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Abstract

Broad-scale approaches to soil genesis and morphology and their impact on the water cycle are

critically important to address widespread ecosystem service challenges in the future especially

given increasing climatic and land-use pressures on soils. Thus, the general aim of this dissertation

was to quantify pedogenic development and examine the impact of soil properties and soil-climate

interactions on the water cycle at continental, basin, and ecoregion scales. I utilized continental-

scale data to develop and evaluate horizon and profile development indices based primarily on

relative horizon properties instead of parent material information. These indices—which reflect

generalizable pedogenic processes—are valid proxies of soil development applicable at large geo-

graphic scales and may aid in numerous broad-scale applications including pedogenic modeling,

use in pedotransfer functions, identification of anomalies, and estimation of surface soil ages, and

have the potential to address the impact of climate and land-use changes on pedogenesis. Com-

bined effects of near-surface soil organic carbon (SOC) and ped roundness were used to explain

systematic differences in long-term water balance (as represented within the Budyko framework)

at a continental scale and explore potentially important feedbacks to climate. Evidence presented

across basins of the conterminous US point to the need to include soil structural information in

Earth system models. Effective porosity (EP) determined from continental and ecoregion-stratified

data show that surface and subsurface macroporosity is strongly influenced by the fraction of clay

complexed with SOC. The relationship between EP and this fraction could serve as a framework

for understanding soil macropore sensitivity to additions of SOC and its incorporation into hydro-

logic and Earth system models has the potential to more effectively predict land use- and climate-

induced changes to soil hydraulic properties and alterations to water cycling across scales. These

findings, associated implications, and future research directions are explored.
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Chapter 1

Introduction

Advances in our understanding of soil genesis and morphology and their impact on the water cy-

cle are critically important in the current context of increasing climatic and land-use pressures on

soils. These advances are especially needed to quantify the impact of these pressures on ecosys-

tem services (e.g., water storage, food security; Janzen et al., 2011). Pedogenic investigations

(including those focused on ecosystem services such as water cycling; e.g., infiltration, leaching,

evapotranspiration) have often involved either empirical approaches (see Yaalon, 1975; Birkeland,

1999; Schaetzl and Thompson, 2015) or mechanistic approaches (see Hoosbeek and Bryant, 1992;

Hoosbeek et al., 2000; Minasny et al., 2008; Bockheim and Gennadiyev, 2010; Vereecken et al.,

2016) that have been very useful for decades. However, empirical models have often lacked a the-

oretical framework limiting their extrapolation to environments outside the region in which they

were developed, and mechanistic models that simulate soil processes have often required calibra-

tion of empirical parameters that restricts their usefulness outside the regions in which they were

calibrated (Koop et al., 2020). To bridge gaps between these approaches and expand their useful-

ness, large continental-scale datasets (e.g., Critical Zone Observatories [CZO], National Ecologi-

cal Observatory Network [NEON]) can be used to examine the influence of broad-scale processes

and/or properties on ecosystems. For example, recent applications of broad-scale soil datasets have

provided a better understanding of climatic and lithologic controls on soil structural development

at continental scales (Panakoulia et al., 2017; Hirmas et al., 2018; Mohammed et al., 2020). Large

datasets have also been used to develop generic machine learning-based pedotransfer functions for

estimating saturated hydraulic conductivity (Ksat) and the sensitivity of Ksat to soil structure (Araya

& Ghezzehei, 2019). Recent efforts to incorporate the effect of soil structure on hydraulic prop-
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erties in land-surface and Earth system models have also been undertaken (Fatichi et al., 2020).

Despite these advances, quantifying and predicting the development of soil heterogeneity across a

broad range of spatial and temporal scales including components such as soil structural dynamics

and preferential flow paths remains a challenge (Vereecken et al., 2016). In light of these efforts,

Chapters 2-4 of this dissertation involve broad-scale approaches to soil genesis and morphology

with the last two examining the impact of soil properties and their interaction with climate on the

water cycle at continental, basin, and ecoregion scales. In total, Chapters 2-4 included analyses of

varying subsets of 57,171 horizons from 8,980 pedons (static soils data; approximately late 1960s

to the present).

In Chapter 2, I explore and develop generalizable indices of soil development applicable at

broad geographic scales in order to lay the groundwork for investigating pedogenic processes at

a continental scale. Horizon and profile development indices (HDIs and PDIs, respectively), in-

tegrating multiple soil properties, were developed and formalized by Bilzi & Ciolkosz (1977),

Harden (1982), and Harden & Taylor (1983) and extensively and effectively used for decades at

regional and local scales. However, it can be argued that the greatest limitation to generalizability

of these indices is their reliance on parent material information which causes problems with ex-

trapolation outside of the regions in which they were developed and in many soil profiles there is

often a lack of access to C horizons (i.e., a proxy for parent material) or remnants of the actual

parent material. Therefore, constructing a theoretical foundation for soil development index gen-

eralizability and developing a generalizable HDI and PDI that rely primarily on relative horizon

properties instead of parent material information are key components of this work. The developed

index was applied to a large dataset of soil properties, assessed against taxonomic information

and weathering indices, and potential applications of generalizable HDIs and PDIs were explored.

One of the applications of these generalizable indices may be their inclusion in pedogenic mod-

eling efforts exploring broad-scale quantitative relationships between soil development, chemical

weathering, and climate. In addition, since these indices are independent of parent material, the

PDI could be used as a covariate to adjust regression models in broad-scale studies examining the
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influence of climate, lithology, or land use on ecosystem services or serve as a variable by which to

stratify sampling efforts to minimize known sources of variability in soil investigations. These ap-

plications have the potential to bridge gaps and address some of the challenges inherent in varying

approaches to quantifying and predicting soil development at continental and regional scales.

Chapter 3 and 4 focus on the impact of soil development and morphology on the water cy-

cle. Chapter 3 focuses on analyzing relationships between near-surface soil properties and scat-

ter within the Budyko space. Although the Budyko framework (Budyko, 1974) established a

method for partitioning precipitation into runoff and evapotranspiration as a function of aridity,

after decades of research, the most relevant factors controlling the ratio of evapotranspiration to

precipitation (ET/P) and the long-term water balance (other than aridity) remains unclear, espe-

cially across large spatial scales (Greve et al., 2015; Padrón et al., 2017; Berghuijs et al., 2020). In

this chapter I explore which soil properties are most relevant and important to controlling the long-

term land-atmosphere water cycle across basins at a continental scale. This work was undertaken

in an effort to bridge gaps in our understanding of the role of soils in systematically explaining

differences in ET/P.

Emerging evidence at plot, hillslope, and continental scales indicate that soil structural changes

are occurring on yearly to decadal timescales in response to shifts in precipitation regimes (Robin-

son et al., 2016; Hirmas et al., 2018; Caplan et al., 2019). Chapter 4 builds upon these findings

to shed light on why more humid conditions appear to promote reductions in both macroporosity

and Ksat while drier conditions promote an increase in these properties. Specifically, I explore

the properties (soil, root, and climate) and mechanisms that control macroporosity in both surface

and subsurface horizons under varying land use and management practices across ecoregions of

the conterminous US. This research was undertaken with the goal of determining the properties

and processes controlling soil structural development and macroporosity that have disproportion-

ate effects on Ksat with important implications on water storage, flux, and, thus, the water cycle

(Hirmas et al., 2018). In sum, the combination of these studies aim to advance our understanding

of soil genesis and morphology and their impact on the water cycle through broad-scale approaches
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that have the potential to address widespread ecosystem service challenges in the future. Finally,

Chapter 5 summarizes key findings, associated implications, and future research directions.
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Chapter 2

A generalizable index of soil development

Koop, A. N., Hirmas, D. R., Sullivan, P. L., & Mohammed, A. K. (2020). A generalizable index
of soil development. Geoderma, 360, 113898.

Abstract

The growing influence of climatic and land-use pressures on soils across broad geographic

extents have revealed a need for generalizable indices of soil development applicable at con-

tinental scales. In this study, we present generalizable horizon and profile development in-

dices (HDIs and PDIs, respectively) based primarily on relative horizon properties instead of

parent material information and provide an evaluation of these indices at a continental scale.

The indices developed in this work combine knowledge of pedogenic processes with selected

properties from a large database of predominantly US soils to yield relevant soil morpholog-

ical, physical, and chemical information on 57,171 horizons arising from 8,980 pedons. We

selected four properties from which the generalizable HDI and PDI calculations were based:

particle size, calcium carbonate equivalent (CCE), color, and clay films. Modified z-scores

were used to assess relative changes between either eluvial and illuvial horizons for particle

size and CCE or surface and subsurface horizons for color. These values were then normal-

ized using maximum and minimum values observed in the dataset. Normalized clay film

scores were calculated using percent cover along with ordinal values assigned to distinct-

ness categories described in the field. The index values from HDI compared well to both

diagnostic horizon designations and chemical index of alteration and PDI values matched

the sequence of taxonomic soil orders that represent a development gradient. In addition,
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we observed a correspondence between calculated PDIs and a clay mineralogy index repre-

senting weathering intensity. Relationships between these generalizable indices, evaluation

metrics, and climate (i.e., MAP) explored in this work opens the door to numerous broad-

scale applications in the future such as pedogenic modeling, identification of soil anomalies,

and estimation of surface soil ages.

2.1 Introduction

Continental-scale, generalizable indices of soil development are needed to elucidate how acceler-

ating climatic and land use changes impact ecosystem services (e.g., water storage, food security;

Janzen et al., 2011). The development of these indices is especially relevant in light of recent find-

ings highlighting climate-induced changes in continental-scale soil properties (e.g., Hirmas et al.,

2018) and the emergence of large, broad-scale soil and environmental datasets (e.g., Critical Zone

Observatories [CZO] and the National Ecological Observatory Network [NEON]). These large

datasets provide ample opportunities to explore the integration of multiple soil properties related

to pedogenic development at horizon and profile scales across broad geographic extents.

Horizon and profile development indices (HDIs and PDIs, respectively), integrating multi-

ple soil properties, were developed and formalized by Bilzi & Ciolkosz (1977), Harden (1982),

and Harden & Taylor (1983), and have been widely used in pedogenic investigations for decades.

These indices originated from the need to quantify the collective nature and process of pedogenesis

(Harden, 1982; Harden & Taylor, 1983; Birkeland, 1999) and have primarily consisted of weight-

averaging normalized scores of various morphological information (e.g., texture, color, ped/void

surface features) to represent pedogenic development of either a horizon or a profile in a compact

numerical value. Studies using development indices have typically benefited from a wealth of soil

morphological information and the ease and versatility provided by integrative semi-quantification

of qualitative morphological data. In addition, researchers have combined field-based morpholog-

ical data with analytical laboratory-based soil data (e.g., physical, chemical, or mineralogical data)

into a single development index (e.g., Busacca, 1987; Harrison et al., 1990; Alonso et al., 1994) as
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well as kept morphological and analytical indices separate for purposes of comparison and use in

soil analyses (e.g., Birkeland, 1984; Birkeland & Burke, 1988; Rodbell, 1990; Harden et al., 1991;

Dorronsoro & Alonso, 1994).

At regional and localized scales, these development indices have been validated through gen-

eral comparisons with soil taxonomy (e.g., Phillips, 1990; Tsai et al., 2007b; Badía et al., 2009;

Zielhofer et al., 2009) and statistical analyses of these relationships (e.g., Schaetzl & Mokma, 1988;

Verheyen et al., 2001; Calero et al., 2008; Tsai et al., 2016). Development indices have also been

used extensively in regional and localized soil chronosequence and soil-geomorphic studies in a

variety of contexts including alluvial terraces (e.g., Meixner & Singer, 1981; Busacca, 1987; Mc-

Fadden & Weldon II, 1987; Dorronsoro & Alonso, 1994; García-García et al., 2016), marine and

lake terraces and ridges (e.g., Barrett & Schaetzl, 1993; Huang et al., 2010; May et al., 2015), and

alluvial fans and colluvial settings (e.g., Harden & Matti, 1989; Reheis et al., 1989; Berry, 1990;

Amit et al., 1996; Turk et al., 2008). In addition, these indices have also been used in geomorphic

contexts including glacial outwash and till (e.g., Swanson, 1985; Berry, 1987, 1994; Applegarth

& Dahms, 2001; Munroe & Bockheim, 2001), residuum (e.g., Lybrand & Rasmussen, 2015), and

loess (e.g., McFadden et al., 1986; Hirmas & Allen, 2007; Layzell et al., 2016).

A number of regional and localized soil chronosequence and soil-geomorphic studies using

HDIs and PDIs have also been extended to consider soil development under different climatic

conditions (e.g., Harden & Taylor, 1983; McFadden et al., 1986; Miller & Birkeland, 1992; Birke-

land, 1994; Lybrand & Rasmussen, 2015) and across geomorphic surfaces in tectonic settings (e.g.,

Harden & Matti, 1989; Amit et al., 1996; Kendrick & McFadden, 1996; McCalpin & Berry, 1996;

Tsai et al., 2007a). Research efforts have also incorporated HDIs and PDIs into pedogenic model-

ing including regional chronofunctions (e.g., Birkeland, 1984; Reheis et al., 1989; Rodbell, 1990;

Alonso et al., 1994; Vidic & Lobnik, 1997), maximum likelihood estimates relating soil develop-

ment to age (e.g., Switzer et al., 1988; Harden et al., 1991), and deterministic chaos approaches

(e.g., Phillips, 1993) (see Bockheim, 1990; Schaetzl et al., 1994; Vidic, 1998; Sauer, 2010, for

reviews of models incorporating development indices).
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Given the extensive and effective use of soil development indices at regional and localized

scales, the development of a generalizable index applicable at a broad geographic scale would be

a logical next step in order to investigate pedogenic processes at a continental scale. Here we ar-

gue that the greatest limitation to generalizability of these indices, however, is their reliance on

parent material information. This is due to problems with extrapolating these indices to environ-

ments outside of the region in which they were developed, and because, in many cases, neither C

horizons (i.e., a proxy for parent material) nor remnants of the actual parent material are present,

although there have been efforts to overcome these limitations (e.g., Bilzi & Ciolkosz, 1977). For

example, Langley Turnbaugh & Evans (1994), developed an index that used morphological and

micromorphological properties instead of parent material and used it in a paleopedology study to

distinguish soil from sediment. Similarly, Schaetzl & Mokma (1988) developed a podzolization

index which calculated color differences between E and B horizons without dependence on parent

material information. Although they applied their indices to only either paleosols or a specific

soil order, these studies highlight the potential for developing a generalizable index independent of

parent material information.

The goal of this work, therefore, was to develop a generalizable HDI and PDI that relies primar-

ily on relative horizon properties instead of parent material information. Specific objectives were

to (1) construct a theoretical foundation for soil development index generalizability, (2) develop

the index based on this foundation and apply it to a large dataset of soil properties, (3) assess the

index against taxonomic information and weathering indices, and (4) explore potential applications

of generalizable HDIs and PDIs.

2.2 Theory

In order to develop a generalizable index for soil development, we selected commonly recorded

soil properties that were assumed to be closely related to pedogenic processes and readily avail-

able in large soil datasets. Here, the term properties refers to the measured or recorded physical

(e.g., particle size), chemical (e.g., calcium carbonate), and morphological (e.g., color, clay films)
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attributes of genetically-related soil horizons. These properties can be described by various fea-

tures which we refer to as property characteristics. For example, clay films (soil property) can be

described by two property characteristics—distinctness of the clay films observed in the field and

their amount (i.e., the percentage of visible surface area covered by clay films).

In the framework of this study, a score (S) refers to an individual property that is calculated

from either a single characteristic or a combination of characteristics. The S for a given horizon

can be normalized by either an empirical S maximum and minimum or a theoretical S maximum

to generate a HDI between 0 and 1 (Harden, 1982; Harden & Taylor, 1983). The HDIs of the soil

horizons comprising a soil profile can then be depth-weighted and divided by the thickness of the

whole profile to generate a PDI representing the pedon.

2.2.1 Principles guiding the selection of properties

In this study, several guiding principles were followed in selecting properties for this generalizable

index of soil development. These principles can be articulated as follows:

• Properties selected for the index should have a known relationship to pedogenic development.

For example, soil structure was not included in this index because its general relationship with

soil development is unknown.

• Property characteristics should reflect a continuous change in pedogenic development where

only those characteristics that have known or assumed monotonic relationships with pedo-

genic development should be used.

• Characteristics should be selected to avoid redundant descriptions of the same property thereby

preserving sensitivity of each characteristic to pedogenic development. For example, in this

study, only the amount and distinctness of clay films were selected as property characteris-

tics while clay film color was excluded from the index in order to avoid redundancy. This

is because color is implicitly used when assigning distinctness. Additionally, clay film color

should be avoided since the characteristic does not have a clear relationship with pedogenic
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development.

• Property characteristics that are sensitive to the differences between descriptions arising from

describers who either tend to lump or split horizons (aka “lumper” vs. “splitter”) should be

avoided. For example, one characteristic of soil particle-size distributions that might be useful

to a pedogenic development index is the particle-size gradient between adjacent horizons

(e.g., the change in clay content divided by the distance between horizon midpoint depths).

However, this characteristic should be avoided because it would be sensitive to variations in

the number of horizons assigned by different describers of the same pit.

In addition to these principles, if the goal of the index is to (at least partly) examine the depth

distribution of soil development, then care should be taken to select properties or characteristics for

which a HDI can be calculated. Characteristics that are better understood as attributes of a pedon

rather than a horizon, such as a parameter describing the rate of change of soil organic carbon with

depth or an index of profile anisotropy (Walker & Green, 1976), should be avoided since these

would be calculated across multiple horizons. Given these principles, we selected particle-size

distribution (geometric mean particle diameter), pedogenic carbonate (calcium carbonate equiv-

alent, CCE), soil color (CIELAB L* and a* values), and clay films (amount and distinctness of

clay films, clay bridges, or organoargillans) as the properties used to develop this generalizable

index. These properties were selected since they both aligned with above mentioned principles

and were readily available in the dataset used in this study. Calculation of scores for each property

are discussed in detail in the sections below.

2.2.2 Soil property scores

2.2.2.1 Particle-size distribution

As pedogenesis proceeds, upper layers of the soil column lose fine particles as percolating mete-

oric waters translocate and concentrate them at depth (Birkeland, 1999). In addition, secondary

minerals form preferentially within the clay size fraction at the low temperature and pressure en-
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vironments near the Earth’s surface further differentiating the mean particle size of eluvial surface

horizons from illuvial subsurface horizons (Cremeens & Mokma, 1986). Thus, by examining the

relative differences between these two horizon types (i.e., eluvial and illuvial), rather than compar-

ing a horizon to the particle size of the parent material as is typically done in most development

indices, a generalizable index can be created that is theoretically independent of the parent material

(e.g., Cremeens & Mokma, 1986). In this study, we use the geometric mean particle diameter of

eluvial and illuvial horizons to calculate an index of particle size development.

Particle-size distributions are often reported as compositional class data (e.g., the mass frac-

tion of clay, coarse silt, medium sand, etc.). In order to convert these data into numeric values

representing particle size, the geometric mean particle diameters, {d1,d2, . . . ,d j, . . . ,dm}, corre-

sponding to the lower, {l1, l2, . . . , l j, . . . , lm}, and upper, {u1,u2, . . . ,u j, . . . ,um}, particle diameters

at the boundaries of the respective particle-size class bins can be calculated as:

d j = exp
[

ln[l j +a]+ ln[u j +a]
2

]
(2.1)

where a is a constant added to the boundary of each size bin to avoid taking the logarithm of

zero at the minimum boundary of the smallest size bin and m is the total number of particle-size

bins recorded for a horizon. The geometric mean was used as opposed to other central tendency

values (e.g., arithmetic mean or median) both because particle sizes are commonly log-normally

distributed and to account for the full-range of information in the fine-earth particle size distribution

(e.g., as opposed to just using clay content). These d j values can be used to calculate the geometric

mean particle diameter of the ith horizon, Di, using Eq. 2.2:

Di = exp


m

∑
j=1

f j lnd j

m

∑
j=1

f j

 (2.2)

where f j is the particle mass or volume fraction of the jth particle-size bin.
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Using reference particle diameters, it is possible to assess the relative change between eluvial

(E) and illuvial (I) horizons. For instance, eluvial horizons can be compared against the depth-

weighted mean particle diameter of the illuvial horizons, ID, and illuvial horizons against the

depth-weighted mean particle diameter of eluvial horizons, ED, both of which can be calculated

as:

ED =

n

∑
k=1

tkDk

n

∑
k=1

tk

or ID =

p

∑
g=1

tgDg

p

∑
g=1

tg

(2.3)

where tk and tg refer to the kth eluvial and gth illuvial horizon thickness, respectively, and Dk

and Dg represent the geometric mean particle diameters of the kth eluvial and gth illuvial horizon,

respectively. In Eq. 2.3 above, n is the total number of eluvial horizons and p is the total number

of illuvial horizons in the profile. Horizons that have been morphologically described as A and

E horizons are eluvial with respect to particle size since these horizons leach clay-size particles

to lower horizons. By contrast, B horizons are illuvial since fines translocate to and accumulate

within these horizons (Turk et al., 2012).

Using Di, ED, and ID, a modified depth-weighted standard deviation of the geometric mean

particle diameter for the combined eluvial and illuvial horizons in the profile, s̃D, can be calculated

following Bevington & Robinson (2003):

s̃D =

√√√√√√√√√
N

N

∑
i=1

ti(Di−hD)2

(N−1)
N

∑
i=1

ti

(2.4)

and used to calculate the distance, z̃Di , of the particle-size value of the ith horizon from its reference

particle diameter in modified standard deviation units as:

z̃Di =
Di−hD

s̃D
(2.5)
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In the above equations, N is the total number of horizons in the pedon, ti is the thickness of the ith

horizon, and h represents either dominantly eluvial or illuvial horizons as appropriate. That is, in

the calculation of s̃D, when Di corresponds to an eluvial horizon, ED is used; when Di corresponds

to an illuvial horizon, ID is used. However, in the calculation of z̃Di , when Di corresponds to an

eluvial horizon, ID is used as the reference particle diameter; when Di corresponds to an illuvial

horizon, ED is used as the reference particle diameter. C horizons are not included in the calculation

of ID or s̃D since these horizons are little affected by soil formation processes (Buol et al., 2011).

However, z̃Di can be calculated for C horizons using the ED as a reference. In addition, we note that

the z̃Di represents a modified z-score differing slightly in how the means and standard deviations

are calculated from the normal meaning of a z-score.

The z̃-scores can be used to generate a score from the geometric mean particle diameter of the

ith horizon, SDi , for horizons in a profile described as dominantly A, E, B, or C horizons as follows:

SDi =


z̃Di : horizon i is A or E and z̃Di > 0

−z̃Di : horizon i is B or C and z̃Di < 0

0 : otherwise

(2.6)

Finally, a HDI can be calculated for particle size, HDIDi , using an empirical SD maximum and

minimum in a large dataset to scale the SDi value for a given horizon between 0 and 1 following

Eq. 2.7:

HDIDi =
logSDi−min(logSD)

max(logSD)−min(logSD)
(2.7)

where max(SD) is two standard deviations above and min(SD) is two standard deviations below

the mean value for a distribution of log-transformed SDi values in the dataset. SDi values are log-

transformed to reduce skewness and approximate a normal distribution. Two standard deviations

above and below the mean are used as a maximum and minimum, respectively, because the ma-

jority of the data (> 94%) fall between these values. Values below or above the minimum or

maximum SD scores were assigned values of 0 or 1, respectively. Generalizability of this HDI
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Figure 2.1: For this hypothetical example of particle size, (a) the particle size of each horizon as
well as mean particle sizes of eluvial and illuvial horizons (Eq. 2.3) can be used to calculate a
modified standard deviation (s̃D; Eq. 2.4). (b) This information can be used to generate modified z̃-
scores (Eq. 2.5) that are then (c) scored (S) as shown in Eq. 2.6. (d) Finally, a horizon development
index (HDI) for particle size can be calculated using empirical maximum and minimum scores in
a large dataset to scale the value for a given horizon between 0 and 1 (Eq. 2.7).

should be proportional to the degree that the dataset (from which the max[SD] and min[SD] are

determined) represents a broad geographic and taxonomic distribution of soils. Figure 2.1 shows a

hypothetical example of the progression from particle size to the HDI for this property as outlined

in the calculations above.

2.2.2.2 Pedogenic carbonate

As with particle-size distributions, a similar eluvial-illuvial relationship occurs with respect to the

leaching and removal of carbonate and its accumulation at depth in areas that lack sufficient effec-

tive precipitation to leach carbonate completely through the soil column (Turk et al., 2012). This
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eluvial depletion and illuvial accumulation of carbonate in soils presents an opportunity to exam-

ine relative differences in carbonate content between these types of horizons rather than relying on

parent material information to calculate accumulation indices as in previous studies (e.g., Harden

et al., 1991; Hall & Shroba, 1995). Using reference CCE values, eluvial horizons can be compared

against the depth-weighted mean CCE of illuvial horizons and vice versa. The depth-weighted

mean CCE of eluvial horizons, ECCE, and the depth-weighted mean CCE of illuvial horizons,

ICCE, can be calculated as:

ECCE =

n

∑
k=1

tkCCEk

n

∑
k=1

tk

or ICCE =

p

∑
g=1

tgCCEg

p

∑
g=1

tg

(2.8)

where tk, tg, n, and p are defined in Eq. 2.3, CCEk is the CCE of the kth eluvial horizon, and

CCEg is the CCE of the gth illuvial horizon. Morphological descriptions of A, E, and B horizons

without a subordinate distinction of “k” or “kk” in the horizon name occurring in soils that have

visible accumulations of CaCO3 in the profile are considered eluvial with respect to CCE as these

horizons leach carbonate to lower horizons. By contrast, B or C horizons that have been described

with “k” or “kk” subordinate distinctions are illuvial with respect to CCE due to the accumulation

of carbonate within these horizons (Buol et al., 2011).

A modified depth-weighted standard deviation of the CCE for the combined eluvial and illuvial

horizons in a profile, s̃CCE, can be calculated similar to Eq. 2.4 as:

s̃CCE =

√√√√√√√√√
N

N

∑
i=1

ti(CCEi−h CCE)2

(N−1)
N

∑
i=1

ti

(2.9)

and used to calculate the distance of the CCE value of the ith horizon from its reference CCE in
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modified standard deviation units as:

z̃CCEi =
CCEi−hCCE

s̃CCE
(2.10)

where N, ti, and h are defined previously (Eq. 2.4). As mentioned above, h represents either

dominantly eluvial or illuvial horizons as appropriate. That is, in the calculation of s̃CCE, when

CCEi corresponds to an eluvial horizon, ECCE is used; when CCEi corresponds to an illuvial

horizon, ICCE is used. In the calculation of z̃CCEi , however, when CCEi corresponds to an eluvial

horizon, ICCE is used as the reference CCE value; when CCEi corresponds to an illuvial horizon,

ECCE is used as the reference CCE value. C horizons without a subordinate designation of “k” are

not included in the calculation of ICCE or s̃CCE since these horizons exhibit little or no pedogenic

alteration. However, z̃CCEi can be calculated for C horizons using the ECCE as a reference.

These z̃-scores can be used to calculate a development score from the CCE of the ith horizon,

SCCEi , for horizons comprising a profile described as dominantly A, E, B, or C horizons as follows:

SCCEi =



−zCCEi : horizon i is A, E, or B without “k” or

“kk” and z̃CCEi < 0

zCCEi : horizon i is Bk, Bkk, or Ck and z̃CCEi > 0

0 : otherwise

(2.11)

A HDI can be calculated for CCE, HDICCEi , using an empirical SCCE maximum and minimum in

a large dataset to scale the SCCEi value for a given horizon between 0 and 1 as follows:

HDICCEi =
logSCCEi−min(logSCCE)

max(logSCCE)−min(logSCCE)
(2.12)

where max(SCCE) represents two standard deviations above and min(SCCE) two standard devia-

tions below the mean value of a distribution of log-transformed SCCEi values in the dataset. As

mentioned for particle-size distributions, SCCEi values are log-transformed to reduce skewness and

approximate a normal distribution. Since the majority of the data (> 94%) fall between two stan-
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dard deviations above and below the mean, these values are used as the maximum and minimum.

Values falling below or above the minimum or maximum SCCE were assigned values of 0 or 1, re-

spectively. For pedons that do not record any accumulation of secondary carbonates (i.e., no “k” or

“kk” subordinate distinction in any horizon in the profile), HDICCEi are given NA values to avoid

arbitrarily scoring soils low that have non-calcareous parent materials or those whose environ-

ments prevent the accumulation of carbonate due to excessive leaching (e.g., humid environments)

or a lack of calcareous dust inputs. As discussed for particle-size distributions, generalizability

of this HDI should be proportional to the degree that the dataset (from which the max[SCCE] and

min[SCCE] are determined) is representative of a broad distribution of soils.

2.2.2.3 Soil color

Darkening of soil horizons (aka melanization) from the addition of organic matter and humus, oc-

curs when the development of dark, humus-rich coatings on ped faces and mineral grains render

horizons dark brown or black in color (Schaetzl & Thompson, 2015). While this melanization pro-

cess predominantly occurs in A horizons at or near the soil surface, the process of soil reddening

(aka rubification) predominantly occurs in subsurface B horizons where brown to red colors gen-

erally indicate the release of iron from primary minerals followed by the dispersion of iron oxide

particles occurring during pedogenesis (Birkeland, 1999; Schaetzl & Thompson, 2015).

With few exceptions (e.g., Torrent et al., 1983; Schaetzl & Mokma, 1988; Thompson & Bell,

1996), most development indices incorporating color have typically relied on comparing the color

of a soil horizon to that of the parent material. However, by comparing the relative differences

in color of organic matter-enriched surface horizons against subsurface horizons, a pedogenic de-

velopment index can be derived without the need to rely on parent material color. This surface-

subsurface approach is similar to that of the eluvial-illuvial indices for particle-size distribution

and pedogenic carbonate development described above.

In this work, dominant moist matrix Munsell colors of horizons were converted to the CIELAB

color space using the Algorithms for Quantitative Pedology (AQP) package (Beaudette et al.,
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2013). By converting Munsell color to the CIELAB color space, the L∗ (darkening) and a∗ (redden-

ing) values can be used to assess melanization and rubification in this surface-subsurface context

(Barrón & Torrent, 1986; Turk et al., 2008). Surface horizon L∗ values compared against the depth-

weighted mean L∗ color of subsurface horizons in combination with the a∗ values of subsurface

horizons compared against the depth-weighted mean a∗ color of surface horizons provide a method

for scoring pedogenic development as represented by soil color. The depth-weighted mean color

of either surface or subsurface horizons can be calculated as:

Ax =

n

∑
k=1

tkxk

n

∑
k=1

tk

or EBCx =

p

∑
g=1

tgxg

p

∑
g=1

tg

(2.13)

where x refers to either L* or a*, and tk and tg refer to the kth A horizon and gth E, B, or C horizon

thickness, respectively. Here, the superscript A refers to surface A horizons and EBC refers to

subsurface E, B, or C horizons.

Similar to particle-size distribution and pedogenic carbonate, a modified depth-weighted stan-

dard deviation of soil color, s̃x, can be generated for the combined surface and subsurface horizons

in a profile and calculated as:

s̃x =

√√√√√√√√√
N

N

∑
i=1

ti(xi−h x)2

(N−1)
N

∑
i=1

ti

(2.14)

Equation 2.14 can be used to calculate the distances of L∗ and a∗ values of a horizon from each

respective reference L∗ and a∗ in modified standard deviation units representing a soil color score

for the ith horizon, Sci , as:

Sci =


EBCL∗−L∗i

s̃L∗
: horizon i is A and L∗i < EBCL∗

a∗i−Aa∗
s̃a∗

: horizon i is E, B, or C and a∗i > Aa∗

0 : otherwise

(2.15)
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where the definitions of the variables in Eq. 2.15 follow from Eqs. 2.13 and 2.14. It is important to

note that h in Eq. 2.14 represents either dominantly surface or subsurface horizons as appropriate.

That is, in the calculation of s̃x, when xi corresponds to a surface horizon, Ax is used; when xi

corresponds to a subsurface horizon, EBCx is used. However, in the calculation of Sci in Eq. 2.15,

L∗i corresponds to a dominantly surface horizon (i.e., A horizon) and EBCL∗ is used as the reference

L∗ value; conversely, a∗i corresponds to a dominantly subsurface horizon (i.e., E, B, or C horizon)

and Aa∗ is used as the reference a∗ value.

A HDI can be calculated for soil color of the ith horizon, HDIci , using an empirical Sc maximum

and minimum in a large dataset to scale the Sci value in Eq. 2.15 between 0 and 1 as shown in

Eq. 2.16:

HDIci =
logSci−min(logSc)

max(logSc)−min(logSc)
(2.16)

where max(Sc) is two standard deviations above and min(Sc) is two standard deviations below the

mean value for a distribution of log-transformed Sci values in the dataset. As discussed for particle-

size distributions and CCE, Sci values are log-transformed to reduce skewness and approximate a

normal distribution. Two standard deviations above and below the mean are used as a maximum

and minimum because most of the data (> 90%) fall between these values. In addition, values

below or above the minimum or maximum Sc scores were assigned values of 0 or 1, respectively.

As mentioned previously for geometric mean particle diameter and CCE, generalizability of this

HDI should be proportional to the degree that the max(Sc) and min(Sc) values are representative

of a broad distribution of soils.

2.2.2.4 Clay films

As illuvial accumulation of phyllosilicate clays occurs during pedogenesis, this process results in

films or coatings of oriented clay on the surfaces of pores or peds, or bridging sand grains (Schaetzl

& Thompson, 2015). Since oriented clay films or coatings are generally observable in the field, this

morphological property has often been included in soil development indices in a variety of settings

(e.g., Harden & Matti, 1989; Vidic & Lobnik, 1997; Tsai et al., 2007b; Sauer, 2010). Here we
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follow a similar approach to that of Harden (1982) and Harden & Taylor (1983) and use estimated

amounts (% of surface area) and distinctness classes as property characteristics of clay films.

Distinctness of clay films in the ith horizon, Fdi , can be scored as:

Fdi =


10 : horizon i has faint clay films

20 : horizon i has distinct clay films

30 : horizon i has prominent clay films

(2.17)

Scores for clay film amount, SFai
, and clay film distinctness, SFdi

, can be calculated for A, E, B,

and C horizons as follows:

SFai
=

Fai

max(Fa)
(2.18)

SFdi
=

Fdi

max(Fd)
(2.19)

where clay film amount, Fai , and distinctness, Fdi , are divided by the maximum scores possible

for these property characteristics (i.e., max(Fa) = 100% and max(Fd) = 30, respectively) to scale

the value for a given horizon between 0 and 1. The scores for clay films amount, SFai
, and clay

films distinctness, SFdi
, can be combined into a HDI for clay films, HDIFi , by taking the mean of

these property characteristic scores. As previously mentioned, the scoring of clay films also in-

cludes amount and distinctness of clay bridges and organoargillans where present in the dataset.

In addition, it is important to note that if a horizon does not have a “t” subordinate designation nor

information on clay films/clay bridges/organoargillans, a HDIFi of 0 is assigned. If a horizon does

have a “t” subordinate designation, but no information on clay films/clay bridges/organoargillans,

a HDIFi of NA is assigned. Lastly, HDIFi can be calculated from either SFai
or SFdi

or both by cal-

culating the mean of these property characteristic scores. Given this clay films scoring framework,

we selected soil orders of broad geographic extent that are found in areas where environmental

conditions would allow for lessivage.
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2.2.3 HDI and PDI

Following the logic of Harden (1982), a final HDI of the ith horizon, HDIi, is calculated by taking

the mean of the property HDI scores (i.e., HDIDi , HDICCEi , HDIci , HDIFi) for that horizon. HDIs

calculated in this work include scores for only those properties that are recorded for profiles in the

dataset with the exception of clay films (see discussion of clay films scoring above); an NA value

is given otherwise. The final PDI is calculated by taking the depth-weighted mean of the HDIs as

shown in Eq. 2.20:

PDI =

n

∑
i=1

tiHDIi

n

∑
i=1

ti

(2.20)

For reference, see Table 2.1 for an explanation of variables used in this study and Table 2.2 for

empirical and theoretical maximum and minimum scores for properties/property characteristics

used in the normalization of HDIs. In addition, see Tables A2 and A3 for example calculations of

our approach outlined above.

2.3 Methods

2.3.1 Dataset

In this study, we assembled field-based pedon information and laboratory data collected through

the USDA NRCS National Cooperative Soil Survey (NCSS). The complex nature of these data

files required pre-processing to put them into an easily accessible format. After organizing and

cleaning the two datasets, we merged them with climate data from WorldClim 2 (Fick & Hijmans,

2017).

Entisols, Inceptisols, Mollisols, Aridisols, Alfisols, and Ultisols were selected from the dataset;

poorly drained soils and soils with lithologic discontinuities were removed. We avoided soil orders

with low number of pedons in our dataset, orders that tend to be expressed in more localized

environments, or orders that represent unique pedogenic pathways limiting their generalizabilty

21



Table 2.1: Explanation of variables used in this study listed in order of occurrence.

Variable Explanation
d Geometric mean particle diameter of a particle-size class bin
l Lower particle diameter at the boundary of a particle-size class bin
u Upper particle diameter at the boundary of a particle-size class bin
a Constant (0.01) added to the boundary of each particle-size class bin
D Geometric mean particle diameter of a horizon
f Particle mass or volume fraction of a particle-size class bin
D Depth-weighted mean particle diameter of a horizon
t Thickness of a horizon
s̃ Modified depth-weighted standard deviation of a property for spec-

ified horizons in a profile
h Represents either dominantly eluvial or illuvial horizons as appro-

priate
z̃ Modified z-score of a specified horizon property
S Non-normalized development score of a specified horizon property
HDI Empirical maximum and minimum-normalized or theoretical

maximum-normalized horizon development index
max(S) Empirical maximum development score of a specified horizon prop-

erty that is two standard deviations above the mean value for a
logged distribution of property scores or theoretical maximum de-
velopment score of a specified horizon property

min(S) Empirical minimum development score of a specified horizon prop-
erty that is two standard deviations below the mean value for a
logged distribution of property scores

CCE Calcium carbonate equivalent of a horizon
CCE Depth-weighted mean CCE of a horizon
x CIELAB L* or a* color of a horizon
x Depth-weighted mean L* or a* color of a horizon
F Clay films or clay bridges or organoargillans of a horizon
PDI Depth-normalized profile development index
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Table 2.2: Empirical and theoretical maximum scores [max(S)] and minimum scores [min(S)] for
properties/property characteristics used to calculate a generalizable horizon development index
(HDI) between 0 and 1 in this study.

Property/Property Empirical or Empirical or
characteristic theoretical max(S) theoretical min(S)
Particle size 1.46 −1.06
CCE 1.54 −0.45
Color 1.37 −0.92
Clay films amount 100 NA
Clay films distinctness 30 NA

Figure 2.2: Spatial distribution of pedon locations used in this study across the conterminous US.

across broad geographic extents. Thus, if successful, this index would be generalizable only to the

soil orders and conditions selected in this study. A total of 57,171 horizons from 8,980 pedons

(8,522 pedons in the US; 458 pedons outside of the US) were analyzed (Fig. 2.2).

2.3.2 Evaluation metrics

2.3.2.1 Diagnostic horizons

To assess validity of the HDI, values from two diagnostic subsurface horizons (cambic and argillic

horizons) were compared since well-developed argillic horizons should correspond to higher val-
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ues of HDI as opposed to cambic horizons which should correspond to relatively low HDI values.

In total, 1,022 cambic horizons and 5,985 argillic horizons were used for this comparison. We used

the 95% confidence interval around the median of the two distributions to compare these horizons.

2.3.2.2 Geochemical weathering index

As a separate test of validity, we compared HDI values to a geochemical weathering index—

chemical index of alteration (CIA). We selected horizons from the dataset that had total soil geo-

chemistry determined by inductively coupled plasma atomic emission spectrophotometry (ICP-

AES) on acid-digested bulk samples (Soil Survey Staff, 2014a); we removed anomalous horizons

with zero HDI values. In total, 640 horizons from 192 pedons were used to calculate CIA (%)

following Nesbitt & Young (1982):

CIA =
Al2O3

Al2O3 +CaO+Na2O+K2O
×100 (2.21)

where the oxides of each element are given in percent. Piecewise linear regression (Muggeo, 2003,

2008) was used to examine the relationship between the CIA and the HDI. We used the associated

corresponding mean annual precipitation (MAP) values from WorldClim 2 (Fick & Hijmans, 2017)

for these horizons to further evaluate the CIA-HDI relationship. A positive association between

CIA, HDI, and MAP was expected for horizons with CIA values above 50% corresponding to

samples that represent increasingly weathered material (Nesbitt & Young, 1982).

2.3.2.3 Soil orders

Soil orders (i.e., Entisols, Inceptisols, Mollisols, Aridisols, Alfisols, and Ultisols) were used to

assess both overall PDI values and those arising from individual soil properties (i.e., particle size,

CCE, color, and clay films). We used the 95% confidence interval around the median of each

distribution to evaluate significance and compare the taxonomic orders with respect to their PDIs.
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2.3.2.4 Mineralogy

We investigated the relationship between clay mineralogy of B horizons and PDI. Clay mineralogy

information was available for 1,534 pedons in the dataset. As part of this evaluation, we developed

a clay mineralogy index (CMI) based on the work of Barshad (1966) where changes in clay min-

eralogy in soils formed from igneous parent material were analyzed along a precipitation gradient.

The observed patterns in that work showed a generally increasing relative mineral content of kaoli-

nite (Ka) and halloysite (Ha) with increasing MAP (Birkeland, 1999). Using this relationship, we

compared the sum of Ka and Ha to the sum of Ka, Ha, montmorillonite (Mt), illite (Il), vermiculite

(Vm), and gibbsite (Gi) as shown in Eq. 2.22 to calculate CMI:

CMI =
Ka+Ha

Ka+Ha+Mt+ Il+Vm+Gi
(2.22)

where the minerals above are represented by an ordinal value from 1 to 5 corresponding to their

relative peak height in the X-ray diffraction pattern determined on oriented clay samples (Soil

Survey Staff, 2014a). PDI values were expected to be positively correlated with CMI.

2.4 Evaluation and Interpretation

2.4.1 HDI

2.4.1.1 Diagnostic horizons

As shown in Fig. 2.3, HDI values for argillic horizons were significantly greater than that of cambic

horizons as indicated by the 95% confidence interval around the median of each diagnostic subsur-

face horizon. The relationship between HDI and these diagnostic subsurface horizons was mainly

driven by particle-size and clay film differences between argillic and cambic horizons. Argillic

horizons form from pedogenic processes such as lessivage, translocation of dissolved components

at depth which leads to the neosynthesis of clay, and clay production from primary minerals in

subsurface horizons (Buol et al., 2011). These horizons are characterized by illuvial accumulation

25



Figure 2.3: Boxplots of the HDI grouped by cambic and argillic diagnostic subsurface hori-
zons. Boxes display the upper and lower quartiles with center bars indicating median HDI values.
Whiskers indicate extreme HDI values and points represent very extreme HDI values (> 1.5 times
the interquartile range). In addition, notches represent the approximate 95% confidence interval
around each median.

of phyllosilicate clays with specific requirements about the total clay increase from an overlying

eluvial horizon, minimum thickness of the horizon, and morphological evidence of clay illuviation

(e.g., clay films, clay bridging) (Soil Survey Staff, 2014b). This diagnostic subsurface horizon

often corresponds to moderate to strong soil development and a Bt horizon designation (Birkeland,

1999; Soil Science Division Staff, 2017). Cambic horizons, however, are characterized by physical

alterations, chemical transformations, or removals (or a combination of these processes) with prop-

erties such as very fine sand or finer texture, soil structure or the absence of rock structure, and/or

additional properties that generally do not meet the requirements of other diagnostic horizons (Soil

Survey Staff, 2014b). Cambic horizons, therefore, correspond to weak soil development and often

a Bw horizon designation (Birkeland, 1999; Soil Science Division Staff, 2017). Thus, the higher

HDI values of argillic horizons and the lower values of cambic horizons align with the definitions

of these horizons providing evidence of HDI as a valid proxy of soil horizon development.
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2.4.1.2 Geochemical weathering index

Figure 2.4 shows the relationship between CIA and HDI and supports the validity of HDI as a

proxy representing varying degrees of soil development in addition to its generalizability across

a broad geographic scale. Although the coefficient of determination (r2 = 0.08) was relatively

low, the piecewise linear regression shows a highly significant (P < 0.001) positive linear trend

between CIA and HDI at values of CIA greater than 53% (dotted line; Fig. 2.4). Above this value,

HDI represented increasing pedogenic development. This data-derived breakpoint corresponds

to the theoretical chemically unweathered fresh material cutoff (50%; dashed line; Nesbitt and

Young, 1982). As was expected, below this cutoff, there was no significant relationship between

CIA and HDI. When MAP was mapped to this relationship, results showed that elevated MAP

corresponded to greater CIA and HDI values, while lower MAP values corresponded to lower CIA

and HDI values where the CIA-HDI relationship was significant.

2.4.2 PDI

2.4.2.1 Soil orders

Boxplots of PDIs for particle size, CCE, color, and clay films are shown for each soil order in

Fig. 2.5. Median values of the PDI for particle size increased significantly (i.e., 95% confidence

intervals around each median) in the following order: Entisols–Inceptisols–Mollisols–Aridisols–

Alfisols–Ultisols (Fig. 2.5a). This progression was expected for Entisols, Inceptisols, Alfisols, and

Ultisols and it suggests that the scoring of particle size in the PDI based on relative differences be-

tween the eluvial and illuvial horizons within a pedon is a valid proxy of soil development. Thus,

the modified z-score framework used in the PDI for particle size was able to capture and quantify

both the increasing eluvial coarsening and illuvial fining (i.e., lessivage) represented by these or-

ders. However, besides falling between Inceptisols and Alfisols, the appropriate soil development

order of Mollisols and Aridisols is unclear.

Figure 2.5b shows median values of the PDI for CCE generally increasing from Entisols to
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Figure 2.4: Piecewise linear regression of HDI vs. CIA colored by MAP. A significant (P < 0.001)
positive linear trend between HDI and CIA at values of CIA greater than 53% (dotted line; in-
creasingly weathered material) was observed. This breakpoint approximately corresponds to the
chemically unweathered fresh material cutoff of 50% (dashed line; Nesbitt and Young, 1982). The
shaded bar at 53% represents one standard error distance around the breakpoint value.
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Figure 2.5: Boxplots of PDIs for (a) particle size, (b) CCE, (c) color, and (d) clay films for Entisols
(Ent), Inceptisols (Inc), Mollisols (Mol), Aridisols (Ard), Alfisols (Alf), and Ultisols (Ult). Boxes
show the upper and lower quartiles with center bars indicating median PDI values for each soil
order. Whiskers display extreme PDI values and points represent very extreme PDI values (>
1.5 times the interquartile range) for each soil order. Notches represent the approximate 95%
confidence interval around each median.
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Alfisols. Median values for Entisols and Inceptisols were not significantly different from each

other although both were significantly lower than Aridisols. Mollisols and Alfisols were also not

significantly different from each other but both were significantly higher than Aridisols.

Higher median values for Mollisols and Alfisols is perhaps partly attributable to the greater

degree of translocation of carbonate from eluvial to illuvial horizons given that Mollisols and

Alfisols occur in areas with greater MAP compared to Aridisols (Buol et al., 2011). In addition,

the lower median value of Aridisols compared to Mollisols and Alfisols can perhaps be explained

by the combination of more continuous delivery of carbonate to soil surfaces associated with dust

inputs in arid environments and the lower MAP that reduces the potential for translocation of

carbonate from eluvial to illuvial horizons. In general, the maximum separation between soil

inorganic carbon (SIC) in surface horizons (upper 20 cm) and deeper layers (upper 100 and 200

cm) occurs in areas with MAPs between approximately 100 and 850 mm (Guo et al., 2006). Both

the total SIC and the difference in eluvial and illuvial horizons declines considerably above and

below that MAP range and corresponds to the lower CCE PDI median value observed for Aridisols

compared to Mollisols and Alfisols in this study (Fig. 2.5b). Ultisols are not displayed in Fig. 2.5b

because of either the absence of soil carbonate or the lack of CCE differences between eluvial and

illuvial horizons.

Median values of PDI based on surface-subsurface differences in color increased significantly

from Entisols to Ultisols with the exception of Aridisols which had the lowest median color PDI

value (Fig. 2.5c). This progression of increasing median values (i.e., except for Aridisols) suggests

that the scoring approach for color is a valid description of soil development across the broad

scales investigated in this study. The lower median value for Aridisols is likely due to the low

melanization of surface horizons due to lower soil organic carbon compared to surface horizons

of orders that span semi-arid to humid environments. In addition, the low MAP in areas where

Aridisols develop limits mineral weathering in these soils and, thus, the rubification of subsurface

horizons. Although abundant calcium carbonate has a distinct effect on hue, value, and chroma

(Harden & Taylor, 1983), it is unclear to what extent this effect controls soil color in other orders
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that may contain horizons with significant CCE (i.e., Mollisols and Alfisols).

Figure 2.5d shows boxplots of the PDI for clay films where significant increases in median

values were only observable for Alfisols and Ultisols. The near-zero median values observed for

Entisols and Inceptisols were expected due to the taxonomic criteria by which they were classified;

these soils are poorly developed and can occur across a range of climates. Although the median

values for Mollisols and Aridisols were not significantly different from zero, there is a considerable

increase in the upper quartile range for these soil orders likely reflecting increased soil ages com-

pared to Entisols and Inceptisols which have allowed for increased soil development as represented

by clay translocation.

Overall, the median PDI values that incorporate particle size, CCE, color, and clay films in-

creased significantly from Entisols to Inceptisols to Mollisols to Aridisols to Alfisols, and finally

to Ultisols (Fig. 2.6). This progression of increasing median values was expected for Entisols,

Inceptisols, Alfisols, and Ultisols and demonstrates the validity of the approach taken in this study

for calculating PDIs in investigations at a broad continental scale and with large soil taxonomic

diversity.

2.4.2.2 Mineralogy

A positive correlation was observed between PDI values and the CMI developed in this study

which generally followed increasing MAP (Fig. 2.7). Exceptions included CMI values of 0.05 and

0.15 as well as 0.55 and 0.75 which were switched in terms of the expected progression of increas-

ing MAP associated with these values. In general, lower values of the CMI indicate lower relative

concentrations of kaolinite and halloysite in the clay fraction (Eq. 2.22) corresponding with lower

PDI values and lower MAP. Conversely, higher CMI values indicate higher kaolinite and halloysite

concentrations which corresponded to higher PDI values and higher MAP. Clay mineralogy index,

therefore, provides additional evidence, independent of taxonomy, for the validity and generaliz-

ability of the developed PDI.
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Figure 2.6: Boxplots of the PDI integrating the four properties shown in Fig. 2.5 for Entisols
(Ent), Inceptisols (Inc), Mollisols (Mol), Aridisols (Ard), Alfisols (Alf), and Ultisols (Ult). Boxes
indicate the upper and lower quartiles with center bars representing median PDI values for each soil
order. Whiskers indicate extreme PDI values, points display very extreme PDI values (> 1.5 times
the interquartile range), and notches represent the approximate 95% confidence interval around the
median for each soil order.
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Figure 2.7: Boxplots of PDI for binned CMI values colored by MAP. Boxes display the upper
and lower quartiles with center bars indicating median PDI values for each aggregated CMI bin.
Whiskers show extreme PDI values and points indicate very extreme PDI values (> 1.5 times the
interquartile range).
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2.5 Applications

The relationships between HDI, diagnostic horizons, and CIA and between PDI, soil orders, and

CMI support the validity and generalizability of indices based on relative horizon properties in-

stead of parent material information. This approach, therefore, represents a potentially powerful

new tool for examining and quantifying soil development. In addition, modified z-scores provide a

standardized basis within an eluvial-illuvial or surface-subsurface context (e.g., particle-size coars-

ening and fining, carbonate depletion and accumulation, melanization and rubification) to quantify

and represent degrees of property-integrated pedogenic alteration. This use of z-scores provides a

framework for assessing soil development in regional or localized pedogenic studies (e.g., Berry,

1994) as well as broad-scale pedogenic investigations as shown in this work. Below, we discuss

several potential applications where the use of generalizable soil development indices may advance

pedogenic studies.

2.5.1 Continental-scale pedogenic modeling

Empirical pedogenic modeling approaches have been useful in many soil investigations and in-

terpretations, but these models have often lacked a rigorous theoretical underpinning that limits

their extrapolation to other environments outside the region in which they were developed even

when soil conditions and contexts are similar (see Yaalon, 1975; Birkeland, 1999; Schaetzl and

Thompson, 2015 for reviews of empirical models). While more mechanistic pedogenic models

that simulate soil processes exist, they often require the calibration of empirical parameters that re-

stricts their usefulness outside the regions in which they were calibrated (see Hoosbeek and Bryant,

1992; Hoosbeek et al., 2000; Minasny et al., 2008; Bockheim and Gennadiyev, 2010; Vereecken

et al., 2016 for reviews of mechanistic models). Therefore, the generalizable indices developed in

this work have the potential to bridge gaps in various pedogenic modeling approaches especially

with the emergence of large continental-scale datasets (e.g., CZO and NEON).

The relationships shown between the HDI, CIA, and MAP as well as between PDI, CMI, and

34



MAP highlight the potential for exploring quantitative relationships between soil development,

chemical weathering, and climate at broad scales as part of pedogenic modeling efforts. For ex-

ample, recent applications of broad-scale soil datasets have yielded new insights into the role of

climatic and lithologic forcing on the evolution of soil structure at continental scales (Panakoulia et

al., 2017; Hirmas et al., 2018; Mohammed et al., 2020). The indices developed in this work could

serve as a tool to select research sites in furthering similar future research efforts. For instance,

PDI could be used as a covariate to adjust regression models in observational studies examining the

influence of broad-scale processes or properties (e.g., climate, lithology, or land use) on ecosystem

dynamics. PDI could also serve as a variable by which to stratify sampling efforts to minimize

known sources of variability in both pedogenic and soil-geomorphic investigations.

2.5.2 Identification of anomalies

Although pedons were removed from the dataset where lithologic discontinuities were described,

the HDI approach used in this work has the potential to be used to identify sedimentological,

geomorphic, biotic, or anthropogenic anomalies in soil development such as burial, lithologic dis-

continuities, bioturbation, or human-altered human-transported (HAHT) material. For example,

if the z̃-score for a property does not match the depth pattern assumed to result from the pedo-

genic processes examined in this study, its HDI is cutoff at zero rather than allowing the value

to become negative (Eqs. 2.6, 2.11, and 2.15). Future work could modify this index to allow for

negative values in order to identify these types of anomalies in soil-geomorphic investigations and

interpretations as well as in digital soil mapping efforts.

2.5.3 Estimation of surface soil ages

In future investigations, the generalizable PDI developed in this work may provide a means to esti-

mate surface soil ages across broad spatial expanses, especially with the emergence of broad-scale

datasets of soil age (e.g., International Soil Radiocarbon Database–ISRaD; https://international-

soil-radiocarbon-database.github.io/ISRaD/; accessed February 21, 2019). Methods similar to
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those used to develop regional chronofunctions (e.g., Switzer et al., 1988; Reheis et al., 1989;

Harden et al., 1991; Vidic & Lobnik, 1997; Calero et al., 2009) could potentially be used to re-

late the generalizable PDI to soil age, which would aid in determining the spatial distribution and

drivers of surface soil stability as well as the effect of time on pedogenesis across broad geographic

and taxonomic distributions of soils.

2.6 Conclusions

In this work, we present generalizable indices of soil development (HDI and PDI) based primarily

on relative horizon properties instead of parent material information and evaluate these indices at a

continental scale. The novelty of this approach is the development of indices that reflect an under-

standing of generalizable pedogenic processes for the soil orders and conditions studied and that

integrate relative soil morphological, physical, and chemical information within eluvial-illuvial

and surface-subsurface contexts. Our findings show that both HDI and PDI are valid proxies of

soil development and applicable across large geographic scales. These indices open the door to nu-

merous broad-scale applications (e.g., pedogenic modeling, identification of anomalies, estimation

of surface soil ages) and may aid in understanding how climatic and land-use pressures influence

soil development.
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Chapter 3

Soil structure and organic carbon give rise to the

ecohydrological conditions critical to water cycling at a

continental scale

Abstract

Increasing climatic and land-use pressures across broad geographic extents are prompting

the need to better understand the role of soils in the water cycle at a continental scale. In this

work, we assess the influence of near-surface soil properties on long-term land-atmosphere

water cycling and examine systematic differences in > 200 basins across the US. We com-

piled soil properties from the uppermost horizons of > 6,900 pedons from a large database

of US soils and merged these data with vegetation indices and corresponding climate data

[mean annual precipitation, actual evapotranspiration (ET), potential ET] where all variables

were basin-aggregated. Basin climate data were fit with a parametric model of the Budyko

equation and used to generate an empirical parameter (n) for each basin. Our results indicate

that the combined effects of higher soil organic carbon (SOC) and ped roundness are related

to enhanced ET by increasing total porosity, hydraulic conductivity, and plant-available wa-

ter holding capacity. Low ped roundness and SOC values likely correspond to agricultural

practices leading to the formation of platy soil structure by mechanical compaction leading

to decreases in infiltration and increases in runoff. In arid regions, low ped roundness cor-

responds to natural platy structure associated with vesicular horizons which increases runoff

towards shrub islands and ephemeral washes. These findings provide evidence that near-
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surface soil structure and SOC controls long-term water balance at large spatial scales with

potentially important feedbacks to climate pointing towards the need to include soil structure

in Earth system models.

3.1 Introduction

Understanding the role of soils in controlling the land-atmosphere water cycle is critical to quanti-

fying the impact of climate and land-use pressures on ecosystem services (e.g., water storage, food

security; Janzen et al., 2011; Hirmas et al., 2018). The land-atmosphere water cycle has been stud-

ied extensively within the Budyko framework (Budyko, 1974), which established the partitioning

of precipitation into runoff and evapotranspiration as a function of aridity. Here, the Budyko curve

is a curvilinear function that describes the relationship between an index of mean annual evapo-

transpiration [i.e., the ratio of evapotranspiration to precipitation (ET/P)] and mean annual aridity

[i.e., the ratio of potential evapotranspiration to precipitation (PET/P)]. This curve is constrained

by an energy limit (ET < PET) and a water limit (ET < P) (see Greve et al., 2015; Padrón et al.,

2017, for reviews of Budyko framework studies). While PET/P is considered to be the primary

control of ET/P within the Budyko framework, aridity does not explain all spatial variations in the

long-term water balance of catchments; in fact, the ET/P and PET/P indices of certain catchments

can be scattered around the Budyko space sometimes falling above or below the curve (Padrón

et al., 2017; Berghuijs et al., 2020). Decades of research show this scatter in the Budyko space is

systematic and does not arise strictly from data uncertainty, implying that this relationship can be

used to deduce measurable physical processes and catchment properties (Berghuijs et al., 2020).

Greve et al. (2015) note that although the original Budyko curve was deterministic and non-

parametric, Budyko acknowledged that variations around the curve could emerge depending on

local conditions; in some cases, scatter around the curve could be considerable but explainable

(Budyko, 1974; Milly, 1994; Koster & Suarez, 1999). Two common approaches to determine vari-

ables (other than PET/P) that control long-term water balances were recently outlined by Berghuijs

et al. (2020): (1) quantifying how catchments depart from the Budyko curve and assessing rela-

38



tionships between particular catchment properties and departures above or below the curve; and

(2) using a calibrated parametric Budyko equation with a catchment specific parameter correlated

to catchment properties. These approaches have yielded widespread evidence for systematic varia-

tions of scatter around the curve, explaining that scatter in terms of various catchment and climate

characteristics (Greve et al., 2015; Padrón et al., 2017). Studies have focused on factors control-

ling ET/P which include vegetation (e.g., Zhang et al., 2001; Donohue et al., 2007, 2010; Williams

et al., 2012; Li et al., 2013), soil properties (e.g., Sankarasubramanian & Vogel, 2002; Porporato

et al., 2004; Yokoo et al., 2008; Wang et al., 2009a; Donohue et al., 2012), and topography (e.g.,

Yang et al., 2007; Shao et al., 2012; Xu et al., 2013; Zhou et al., 2015; Rouholahnejad Freund

& Kirchner, 2017). Studies have also examined streamflow characteristics (e.g., Potter & Zhang,

2009; Wang & Wu, 2013; Berghuijs et al., 2014a; Trancoso et al., 2016) and groundwater (e.g.,

Wang et al., 2009a; Istanbulluoglu et al., 2012; Condon & Maxwell, 2017; Condon et al., 2020)

in relation to this scatter. Other research has assessed factors controlling ET/P related to climate

characteristics such as seasonality (e.g., summer-dominant rainfall, non-seasonal, winter-dominant

rainfall; e.g., Dooge et al., 1999; Potter et al., 2005; Hickel & Zhang, 2006; Gerrits et al., 2009;

Chen et al., 2013) and climate change (e.g., Koster & Suarez, 1999; Arora, 2002; Jones et al.,

2012; Berghuijs et al., 2014b; Creed et al., 2014). Many of these studies have also focused on

multiple catchment and climate controls (e.g., Milly, 1994; Gentine et al., 2012; Troch et al., 2013;

Carmona et al., 2014; Greve et al., 2015). Despite this research, the combined causes of systematic

variations of scatter around the Budyko curve including the most relevant factors controlling ET/P

and long-term water balance (other than PET/P), remains unclear (Greve et al., 2015; Padrón et al.,

2017; Berghuijs et al., 2020).

With respect to soil properties controlling ET/P, previous studies have often incorporated soil

parameters into Budyko framework models where these variables were developed from mathe-

matical representations of known or hypothesized mechanisms that are solved numerically (e.g.,

Milly, 1994; Porporato et al., 2004; Potter et al., 2005; Troch et al., 2013). These soil parameters

are often estimated as a function of plant-available soil water holding capacity or other soil wa-
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ter storage capacity terms for both mechanistic and empirical components of studies (e.g., Milly,

1994; Sankarasubramanian & Vogel, 2002; Yang et al., 2007; Yokoo et al., 2008; Donohue et al.,

2012). Studies have also incorporated parameters related to soil hydraulic properties for varying

soil textures (e.g., Yokoo et al., 2008), assessed relationships between catchment parameters and

soil textures (e.g., Wang et al., 2009a), and developed parameters representing other ecohydrolog-

ical controls on soil water balance (e.g., Donohue et al., 2012; Gentine et al., 2012).

Because a number of these Budyko framework studies incorporate soil water balance and stor-

age changes into models, finer spatial and temporal scales are therefore considered as long-term

mean changes in terrestrial water storage at large spatial scales are assumed to be negligible (Zhang

et al., 2008; Du et al., 2016; Padrón et al., 2017). In addition, while these types of models have a

strong theoretical basis, and, thus, overcome problems with extrapolation, they are often extremely

complicated, difficult to apply without expert knowledge, and require specific site measurements

for model calibration; thus, the usefulness of such approaches are often restricted to the region

where they were developed. Furthermore, since soil properties are parameterized in these Budyko

framework models, these properties are often not accounted for explicitly with respect to their

role in controlling ET/P and long-term water balance. Indeed, our understanding of the role of

soil properties in controlling ET/P and specifically which soil properties are most relevant and im-

portant in controlling the long-term land-atmosphere water cycle is currently unclear, especially

across large spatial scales (Padrón et al., 2017). The objective of this work, therefore, was to: (1)

analyze relationships between near-surface soil properties and scatter around the Budyko space to

determine if systematic variations in ET/P for basins were present across broad geographic extents;

and (2) develop an empirical model that explains the role of these near-surface soil properties in

controlling the long-term land-atmosphere water cycle at a continental scale.
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3.2 Methods

3.2.1 Datasets

To better understand the role of near-surface soil properties in controlling land-atmosphere wa-

ter cycling, we obtained field-based pedon information and laboratory data collected through

the United States Department of Agriculture–Natural Resources Conservation Service (USDA–

NRCS) National Cooperative Soil Survey (NCSS) Characterization Database. We merged ET

products based on Moderate Resolution Imaging Spectroradiometer (MODIS) and meteorology

data (Mu et al., 2007, 2011) and P products from the Parameter-elevation Regressions on Inde-

pendent Slopes Model (PRISM; PRISM Climate Group, Oregon State University, 2021) with the

NCSS data in order to use the Budyko framework (Budyko, 1974) in analyses. MODIS Normal-

ized Difference Vegetation Index (NDVI) products were also merged with the NCSS data. Pedons

distributed across broad geographic extents in the US and with large and widespread soil taxo-

nomic diversity were selected for the dataset, while poorly drained soils and soils with lithologic

discontinuities were removed. In total, 8,262 pedons were selected along with their corresponding

mean annual ET, PET, P, and NDVI (2000-2014) (Fig. 3.1).

These mean annual ET, PET, and P data were used to generate the Budyko indices (Budyko,

1974) including mean annual ET/P, runoff ratio (1-ET/P), and PET/P values for each of these

pedons. Subsequently, these values were aggregated by basin using the United States Geological

Survey (USGS) Watershed Boundary Dataset (WBD) hydrologic unit code (HUC) 6 basins. Mean

annual Budyko indices for each pedon location were averaged across each HUC 6 basin for each

year; basins that had 15 year (2000-2014) mean annual ET/P values above 1 (i.e., above the water

limit), indicating additional inputs of water beyond precipitation, were removed from the dataset.

This resulted in a total of 255 basins where curvilinear functions relating mean annual ET/P to

mean annual PET/P were generated for each basin using each respective 15 years (2000-2014)

of data (the blue and red basins in Fig. 3.1). In this study, we used a parametric model of the

Budyko equation based on the work of Mezentsev (1955), Choudhury (1999), and Yang et al.
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Figure 3.1: Spatial distribution of pedon locations (black dots) and basins (blue and red) used in
this study across the conterminous US. Data from 6,962 pedons across 209 basins (blue) as well as
an additional 1,300 pedons (i.e., 8,262 in total) corresponding to 46 basins (red; i.e., 255 in total)
comprised the datasets used in this study.
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(2008), referred to as the Mezentsev–Choudhury–Yang (MCY) model (Sposito, 2017; Daly et al.,

2019):
ET
P

=
1

(1+(PET
P )−n)1/n

(3.1)

where n > 0 is an empirical parameter (Daly et al., 2019). Using the 255 basins selected for this

study, the nonlinear fit of Eq. 3.1 using each respective 15 years (2000-2014) of data resulted in an

n value for each basin (Fig. 3.2).

To understand the degree to which near-surface soil properties control variability in land-

atmosphere water cycling, measured and calculated or derived properties from only the uppermost

soil horizons were included in our analyses. Measured properties included particle-size distribu-

tion (PSD), soil organic carbon (SOC), field capacity (FC), and wilting point (WP), while calculat-

ed/derived properties included soil structural metrics (i.e., size, grade, ped solidity, and ped round-

ness), total porosity (TP), effective porosity (EP), saturated hydraulic conductivity (Ksat), horizon

development index (HDI), and root class densities (i.e., corresponding to very fine, fine, medium,

coarse, and very coarse roots). For individual soil horizons that contained multiple structure sizes

or grades, soil properties were aggregated using either the geometric midpoint of the recorded size

classes or by the ordinal-value converted grade classes (0 = structureless to 3.5 = very strong),

respectively (Hirmas & Giménez, 2017; Mohammed et al., 2020). One of these properties, ped so-

lidity, is a proxy for ped roughness with values close to unity indicating a smooth surface and lower

values indicating increasing roughness (Mohammed et al., 2016). Another property, ped roundness

(aka angularity), varies between 0 and 1 with higher values indicating a tendency towards a perfect

circle and lower values indicating angular shapes (Mohammed et al., 2016).

Total porosity for each horizon was derived using the measured dry bulk density at a water

content corresponding to a matric potential of −33 kPa. Effective porosity was calculated as

the difference between TP and FC and considered to be a proxy of macroporosity representing the

volume fraction of the largest pores in the soil (Rawls et al., 1998; Hirmas et al., 2018). In addition,

the Ksat of each horizon was calculated from the EP using a form of the Kozeny-Carman equation

proposed by Rawls et al. (1998). Particle-size HDIs for horizons relied on measured PSD and were
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Figure 3.2: Data from 8,262 pedons across 255 basins (blue and red basins in Fig. 3.1) were used to
generate curvilinear functions relating annual ET/P to annual PET/P. For condensed viewing, the
x-axis only includes annual PET/P values up to 5. The nonlinear fit of Eq. 3.1 using each respective
15 years (2000-2014) of data resulted in an n value for each basin. Each curve is colored by 15
year (2000-2014) mean annual PET/P with the maximum value of 40.2 similar to that of other arid
basins as summarized in Du et al. (2016).
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calculated using modified z-scores to assess relative changes between eluvial and illuvial horizons

following Koop et al. (2020). Lastly, root densities for five root-size classes (i.e., very fine, fine,

medium, coarse, and very coarse) were calculated from visual descriptions of root distributions

made in the field (Mohammed et al., 2020).

To undertake continental-scale analyses, horizon data for each pedon location were aggregated

and averaged across each HUC 6 basin and merged with the corresponding Budyko indices and n

values for each basin. This resulted in a total of 6,962 pedons across 209 basins (with no missing

data) that were analyzed in initial statistical analyses (the blue basins in Fig. 3.1). Prior to sta-

tistical analyses, distributions of all of the variables for each basin were visually inspected and a

number of variables were transformed to reduce skewness and approximate a normal distribution.

For logarithmic transformations of variables, a constant was added to the values prior to the trans-

formation to avoid taking the logarithm of zero. For angular transformations, the arcsine of the

square root was applied to the values of the variables; for ped solidity, this angular transformation

was applied twice after dividing the first transformation by π/2.

3.2.2 Statistical analyses

Principal components analysis (PCA) was used to reduce 19 basin horizon variables into a smaller

set of uncorrelated variables (i.e., principal components, PCs) that retained as much information

contained in the original basin data as possible (Kabacoff, 2015). We used y-aware PCA to rescale

the basin horizon input variables to correspond to the units of the dependent variable n. Y-aware

PCA works by fitting a linear regression model between each x and y. Thus, a unit change in the

x variables corresponds to a unit change in the y variable (transformed x variables are centered

at a mean of zero). Under this rescaling, all of the independent variables were in the same units

to facilitate characterizing their effect on the dependent variable (Zumel, 2016a; Mount & Zumel,

2020; Zumel & Mount, 2020).

Following the rescaling of the initial horizon input variables, we selected the final horizon

input variables using a significance pruning threshold of the inverse of the number of variables
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considered for the y-aware PCA (1/19 = 0.053) following the recommendation given by Zumel

(2016b). The selected horizon variables that exhibited a significant relationship with n at the

continental scale considered in this study included ped solidity, ped roundness, SOC, and very

fine, fine, medium, and coarse root density.

Using these selected basin horizon variables, we performed y-aware PCA where weights used

to form the linear composites were chosen to maximize the explained variance of horizon variables

used in this study while keeping the horizon PCs uncorrelated (Kabacoff, 2015; Zumel, 2016a).

Similar to the selection of significant horizon variables, PCs were selected via a significance prun-

ing threshold calculated as the inverse of the number of PCs generated during the y-aware PCA

(1/7 = 0.14) (Zumel, 2016b). In order to assess significance of variable loading values for each PC,

t-tests were used to compare the absolute value of each loading to the mean absolute value of all

loadings for each corresponding PC.

Three variables were chosen (i.e., ped solidity, ped roundness, and SOC) based on the t-test re-

sults. Because there were more samples with this information in the NCSS dataset, we selected an

additional 1,300 pedons (i.e., 8,262 in total) corresponding to 46 basins (i.e., 255 in total) to con-

tinue the analysis (the red basins in Fig. 3.1). This slightly larger dataset aided in the analysis and

interpretation of spatial patterns across the conterminous US. Based on updated visual inspections

of the distributions of the variables from the larger dataset, ped roundness values were square root

transformed. Horizon variables that loaded highly on the significant PCs were z-score transformed

and related to n using weighted regression where the number of pedons in each basin were used

as the weightings. Variance inflation factors (VIFs) were used to assess multicollinearity between

horizon variables; a VIF≥ 10 was used as an indication of collinearity between variables as recom-

mended by Logan (2010). Multiple linear regression was run to determine which horizon variables

were significant predictors of n. β–weights from the multiple linear regression model were used

to compare the relative importance of each horizon variable to n. The resulting n regression model

was evaluated by regressing actual against predicted n.
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Table 3.1: Selected near-surface horizon variables exhibiting a significant relationship with n (p <
0.053) and each respective variable transformation (an angular transformation was applied twice
for ped solidity). Also included below are y-aware PCA (i.e., scaled by n) variable loading values,
standard deviation, proportion of variance, and cumulative proportion for each of the significant
PCs, 1 and 2 (p < 0.14). Asterisks indicate variable loading absolute values that are significantly
greater than the mean of the variable loading values for each PC (p < 0.05).

Variable Transform. PC 1 PC 2
Ped solidity angular 0.69* −0.07
Ped roundness angular 0.69* −0.16
SOC log 0.18 0.97*
Very fine root density log 0.09 −0.15
Fine root density log 0.07 −0.009
Medium root density log 0.01 0.07
Coarse root density log 0.02 0.03
Standard deviation 0.13 0.07
Proportion of variance (%) 62.33 19.13
Cumulative proportion (%) 62.33 81.46

3.3 Results

3.3.1 Relationships between soil structure, SOC, and n

The pruning threshold determined during the y-aware PCA and an assessment of the proportion of

explained variance resulted in the selection of two PCs that had a significant relationship with n.

Table 3.1 shows y-aware PCA (i.e., scaled by n) variable loading values, standard deviation, pro-

portion of variance, and cumulative proportion for PC 1 and PC 2 with asterisks indicating variable

loading absolute values that were significantly greater than the mean of the variable loading values

for each PC based on t-test results (p < 0.05). These t-test results highlighted several significant

variables including ped solidity (PC 1), ped roundness (PC 1), and SOC (PC 2).

As shown in Table 3.1, PC 1 accounted for 62.3% of the variance in n across the 209 basins

included in the y-aware PCA (blue basins in Fig. 3.1); only ped solidity (0.69) and ped roundness

(0.69) loaded significantly on this PC. Using the larger dataset (255 basins) with just the significant

variables from PC 1 and PC 2, Fig. 3.3a and b show the geographic distribution of ped solidity and
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ped roundness, respectively. In large part, soil structure aligned with aridity index values, where

basins with lower PET/P (humid to sub-humid) correlated with increased ped solidity (increasingly

smooth surfaces) and increased ped roundness (increased circularity) (Fig. 3.3a, b, and f). In

contrast, soil structure across basins with increasing PET/P (increasingly arid) trended towards

decreased ped solidity (increased roughness) and decreased ped roundness (increasingly angular

shapes) especially in extremely arid basins (Fig. 3.3a, b, and f). Solidity and roundness values

for basins in Fig. 3.3a and b exhibited these general relationships, where higher values occurring

across central, midwestern, southeastern, eastern, and coastal parts of the US, for the most part,

corresponded to increased ped solidity and roundness. In contrast, lower values corresponding

to decreased solidity and roundness occurred across the interior western and southwestern US.

To a predominant extent, increased ped solidity and roundness corresponded to higher n values

with tendencies towards n values approaching the energy and water limits (Fig. 3.2; Fig. 3.3a,

b, and g). In contrast, decreased solidity and roundness were associated with increasingly lower n

values and corresponding departures from the energy and water limits (Fig. 3.2; Fig. 3.3a, b, and g).

Especially across the southwestern US, decreased solidity and roundness associated with decreased

ET/P (increased runoff ratio) corresponded to increasingly lower n values to a predominant extent

(Fig. 3.2; Fig. 3.3a, b, e, and g).

Soil organic carbon loaded significantly (0.97) on PC 2; PC 2 explained 19.1% of the variance

in n across the 209 basins that were part of the y-aware PCA (Table 3.1). Soil organic carbon

generally increased from south to north across the US (Fig. 3.3c). The general south to north trend

of increasing SOC was more pronounced in basins associated with mountain ranges and forests.

Similar to soil structure, increased SOC corresponded to higher n values with tendencies towards

decreased distances from the energy and water limits (Fig. 3.2; Fig. 3.3c and g). Decreased SOC

largely corresponded to increasingly lower n values and corresponding departures from the energy

and water limits especially in increasingly arid settings (Fig. 3.2; Fig. 3.3c, f, and g).
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Figure 3.3: Spatial distribution of near-surface horizon (a) ped solidity, (b) ped roundness, and (c)
SOC as well as (d) NDVI, (e) ET/P, (f) PET/P, and (g) n for 255 basins (8,262 pedons) used in this
study across the conterminous US. For NDVI, ET/P, and PET/P, 15 year (2000-2014) mean annual
values are displayed. Values for SOC and PET/P are log transformed.
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Table 3.2: β–weights, intercept, standard errors, and P values for near-surface horizon ped round-
ness and SOC comprising the n regression model equation used in this study. This multiple linear
regression included 255 basins (8,262 pedons) where the number of pedons in each basin were
used as weightings.

Statistic Ped roundness SOC Intercept
Estimate 0.295 0.425 −0.090
Std. error 0.047 0.058 0.036
P 1.51×10−9 2.41×10−12 0.015

3.3.2 Assessing relative importance of soil structure and SOC on n

Table 3.2 shows β–weights, intercept, standard errors, and P values for ped roundness and SOC

comprising the n regression model equation used in this study. Ped solidity was not included in

the model due to a high correlation with roundness (r = 0.90). This multiple linear regression

included the 255 basins (8,262 pedons) from the larger dataset with the number of pedons in each

basin used as weightings. Roundness and SOC explained a significant proportion of n (R2 = 0.342,

P < 2.20× 10−16) (Table 3.2; Fig. 3.4). Soil organic carbon was the strongest predictor of n

explaining 2.07 times the variation compared to roundness as determined by the squares of the

β–weights in Table 3.2.

Fig. 3.5a and b show actual and predicted n, respectively, corresponding to the 255 basins

(8,262 pedons) included in the multiple linear regression in Table 3.2 and Fig. 3.4. As shown in

Fig. 3.5a and b, the actual n map displays a greater range of n values than the predicted n map.

For the most part, differences between actual and predicted n values largely corresponded to either

increases or decreases towards extremes with respect to the partitioning of P into runoff and ET

(Fig. 3.3e; Fig. 3.5a and b). For example, across unclosed basins of the southwestern US, lower

ET/P values (higher runoff ratio values) associated with lower ped roundness and SOC values were

likely the result of other compounding factors as well (e.g., precipitation and seasonality charac-

teristics, topography) that corresponded to increasingly lower n values (Fig. 3.3e; Fig. 3.5a and

b). Towards the other extreme, higher ET/P values (lower runoff ratio values; generally associ-
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Figure 3.4: Actual n regressed against predicted n from the multiple linear regression model in-
cluding 255 basins (8,262 pedons) and near-surface horizon ped roundness and SOC in Table 3.2.
Displayed values for actual and predicted n are square root transformed and z-score transformed in
the regression plot. The size of the gray dots represent the number of pedons in each basin which
were used as weightings in the regression. The solid line represents the regression line and the
dashed line represents the 1:1 line.
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Figure 3.5: (a) Actual and (b) predicted n for the 255 basins (8,262 pedons) used in this study
across the conterminous US. The predicted n values displayed were generated from the multiple
linear regression model including near-surface horizon ped roundness and SOC in Table 3.2 and
Fig. 3.4.

ated with higher ped roundness and SOC values) that corresponded to higher n values occurred in

basins that were either more forested or had additional inputs of water (e.g., irrigation) resulting in

these higher n values (Fig. 3.3d and e; Fig. 3.5a and b). As previously mentioned, basins that had

15 year (2000-2014) mean annual ET/P values above 1 (i.e., above the water limit) were removed

from the dataset. Thus, the extremes of the actual n values were not captured to the same extent in

the predicted n values implying there were other compounding factors not included in the model

(e.g., precipitation and seasonality characteristics, topography, vegetation, irrigation). However,

overall, SOC and roundness controls of ET/P across basins were generally consistent as shown in

Fig. 3.4 and Fig. 3.5a and b.

3.4 Discussion

3.4.1 SOC, ped roundness, and ET

Soil organic carbon generally increased from south to north across the US and was more pro-

nounced in basins associated with mountain ranges and forests (Fig. 3.3c). Basins with lower

PET/P (humid to sub-humid) generally correlated with increased ped roundness (Fig. 3.3b and f).
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Soil organic carbon strongly influences soil aggregation and pore formation (see Six et al., 2004;

Bronick & Lal, 2005; Rabot et al., 2018, for relevant reviews). The process of soil aggregation of-

ten begins with soil organic matter (SOM) binding primary particles into microaggregates (20–250

µm) which are themselves bound together to form macroaggregates (> 250 µm); alternatively,

macroaggregates can form around particulate organic matter with microaggregates forming during

the breakdown of macroaggregates (Tisdall & Oades, 1982; Oades, 1984; Angers et al., 1997; Sta-

mati et al., 2013; Rabot et al., 2018). These aggregates contribute to the physical protection of SOC

against decomposition and disintegration by disruptive forces (Six et al., 2000; Abiven et al., 2009;

Panakoulia et al., 2017). At the ped scale, SOM contributes to increasing ped roundness (Dexter,

1985) and warmer and wetter climates tend to promote aggregation via biological and chemical

mechanisms producing peds that are smaller and more equidimensional with smoother surfaces

(Mohammed et al., 2020). In these climates, separation of the soil groundmass into finer peds can

be the result of increasing root density and biological activity reflected in the production of SOM

(Mohammed et al., 2020). In addition, tendencies towards reduced ped size may be the product of

combined effects of dense patterns and networks of weakness planes by roots and subsequent soil

wetting and drying cycles (Oades, 1993; Angers & Caron, 1998; Ghezzehei, 2012; Mohammed

et al., 2020).

As precipitation and subsequent infiltration of water into soil occurs, aggregates with increased

SOM are less prone to slaking (i.e., the breaking apart of aggregates) due to the slight hydrophobic-

ity of organic residues which prevent rapid and even wetting of outer surfaces; in addition, moist

aggregates are typically less susceptible to slaking due to less air in voids and more continuous

coverage of water films leading to a diffuse wetting front (Ghezzehei, 2012). Since some organic

materials are inherently hydrophobic (or become so as they dehydrate), SOM can promote aggre-

gate stability by reducing wettability and swelling in addition to increasing strength and stability of

intra-aggregate bonding (Hillel, 2004). In general, increased SOM promotes increased water hold-

ing capacity (Hudson, 1994; Saxton & Rawls, 2006) and affects the total porosity of soils with its

effect on water retention diminishing with decreasing pore size (Rawls et al., 2003). In addition,
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increased SOM promotes macroaggregate formation and stability which increases pore volume

and decreases bulk density resulting in an increase in plant-available water holding capacity (Eden

et al., 2017).

For humid to sub-humid basins largely corresponding to higher n values with tendencies to-

wards n values approaching the energy and water limits, the combined effects of higher SOC and

ped roundness contributed to increasing total porosity, hydraulic conductivity, and plant-available

water holding capacity (Fig. 3.2; Fig. 3.3b, c, f, and g). Thus, water that percolates into these

near-surface horizons is more accessible for uptake by plant roots thereby enhancing ET (Fig. 3.3d

and e). As previously mentioned, separation of the soil groundmass into peds via increasing root

density and biological activity reflected in the production of SOM (Mohammed et al., 2020) is cer-

tainly an important component contributing to increased total porosity, hydraulic conductivity, and

plant-available water holding capacity corresponding to higher n values across humid to sub-humid

basins (Fig. 3.3b, c, d, f, and g).

3.4.2 Platy soil structure controls effective soil moisture

As mentioned previously, near-surface soil structure in basins with increasing PET/P (i.e., increas-

ingly arid) exhibited decreased ped roundness (Fig. 3.3b and f). Decreased roundness predomi-

nantly occurred across the interior western and southwestern US. A general south to north trend

of increasing SOC also occurred across these interior western and southwestern basins. Across

basins in agricultural regions such as the central, midwestern, and southeastern US, slightly lower

values for roundness likely correspond to the occurrence of platy soil structure associated with

tillage practices as indicated by the presence of Ap horizons (plowed) in these soils (Fig. 3.3b and

d). This mechanical compaction resulting in platy soil structure results in a pronounced horizontal

anisotropy of the hydraulic conductivity and intensifies lateral water and solute movement enhanc-

ing soil erosion and nutrient export via runoff processes (Horn & Peth, 2012). In addition to the

compaction of soil structure in some of these basins, decreased SOC in these agricultural regions

also contributes to decreased water retention and the potential for increased runoff (Eden et al.,
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2017, Fig. 3.3b, c, and e).

Much lower values of ped roundness, predominantly occurring across basins of the interior

western and southwestern US, correspond to the presence of platy soil structure associated with

vesicular horizons (V horizons) (Soil Science Division Staff, 2017). These surface or near-surface

horizons are characterized by the predominance of vesicular pores and are common across soils in

arid and semi-arid environments including approximately 152,000 km2 of the western US (Turk

& Graham, 2011, 2020). Pedogenesis of V horizons is characterized by 1) eolian accumulation

beneath a physical or biological surface seal; 2) wet/dry cycles resulting in entrapment of air pock-

ets that develop into vesicular pores; 3) shrink/swell processes resulting in the formation of pris-

matic and columnar structure; and 4) growth, merging, and collapse of vesicular pores resulting

in the formation of platy structure (Turk & Graham, 2011, 2014, 2020). With respect to surface

seals, embedded gravels of desert pavement and reg surfaces are especially effective at promoting

widespread V horizon formation and generating high runoff (Valentin & Casenave, 1992; Valentin,

1994; Turk & Graham, 2014). Less developed V horizons can be massive (i.e., structureless) or

platy, but with increased soil development a primary structure of prisms or columns often parts to a

secondary platy structure (McFadden et al., 1998; Anderson et al., 2002; Dietze et al., 2012; Turk

& Graham, 2014). Across arid and semi-arid environments, V horizons have much lower infiltra-

tion rates compared to non-vesicular soils of shrub islands, ephemeral washes, and young alluvial

deposits with negative correlations observed between the abundance of vesicular pores in surface

horizons and infiltration rates (Blackburn, 1975; Valentin, 1994; Lebedeva et al., 2009; Turk &

Graham, 2011, 2014). Therefore, V horizons promote runoff over infiltration which limits plant

water supply, decreases leaching of salts, and consequently increases plant osmotic stress due to

high soil salinity (Musick, 1975; Wood et al., 2005; Graham et al., 2008; Turk & Graham, 2014).

Thus, with increasing development of V horizons, vegetation becomes increasingly restricted to

shrub islands and ephemeral washes where run-on accumulates (Noy-Meir, 1973; Musick, 1975;

McAuliffe, 1994; Graham et al., 2008; Turk & Graham, 2014). In addition, incipient V horizons

can form within a year in disturbed soils; however, post-disturbance V horizons have lower vesicle
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and vugh porosity and lower Ksat (Turk & Graham, 2020).

Low ped roundness due to platy structure associated with V horizons in arid and semi-arid

basins correlates with increasingly lower n values (Fig. 3.2; Fig. 3.3b, f, and g). Especially across

the southwestern US, these lower n values are associated with the widespread occurrence of V

horizons which increases runoff and decreases effective soil moisture (i.e., water that infiltrates)

as described above (Fig. 3.3b, e, and g). Increased runoff due to platy soil structure associated

with V horizons is likely compounded by other factors such as precipitation and seasonality char-

acteristics as well as topography in these arid and semi-arid environments. However, generally

increasing SOC from south to north across these interior western and southwestern basins ap-

peared to decrease runoff, increase water retention in near-surface horizons, and increase ET with

increasingly higher n values observed (Fig. 3.3c, e, and g).

3.5 Conclusion

This study highlights the role of near-surface soil structure and SOC and the combined effects of

these properties in explaining systematic variations of scatter in the Budyko space and points to the

importance of these soil properties in controlling ET/P and long-term water balance at a continen-

tal scale. Specifically, we observed higher n values (i.e., tendencies towards n values approaching

the energy and water limits) for humid to sub-humid basins where the combined effects of higher

SOC and ped roundness were related to enhanced ET by increasing total porosity, hydraulic con-

ductivity, and plant-available water holding capacity. Where agriculture was a predominant land

use under humid to sub-humid conditions, ped roundness and SOC values decreased and n values

were lower. This decline in ped roundness likely corresponds to the presence of platy soil structure

that is associated with mechanical compaction and a concomitant reduction in aggregate stability

exposing SOC to decomposition; the overall impact of these mechanisms is a decrease in water

retention and an increase in runoff. With increasingly arid basins we observed that lower n values

were related to lower values of ped roundness. In arid and semi-arid systems, these lower val-

ues of ped roundness were also related to the presence of platy soil structure but derived through
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mechanisms that form V horizons (and often embedded desert pavement). The platy structure in

these environments results in horizontal anisotropy of hydraulic properties that can intensify lat-

eral water movement (Horn & Peth, 2012) and promote an increase in runoff, often shunting water

towards shrub islands and ephemeral washes. Overall, this trend was especially pronounced across

the southwestern US where ET/P values were lower (runoff ratio values were higher). As SOC

generally increased from south to north across these arid and semi-arid basins, we also observed

corresponding increases in n values which were associated with an increase in ET driven by the

effect of SOC to decrease runoff and increase water retention in near-surface horizons.

Effects of near-surface soil structure and SOC on the long-term water balance at large spa-

tial scales may have cascading and important feedbacks to climate. For example, under a cli-

mate scenario of enhanced precipitation, increased soil moisture reduces the frequency of wet-dry

cycles and associated shrink-swell behavior minimizing both the abiotic stabilization of soil ag-

gregates and the protection of SOM in aggregate interiors (Bronick & Lal, 2005; Hirmas et al.,

2018). The reduction of aggregate stability and the concomitant increase in aggregate SOM decay

under higher rainfall conditions could cause a loss of interaggregate macropores, thereby reduc-

ing soil Ksat. Therefore, mechanisms of macropore “collapse” corresponding to a decline in soil

aggregate stability can decrease soil macroporosity and Ksat in increasingly energy-limited envi-

ronments. In contrast, under a climate scenario of increasingly arid conditions associated with

water-limited environments, V horizons tend to be more developed which may generate a positive

feedback promoting desertification in semi-arid areas by reinforcing hydrologic and ecological

patterns characteristic of desert shrublands (Lebedeva et al., 2009; Turk & Graham, 2011). Both

of these climate scenario shifts towards extremes may result in catchments becoming subjected to

increased runoff. Thus, soil structure-SOC controls on the long-term water balance under changing

climate conditions are important to consider in future research efforts. This is especially important

given emerging evidence indicating that soil structure is changing faster than previously thought–

potentially on decadal timescales–in response to shifts in precipitation regimes (Robinson et al.,

2016; Hirmas et al., 2018; Caplan et al., 2019). In addition, soil structure has the potential to
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be an important component in Earth system models (e.g., Fatichi et al., 2020) and based on this

study we specifically point to the potential of including near-surface SOC and ped roundness in

soil parameterization of Budyko models across a wide range of spatial and temporal scales.
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Chapter 4

Complexed clay and soil organic carbon control macroporosity

across ecoregions

Abstract
Multi-scale evidence of climate-induced soil structural changes occurring at yearly to decadal

timescales is mounting. As a result, it has become increasingly important to identify the

properties and mechanisms controlling the development and maintenance of soil structure

and associated macroporosity. This is especially relevant since macroporosity has dispro-

portionate effects on saturated hydraulic conductivity (Ksat) which strongly influences water

storage and flux, thus, affecting the water cycle (Hirmas et al., 2018). In this study, we as-

sess the influence of soil, root, and climate properties on effective porosity (EP; a proxy of

macroporosity) in both surface and subsurface horizons under varying land use and manage-

ment practices. Data from 1,491 pedons (3,679 horizons) spanning five ecoregions across the

conterminous US were used to show that the EP of surface (A) and subsurface (B) horizons

is strongly dependent on the fraction of complexed clay and soil organic carbon (hereafter,

‘CCSOC’) at a continental scale. We use the relationship between EP and CCSOC to distin-

guish between undersaturated and oversaturated conditions which refer to the amount of soil

organic carbon (SOC) available to complex with clay. In undersaturated conditions (mostly

B horizons), steeper increases in EP due to larger amounts of SOC and/or reductions in clay

result in a greater proportion of complexed clay leading to stronger organo-mineral bonds

and the concomitant development and maintenance of soil structure. In oversaturated condi-

tions (mostly A horizons), the slope describing the EP-CCSOC relationship was positive but
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was considerably reduced compared to undersaturated conditions due to all or most of the

clay being effectively complexed with SOC. These oversaturated conditions, which are often

characterized by increasing accumulations of non-complexed SOM can have varying effects

on macroporosity and, as a result, mute the sensitivity of EP to changes in CCSOC creating

asymptotical behavior in the relationship between EP and CCSOC. In surface horizons, indi-

rect factors such as mean annual precipitation and land use were important predictors of EP,

whereas CCSOC was more influential in controlling EP within the subsoil. The EP-CCSOC

relationship also holds within ecoregions but its effect is mitigated by soil and climate in-

teractions suggesting that climate influences this relationship in a complex manner. We

found that plowed soils—whether directly influenced by cultivation or underlying plowed

horizons—are subject to numerous disturbance effects (e.g., tensile, shear, and/or compres-

sive stresses, clay saturation, and subsoil compaction) that result in increased homogeniza-

tion of horizons and reduction in the magnitude and rate of change of EP as a function of

CCSOC compared to undisturbed horizons. Our findings suggest that the complexed frac-

tion of clay and SOC is important for controlling macroporosity and Ksat at ecoregion scales

and that the EP-CCSOC relationship may be an important framework in understanding and

predicting future land use- and climate-induced changes to soil hydraulic properties.

4.1 Introduction

Emerging evidence at the plot, hillslope, and continental scales indicates that soil structure (i.e., the

arrangement of soil particles and pores) is changing faster than previously thought—potentially on

decadal timescales—in response to shifts in precipitation regimes (Robinson et al., 2016; Hirmas

et al., 2018; Caplan et al., 2019). These structural changes alter soil macroporosity and saturated

hydraulic conductivity (Ksat)—properties in soil that control water storage and flux (e.g., > 70%

of water flux through soil can be controlled by macropores; Watson & Luxmoore, 1986)—and,

thus, the water cycle. Specifically, more humid conditions appear to promote a reduction in both

macroporosity and Ksat, while drier conditions promote an increase in these properties (Hirmas
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et al., 2018). The mechanisms governing these rapid responses of soil structure to changing pre-

cipitation regimes remain elusive. Biotic processes are the most likely explanation for changes in

soil structure on such short timescales, but given the suite of plant and microbial dynamics gov-

erning the depth distribution of water, organic carbon, CO2 fluxes (root and microbe), organic acid

production, oxygen availability, and physical mixing via bioturbation by macrofauna, it is difficult

to know which specific biologically-controlled processes are most responsible for these changes

and how they are coupled to alterations of soil fabric (Sullivan et al., 2022).

Since macroporosity is strongly dependent on particle-size distribution (PSD) and soil organic

carbon (SOC) content (Nemes et al., 2005), mechanisms involved in biophysical processes respon-

sible for soil structural changes and alterations of soil material also appear likely to operate in

the context of soil texture-SOC interactions. While it is known that macroporosity and Ksat ex-

hibit a positive relationship (Ahuja et al., 1984; Watson & Luxmoore, 1986), soil organic matter

(SOM) and Ksat exhibit a more complex relationship (i.e., both positive and negative relationships)

(Nemes et al., 2005; Araya & Ghezzehei, 2019). In general, increases in SOM have been linked

to increased Ksat due to the influence of SOM on soil aggregation (and stability) and associated

pore-size distribution (Hudson, 1994; Saxton & Rawls, 2006). The reason for this positive asso-

ciation is that increases in SOM content promote soil aggregation and lower bulk density which

leads to greater porosity resulting in larger Ksat (Nemes et al., 2005). Explanations for the negative

association between high SOM and Ksat have included: (1) that SOM retains water well and this

retention acts as part of a complex effect on soil hydraulic conditions where SOM enhances poten-

tial hydraulic conductivity by creating larger porosity in the soil, while simultaneously reducing

hydraulic conductivity by allowing less water to flow freely due to the ability of SOM to absorb

water and (2) that SOM can affect the pore-size distribution of soil through the development of soil

structure which influences hydraulic conductivity, although this modification of structure may al-

low more aggregated material to replace larger cracks and clods resulting in more tortuous and thin

pathways for water to go (Nemes et al., 2005). Other studies have attributed negative relationships

between SOM and Ksat to SOM causing transient sub-critical soil water repellency and inhibiting
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water flow due to reduced wettability (Wang et al., 2009b, 2013; Jarvis et al., 2013; Jorda et al.,

2015). Thus, SOM can have varying effects on hydraulic properties and mobile organic colloids

may clog the soil (Nemes et al., 2005).

Recent work has shown the importance of soil texture for understanding the direction of the

association between SOM and Ksat. For example, using a machine learning approach, Araya &

Ghezzehei (2019) predicted increasing Ksat with increasing SOC content for all soil textures ex-

cept the two coarsest classes (i.e., loamy sand and sand). Their trends suggest that SOC-induced

aggregation increases the relative proportion of large pores (inter-aggregate pores such as bio-

pores and macropores) in fine and medium textured soils but increases fine intra-aggregate pores

in coarse-textured soils thereby shrinking larger pores and reducing Ksat; decreases in Ksat at SOC

≥ 3% were predicted for loamy sand and sand textures (Araya & Ghezzehei, 2019). Similar effects

of SOC in reducing Ksat of coarser soils while increasing that of finer textured soils were found by

Rawls et al. (2004) and Nemes et al. (2005) where soils with 50% sand and clay contents ranging

between approximately 25 to 45% resulted in lower predicted Ksat for soils with higher SOC (5%)

compared to those with lower SOC (1% ≤ SOC ≤ 3%). Both Araya & Ghezzehei (2019) and

Nemes et al. (2005) note the importance of better understanding this complex relationship between

SOC content, Ksat, and soil texture.

The goal of this study was to build upon the findings in Hirmas et al. (2018) by (1) determining

the properties (soil, root, and climate) and mechanisms that control macroporosity in both surface

and subsurface horizons under varying land use and management practices with special attention

given to the direct and interaction effects of soil texture and SOC, and (2) assessing the importance

of these properties and mechanisms at continental and ecoregion scales to explain the reduction

in both macroporosity and Ksat under humid conditions and their increase under drier conditions.

We aim to shed light on the properties and processes controlling soil structural development and

macroporosity that have disproportionate effects on Ksat (Hirmas et al., 2018).
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4.2 Methods

4.2.1 Datasets

In this study, we acquired field-based pedon information and laboratory data collected through

the United States Department of Agriculture–Natural Resources Conservation Service (USDA–

NRCS) National Cooperative Soil Survey (NCSS) Characterization Database. We selected pedons

distributed across broad geographic extents in the US including soils with large and widespread

taxonomic diversity (i.e., Entisols, Inceptisols, Mollisols, Aridisols, Alfisols, and Ultisols); poorly

drained soils and soils with lithologic discontinuities were removed. These pedons were grouped

into United States Environmental Protection Agency (US EPA)/United States Geological Survey

(USGS) level I ecoregions (Omernik & Griffith, 2014). Following Hirmas et al. (2018), soil sam-

ples were also grouped into surface layers (A horizons) that occurred in the upper 25 cm and

subsurface layers (B horizons) that occurred within 25–100 cm of the land surface. Additionally,

horizon data were grouped into Ap (plowed) and Bp horizons (defined here as B horizons that oc-

cur within a profile that contained a shallower Ap horizon) resulting in four categories of horizons

(i.e., A, Ap, B, and Bp) analyzed in this study. In this study, Ap horizons exhibited evidence of

plowing (e.g., platy soil structure) at the time of sampling (or in the past), but are not necessarily

under current agricultural production. To minimize effects from confounding variables, morpho-

logical horizons containing concentrations of aggregating agents, such as carbonate (e.g., Bk), or

horizons that were indurated (e.g., Bqm) were not considered in this study. In addition, mean

annual precipitation (MAP) and mean annual temperature (MAT) products from the Parameter-

elevation Regressions on Independent Slopes Model (PRISM; PRISM Climate Group, Oregon

State University, 2021) were merged with the NCSS data.

To better understand soil, root, and climate controls on macroporosity at a continental scale and

across ecoregions (including varying land use and management practices), measured, calculated,

and/or derived properties from A, Ap, B, and Bp horizons as well as MAP and MAT were included

in the analyses. These included PSD, SOM (which was converted from SOC using the standard
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SOM:SOC mass ratio of 1.72), field-capacity volumetric water content (FC), complexed clay (CC),

complexed SOC (CSOC), mass fraction of water-stable aggregates (WSA), ped size, very fine and

fine root class volumetric fractions, total porosity (TP), and effective porosity (EP).

CC and CSOC were calculated following Dexter et al. (2008):

CC = IF [nSOC < clay]THEN [nSOC]ELSE [clay] (4.1)

CSOC = IF
[

SOC <
clay

n

]
THEN [SOC]ELSE

[
clay

n

]
(4.2)

where it was assumed that n g of clay complex with 1 g of SOC where n was set to 10 following

Dexter et al. (2008). In this study, we combined CC and CSOC into a single variable (CCSOC)

representing the complexed fraction of clay and SOC:

CCSOC =
CC+CSOC
TC+TSOC

(4.3)

where TC is the total clay and TSOC is the total SOC.

Values of WSA were estimated using an artificial neural network pedotransfer function (Rivera

& Bonilla, 2020). Horizons with multiple ped sizes were aggregated using the geometric midpoint

of the recorded size classes (Hirmas & Giménez, 2017; Mohammed et al., 2020). Root densities

for two root-size classes (i.e., very fine and fine) were calculated from visual descriptions of root

distributions made in the field (Mohammed et al., 2020). Lastly, TP for each horizon was derived

using the dry bulk density measured at a water content corresponding to a matric potential of −33

kPa. Effective porosity was calculated as the difference between TP and FC; EP was considered to

be a proxy of macroporosity representing the volume fraction of the largest pores in the soil (Rawls

et al., 1998; Hirmas et al., 2018).
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4.2.2 Variable transformations and statistical analyses

Prior to statistical analyses, distributions of all of the variables were visually inspected and trans-

formed to reduce skewness and approximate a normal distribution as needed. Given the composi-

tional and bounded nature of the data used in this study, we transformed and standardized variables

as shown in Table 4.1. In order to reduce zero values in the data, several variables were amalga-

mated including sand and coarse fraction, CC and CSOC (CCSOC; Eq. 4.3), and very fine and fine

roots. We used a modified Aitchison procedure (Pawlowsky-Glahn & Egozcue, 2006) to replace

the remaining zero values to prepare the variables for a centered log ratio (CLR) transformation.

The final variables selected as predictors of EP were sand and coarse fraction (SCF), clay, SOM,

CCSOC, WSA, ped size, very fine and fine roots (VFFR), MAP, and MAT. We also selected level

I ecoregions that had all four categories of horizons (i.e., A, Ap, B, and Bp) which included East-

ern Temperate Forests (ETF), Great Plains (GP), Mediterranean California (MC), North American

Deserts (NAD), and Northwestern Forested Mountains (NWFM). For each of these five ecoregions

we generated EP models using the selected predictor variables for A, Ap, B, and Bp horizons (i.e.,

twenty EP models).

To generate these EP models we first detected outliers using an adjusted Mahalanobis distance

(Korkmaz et al., 2014) and then used the glmnet R package to fit generalized linear models via

penalized maximum likelihood; regularization paths were computed for least absolute shrinkage

and selection operator (LASSO) penalties at a grid of values for the regularization parameter λ

(Friedman et al., 2010). Although elastic net regularization was initially undertaken, we ultimately

used LASSO which resulted in improved prediction across all of the EP models. We also used the

glmnet R package to generate cross-validated fits at λ min—that is, the value of λ that gives the

minimum mean cross-validated error (Friedman et al., 2010). Following these LASSO regressions,

predictors with coefficients of zero were removed and variance inflation factors (VIFs) were used

to assess multicollinearity between variables; a VIF ≥ 10 was used as an indicator of collinearity

between predictor variables as recommended by Logan (2010). A bootstrap procedure was used to

determine which variables were significant predictors of EP and β–weights from the LASSO re-

65



Table 4.1: Below is information on the transformation of variables included in this study. Prior to
transformation, CC and CSOC were amalgamated to form a new single complexed clay and SOC
variable (CCSOC; Eq. 4.3). This amalgamation was also conducted for sand and coarse fraction
(SCF), and very fine and fine roots data (VFFR). In addition, zero values were replaced using
a modified Aitchison procedure following Pawlowsky-Glahn & Egozcue (2006) before applying
the centered log ratio (CLR) transformation as indicated below. All of the variables below were
standardized prior to analyses.

Variable Reason for
transform

Transform

SCF, clay,
SOM, CCSOC,
VFFR

Compositional
data

Modified
Aitchison +
CLR

WSA, EP Compositional
and bounded
data

Logit

Ped size, MAP,
MAT

Bounded data Log

gression models were used to compare the relative importance of each predictor to EP. In addition,

predictions based on the cross-validated fits at λ min were also generated (Friedman et al., 2010)

and EP regression models were evaluated by regressing actual against predicted EP.

The LASSO regressions were used to reveal the most important (and significant) predictors of

EP across the five ecoregions and four horizon types. The variables identified by LASSO were

then analyzed with decision trees (DTs) to assess their relative importance in explaining differ-

ences in EP. Prior to the DT analyses, we detected outliers using an adjusted Mahalanobis distance

(Korkmaz et al., 2014) across each of the five ecoregions and each of the four respective horizon

types. We added two categorical variables—horizon type and land use—with the levels A/B and

plowed/non-plowed, respectively. We incorporated both categorical variables and continuous vari-

ables in the DT analyses. The rpart and rpart.plot R packages were used to generate DTs and trees

were pruned using the default complexity parameter (i.e., 0.01). This parameter represents the

overall threshold by which R2 must increase at each step/node of the splitting process to prevent
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Table 4.2: Number of pedons and horizons used in the DT analyses across the Eastern Temper-
ate Forests (ETF), Great Plains (GP), Mediterranean California (MC), North American Deserts
(NAD), and Northwestern Forested Mountains (NWFM) ecoregions. Also included below are
MAP and MAT ± one standard deviation for the pedon locations across each of the ecoregions.

Ecoregion Number of
pedons

Number of
horizons

MAP (mm) MAT (◦C)

ETF 479 1314 1114±167 12.2±3.82
GP 503 1259 661±217 11.5±4.26
MC 92 220 490±278 15.8±2.21
NAD 304 596 310±125 10.4±3.98
NWFM 113 290 638±299 6.84±3.05

overfitting (Therneau et al., 2019; Milborrow, 2021). The complexity parameter at each step/node

of the DT represents a minimization of the standard deviation of the errors calculated from cross-

validation predictions generated from a set of cost-complexity prunings (Therneau et al., 2019).

4.3 Results and Discussion

4.3.1 Continental-scale relationships

The variables identified from LASSO were SCF, clay, SOM, CCSOC, WSA, MAP, and MAT while

the variables of ped size and VFFR appeared to have a more minor role in controlling EP based

on the dataset we analyzed (see Table B1 and Fig. B.1). A total of 1,491 pedons fit our criteria

across the five ecoregions and were used in the DTs (Fig. 4.1). The number of horizons with

complete cases for all variables included in the DT analyses (i.e., EP, SCF, clay, SOM, CCSOC,

WSA, MAP, and MAT) ranged from 220 to 1,314 across the ecoregions in this study (Table 4.2).

These locations captured a wide range in MAP and MAT, spanning 310–1,114 mm and 6.8–15.8

◦C, respectively (Table 4.2).

EP was predicted by clay, CCSOC, ecoregion, and land use at a continental scale across all

of the sites in this study (Fig. 4.2; R2 = 0.484). Clay occurred at the first, second, and third split

levels all of which showed a negative relationship with EP; this is not surprising given soil texture

67



Eastern Temperate Forests (ETF) Great Plains (GP) Mediterranean California (MC)

North American Deserts (NAD) Northwestern Forested Mountains (NWFM)

N

Figure 4.1: Spatial distribution of pedon locations used in DT analyses across the Eastern Temper-
ate Forests (ETF; blue), Great Plains (GP; green), Mediterranean California (MC; orange), North
American Deserts (NAD; red), and Northwestern Forested Mountains (NWFM; purple) ecoregions
of the conterminous US.
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is known to be a primary control of EP (Rawls et al., 1982, 1998; Nemes et al., 2005; Hirmas et al.,

2018). For the bulk soil properties of the first DT split, higher clay (left branch) was represented

by an elevated mean clay content (36.1%) and a lower mean SOC content (0.661%) across hori-

zons, while lower clay (right branch) was represented by a lower mean clay content (17.0%) and

an elevated mean SOC content (1.21%) across horizons. Lessivage is a ubiquitous process that is

likely responsible for this clay separation between the two branches as fines translocate from sur-

face A horizons and accumulate within subsurface B horizons (Buol et al., 2011; Turk et al., 2012).

The differences in SOC content between the two branches also suggest this first split is governed

by horizon development as A horizons accumulate more humified organic matter compared to B

horizons (Buol et al., 2011; Turk et al., 2012).

4.3.1.1 Relationships between EP and CCSOC

CCSOC was the second factor that emerged in predicting EP, and exhibited a strong positive re-

lationship with EP across horizons that contained a higher clay content. To better understand this

relationship we directly regressed EP and CCSOC (Fig. 4.3a and b). We fit a piecewise linear re-

gression (Muggeo, 2003, 2008) to the data based on their shape and estimated a breakpoint value of

−0.250. Using the segmented R package, a standard linear model is fitted at each iteration with a

‘gap’ parameter (γ) that re-parameterizes the difference-in-slopes parameter (ψ) between two fitted

straight lines such that when the algorithm converges, the ‘gap’ should be small and one standard

error distance around the breakpoint value can be obtained; at each step, every breakpoint esti-

mate is updated through the relevant ‘gap’ and ‘difference-in-slope’ coefficients (Muggeo, 2003,

2008). EP was more sensitive to changes in CCSOC below the breakpoint (higher clay content,

lower SOC/SOM content), and less sensitive above the breakpoint (Fig. 4.3a and b). Below the

breakpoint, any additional SOC and/or reduction in clay (such that a greater fraction of the clay is

complexed) will cause a steep increase in EP. However, above the breakpoint, when all of the clay

is already complexed, any additional organic matter does not cause EP to change very much. Sev-

eral studies have shown that organo-mineral complexes (i.e., chemically protected organic matter
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Clay ≥ 0.670

CCSOC < −0.746

Clay ≥ 1.04

Clay ≥ 0.105

ETF, MC, NWFM plowed

Clay < 0.670

CCSOC ≥ −0.746

Clay < 1.04

Clay < 0.105

GP, NAD non-plowed

−1.83
n=3679  100.0%

−2.25
n=1701  46.2%

−2.41
n=1083  29.4%

−2.55
n=727  19.8%

−2.15
n=356  9.7%

−1.97
n=618  16.8%

−1.47
n=1978  53.8%

−1.66
n=1146  31.1%

−1.85
n=527  14.3%

−1.50
n=619  16.8%

−1.20
n=832  22.6%

−1.46
n=246  6.7%

−1.10
n=586  15.9%

Figure 4.2: Pruned DT displaying predicted EP at a continental scale across the conterminous US.
All categorical variables (i.e., ecoregion, horizon type, and land use) and continuous (transformed)
variables (i.e., SCF, clay, SOM, CCSOC, WSA, MAP, and MAT) were included as predictors. The
first values displayed in the blue-shaded nodes correspond to the mean EP (mean transformed EP)
of the data subset, whereas the second and third values refer to the number (n) of horizons and the
percentage of all horizons that fall in each subset, respectively. These three values are determined
by the criteria specified in the previous splits with lighter shades of blue indicating lower mean EP
and darker shades of blue indicating higher mean EP.
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bound to soil minerals) have a propensity to saturate with SOC likely due to the finite amount of

mineral specific surface area onto which SOC can be stabilized (Hassink, 1996; Chung et al., 2008;

Gulde et al., 2008; Stewart et al., 2008; Feng et al., 2014). In other words, what really matters for

EP is the percentage of clay surface area that is complexed with SOC. When that surface area is

not yet saturated, EP can change more readily in response to SOC additions compared to when the

surface area is saturated.

Samples below and above the CCSOC breakpoint in Fig. 4.3a and b have in general an effective

mineral surface area (represented by the clay fraction) that is either partially or completely com-

plexed with SOC, respectively (sensu Dexter et al., 2008). Here, we refer to partial complexation

as “undersaturated” (i.e., values of CCSOC lower than the breakpoint) and complete complexation

as “oversaturated” (i.e., CCSOC values above the breakpoint). The term “oversaturated” refers to

the excess SOC not complexed with soil clay. Additional inputs of SOC in undersaturated condi-

tions lead to increasing complexation and strengthening of organo-mineral bonds and concomitant

development and/or maintenance of soil structure which increases EP (Dexter et al., 2008). How-

ever, in oversaturated conditions, EP will respond more slowly to increased inputs of SOC. In

addition, declines in SOC stabilization and storage efficiency as soils approach saturation may be

linked to changes in the type, strength, or turnover time of organo-mineral interactions with in-

creasing SOC inputs (Kleber et al., 2007; Sollins et al., 2009; Feng et al., 2014). For example, as

soils approach SOC saturation, weaker organic–organic interactions become relatively more abun-

dant than stronger organo-mineral interactions and it has been hypothesized that the stability and

strength of SOC bound to soil minerals decreases with increasing SOC loadings (Kleber et al.,

2007; Feng et al., 2014). Thus, while increasing complexation and a strengthening of organo-

mineral bonds can occur with these inputs, it is accompanied by an abundance of non-complexed

SOM that can have varying effects on macroporosity ultimately muting the sensitivity of EP to

changes in CCSOC and resulting in the asymptotical behavior of the EP-CCSOC relationship.
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a b

c d

–0.250 –0.250

Figure 4.3: (a) and (b) Piecewise linear regression of EP vs. CCSOC colored by clay and SOM, re-
spectively, across all ecoregions and horizon types at a continental scale (R2 = 0.339). The shaded
bar at −0.250 represents one standard error distance around the breakpoint value. (c) Centroids
and error bars (± one standard deviation) for A horizons (circles) and B horizons (squares) across
the ETF (blue), GP (green), MC (orange), NAD (red), and NWFM (purple) ecoregions. Piecewise
linear regression of EP vs. CCSOC (R2 = 0.433) with the shaded bar at −0.215 represents one
standard error distance around the breakpoint value. (d) Centroids and error bars (± one stan-
dard deviation) for Ap horizons (triangles) and Bp horizons (diamonds) across the ETF (blue), GP
(green), MC (orange), NAD (red), and NWFM (purple) ecoregions. Piecewise linear regression
of EP vs. CCSOC (R2 = 0.244) with the shaded bar at −0.347 represents one standard error dis-
tance around the breakpoint value. All of the variables in this figure were transformed as shown in
Table 4.1.
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4.3.1.2 Ecoregions and land use trends

When considering both lower and higher CCSOC, we note that the breakpoint value of −0.250 in

Fig. 4.3a and b generally corresponds to the clay and SOC differences observed in the first split

of the DT in Fig. 4.2. As previously mentioned for the first split, the breakpoint value also largely

corresponded to differences between A and B horizons with the former having lower clay content

and higher SOC and the latter enriched in clay and lower in SOC. The same was true for a higher

breakpoint value separating A and B horizons (−0.215) and a lower breakpoint value separating Ap

and Bp horizons (−0.347) (Fig. 4.3c and d, respectively). Thus, B and Bp horizons exhibited lower

CCSOC and A and Ap horizons exhibited higher CCSOC (i.e., CCSOC values less or greater than

the corresponding breakpoints). However, differences between CCSOC of these horizons (with

respect to the breakpoints) emerged when examining ecoregion and land use influences on EP.

For horizons with higher CCSOC (right branch; Fig. 4.2), ecoregion and land use occurred at

the third split level of the DT. Specifically, the ETF, MC, and NWFM ecoregions corresponded

to decreased EP, whereas the GP and NAD ecoregions corresponded to increased EP (following a

second split level of higher clay). Plowed horizons corresponded to decreased EP and non-plowed

horizons corresponded to increased EP (following a second split level of lower clay). The po-

tential for increased clay-SOC complexation due to increased mineral surface area likely dictated

the higher clay content branch splitting between ecoregions with lower EP (i.e., ETF, MC, and

NWFM) and higher EP (i.e., GP and NAD). This ecoregion split could also be attributed to differ-

ences in how SOC inputs are stabilized onto mineral surfaces via various organo-mineral bonding

reactions (e.g., ligand exchange, cation bridging, H-bonding, van der Waal forces) that depend on

a number of factors (e.g., composition of organic inputs, soil mineralogy, environmental factors)

(Arnarson & Keil, 2000; Gu et al., 1994; Stevenson, 1994; Feng et al., 2014). Decreased clay-

SOC complexation potential due to decreased mineral surface area likely had an impact on the

lower clay content branch splitting between plowed and non-plowed horizons. In this case, the

split between plowed horizons (decreased EP) and non-plowed horizons (increased EP) likely in-

volved processes occurring in predominantly the non-complexed SOC pool. With respect to crop
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production systems, observed losses of SOC induced by cultivation include reduced allocation

of organic carbon to soils, reduced belowground allocation of photosynthate, enhanced aggregate

disruption and exposure of physically-protected organic carbon, and enhanced rates of decomposi-

tion of available organic carbon substrates due to more favorable abiotic conditions (e.g., aeration,

temperature, and water content) (Baldock & Broos, 2012). Therefore, disturbance effects such as

plowing which reduce SOC in these horizons are likely responsible for the decreased EP. Here

we reiterate that due to the lower clay content across horizons, more of the SOC present is not

complexed with clay and is therefore subject to more rapid turnover processes associated with

the labile non-complexed SOC pool (which is also a factor contributing to decreased EP). Finally,

non-plowed horizons would allow for more SOC accumulation and increased EP. The lower clay

content across these horizons also corresponds to processes occurring in the non-complexed SOC

pool where more of the SOC present is not complexed with clay; however, SOC is more abundant

which is a factor contributing to increased EP.

Land use (and management) appears to be driving changes in EP and CCSOC to varying de-

grees across ecoregions. In general, both EP and CCSOC decreased from A to Ap and B to Bp

horizons across ecoregions. This trend was more pronounced from A to Ap horizons as exhibited

by differences in mean EP (transformed) for the ETF (A: −1.44; Ap: −1.80), GP (A: −1.39; Ap:

−1.76), MC (A: −1.43; Ap: −1.90), NAD (A: −1.15; Ap: −1.54), and NWFM (A: −1.03; Ap:

−1.67) (Fig. 4.3c and d). Likewise, differences in mean CCSOC (transformed) also exhibited this

trend across surface horizons of the ETF (A: 0.878; Ap: 0.720), GP (A: 0.724; Ap: 0.520), MC

(A: 0.637; Ap: 0.0398), and NWFM (A: 1.09; Ap: 0.976) although NAD values were similar (A:

0.542; Ap: 0.545) (Fig. 4.3c and d). This trend was less pronounced from B to Bp horizons as

exhibited by differences in mean EP for the GP (B: −1.91; Bp: −2.01) and NWFM (B: −1.93;

Bp: −1.98) although NAD values were more pronounced (B:−1.60; Bp: −1.91); in addition, ETF

values were similar (B: −2.31; Bp: −2.31) and MC values increased from B to Bp horizons (B:

−2.10; Bp: −2.05) (Fig. 4.3c and d). Similarly, differences in mean CCSOC also exhibited a less

pronounced trend (however, all were decreasing from B to Bp) across subsurface horizons of the
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ETF (B: −1.02; Bp: −1.12), GP (B: −0.640; Bp: −0.686), MC (B: −0.831; Bp: −0.970), NAD

(B: −0.643; Bp: −0.703), and NWFM (B: −0.601; Bp: −0.666) (Fig. 4.3c and d). We note that

smaller sample sizes for MC Ap and Bp horizons (n = 25 and 37, respectively) as well as NWFM

Ap and Bp horizons (n = 11 and 14, respectively) should be taken into account when interpreting

these results (see Table B1 for n of A, Ap, B, and Bp horizons by ecoregion).

Although there was overlap of errors associated with centroids in Fig. 4.3c and d, disturbance

effects such as plowing generally contributed to decreases in both EP and CCSOC that were more

pronounced in surface horizons and less pronounced but nonetheless propagated in subsurface

horizons (with some notable exceptions discussed in the following sections). These surface and

subsurface horizon changes occurred despite mineral-bound SOC comprising a large majority of

total SOC and having longer turnover times (Balesdent et al., 1988; Christensen, 1998; Trumbore,

2000; Kahle et al., 2002; Feng et al., 2014). In general, Ap and Bp centroids were grouped more

closely compared to A and B centroids (Fig. 4.3c and d). This appeared to indicate that disturbance

effects lead to homogenization of the EP-CCSOC relationship for Ap and Bp horizons including a

weakening of this relationship for Bp horizons with relatively low CCSOC values when compared

to undisturbed (or less disturbed) conditions across A and B horizons.

4.3.1.3 Impact of disturbance effects on the EP-CCSOC relationship

Comparing A and B centroids (Fig. 4.3c) with Ap and Bp centroids (Fig. 4.3d) does provide some

indication of disturbance whereby reduction in the magnitude and rate of change of EP as a func-

tion of CCSOC occurs. In general, A and B horizons (undisturbed or less disturbed; hereafter,

‘undisturbed’) indicate an increase of CCSOC (and soil structure) with increases in EP. Ap and

B horizons under Ap (hereafter, ‘disturbed’) indicate a reduction of CCSOC (and soil structure)

with decreases in EP. Czyż & Dexter (2016) estimate that the effective density of clay-organic

complexes is very low with a mean value of 0.17±0.04 g ml−1 in arable soils; this low value sug-

gests that clay-organic complexes are extremely porous with open structures perhaps in the form

of fibers or chains. Therefore, when considering clay-organic complexes as a separate phase in
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soils they can account for observed reductions in bulk density with increasing SOM contents as

well as disproportionately large effects on soil structure and behavior (Dexter et al., 2008; Czyż &

Dexter, 2016). When comparing mean differences between ecoregion median values greater than

the breakpoints, undisturbed CCSOC and EP values were 0.429 and 0.380 greater than disturbed

values, respectively; for soils below the CCSOC breakpoints, undisturbed CCSOC and EP values

were 0.0760 and 0.0897 greater than disturbed values, respectively. Thus, these changes in EP

appear to be driven by disturbance effects (e.g., tensile, shear, and/or compressive external forces

caused by field operations) which impact the amount and stability of CCSOC with concomitant

modifications of soil structure (Dexter, 1988; Ghezzehei, 2012; Horn & Peth, 2012).

Accompanying these general decreases in CCSOC and EP from undisturbed to disturbed set-

tings were general decreases in WSA. When comparing mean differences between ecoregion me-

dian values greater than the breakpoints, undisturbed WSA values (untransformed) were 13.4%

greater than disturbed values; for less than the breakpoints, undisturbed WSA values were 2.85%

greater than disturbed values (Fig. 4.3c and d). Since stress attenuation is greater for increas-

ingly aggregated soils (under in situ conditions for soils with the same internal parameters) (Horn

& Peth, 2012), tensile strength associated with CCSOC and WSA of undisturbed soils is likely

greater and more effective at attenuating stress than tensile strength of CCSOC and WSA associ-

ated with disturbed soils (with corresponding impacts on EP). However, since a combination of

shear and compressive stresses generally characterize in situ stress conditions during field opera-

tions (e.g., traffic, soil-tool interactions) (Horn & Peth, 2012), a number of other accompanying and

compounding factors impacting the EP-CCSOC relationship must be considered. When compar-

ing mean differences between ecoregion median values greater than the breakpoints, undisturbed

bulk density, ped size, and clay values were 0.0380 g cm−3, 4.04 mm, and 5.56% less than dis-

turbed values, respectively; for less than the breakpoints, undisturbed bulk density values were

0.0690 g cm−3 greater than disturbed values, whereas ped size and clay values were 3.91 mm and

5.09% less than disturbed values, respectively (Fig. 4.3c and d).

For CCSOC values greater than the breakpoints (mainly surface horizons), undisturbed bulk
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density values were lower than disturbed values indicating compression and densification in plowed

horizons (Ap horizons) likely due to traffic during field operations. However, in B and Bp hori-

zons, which were generally undersaturated with respect to CCSOC, undisturbed bulk densities

were greater than those from disturbed horizons. While the reasons for this finding are unclear,

this may be due to the effect of shear stresses in disturbed horizons where shearing behavior in

aggregated soil depends on the water content and density of the aggregates as well as the geometry

of the applied stress system (Dexter, 1988; Ghezzehei, 2012). If the density of the structured soil is

above a characteristic critical value, shearing is confined to a well-defined surface or narrow band

near the source of the stress where rolling of round particles or alignment of platy clay particles

can occur and gross changes in volume take place in only a small proportion of the soil. In con-

trast, if the density of the structured soil is below the critical value then stress propagates through

the whole soil volume resulting in an overall increase in density with disproportionate destruction

of larger pores and consequent reductions in air-filled porosity and hydraulic conductivity (Kurtay

& Reece, 1970; Hettiaratchi & O’Callaghan, 1980; Dexter, 1988; Ghezzehei, 2012). Therefore,

undisturbed bulk densities that were greater than disturbed bulk densities may reflect the former

scenario where density of the structured soil is above the critical value and soil-tool interactions

cause shearing that is more so confined near the source of the stress with gross changes in volume

taking place in a small proportion of the soil.

Clay contents from undisturbed horizons were less than those in disturbed horizons suggesting

that deep-loosening or deep-plowing and/or mixing with other soil material not only led to declines

in soil stability and strength (Horn & Peth, 2012), but also brought illuvial clay upward and mixed

it throughout the disturbed horizons. Peds were smaller for A and B horizons compared to Ap

and Bp horizons likely because of the presence of clods in disturbed horizons. Clods are formed

due to compaction by agricultural machinery where boundaries between macroaggregates may be

lost or remain as microcracks depending on soil wetness and machinery loads during compaction;

clods can also be formed during desiccation of large masses of clayey soil (Ghezzehei, 2012).

Thus, clods and their formation processes are particularly important in subsoil horizons which typ-
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ically do not have aggregates but exhibit similarly complex structure that, in contrast to topsoil

(aggregate) structure, can be almost irreversibly damaged when subjected to subsoil compaction

(Ghezzehei, 2012). In sum, due to external forces associated with field operations, Ap and Bp

horizons not only undergo numerous disturbance effects (e.g., tensile, shear, and/or compressive

stresses, clay saturation, subsoil compaction) but through these effects they also become increas-

ingly homogenized and exhibit a reduction in the magnitude and rate of change of EP as a function

of CCSOC (Fig. 4.3d) when compared to undisturbed A and B horizons (Fig. 4.3c).

4.3.2 Effects of A and B horizons on EP

As previously mentioned, lessivage and the accumulation of humified organic matter creates ei-

ther under- or oversaturated conditions that strongly control EP. These conditions are expressed in

subsurface (B) and surface (A) horizons, respectively. For example, Fig. 4.4 shows the results of

the same DT analysis as in Fig. 4.2 but with clay and CCSOC removed. As can be seen in this

figure, EP was predicted by horizon type first, and then by SCF, MAP, SOM, and land use across

all sites in this study (R2 = 0.379) confirming that undersaturated conditions largely correspond to

B horizons (i.e., lower CCSOC and EP) and oversaturated conditions to A horizons (i.e., higher

CCSOC and EP). With clay removed, both A and B horizons were split by SCF in the DT with val-

ues of SCF positively correlated to EP (Fig. 4.4). The increase in SCF in A horizons and decrease

in B horizons likely indicate the translocation of fines from surface horizons into subsurface layers

(Koop et al., 2020).

A horizon EP was predicted by clay, MAP, land use, SCF, SOM, and ecoregion (Fig. 4.5a; R2 =

0.397). Similarly, EP in B horizons was predicted by clay, MAP, SCF, and ecoregion; however,

CCSOC was an important predictor while land use was not (Fig. 4.5b; R2 = 0.449). At the first

split level, both A and B horizons split by clay with higher clay resulting in decreased EP and

lower clay resulting in increased EP. Although differences between A and B horizons emerged

at the second split level, both horizon types were dependent on the fraction of clay complexed

with SOC. Higher MAP in A horizons correspond with decreases in EP likely due to increased
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Figure 4.4: Pruned DT showing predicted EP (mean transformed EP) at a continental scale across
the conterminous US. All categorical variables (i.e., ecoregion, horizon type, and land use) and
continuous (transformed) variables except clay and CCSOC (i.e., SCF, SOM, WSA, MAP, and
MAT) were included as predictors. Refer to the Fig. 4.2 caption for general guidance on DT
interpretation.
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Figure 4.5: Pruned DTs displaying predicted EP at a continental scale across the conterminous
US for (a) A horizons and (b) B horizons. For both horizon types, categorical variables (i.e.,
ecoregion and land use) and continuous variables (i.e., SCF, clay, SOM, CCSOC, WSA, MAP,
and MAT) were included as predictors. Refer to the Fig. 4.2 caption for general guidance on DT
interpretation.

weathering and production of secondary minerals which corresponded to higher clay and, thus, a

reduced fraction of that clay complexed with SOC (Fig. 4.5a). Under lower MAP, decreases in

weathering and production of secondary minerals are likely responsible for lower clay contents

making a greater proportion of that clay subject to complexation with SOC with, correspondingly,

greater potential for aggregation and increases in EP. B horizons, however, more directly reflect

the EP-CCSOC relationship at the second split level of the DT (Fig. 4.5b). Since A horizons are

typically oversaturated with respect to CCSOC, we observed more indirect factors (i.e., MAP, land

use) coming to the forefront as important predictors of EP, whereas since B horizons are typically

undersaturated, we observe a more direct influence of CCSOC on EP. In general, clay content in

these B horizons was not fully complexed with SOC and, therefore, EP showed a greater response

to increased SOC in the subsoil.
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Table 4.3: Relationships of variables with EP (+ and − signs indicate the direction of the relation-
ship) and R2 values for the ETF, GP, MC, NAD, and NWFM ecoregion DTs displayed in Fig. 4.6a,
b, c, d, and e, respectively.

Ecoregion Variable Relationship R2

with EP
ETF Clay − 0.399

WSA +
SCF +

GP Clay − 0.615
CCSOC +
MAT −
MAP −
SCF +
Plowing −

MC Clay − 0.771
MAP −
CCSOC +
MAT −

NAD Clay − 0.501
CCSOC +
MAP −
SCF +
Plowing −

NWFM CCSOC + 0.712
WSA +
SOM −
SCF +

4.3.3 Ecoregion influences on EP

All of the DTs by ecoregion also first split into under- and oversaturated conditions with respect to

the proportion of clay complexed with SOC, with the left and right branches largely representing

B and A horizons, respectively (Fig. 4.6). This ecoregion behavior was similar to the behavior

observed in the continental-scale DTs (Fig. 4.2 and Fig. 4.4). Overall, the ability of the DTs to

predict EP across the ecoregions varied from an R2 = 0.399 to R2 = 0.771 with the least confidence

in the ETF and the greatest confidence in the MC ecoregion (Fig. 4.6; Table 4.3).

Although the EP-CCSOC relationship holds at a continental scale, differences in how this re-
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Figure 4.6: Pruned DTs showing predicted EP (mean transformed EP) for (a) ETF, (b) GP, (c) MC,
(d) NAD, and (e) NWFM ecoregions of the conterminous US. For each ecoregion, categorical
variables (i.e., horizon type and land use) and continuous (transformed) variables (i.e., SCF, clay,
SOM, CCSOC, WSA, MAP, and MAT) were included as predictors. Refer to the Fig. 4.2 caption
for general guidance on DT interpretation.
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lationship is manifested by soil and climate interactions emerge when comparing ecoregions. At

the first split level, all of the ecoregions, except NWFM, split between clay content with higher

and lower values on the left and right branches largely representing B and A horizons, respec-

tively (Fig. 4.6a, b, c, and d). CCSOC occurred at the first split for NWFM where lower values

on the left branch were associated with B horizons, whereas higher values on the right branch cor-

responded to A horizons (Fig. 4.6e). Thus, EP within the NWFM ecoregion appears to exhibit a

propensity to respond to SOC additions for both surface and subsurface horizons. The similarity

in the EP-CCSOC relationship between A and B horizons may be due to the increased occur-

rence of macroaggregation as represented by WSA emerging as the next strongest predictor of EP

(Fig. 4.6e). WSA also occurred at the second split level of the ETF DT (right branch; oversatu-

rated A horizons) (Fig. 4.6a). The increased aggregation in forested soils may be caused by both

elevated additions of organic matter and increases in acidity. Rivera & Bonilla (2020) observed

a positive gradient of macroaggregate stability from arid to humid environments due to increases

in SOM and decreases in pH. At lower pH values (< 7), solubility and mobility of cations are

higher resulting in the formation of bridges with clay and SOM; in addition, microbial activity un-

der lower pH values increases and promotes macroaggregation and stabilization (Tisdall & Oades,

1982; Bronick & Lal, 2005; Regelink et al., 2015; Wu et al., 2017; Rivera & Bonilla, 2020). Thus,

in these forested (or previously forested) environments with higher MAP (Table 4.2) and SOM and

lower pH, WSA is an important predictor that is positively associated with EP (Table 4.3).

Where MAP was more limited or where steeper climatic gradients occurred (i.e., GP, MC,

NAD; Table 4.2), climate (i.e., MAP, MAT) tended to have an important and negative relationship

with EP (Fig. 4.6b, c, and d; Table 4.3). Across the conterminous US, SOC generally increases

as MAP increases up to 700–850 mm and then SOC content fluctuates as MAP continues to in-

crease (Guo et al., 2006). However, when considering grassland and forest ecosystems with MAP

< 1000 mm, SOC generally decreases as MAT increases across elevations < 600 m and slopes

< 1◦ (Guo et al., 2006). The negative correlation between SOC and MAT implies that the relative

temperature sensitivity of decomposition is greater than that of net primary productivity although
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strong interactions between temperature, water availability, and substrate quantity make it diffi-

cult to assess the temperature dependence of decomposition without confounding effects (Baldock

& Broos, 2012). The generally negative correlations between climate (i.e., MAP, MAT) and EP

likely reflected the positive association between MAP and weathering and production of secondary

minerals (and lessivage) (Buol et al., 2011; Schaetzl & Thompson, 2015) and the negative asso-

ciation between MAT and SOC (Guo et al., 2006) which strongly influences the fraction of clay

complexed with SOC. However, other than a second split level in the MC ecoregion (left branch;

undersaturated B horizons) where higher MAP likely corresponded to increased illuvial clay accu-

mulation (and, thus, lower EP) and lower MAP corresponded to decreased clay illuviation resulting

in higher EP (Fig. 4.6c), MAP and MAT occurred at lower split levels with less explanatory power.

This suggests that climate influences the EP-CCSOC relationship more indirectly and likely in a

complex manner. Additionally, CCSOC occurred at the second split level of the GP DT (left branch

in Fig. 4.6b; undersaturated B horizons) which was similar to where it occurred in the continental-

scale DTs in Fig. 4.2 and Fig. 4.5b suggesting that the GP ecoregion with its sizable area and steep

climatic gradients (north-south MAT; west-east MAP) captured what was occurring in subsurface

(B) horizons at a continental scale. That is, EP exhibits a propensity to respond to SOC additions

and/or reductions in clay increasing the proportion of complexed clay. EP responding to both SOC

additions and reductions in clay was perhaps best exemplified in CCSOC occurring at the first split

level of the NWFM DT (right branch) and the second split level of the NAD DT (right branch).

The steeper increase in EP of surface (A) horizons was likely linked to coarser textures (and SOC

additions) that increased the fraction of complexed clay in these ecoregions of the western US

(Fig. 4.6d and e; Table 4.3).

4.4 Conclusion

This work highlights that EP (a proxy of macroporosity) of surface (A) and subsurface (B) horizons

is strongly dependent on the fraction of clay complexed with SOC (as represented by CCSOC). In

this study, we use the relationship between EP and CCSOC to distinguish between undersaturated
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(i.e., low values of CCSOC; largely B horizons) and oversaturated (i.e., high CCSOC values;

largely A horizons) conditions; these conditions refer to the amount of SOC available to complex

with clay. In undersaturated conditions, steeper increases in EP are associated with larger amounts

of SOC and/or reductions in clay that result in a greater fraction of complexed clay leading to

stronger organo-mineral bonds and the concomitant development or maintenance of soil structure.

In oversaturated conditions, the slope describing the EP-CCSOC relationship was positive but

reduced compared to undersaturated conditions. This reduction was likely due to all or most of the

clay being already effectively complexed and the varying effects that increasing accumulations of

non-complexed SOM can have on macroporosity. Ultimately, these oversaturated conditions mute

the sensitivity of EP to changes in CCSOC and result in the observed asymptotical behavior of the

EP-CCSOC relationship.

Since surface (A) horizons typically exhibit oversaturated conditions with higher SOC and

lower clay contents, indirect factors (e.g., MAP, land use) are important predictors of EP. However,

since subsurface (B) horizons are typically associated with undersaturated conditions (i.e., higher

clay content and lower SOC), direct influences from CCSOC on EP occurs in the subsoil. We

found that the EP-CCSOC relationship was also important for explaining changes in EP within

ecoregions but its effect is mitigated by soil and climate interactions. In forested ecoregions (i.e.,

ETF, NWFM) with higher MAP and SOM and lower pH, increased macroaggregation and stability

of these macroaggregates are positively associated with EP. Where MAP is more limited or where

steeper climatic gradients occur (i.e., GP, MC, NAD), climate (i.e., MAP, MAT) tends to be neg-

atively correlated with EP likely due to the positive association between MAP and the production

or translocation of secondary minerals through weathering and lessivage and the negative associa-

tion between MAT and SOC. Thus, climate appears to influence the EP-CCSOC relationship in an

indirect and complex manner.

We found that EP exhibits strong tendencies to positively respond to SOC additions and/or

reductions in clay both of which increase the proportion of complexed clay. This may explain why

drier climates (e.g., the western US), which tend to have low to moderate clay contents with low
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to moderate SOC contents, lead to increases in the fraction of complexed clay and concomitant

increases in macroporosity and Ksat. For humid climates (e.g., the eastern US), which tend to have

moderate to high clay contents with moderate to moderately high SOC contents, increases in the

proportion of complexed clay and concomitant increases in macroporosity and Ksat can also occur.

However, under humid climates, soils with high SOC/SOM contents where all or most of the clay is

complexed create oversaturated conditions such that non-complexed SOM can have varying effects

on macroporosity and Ksat including reductions of these properties. This may be especially true for

coarser textures in humid environments with high SOM where less clay corresponds to a reduced

fraction of complexed clay leading to reductions in macroporosity and Ksat. Finally, disturbance as

represented by the Ap and Bp horizons creates conditions that are more homogenized compared to

A and B horizons which reduces the magnitude and rate of change of EP as a function of CCSOC.

In sum, the findings of this work point to the importance of complexed clay and SOC in controlling

macroporosity and Ksat across ecoregions and suggests that the EP-CCSOC relationship provides

an important framework for understanding and predicting future land use- and climate-induced

changes to soil hydraulic properties.
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Chapter 5

Conclusions

Chapters 2-4 of this dissertation represent broad-scale approaches to soil development and mor-

phology coupled with an examination of the impact of soil properties and soil-climate interactions

on the water cycle at continental, basin, and ecoregion scales. In Chapter 2, I developed general-

izable horizon and profile development indices (HDIs and PDIs, respectively) based primarily on

relative horizon properties instead of parent material information and evaluated these indices at a

continental scale. These indices reflect general patterns of pedogenesis for several soil orders of

broad geographic extent and integrate relative soil morphological, physical, and chemical informa-

tion by taking into account how eluvial and illuvial processes shape topsoil and subsoil horizons.

This work showed that the developed HDIs and PDIs were valid proxies of soil development, ap-

plicable across large geographic scales, and may aid in a number of broad-scale applications (e.g.,

pedogenic modeling, identification of anomalies, estimation of surface soil ages) including a bet-

ter understanding of how climatic and land-use pressures influence pedogenesis. One promising

avenue of future research would be the development of a pedogenic model incorporating the HDI

and PDI with a soil climate index and 14C dating to generate quantitative data at the horizon-scale

(e.g., degree of parent material preconditioning) and at the pedon-scale (e.g., soil age) that could

be extrapolated to produce spatial distributions of these properties. This would likely involve the

development of a pedotransfer function that relates MAT and MAP to the soil climate index rep-

resenting the drivers of soil formation and that distributes the index with depth. The pedogenic

model would be calibrated using HDIs from well-studied and documented sites with strongly es-

tablished temporal and environmental contexts. Finally, the model would be applied to pedons

using the dataset from Chapters 2-4 utilizing HDIs to generate quantitative spatial and temporal
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data of horizon- and pedon-scale properties across the conterminous US.

The findings in Chapter 3 suggest that the combined effects of higher soil organic carbon (SOC)

and ped roundness in humid and sub-humid basins are related to enhanced evapotranspiration by

increasing total porosity, hydraulic conductivity, and plant-available water holding capacity. Lower

SOC and ped roundness values in these environments likely correspond to agricultural practices

that lead to the formation of platy soil structure via mechanical compaction and concomitant de-

creases in infiltration and increases in runoff. In arid and semi-arid basins, low ped roundness

corresponding to natural platy soil structure associated with vesicular horizons lead to decreases in

infiltration and increases in runoff which shunt water towards shrub islands and ephemeral washes.

This work provides evidence that near-surface soil structure and SOC may explain systematic dif-

ferences in long-term water balance at a continental scale pointing to potentially important climate

feedbacks and the need to include soil structure in Earth system models. To accomplish this goal

would require developing a non-stationary pedotransfer function that incorporates the linkage be-

tween soil structure, SOC, and climate to derive hydraulic parameters for Earth system models.

Chapter 4 shows that effective porosity (EP; a proxy of macroporosity) of surface (A) and sub-

surface (B) horizons is strongly dependent on the fraction of clay complexed with SOC (hereafter,

‘CCSOC’) at both continental and ecoregion scales. The relationship between EP and CCSOC was

used to distinguish between undersaturated and oversaturated conditions referring to the amount of

SOC available to complex with clay. In undersaturated conditions (largely B horizons), steeper in-

creases in EP were associated with: (1) larger amounts of SOC and/or reductions in clay resulting

in a greater proportion of complexed clay, (2) stronger organo-mineral bonds, and (3) concomitant

development and maintenance of soil structure. However, in oversaturated conditions, the slope

describing the EP-CCSOC relationship was positive but reduced compared to undersaturated con-

ditions due to: (1) all or most of the clay being effectively complexed with SOC, (2) increased

accumulations of non-complexed SOM which had varying effects on macroporosity, and (3) resul-

tant muting of the sensitivity of EP to changes in CCSOC creating an asymptotic behavior of the

EP-CCSOC relationship.
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Additional findings from Chapter 4 indicate that indirect factors such as mean annual precip-

itation and land use are important predictors of EP in surface horizons, whereas CCSOC is likely

more influential in controlling EP within subsurface horizons. Across ecoregions, the effect of

the EP-CCSOC relationship appeared to be mitigated by soil-climate interactions suggesting that

climate influences this relationship in an indirect and complex manner. Since EP exhibits strong

tendencies to positively respond to SOC additions and/or reductions in clay (both of which in-

crease the fraction of complexed clay) this may explain why (1) drier climates (e.g., the western

US), which often have low to moderate clay contents with low to moderate SOC contents, ex-

hibit increases in the proportion of complexed clay and associated increases in macroporosity and

Ksat; and (2) humid climates (e.g., the eastern US), which often have moderate to high clay con-

tents with moderate to moderately high SOC contents, also exhibit increases in the fraction of

complexed clay and associated increases in macroporosity and Ksat. However, humid climates

characterized by soils with high SOC/SOM contents where all or most of the clay is complexed

result in oversaturated conditions where non-complexed SOM can have varying effects on macro-

porosity and Ksat including reductions of these properties. Reductions in macroporosity and Ksat

may be especially prevalent in humid environments characterized by coarser-textured soils with

high SOM where less clay corresponds to a reduced fraction of complexed clay. Finally, when

comparing Ap and Bp horizons (disturbed) with A and B horizons (undisturbed), the former was

characterized by homogenization of soil conditions and a reduction in the magnitude and rate of

change of EP as a function of CCSOC. In light of the strong influence of the complexed fraction

of clay and SOC on macroporosity and Ksat at ecoregion scales, the EP-CCSOC relationship has

the potential to be an important framework for understanding and predicting future land use- and

climate-induced changes to soil hydraulic properties.

In conclusion, I offer several additional examples of how the broad-scale approaches and find-

ings summarized above might aid future research focused on the impact of soil properties and

soil-climate interactions on the water cycle at varying scales. First, in addition to the use of gen-

eralizable HDIs and PDIs in pedogenic modeling efforts, as covariates, or as stratifying variables,

89



these indices could also be used as inputs in pedotransfer functions to aid in the prediction of

hydraulic properties. Second, the inclusion of near-surface SOC and ped roundness in soil param-

eterization of Budyko models across a wide range of spatial and temporal scales could provide

confirmation of the role of soils in combining with other factors to explain systematic differences

in water balance. Finally, the development of the EP-CCSOC relationship as a framework to under-

stand soil macropore sensitivity to additions of SOC and the incorporation of this framework into

hydrologic and Earth system models could capture land use- and climate-induced changes to soil

hydraulic properties and more effectively predict alterations to water cycling across scales. Pursu-

ing these directions in future research has the potential to address widespread ecosystem service

challenges induced by increasing climate and land-use pressures.
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Table A1: Description of the data used in this study.

Variable Variable description/ Unit Number Data
explanation of Obs. Source

Horizon
designation

Symbols used to designate
layers within the soil (master
horizons and suffix symbols)

57171 NRCS-
NCSS

Top horizon
depth

The distance from the soil
surface to the upper boundary of
the soil horizon

57171 NRCS-
NCSS

Bottom
horizon
depth

The distance from the soil
surface to the lower boundary of
the soil horizon

57171 NRCS-
NCSS

Munsell hue Measure of the dominant
wavelength of light using the
Munsell notation system

53479 NRCS-
NCSS

Munsell
value

Measure of the lightness of soil
color relative to neutral gray
using the Munsell notation
system

53473 NRCS-
NCSS

Munsell
chroma

Measure of the relative strength
of a spectral color using the
Munsell notation system

53206 NRCS-
NCSS

Ped/void
surface
feature

Type of ped/void surface feature
present (e.g., clay films)

19583 NRCS-
NCSS

Ped/void
surface
feature
percentage

Relative percent of the total
surface area occupied by a
ped/void surface feature (e.g.,
clay films) in a horizon

% 15049 NRCS-
NCSS

Ped/void
surface
feature
distinctness

Relative extent to which a
ped/void surface feature (e.g.,
clay films) visually stand out
from adjacent material;
described as either faint,
distinct, or prominent

10109 NRCS-
NCSS

Fine clay <0.0002 mm particle diameter
mass fraction reported on a
fine-earth (<2 mm) basis

% 12146 NRCS-
NCSS

Total clay <0.002 mm particle diameter
mass fraction reported on a
fine-earth (<2 mm) basis

% 57171 NRCS-
NCSS
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Variable Variable description/ Unit Number Data
explanation of Obs. Source

Fine silt 0.002 to 0.02 mm particle
diameter mass fraction reported
on a fine-earth (<2 mm) basis

% 51005 NRCS-
NCSS

Coarse silt 0.02 to 0.05 mm particle
diameter mass fraction reported
on a fine-earth (<2 mm) basis

% 51018 NRCS-
NCSS

Total silt 0.002 to 0.05 mm particle
diameter mass fraction reported
on a fine-earth (<2 mm) basis

% 57171 NRCS-
NCSS

Very fine
sand

0.05 to 0.10 mm particle
diameter mass fraction reported
on a fine-earth (<2 mm) basis

% 53993 NRCS-
NCSS

Fine sand 0.10 to 0.25 mm particle
diameter mass fraction reported
on a fine-earth (<2 mm) basis

% 53947 NRCS-
NCSS

Medium
sand

0.25 to 0.50 mm particle
diameter mass fraction reported
on a fine-earth (<2 mm) basis

% 53911 NRCS-
NCSS

Coarse sand 0.50 to 1.0 mm particle
diameter mass fraction reported
on a fine-earth (<2 mm) basis

% 53854 NRCS-
NCSS

Very coarse
sand

1.0 to 2.0 mm particle diameter
mass fraction reported on a
fine-earth (<2 mm) basis

% 53669 NRCS-
NCSS

Total sand 0.05 to 2.0 mm particle
diameter mass fraction reported
on a fine-earth (<2 mm) basis

% 57171 NRCS-
NCSS

CCE Calcium carbonate equivalent
mass fraction on a <2 mm basis
measured by CO2 evolution
after acid treatment

% 16786 NRCS-
NCSS
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Variable Variable description/ Unit Number Data
explanation of Obs. Source

Al Aluminum measured after total
dissolution of the <2 mm
fraction reported on an oxide
basis

mg kg−1 953 NRCS-
NCSS

Ca Calcium measured after total
dissolution of the <2 mm
fraction reported on an oxide
basis

mg kg−1 953 NRCS-
NCSS

K Potassium measured after total
dissolution of the <2 mm
fraction reported on an oxide
basis

mg kg−1 953 NRCS-
NCSS

Na Sodium measured after total
dissolution of the <2 mm
fraction reported on an oxide
basis

mg kg−1 947 NRCS-
NCSS

Gibbsite Identified on oriented clay
slides by XRD; XRD peak
height given as one of 5
semiquantitative classes: 5 =
very large, 4 = large, 3 =
medium, 2 = small, and 1 = very
small

359 NRCS-
NCSS

Halloysite Identified on oriented clay
slides by XRD; XRD peak
height given as one of 5
semiquantitative classes: 5 =
very large, 4 = large, 3 =
medium, 2 = small, and 1 = very
small

236 NRCS-
NCSS

Illite Identified on oriented clay
slides by XRD; XRD peak
height given as one of 5
semiquantitative classes: 5 =
very large, 4 = large, 3 =
medium, 2 = small, and 1 = very
small

16 NRCS-
NCSS

Kaolinite Identified on oriented clay
slides by XRD; XRD peak
height given as one of 5
semiquantitative classes: 5 =
very large, 4 = large, 3 =
medium, 2 = small, and 1 = very
small

5122 NRCS-
NCSS
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Variable Variable description/ Unit Number Data
explanation of Obs. Source

Montmorill-
onite

Identified on oriented clay
slides by XRD; XRD peak
height given as one of 5
semiquantitative classes: 5 =
very large, 4 = large, 3 =
medium, 2 = small, and 1 = very
small

3476 NRCS-
NCSS

Vermiculite Identified on oriented clay
slides by XRD; XRD peak
height given as one of 5
semiquantitative classes: 5 =
very large, 4 = large, 3 =
medium, 2 = small, and 1 = very
small

2065 NRCS-
NCSS

Argillic
horizon

Binary value indicating the
presence (1) or absence (0) of an
argillic horizon within the depth
of the morphological horizon

6283 NRCS-
NCSS

Cambic
horizon

Binary value indicating the
presence (1) or absence (0) of a
cambic horizon within the depth
of the morphological horizon

1628 NRCS-
NCSS

Soil order Highest level of US Soil
Taxonomy

57171 NRCS-
NCSS

Drainage
class

Natural drainage conditions of
the soil; refers to the frequency
and duration of wet periods
(e.g., well drained)

366 NRCS-
NCSS

MAP Mean annual precipitation
calculated as the sum of each
mean monthly precipitation

mm 57171 WorldClim
2
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Table A3: HDI and PDI calculations for the example data given in Table A2.

Variable Horizon Pedon
A AB Bt Btk Bk1 Bk2 C

General
i 1 2 3 4 5 6 7
N 7
t (cm) 20 15 18 14 30 23 22

Particle-size distribution
h E E I I I I I
k 1 2
g 1 2 3 4 5
n 2
p 5
Di/Dk/Dg 6.49 5.70 5.82 6.39 6.04 6.24 6.14
(µm)
ED (µm) 6.15
ID (µm) 6.10
s̃D (µm) 0.29
z̃Di 1.32 −1.38 −1.14 0.81 −0.39 0.31 −0.05
SDi 1.32 0 1.14 0 0.39 0 0.05
max(SD)

a 1.46
min(SD)

a −1.06
HDIDi 0.47 0 0.44 0 0.26 0 0

Calcium carbonate equivalent (CCE)
h E E E I I I I
k 1 2 3
g 1 2 3 4
n 3
p 4
CCEi/CCEk/ 0 0 4 15 15 14 15
CCEg (%)
ECCE (%) 1.36
ICCE (%) 14.66
s̃CCE (%) 1.43
z̃CCEi −10.23 −10.23 −7.44 9.52 9.52 8.82 9.52
SCCEi 10.23 10.23 7.44 9.52 9.52 8.82 9.52
max(SCCE)

a 1.54
min(SCCE)

a −0.45
HDICCEi 0.73 0.73 0.67 0.72 0.72 0.70 0.72
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Variable Horizon Pedon
A AB Bt Btk Bk1 Bk2 C

Soil color
h A A EBC EBC EBC EBC EBC
k 1 2
g 1 2 3 4 5
n 2
p 5
L∗i/L∗k/L∗g 60.06 67.81 67.62 74.55 74.55 74.55 74.55
a∗i/a∗k/a∗g 2.27 2.42 2.71 4.48 4.48 4.48 4.48
AL∗ 63.38
EBCL∗ 73.39
Aa∗ 2.33
EBCa∗ 4.18
s̃L∗ 3.19
s̃a∗ 0.62
Sci 4.18 1.75 0.61 3.46 3.46 3.46 3.46
max(Sc)

a 1.37
min(Sc)

a −0.92
HDIci 0.67 0.51 0.31 0.64 0.64 0.64 0.64

Clay films
Fai (%) 40 20
Fdi 10 10
max(Fai) (%) 100
max(Fdi) 30
SFai

0.40 0.20
SFdi

0.33 0.33
HDIFi 0 0 0.37 0.27 0 0 0

Profile development index
HDIi 0.47 0.31 0.45 0.41 0.40 0.33 0.34
PDI 0.39

aDetermined for the whole dataset in this study.
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Appendix B

Supplemental information for Chapter 4

B.0.1 Assessing relative importance of soil, root, and climate variables on

EP

Table B1 shows β–weights for the soil, root, and climate variables used in the LASSO EP regres-

sion models for A, Ap, B, and Bp horizons across the ETF, GP, MC, NAD, and NWFM ecoregions

considered in this study. The sign of each β–weight indicates either a positive (+) or negative (−)

correlation between the respective variable and EP. The rescaled β–weights (i.e., rescaled by the

maximum β–weight for each of the twenty ecoregion horizon models) are displayed in Fig. B.1.

Additional information on the LASSO EP regression models for A, Ap, B, and Bp horizons across

the ecoregions is included in Table B2. Results of an assessment of the relative importance of soil,

root, and climate variables on EP is presented below. The proportion of variance in EP that could

be predicted from these variables ranged from a R2 of 0.217 (NAD Bp horizons) to 0.975 (NWFM

Bp horizons), though the overall mean R2 across all twenty models was 0.519. This indicated that

these soil, root, and climate variables are generally important for predicting EP across ecoregions,

though the degree of importance depended on both the ecoregion and the horizon type.

B.0.1.1 Eastern Temperate Forests

Across ETF A horizons, clay (−), WSA (+), and SCF (+) were the most important predictors of

EP (Fig. B.1). The textural control of clay (the strongest predictor) explained 1.27 times the varia-

tion in EP compared to WSA as determined by the squares of the β weights in Table B1. Clay also

explained 3.84 times the variation compared to SCF, whereas the role of aggregation as indicated
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Figure B.1: Rescaled β–weights for soil, root, and climate variables comprising LASSO EP re-
gression models for A, Ap, B, and Bp horizons across the ETF, GP, MC, NAD, and NWFM ecore-
gions. β–weights were rescaled by the maximum β–weight for each of the twenty ecoregion
horizon models.
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Table B2: λ min and intercept values from the LASSO EP regression models for A, Ap, B, and Bp
horizons across the ETF, GP, MC, NAD, and NWFM ecoregions. Residual standard errors (RSE)
and R2 values for each model are also included below. All models are significant at p < 0.001
except for the NWFM Ap horizon model is significant at p < 0.005.

Horizon λ Min Intercept RSE R2

ETF
A 1.21 0.297 0.514 0.387
Ap 1.06 0.105 0.447 0.392
B 1.03 0.0772 0.440 0.550
Bp 1.03 0.0648 0.507 0.293
GP
A 1.10 0.137 0.345 0.458
Ap 1.08 0.142 0.381 0.388
B 1.01 0.0145 0.345 0.723
Bp 1.02 0.0328 0.347 0.603
MC
A 1.05 0.0748 0.406 0.628
Ap 1.02 0.0346 0.381 0.620
B 1.19 0.409 0.392 0.675
Bp 1.07 0.152 0.401 0.697
NAD
A 1.03 0.0391 0.343 0.329
Ap 1.12 0.190 0.389 0.412
B 1.09 0.154 0.464 0.454
Bp 1.71 1.40 0.509 0.217
NWFM
A 1.15 0.163 0.391 0.422
Ap 1.43 0.615 0.298 0.615
B 1.07 0.130 0.427 0.552
Bp 1.01 0.0139 0.0893 0.975
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by WSA explained 3.02 times the variation in EP compared to SCF (Table B1). However, for ETF

Ap horizons, the climate variable of MAT (+) was by far the most important and predominant

predictor of EP explaining 250 and 366 times the variation compared to clay (−) and WSA (+),

respectively (Table B1; Fig. B.1). When considering ETF B horizons, the climate variable MAP

(+) was the strongest predictor of EP explaining 5.33, 6.17, and 12.6 times the variation compared

to the textural controls of clay (−) and SCF (+), and the aggregating influence of CCSOC (+),

respectively (Table B1; Fig. B.1). Clay explained 1.16 and 2.36 times the variation in EP com-

pared to SCF and CCSOC, respectively, while SCF explained 2.04 times the variation compared

to CCSOC (Table B1). Lastly, for ETF Bp horizons, a number of variables emerged as impor-

tant predictors of EP where the strongest predictor—the climate variable of MAT (−)—explained

3.58, 5.84, 8.58, 15.4, 25.9, and 50.5 times the variation compared to the textural influence of clay

(−), aggregation represented by WSA (+) and SOM (+), MAP (−), ped size (−), and SCF (+),

respectively (Table B1; Fig. B.1).

B.0.1.2 Great Plains

For GP A horizons, MAP (−), clay (−), and WSA (+) were the most important predictors of EP

with the climatic control of MAP explaining 5.91 and 19.3 times the variation compared to the

textural influence of clay and the aggregating influence of WSA, respectively (Table B1; Fig. B.1).

Clay explained 3.27 times the variation in EP compared to WSA across GP A horizons (Table B1).

A shift to MAT (+) as the strongest predictor of EP occurred across GP Ap horizons with this

climate variable explaining 5.56 and 14.5 times the variation compared to clay (−) and MAP (−),

respectively (Table B1; Fig. B.1). The textural control of clay explained 2.61 times the variation

in EP compared to the climatic influence of MAP (Table B1). With respect to GP B horizons,

clay (−) emerged as the strongest predictor of EP explaining 2.49 and 9.52 times the variation

compared to MAP (−) and WSA (+), respectively (Table B1; Fig. B.1). The climatic control of

MAP explained 3.82 times the variation in EP compared to the role of aggregation as indicated

by WSA (Table B1). Finally, for GP Bp horizons, MAT (+) emerged as the strongest predictor
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of EP amongst a number of other important variables explaining 1.25, 3.85, 17.3, and 23.3 times

the variation compared to clay (−), MAP (−), SCF (−), and SOM (−), respectively (Table B1;

Fig. B.1).

B.0.1.3 Mediterranean California

With respect to the MC ecoregion, MAT (−) was the most important predictor of EP across all

horizon types (Table B1; Fig. B.1). The climatic control of MAT was predominant as the strongest

predictor of EP explaining > 655 times the variation compared to each of the second strongest

predictors for A, Ap, B, and Bp horizons (Table B1). However, for purposes of discussion in the

next section, we mention several of these second and in some cases third and fourth strongest

predictors that provide indications of the effect of MAT on soil controls of EP. Across MC A

horizons, the predominant climatic control of MAT (−) on EP was followed in order of importance

by the aggregating influence of SOM (+), the climatic influence of MAP (−), and the textural

control of SCF (+) (Table B1). When considering MC Ap horizons, the strong role of MAT (−)

on EP was followed by the textural control of clay (−), the climatic influence of MAP (−), and

the aggregating influence of WSA (+) (Table B1). For MC B horizons, the predominant climatic

control of MAT (−) on EP was followed by the textural influence of clay (−) and the aggregating

influence of CCSOC (+) (Table B1). Lastly, across MC Bp horizons, the strong climatic influence

of MAT (−) was followed by the textural control of clay (−) and the aggregating influence of

CCSOC (+) (Table B1).

B.0.1.4 North American Deserts

Across NAD A horizons, SOM (+), WSA (+), SCF (+), MAP (−), MAT (+), and CCSOC (+)

were the most important predictors of EP (Fig. B.1). The aggregating control of SOM (the strongest

predictor) explained 1.06, 1.10, 1.64, 2.16, and 10.6 times the variation in EP compared to the

additional aggregating influence of WSA, the textural influence of SCF, the climatic controls of

MAP and MAT, and the additional aggregating role of CCSOC, respectively (Table B1; Fig. B.1).
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With respect to NAD Ap horizons, shifts in the direction of the relationship with EP occurred

for the climate variables with MAT (−), clay (−), and MAP (+) becoming the most important

predictors (Fig. B.1). The climatic control of MAT explained 2.51 and 3.60 times the variation

in EP compared to the textural influence of clay and the climatic influence of MAP, respectively;

clay explained 1.43 times the variation compared to MAP (Table B1). For NAD B horizons, clay

(−), SOM (+), and SCF (+) were the most important predictors of EP with the textural control

of clay explaining 7.21 and 17.8 times the variation compared to SOM and SCF, respectively

(Table B1; Fig. B.1). The role of aggregation indicated by SOM explained 2.47 times the variation

in EP compared to the textural influence of SCF (Table B1). Finally, when considering NAD

Bp horizons, CCSOC (+), SOM (+), and WSA (+) were the most important predictors of EP

(Fig. B.1). All three of these variables provided an aggregating influence with CCSOC explaining

5.79 and 29.3 times the variation in EP compared to SOM and WSA, respectively, whereas SOM

explained 5.07 times the variation compared to WSA (Table B1).

B.0.1.5 Northwestern Forested Mountains

When considering NWFM A horizons, MAT (−) was predominant as the most important predictor

of EP (Fig. B.1). The climatic control of MAT was by far the strongest predictor of EP explaining

1,884 times the variation compared to aggregation as indicated by WSA (+) (Table B1). Across

NWFM Ap horizons, SCF (+) and clay (−) were the most important predictors of EP with the

textural control of SCF explaining 10.2 times the variation compared to the textural influence of

clay (Table B1; Fig. B.1). For NWFM B horizons, clay (−), WSA (+), SOM (+), and MAP (−)

were the most important predictors of EP (Fig. B.1). The textural control of clay explained 5.66,

7.17, and 13.8 times the variation in EP compared to the aggregating controls of WSA and SOM

and the climatic influence of MAP, respectively (Table B1). Lastly, with respect to NWFM Bp

horizons, MAT (−) was by far the most important and predominant predictor of EP explaining

327, 664, and 1,487 times the variation compared to texture (clay, −), aggregation (CCSOC, −),

and MAP (+) (Table B1; Fig. B.1).
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