non-stationary, which is a commonly-faced scenario in the empirical studies

of macroeconomics. I leave these important issues as future research topics.
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Figure 4.2: Generalized impulse response functions of FFR, industrial production and consumer price index
of all items for the classical FAVAR model with 6 factors and 8 lags for two sample periods: 1962:07-2001:08
(the top panel) and 1962:07-2021:09 (the bottom panel).
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Figure 4.3: Generalized impulse response functions of FFR, industrial production and consumer price
index of all items for the FC-FAVAR model with 6 factors and 8 lags on 1971:01 (the first row of panel),
1980:03 (the second row of panel), 2006:08 (the third row of panel), 2011:08 (the fourth row of panel) and
2020:07 (the fifth row of panel) .
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Figure 4.4: Generalized impulse responses of 12 variables generated from FC-FAVAR with 6 factors and 8
lags on time point 1971:01.
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Appendix: Mathematical Proofs of The-

orem 2.2.1 and Consistency of Σ̂τ (zo)

In this section, we give certain lemmas with their detailed proofs that are useful for

proving the theorem in the main article. Of course, notations and assumptions that are used

here are the same as those in the main article. Also note that C and M are denoted as

generic constants that may vary across occurrences.

A.1 Some Lemmas

Lemma A.1. Let β̂ be the minimizer of the function
∑n

t=1 ωtρτ (Yt −XT
t β), where ωt > 0.

Then, ‖
∑n

t=1 ωtXtψτ (Yt −XT
t β̂)‖ ≤ dim(X) maxt≤n ‖ωtXt‖.

Proof. The proof follows from Ruppert and Carroll (1980).

Now, some notations are introduced here to make a convenient presentation of our Ba-

hadur results given in Lemma A.6 (below). In Lemmas A.2 - A.6, τ is dropped from ατ (·)
and write h1 as h for simplicity. Let an = (nh1)−1/2, for 1 ≤ s 6= t ≤ n and for any

fixed Zt 6= Zs, define ϑ0 = a−1
n (δ0 − α(Zt)) and ϑ̂0 = a−1

n (δ̂0 − α(Zt)). Of course, ϑ =

a−1
n H1

 δ0 −α(Zt)

δ1 −α(1)(Zt)

, ϑ̂ = a−1
n H1

 δ̂0 −α(Zt)

δ̂1 −α(1)(Zt)

, where H1 = diag{Iκm+1, h1Iκm+1}.

In addition, let W ∗
s =

 W s

zshW s

, where zsh = (Zs − Zt)/h. Also, define Y ∗s = Ys −
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W T
s [α(Zt) +α(1)(Zt)(Zs − Zt)]. Therefore,

ϑ̂ = arg min
ϑ

n∑
s=m+16=t

ρτ (Y
∗
s − anϑTW ∗

s)K(zsh) ≡ arg min
ϑ
G(ϑ).

The derivative of G(ϑ) with respect to ϑ (except at point Y ∗s = anϑ
TW ∗

s) is given by

Tn(ϑ) = an

n∑
s=m+16=t

ψτ (Y
∗
s − anϑTW ∗

s)W
∗
sK(zsh), (A.1)

where ψτ (x) = τ − I(x < 0). Write ζ ≡ anϑ and ζ̂ ≡ anϑ̂. Then, (A.1) becomes to

Tn(ζ) = an

n∑
s=m+16=t

ψτ (Y
∗
s − ζTW ∗

s)W
∗
sK(zsh). (A.2)

In particular, suppose that D is any compact subset of R. To show the uniform consistency

of α̂(·) in Lemma A.2 later, for any z ∈ D , define ϑ̂(z) = a−1
n H1

 α̂(z)−α(z)

α̂(1)(z)−α(1)(z)

 and

ζ̂(z) = anϑ̂(z). LetW s(z) =

 W s

((Zs − z)/h)W s

 and Ys(z) ≡ Ys−W T
s [α(z)+α(1)(z)(Zs−

z)].

Lemma A.2. Under Assumptions A1 – A12 in the theorem, one has ‖ζ̂(z)‖ = Op(
√
m/nh)

uniformly over z ∈ D .

Proof. Let v ∈ R2(κm+1) be an arbitrary 2(κm + 1)-dimension vector that satisfy ‖v‖ = 1,

where ‖ · ‖ is a Euclidean norm. By convexity of the objective function, for any small ε > 0,

if we can show that there is a large constant C such that

P

{
inf
‖v‖=1

n∑
s=m+1

vTψτ (Ys(z)− (C(m/nh)1/2v)TW s(z))W s(z)K((Zs − z)/h) > 0

}
> 1− ε

(A.3)

uniformly over z ∈ D , then, the proof is finished. We first show that (A.3) holds for

any fixed z0 ∈ D . To this end, define zs0h = (Zs − z0)/h and let ξs(v) = ψτ (Ys(z0) −
vTW s(z0))W s(z0)K(zs0h)− ψτ (Ys(z0))W s(z0)K(zs0h), then,
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n∑
s=m+1

vTψτ (Ys(z0)− (C(m/nh)1/2v)TW s(z0))W s(z0)K(zs0h)

=
n∑

s=m+1

vTψτ (Ys(z0))W s(z0)K(zs0h) +
n∑

s=m+1

vTE{ξs(C(m/nh)1/2v)}

+
n∑

s=m+1

vT [ξs(C(m/nh)1/2v)− E{ξs(C(m/nh)1/2v)}] = M1 +M2 +M3.

Following the proof in Xiao and Koenker (2009), we first analyze M3. Covering the ball

{‖v‖ ≤ C(m/nh)1/2} with cubes C = {Ck}, where Ck is a cube with center vk and side length

C(m/(nh)5)1/2, so that N(n) = #(C) = (2(nh)2)m, and for v ∈ Ck, ‖v−vk‖ ≤ C(m/(nh)5/2).

Since I(Ys(z0) < x) is nondecreasing in x, then,

sup
‖v‖≤C(m/nh)1/2

∣∣∣∣∣
n∑

s=m+1

vT [ξs(v)− E{ξs(v)}]

∣∣∣∣∣
≤ max

1≤k≤N(n)

∣∣∣∣∣
n∑

s=m+1

vT [ξs(vk)− E{ξs(vk)}]

∣∣∣∣∣
+ max

1≤k≤N(n)

∣∣∣∣∣
n∑

s=m+1

|(vTW s(z0))K(zs0h)|{bns(vk)− E(bns(vk))}

∣∣∣∣∣
+ max

1≤k≤N(n)

∣∣∣∣∣
n∑

s=m+1

|(vTW s(z0))K(zs0h)|{E(dns(vk))}

∣∣∣∣∣ ≡M31 +M32 +M33,

where bns(vk) = I(Ys(z0) < vTkW s(z0)) − I(Ys(z0) < vTkW s(z0) + C(m/(nh)5/2)‖W s(z0)‖)
and dns(vk) = I(Ys(z0) < vTkW s(z0) + C(m/(nh)5/2)‖W s(z0)‖) − I(Ys(z0) < vTkW s(z0) −
C(m/(nh)5/2)‖W s(z0)‖). The analyses of M32 and M33 are similar to those in Welsh (1989)

and Xiao and Koenker (2009), so that our focus here is only on M31. Notice, for any [ > 0,

|ψτ (Ys(z0)) − ψτ (Ys(z0) − vTkW s(z0))|[ = I(d3s < Ys ≤ d4s), where d3s = min(c2s, c2s + c3s)

and d4s = max(c2s, c2s + c3s) with c2s = [α(z0) +α(1)(z0)(Zs− z0)]TW s and c3s = vTkW s(z0).

Therefore, by Assumption A4, there exists a C > 0 such that E{|ψτ (Ys(z0)) − ψτ (Ys(z0) −
vTkW s(z0))|[|Zs,W s} = FY |Z,W (d4s)−FY |Z,W (d3s) ≤ C|vTkW s(z0)| ≤ C(m/nh)1/2‖W s(z0)‖,
which implies that

E|vT ξs(vk)|δ = E[|ψτ (Ys(z0))− ψτ (Ys(z0)− vTkW s(z0))|δ|vTW s(z0)|δKδ(zs0h)]

≤ C(m/nh)1/2E[‖W s(z0)‖‖W s(z0)‖δKδ(zs0h)] ≤ C((m/nh)1/2m(1+δ)/2h) (A.4)

by Assumption A7. Thus, we have
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W 2
n =

n∑
s=m+1

E[vT{ξs(vk)− E(ξs(vk))}]2 ≤
n∑

s=m+1

E[vT ξs(vk)]
2 = O((mnh)1/2m3/2)

and
S2
n =

n∑
s=m+1

[vT{ξs(vk)− E(ξs(vk))}]2 = Op((mnh)1/2m3/2).

Also, notice that ηs(vk) = {ξs(vk)−E(ξs(vk))} is a martingale difference sequence. Therefore,

let L = (mnh)1/2. Thus, we have

P

[
max

1≤k≤N(n)

∣∣∣∣∣ 1√
nh

n∑
s=m+1

{vT [ξs(vk)− E(ξs(vk))]}

∣∣∣∣∣ > ε

]

≤ N(n) max
k
P

[∣∣∣∣∣ 1√
nh

n∑
s=m+1

{vT [ξs(vk)− E(ξs(vk))]}

∣∣∣∣∣ > ε

]

≤ N(n) max
k
P

[∣∣∣∣∣
n∑

s=m+1

vTηs(vk)

∣∣∣∣∣ > √nhε,W 2
n + S2

n ≤ L

]

+N(n) max
k
P

[∣∣∣∣∣
n∑

s=m+1

vTηs(vk)

∣∣∣∣∣ > √nhε,W 2
n + S2

n > L

]
≡ J1 + J2. (A.5)

For J1, by exponential inequality for martingale difference sequences (see, e.g., Bercu and

Touati, 2008), we have

N(n) max
k
P

[∣∣∣∣∣
n∑

s=m+1

vTηs(vk)

∣∣∣∣∣ > √nhε,W 2
n + S2

n ≤ L

]
≤ 2N(n) exp

(
− (nh)ε2

2L

)
.

For J2, because P [W 2
n + S2

n > L] ≤ P [W 2
n > L] +P [S2

n > L] and each term can be bounded

exponentially under Assumptions A1, A5 and A6. Thus, M3 = op((mnh)1/2). As for M2,

notice that
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M2 ≡
n∑

s=m+1

vTE{ξs(C(m/nh)1/2v)}

=
n∑

s=m+1

vTE{ψτ (Ys(z0)− (C(m/nh)1/2v)TW s(z0))W s(z0)K(zs0h)

− ψτ (Ys(z0))W s(z0)K(zs0h)}

=
n∑

s=m+1

vTE{[FY |Z,W (qτ (z0,W s) + hzs0hα
(1)(z0)TW s|Zs,W s)

− FY |Z,W (qτ (z0,W s) + hzs0hα
(1)(z0)TW s

+ C(m/nh)1/2vTW s(z0)|Zs,W s)]W s(z0)K(zs0h)}

=− C(m/nh)1/2

n∑
s=m+1

vTE{fY |Z,W (qτ (z0,W s) + hzs0hα
(1)(z0)TW s

+ ηC(m/nh)1/2vTW s(z0)|Zs,W s)W s(z0)W T
s (z0)K(zs0h)}v,

where W s(z0)W T
s (z0) =

 1 zs0h

zs0h z2
s0h

⊗W sW
T
s . Similar to the idea in Xu (2005),

fY |Z,W (qτ (z0,W s) + hzs0hα
(1)(z0)TW s + ηC(m/nh)1/2vTW s(z0)|Zs,W s)

=fY |Z,W (qτ (z0,W s)|Zs,W s) + Chzs0hα
(1)(z0)TW s + op(h),

which implies that

n∑
s=m+1

vTE{ξs(C(m/nh)1/2v)}

≈ − C(m/nh)1/2

n∑
s=m+1

vTE[fY |Z,W (qτ (z0,W s)|Zs,W s)W s(z0)W T
s (z0)K(zs0h)]v

− C(m/nh)1/2h2

n∑
s=m+1

vT{E[|α(1)(z0)TW s|W s(z0)W T
s (z0)Kh(zs0h)]}v

=M21 +M22.

Again, by Assumption A7,
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1

n

n∑
s=m+1

[α(1)(z0)TW s]
2 = ‖α(1)(z0)‖2

α(1)(z0)T ( 1
n

∑n
s=m+1W sW

T
s )α(1)(z0)

‖α(1)(z0)‖2
≤ Cm.

Hence,

E

{
1

n

n∑
s=m+1

|α(1)(z0)TW s|
}
≤ n−1/2E

{(
1

n

n∑
s=m+1

[α(1)(z0)TW s]
2

)1/2}
≤ C(m/n)1/2,

which implies that E[|α(1)(z0)TW s|] ≤ C(m/n)1/2 and then, M22 = o((mnh)1/2). Thus,

M2 ≈− C(m/nh)1/2

n∑
s=m+1

vTE[fY |Z,W (qτ (z0,W s)|Zs,W s)W s(z0)W T
s (z0)K(zs0h)]v

=− vT

L0 L1

L1 L2

v,
where, for d = 0, 1 and 2,

Ld = −C(mn)1/2h−1/2E[fY |Z,W (qτ (z0,W s)|Zs,W s)z
d
s0hW sW

T
s K(zs0h)]

=− C(mn)1/2h−1/2E[D∗(z0)zds0hK(
Zs − z0

h
)]

=− C(mnh)1/2

ˆ
D∗(z0 + hz)zdK(z)fz(z0 + hz)dz ≈ −C(mnh)1/2µdfz(z0)D∗(z0).

In addition, for M1, since
E[ψτ (Ys(z0))W s(z0)K(zs0h)] = E[τ − I(Ys(z0) < 0)]W s(z0)K(zs0h)

=E[τ − FY |Z,W (α(z0)TW s + hzs0hα
(1)(z0)TW s|Zs,W s)]W s(z0)K(zs0h)

=E[FY |Z,W (qτ (Zs,W s)|Zs,W s)− FY |Z,W (qτ (z0,W s)

+ hzs0hα
(1)(z0)TW s|Zs,W s)]W s(z0)K(zs0h)

=E[fY |Z,W (qτ (z0,W s) + hzs0hα
(1)(z0)TW s

+ ηΛ(h, z0, Zs,W s)|Zs,W s)Λ(h, z0, Zs,W s)W s(z0)K(zs0h)],

where Λ(h, z0, Zs,W s) = qτ (Zs,W s)− qτ (z0,W s)− hzs0hα(1)(z0)TW s,

an application of Taylor expansion of qτ (Zs,W s) at (z0,W s) leads to

Λ(h, z0, Zs,W s) =
α(2)(z0 + ℘hzs0h)

T

2
h2z2

s0hW s.

Therefore, by Assumptions A7 and A10, one has
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E[ψτ (Ys(z0))W s(z0)K(zs0h)]

=
h2

2
E[fY |Z,W (qτ (z0,W s) + hzs0hα

(1)(z0)TW s + ηΛ(h, z0, Zs,W s)|Zs,W s)]

×W s(z0)W T
s α

(2)(z0 + ℘hzs0h)z
2
s0hK(zs0h)

=
h2

2
E[fY |Z,W (qτ (z0,W s) + hzs0hα

(1)(z0)TW s + ηΛ(h, z0, Zs,W s)|Zs,W s)]

×

 1

zs0h

D(Zs)α
(2)(z0 + ℘hzs0h)z

2
s0hK(zs0h)

=
h3

2
fz(z0){

µ2

0

⊗D∗(z0)}α(2)(z0) + o(h3).

Thus, E[vTψτ (Ys(z0))W s(z0)K(zs0h)] = O(m1/2h3). Then, by Markov’s inequality, station-

arity and Assumption A10, M1 =
∑n

s=m+1 v
Tψτ (Ys(z0))W s(z0)K(zs0h) = op(

√
mnh). Thus,{

inf
‖v‖=1

n∑
s=m+1

vTψτ (Ys(z0)− (C(m/nh)1/2v)TW s(z0))W s(z0)K(zs0h) > 0

}

⊇
{
C

2
fz(z0)D∗(z0)λmin

[
vT

1 0

0 µ2

v] > 0

}

with probability going to 1 for a sufficient large C and as n → ∞. Thus, we complete the

first part of the proof.

Next, we show that (A.3) holds uniformly over z ∈ D . To proceed, define B ≡ {v :

‖v‖ ≤ C(m/nh)1/2} and Kz,h ≡ K((Zs − z)/h). Then, we want to show that

P

{
inf
z∈D

inf
v∈B

n∑
s=m+1

vTψτ (Ys(z)− vTW s(z))W s(z)Kz,h > 0

}
> 1− ε.

Since D is compact, it can be covered by a finite number T (n) of cubes Dj = Dn,j with

side length ln = O(T−1(n)) = O(m1/2(nh)−1/4) and center zj. Clearly, ln = o(1) due to

Assumption A10. Now, write
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sup
z∈D

sup
v∈B

n∑
s=m+1

vT [ψτ (Ys(z)− vTW s(z))]W s(z)Kz,h

≤ sup
z∈D

sup
v∈B

n∑
s=m+1

E{vTψτ (Ys(z)− vTW s(z))W s(z)Kz,h}

+ sup
z∈D

sup
v∈B

n∑
s=m+1

[
vTψτ (Ys(z)− vTW s(z))W s(z)Kz,h

− E{vTψτ (Ys(z)− vTW s(z))W s(z)Kz,h}
]
≡ K(1) +K(2).

We first consider K(2). Let ψτ,s(z, v) = ψτ (Ys(z)− vTW s(z)) for simplicity. Indeed,

K(2) ≡ sup
z∈D

sup
v∈B

n∑
s=m+1

[
vTψτ,s(z, v)W s(z)Kz,h − E{vTψτ,s(z, v)W s(z)Kz,h}

]

≤ max
1≤j≤T (n)

sup
v∈B

∣∣∣∣ n∑
s=m+1

vT
[
ψτ,s(zj, v)W s(zj)Kzj ,h − E{ψτ,s(zj, v)W s(zj)Kzj ,h}

]∣∣∣∣
+ max

1≤j≤T (n)
sup
z∈Dj

sup
v∈B

∣∣∣∣ n∑
s=m+1

[
vT [ψτ,s(z, v)W s(z)Kz,h − ψτ,s(zj, v)W s(zj)Kzj ,h]

− E{vT [ψτ,s(z, v)W s(z)Kz,h − ψτ,s(zj, v)W s(zj)Kzj ,h]}
]∣∣∣∣ ≡ H(1) +H(2).

We only focus on H(2), since the rate of H(1) can be controlled in the same way as in (A.5),

when z is fixed. Then,

H(2) = max
1≤j≤T (n)

sup
z∈Dj

sup
v∈B

n∑
s=m+1

{∣∣∣∣vT [ψτ,s(z, v)W s(z)− ψτ,s(zj, v)W s(zj)]Kzj ,h

− E{vT [ψτ,s(z, v)W s(z)− ψτ,s(zj, v)W s(zj)]Kzj ,h}
∣∣∣∣}

+ max
1≤j≤T (n)

sup
z∈Dj

sup
v∈B

n∑
s=m+1

{∣∣∣∣vT [ψτ,s(z, v)W s(z)− ψτ,s(zj, v)W s(zj)]

× [Kz,h −Kzj ,h]− E{vT [ψτ,s(z, v)W s(z)− ψτ,s(zj, v)W s(zj)]

× [Kz,h −Kzj ,h]}
∣∣∣∣}

+ max
1≤j≤T (n)

sup
z∈Dj

sup
v∈B

n∑
s=m+1

{∣∣∣∣vTψτ,s(zj, v)W s(zj)[Kz,h −Kzj ,h]

− E{vTψτ,s(zj, v)W s(zj)[Kz,h −Kzj ,h]}
∣∣∣∣} ≡ H(21) +H(22) +H(23).
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For H(21), similar to the derivation of (A.4), one can show by Lipschitz continuity that for

any [ > 0, there exists a C > 0 such that

E{|[ψτ,s(z, v)− ψτ,s(zj, v)]|[|Zs,W s} ≤ Cm1/2ln

uniformly over v ∈ B, which implies that
E{|vT [ψτ,s(z, v)W s(z)− ψτ,s(zj, v)W s(zj)]Kzj ,h|δ}

=E{|vT [ψτ,s(z, v)− ψτ,s(zj, v)]W s(z)Kzj ,h|δ}

+ E{|vT [ψτ,s(zj, v)](W s(z)−W s(zj))Kzj ,h|δ}

≤E{|ψτ,s(z, v)− ψτ,s(zj, v)|δ|vTW s(z)|δKδ
zj ,h
}

+ E{|ψτ,s(zj, v)|δ|vT (W s(z)−W s(zj))|δKδ
zj ,h
} ≤ Clδnm

δ/2h

by the boundedness of ψτ,s(zj, v) uniformly over v ∈ B. Define

∆ψτ,s(z, zj) = ψτ,s(z, v)W s(z)− ψτ,s(zj, v)W s(zj).

Thus, we have

G2
n =

n∑
s=m+1

E

{∣∣∣∣vT∆ψτ,s(z, zj)Kzj ,h − E{vT∆ψτ,s(z, zj)Kzj ,h}
∣∣∣∣}2

≤
n∑

s=m+1

E{vT [ψτ,s(z, v)W s(z)− ψτ,s(zj, v)W s(zj)]Kzj ,h}2 ≤ Cl2nmnh = O((mnh)1/2m3/2)

and

H2
n =

n∑
s=m+1

{∣∣∣∣vT∆ψτ,s(z, zj)Kzj ,h − E{vT∆ψτ,s(z, zj)Kzj ,h}
∣∣∣∣}2

= Op((mnh)1/2m3/2).

Now, let χs(zj) = ∆ψτ,s(z, zj)Kzj ,h − E{∆ψτ,s(z, zj)Kzj ,h}. Thus, the fact that

∆ψτ,s(z, zj)Kzj ,h − E{∆ψτ,s(z, zj)Kzj ,h}
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is a martingale difference sequence implies that

P

[
max

1≤j≤T (n)

∣∣∣∣∣ 1√
nh

n∑
s=m+1

{vT [∆ψτ,s(z, zj)Kzj ,h − E{∆ψτ,s(z, zj)Kzj ,h}]}

∣∣∣∣∣ > ε

]

≤T (n) max
j
P

[∣∣∣∣∣ 1√
nh

n∑
s=m+1

{vT [∆ψτ,s(z, zj)Kzj ,h − E{∆ψτ,s(z, zj)Kzj ,h}]}

∣∣∣∣∣ > ε

]

≤T (n) max
j
P

[∣∣∣∣∣
n∑

s=m+1

vTχs(zj)

∣∣∣∣∣ > √nhε,G2
n +H2

n ≤ (mnh)1/2

]

+ T (n) max
j
P

[∣∣∣∣∣
n∑

s=m+1

vTχs(zj)

∣∣∣∣∣ > √nhε,G2
n +H2

n > (mnh)1/2

]
≡ I(1) + I(2).

Similar to the derivation in (A.5), under Assumptions A1, A5 and A6, one can show that I(1)

and I(2) can be bounded exponentially. Hence, H(21) = op((mnh)1/2). We can also show that

H(22) = op((mnh)1/2) and H(23) = op((mnh)1/2) in similar ways. Thus, K(2) = op((mnh)1/2).

As for K(1), notice that

K(1) ≡ sup
z∈D

sup
v∈B

n∑
s=m+1

E{vTψτ (Ys(z)− vTW s(z))W s(z)Kz,h}

≤ sup
z∈D

sup
v∈B

n∑
s=m+1

E{vT [ψτ (Ys(z)− vTW s(z))− ψτ (Ys(z))]W s(z)Kz,h}

+ sup
z∈D

sup
v∈B

n∑
s=m+1

E{vTψτ (Ys(z))W s(z)Kz,h} ≡ K(11) +K(12).

In a similar way of calculating M2, it can be shown by Assumption A10 that K(11) =

O((mnh)1/2) and K(12) = O(m1/2nh3) = o((mnh)1/2) uniformly z ∈ D and v ∈ B. There-

fore, the proof of Lemma A.2 is finished.

In the next two lemmas, we focus on Tn(ζ) in (A.2) to show stochastic equi-continuity

for Tn(ζ)−Tn(0)−E[Tn(ζ)−Tn(0)], so that we can derive the local Bahadur representation

for
√
nhζ̂. In particular, define Dm = {ζ : ‖ζ‖ ≤ C(m/nh)1/2} for each fixed 0 < C <∞.

Lemma A.3. Under Assumptions A1 – A12, for any a ∈ R2(κm+1) satisfying ‖a‖ = O(1),

one has

sup
ζ∈Dm

|aT{Tn(ζ)− Tn(0)− E[Tn(ζ)− Tn(0)]}| = op(1).

Proof. For any ζ ∈ Dm, let Y ∗ns = Y ∗s − ζTW ∗
s and Mns(ζ) = [ψτ (Y

∗
ns)− ψτ (Y ∗s )]W ∗

sK(zsh).

Then,
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Tn(ζ)− Tn(0) = an

n∑
s=m+16=t

[ψτ (Y
∗
s − ζTW ∗

s)− ψτ (Y ∗s )]W ∗
sK(zsh) = an

n∑
s=m+16=t

Mns(ζ)

and Mns(ζ) = [ψτ (Y
∗
ns)− ψτ (Y ∗s )]W ∗

sK(zsh) =
(
M

(1)
ns (ζ),M

(2)
ns (ζ)

)T
with

M (1)
ns (ζ) = [ψτ (Y

∗
ns)− ψτ (Y ∗s )]W sK(zsh)

and M (2)
ns (ζ) = [ψτ (Y

∗
ns)− ψτ (Y ∗s )]W szshK(zsh). Thus,

sup
ζ∈Dm

|aT{Tn(ζ)− Tn(0)− E[Tn(ζ)− Tn(0)]}|

≤an sup
ζ∈Dm

∣∣∣∣ n∑
s=m+16=t

aT1 (M (1)
ns (ζ)− EM (1)

ns (ζ))

∣∣∣∣+ an sup
ζ∈Dm

∣∣∣∣ n∑
s=m+16=t

aT2 (M (2)
ns (ζ)− EM (2)

ns (ζ))

∣∣∣∣
≡an sup

ζ∈Dm

∣∣∣∣ n∑
s=m+16=t

{M (1a1)
ns (ζ)− E(M (1a1)

ns (ζ))}
∣∣∣∣

+ an sup
ζ∈Dm

∣∣∣∣∣
n∑

s=m+16=t

{M (2a2)
ns (ζ)− E(M (2a2)

ns (ζ))}

∣∣∣∣∣
≡M (1)

n (ζ) +M (2)
n (ζ),

where a1 ∈ Rκm+1 and a2 ∈ Rκm+1 are partitions of a. For M (1)
n (ζ), it is easy to see that

M
(1)
n (ζ) ≡ an supζ∈Dm

∣∣∣∑n
s=m+16=t{M

(1a1)
ns (ζ)− E(M

(1a1)
ns (ζ))}

∣∣∣, whereM (1a1)
ns (ζ) = aT1M

(1)
ns (ζ).

Similar to the proof of Lemma A.2, for any [ > 0, |ψτ (Y ∗ns) − ψτ (Y ∗s )|[ = I(a3s < Yt ≤ a4s),

where a3s = min(b2s, b2s + b3s) and a4s = max(b2s, b2s + b3s) with b2s = [α(Zt) +α(1)(Zt)(Zs−
Zt)]

TW s and b3s = ζTW ∗
s . Therefore, by Assumption A4, there exists a C > 0 such that

E{|ψτ (Y ∗ns)− ψτ (Y ∗s )|[|Zs,W s} = FY |Z,W (a4s)− FY |Z,W (a3s) ≤ C|ζTW ∗
s |,

which implies by Assumption A7 that

E|M (1a1)
n1 (ζ)|δ = E[|ψτ (Y ∗n1)− ψτ (Y ∗1 )|δ|aT1W 1|δKδ(z1h)]

≤ CE[|ζTW ∗
1|‖W 1‖δKδ(z1h)] ≤ C(anm

1/2m(1+δ)/2h). (A.6)

Similar to the proof of Lemma A.2, covering the ball Dm with cubes C = {Ck}, where Ck is
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a cube with center ζk and side length C(m/nh)1/2, so that N(n) = #(C) = (2(nh)2)m, and

for ζ ∈ Ck, ‖ζ − ζk‖ ≤ C(m/(nh)5/2). Since I(Y ∗s < x) is nondecreasing in x, then,

M (1)
n (ζ) ≡an sup

ζ∈Dm

∣∣∣∣∣
n∑

s=m+16=t

{M (1a1)
ns (ζ)− E(M (1a1)

ns (ζ))}

∣∣∣∣∣
≤ max

1≤k≤N(n)
an

∣∣∣∣∣
n∑

s=m+16=t

{M (1a1)
ns (ζk)− E(M (1a1)

ns (ζk))}

∣∣∣∣∣
+ max

1≤k≤N(n)

∣∣∣∣∣
n∑

s=m+16=t

|(aT1W s)K(zsh)|{b(1a1)
ns (ζk)− E(b(1a1)

ns (ζk))}

∣∣∣∣∣
+ max

1≤k≤N(n)

∣∣∣∣∣
n∑

s=m+16=t

|(aT1W s)K(zsh)|{E(d(1a1)
ns (ζk))}

∣∣∣∣∣ ≡ K1 +K2 +K3,

where b(1a1)
ns (ζk) = I(Y ∗s < ζTkW s)− I(Y ∗s < ζTkW s + C(m/(nh)5/2)‖W s‖) and

d
(1a1)
nt (ζk) = I(Y ∗s < ζTkW s + C(m/(nh)5/2)‖W s‖)− I(Y ∗s < ζTkW s − C(m/(nh)5/2)‖W s‖).

Now, our focus is only on K1. By noting that N(n) = (2(nh)2)m and ‖ζk‖ ≤ C(m/nh)1/2

and κ is fixed, it follows by (A.6) that

Q2
n =

n∑
s=m+16=t

E{M (1a1)
ns (ζk)− E(M (1a1)

ns (ζk))}2

≤
n∑

s=m+16=t

E[M (1a1)
ns (ζk)]

2 = O((mnh)1/2m3/2)

and

R2
n =

n∑
s=m+16=t

{M (1a1)
ns (ζk)− E(M (1a1)

ns (ζk))}2 = Op((mnh)1/2m3/2).

Also, notice that ϕs(ζk) = {M (1)
ns (ζk) − E(M

(1)
ns (ζk))} is a martingale difference sequence.

Therefore, let L = (mnh)1/2, we have
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P

[
max

1≤k≤N(n)

∣∣∣∣∣an
n∑

s=m+16=t

{M (1a1)
ns (ζk)− E(M (1a1)

ns (ζk))}

∣∣∣∣∣ > ε

]

≤N(n) max
k
P

[∣∣∣∣∣ 1√
nh

n∑
s=m+16=t

{M (1a1)
ns (ζk)− E(M (1a1)

ns (ζk))}

∣∣∣∣∣ > ε

]

≤N(n) max
k
P

[∣∣∣∣∣
n∑

s=m+16=t

aT1 ϕs(ζk)

∣∣∣∣∣ > √nhε,Q2
n +R2

n ≤ L

]

+N(n) max
k
P

[∣∣∣∣∣
n∑

s=m+16=t

aT1 ϕs(ζk)

∣∣∣∣∣ > √nhε,Q2
n +R2

n > L

]
≡ K11 +K12.

For K11, by exponential inequality for martingale difference sequences (see, e.g., Bercu and

Touati, 2008), we have

N(n) max
k
P

[∣∣∣∣∣
n∑

s=m+16=t

aT1 ϕs(ζk)

∣∣∣∣∣ > √nhε,Q2
n +R2

n ≤ L

]
≤2N(n) exp

(
− (nh)ε2

2L

)
.

For K12, because

P
[
Q2
n +R2

n > L
]
≤ P

[
Q2
n > L

]
+ P

[
R2
n > L

]
and each term can be bounded exponentially under Assumptions A1, A5 and A6. Thus,

M
(1)
n (ζ) = op(1). Similarly, it can be shown that M (2)

n (ζ) = op(1). These complete the proof

of the lemma.

Lemma A.4. Under Assumptions A1 – A12, for any a ∈ R2(κm+1) satisfying ‖a‖ = O(1),

one has
sup
ζ∈Dm

‖aT{E[Tn(ζ)− Tn(0)] + fz(Zt)D
∗
1(Zt)

√
nhζ}‖ = o(1),

where D∗1(Zt) = diag{D∗(Zt), µ2D
∗(Zt)}.

Proof. First, notice that
an

n∑
s=m+16=t

E[(ψτ (Y
∗
s − ζTW ∗

s)− ψτ (Y ∗s ))W ∗
sK(zsh)]

=an

n∑
s=m+16=t

E[I(Y ∗s < 0)− I(Y ∗s < ζTW ∗
s)]W

∗
sK(zsh)
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=an

n∑
s=m+16=t

E[FY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

TW s|Zs,W s)

− FY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

TW s + b3s|Zs,W s)W
∗
sK(zsh)]

=− 1

nh

n∑
s=m+16=t

E[fY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

TW s

+$b3s|Zs,W s)W
∗
sW

∗T
s

√
nhζK(zsh)],

where W ∗
sW

∗T
s =

 1 zsh

zsh z2
sh

⊗W sW
T
s . Therefore, similar to the proof of Lemma A.2,

fY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

TW s +$b3s|Zs,W s)

=fY |Z,W (qτ (Zt,W s)|Zs,W s) + Chzshα
(1)(Zt)

TW s + op(h).

Hence, it follows that

an

n∑
s=m+16=t

E[(ψτ (Y
∗
s − ζTW ∗

s)− ψτ (Y ∗s ))W ∗
sK(zsh)] =

A0 A1

A1 A2

+ o(1),

where for d = 0, 1 and 2,

Ad =− 1

nh

n∑
s=m+16=t

E[fY |Z,W (qτ (Zt,W s) + g(Zt, h, Z,W , $)|Zs,W s)

× zdshW sW
T
s

√
nhζK(zsh)]

=− 1

h
E[fY |Z,W (qτ (Zt,W s)|Zs,W s)z

d
shW sW

T
s

√
nhζK(zsh)]

− 1

h
E{g(Zt, h, Z,W , $)zdshW sW

T
s

√
nhζK(zsh)}

=− 1

h
E[fY |Z,W (qτ (Zt,W s)|Zs,W s)z

d
shW sW

T
s

√
nhζK(zsh)]

− CE{|α(1)(Zt)
TW s|zdshW sW

T
s

√
nhζK(zsh)}+ o(1)

=− 1

h
E[D∗(Zs)

√
nhζzdshK(

Zs − Zt
h

)]

− CE{|α(1)(Zt)
TW s|zdshW sW

T
s

√
nhζK(zsh)}+ o(1)
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=− 1

h

ˆ
D∗(z)

√
nhζ(

z − Zt
h

)dK(
z − Zt
h

)fz(z)dz

− CE{|α(1)(Zt)
TW s|zdshW sW

T
s

√
nhζK(zsh)}+ o(1)

=−
ˆ
D∗(Zt + hz)

√
nhζzdK(z)fz(Zt + hz)dz

−−CE{|α(1)(Zt)
TW s|zdshW sW

T
s

√
nhζK(zsh)}+ o(1),

with g(Zt, h, Z,W , $) = hzshα
(1)(Zt)

TW s +$b3s. Note that

−
ˆ
D∗(Zt + hz)

√
nhζzdK(z)fz(Zt + hz)dz + o(1) = −µdfz(Zt)D∗(Zt)

√
nhζ + o(1).

Also, by Assumption A7, one has E[|α(1)(Zt)
TW s|] ≤ C(m/n)1/2. Then, by choosing suf-

ficiently large C > 0 and by Assumption A10, ‖E[Tn(ζ) − Tn(0)] + fz(Zt)D
∗
1(Zt)

√
nhζ‖ ≤

Cmn−1/2mh = o(1). Thus, |aT{E[Tn(ζ) − Tn(0)] + fz(Zt)D
∗
1(Zt)

√
nhζ}| ≤ C‖E[Tn(ζ) −

Tn(0)] + fz(Zt)D
∗
1(Zt)

√
nhζ‖ = o(1). Combining the above analysis with the methods of

constructing cubes in the proof of Lemma A.3, the lemma is proved.

Lemma A.5. Let Ss = ψτ (Y
∗
s )W ∗

sK(zsh). Under Assumptions A1 – A12, for 1 ≤ s 6= t ≤ n

and for any fixed Zt 6= Zs, one has

E[Ss] =
h3fz(Zt)

2

µ2D
∗(Zt)α

(2)(Zt)

0

+ o(h3),

and V ar[Ss] = hτ(1− τ)fz(Zt)D1(Zt) + o(h),

where D1(Zt) = diag{ν0D(Zt), ν2D(Zt)}. Further,

V ar[Tn(0)]→ τ(1− τ)fz(Zt)D1(Zt).

Therefore, ‖Tn(0)‖ = Op(1).

Proof. This proof follows from the proof of Lemma 3.5 in Xu (2005). Firstly, we calculate

E[Ss]. Indeed,
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E[Ss] =E[ψτ (Y
∗
s )W ∗

sK(zsh)] = E[τ − I(Y ∗s < 0)]W ∗
sK(zsh)

=E[τ − FY |Z,W (α(Zt)
TW s + hzshα

(1)(Zt)
TW s|Zs,W s)]W

∗
sK(zsh)

=E[FY |Z,W (qτ (Zs,W s)|Zs,W s)− FY |Z,W (qτ (Zt,W s)

+ hzshα
(1)(Zt)

TW s|Zs,W s)]W
∗
sK(zsh)}

=E{fY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

TW s

+ ξΛ(h, Zt, Zs,W s)|Zs,W s)Λ(h, Zt, Zs,W s)W
∗
sK(zsh)},

where Λ(h, Zt, Zs,W s) = qτ (Zs,W s) − qτ (Zt,W s) − hzshα
(1)(Zt)

TW s. An application of

the Taylor expansion of qτ (Zs,W s) at (Zt,W s) leads to

Λ(h, Zt, Zs,W s) =
α(2)(Zt + ςhzsh)

T

2
h2z2

shW s.

Therefore, similar to the proof in Lemma A.2,
E[Ss] =

h2

2
E[fY |Z,W (qτ (Zt,W s) + hzshα

(1)(Zt)
TW s + ξΛ(h, Zt, Zs,W s)|Zs,W s)

×W ∗
sW

T
s α

(2)(Zt + ςhzsh)z
2
shK(zsh)]

=
h2

2
E

{
fY |Z,W (qτ (Zt,W s) + hzshα

(1)(Zt)
TW s + ξΛ(h, Zt, Zs,W s)|Zs,W s)

×

 1

zsh

D(Zs)α
(2)(Zt + ςhzsh)z

2
shK(zsh)

}

=
h3

2
fz(Zt){

µ2

0

⊗D∗(Zt)}α(2)(Zt) + o(h3). (A.7)

As for E[SsS
T
s ], one has

E[SsS
T
s ] = E[ψ2

τ (Y
∗
s )W ∗

sW
∗T
s K2(zsh)]

=E{[τ 2 − (2τ − 1)I(Y ∗s < 0)]W ∗
sW

∗T
s K2(zsh)}

=(2τ − 1)E{[τ − I(Y ∗s < 0)]W ∗
sW

∗T
s K2(zsh)}+ τ(1− τ)E[W ∗

sW
∗T
s K2(zsh)] ≡ R(1) +R(2).

Similar to the above derivation, it is not difficult to show that
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R(1) ≡(2τ − 1)E{[τ − I(Y ∗s < 0)]W ∗
sW

∗T
s K2(zsh)}

=(2τ − 1)E{[FY |Z,W (qτ (Zs,W s)|Zs,W s)

− FY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

TW s|Zs,W s)]W
∗
sW

∗T
s K2(zsh)}

=(2τ − 1)E[fY |Z,W (qτ (Zt,W s) + hzshα
(1)(Zt)

TW s

+ ξΛ(h, Zt, Zs,W s)|Zs,W s)
α(2)(Zt + ζhzsh)

TW s

2
h2z2

sh

×W ∗
sW

∗T
s K2(zsh)] = o(h2)

and

R(2) ≡ τ(1− τ)E[W ∗
sW

∗T
s K2(zsh)] = hτ(1− τ)fz(Zt)

ν0 0

0 ν2

⊗D(Zt)(1 + o(1)).

(A.8)

Next, it is shown that the last part of lemma holds true. To this end, it is easy to check that

V ar[Tn(0)] ≤1

h
[V ar(S1) + 2

n−1∑
`=1

(1− `

n
)Cov(S1, S`+1)]

≤1

h
V ar(S1) +

2

h

dn−1∑
`=1

|Cov(S1, S`+1)|+ 2

h

∞∑
`=dn

|Cov(S1, S`+1)| ≡ J4 + J5 + J6

By (A.7) and (A.8),

J4 → τ(1− τ)fz(Zt)

ν0 0

0 ν2

⊗D(Zt).

Now, it remains to show that |J5| = o(1) and |J6| = o(1). First, we consider J6. To this

end, using Davydov’s inequality (see, e.g., Corollary A.2 of Hall and Heyde (1980)) and the

boundedness of ψτ (·), one has

|Cov(S1, S`+1)| ≤ Cα1−2/δ(`)[E|S1|δ]2/δ ≤ Cmh2/δα1−2/δ(`),
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which gives

J6 ≤Cmh2/δ−1

∞∑
`=dn

α1−2/δ(`) ≤ Cmh2/δ−1d−dn

∞∑
`=dn

`dα1−2/δ(`) = o(mh2/δ−1d−dn ) = o(1),

by choosing dn to satisfy ddnm−1h1−2/δ = c. As for J5, following the proof of Lemma 3.5 in

Xu (2005), one has |J5| = o(1). These prove Lemma A.5.

Lemma A.6. (Bahadur representation) Under Assumptions A1 – A12, for any fixed Zt 6=
Zs, one has,

ϑ̂ ≡
√
nh1ζ̂ =

1√
nh1fz(Zt)

(D∗1(Zt)
−1)

n∑
s=m+16=t

ψτ (Y
∗
s )W ∗

sK(zsh1) + op(1),

where D∗1(Zt) =

1 0

0 µ2

⊗D∗(Zt).
Proof. We first derive the local Bahadur representation for ϑ̂. Indeed, by Lemma A.2, ‖ζ̂‖ =

Op((m/nh)1/2). On the other hand, by Lemmas A.3, A.4 and A.5, Tn(ζ) satisfies ‖Tn(0)‖ =

Op(1) and sup‖ζ‖≤C(m/nh)1/2 |aT{Tn(ζ) +D
√
nhζ − Tn(0)}| = op(1) with D = fz(Zt)D

∗
1(Zt).

In addition, it follows from Assumption A10 and Lemma A.1 that ‖Tn(ζ̂)‖ = op(1). Then,

replacing a by D−1a, the lemma is proved.

Lemma A.7. Define KnL = {(∆,ϑ) : ‖ϑ‖ ≤ L, ‖∆‖ ≤ M} for some 0 < M <∞ and 0 <

L < ∞, let Vn(ϑ) and Vn(∆,ϑ) be vectors that satisfy (i) −∆TVn(λ∆,ϑ) ≥ −∆TVn(∆,ϑ)

for λ ≥ 1 and ‖ϑ‖ ≤ L, and (ii)
sup

(∆,ϑ)∈KnL

‖Vn(∆,ϑ) + Vn(ϑ) +D∆− An‖ = op(1),

where ‖An‖ = Op(1) and D is a positive-definite matrix. Suppose that ∆n and ϑn are vectors

such that ‖Vn(∆n,ϑn)‖ = op(1) and ‖Vn(ϑn)‖ = Op(1). Then, one has ‖∆n‖ = Op(1) and

∆n = D−1(An − Vn(ϑn)) + op(1).

Proof. The proof follows from Koenker and Zhao (1996) and Conditions (i) and (ii) that

Vn(∆n,ϑn) + Vn(ϑn) +D∆n − An = op(1). This completes the proof.

To show Lemmas A.8 and A.9 later, τ is dropped from gτ (z0) and h2 is written as

h for simplicity. For the notational convenience again, define bn = (nh2)−1/2, let θ0 =

b−1
n (Θ0 − g(z0)) and θ1 = hb−1

n (Θ1 − g(1)(z0)). Then, θ = b−1
n H2

 Θ0 − g(z0)

Θ1 − g(1)(z0)

, where
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H2 = diag{I2κ+1, h2I2κ+1}. For convenience of analysis, we rewrite X̂ t ≡ X t(ϑ̂0) ≡
X t(α(Zt)+(nh1)−1/2ϑ̂0) because it contains q̂τ,t = W T

t δ̂0. Similarly, X t(ϑ0) ≡X t(α(Zt)+

(nh1)−1/2ϑ0), X∗t (ϑ0) ≡ X∗t (α(Zt) + (nh1)−1/2ϑ0) and X̂
∗
t ≡ X∗t (ϑ̂0) ≡ X∗t (α(Zt) +

(nh1)−1/2ϑ̂0), where X∗t (ϑ0) =

 X t(ϑ0)

zthX t(ϑ0)

 and X∗t (ϑ̂0) =

 X t(ϑ̂0)

zthX t(ϑ̂0)

 and zth =

(Zt − z0)/h. Of course, X∗t (0) ≡ X∗t =

 X t

zthX t

. Hence, ∂X t(ϑ0)/∂ϑ0 = anΠt, where

ΠT
t = (0T1×(κm+1),W t, . . . ,W t, 0

T
κ×(κm+1)) has the same definition as that in the main article.

Next, denote v∗t (ϑ0) = Yt − XT
t (ϑ0)[g(z0) + g(1)(z0)(Zt − z0)], v∗t (0) = Yt − XT

t [g(z0) +

g(1)(z0)(Zt − z0)] and v∗nt = v∗nt(θ,ϑ0) = v∗t (ϑ0)− bnθTX∗t (ϑ0). In addition, define Γ∗(Zt) =

E[fY |Z,X(qτ (z0,X t))X
∗
tgτ (z0)TΠt|Zt] and Γ(Zt) = E[fY |Z,X(qτ (z0,X t))X t gτ (z0)TΠt|Zt].

Again, let Am = {θ : ‖θ‖ ≤ M} and Bm = {ϑ0 : ‖ϑ0‖ ≤ L} for some 0 < M < ∞ and for

some 0 < L <∞, Therefore,

θ̂ = arg min
θ

n∑
t=1

ρτ (v
∗
t (ϑ̂0)− bnθTX∗t (ϑ̂0))K(zth) ≡ arg min

θ
J(θ).

Now, define vector functions of θ and ϑ0

Vn(θ,ϑ0) = bn

n∑
t=1

ψτ (v
∗
t (ϑ0)− bnθTX∗t (ϑ0))X∗t (ϑ0)K(zth),

and

Vn(ϑ0) = bn

n∑
t=1

Γ∗(Zt)[anϑ0]K(zth),

where ψτ (x) = τ − I(x < 0). In the next three lemmas, we show that Vn(θ,ϑ0) and Vn(ϑ0)

satisfy Lemma A.7, so that we can derive the local Bahadur representation for θ̂.

Lemma A.8. Under the assumptions in Theorem 1, one has

sup
ϑ0∈Bm,θ∈Am

‖Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)− E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)]‖ = op(1).

Proof. For any θ ∈ Am and for any ϑ0 ∈ Bm, we have
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Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)

=bn

n∑
t=1

[ψτ (v
∗
t (ϑ0)− bnθTX∗t (ϑ0))− ψτ (v∗t (ϑ0))]X∗t (ϑ0)K(zth)

+ bn

n∑
t=1

[ψτ (v
∗
t (ϑ0))](X∗t (ϑ0)−X∗t )K(zth)

+ bn

n∑
t=1

[ψτ (v
∗
t (ϑ0))− ψτ (v∗t (0))]X∗tK(zth) + bn

n∑
t=1

Γ∗(Zt)[anϑ0]K(zth)

=bn

n∑
t=1

Vnt(θ,ϑ0) + bn

n∑
t=1

Unt(θ,ϑ0) + bn

n∑
t=1

Wnt(θ,ϑ0) + bn

n∑
t=1

Rnt(ϑ0),

where Vnt(θ,ϑ0) = [ψτ (v
∗
nt)− ψτ (v∗t (ϑ0))]X∗t (ϑ0)K(zth) =

(
V

(1)T
nt , V

(2)T
nt

)T
, Unt(θ,ϑ0) =

[ψτ (v
∗
t (ϑ0))](X∗t (ϑ0)−X∗t )K(zth) =

(
U

(1)T
nt , U

(2)T
nt

)T
,

Wnt(θ,ϑ0) = [ψτ (v
∗
t (ϑ0))− ψτ (v∗t (0))]X∗tK(zth) =

(
W

(1)T
nt ,W

(2)T
nt

)T
,

and Rnt(ϑ0) = anΓ∗(Zt)ϑ0K(zth) =
(
R

(1)T
nt , R

(2)T
nt

)T
with

V
(1)
nt = [ψτ (v

∗
nt)− ψτ (v∗t (ϑ0))]X t(ϑ0)K(zth),

V
(2)
nt = [ψτ (v

∗
nt)−ψτ (v∗t (ϑ0))]X t(ϑ0)zthK(zth), U

(1)
nt = [ψτ (v

∗
t (ϑ0))](X t(ϑ0)−X t)K(zth), and

U
(2)
nt = [ψτ (v

∗
t (ϑ0))](X t(ϑ0)−X t)zthK(zth).

In addition, W (1)
nt = [ψτ (v

∗
t (ϑ0))− ψτ (v∗t (0))]X tK(zth),

W
(2)
nt = [ψτ (v

∗
t (ϑ0))− ψτ (v∗t (0))]X tzthK(zth),

R
(1)
nt = anΓ(Zt)ϑ0K(zth) and R(2)

nt = anΓ(Zt)ϑ0zthK(zth). Thus,
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‖Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)− E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)]‖

=

∥∥∥∥bn
∑n

t=1(V
(1)
nt − EV

(1)
nt )∑n

t=1(V
(2)
nt − EV

(2)
nt )

∥∥∥∥+

∥∥∥∥bn
∑n

t=1(U
(1)
nt − EU

(1)
nt )∑n

t=1(U
(2)
nt − EU

(2)
nt )

∥∥∥∥
+

∥∥∥∥bn
∑n

t=1(W
(1)
nt − EW

(1)
nt )∑n

t=1(W
(2)
nt − EW

(2)
nt )

∥∥∥∥+

∥∥∥∥bn
∑n

t=1(R
(1)
nt − ER

(1)
nt )∑n

t=1(R
(2)
nt − ER

(2)
nt )

∥∥∥∥
≤bn‖

n∑
t=1

(V
(1)
nt − EV

(1)
nt )‖+ bn‖

n∑
t=1

(V
(2)
nt − EV

(2)
nt )‖

+ bn‖
n∑
t=1

(U
(1)
nt − EU

(1)
nt )‖+ bn‖

n∑
t=1

(U
(2)
nt − EU

(2)
nt )‖

+ bn‖
n∑
t=1

(W
(1)
nt − EW

(1)
nt )‖+ bn‖

n∑
t=1

(W
(2)
nt − EW

(2)
nt )‖

+ bn‖
n∑
t=1

(R
(1)
nt − ER

(1)
nt )‖+ bn‖

n∑
t=1

(R
(2)
nt − ER

(2)
nt )‖

≡V (1)
n + V (2)

n + U (1)
n + U (2)

n +W (1)
n +W (2)

n +R(1)
n +R(2)

n .

As for V (1)
n , it is easy to see that

V (1)
n ≡bn‖

n∑
t=1

(V
(1)
nt − EV

(1)
nt )‖ ≤

2κ+1∑
i=1

‖bn
n∑
t=1

(V
(1i)
nt − EV

(1i)
nt )‖ =

2κ+1∑
i=1

‖V (1i)
n ‖,

where V (1i)
nt = [ψτ (v

∗
nt) − ψτ (v

∗
t (ϑ0))]Xit(ϑ0)K(zth), and V

(1i)
n = bn

∑n
t=1(V

(1i)
nt − EV

(1i)
nt ).

Now, we consider the variance of V (1i)
n ; that is,

E(V (1i)
n )2 =

1

nh
E

{ n∑
t=1

(V
(1i)
nt − EV

(1i)
nt )

}2

=
1

nh

[ n∑
t=1

V ar(V
(1i)
nt ) + 2

n−1∑
`=1

(1− `

n
)Cov(V

(1i)
n1 , V

(1i)
n(`+1))

]

≤ 1

h
V ar(V

(1i)
n1 ) +

2

h

dn−1∑
`=1

|Cov(V
(1i)
n1 , V

(1i)
n(`+1))|+

2

h

∞∑
`=dn

|Cov(V
(1i)
n1 , V

(1i)
n(`+1))|

≡ J7 + J8 + J9

with dn →∞ specified later. First, we consider the last term, J9, in the above equation. To

this end, using Davydov’s inequality (see, e.g., Corollary A.2 of Hall and Heyde (1980)), one
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has

|Cov(V
(1i)
n1 , V

(1i)
n(`+1))| ≤ Cα1−2/δ(`)[E|V (1i)

n1 |δ]2/δ. (A.9)

Notice that for any k > 0, |ψτ (v∗nt) − ψτ (v
∗
t (ϑ0))|k = I(r3t < Yt ≤ r4t), where r3t =

min(p2t, p2t + p3t) and r4t = max(p2t, p2t + p3t) with p2t = [gτ (z0) +g
(1)
τ (z0)(Zt− z0)]TX t(ϑ0)

and p3t = 1√
nh
θTX∗t (ϑ0). Therefore, by Assumption A4, there exists a C > 0 such that

E{|ψτ (v∗nt)− ψτ (v∗t (ϑ0))|k|Zt,X t} = FY |Z,X(r4t)− FY |Z,X(r3t) ≤ Cbn|θTX∗t (ϑ0)|,

which implies by Assumption A9 that
E[V

(1i)
n1 |δ = E[|ψτ (v∗n1)− ψτ (v∗1(ϑ0))|δ|Xi1(ϑ0)|δKδ(z1h)]

≤ CbnE[|θTX∗t (ϑ0)||Xi1(ϑ0)|δKδ(z1h)].

Notice that since ‖ϑ0‖ ≤ L, by mean value theorem and triangle inequality, one can choose

a sufficiently large C > 0, such that ‖X∗t (ϑ0)‖ ≤ C‖X∗t‖. Then,

E|V (1i)
n1 |δ = E[|ψτ (v∗n1)− ψτ (v∗1(ϑ0))|δ|Xi1(ϑ0)|δKδ(z1h)]

≤ CbnE[|θTX∗t (ϑ0)||Xi1(ϑ0)|δKδ(z1h)] ≤ CbnE[|θTX∗t ||X1i|δKδ(z1h)] ≤ Cbnh.

This, in conjunction with (A.9), gives that

J9 ≤ Cb2/δ
n h2/δ−1

∞∑
`=dn

α1−2/δ(`) ≤ Cb2/δ
n h2/δ−1d−wn

∞∑
`=dn

`wα1−2/δ(`) = o(b2/δ
n h2/δ−1d−wn ) = o(1).

As for J8, again by choosing sufficiently large C > 0, we use Assumptions A4 and A11 to

obtain

|Cov(V
(1i)
n1 , V

(1i)
n(`+1))| ≤ E|V (1i)

n1 V
(1i)
n(`+1)|+ E|V (1i)

n1 |E|V
(1i)
n(`+1)|

≤ CE|X1iX(`+1)i|K(z1h)K(z(`+1)h) + Ch2 ≤ Ch2.

It follows that J8 = o(1) by dnh→ 0. Analogously,

J7 = h−1V ar(V
(1i)
n1 ) ≤ h−1E(V

(1i)
n1 )2 = O(bn).

Thus, V (1i)
n1 = op(1). So that V (1)

n = op(1). Similarly, it can be shown that V (2)
n = op(1). For

U
(1)
n , also notice that

U (1)
n ≡ bn‖

n∑
t=1

(U
(1)
nt − EU

(1)
nt )‖ ≤

2κ+1∑
i=1

‖bn
n∑
t=1

(U
(1i)
nt − EU

(1i)
nt )‖ =

2κ+1∑
i=1

‖U (1i)
n ‖,

where U (1i)
nt = [ψτ (v

∗
t (ϑ0))](Xti(ϑ0) − Xti)K(zth) and U

(1i)
n = bn

∑n
t=1(U

(1i)
nt − EU

(1i)
nt ). By

mean value theorem, there exists ϑ′0 ∈ (0,ϑ0), such that
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E|U (1i)
n1 |δ = E[|ψτ (v∗1(ϑ0))|δ|X1i(ϑ0)−X1i|δKδ(z1h)]

≤ CE[|X1i(ϑ0)−X1i|δKδ(z1h)] ≤ CE

[∣∣∣∣(∂X1i(ϑ0)

∂ϑ0

∣∣∣∣
ϑ0=ϑ′0

ϑ0

)∣∣∣∣δKδ(z1h)

]
≤ Caδnh

by the boundedness of ψτ (·). Then, it can be shown that U (1i)
n1 = op(1) so that U (1)

n = op(1).

Similarly, one can also prove that U (2)
n = op(1). As for W (1)

nt , notice that for any k > 0,

|ψτ (v∗t (ϑ0))−ψτ (v∗t (0))|k = I(c3t < Yt ≤ c4t), where c3t = min(d2t, d3t) and c4t = max(d2t, d3t)

with d2t = [gτ (z0) + g
(1)
τ (z0)(Zt − z0)]TX t(ϑ0) and d3t = [gτ (z0) + g

(1)
τ (z0)(Zt − z0)]TX t.

Therefore, by Assumption A4, there exists a C > 0 such that

E{|ψτ (v∗t (ϑ0))− ψτ (v∗t (0))|k|Zt,X t} = FY |Z,X(c4t)− FY |Z,X(c3t)

≤ C

∣∣∣∣(∂X1i(ϑ0)

∂ϑ0

∣∣∣∣
ϑ0=ϑ′0

)
ϑ0

∣∣∣∣,
which implies by Assumption A9 that

E|W (1i)
n1 |δ = E[|ψτ (v∗t (ϑ0))− ψτ (v∗t (0))|δ|Xi1|δKδ(z1h)] ≤ Caδnh.

Then, it is not hard to show that W (1)
nt = op(1) and W

(2)
nt = op(1). Similarly, one can also

obtain that R(1)
nt = op(1) and R(2)

nt = op(1). Thus, it follows that for any fixed θ ∈ Am and

for any fixed ϑ0 ∈ Bm,
‖Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)− E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)]‖ = op(1). (A.10)

Next, to show that the above result holds uniformly in Am and Bm, we use the Bickel’s

(1975) chaining approach to show that

sup
ϑ0∈Bm,θ∈Am

‖Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)− E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)]‖ = op(1).

Now, we decompose Am and Bm into cubes, respectively, based on the grid (j1~M, . . . ,

j2(2κ+1)~M) and (i1kL, . . . , i2(2κ+1)kL), where

jk = 0,±1, . . . ,±[1/~] + 1, ik = 0,±1, . . . ,±[1/k] + 1, [·] denotes taking integer part of ·,
and ~ and k are fixed positive small numbers. Denote D(θ) and D(ϑ0) the lower vertex of

cubes that contain θ and ϑ0, respectively. Then,
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sup
ϑ0∈Bm,θ∈Am

‖Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)− E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)]‖

≤ sup
ϑ0∈Bm,θ∈Am

‖Vn(D(θ), 0)− Vn(0, 0)− E[Vn(D(θ), 0)− Vn(0, 0)]‖

+ sup
ϑ0∈Bm,θ∈Am

‖Vn(D(θ),ϑ0)− Vn(D(θ), 0)− E[Vn(D(θ),ϑ0)− Vn(D(θ), 0)]‖

+ sup
ϑ0∈Bm,θ∈Am

‖Vn(θ,ϑ0)− Vn(D(θ),ϑ0)− E[Vn(θ,ϑ0)− Vn(D(θ),ϑ0)]‖

+ sup
ϑ0∈Bm

‖Vn(ϑ0)− E[Vn(ϑ0)]‖

≡H1 +H2 +H3 +H4.

Notice that following the way in Xu (2005), it is not hard to show that H4 = op(1). We only

need to focus on H1, H2 and H3. To this end, for H1, since X t ≡ X t(0), it follows easily

from (A.10) that

H1 ≡ sup
ϑ0∈Bm,θ∈Am

‖Vn(D(θ), 0)− Vn(0, 0)− E[Vn(D(θ), 0)− Vn(0, 0)]‖ = op(1).

As for the first term of H3, notice that
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sup
ϑ0∈Bm,θ∈Am

‖Vn(θ,ϑ0)− Vn(D(θ),ϑ0)‖

=bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[ψτ (v
∗
nt(θ,ϑ0))− ψτ (v∗nt(D(θ),ϑ0))]X∗t (ϑ0)K(zth)‖

≤bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[I(v∗nt(D(θ),ϑ0) < 0)− I(v∗nt(D(θ), D(ϑ0)) < 0)]X∗t (ϑ0)K(zth)‖

+ bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[I(v∗nt(D(θ), D(ϑ0)) < 0)− I(v∗nt(θ,ϑ0) < 0)]X∗t (ϑ0)K(zth)‖

≤2bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

}]X
∗
t (ϑ0)K(zth)‖

≤2bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

}](X
∗
t (ϑ0)−X∗t (D(ϑ0)))K(zth)‖

+ 2bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

}]X
∗
t (D(ϑ0))K(zth)‖

≤2bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

}](X
∗
t (D(ϑ0)) + L)K(zth)‖

≤2Cbn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

} − EI{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

}]

×X∗t (D(ϑ0))K(zth)‖

+ 2Cbn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[EI{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

}]X
∗
t (D(ϑ0))K(zth)‖

≤2Cbn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

} − EI{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

}]

×X∗t (D(ϑ0))K(zth)‖+ (2C/h) max{~,k}‖E[X∗tK(zth)]‖

≤2Cbn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

} − EI{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

}]

×X∗t (D(ϑ0))K(zth)‖+ 2C max{~,k},
(A.11)

where the fourth inequality follows from the Lipschitz continuity. Since the number of the

elements in {D(θ) : ‖θ‖ ≤M} and {D(ϑ0) : ‖ϑ0‖ ≤ L} are finite, one can easily show that

110



2Cbn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[I{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

} − EI{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

}]

×X∗t (D(ϑ0))K(zth)‖ = op(1)

by following the same steps as in (A.10). Let max{~,k} → 0. Then, it follows that the first

term of H3 is op(1). As for the second term of H3, in the same way as in (A.11),

sup
ϑ0∈Bm,θ∈Am

‖E[Vn(θ,ϑ0)− Vn(D(θ),ϑ0)]‖

= bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

E{[ψτ (v∗nt(θ,ϑ0))− ψτ (v∗nt(D(θ),ϑ0))]X∗t (ϑ0)K(zth)}‖

≤ 2nbn sup
ϑ0∈Bm,θ∈Am

‖E[I{|v∗nt(D(θ),D(ϑ0))|<C max{~,k}√
nh

}]X
∗
t (ϑ0)K(zth)‖ ≤ C max{~,k}.

When max{~,k} → 0, one has
sup

ϑ0∈Bm,θ∈Am

‖E[Vn(θ,ϑ0)− Vn(D(θ),ϑ0)]‖ = o(1).

Thus, H3 = op(1). For the first term of H2, notice that

sup
ϑ0∈Bm,θ∈Am

‖Vn(D(θ),ϑ0)− Vn(D(θ), 0)]‖

=bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[ψτ (v
∗
nt(D(θ),ϑ0))X∗t (ϑ0)− ψτ (v∗nt(D(θ), 0))X∗t ]K(zth)‖

≤bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[ψτ (v
∗
nt(D(θ),ϑ0))− ψτ (v∗nt(D(θ), D(ϑ0)))]X∗t (ϑ0)K(zth)‖

+ bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[ψτ (v
∗
nt(D(θ), D(ϑ0)))− ψτ (v∗nt(D(θ), 0))]X∗t (ϑ0)K(zth)‖

+ bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[ψτ (v
∗
nt(D(θ), 0))](X∗t (ϑ0)−X∗t )K(zth)‖ ≡ H21 +H22 +H23.

It is easy to see that by following the same deduction as in (A.11), one can derive H21 = op(1)

and H22 = op(1). Also, notice that for H23, by mean value theorem,
H23 ≡ bn sup

ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[ψτ (v
∗
nt(D(θ), 0))](X∗t (ϑ0)−X∗t ))K(zth)‖

≤ Canbn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

[ψτ (v
∗
nt(D(θ), 0))]K(zth)‖,

and the last term can be vanished in probability in the same way as processing U (1)
n and

U
(2)
n . Therefore, the first term of H2 is op(1). For the second term of H2,
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sup
ϑ0∈Bm,θ∈Am

‖E{Vn(D(θ),ϑ0)− Vn(D(θ), 0)}‖

=bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

E[ψτ (v
∗
nt(D(θ),ϑ0))X∗t (ϑ0)− ψτ (v∗nt(D(θ), 0))X∗t ]K(zth)‖

≤bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

E[ψτ (v
∗
nt(D(θ),ϑ0))− ψτ (v∗nt(D(θ), 0))]X∗t (ϑ0)K(zth)‖

+ bn sup
ϑ0∈Bm,θ∈Am

‖
n∑
t=1

E[ψτ (v
∗
nt(D(θ), 0))](X∗t (ϑ0)−X∗t )K(zth)‖ ≡ H ′21 +H ′22.

Now, we consider H ′22. Notice that

H ′22 ≡ sup
ϑ0∈Bm,θ∈Am

‖bn
n∑
t=1

E{[ψτ (v∗nt(D(θ), 0))](X∗t (ϑ0)−X∗t )K(zth)}‖

= sup
ϑ0∈Bm,θ∈Am

‖bn
n∑
t=1

E{[τ − FY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)TX t

+ bnD(θ)TX∗t |Zt,X t)](X
∗
t (ϑ0)−X∗t )K(zth)}‖

= sup
ϑ0∈Bm,θ∈Am

‖bn
n∑
t=1

E{[fY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)TX t

+ =Π(h, z0, Zt,X t)|Zt,X t)](X
∗
t (ϑ0)−X∗t )}

× Π(h, z0, Zt,X t)K(zth)‖,

where Π(h, z0, Zt,X t) = qτ (Zt,X t)− qτ (z0,X t)− hzthg(1)
τ (z0)TX t− bnD(θ)TX∗t . An appli-

cation of Taylor expansion of qτ (Zt,X t) at (z0,X t) leads to

Π(h, z0, Zt,X t) =
g

(2)
τ (z0 + ζhzth)

T

2
h2z2

thX t − bnD(θ)TX∗t = Op(h
2).

Therefore, it results in that by mean value theorem, there exists ϑ′0 ∈ (0,ϑ0), such that

sup
ϑ0∈Bm,θ∈Am

‖bn
n∑
t=1

E{[fY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)TX t

+ =Π(h, z0, Zt,X t)|Zt,X t)](X
∗
t (ϑ0)−X∗t )}Π(h, z0, Zt,X t)K(zth)‖
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≤ sup
ϑ0∈Bm,θ∈Am

‖bn
n∑
t=1

E{[fY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)TX t

+ =Π(h, z0, Zt,X t)|Zt,X t)]

(
∂X∗t (ϑ0)

∂ϑ0

∣∣∣∣
ϑ0=ϑ′0

)
ϑ0}

× Π(h, z0, Zt,X t)K(zth)‖ = o(1).

In the same way as in analyzing (A.11), it can be easily shown that H ′21 = op(1). So,

H2 = op(1). The proof of Lemma A.8 is completed.

Lemma A.9. Under the assumptions in Theorem 1, one has

sup
ϑ0∈Bm,θ∈Am

‖E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)] + fz(z0)Ω∗1(z0)θ‖ = o(1),

where Ω∗1(z0) = diag{Ω∗(z0), µ2Ω∗(z0)}.

Proof. Notice that

E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)] = E[Vn(θ,ϑ0)− Vn(θ, 0) + Vn(ϑ0)] + E[Vn(θ, 0)− Vn(0, 0)]

≡ R1 +R2.

For R2, since the deduction is the same as that in Cai and Xu (2008), we only need to focus

on R1. Indeed,

R1 ≡ bn

n∑
t=1

E{[ψτ (v∗nt(θ,ϑ0))X∗t (ϑ0)− ψτ (v∗nt(θ, 0))X∗t ]K(zth)}+ E[Vn(ϑ0)]

= bn

n∑
t=1

E{[ψτ (v∗nt(θ,ϑ0))− ψτ (v∗nt(0,ϑ0))]X∗t (ϑ0)K(zth)}

+bn

n∑
t=1

E{[ψτ (v∗nt(0, 0))− ψτ (v∗nt(θ, 0))]X∗t (ϑ0)K(zth)}

+bn

n∑
t=1

E{[ψτ (v∗nt(0,ϑ0))− ψτ (v∗nt(0, 0))]X∗t (ϑ0)K(zth)}

+bn

n∑
t=1

E{[ψτ (v∗nt(θ, 0))](X∗t (ϑ0)−X∗t )K(zth)}+ bn

n∑
t=1

E{Γ∗(Zt)anϑ0K(zth)}

≡ R11 +R12 +R13 +R14 +R15.

Here, R14 can be vanished in the same way as that in proving Lemma A.8. We first consider
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R11 as follows
R11 ≡bn

n∑
t=1

E{[ψτ (v∗nt(θ,ϑ0))− ψτ (v∗nt(0,ϑ0))]X∗t (ϑ0)K(zth)}

=bn

n∑
t=1

E{[FY |Z,X(qτ (z0,X t(ϑ0)) + hzthg
(1)
τ (z0)TX t(ϑ0)|Zt,X t)

− FY |Z,X(qτ (z0,X t(ϑ0)) + hzthg
(1)
τ (z0)TX t(ϑ0)

+ bnθ
TX∗t (ϑ0)|Zt,X t)]X

∗
t (ϑ0)K(zth)}

=− 1

h
E{[fY |Z,X(qτ (z0,X t(ϑ0)) + hzthg

(1)
τ (z0)TX t(ϑ0)

+ ðbnθTX∗t (ϑ0)|Zt,X t)]θ
TX∗t (ϑ0)X∗t (ϑ0)K(zth)}

=− 1

h
E{[fY |Z,X(qτ (z0,X t(ϑ0))|Zt,X t)]θ

TX∗tX
∗
t (ϑ0)K(zth)}+ o(1).

In the same way, one can easily show by Assumption A4 that

R11 +R12 =
1

h
E{[fY |Z,X(qτ (z0,X t)|Zt,X t)− fY |Z,X(qτ (z0,X t(ϑ0))|Zt,X t)]

× θTX∗tX∗t (ϑ0)K(zth)}+ o(1)

≤C 1

h
E{gτ (z0)T (X t −X t(ϑ0))θTX∗tX

∗
t (ϑ0)K(zth)}+ o(1) = o(1).

As for R13 and R15, by applying mean value theorem, there exists ϑ′0 ∈ (0,ϑ0) such that

R13 ≡bn
n∑
t=1

E{[ψτ (v∗nt(0,ϑ0))− ψτ (v∗nt(0, 0))]X∗t (ϑ0)K(zth)}

=bn

n∑
t=1

E{[FY |Z,X(qτ (z0,X t) + hzthg
(1)
τ (z0)TX t|Zt,X t)

− FY |Z,X(qτ (z0,X t(ϑ0)) + hzthg
(1)
τ (z0)TX t(ϑ0)|Zt,X t)]X

∗
t (ϑ0)K(zth)}

=− bn
n∑
t=1

E{[fY |Z,X(X̃
T

t (gτ (z0) + hzthg
(1)
τ (z0))|Zt,X t)]

×X∗t (ϑ0)(X t(ϑ0)−X t)
T [gτ (z0) + hzthg

(1)
τ (z0)]K(zth)}

=− bn
n∑
t=1

E{Γ∗(Zt)anϑ0K(zth)}+ o(h)

by some simple calculations, where X̃ t ≡X t + Canϑ0. This implies that R13 +R15 = o(1).

Thus, one has
‖E[Vn(θ,ϑ0)− Vn(0, 0) + Vn(ϑ0)] + fz(z0)Ω∗1(z0)θ‖ = o(1). (A.12)

Similar to the proof of Lemma A.3 in Xu (2005), one can prove that (A.12) holds uniformly
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in Am and Bm with the details omitted. These complete the proof of Lemma A.9.

Lemma A.10. Let Bt = [ψτ (v
∗
t (0))X∗t −ψτ (Y ∗t )Γ∗(Zt)(D

∗(Zt))
−1W t]K(zth2). Then, under

the assumptions in Theorem 1, one has

E[B1] =
h3

2fz(z0)

2

µ2Ω∗(z0)g
(2)
τ (z0)

0

+ o(h3
2),

and

V ar[B1] = h2τ(1− τ)fz(z0)

ν0 0

0 ν2

⊗{Ω(z0)−H1(z0) +H2(z0)

}
+ o(h2),

where H1(z0) = E[X1W
T
1 |Z1 = z0](D∗(z0))−1ΓT (z0) + Γ(z0)(D∗(z0))−1E[W 1X

T
1 |Z1 = z0]

and H2(z0) = Γ(z0)(D∗(z0))−1D(z0)(D∗(z0))−1ΓT (z0). Then,

V ar

{
1√
nh2

n∑
t=1

Bt

}
=τ(1− τ)fz(z0)

ν0 0

0 ν2

⊗{Ω(z0)−H1(z0) +H2(z0)

}
+ o(1).

Proof. This proof is similar to the proof of Lemma A.4 in Cai and Xu (2008). First, we

calculate E[B1] to obtain
E[B1] = E{[ψτ (v∗1(0))X∗1 − ψτ (Y ∗1 )Γ∗(Z1)(D∗(Z1))−1W 1]K(z1h2)}

= E{ψτ (v∗1(0))X∗1K(z1h2)} − E{ψτ (Y ∗1 )Γ∗(Z1)(D∗(Z1))−1W 1K(z1h2)} ≡ Q1 +Q2.

Similar to the proof of Lemma 3.5 in Xu (2005), one can easily obtain that

Q1 =
h3

2

2
fz(z0){

µ2

0

⊗ Ω∗(z0)}g(2)
τ (z0) + o(h3

2) (A.13)

with the detail omitted. For Q2, similar to the derivation in (A.7) and by Assumption A10,

Q2 ≡ −E{ψτ (Y ∗1 )Γ∗(Z1)(D∗(Z1))−1W 1K(z1h2)} = O(h2
1h2) = o(h3

2).

As for E[B1B
T
1 ], we have

115



E[B1B
T
1 ] = E

({
ψ2
τ (v
∗
1(0))X∗1X

∗T
1 − [ψτ (v

∗
1(0))ψτ (Y

∗
1 )X∗1W

T
1 (D∗(Z1))−1Γ∗T (Z1)

+ ψτ (v
∗
1(0))ψτ (Y

∗
1 )Γ∗(Z1)(D∗(Z1))−1W 1X

∗T
1 ]

+ ψ2
τ (Y

∗
1 )Γ∗(Z1)(D∗(Z1))−1W 1W

T
1 (D∗(Z1))−1Γ∗T (Z1)

}
K2(z1h2)

)
=E{ψ2

τ (v
∗
1(0))X∗1X

∗T
1 K2(z1h2)}

− E{[ψτ (v∗1(0))ψτ (Y
∗

1 )X∗1W
T
1 (D∗(Z1))−1Γ∗T (Z1)

+ ψτ (v
∗
1(0))ψτ (Y

∗
1 )Γ∗(Z1)(D∗(Z1))−1W 1X

∗T
1 ]K2(z1h2)}

+ E{ψ2
τ (Y

∗
1 )Γ∗(Z1)(D∗(Z1))−1W 1W

T
1 (D∗(Z1))−1Γ∗T (Z1)K2(z1h2)}

≡P (1) + P (2) + P (3).

For P (1), similar to the derivation in Lemma A.5, one has

P (1) ≡ τ(1− τ)E{X∗1X∗T1 K2(z1h2)}+ o(h2
2)

= h2τ(1− τ)fz(z0)

ν0 0

0 ν2

⊗ Ω(z0)(1 + o(1)) + o(h2
2).

(A.14)
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Similarly,

P (3) ≡ E[ψ2
τ (Y

∗
1 )Γ∗(Z1)(D∗(Z1))−1W 1W

T
1 (D∗(Z1))−1Γ∗T (Z1)K2(z1h2)]

=τ(1− τ)E{Γ∗(Z1)(D∗(Z1))−1W 1W
T
1 (D∗(Z1))−1Γ∗T (Z1)K2(z1h2)}+ o(h2

2)

=τ(1− τ)E{Γ∗(Z1)(D∗(Z1))−1E[W 1W
T
1 |Z1](D∗(Z1))−1Γ∗T (Z1)K2(z1h2)}+ o(h2

2)

=h2τ(1− τ)fz(z0)

ν0 0

0 ν2

⊗{Γ(z0)(D∗(z0))−1D(z0)(D∗(z0))−1ΓT (z0)

}
(1 + o(1))

+ o(h2
2)

=h2τ(1− τ)fz(z0)

{ν0 0

0 ν2

⊗H2(z0)

}
(1 + o(1)) + o(h2

2).

(A.15)
As for P (2), by Assumption A10, one has

P (2) ≡− E{ψτ (v∗1(0))ψτ (Y
∗

1 )[X∗1W
T
1 (D∗(Z1))−1Γ∗T (Z1)

+ Γ∗(Z1)(D∗(Z1))−1W 1X
∗T
1 ]K2(z1h2)}

=− E{[τ − I{v∗1(0)<0}][τ − I{Y ∗1 <0}][X
∗
1W

T
1 (D∗(Z1))−1Γ∗T (Z1)

+ Γ∗(Z1)(D∗(Z1))−1W 1X
∗T
1 ]K2(z1h2)}

=− E{[τ 2 − τ(I{Y ∗1 <0} + I{v∗1(0)<0}) + I{Y ∗1 <0}][X
∗
1W

T
1 (D∗(Z1))−1Γ∗T (Z1)

+ Γ∗(Z1)(D∗(Z1))−1W 1X
∗T
1 ]K2(z1h2)}

=− E{[(τ − 1)(τ − I{Y ∗1 <0}) + τ(τ − I{v∗1(0)<0})][X
∗
1W

T
1 (D∗(Z1))−1Γ∗T (Z1)

+ Γ∗(Z1)(D∗(Z1))−1W 1X
∗T
1 ]K2(z1h2)}

− τ(1− τ)E{[X∗1W T
1 (D∗(Z1))−1Γ∗T (Z1) + Γ∗(Z1)(D∗(Z1))−1W 1X

∗T
1 ]K2(z1h2)}

≡P (21) + P (22).

It can be shown that P (21) = o(h2
2), using the same idea in proving Lemma A.5. We now

focus on evaluating P (22). A simple algebra gives that
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P (22) ≡− τ(1− τ)E{[X∗1W T
1 (D∗(Z1))−1Γ∗T (Z1) + Γ∗(Z1)(D∗(Z1))−1W 1X

∗T
1 ]K2(z1h2)}

=− τ(1− τ)E

{ X1W
T
1 (D∗(Z1))−1

z1h2X1W
T
1 (D∗(Z1))−1

(ΓT (Z1) z1h2Γ
T (Z1)

)
K2(z1h2)

}

− τ(1− τ)E

{ Γ(Z1)

z1h2Γ(Z1)

((D∗(Z1))−1W 1X
T
1 z1h2(D

∗(Z1))−1W 1X
T
1

)

×K2(z1h2)

}

=− τ(1− τ)E

{ 1 z1h2

z1h2 z2
1h2

⊗ E[X1W
T
1 |Z1](D∗(Z1))−1ΓT (Z1)K2(z1h2)

}

− τ(1− τ)E

{ 1 z1h2

z1h2 z2
1h2

⊗ Γ(Z1)(D∗(Z1))−1E[W 1X
T
1 |Z1]K2(z1h2)

}

=− h2τ(1− τ)fz(z0)

ν0 0

0 ν2

⊗{E[X1W
T
1 |Z1 = z0](D∗(z0))−1ΓT (z0)

+ Γ(z0)(D∗(z0))−1E[W 1X
T
1 |Z1 = z0]

}
(1 + o(1))

=− h2τ(1− τ)fz(z0)

{ν0 0

0 ν2

⊗H1(z0)

}
(1 + o(1)).

Therefore,

P (2) = −h2τ(1− τ)fz(z0)

{ν0 0

0 ν2

⊗H1(z0)

}
(1 + o(1)) + o(h2

2). (A.16)

Next, it is shown that the last part of lemma holds true.
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V ar

{
1√
nh2

n∑
t=1

Bt

}
=

1

h
[V ar(B1) + 2

n−1∑
`=1

(1− `

n
)Cov(B1, B`+1)]

≤1

h
V ar(B1) +

2

h

en−1∑
`=1

|Cov(B1, B`+1)|+ 2

h

∞∑
`=en

|Cov(B1, B`+1)| ≡ G1 +G2 +G3.

By (A.13), (A.14), (A.15), (A.16) and Assumption A10,

G1 → τ(1− τ)fz(z0)

ν0 0

0 ν2

⊗{Ω(z0)−H1(z0) +H2(z0)

}
.

Now it remains to show that |G2| = o(1) and |G3| = o(1). First, we consider G3. To this

end, by using Davydov’s inequality (see, e.g., Corollary A.2 of Hall and Heyde (1980)) and

the boundedness of ψτ (·), one has

|Cov(B1, B`+1)| ≤ Cα1−2/δ(`)[E|B1|δ]2/δ ≤ Ch2/δα1−2/δ(`),

which gives

G3 ≤ Ch2/δ−1

∞∑
`=en

α1−2/δ(`) ≤ Ch2/δ−1e−wn

∞∑
`=en

`wα1−2/δ(`) = o(h2/δ−1e−wn ) = o(1),

by choosing en to satisfy ewnh1−2/δ = c. As for G2, following the proof of Lemma 3.5 in Xu

(2005), one has |G2| = o(1). These prove Lemma A.10.

A.2 Proof of Theorem 2.2.1:

Proof. Following Cai and Xu (2008), ‖Vn(0, 0)‖ = Op(1). Thus, by Lemmas A.8, A.9 and

A.10, Vn(θ,ϑ0) satisfies Condition (ii) in Lemma A.7; that is, ‖An‖ = Op(1) and

sup‖∆‖≤M,‖ϑ0‖≤L ‖Vn(∆,ϑ0) + Vn(ϑ0) +D∆−An‖ = op(1) with D = fz(z0)Ω∗1(z0) and An =

Vn(0, 0). Next, we want to show that ‖Vn(ϑ̂0)‖ = Op(1). Indeed, by Lemma A.6,
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E[Vn(ϑ̂0)]

=bn

n∑
t=1

E

{[
Γ∗(Zt)(D

∗(Zt)
−1)

f−1
z (Zt)

nh1

n∑
s=m+16=t

ψτ (Y
∗
s )W sK(zsh1)

]
K(zth2)

}

=bn

n∑
t=1

E

{[
Γ∗(Zt)(D

∗(Zt)
−1)

f−1
z (Zt)

nh1

n∑
s=m+16=t

{ψτ (Y ∗t )W t + ψτ (Y
∗
s )W s

− ψτ (Y ∗t )W t}K(zsh1)

]
K(zth2)

}
=bn

n∑
t=1

E

{[
ψτ (Y

∗
t )Γ∗(Zt)(D

∗(Zt)
−1)W t

f−1
z (Zt)

nh1

n∑
s=m+16=t

K(zsh1)

]
K(zth2)

}

+ bn

n∑
t=1

E

{[
Γ∗(Zt)(D

∗(Zt)
−1)

f−1
z (Zt)

nh1

n∑
s=m+16=t

{ψτ (Y ∗s )W s − ψτ (Y ∗t )W t}

×K(zsh1)

]
K(zth2)

}
≡ T (1) + T (2).

For T (1), using the technique in deriving (A.7), one has

T (1) ≡ bn

n∑
t=1

E

{[
ψτ (Y

∗
t )Γ∗(Zt)(D

∗(Zt)
−1)W t

f−1
z (Zt)

nh1

n∑
s=m+16=t

K(zsh1)

]
K(zth2)

}

= bn

n∑
t=1

E{[ψτ (Y ∗t )Γ∗(Zt)(D
∗(Zt)

−1)W t]K(zth2)}+ o(1)

= O((nh2)1/2h2
1) + o(1) = o(1),

by the fact that f−1
z (Zt)(nh1)−1

∑n
s=m+16=tK(zsh1) = 1 + o(1) and by Assumption A10. As

for T (2), it is not hard to show that T (2) = o(1). Thus, E[Vn(ϑ̂0)] = o(1). In addition,

similar to the proof of Lemma A.8, one can obtain that V ar[Vn(ϑ̂0)] = o(1). Therefore,

‖Vn(ϑ̂0)‖ = Op(1). To show ‖Vn(θ̂, ϑ̂0)‖ = op(1), it follows from Lemma A.1 and mean value

theorem that

‖Vn(θ̂, ϑ̂0)‖ = bn

∥∥∥∥∥
n∑
t=1

[ψτ (v
∗
t (ϑ̂0)− bnθ̂

T
X∗t (ϑ̂0))]X∗t (ϑ̂0)K(zth2)

∥∥∥∥∥
≤bn max

1≤t≤n
‖X∗t (ϑ̂0)K(zth2)‖

≤bn max
1≤t≤n

‖X∗tK(zth2)‖+ Cbn max
1≤t≤n

∥∥∥∥∥
(
∂X∗t (ϑ̂0)

∂ϑ̂0

∣∣∣∣
ϑ̂0=ϑ̂

′
0

)
K(zth2)

∥∥∥∥∥ = o(1),

where θ̂ is the minimizer of J(θ). Finally, because ψτ (x) is an increasing function of x;
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then −θTVn(λθ,ϑ0) = an
∑n

t=1 ψτ [v
∗
t (ϑ0) + λan(−θTX∗t (ϑ0))](−θTX∗t (ϑ0))K(zth2) is an

increasing function of λ. Thus, Condition (i) in Lemma A.7 is satisfied. Then, it follows

from Lemma A.6, Lemmas A.8 and A.9 that

θ̂ =
(Ω∗1(z0))−1

√
nh2fz(z0)

n∑
t=1

[ψτ (v
∗
t (0))X∗t − anΓ∗(Zt)ϑ̂0]K(zth2) + op(1)

=
(Ω∗1(z0))−1

√
nh2fz(z0)

n∑
t=1

[
ψτ (v

∗
t (0))X∗t − Γ∗(Zt)(D

∗(Zt)
−1)

× f−1
z (Zt)

nh1

n∑
s=m+16=t

ψτ (Y
∗
s )W sK(zsh1)

]
K(zth2) + op(1)

=
(Ω∗1(z0))−1

√
nh2fz(z0)

n∑
t=1

[
ψτ (v

∗
t (0))X∗t − Γ∗(Zt)(D

∗(Zt)
−1)

× f−1
z (Zt)

nh1

n∑
s=m+16=t

{ψτ (Y ∗t )W t + ψτ (Y
∗
s )W s − ψτ (Y ∗t )W t}K(zsh1)

]
K(zth2) + op(1)

=
(Ω∗1(z0))−1

√
nh2fz(z0)

n∑
t=1

[
ψτ (v

∗
t (0))X∗t − ψτ (Y ∗t )Γ∗(Zt)(D

∗(Zt)
−1)W t

f−1
z (Zt)

nh1

n∑
s=m+16=t

K(zsh1)

]

×K(zth2)−
(Ω∗1(z0))−1

√
nh2fz(z0)

n∑
t=1

[
Γ∗(Zt)(D

∗(Zt)
−1)

× f−1
z (Zt)

nh1

n∑
s=m+16=t

{ψτ (Y ∗s )W s − ψτ (Y ∗t )W t}K(zsh1)

]
K(zth2) + op(1).

Here, by using Davydov’s inequality to control the variance, the second part of last equality

can be asymptotically vanished. Then,

θ̂ =
(Ω∗1(z0))−1

√
nh2fz(z0)

n∑
t=1

[
ψτ (v

∗
t (0))X∗t − ψτ (Y ∗t )Γ∗(Zt)(D

∗(Zt)
−1)W t

]
K(zth2) + op(1),

by the fact that f−1
z (Zt)(nh1)−1

∑n
s=m+16=tK(zsh1) = 1+o(1). Therefore, following the proof

of Theorem 1 in Cai and Xu (2008), the theorem is proved.

A.3 Proof of Consistency of Σ̂τ(z0)

Proof. We first focus on Γ̂(z0) in Section 2.2.4. Notice that
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Γ̂(z0) =
1

n

n∑
t=1

w2tX̂ tĝ
T
τ (z0)ΠtKh2(Zt − z0)

=
1

n

n∑
t=1

w2t(X̂ t −X t)(ĝτ (z0)− gτ (z0))TΠtKh2(Zt − z0)

+
1

n

n∑
t=1

w2tX t(ĝτ (z0)− gτ (z0))TΠtKh2(Zt − z0)

+
1

n

n∑
t=1

w2t(X̂ t −X t)g
T
τ (z0)ΠtKh2(Zt − z0) +

1

n

n∑
t=1

w2tX tg
T
τ (z0)ΠtKh2(Zt − z0)

≡S(1) + S(2) + S(3) + S(4).

We first consider S(3). By Taylor’s expansion and Lemma A.2, we have

E[w2t|Zt,X t] = (FY |Z,X(ĝTτ (z0)X̂ t + δ2n)− FY |Z,X(ĝTτ (z0)X̂ t − δ2n))/(2δ2n)

= fY |Z,X(gTτ (z0)X t) + op(1).

On the other hand, by applying mean value theorem, there exists ϑ̂
′
0 ∈ (0, ϑ̂0) such that

X̂ t ≡X t(ϑ̂0) = X t +

(
∂X t(ϑ̂0)

∂ϑ̂0

∣∣∣∣
ϑ̂0=ϑ̂

′
0

)
ϑ̂0 = X t + (nh1)−1/2Πtϑ̂0.

Therefore, by Lemma A.2,

E[S(3)] = (nh1)−1/2E[fY |Z,X(gTτ (z0)X t)Πtϑ̂0g
T
τ (z0)ΠtKh2(Zt − z0)] + o(1)

= O(m3/2/nh1) = o(1).

Similar to the proof of V ar[Tn(0)] in Lemma A.5 and by Lemma A.2, it can be shown that

V ar[S(3)] = o(1). Therefore, S(3) = op(1). Similarly, we can show that S(1) = op(1) and

S(2) = op(1). Now, we only need to focus on S(4). Indeed,

E[S(4)] = E[fY |Z,X(gTτ (z0)X t)X tg
T
τ (z0)ΠtKh2(Zt − z0)] + o(1)

=

ˆ
fY |Z,X(gTτ (z0)X t)X tg

T
τ (z0)ΠtK(z)fz(z0 + h2z)dz + o(1)→ fz(z0)Γ(z0).

Again, similar to the proof of V ar[Tn(0)] in Lemma A.5, it is shown that V ar[S(4)] = o(1).

This yields that Γ̂(z0) = fz(z0)Γ(z0) + op(1) in Section 2.2.4. The consistency of Ω̂(z0),

Ω̂∗(z0), Ĥ1(z0) and Ĥ2(z0) can be derived in similar ways.
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Appendix: Mathematical Proof for Sta-

tionarity and α-Mixing of Model (2.1)

In this section, we show that the model (2.1) in the main article can generate a strictly

stationary and α-mixing process. Throughout this section, 0a×b stands for a (a×b) matrix of

zeros and Ia is a (a×a) identity matrix. Next, we define ψ(·) = ‖·‖, where ‖·‖ is the Euclidean
norm. For a random vector Z and random matrix A, we denote ‖Z‖ψ,2 = [E‖Z‖2]1/2 and

‖A‖ψ,2 = supz 6=0 ‖Az‖ψ,2/‖z‖. In addition, for 1 ≤ i ≤ κ, let F bi,a be the σ-algebra generated

by {(Yit, Zit)}bt=a. Then, a stationary process {(Yit, Zit)}∞t=−∞ is said to be α-mixing (strongly

mixing) if the mixing coefficient α(t) defined by

α(t) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F0
i,−∞, B ∈ F∞i,t }

converges to zero as t→∞.

To study the probabilistic properties of model (2.1) in the main article, Yt and qτ,t
in (2.1) need to be jointly introduced in a vector autoregression process. To proceed, for

convenience of presentation, let κ = κ1 and Zt = Zit in (2.1) in the main article, denote

Uit (1 ≤ i ≤ κ, 1 ≤ t ≤ n) as an independent and identically distributed (i.i.d.) standard

uniform random variables on the set of [0, 1]. Then, we consider following equation system

of functional-coefficient VAR models for dynamic quantiles, given by

Yit = γi0(Uit, Zt) +

q∑
s=1

γTi,s(Uit, Zt)qτ,t−s +

p∑
l=1

βTi,l(Uit, Zt)Yt−l, (B.1)
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and

qτ,t,i = γi0,τ (Zt) +

q∑
s=1

γTi,s,τ (Zt)qτ,t−s +

p∑
l=1

βTi,l,τ (Zt)Yt−l (B.2)

for some p and q, where Yit, qτ,t and Yt in (B.1) and (B.2) have the same definition as

that in (2.1) and equation (B.2) is the same as (2.1) with Zt = Zit. In addition, γi0(·, ·)
in (B.1) is a scalar and measurable function of Uit and Zt (from R2 to R), both γi,s(·, ·) =

(γsi1(·, ·), . . . , γsiκ(·, ·))T and βi,l(·, ·) = (βli1(·, ·), . . . , βliκ(·, ·))T in (B.1) are κ× 1 vectors of

measurable functions from R2 to R. Following the same argument in Koenker and Xiao

(2006), by assuming that the right side of (B.1) is monotonically increasing in Uit, the

conditional quantile function of Yit given (Zt, {qτ,t−s}
q
s=1, {Yt−l}pl=1) becomes (B.2). Note

that (B.1) is called a Skorohod representation for Yit, see Durrett (1996) for the definition

of Skorohod representation.

Now, we can rewrite the system formed by (B.1) and (B.2) into an autoregression process

of order 1 as follows
Xt = µ(Zt) +AUt(Zt)Xt−1 +DUt(Zt), (B.3)

where Xt = (YT
t , . . . ,YT

t−p+1, q
T
τ,t, . . . , q

T
τ,t−q+1)T and AUt(Zt) is a κ(p+ q)× κ(p+ q) matrix

as follows:

AUt(Zt) =



Γβ,Ut(Zt) ΓUt(Zt)

[Iκ(p−1), 0κ(p−1)×κ] 0κ(p−1)×κq

Γβ,τ (Zt) Γτ (Zt)

0κ(q−1)×κp [Iκ(q−1), 0κ(q−1)×κ]


.

Here, for s = 1, . . . , q and l = 1, . . . , p, Γβ,Ut(Zt) = (Γβ,1,Ut(Zt), . . . ,Γβ,p,Ut(Zt)), where

Γβ,l,Ut(Zt) = (βlij(Uit, Zt))1≤i≤κ,1≤j≤κ is a κ× κ matrix. In addition,

ΓUt(Zt) = (Γ1,Ut(Zt), . . . ,Γq,Ut(Zt)),

where Γs,Ut(Zt) = (γsij(Uit, Zt))1≤i≤κ,1≤j≤κ is a κ× κ matrix. Similarly,

Γβ,τ (Zt) = (Γβ,1,τ (Zt), . . . ,Γβ,p,τ (Zt)),

where

Γβ,l,τ (Zt) = (βlij,τ (Zt))1≤i≤κ,1≤j≤κ
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is a κ× κ matrix. Also, Γτ (Zt) = (Γ1,τ (Zt), . . . , Γq,τ (Zt)), where

Γs,τ (Zt) = (γsij,τ (Zt))1≤i≤κ,1≤j≤κ

is a κ×κ matrix. Furthermore, µ(Zt) = (ET
U (γ0(Uit, Zt)), 0, . . . , 0,γT0,τ (Zt), 0, . . . , 0)T , where

EU(γ0(Uit, Zt)) = (EU(γ10(U1t, Zt)), . . . , EU (γκ0(Uκt, Zt)))
T and

γ0,τ (Zt) = (γ10,τ (Zt), . . . , γκ0,τ (Zt))
T .

Here, EU(·) is denoted as taking expectation on Uit for any fixed Zt, and γi0(Uit, Zt) and

γi0,τ (Zt) are defined in a similar way as foregoing functional coefficients, respectively. Finally,

DUt(Zt) = (γ̌10(U1t, Zt), . . . , γ̌κ0(Uκt, Zt), 01×κ(p+q−1))
T , where γ̌i0(Uit, Zt) = γi0(Uit, Zt) −

EU(γi0(Uit, Zt)).

Remark B.1. Notice that when setting Zt as a smoothing variable, the equations correspond-

ing to (κp+ 1)-th, . . . , (κp+ κ)-th rows of (B.3) are exactly the (B.2) and the model (2.1)

in the main article, while the ith row of (B.3) with i = 1, . . . , κ is equation (B.1). Given

these relations, one can conclude that Yt and qτ,t jointly follow a VAR process of order 1 in

(B.3), which is similar to the nonparametric additive models in Cai and Masry (2000) and

the generalized polynomial random coefficient autoregressive (RCA) models in Carrasco and

Chen (2002).

Now, denote λmax(AUt) as the largest eigenvalue in absolute value of following matrix

AUt :
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AUt =



Γβ,1,Ut Γβ,2,Ut . . . Γβ,p−1,Ut Γβ,p,Ut Γ1,Ut Γ2,Ut . . . Γq−1,Ut Γq,Ut

Iκ 0κ×κ . . . 0κ×κ 0κ×κ 0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ

0κ×κ Iκ . . . 0κ×κ 0κ×κ 0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ
...

... . . . ...
...

...
... . . . ...

...

0κ×κ 0κ×κ . . . Iκ 0κ×κ 0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ

Γβ,1 Γβ,2 . . . Γβ,p−1 Γβ,p Γ1 Γ2 . . . Γq−1 Γq

0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ Iκ 0κ×κ . . . 0κ×κ 0κ×κ

0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ 0κ×κ Iκ . . . 0κ×κ 0κ×κ
...

... . . . ...
...

...
... . . . ...

...

0κ×κ 0κ×κ . . . 0κ×κ 0κ×κ 0κ×κ 0κ×κ . . . Iκ 0κ×κ



,

where

Γβ,l,Ut =



βl11(U1t) βl12(U1t) . . . βl1κ(U1t)

βl21(U2t) βl22(U2t) . . . βl2κ(U2t)

...
... . . . ...

βlκ1(Uκt) βlκ2(Uκt) . . . βlκκ(Uκt)


,

Γs,Ut =



γs11(U1t) γs12(U1t) . . . γs1κ(U1t)

γs21(U2t) γs22(U2t) . . . γs2κ(U2t)

...
... . . . ...

γsκ1(Uκt) γsκ2(Uκt) . . . γsκκ(Uκt)


,

Γβ,l =



βl11,τ βl12,τ . . . βl1κ,τ

βl21,τ βl22,τ . . . βl2κ,τ
...

... . . . ...

βlκ1,τ βlκ2,τ . . . βlκκ,τ


, and Γs =



γs11,τ γs12,τ . . . γs1κ,τ

γs21,τ γs22,τ . . . γs2κ,τ
...

... . . . ...

γsκ1,τ γsκ2,τ . . . γsκκ,τ


,

with each entry being defined in the Assumption B later. Then, following assumptions are
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needed to guarantee that process {Xt} in model (B.3) is strictly stationary and α-mixing.

Assumption B.

B1: Let {Xt} be a φ-irreducible and aperiodic Markov chain. For i = 1, . . . , κ, j = 1, . . . , κ,

l = 1, . . . , p and s = 1, . . . , q, each entry of Γs,Ut(Zt) and Γβ,l,Ut(Zt) in (B.1) is bounded

such that |γsij(Uit, ·)| ≤ γsij(Uit) and |βlij(Uit, ·)| ≤ βlij(Uit), βlij(Uit) and γsij(Uit) are un-

known measurable functions of Uit from [0, 1] to R; Similarly, each entry of Γs,τ (Zt) and

Γβ,l,τ (Zt) in (B.2) is bounded such that |γsij,τ (·)| ≤ γsij,τ and |βlij,τ (·)| ≤ βlij,τ . Furthermore,

E{[λmax(AUt)]
2} < 1.

B2: For i = 1, . . . , κ, γ̌i0(Uit, Zt) in DUt(Zt) is bounded such that |γ̌i0(Uit, ·)| ≤ γ̌i0(Uit),

where {γ̌i0(Uit)} are i.i.d. random variables with mean 0 and finite variance. In addition, de-

note DUt = (γ̌10(U1t), . . . , γ̌κ0(Uκt), 01×κ(p+q−1))
T , then, E‖DUt‖2 <∞ and E‖µ(Zt)‖ <∞.

Remark B.2. The φ-irreducibility and aperiodicity in Assumption B1 are key assumptions

for deriving geometric ergodicity and subsequently, α-mixing property. The conditions that

imply φ-irreducibility and aperiodicity of nonlinear time series have been studied extensively

in literature. For example, Chan and Tong (1985) showed that under some mild condi-

tions, a simple nonparametric autoregressive process is a φ-irreducible and aperiodic Markov

chain. In addition, Pham (1986) obtained conditions for random coefficient autoregressive

(RCA) models to be φ-irreducible. In this article, we simply impose the assumptions of φ-

irreducibility and aperiodicity on {Xt}, which are common settings among literature, see, for

example, Chen and Tsay (1993). It is of particular interest to explore the conditions under

which {Xt} is φ-irreducibility and aperiodicity and we leave this as a future topic. Moreover,

the moment conditions E{[λmax(AUt)]
2} < 1 in Assumption B1 is used to bound the random

matrices AUt(Zt), which is similar to the condition in Carrasco and Chen (2002). We stress

that we are not seeking to achieve the weakest possible regularity conditions for probabilistic

properties of model (B.3), but instead focus on constructing varying interdependences among

conditional quantiles.

Proposition B.1. Under Assumptions B1 and B2, if X0 is initialized from the invariant

measure, then, {Xt} defined in (B.3) is a strictly stationary and α-mixing process.

To prove Proposition B.1, we first need to prove following lemma.

Lemma B.1. Under Assumptions B1 and B2, for any W = (w1, . . . , wκ(p+q))
T , we have

‖AUt(Zt)W‖ψ,2 ≤ ‖AUt |W|‖ψ,2. Here, AUt(Zt) is defined in (B.3), AUt is defined previously

and |W| = (|w1|, . . . , |wκ(p+q)|)T .
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Proof. Similar to the proof of Lemma A.1 in Chen and Tsay (1993), let AUt(Zt)W =

(d1, . . . , dκ(p+q))
T and AUt |W| = (g1, . . . , gκ(p+q))

T . Then, for ι = κ + 1, . . . , κp and for

ι = κp+κ+1, . . . , κ(p+q), we have |dι| = gι. For ι = 1, . . . , κ and for ι′ = κp+1, . . . , κp+κ,

by Assumptions B1 and B2,

|dι| = |β1ι1(Uιt, Zt)w1 + · · ·+ βpικ(Uιt, Zt)wκp + γ1ι1(Uιt, Zt)wκp+1 + · · ·+

γqικ(Uιt, Zt)wκ(p+q)|

≤|β1ι1(Uιt, Zt)w1|+ · · ·+ |βpικ(Uιt, Zt)wκp|+ |γ1ι1(Uιt, Zt)wκp+1|+ · · ·+

|γqικ(Uιt, Zt)wκ(p+q)|

≤|β1ι1(Uιt)w1|+ · · ·+ |βpικ(Uιt)wκp|+ |γ1ι1(Uιt)wκp+1|+ · · ·+ |γqικ(Uιt)wκ(p+q)| = gι,

and
|dι′| =|β1(ι′−κp)1,τ (Zt)w1 + · · ·+ βp(ι′−κp)κ,τ (Zt)wκp + γ1(ι′−κp)1,τ (Zt)wκp+1 + · · ·+

γq(ι′−κp)κ,τ (Zt)wκ(p+q)|

≤|β1(ι′−κp)1,τ (Zt)w1|+ · · ·+ |βp(ι′−κp)κ,τ (Zt)wκp|+ |γ1(ι′−κp)1,τ (Zt)wκp+1|

+ · · ·+ |γq(ι′−κp)κ,τ (Zt)wκ(p+q)|

≤|β1(ι′−κp)1,τw1|+ · · ·+ |βp(ι′−κp)κ,τwκp|+ |γ1(ι′−κp)1,τwκp+1|+ · · ·+

|γq(ι′−κp)κ,τwκ(p+q)| = gι′ .

Hence, ‖AUt(Zt)W‖ψ,2 ≤ ‖AUt |W|‖ψ,2.

Proof of Proposition B.1:

Proof. By Proposition 3 in Carrasco and Chen (2002) and Lemma 2 in Pham (1986), As-

sumption B1 implies ‖AUt‖ψ,2 < 1 for all Uit ∈ [0, 1]. Then, we can find 0 < δ < 1 and

% > 0, such that ‖
∏%−1

=0 AUt+‖ψ,2 < 1 − δ. Consequently, by Assumption B2 and Lemma
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B.1, for some constant C > 0,

E(‖Xt+%‖|Xt = X) = E

(∥∥∥∥∥
%−1∏
=0

AUt+(Zt+)Xt

+

%∑
=1

[
%−1∏
ı=

AUt+(Zt+ı)

]
DUt+(Zt+)

∥∥∥∥∥
∣∣∣∣Xt = X

)

+ E

(∥∥∥∥∥
%∑
=1

[
%−1∏
ı=

AUt+(Zt+ı)

]
µ(Zt+)

∥∥∥∥∥
∣∣∣∣Xt = X

)

≤

∥∥∥∥∥
%−1∏
=0

AUt+|X|

∥∥∥∥∥
ψ,2

+ C · E

(∥∥∥∥∥
%∑
=1

[
%−1∏
ı=

AUt+

]
|DUt+|

∥∥∥∥∥
∣∣∣∣Xt = X

)

+ C · E

(∥∥∥∥∥
%∑
=1

[
%−1∏
ı=

AUt+

]∥∥∥∥∥
)

≤

∥∥∥∥∥
%−1∏
=0

AUt+

∥∥∥∥∥
ψ,2

 ‖X‖+ C · E

∥∥∥∥∥
%∑
=1

[
%−1∏
ı=

AUt+

]
|DUt+|

∥∥∥∥∥
+ C · E

(∥∥∥∥∥
%∑
=1

[
%−1∏
ı=

AUt+

]∥∥∥∥∥
)

≤(1− δ)‖X‖+ C · E

∥∥∥∥∥
%∑
=1

[
%−1∏
ı=

AUt+

]
|DUt+ |

∥∥∥∥∥+ C · E

(∥∥∥∥∥
%∑
=1

[
%−1∏
ı=

AUt+

]∥∥∥∥∥
)
,

where each element of DUt = (γ̌10(U1t), . . . , γ̌κ0(Uκt), 01×κ(p+q−1))
T is defined in Assumption

B2 and the first inequality follows from Jensen’s inequality. Notice that

E

∥∥∥∥∥
%∑
=1

[
%−1∏
ı=

AUt+

]∥∥∥∥∥
is bounded and by Assumption B2, E‖DUt‖ is bounded, so that

E

∥∥∥∥∥
%∑
=1

[
%−1∏
ı=

AUt+

]
|DUt+|

∥∥∥∥∥
is bounded and the bound does not depend on X and Zt. Thus, we can find a sufficiently

large M > 0 such that when ‖X‖ > M ,
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(1− δ)‖X‖+ C · E

∥∥∥∥∥
%∑
=1

[
%−1∏
ı=

AUt+

]
|DUt+ |

∥∥∥∥∥+ C · E

(∥∥∥∥∥
%∑
=1

[
%−1∏
ı=

AUt+

]∥∥∥∥∥
)
≤ (1− δ1)‖X‖,

where 0 < δ1 < 1. Hence, the compact set K = {X : ‖X‖ ≤ M} satisfies that when X /∈ K,

E(‖Xt+%‖|Xt = X) < (1− δ1)‖X‖. By Lemma 1.1 and Lemma 1.2 in Chen and Tsay (1993),

{Xt} is geometrically ergodic. If X0 is initialized from the invariant measure, then, by the

results of Pham (1986), {Xt} is strictly stationary and α-mixing.
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Appendix: Some Assumptions and De-

scriptions of Dataset in Chapter 3

C.1 Descriptions of Dataset

All series are directly taken from the Federal Reserve Bank of St. Louis with a dataset

proposed in McCracken and Ng (2016) and the format is as that in Bernanke et al. (2005):

series number; series mnemonic; transformation code and series description as appearing in

the database for the data span from 1960:02 to 2021:09. The transformation codes are 1-no

transformation; 2-first difference; 4-logarithm; 5-first difference of logarithm. An asterisk ∗,
next to the mnemonic, denotes a variable assumed to be slow-moving in the estimation.

Table C1: Description of data

Real output and income

1. IPF∗ 5 INDUSTRIAL PRODUCTION: FINAL

PRODUCTS (SA)

2. IPC∗ 5 INDUSTRIAL PRODUCTION: CONSUMER

GOODS (SA)

3. IPCD∗ 5 INDUSTRIAL PRODUCTION: DURABLE

CONS. GOODS (SA)

4. IPCN∗ 5 INDUSTRIAL PRODUCTION: NONDURABLE

CONS. GOODS (SA)
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5. IPE∗ 5 INDUSTRIAL PRODUCTION: BUSINESS

EQUIPMENT (SA)

6. IPM∗ 5 INDUSTRIAL PRODUCTION: MATERIALS (SA)

7. IPMD∗ 5 INDUSTRIAL PRODUCTION: DURABLE

GOODS MATERIALS (SA)

8. IPMND∗ 5 INDUSTRIAL PRODUCTION: NONDUR.

GOODS MATERIALS (SA)

9. IPMFG∗ 5 INDUSTRIAL PRODUCTION:

MANUFACTURING (SA)

10. IPMIN∗ 5 INDUSTRIAL PRODUCTION: MINING (SA)

11. IPUT∗ 5 INDUSTRIAL PRODUCTION: UTILITIES (SA)

12. IP∗ 5 INDUSTRIAL PRODUCTION: TOTAL INDEX (SA)

13. IPXMCA∗ 1 CAPACITY UTIL RATE: MANUFAC., TOTAL (SA)

14. GMPYQ∗ 5 REAL PERSONAL INCOME (SAAR)

15. GMYXPQ∗ 5 REAL PERSONAL INCOME

EX TRANSFER RECEIPTS (SAAR)

Employment and hours

16. LHEM∗ 5 CIVILIAN LABOR FORCE: EMPLOYED, TOTAL

(THOUS., SA)

17. LHUR∗ 1 UNEMPLOYMENT RATE: ALL WORKERS,

16 YEARS & OVER (SA)

18. LHU680∗ 1 UNEMPLOY. BY DURATION: AVERAGE

(MEAN) DURATION IN WEEKS (SA)

19. LHU5∗ 1 UNEMPLOY. BY DURATION: PERS UNEMPL.

LESS THAN 5 WKS (THOUS., SA)
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20. LHU14∗ 1 UNEMPLOY. BY DURATION: PERS UNEMPL.

5 TO 14 WKS (THOUS., SA)

21. LHU15∗ 1 UNEMPLOY. BY DURATION: PERS UNEMPL.

15 WKS + (THOUS., SA)

22. LHU26∗ 1 UNEMPLOY. BY DURATION: PERS UNEMPL.

15 TO 26 WKS (THOUS., SA)

23. LPNAG∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

TOTAL (THOUS., SA)

24. LPGD∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

GOODS-PRODUCING (THOUS., SA)

25. LPMI∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

MINING (THOUS., SA)

26. LPCC∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

CONTRACT CONSTRUC. (THOUS., SA)

27. LPEM∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

MANUFACTURING (THOUS., SA)

28. LPED∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

DURABLE GOODS (THOUS., SA)

29. LPEN∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

NONDURABLE GOODS (THOUS., SA)

30. LPSP∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

SERVICE-PRODUCING (THOUS., SA)

31. LPTU∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

TRANS. & PUBLIC UTIL. (THOUS., SA)

32. LPTW∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

WHOLESALE (THOUS., SA)

33. LPTR∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

RETAIL (THOUS., SA)

34. LPFR∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

FINANCE, INS. & REAL EST (THOUS., SA)

35. LPGOV∗ 5 EMPLOYEES ON NONAG. PAYROLLS:

GOVERNMENT (THOUS., SA)

36. LPHRM∗ 1 AVG. WEEKLY HRS. OF PRODUCTION
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WKRS.: MANUFACTURING (SA)

37. LPMOSA∗ 1 AVG. WEEKLY HRS. OF PROD. WKRS.: MFG.,

OVERTIME HRS. (SA)

38. HWI∗ 2 HELP-WANTED INDEX FOR USA

39. HWIURATIO∗ 2 RATIO OF HELP WANTED/NO. UNEMPLOYED

Consumption

40. GMCQ∗ 5 PERSONAL CONSUMPTION EXPEND

TOTAL (BIL, SAAR)

41. GMCDQ∗ 5 PERSONAL CONSUMPTION EXPEND

TOT. DUR. (BIL, SAAR)

42. GMCNQ∗ 5 PERSONAL CONSUMPTION EXPEND

NONDUR. (BIL, SAAR)

43. GMCSQ∗ 5 PERSONAL CONSUMPTION EXPEND

SERVICES (BIL, SAAR)

Housing starts

and sales

44. HOUST 4 HOUSING STARTS: TOTAL NEW PRIV

45. HSNE 4 HOUSING STARTS: NORTHEAST

(THOUS.U.) S.A.

46. HSMW 4 HOUSING STARTS: MIDWEST

(THOUS.U.) S.A.

47. HSSOU 4 HOUSING STARTS: SOUTH

(THOUS.U.) S.A.

48. HSWST 4 HOUSING STARTS: WEST

(THOUS.U.) S.A.

49. HSBR 4 HOUSING AUTHORIZED: TOTAL NEW PRIV

HOUSING (THOUS., SAAR)
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Real inventories

and orders

50. AMDMNOx 5 NEW ORDERS FOR DURABLE

GOODS

51. AMDMUOx 5 UNFILLED ORDERS FOR DURABLE

GOODS

52. BUSINVx 5 TOTAL BUSINESS INVENTORIES

53. ISRATIOx 2 TOTAL BUSINESS: INVENTORIES

TO SALES RATIO

Stock prices

54. FSPCOM 5 S&P’S COMMON STOCK PRICE INDEX:

COMPOSITE

55. FSPIN 5 S&P’S COMMON STOCK PRICE INDEX:

INDUSTRIALS

56. FSDXP 1 S&P’S COMPOSITE COMMON STOCK:

DIVIDEND YIELD

57. FSDXE 1 S&P’S COMPOSITE COMMON STOCK:

PRICE-EARNINGS RATIO

Exchange rates

58. EXRSW 5 FOREIGN EXCHANGE RATE: SWITZERLAND

(SWISS FRANC PER U. S.$)

59. EXRJAN 5 FOREIGN EXCHANGE RATE: JAPAN (YEN

PER U. S.$)

60. EXRUK 5 FOREIGN EXCHANGE RATE: UNITED

KINGDOM (CENTS PER POUND)

61. EXRCAN 5 FOREIGN EXCHANGE RATE: CANADA
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(CANADIAN $ PER U. S.$)

Interest rates

62. FYFF 1 INTEREST RATE: FEDERAL FUNDS

(EFFECTIVE)

63. FYGM3 1 INTEREST RATE: U. S. TREASURY

BILLS,SEC MKT,3-MO.

64. FYGM6 1 INTEREST RATE: U. S. TREASURY

BILLS,SEC MKT,6-MO.

65. FYGT1 1 INTEREST RATE: U. S. TREASURY CONST

MATUR., 1-YR.

66. FYGT5 1 INTEREST RATE: U. S. TREASURY CONST

MATUR., 5-YR.

67. FYGT10 1 INTEREST RATE: U. S. TREASURY CONST

MATUR., 10-YR.

68. FYAAAC 1 BOND YIELD: MOODY’S AAA CORPORATE

69. FYBAAC 1 BOND YIELD: MOODY’S BAA CORPORATE

70. SFYGM3 1 Spread FYGM3-FYFF

71. SFYGM6 1 Spread FYGM6-FYFF

72. SFYGT1 1 Spread FYGT1-FYFF

73. SFYGT5 1 Spread FYGT5-FYFF

74. SFYGT10 1 Spread FYGT10-FYFF

75. SFYAAAC 1 Spread FYAAAC-FYFF

76. SFYBAAC 1 Spread FYBAAC-FYFF
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Money and credit

quantity aggregates

77. FM1 5 MONEY STOCK: M1 (BIL$,SA)

78. FM2 5 MONEY STOCK: M2 (BIL$,SA)

79. FM3 5 MONEY STOCK: M3 (BIL$,SA)

80. FMFBA 5 MONETARY BASE, ADJ FOR RESERVE

(MIL$,SA)

81. FMRRA 5 DEPOSITORY INST RESERVES: TOTAL, ADJ

FOR RES. (MIL$, SA)

82. FMRNBA 5 DEPOSITORY INST RESERVES: NONBOR.,

ADJ RES. (MIL$,SA)

83. FCLNQ 5 COMMERCIAL & INDUST. LOANS

84. CCINRV 5 TOTAL CONSUMER LOANS AND LEASES OUTSTANDING

Price indexes

85. PWFSA∗ 5 PRODUCER PRICE INDEX: FINISHED

GOODS (SA)

86. PWFCSA∗ 5 PRODUCER PRICE INDEX: FINISHED

CONSUMER GOODS (SA)

87. PWIMSA∗ 5 PRODUCER PRICE INDEX: INTERMED MAT.

SUP & COMPONENTS (SA)

88. PWCMSA∗ 5 PRODUCER PRICE INDEX: CRUDE

MATERIALS (SA)

89. PUNEW∗ 5 CPI-U: ALL ITEMS (SA)
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90. PU83∗ 5 CPI-U: APPAREL & UPKEEP (SA)

91. PU84∗ 5 CPI-U: TRANSPORTATION (SA)

92. PU85∗ 5 CPI-U: MEDICAL CARE (SA)

93. PUC∗ 5 CPI-U: COMMODITIES (SA)

94. PUCD∗ 5 CPI-U: DURABLES (SA)

95. PUS∗ 5 CPI-U: SERVICES (SA)

96. PUXF∗ 5 CPI-U: ALL ITEMS LESS FOOD (SA)

97. PUXHS∗ 5 CPI-U: ALL ITEMS LESS SHELTER (SA)

98. PUXM∗ 5 CPI-U: ALL ITEMS LESS MIDICAL CARE (SA)

Average hourly

earnings

99. LEHCC∗ 5 AVG HR EARNINGS OF CONSTR WKRS:

CONSTRUCTION

100. LEHM∗ 5 AVG HR EARNINGS OF PROD WKRS:

MANUFACTURING

C.2 Probabilistic Property: Strictly Stationary and α-mixing

Denote matrix Φ as the same way as Φ(Zt) in (3.2). To show strictly stationary and

α-mixing of process {Pt} in (3.2), the following assumptions are needed.

Assumption C.

C1: Let {Pt} in (3.2) be a φ-irreducible and aperiodic Markov chain. For all 1 ≤ ι ≤ Q and
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1 ≤ ` ≤ Q, γkι`,P (·) in (3.2) is bounded such that |γkι`,P (·)| ≤ γkι`,P and the density function

of ε`,t in (3.2) is positive every where on the real line R for all 1 ≤ ` ≤ Q. Furthermore, the

roots of IQ − Γ1L− · · · − ΓqL
q = 0Q×Q all lie outside the unit circle.

C2: Let εt in (3.3) be an i.i.d. process with εt = Ω1/2ηt, where E(ηt) = 0, var(ηt) = IQ,

and Ω > 0, E(‖ηt‖4) <∞ and the elements of ηt are mutually independent.

Assumption C makes the regularity conditions on Pt. It guarantees that Pt is strictly

stationary and α-mixing, which is similar to that in Chen and Tsay (1993) and Cai et al.

(2000). Finally, the following theorem is presented without proof, which might be derived

in a similar way as in Cai and Liu (2022).

Theorem C.1. Under Assumption C, if P0 is initialized from the invariant measure, then,

{Pt} defined in (3.2) is a strictly stationary and α-mixing process.

139


	Literature Review
	Dynamic Quantile Model
	Univariate Conditional Autoregressive Value at Risk by Regression Quantiles (CAViaR) models
	Vector Autoregressive (VAR) for CVaR Models and Tail Dependence
	Financial Network

	Factor-Augmented VAR (FAVAR) Model
	Factor-Augmented VAR (FAVAR) Model with Fixed Coefficients
	Functional Coefficients Factor-Augmented Forecasting Model

	Overview

	A Nonparametric Dynamic Network via Multivariate Quantile Autoregressions
	Introduction
	FCVAR Model for Dynamic Quantiles
	Model Setup
	Two-stage Estimation Procedure
	Large Sample Theory
	Covariance Estimate

	A Monte Carlo Simulation Study
	A Real Example
	Empirical Models
	Data
	Empirical Results

	Conclusion

	A Functional Coefficient Factor-Augmented Predictive VAR Model with Dynamic Factor Loadings
	Introduction
	Econometric Modeling
	Functional Coefficient FAVAR Model
	Two-stage Estimation Procedures
	One-Step Ahead Prediction and a Bootstrap Prediction Interval (BPI)

	A Monte Carlo Simulation Study for Forecasting
	An Empirical Example of Forecasting
	Conclusion

	Solving the Price Puzzle Via A Functional Coefficient Factor-Augmented VAR Model
	Introduction
	Generalized Impulse Response Function (GIRF)
	Empirical Analysis
	Literature Review on Price Puzzle
	Data and Implementation
	Empirical Results

	Conclusion

	References
	Appendix: Mathematical Proofs of Theorem 2.2.1 and Consistency of (zo)
	Some Lemmas
	Proof of Theorem 2.2.1:
	Proof of Consistency of (z0)


	Appendix: Mathematical Proof for Stationarity and -Mixing of Model (2.1)
	Appendix: Some Assumptions and Descriptions of Dataset in Chapter 3
	Descriptions of Dataset
	Probabilistic Property: Strictly Stationary and -mixing



